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PREFACE 

The aim of this dissertation is to present an exposi

tory account of the concept of the Finsler manifold. 

As the idea of then-dimensional differentiable mani

fold and the idea of the Finsler metric can be traced to an 

1854 lecture by Riemann, the first chapter is given to Rie

mann's introduction of these concepts presented in modern 

terminology. 

The second chapter is a dicussion of the concept of 

distance as developed by Paul Finsler in 1918. Like the 

first chapter, this discussion is concerned primarily with 

local geometry. 

In the third chapter the theory of chapter II is re

stricted to two-dimerisionaicmahifolds . ' and a study of such 

geometric ideas as geodesics, orthogonality and area is de

veloped, bringing the student to the threshold of the modern 

approach, begun by Busemann. 

The fourth chapter is concerned with aspects of global 

geometry and culminates in a brief discussion concerning fi

bre bundles. 

While Finsler geometry does have practical significance 

in modern physics, this aspect is not covered here. 

On ,the part of the undergraduate mathematics major, for 

whom this exposition is written, basic notions of advanced 
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calculus, linear algebra and point set topology are pre

sumed. · 

Two remarks should be made concerning notations: 

First, the use of superscripts with the same meaning ordi

narily att~ched to subscripts should be distinguishable 

fro~ the use of superscript$ as expqnents by the context; 

second, any term in which repeated indices appear is to in

dicate a summation from 1 ton on the index or indices re-

reated. For example, F 1·Xi means F 1x1 + F 2X2 + ... + 
X X X 

F nxn ' i • e • ' oF xl + ••• 
X axl 

I wish to ~cknowledge my indebtedness to Professor 

R. B. Deal for his guidance in the preparation of this the

sis and for the inspiration that led me to the study of 

Finsler geometry; I wish to acknowledge equal indebtedness 

to Professors Vernon Troxel and Milton Berg for their gui

dance in the formal presentatiop of th~ subject matter; and 

I wish to express my gratitude to Miss Mary Winsteaq, Dr. 

Robert Poe and Miss Vicki Bruyr for their very significant 

contributions. 
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CHAPTER I 

INTRODUCTION 

In a very real sense the idea of the Finsler manifold 

had its inception in the famo~s 1854 dissertation of 

Bernhard Riemann entitled "C<;H}cerning the Hypotheses Which 

Lie at the Base of Geometry." In this paper Riemann laid 

the foundation for the study of then-dimensional differ

entiable manifold and for the study of a generalized metric 

space which included Euclidean spaces as special cases and 

which became known one half century later as Finsler spaces. 

The geometry introduced in Riemann's paper may be 

characterized by three properties: it was n-dimensional; it 

was infinitesimal; . and ·it was Non-Euclidean. Although all 

three properties had already been introduced by other fa

mous mathematicians, Riemann in his 1854 dissertation ap

plied all at the same time. 

The study of a space · having more dimensions than three 

had been introuuced by Arthur Cayley in 1843 and by Herman 

Grassman in 1844. 

The study of infinitesimal geometry had been well de~ 
• 

veloped by scholars beginning with Christian Huygens in 1673 

and continuing up to the geometers of Riemann#s own time. 

The names which can hardly be omitted in this development 
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would include Gaspard Monge, Leonhard Euler and Carl 

Friedrich Gauss. 

Finally, the study of Non-Euclidean geometry had al~ 

ready brought Corth the work of Johann Bolyai, Nilolai 

Lobachevski1 and Gauss. But their work in this area was 

characterized by the full use of the synthetic method of 

element~ry geometry. 

2 

What Riemann achiev~d in his 1854 dissertation was a 

further development of all three ideas in one unified theo

ry. He began by postulating the n-dimensiona1ity of space, 

he applied the method of investigating the behaviour of the 

infinitesimal parts of the space in order to gain knowledge 

of the whole, and with this he created the basis for the 

concept now known as the differentiable manifold. 

Riemann'' s Manifold 

The first part of Riemann~s three-part dissertation 

was devoted to the concept of then-dimensional manifold. 

As is well known geometry assumes the concept 
of space as well as the basic concepts for construc
tions in space as something given in advance. Only 
nominal definitions arise from these concepts while 
the real essential difinition~ appear in the f orm of 
axioms. The relationship between these axioms conse
quently remains hidde~; we do not see whether or in 
what way their relationship is necessary or possible. 1 

For example, by assuming that space is three-dimens ion-

al, infinite, µnbounded, flat (in the sense that Euclid~s 

Fifth Postulate is everywhere valid) and containing struc-

1 
Georg Bernhard Riemann, Gesa.mm.elte Mathematische Werke 

(New York, Dover, 1953), p. 272. 
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tures which are assum~d to be infinite such as straight 

lines as well as structures such as spheres, the geometer 

may be restricting himself too much. Are all these assump

tions so related that all are necessary? Or is it possible 

that space could be three-dimensional and unbounded without 

being infinite and flat? And why is it that the measure re

lation, the distance, between two points on a subset of 

space - on a sphere in E3 ,for example - is more complicated 

than the measure relation between points in the space it

self? 

Riemann felt that answers to such questions could not 

be found under the existing axioms simply because the axioms 

themselves contained some assumptions on the basis of self

evidency rather than logical necessity. To remedy the situ

ation he suggested that space be considered as a set of 

points having one fundamental property - namely, that each 

point be determined by the results of n independent measure-

ments. 

This set of points may be a discrete set or a continous 

set. If it is discrete, then the measure relations possible 

on it would in some way be connected to the cardinality of 

the set. If it i ·s contfnuot113, it must be considered amor

phous, and the measure relations possible must be reached 

by a study of the subsets which comprise the space. 

The concern of this dissertation is with the latter 

case. Therefore, a f~rst goal will be to establish machi

nery. · The . pa.th to be .t ·aken<.toward :this end .will be that of 
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Riemann translated into the terminology developed by post

Riemannian achievements in topology. 

The first restrictions to be put on the space are re

strictions which make possible the rigorous application of 

the theory of topology. Toward this end~consider a set M 

of points such that each point of Mis determined by n i n

dependent measurements and also such that M itself is a 

separable Hausdorff topological space. (A space Mis Haus

dorff if for any two points of M there exist disjoint open 

sets each containing exactly one of the points; Mis sepa

rable if it contains a countable basis for its topology.) 

Consider now the space Rn with its standard product 

topology. All the properties known about this space are 

available to the mathematician. What is needed is a method 

of relating the topological space M to the topological 

space Rn so that properties of M can be deduced through a 

study of Rn. The most apparent way of setting up a rela

tion between these two topological spaces is to require 

that for each point of M there is an open neighborhood of 

that point that is homeo~orphic to some open subset in Rn. 

A separable Hausdorff topological space which satisfies 

this requirement is called a topological manifold. 

The restriction to the class of topological manifolds 

is justified by the facts that this class is very vast and 

that the tools for working with this class are already a

vailable. But even with the limitation to the class of to

pological manifolds, the task of introducing concepts of 

differentiability is not an easy one. It is accomplished 
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by relating differentiability on a manifol d to differenti

ability in Rn, the space of real n-tuples with all its 

known properties . 

Consider~first,two open neighborhoods u1 and u2 of a 

point P of M. Each of these is mapped homeomorphically into 

Rn . Let ~land ~2 be the corresponding homeomorphisms. 

Then V1 maps U1fl U2 into some open set in Rn and ~2 

maps u1 {) u2 into some open set in Rn. I.e., t2(U1" U2)C 

Rn 
~ 

"'-1 1112 : ~2 ( U1 f' U2)-> U1 n U2 C M 

~ -1 n 
'l'l O ~2 ; ~2(U1f\ U2)_. ~1(U1fl U2) CR 

-1 
In brief, ~lo t 2 is a mapping of a set in Rn into a 

set i n Rn. For such mappings the notion of differentiability 

is well defined in courses of advanced calculus. Conse-

quently some machinery for differentiability should result 

i f one considers only those functions td and~~ such that 

A.,,... A:l ill ~ -1 
If.,. If',.:, and 'I' 13 • '4' o( are differentiable functions of " real 

variables in the sense of a4vanced calculus. 

A differentiable manifold is defined, therefore, to be 

a topological manifold whose local home·omorphisms <1>Dt : U -~ 

R~ where {Up( I°' E J\} = M., satisfy the condition that for every 

o< ,8 £ I\ the mapping ~13 • t;1 : ~dl (U"' fl U~ ) -:, f tJ (U~ I\ U3 ) 

i s such that all of its first partial derivatives exist and 

are continuous. If the mapping is such that it has continu

ous partial derivatives of all orders less than or equal to 

r, the manifold is called a differentiable manifold of class 
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It is to be expected that this new structure, this 

differentiable manifold of class er, will be amenable to a 

concept of differentiation. I.e., from the differentia-
~ _l n bility of the function If'°' 0 06 whose domain is in R one 

hopes to define differentiability for some function f whose 

domain is in M itself. To do thisJa concept of local co

ordinates is introduced. 

Let P be a point in M with an open neighborhood U QC (P). 

The homeomorphism 4°' maps U o< (P) into some open set Voe in 

Rn. Hence~~ maps the point Pinto an n-tuple (x1 , .•• xn) 
n 

i n R . In other words, the n coordinates of ~ °' ( P) are the 

n real variables x1 , .•. xn. They are functions of ~ « (P) 

and are called the local coordinates of P. 

The open sets Uoc are called coordinate neighborhoods. 

Let U (l ( P) be another open neighborhood of P with cor

r.es ponding homeomorphism ~ G . Then the n coordinates of 

~ 13 (P) are n real variables y1 , yn Since P E (u°' I\ 

) d rl Ao(-. 1 U4 , an since the mapping \.f'e, 0 \f is a homeomorphism of 

~a( (U°' fl U I?> ) onto ~ IJ (U(l\ fl U13 ) , these two sets of local 

coordinates of Pare related. (See figure 1.) These two 

different expressions (x1 , ... , xn) and (yl, ... yn) for the 

point Pare continuousl y related. 

This means that the homeomorphism is given by the n 

equations expressing the coordinate functions yi i n terms 

( 1 n ) i = i ( 1 n of then-tuple x, .•• x . Briefly y y x, .•. x ). 

Thes e functi ons defining t he map ~/!,o 4;1 are differ-
1 

entiable functions of the xi s ince the mapping ~ 13 ° ~; 
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Figure 1 



A 

Figure 2 · 
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is by postulate differentiable. 

Now one can define differentiable functions on a 

differentiable manifold M of class er. Let A be any open 

set of Mand let f be a real valued function on A. Let P 

E A fl Ua where {U.} are the coordinate neighborhoods 

covering M. 

~ 0( (A () u~ ) C Rn 

f • "-:1 A ( ) 111.... is defined on .., ~ A f\ U °' and has its range 

in R. If f O ~;1 is differentiable on the open set 

<p °" (A fl U-c.) for every «~ then f is called differentiable · on 
l 

the open set A in M. If f • ~; is of class cr on ~°' (A tl 

Ud ), then f is said to be of class cr on A. (See figure 

2). Again it is important to stress that f is defined on 

the space M but f • ¢2- 1 is defined on a set in Rn the dif-
-..• 

ferentiability of this is studied in advanced calculus. 
In this definition of the differentiability of a real-

valued function f defined on an open set A of M it is to be 

noted that the differentiability off at P does not depend 

on any particular u~ containing P. However, the open set 

A of Mon which f is differentiable does depend on f. This 

means that the set of all functions which are differentiable 

on some open set in M do not all have the same domain in M. 

More will be said about this set of differentiable functions 

in a later chapter. 

An Example 

A familiar example of'. a, seporab-1;.e. Hausdorff' space is 
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the Euclidean plane itself; the topology of this plane in

duces onto any circle defined in the plane a topology such 

that the circle itself is a separable Hausdorff space. Let 

M be such a circle, let P be any arbitrary fixed point on 

M, and let Q be the point diametrically opposed to P. 

If the radius of the circle is denoted by the constant 

Kand if the radian measure of an arc beginning at Pis de

noted by --&, all points Ee,. of M can be determined by the 

values of -0-. Let U f = M, P, the set of all points of M 

except P. Let u2 = M,Q. Clearly, ~. u Uz = M. 

The mapping ~l of the point P..,e. onto the real number 
..g. -T 

7T where O < -e- < 2 Tr takes all of u, onto the real 

open interval (-1,1). This mapping is a homeomorphism since 

it is one to one, open, continuous and onto. Similarly, the 

mapping ~2 of each point P..e,. onto the real number ~ · when 

- Tr< ..e-<7T is a homemorphism of u2 onto the open interval 

( -1, 1) . 

"1-l ~ maps (-1,1) onto U1, and consequently it maps the 

open set (-1,0) V (0,1) onto u1, Q. t2 then maps u1 , Q 

(which is identically equal to u2,P) onto (-1,0) \J (0,1). 

In other words, t2 ° 41 -l is a homeomorphism of the real 

set (-1,0) V (0,1) onto itself. 

Th l s exampl e selected for its simplicity indicates the 
1 

idea that ~B O ~o1 - : ~°' ( u_. 11 u 15 ) --1 ~ a. ( Uoe n u 13 ) is 

a homeomorphism. In this case.., U°' fl Ua is the set M,(f>vo), 

all the points of M e~cept P and Q. ~ °' (U°' I\ U ~ ) is 

(-1,0) v (0,1); ~t3 (U-' I\ u13 ) is (-1,0) v (0,1) ; and ~4 ° 
~:l . ~ ! -1 
If.. 1. s 1112 ° 1111 which maps (-1,0) V (0,1) homeomorphi-
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cally onto itself. 

Now the set ( -1, 0) V ( 0, 1) is an open set on the Eu

clidean line, which can be designated as the x - axis. 

In terms of coordinates on this axis (-1, 0) is -1 < x < o 

and ( 0, 1) is O < x < 1. 

Let ~l (P-e) = x ~ (-1,0) 

Then -0' _-,r = X and 0<~ < 7' 
'ff" 

Hence -e- -1T = -rrx-, ,i -1 ( ) and -e- = ,rr x-t-71"="1 x 

And ~2 o ~1-1 (x) 

~l (P,e-) = X 

= j_ -e, = J._{- X + 11 )= X + 1 ..,,. - -,r\!' 

Let ~ (0,1) 

Then -e- - -rr = x and 71 < .e- < 2 ff" 
'ff" 

Again .a- --rr = -rrx and -& = 71 x + 7T 

But t2 is defined on - -,r < -e- < -,,- , and I:g_ 

corresponding to -e = -rr x +.r is the 

same P..e,. which corresponds to -e = 7f x + 

;T - 2;f = -rf X --rf. 

Therefore., -e- = .,, 
X -1' = ~ -1 

1 
(x) 

~2 0 ~1-1 (2d = ~ = ,.,, x- "'It 
..,.,.. -,,-

= x-1 

~2 • 11-l (x) =fxx +l for -1 < x< 0 
-1 for 0< x < 1 

Conclusion: 

The point P~was mapped by the function ~l onto the real 

number x. This real number x was mapped by the func-

tion • 2 o ~1- 1 onto another real number either x+l 

or x-1. This mapping is differentiable. Consequently the 

topological manifold M satifies the requirement necessary 

to be a differentiable manifold. 
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Let f be a real-valued function defined on an open set 

G of M. Let I:e- be any point of G. Then P-0 c G I\ U, or 

P~ l G I'\ u2 . Without loss of generalitY; assume the lat

ter. Then since ~2- 1 maps some open set of {-1,0) u (0.1) 

onto the open set GAU2 , and since f then maps this set 

G n u2 onto some open set in the real number line R, the 

composite function f Q "'2-l ~ is a mapping of an open set 

of real numbers into the set of real numbers. If this 

composite is differentiable, then f itself is differenti

able. The function f which maps each P-e, for 0< ~ < 1T 

onto the: ~eal number 2-f?l., for example, is simply the dif

ferentiable mapping of the real interval (0,1) onto the 

real interval (0, 2 11"' 2 ) ordinarily expressed as y = 
2 2 2 11 X • _ 

An important feature which should be noted in the con

sideration of the above example is that the radius k of 

the given circle played no part. In fact, the same discus

sion holds without change if M is an ellipse of any ec

centricity. 

Another important idea to bear in mind is closely con

nected with the last remark and is the major concern of 

this dissertation. It is the fact that nothing has been 

mentioned which would in any way enable one to find the 

distance between two given points o.f M. Perhaps all that 

could be said, and this because of the familiar simple 

space chosed as M, is that such distances exist and are 

bounded. 
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Riemann's Line Element 

The second part of Riemann's dissertation was entitled 

npossible Measure Relations on an n-dimensional Manifold 

Under The Hypothesis that Lines Possess Length Independent 

of Their Positions.n The significance of the given hypo

thesis becomes obvious when one recalls from lessons on af-

fine geometry that there exist spaces in which a selected 

unit of length along one line does not determine the unit 

of length along other lines. In such spaces there is no 

way to compare lengths of segments of lines unless the 

lines have the same or the exact opposite directions. 

Riemann was concerned with the problem of putting a 

metric geometry on a manifold in such a manner that the 

length of any line segment could be compared to that of any 

other. 

In the previous section of this chapter the aim was to 

put a. differentiable structure onto a topological manifold. 

But in all that section no mention was made of a notion of 

distance between points on the manifold M. One has topo-

logical transformations from M to Rn, and there is a stan-

dard way for defining a n 
this metric on R , but in no way 

implies a corresponding metric on M itself. 

Riemann's method for introducing the metric property 

to his manifold was to define distance for points which are 

close enough together. He considered a fixed point Pon 

the manifold with local coordinates x1 , x2, 

is a nearby point, then the coordinates of Q can be taken 
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to be x1 + a.xl, 2 X + a_xa, . • • xn + dxn where the dx·i 

are infinitisimal changes in the respective coordinates. 

If now dS is going to be the distance from P to Q what pro

perties should dS have? Obviously dS should be a function 

of P and Q, but it should have other properties as well. 

The dS is called the element of length or the line ele

ment in the sense that the length of a curve is to be de

fined by means of the definition of the dS. 

It should be noted that, unlike Euclid, Riemann did 

not assume that the properties of distance between any two 

points would be the same as that between two points close 

together. Thus, in Riemann's approach, if he had wanted to 

postulate the Pythagorean Theorem, he would have postulated 

it only for restrict?d neighborhoods. He did not want to 

postulate that a line is infinite in length or that it is 

not~ He could not make such postulates beeau$e of the very 

nature of his inf'initesimal geometry. What then should be 

the properties of length in the small? 

Following are the properties which Riemann suggested 

as requirements for length. 

1) The length of a line element should be positive; 

it should be independent of the sense traversed. 

2) The length of a line element should be independent 

of its position. This means that the length should be in

variant under a change of coordinate systems. 

3) Thi;! length of a line element.should remain un

changed if all points undergo an infinitely small change of 
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position: and when ail the quantities ctx1 increase in the 

same proportion, the length of the line element itself 

changes in this same proportion. This am9unts to the re

quirement that the length should not depend on the para-

metrization. 

If hypothesis (1) holds, then cle~rly the length dS 

must be positive even when the quantities dxi are all 

changed in sign, but by (3) dS must be multiplied by a con

stant k whenev~r each dxi is mul.tip1ied by ·the constant 

k > o. Hence the lin~ element dS must be homogeneous of 

the first degree in the dxi, but the former condition to

gether with this req~irement implies that dS cannot be li

near in the dxi. To illustrate the restrictions thus im-

posed on the nature of the function dS, consider the fol

lowing situEJ.tions when n = 2, Pis (x,y) and Q is (x + dx, 

y + dy). 

If dS were defined to be dx + dy, then the distance 

between (x,y) and (:,c - dx, x - dy) w9uld be -dx -dy, a 

negative quantity if dx + dy is positive. Thus dS cannot 

be given by the expression dx + dy. 

If dS were defined to be dx + x, then 2 dS must be 2 

dx + x by the third condition. But then, dS ~ dx + x/2 

contradicting the fact that dS = dx + ~. Thus, no expres

sion of the type dx + x can be used to define dS. 

Briefly, if one accepts all the Riemann conditions for 

the linear element, many forms involving the variEJ.bles xi 

and dxi must immediately be regarded as impossible since 

the permissible forms must be homogeneous of the first de-
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gree in ctxf. 

Consider the form dS2 = 

gij's may be functions of xi but not of dxi. 
i 

where the 

Since dS2 is 

homogene~us of the second degree in 

of the first degree. Similarl~ dS4 
dx, dS is homogeneous 

· 2 · 2 
= (gij (dx1 ) (dxJ) ) 

is homogeneous of the fourth-degree. While all such forms 
3 . 2 . 

are permissible, those such as dS = (gij (dx1 ) dxJ) 

are not permissible because a change of sign of all dxi im-

plies a change of sign of dS. 

Riemann called dS = (gij dxi ·) 1/2 dxJ the simplest 

general case. He explored it in great depth, and it is the 

form usually associated with him. However, the other pos

sibilities did not escape his attention • 

•.•• dS is possibly the square root of a positive homo
geneous.function of the second degree in the quanti
ties dx' whose coefficients are continuous functions 
of the xi. For the case when the position of a point 
is expressed in rectangular coordinates, 

dS = [T--n {dxi) 2J ''i, 
i=l 

This case is therefore a special case of the simplest 
general case. For the next simplest case ••• dS can 
be expressed as the fourth root of a biquadratic dif
ferential form. The investigation of these more gene
ral types would not require any essentially different 
principles ••• but it would contrib~te comparatively 
little new to the theory of space. 

With this passage Riemann discovered what are now 

called Finsler spaces and, underestimating their importance, 

left their development and study to later mathematicians. 

2Ibid. p. 278 
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A Note on Riemann's Differential Form 

Consider on the Euclidean plane a rectangular coordi

nate system. The variables x and y are called cartesian 

coordinates of the plane referred to a selected pair of 

rectangular axes. Clearly any portion of the plane is 
covered by two families of straight lines - those parallel 

to the x-axis and those parallel to the y-axis. Any point 

of the plane lies on exactly one straight line of each fa

miiy. 

Now remove the restriction that the coordinate system 

be rectangular. Then any two families of curves which 

cover the plane in such manner that any point on the plane 

lies on exactly one curve of each family form a new coordi

nate system. Denote the curves of one family as u1 curves 

and those ·of the other as u2 curves-. The variables u1 and 

u2 are called curvilinear coordinates of the plane. An ·ob

vious example of such a coordinate system iB the polar-co

ordinate system. 

Consider two points on this plane given in the rec

tangular system by P(x,y) and Q(x + -dx, y + dy) and in the 

curvilinear system by P(u1 , u2 ) and Q(u1 + ctu1 , u2 + ctu2). 

Let the distance in the first system be given by dS2= 
(dx) 2 + (dy) 2 • The aim is to express this function as one 

of u1 , u2 , dU1 and dU2 under the assumption that the vari-

1 l 2 . l ab es x and y are functions of U and U. I.e., x = f 
1 2 2 1 2 (U, U) and y = f (U, U) and these are independent. In 

this case the Jacobian 0£ the trans£ormation from'one co-
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ordinate system to the other is non-zero, and the inverse 

transformation exists : ul = gl (xl, x2) and u2 = g2 (x1 , 

x2} • 

Therefore, 

dx = .:> fl 

~ 
and 

dy = --'!1._2 dU1 + a f 2 dU2 

oU1 au2 

d.,2 
) = 

1 1 1 2 2 2 
( __i.! dU + ~ dU ), +(_!.f 

~u1 au2 , su1 

1 
dU 

+ c:>f2 dU2l2 --;;2 ) 

While the element of length in cartesian coordinates 

had the seemingly simple form cts2 = (dx) 2 + (dy) 2 , i't as-

sumes this above complicated form in the curvilinear co

ordinate system. The cartesian form represented a Euclidean 

line-element; the latter form is Riemannian. It can be 

WJ;"itten as dS2 = gij ctui dUj where i = 1, 2~ j = 1, 2 and 

giJ. = -~X~ -~ + 21.2 df~ 
dui o» u J au i a u J 

This transfer from Euclidean geometry to Riemannian by 
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way of generalizing from cartesian coordinates in the Eucli

dean plane to curvilinear eoord;inates i.s a fundamental re

lation between the two g~ometries. 

On the ot:q.er hand it may be of interest to note what 

happens on another transformation to a new coordinate sy= 

stem. The d.$2 should remain fixed for fixed :nearby points 

P and Q but how is the form gij d:x:1 a.xJ affected? 

Repeating the properties of dS2 , it is homogeneous of 

degree two in then variables dxi; it is positive for all 

real values of dxi not all zero; it is zero only when all 
i dx are zero; it is a real number.and is invariant under 

any change of coordinate systemso 

These restrictions on the form gij ct.xi dxj imply re

strictions on the coefficients gij• 

Let dS2 = gij d:x:i dxj in one coordinate syst;em and 
P") 

Since dS.c. is in= 

variant under such transformation~ gij dxi dxj = g~~ d:x:~ 

dx 13 • But 

Ther$fore, 

g .. dxi dxj = 
1J 

Accordingly, the coefficients gij in one coordinate system 

must become 

g Ql.(3 -~ot _e/J 1/3 
a :x:i clXj 

in the other systt.m. This rule describing how the gij be-
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have under coordinate transformations is of basic im-

portance. 

Let g denote the determinant of the matrix (gij). As

sume that g = O. Then the system of n linear equations 

g!llt;a dxw = 0 whose determinant o.f coefficients is g would 
1 -, n have a non-tri val solution ( dx ' d:i,C ~. • dx ) ~ In other 

0 i 
words dSfu would be zero even though some d:;t is not zero~ 

Tb • t d • +, • t t • t' "/ ~ ' d "'ci:2 · _is con ra 1cv1on .o resric ions a_reauy p~ace _ on ct0 

implies that g can.not be zero. 

Finally, consider the C€tse when gik 'F gki for some 

.fixed i and k. The stun of the two terms g.! ·k dx:L dxk + .L ,_ 

gki dxk dxi can be expressed as ( gi.k + gki) d:~/ d:xk which 

in turn is equal to (l/2)(gi.k + gki) dxi dxk + (1/2) (g:ik + 

g .. · ) d;x:k a.xi. In this final. form the coefi':i.cient o.f dxi dxk k1 

is equal to that of dxk dxi. For this ::ceason the given qua= 

dratic form can always be exJyressed as a symmetric f'orm. 

In summary, Riemann.Ts linea.r element dS2 is a homo= 

geneous -of-the-second-degree, positive definite, real val

ued differential form. This is characterized by the co= 

efficients gij whose matrix i.s non~~singular, symr.ae·tric and 

positive definite. And if the space b:dng cons:i.d~red is 

such that a rectangular coordinatE-l system ma.y b~rused, the 

dS2 , , r12 becomes the ordine.ry cL::> of Eucl.idea.n geomet:i:y. 

Examples of common .forms studied in Riema:rmian g12:,o= 

metry are: 
') . "' SJ.11 
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') 

dS,;;, 

1 ,a. 
( du· ) + 

= 
...... ___ r. -,_,,._._,.,.,.,._?~*""2'-~~f--.J;-

{ r ·1 ,,, :z,;;,Ji 
1 + aL(1..c) + (u·) J 

Note the homogeneitt and the fact the.t gij is a func= 

1 2 tion of the vari.ables du and du only. 



CHAPTER II 

LOCAL FINSLER GEOIVLETRY 

The aim which Riemann had set for himsel..f w2:1.s to as-

certain the forms for the element dS in a general finite 

dimensional space in which every curve has a length d.eriv-ed 

from an in.finitesimal line element and independent; of i.ts 

position in space. He reached his famous .form d~-; = (g~ ~ 

du°' dUr.. )1/ 2 by postulating certain conditions to be sa:ti.s= 

fied by length between two neighboring points. 

If conditions other than Riemann 1 s are postulated, 

other equally va.lid notions of the element of length resu].t. 

For instance, if one does not accept the restriction that 

distance between two points be always positive, the re= 

sulting geometry turns out to be of consequence today both 

theoretically and practically. 

The observation whi.ch Ri.ema.nn himself made concerning 

the possibility of using some function ot,her tha.n dS = 

(ge1,a du• dJJa )1/2 led to a series of efforts along this 

line by many mathematicians. In 19 UJ Paul F:insler succeed

ed in developing a more general function .for the line ele

ment, which led to a geometry including that of Rieman.Y1ian 

geometry as a special case. A significant, change in the 

co.nditions imposed on the element of length was the.t it may 



in fact, depends on the way the measurement is taken.I 

Finslerts F~function 

Fins1er began hi.a work with the assumptions that the 

length of a curve in an n-dimensional space should be given 

by the integral of an essentially arbi.trary function of the 

coordinates used to express the curve and of their first 

derivatives and that this function should be a rea.l=valued 

funct;ion. 

Every curve of' the space is to be considered as a set 

of points with a positive direction attached. 'r<NC) crurve,s 

with the same point set but with dif'f.erent senses of direc

tion are to be considered as different c:urves. In any 

parametric representation of the curve, the par.sunet;er i.s e.s-

sumed to be such that the curve is given its positive sense~ 

This means that the direction of the curve is that for 

which the pa.ramete:r is increasing. For example, ·the inter·-~ 

val O ~- x 45:.. 1 is a point set for two diff"erent curves = 

one whose pa:ram<?.tric represent;;ation :i.s x = T, 0 < T < 1 
"'~-""" """''._ ' 

and the other whose parametric representation is x = l - T, 

0 ST~ 1. The direction of the first is from Oto 1 while 

that of the second is from 1 to O. 

Let the equations of a:n arc C in the n=d:imensional 

space be given by xi = :il (U) where i = 1, •.• n and U1 ,s. US. Uz 

1 
·'-Paul Finsler, Uber Kurve:n and Flachen in AlJ.ge.me:imen 

Rau .. men, Birkhauser and Bas:il, .Switzerland, 1951. 
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The assumption :is that arc length {3 along t;his curve 

is given by the value of a.n integral of the form 

u 
S =fcJl L(U,x,i;:) dU 

where x denotes t,he vector (x1 , ... xn); i, the vector 

( 1 nr x' ... ± ,; and xi, the derivative of xi with respect to 

the para.meter U. 

The first task is to find a necessary and sufficient 

condition that the value of' the integral shall be indepen= 

dent of the parametric repr(-:!Se:ntatio:n of the curve along 

which the integral is taken. 

If a new parameter t =. U - c is used, the integral be:= 

comes 

( t L(t ... x dx ) d:to J.. , , m-· 
t1 

Differentiate both integrals with respect tot. If 

the integrals are equal, these results should be eq'l.tal. 

For the first, 

'f u 
' u 

dU a L dU df L 
U-i - u1 

,:.!..-. 

-=''•~=''°'f'\'>" 

dt dU 

and for the second the jeri vati Ve is obvious o 'The,re.fore 

L(U,:x:,x) = L(t,Jr:,_5I~) = L(t;x,i:) o 

d·t 
This implies t,h.at for equality the integre.1 ±"unction can 

not con:ta.in the parameter explic:it;ly. Thus, the in't~gral 

must be of the form 
ru 

S =hJ· F(x,i) dU. 
'1 



Now consider the new parameter t = U/k where k is a 

positive constant. If 

f U F (x,i) dU =it F (x,,..9-,2c) dt, 
u1 t 1 dt 

the derivatives with respect tot are equal. 

F{x,i).fill_ = F(x,-9.2£) 
dt dt 

d.11-.. = k. and 91£__ r dx = dx :;; k dx - ki 
dt ' ctt . ctlu/k) 17Fcfu cfu ,... 

Therefore F(x,i)k = F(x,k±). 
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The necessary and sufficient condition that the value 

of the integral be independent of the parameter is that the 

integral be a function which does not contain the parameter 

explicitly and which is positively homogeneous in the vari

able :x... 

If arc length is to be always positive for any real 

nondegenerate arc, then F(x,x) must be positive. 

These two conditions were among the earlier require= 

ments suggested by Riemann. Finsler reached his, however, 

by methods o:t; the calculus of' variation. His third re

quirement for his F-function is the Legendre condition for 

froblems in parametric form. This condition is equivalent 

to the assertion that the quadratic .form 

a2 2 .• 
_ __!_J]:JXj } i f j 
axi a xj 

be positive definite for all variables f 1 • 

Using these ·three conditions Finsler built his genera-
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lization of Riemannian geometry. These three a:x;ioms to

gether with four consequences needed for this section are 

listed below for convenience. 

Axiom 1. F (x,x) > O if all 5c are non-zero. 

Axiom 2. F(x,kx) = kF(x,x} for any number k > 0. 

Axiom 3 • _e_:]'2 J..;JicJ. f i f j > O unless all f i are zero. 
a±i c) :i:j 

Consequences: 
i 

1. x ~F (x,x) = F(x,x} 
~-i ax 

3. F (x,x + x') ~ F (x,±} + F (x,x') where x' denotes 

the derivative with respect to some parameter other than u. 
Proof's of these consequences will be given in the next 

ohapter. 

The set of' 2n variables (x,±) is called Finsler's line 

element. This line elememt indicates a ray beginnin~ at 

the point x and having direction numbers given by.the x; 
Mor~over, this ray is tangent at x to any curve through x 

whose parametric equ~tions have derivatives±. 

As examples consider the following distinct plane 

curves: 

{
X = 2: 
y=t 

{ 
X = 3: 
y = s 

- 1 
{

X = 2: 
y = U +2U-2 
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All pass through the point (2',1) when.. t ::;r 1, S == 1 and U = 
l respectively •. 

In the first c~se the tangent line at (2,1). is g:i,ven 

by .the direction numbers x = 2, y ==2t evaluated at t == 1. 

Thus the direction numbers are { 2 , 2 ! . 
In the second case the direction ~umbers of the tan

gent line are . { 3 ,2 J ; and in the third· case, {4 ,4 J ~ 
The first and third curves have vhe same tangent line 

at (2,1) while the second curve does not. 

The Finsler line element for the first curve at the 

given point is the 4-tuple (2,1, 2,2). They were deter

mined by fixing the point and fixing the curve.· In sum

mary, (x,:x:) is a function of a given curve and a given 

. point on it 

The F~function is assumed to be defined for all line 

·. elements in a sufficiently small region, and 

.T . s == to F (x,:x:) dt 

ie therefore a sort of distance function for the length of 

curves through x. I.e., if xi and xi+ dxi are nearby 

points, the distance between them can be defined to be 
i i 

F (x , dx ) • 

The third consequence stated above is very important. 

It state'3jin fac~ that the Finsler F-f~nctiQn is convex in 
. •i 
the x. Recall th~t a set S of points is. called convex if 

it contains the entire segment o;f.' the stra;i.ght l.ine connec

ting any two of its points. L~t the el~ments of a convex 
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region S be the n-tuple {x1 , . . . r1) . A function f on S 

is said to be a convex function if it is defined everywhere 

on sand if for all pairs of points {xi ' ... xr) and 

(x~' ••• :x:z) ins the following·inequality holds! 

f [ ( l - -&- ) :x:~ + -& x; ] ~ ( l - -& ) f ( xf ) + '9 f ( Xi 
where O s_.e S. l. 

It should be noted here that Riemann's lipear element 

satisfies all three postulates of Finsler, and consequently 

any function dS in Riemannian geometry is a Finsler F-func

tion. 

Elements of Minkowskian Geometry 

.It is known that an n-dimensional vector space is 

siniply an n-dimensional affine space with one point speci

fied as fixed. Any linea:r transformation of the vector 

space is a linear transformation of the affine space leav

ing the specified point fixed. Such affine spaces are 

called centered affine spaces, and the proper group of 

transf<>rmations·for the study of such spaces is the group 

. of all non-singular homogeneous line~r transformations. 
l 

Consequentl~ in the study o.f vector algebra.,. t~e fundamen .... 

t~l tool employed is the transformation given by y' - AY 

where y' and y are vectors and A is a non-singular n x n 

matrix. ·This is precisely the same thing.as saying that 

vectors are invariant under non-singl;llar homogeneous linear 

transformations. 

If a metric is to be put on a vector $pace, there is 
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no prior stipulation that the metric should be Euclidean; 

also it may be possible to put Euclidean metrics on all the 

lines through the origin(where the origin .. is::the· zero ele

ment of the vector space and also the point specified to be 

the center of the affine space) without getting a Euclidean 

metric for the whole space. 

In Figure J of page JO two vector spaces of dimension 
_. --+ 

two are indicated. In each case OA and OB are selected to _. 
be unit vectors. The Euclidean length of OA need not be 

-..:, 
equal to that of OB. 

A more basic idea is that there is no way to compare 

lengths along OC with lengths along OA until a unit is se

lected on OC. But ratios of lengths along OC can be com

pared to ratios of lengths along OA. In Figure 3, if CA is 

parallel to xy, then the ratio of the length of OC to that 

of Ox must be equal to the ratio of the length of OA to 

that of Oy. This is the basic notion on which is built 

Minkowskian geometry. Ratios of certain lengths - not 

lengths them,selves - are invariant in affine space. 

Consider in the Euclidean plane an arbitrary but fixed 

convex set S which is symmetric with respect to a fixed in

terior point O. Every ray through O intersects Sin exact

ly one point. Denote the Euclidean distance between any 

two points x and y on the plane ~ e (x, y) • 
-:·.,;_·:·--~ 

Minkowski created a new space out of this by assign

ing a. new metric determined as follows: take -the ·ray- from O 

parallel -tcY 1 xy. ·cal]:.: the :intersecti·on o.f this -ray ·with the 

./ 
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given convex set P. Define the distance from x toy to be 

the ratio of the Euclidean distance e(x,y) to the Eucli

dean distance e(O,P). If x = y, define the distance to be 

zero. This new metric is denoted by m(x,y}. 

If xis at O and if y is on the convex set, then the 

ratio of e(x,y) to e(Q,P) is clearly unity: any point on 

the convex set lies at a Minkowski distance of 1 from the 

origin. 

In extending the idea to the affine space of n dimen-

sions, nothing fundamental is changed. The convex set is 

then a convex hypersurface. The reader should prove that 

the function M(x,y).as defined here is actually a metric. 

It is clear that.., on the Minkowskian plane~ distance is 

invariant under translation and that the linear transfer-

mation which maps the vector x emanating from O into the 

vector Ax where )\ is real · also maps every vector y into 

Ay. It is also obvious that if the Euclidean circle is 

chosen as the convex hypersurface on the Eulidean plane, 

the resulting Minkowskian geometry coincides with the 

original Euclidean geometry. 

The statement which Riemann made about the use of 

some metric other than the square root of a quadratic ex

pression involving differentials has application here. 

Let (x1 , ~' ••• Xn} be a point and define its Euclidean 

distance from the ori~in to be P(xi} = \J Z xi 2 • 

The locus determined by f.>(xi} = 1 is just the unit 

circle. However, equally valid meters could be defined by 



P(xi) :_ 41,xi 4 or by (J(xi} = ~ or 1n fact by P (xi_}= 

~21xil P where P ~. l •. 
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. ,, p 
The locus v z lxil = l is for all P ! 1 a convex set sym-

metric with respect to the origin. Either of these is satis

factory as a "unit ba.11" for Minkowskian geometry. Only 

the first is a quadric, and it alone is the satisfactory 

unit ball for Euclidean geometry. 

The Indicatrix 

Let P be a point of M with then coordinates xi. If xi= 

xi(t) define a curve Con M through P, the tangent vector 

C Ph .i di Th f 11 h to at as components x = _z.._. e set o a sue 
dt 

vectors tangent to curves through P describe a space de-

noted by Tn{P) and called the tangent space attached to P. 

This space of tangents is a linear space and also an 
i affine space with center corresponding to the values x = O. 

Pas a point on M has coordinates xi, but as a point on 

Tn(P) it is the origin with coordinates x1= O. 

The entity which Finsler called his line element has 
i now a new interpretation. The x are then coordinates of 

b P d .i h d an ar-itrary point on Man the x are t·e n coor inates 

of a vector in the tangent plane at P. The 2n coordinates 

thus determine the points on the v~rious tangent spaces to 

the manifold. For any fixed tangent space the first n co

ordinates are fixed while the last.n coordinates are vari-

ables referring to the various points of the tangent space. 

Consider now, at a. fixed P'<>int··, P(xi:) /. the· tangent 
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i .i The equation F(x, x ).= l represents an (n-1) 

dimensional locus contained in T"(P). This locus is called 

the indicatrix. 

Now consider the set of all elements of Tn(P) interior 

to or on the indicatrix. This set of x1 satisfying F(x1 , 
.i i . 
x) ~ l (where x is fixed) is a convex body with inner 

points. For let x and y be two points in Tn(P) satis

fying F(xi, ii) S.. 1. Let zi be any point of Tn(P) lying 

on the join on x' and yi. Then Ii may be expressed as 

zi = (1. - ,e, >xi +·-eyf w;t:iere O < .,e < 1. 
.i But the Finsler F-function is convex in the x. 

i .i i .i i i Therefore F(x , z ) ~ F(x ,(1 - e-) .x) + F(x , .e, y ) 
= (1 --&) F(x1 , ii) +-&F(xi, yi). 

This sum is less than or equal to one since (1.-:•) < ~ 1 
. - . . . . i i 

-& < I :while F ()(', *·')~. L and-_ F (x , y ) ~ 1 by virtue of 

the hypotheses that xi and y1 lie inside or on the indica

trixo Thus F(xi, zi) S,. 1 and so zl is also inside or on 

the indicatrix. In other words the indicatrix is the 

boundary of' a c.onvex body. It is a closed hypersurf'aee of 

the space Tn(P) .. 

Let P(xi) a& a point of Tn(P) be denoted by O, the orl

gin of the tangent space. Let Q be any other point x1 in 

Tn(P). Let R be the point of Tn(P) in which OQ (produced if 

necessary) intersects the indicatrix. Define the length of 

OQ to be the value F(xi, xi) which is simply the ratio· o:f 

OQ to OR. See figure 4 of page J If • 

This means that the _F':'"Functi9z:i. J1~sig:i;i~ a dis·tance 
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.... 

from P.tc be ascertained by comparing the vector QQ with 

another known vector in the same·direction. 

35 

The point Q is exp:ressed, of course, in te:r~s of the af'

fine coordinate system of Tn(P) wi-eh center at P. OQ is 

simply a vectQr and OR is another vector in the same direc

tion. Theref'ore OQ is some real multiple of OR. This real 

number is what is meant by the ratio .Q9.. One can evalu-
. · OR 

ate this.ratio without knowing the length .of OQ beforehand. 

In summary, the F-funo't;ion determine~ tlle indicatri;x:. 

The tangent space (being an-af.fine space as well·as a vec

tor space) is endowed with a means of measuring length 

from the or:i,gin by use of the indicatrix. This in turn 

will lead to a metric on the tangent space - and thereby to 

a neighborhood of Pin the manifold itself. 

Among the postulates forFinsler geometry the one con

cerning quadratic forms was that _!F2 Jx..,icl f i f j is posi, .. 
. e)~ dXJ · 

tive definite. · 

In Riemann geometry the quadratic form associated with 

gij was positive definite. 

To derive a corresponding such entity for the Finsler 

space.,define a new set of quantities gij by gij (x,x) = i 
2 2 · 

~ l . (x..Jicl • 
ax1 axj 

Using the theorem of the. first section of. th;i.s chap-

ter it can be shown that 
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Thus, • •i j 2 • gij {x,x) x x = F {x,x) 

Since F{x,x) gives the length of the vector x emana-

ting .from x, all lengths on Tn{P) can be st·$.t·ed 'iri terms of 

the gij• 

Note that the gij{x,x) are symmetric in the indices and 

that they are homogeneous :functions of degree O in xi {since 

gij(~,~) xi xj is F2 {x,i} which is known to be homogeneous 

of the second degree in xi). 

In terms of these giJ°, distance between two neigh

boring points on the manifold Mis given by dS2 = gij(x,i} 

dxi dxj. 

The value of this invariant depends not only on the 
• point x·at which it is evaluated but also on a vector~ at 

that point. This is an essential difference between Fins

ler and Riemann metrics. However, since the gij are homo-
• geneous of degree O in the components of this vector x, the 

distance does not depend on the magnitude of x. 
A Riemann space is clearly a special case of Finsler; 

it can be thought of as a Finsler space in which the func

tion gij is independent of direction. 

The indieatrix is the (n-1) dimensional locus gij(x,x) 

xi xj = l where on any tangent space the gij·assume fixed 

values for the given coordinate system of that space. In 

the Riemannian case this locus is a quadric hyp~rspaee -

actually an (n-1) dimensional ellipsoid; in the general 

case this locus need not be a quadric. In fae"t i"t may not 

be symmetric ~bout the origin since the eondition F(x,dx). = 
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F(x,-dx) is not one of Finsler's postulates. In any ease, 

however,.the indicatrix is convex. 

As a example, c9nsider the· F = ¥ ( y > 0 ). F is 

positive if x and y are not both zero; Fis positively ho

mogeneous of degree 1 in xi since jkxJ2 + (g) =K {x2+ i_2J . -,~, . e-
•• 

= kF; and F2xix.jf'f' is positive definite because the fol-

lowing determinent and its principal minor are both posi-

tive for x 
' 

y not both zero. 

2 ( Ji 2.:1:±: ) 
,..3 1F2 I • ! 2 •• 111 912 

'~ 
~ xx F xy 

•2 y y = = )0 
,3 J£+Jx4) iF2yx }F2yy 921 922 
~ -yi. y 

This means that the function F satisfies all three 

necessary conditions of a Finsler function. Note that 

dS = 2.l.2~-±-L { dx) - 9-.2t.... dx) { dy) + Y. _ + Jx _) ( dy) • j ,,-.2- ,2) . 2 ~·3·(- . (.4 -,4 2 

y2 y3 · y4 
• • The coefficients ,iJ are functions of x and y. But this 

expression may be written as 

dS = 

This shows that the 9;; are functions of the ratios 

x {of the ratios d:x;) which are dependent only on the point r ay 
{x,y) and the direction at that point. In other words, the 

functions 9aJ in this example are functions 0£ point and di

rection only. 



CHAPTER III 

TWO-DIMENSIONAL GEOMETRY 

·Perhaps a stu.dy of Finsler geometry for the case when 

n = 2 may serve to illustrate some of the ideas presented 

in the first chapters of this dissertation. Althougn some 

of the concepts valid for n = 2 do not generalize for high

er dimensions, the machiner7 for handling these_concepts is 

largely simple enough to be grasped in this introductory 

stage-to Finsler geometry. 

In this chapter, then, consider the 2-dimensional Fin

sler manifold as the universe itself - not as a submanifold 

of a three-space or of any other space of h~gher dimensionQ 

What can be said of the geometric ideas of length, angle, 

area, etc., - ordinary concepts in plane Euclidean geometry 

-when considered in terms of Finsler geometry? Because 

ce~tain tools will be needed for the computations involved, 

this chapter begins with a derivation of useful facts that 

are valid for any natural number n. 

Derivation of Auxiliary Facts 

1.sl.mm!. 1 • F • i ( x , x , xi = F ( x , x > 
X 

· .. l 2 --11 • 1 F ( x , x , .... x-- , kx , •n) · ··c 1 I'l ·l ·n) ••• kx · ::.KF x . , ••• , x , x , •• x 
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LeJlllna 2. 

Le_gun~ .3. 

Differentiate with respect to k. 

x1F Kiel + x2F K:x:2 + . i+.: 5{}1F 1qcn = F (x,x) _ 

Set k = 1 

x1Fxl + ••• + xnFxn -~ F(x1 , ••• x0 ,¥, ... x0 ) 

i.e., 
• i , 

Fxi(x,x) x = F{x,x) 

F-. x· i xi = F by property 1 above 

Differentiate with respect to ij 

F• · •J· = F,j xix x, 

~-~ t_i = · 1 "f 4 J. do 
U.h. riJ. = i x-'- = x· an -· otherwise 
ct13" (J 

ii Therefore F • i dx = F • . = F • · x --;-:- xi xJ 
dxJ 

F•i + xi F•i•J· = Fx·i.· 
X XX 

= 0 

g .. (x,x} xi xj = F2 (x,~} 
l.J 

Find the second partial derivatives of F2(x,x} 

with respect to xi. 



•. 

1 2 " i ~· F . . x · = F ~ ( 0) + F, • F = F . F 
:k1:i:J xJ xJ 
2 • i • · • · 2 ! F . . x xJ = F • xJ F = F 
xiiJ :5c1 

But by definition giJ' (x,i:) =;: i F~ .•. (x;:x:) 
· · · x 1 xJ 

Therefore gij(x,x) xixj = F2 (x,:x:). 

2 . , ( 2 1 F (x,x) = ~ F • (x,x) .. 
:ici :kj · ai:J xi . . · 

= 2 . ~ J F3ci (x,x) = 2 Fxi xj (x,x) 
dX. 

8 Fx~ i (x,x) = i r~-:- F (x,x) F (x,xtt 
ai:j aicJ di:1 J 

,ii~j [F (x,X) F Xi (x,i:J + Fi;:1 (x,id F (x,XJ J 

= 

= 

2. fF(x,;) F•i'J' (x,x) + F •. (x,x) F •. (x,x)l L x.x x 1 x 1 J 

' ! Fx2 •. 1· x' J.· (x ,:x:) = F (x ,x) F, ... {x ,:x:) +F. i (x ,x) 
· xl.xJ ·. x · . 

F •J (x,x) 
X 

! F7. . . (x,x) :icJ = 
. x 1 xJ 

by lemmas 2 and l. 

0 + F,. (;x:,x) F (x,x) 
x1 

40 



Lemma 4. 

Lemma· 5 • 
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i "i · · vivj , · · If V = Kx , F ..;.1. x' J' • F •. , , Kx1 VJ = 
"1- xixJ 

The last factor is zero by prop~rty 2 above, 

. are not all zero. This is by the positive-defi-

nite po~tulate. Th . . F2 · i j · e equat:;i..on .:, , J y . y 
xx 

+ 

qua.drat ~c. in K and has no real roots if yi + 

KW:L +o. Its discriminate is negative. 

' 2 
! F • i ·. J' = Fx· iFx· J' + F F • ·1· ,j . .from third step of XX ·. · XX 

proof ;3 above. 

2 · • · 2 
} F • i "J' x1 xJ = F 

XX 

proo.f 3 above. 

.from sixth step of 
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F xi = (± F ~ r . J Xi) .!.. 
-X )( F 

from fifth step of 

proof 3 above 

F F * F2 ,i·J· xj F2 ,~.L iL •· -k ~ XX · x·-x 
x1 X - --·· -- -- --F2 

i F2. . . j 2 1 • L Th (l)F2 ~ ,1 •J x F .K, x 
us ' z , i' K = -L x ic_ x + F F ,i . K 

X X Fl. X X 

F = •i•K xx 

= (ft:) rF~i•j - (~){F:i~K x1C} 21 
Lxx xx J 

Fx1xk vV- i1' [ Fxixk v1v1< -2t2 <1ix1<ik viij 
(F2 •. xiVj}2< (F2 .. xiij) {F2K,T. VKVL) if 

x1 xJ i 1 xJ x X'"' 

vi+ kxi are not all zero. 

I. e • , F . K v:i.vK > 0 if v1 ~ Kxi 
• J.. xx 
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SimilG1rly 

• F(x,x) is positively homo~eneous of d,egree 

'i ::x: • 

So p2 is positively homogeneous of degree 2 

2 
F, 1.· .is positively homogeneous of degree l 

X 

= 

l 

. 2 F xi:x) is positively .homogeneous of degree 0 

Thus, g .. is positively homogeneous of degree 
. l.J 

in 

And _a~:iJ. is positive~y homogeneous of degree 
·k r;)x 

-1. 

~g .• •K The ref ore as in Lemma 2 , l..J x. ::;l 0 
T~}cK 

Differential Equations of Geodesics 

The geqdesics of a Finsler space are defined to be the 



. . T- . ' • • • • 
extr e·rnal curves sat i si'ying d ( Tl g .. . { :x: , :,c} :x:1:x:J 

. . . . J O iJ 

' . . 

dt = o. 
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Th~ curves satisfying this conca tion are those that are 

solutio,;is of the dif'fe~ential equations §2 .. }.~" + r; (x,~) 
. · . · .· dS JK 

·g~~-
dS 

..1 .... K O .. h • ir 
~ ::;: . w . ere rl. =IC::,;. 
dS jK 2 

_To prove this assertion let xi::;: xi {t) be a ·curve of 

class c2 defined on T0 ~ T ~ T1 that is an e:x:tremum for 

the integ;r-al ~ Tl F (x,i:) dT. Then_., in comparison with ~11 
.. TO 

nea:rby curves xi (t) + E yi {t) :('or which yi (T0) = Y1 (T1 ) 

= O. The integral (Tl F ~T must be a minimum when'= O. 
. ) To 

The gerivative of' this integral with respect to Emust 

there;f'ore be ~e:ro at E = O. Here the functions yi ( T) are 

· arbitrary class Ceo functions. 

d ( TTl F (x + E y, :ic + E y) dT I = O 
de ) 0 .... _,~i=O 

Since Fis uniformly continous, being of class c2 on 

the closed interval [ro,T1] fTl ,g_ F{x + f y,.;c +~y)I dt=O 
. > l'o d . ! =O 

I.e., 

But (~ yi + ... ~.f ... ii> dt 
~xi ~ xi 

T . . 

f T~ 11i yi dt 

= ·iT1 ~- yi dt + 
' ol:x;1 

·o 
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Let u = ll and dv = yi dt 

a:il 

Jri 
. 

dt==y-1-Then du = d (.;_OJ'...) dl:i and v = dt = rgz• a· • 1 · dt ax . 

T ] :1 Thus, f 1 
c:)F •i 

dt 
o>F Yi --;-. y = . ~-;-i 

TO . clx1 X 
0 

= -

f T_ l yi d . { _AL ) dt 
T0 · a1r· aii 

Therefore 

T . . 
f T1 [!.!. _ _ddt( ~-f. .. )] yi dt = 0 
) o ~x:i. · ~ xJ.. 

'!he.Fundamental Lemma :for the Calculus of Variations 

i$ that if Risa region in an n-dimensional space and i.f f 

is a continuous function in R with the property that 

)nt. g = 0 for every function g of class C in Rand va

nishing on ~he boundary of R, then f vanishes identically 

in R. 

f = ~F .. a~i .. d _..!.1'. .and g = yi satisfy the hypotheses 
d't ~xi 

Qf the lenun<;1. for 13ach valu-e of i ip.the set 1,2, .•• n. 



Therefore o. These are called the 
= 

Euler-Lagrange equations. They are the differential e -

quations of the extremal curves for the integral 

(Tl • 
JTo F(x,x) dt. ·. 

To show that they take the form g:2.C~ \i ') 
. dj2. + \jK (x,x 

ct~j ctxk = o 
-:::-~ --- ) 

dS dS 
ti I • 11.1. F = (g:,_j X xJ) 

Cnoose are length as parameter t. 

F (x,:x:) is then equal to 1 ~nd !L. 
~:Sci 

g• i) 
= - -¥. 

The integrand 

= gijxj • 
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d -~ d (gi.xj) g. ctxj ~j 
d ( gi . } 

gi· 
xj 

= = + -. ctt' = dt ~*i dt J 1· 
J dt-· J 

o.g. • J' 
+ i,· x• ----~· dt 



d ;F 
ct£ -~ xi 

47 

The Euler-Lagrange equations dF. 
~xi 

d c:) F O become = 

~ -~~Ki__ xKxJ 
&xi 

"J g . ·X 1J 

ij 
g .. 

1J 

Define 

+ ( c)gi_j 

axK 

+ 1. 
2 

Li Li 
g by g gi. 

J 

dt' -ii"i 

= t!~ 
J 

Li agi; ag1,· dg1,..· ·.k .. + ! g (----~ + --~i - __ QJ)x xJ =O 
k j "'i 

Li .,g. •• . g Cl 1 . 
xJ + ---(---.l 

2 silxk 

~x. ~x c:;, 

~gk,1· 'k'. -· -- -)x xJ = O 
c:)xi 

i 

\ jk 
= 

The geodesics in the Finsler space are the curves that 

satisfy these n differential equations. In the case of in

terest in this chapter, n = 2, and so there are only two 

differential equations since each of the indices involved 

take on the two values 1 and 2. 



The Unit Vector 

Let the fundamental function for a two-dimensional 

Finsler manifold be given by F(x,y,x,y). Then the arc 

length Son any curve of the manifold is defined by dS = 
I t) . ' dx ' d-z F(x,y,x,y dt where X = at and y = dt . 
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Denoting~ by~, and~~ by y' and using the fact that 

dx = 
dS 

dx . dS . . 1 h ' I d ' cit -:- dt J it is c ear t at x = x an y 
Flx,y,x,y) 

• :y_ . • 
FTx,y,x,yl 

= 

Recall that the length of. a vector (x,y) in the tan-
t I 

gent space at P(x,y) is given by the value of F(x,y,x,y). . ~ 
. Here the x,y are affine coordinates of the point in Tn(P) 

denoting a vector whose origin is at the fixed point (x,y). 

In other words the vector (x,y) in T2 (P) having the s~me di-
• • rection as the ray determined by (x,y,x,y) has as its length . ~ 

F(x,y,x,y). 

Therefore the vector (x' ,y') has as its length . ' , - x-z _l • , -k(x,y,x,yl) - F(x,y,F F) - F(x,y,x,y) - 1. This unit vector 
' . 

with components J and J will be called the unit vector in 

the direction of (x,y,i,j) or the unit vector of the line 

element (x,y,x,y). In particula~ the unit vector of the 
x' y' line element (x,y,x' ,y') is the vector (F-,F-) ~o be de-

noted by (ll, t2). 
• In the functions gij(x,x) defined in Chapter II the 

indices take on the values 1 and 2 for the case presently 

under consideration and the notation (x1 ,x2,i1 ,x2 ) has now . · 
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been replaced by (x,y,x,y). 
. ~ ~ . . 

·. :For each point (x,y) in T2{P) one can associate a pair 

of real numbers (u;v) in various ways, one of.which is by 
. . . . , 

th~ transformation u = g11x + g12y, v = g21x + g2~Y· In 

the original notation this associa.tion.would..be expressed 

by ui == gik(x,x)xk. Given a fixed point (x,y) in T2 (P), 

the f~nctions gik are comp~etely determined ~nd consequently 

the pair {u,v) is a. pair of :real nu,rnb~rs. The number pair 

determ:l,ned in this manner for the unit yector ( t1 , 1.2) is 
x' y' denoted by (f 1 ,J2 ). Thus, ! 1 == g11 y- + g12 F-and i 2 == 

x' v' . g -~ + g F4- _which could be indic~ted, of co_urse, by · · 21 ~ . 24 

J.. i == gik J.. k ( i :;:: 1, 2; k = 1, 2) • This leads to the re-

lationship 11 

ma 4 of section 

The v~ctor 

x'k 
.== gik -,-

1~ 

g. x'k 
- l.k .. - ______ .,.. 

F . 
aF =,---,.as shown.by lem-

-~,:i. 

( J.. 1, t 2) · is a unit vector in the ~ense that 

;:;: 1. 

+ -~ { 2 
. 2 = (g_ll. !~ + g : y~ ) i.!. 

F lf F F 
+ 

= i (i = 1,2; k = 1,2) 

It was for this re?sQn that the pair of real numbers 

chosen to correspond to a given ve9tor (x,y) in T2 (P) was 

cJ;iosen in th~ manner prescribed.· In the. c;:a~e of a Eucli-
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dean 2-dimensional vector ~p~oe . J. i == ).. i,: and in order to 

be a unit v~ctor ( ..l 1) 2 · + · ( J... 2)2 must equ~l 1. But in 

the oa$e of Euclidean plane gll = g22 = 1. g12 = g2l == O 

and F = v~,l + y' 2 • Thus, the vector CJ: , t:) ;is simply 

. the vector (x' /.(x;:!. + y':2 ' ~,;!. + y• 2 J whicl! is clearly · 

a unit vector. 

In gen~ral vector spaces not 'neoe&sarily Euclidean 

tne set of pairs of rea;L numbers {xl,yl) assqciated with 

the vectors (:x:' ,yT) plays an important role. 

The Function F 1 

Lemma 2 of section 1 takes the following form in the 

case of n =2: :k.F,. . :x;x 
I • I . 

+ yFxy = 0, xFyx + yFYY = O. 

vF .. F,, F•• F•· 
~B. + -f == 0 and :,n + :.n. = O for 

'2 . . . ~ * y . . .1 

Thus 

x :/= O, y + o. 
F. , -F •, F. , 
-¥ = -~::I. == :.n.. 

• 2 • • '2 Y xy :x: 
Hence 

Let F1 be the comm.on value of these three ratios. 

Recall now that in the deduction of the differential 

equ;a.t:ions for geode1;1ics.J use. was made of tbe fundamental 

lemma for the calculus of variations. In this lemma the 

continuous function f was taken to be ;)F - d Q) F and 
~x1- dt ~a -;i 

the oonclusion was that ~ F - d 
. a';i dt 

·~ F = O. F is .,.....__... .. 
d*1 

F(x,y,i'.,y) = F(:x:(t) ,y(t) ,x(t) ,.f(tf Therefore 



Fx = _g_.(F:x) = d (Fi(x(t) ,y{t) ,x(t) ,y(t))) 
dt dt 

= F• dx + F• gy· + F• ·· dx 
xx dt xy dt xx cit .+~ 

• , ' ' . + F" y xy + Fxx x + Fxy y • 

j , 

Similarly FY = F, x + F .. y + F .• 
yx yy yx 

. ' 
X + F,. 

yy 
•• y 

.9.Y 
dt 
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~ 4 • • 
Since F(x,y,x,y) is homogeneous of degree one in x,y, 

• • Fx is also homogeneous of degree one in x,y. Thus, by Eu-

ler's Theorem on homogeneous functions xF:xx + yFxy = Fx. 

Fxj=Fxx by the continuity assumptions. Ma.king these sub-
, . . . ', 

stitutions in the equation Fx = Fxx x + Fxy y + Fx:x: x +FxyY, 

the result is Y' F "In. 'r = F1 y + F • • x + F · • y or 
~•J xy . xx xy 

By the definition of F1 , F., 
xx 

. 2 •. = F1 y and F • • = -xyF • 
. xy 1 

Hence (F:iy - Fxy>Y + F1y2 i - ~y F1 y = 0 

I.e. , (F xy - F xy> · + F 1 (~ y - x y ) = o· if y #= o. 

In the calculus of variations this equality is called 

the Weierstrass symmetric form of Euler's equation for the 

param2.trie problem. It was used by Berwald, Moor and others 

to aid in the study of certain invariants of a two-dimen

sional Finsler space. Unfortunately, their study is beyond 

the scope of this paper. Suffice it to note at this stage 

one elementary, but important relationship: 
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· "2 Z l gik = ! ~ where now i = l,2; k = 1,2; i = x; 
~ :x:1 ~)tk 

2 
X ::;;:: Y• 

• 2 · 2 = FF• • + F • F • = FF1y + (F • ) 
XX XX X .·.· 

~2 2 . ,, 
g .. = i • F = FF., + F ,F; =•FF xy + F ,F•. 

12 "' ~:f~f . x:y . Y X l X Y 

g :=;; g 
21 12 

g g ... g .g = g g ·- g 2 = The determinant.of 
11 22 12 22 11 22 12 

(gij) 

That is, t;he determinant of the matrix (gij) has this 

value.; which in turn is equal to (FFiy2 + F~ )(FF1:x.2 + F. 2 ) -
. X y 

(·tF1xy + F:lty> 2 . On performing the firsy obvious simpli-

cation this reduces to 

2 3 
g12 . = F Fl. 
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Orthogonality 

The unit vector in the direction of the line element 

(x,~) at the point (x,y) has been defined to be the vec

tor ( J.. 1 , t. 2) where J..1 = £ and J..2 = ~ • The aim now 
F F 

is to find a vector that is a unit vector and that may be 

considered orthogonal to ( J.. 1 , Q 2 ) . If (h1 , h2 ) is to be 

such a ·vector, then as in the previous section, h1h1 + 

h2h2 must equal 1 to satisfy the unity requirement. 

The notion of orthogonality from Euclidean 2-space be-

comes satisfied in general vector spaces by the require-

= 

hl = 

h h1 + 1 

.. 
J._2h = 0. 

2 

-1 
t2 ------· h 

~ ' 

2 = 
___ J: __ 

{F3Fl 

2 k2 Q 2+ J..1 J,~ }' since h2h = 

unit vector. 

J.. 1 

( ll, ,l 2) 

1 2 rT 1 2 ~ 1 2 
J.. h1 + l h2 = - { F' Fl J t . +. \J F- Fl )._ ~ 

is a 

=O. 

Thus, the vector (hl,h2) as defined here may be taken 

to be a unit vector orthogonal to the previously defined 

vector ( J 1 , J. 2) • 

Entities such as lihi are called invariants. Among 

the many invariants for Finsler two-dimensional geometry 
·,.·,. ..., 

the most important happen to be two scalars for which more 

background is needed. Their i.mportance m~kes,- J .. t . essential~ 
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however, that they be mentioned here~ These are the sc:alar 

or curvature k and the principal scalar I. 

The first of these two is ii'\ a certain way a measure 

of the nr1atnessn of the space. It' is so defined that if 

k·=.o in an affinely connected two-dimensional space. Then 

the space is simply the Minkowskian plane.4 

a3F2 . 
_.__.._...,.._ ...... "F'.. .. 

9x1 axj i&xK 
It has been shown by ~oor5 that a Fins~ 

ler 2-dimensional space is simply a Riemannian 2-space if 

and only if L:;: O. 

The reason for interJecting the concepts of these two 

scalar invariants here is to stress the fa.c~ that two-di

mensional Finsler geometry (like two-dimensional Riemannian 

geometry) is not.necessarily the.geometry of a plane~ By 

means of the afore-mentioned·invariants, however~ one can 

ascertain llhe:n such is the case. Of course, in a.ny case, 

the.study of the two-dimensional surface is done mainly by 

way of the two-dimensional tangent space, wh.ioh is a two

·dimensional plane. 

Having established the concept of orthogonality of the 

unit vector (h1 ,h2 ) with the specific unit vector ( l.1 , ,t 2 ) 
. . •· 

in the direction of the line element (~;y,x,y), mathemati-

41.Berwald, "Finsler and Cartan Geometries, III,n Ann:_. 
M:at..b,. (2) , 42, pp. 84-112, 1941. . . · ·. 

5 .. 
Arthur Moor, noeneraliza,tion de Scalaire de Courbure,rr 

C_?-.n,ad. i·· M§.th. 2, pp. 307-313, 1950. 
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cians interested in Finsler geometry next proceeded to an 

extension of this notion of orthogonality·to the case where 

. the given vector is not necessarily in t~e direction of the 

l!ne element. 
# 

Consider the indicatrix F(x,:x;) = l whieh in the two .... 

' ' dimensional case is the curve F(x,y,x,y) = 1 on rr2 (p). Let 

(i0 ,y0) be any arbitrary fixed point on this indicatr~x. 

Tlle equation of the tangent; line to the indicatrix at the 
·• t · 4 ,._ I I I I point (x0 ,y0 ) ~s F!(x - :xo) + Fy(Y - y0 ) = o where (x,y) 

is a variable point on T2 (p) an0, where Fi 1Fyare evaluated 

at (x0 ,y0 ). In the general case this would be expressed as 

,i •i F,i(x · X) = 0 
X ·. - 0 . 

( • ) (x· i w i) Thus, Fii x,:x:o - XO = 0 

• . i • ' • i 
F, i.(x,x0 )x - F . (x,x0 )x0 = o 

X x1 · 

' ~ ' t • i 
F (x,x0 ) - F ... i {x,x0 )x . = O by Lemma 1 

X . . 0 

• , 2 ~ _'_J_•i 
F (x,x0 }F (x,x } = j F . , . (x,x }~ x by Lemma 3b 

0 i1xJ O O .· 

'2 • •j•' ") l = i F •.•. (x,x0 ):x; x 1 si:Q.ce F(x,:xo = l 
. xixJ 0 

Hence, the equation.of the line tangent to the indica-
. ( . ' ' " } •i•j trix ~t the point x0 ,y0) is gij(x,x0 x0:x;. = 1. 

Now consider the locu1;1 .F (x,i:) = Ill in T2p where· f is 
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' . 
- ~iJ ()(,!)I' )(J::: If/~ 

. 
,: ()( •. ~)=IF I 

t 
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·an arbitrary vector of the space .. The equation of this lo

. OU~ can be written a,s F2 (x,x) == ,r, .Z Which is the same as 

gij (x ,:ic)i1ij = I.Fl 2, Sine~ f is a point on this locus, the 

equation of the line tangent to this locµs at f is derived 

in precisely the sam.e mamier as for the·tangent line to the 

inc;l.ieatrix at x0 • . Consequently, the equation of the line 

' through r tang~nt. to the curve F (;x:,x) ;:: I!'' at i ;= r is 

g .. {:x:, J ) J ixj == If J 2 • See Figure 5. 
. 1J . . 

Just as the indicatrix plays the part of the unit cir-

cle, this new locus F(x,x) ==lfl plays the part of a circle 

of radius tr I . And just as in Ez where any line ;parallel 

to a lin~ tangent tQ a circle at a point pis considered or

thogonal to the · vector ~ ( if O is the center) , so too in 

'!'2 {p) any line p~tallel to the line T .tangent to F (x,~) = 

. lrl at· the point r is said to be normal with respect to the 

vector f . . This is the definition of orthogonality. 

Let"\ be any vector normal with respect to f . .Then, 

by definition, .,_ must lie on a line parallel to the line T 

given by the equation gij (x, J ) f i:i() = If 12 • Th:Ls implies 
. . . ; . . 

th9-t YI. ==· ta - Q( where (J and ec are vectors lying on T. 

But this means that gij(x,f )! i 'f\ j == gij(x, j.) Si(~ t.;) 

= gij(x, f ) f :L r3'1 - g;i.j(x;,'f ) f ic{.i. =; l'I1 2 - lfl2 = o. 

I.e~, i:e' ~ is normal with respect to f , then g .. (x, f ) 
1J 

Jit\j "F o. 
It is c;J.ear that this equ~tion may be satisfied by 

vectors f and~ even when th~ 9orresponding equation gij 

(x, '\ ) Y\ i f j = 0 does not hold.. For obviously, gij 
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(x, ! ) may not eq1,1al g .. (x, t'I ) • . +J .... In the Riemannian case 

gij (x, f ) is of necessity equal to g .. (x, >t ) because g,. 
1J . 1J 

" is independent of the direction x. 
Thus, a distinguishing feature o;f.' normality in Finsler 

geometry is that it is not symmetric. If the vector 'l is 

normal with respect to \ 1 f may not be normal to \\ . 

It should not be necessary to point out the fact that 

the orthogonality discussed at the beginning of the section 

was symmetric. At that stage the concern was with a unit 

vector.in the direction of the line element. 
• • i. j line elemeni;i was taken as fixed; · g .. (x,x)x x 

1J 

Thus, the 

:;: If/ 2 where 

" (x,x) is fixed is the equation of ellipse; the geometry as-

so9;iated with such cqnvex sets is Riemannian. 

Area 

Until recently, area on a Finsler Man.if old was in

vestigated by making full use of the notion su~gested in 

th~ pre<c.eeding paragraph It was defined with respect to 

an arbitrarily fix(';ld line element. 

Thus, the area of a parallelogram formed by the vec-

tors (u,v} and (u,v} was simply defined to be 

{;,. · g ~· ( Ill' . =)2 ( uv ..,. vu} where g. . is taken with re-
Qll. 22 9 12 1J . . .. 
speot to the .fi;x:ed line element (x,y,x,y). 

For tbe area of a general region of the surface. It 

was defined as 
' ( rm - . 

A = 

By previous computations, this may be written as 

' ,. ~ 
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dx dy 

. · In brief, area was defined for Finsler spaces in the 

way it is defined, for Riemannian spacef?. This is made pos

sil;>le only because of the sele.¢tion of a particular line 

· ele!llent. · 

This means that the area is defined with respect to 

this element and that a different choice for line~element 

res~lts in a different amount of area. -

In the 1950's, BuSemann suggested a way to define in

trinsic area in~ependent of the choice of line-element .. 

However, an understanding of the Busema.nn approach involves 

an understanding of measure - theory .. · 

His conclusions are; 

. The study of Minkowskian geometry ought to be the 

first and main step to get to Finsler area~---jtist as area 

is the first defined in Euclidean space and then.extended 

to Riemannian. 

Measure in Minkowski spaces is just as uniquely 

determined as in Euclidean spaces. 

One can not reach a satisfactory notion of area 

for Finsler spaces by extending the methods of Riemannian 

·. geometry. 

These three conclusions form the ba.sE)s for a completely 

new look at.Finsler geometry. 



CHAPTER IV 

ASPECTS. OF GLOBAL GEOMETRY 

At.every point Po.fa differentiaple manifold M there 

e;x:iS:ts a tangent space. If a Finsler metric is defined on 

each tangent space, the geometry of the rrianifold in the 

neighborhood of the point P under consideration can be in

vestigated. However, it must be stressed that the manifold 

is not a Finsler manifold unless the metric so assigned on 

each tangent space varies differenti~bly as x varies over 

M. 

To investigate this aspect of the problem one is led 

to the.study called the theory of connections. While such 

a study is not proper here.· ( since it· involves rnathematics 

above the leviel of this work), .it may be profitable to .dis

cuss the basis on which the study may be made. 

Inner - product 

It is an important fa.ct that the set ot·a1i tangent 

vectors to a manifold at a point P actualrly.comprises a set 

that can be given the structure of a vector space. By as

signing a metric to this vector space one can appr9ximate 

.. distances on. the manifold in the neigbborhood of p. 

Tl1,e assignment of a -metric onto the tangent plane is, 
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. the~efore, the p~oblem of putting a metric on a vector 

space. For special vector spaces, such as th~ type o;f con ... 

ce~n in this work, there is much help ava~lable from the 

norm-inner•produet~quadratic•form relationships. 

If Vis an n-dimensional vector ~pace over R, an inner 

product on Vis a·mapping.of V x V into R having the pro

pert:i..es that it is symmetric,. positive-definite and bi

linear.· Let·<~> denote an inner product, let x,y and z 

be vectors in V, ~nd k1 .and k2 be elements of R. Then, 

(x,x) = 0 .if x = 0 and <x,x) )Q if' x ;, 0 

(k1x + k2y,z') . =· kl < x, z ') + kz . < y,z) 

(x, k y + k2z) :;: kl (x,y> + k2 <x,z) 
1. 

<x,y) = <Y,X). 

The quadratic form determined. by the inner product is 

the function which assigns to each vector« the scalar 

< r;;,< ,ot > , · and this scalar is ca,lled I/QI l/ 4 , · the square of the 

norm. 

If G is any n x n matrix over R which satisfies G = 
GT and XTGX> 0 if X + O, theri G i~ the matrix of some in

ner product on V. This inner product is defined by (oe,~> 

= yTG X where X and Y are ·coordinate matric~s of vectors 

(;)( and~ with resp~ct to some basis. 

T:t,.erefor~, given a.symmetric, positive definite, non

$in~la:r quadratic form, an inner product can always be de

termined. In the case of Riemann metrics this form in~· 
,. ' I 

volved the coefficients g .. {;x) while in Finsler metrics it ' 1J ' ' ' 

involv~d gij(x,:x;), In either ease at each po;tnt P of the 



manifold there is a tangent space on which is defined a 

particular inner product. 

Restrictions on the Manifold 
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While at each point P of a differentiable manifold 

there exists a tangent space on which an inner product can 

be defined, the inner product on TpM may not be the inner 

product on other tangent spaces. And since the inner pro

duct on Tp(M) depends on Pin that values of F(x,x) are 

found by means of evaluations at P, there is nothing in 

what has been said to permit the comparison of such quan

tities evaluated at P with similar quantities evaluated at 

another point Q. 

To apply properties of Rn in each local coordinate sy

stem on M has been one step; to pie~e these systems to

gether in a meaningful way is another. This is a basic 

problem in a discussion of the manifold as a whole. If the 

manifold is to be of such type that distance between points 

is to exist . , certain additional properties need be postu

lated. No piecing together of coordinate systems can cover 

the whole manifold if as a topological space the manifold 

is not connected originally. Similarly it is difficult to 

speak of distance between points if the manifold is such 

that the shortest path connecting two points does not exist. 

And again, what meaning could be attached to distance on a 

manifold from one point to another point when both points 

coincide but lie on . different "sides'!:; 
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In order to eliminate such problems, in the remainder 

of this chapter, it will be assumed that the manifolds un

der discussion are connected, orientableJand locally com

pact. 

A set Mis connected if and only if there exists no 

continuous mapping f : M 4 R such that f (M) consists of 

exactly two points. 

Mis locally compact if and only if, given any point P 

in Mand any neighborhood U of P, there is a neighborhood V 

of P contained in U whose closure Vis compact, i.e., every 

open covering of V contains a finite subcovering of V. 

Mis orientable if there exists a covering U« with 

mappings ~~ U~~ R such that all the differentiable 

homemorphisms ~(Jo f;_1 (as defined in Chapter I) have posi

tive jacobians. 

Fibre Bundles 

While the details necessary to prove statements made 

in the sequel must be left for advanced study, the plausi

bility of the statements from an intuitive point of view 

may be sufficient to present an idea of the nature of fiber 

bundles. 

Consider an ordinary sphere Sin Euclidean spa~e E3. 

This sphere is of course, a 2-dimensional differentiable 

manifold. Now consider the set T of all the non-zero vec-

tors tangent to the sphere. How many measurements are 

necessary to distinguish any one element? Two must locate 
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on the sphere the origin or· a particular vector; second, 

one must ascertain its length. In brief, four measurements 

are essential to fix a given vector, For this reas'on the 

complete set T of non-zero vectors tangent to the sphere is 

itself a 4-dimensional manifold. 

Let Ube any open neighborhood of a point Pon S. 
. . 

Since Sis a differentiable m~nif'old, there is a homeo-

morphism ~ such that ~ -l maps an open set V of E2 onto 

u. N 4 , 
Let V be the open set in E which consists of all points 

(P1, P2 , P3, P4) for which {P1 , Pz) is in V. Now define a 

new function -& which maps V into T in the following man-
_, ~ _, _,. 

ner:..g.{P1 , P2 , P3 , P4) = P3 x1 + P4 ~ where x1 and x2 are 

the unit tangent vectors to the coordinate curves of U at 

~-1 {P1 ,P2 ). In this way a one-to-one correspondence is set 

up between all 4-tuples beginning with the ordered pair 

P1 ,P2 and all tangent vectors emanating from points, in U. 

Thus, associated with the original differentiable 

manifold S there can be constructed another topological 

manifold T. In the construction a very natural relation a

rises between certain sets of elements of T and points of 

S. The set of those elements of T which emanate from the 

same origin in Sis one-to-one correspondence with the set 

of points S, since there is one and only one tangent plane 

at each point P. of s. 
Ano~her fact about the set of elements of T which have 

the same origin in S is that it is homeomorphic to any 

other set of elements of T with comm.on origin in S. This is a 



65 

restatement of the assertion that all the tangent planes to 

Sare homeomorphic. Let F0 denote any one fixed tangent 

plane. 

plane TP 

onto Tp. 

self, it 

Let hp be any homeomorphism mapping the tangent 

onto F0 • Let kp be any homeomorphism mapping F0 

Then kp o hp is a transformation of F O onto it

is an automorphism. It could be a simple rotation 

of F0 or, it could be a centered affine transformation of 

F0. At any rate it is intuitively piausible that there is 

a group of automorphisms of F0 which contains all such com

posite transformations as kx o hx where hx maps Tx onto F0 

homeomorphically and kx maps F0 onto Tx homeomorphioally. 

In this example three topological spaces are involved 

simultaneously: The sphere S, the 4-dimensional manifold 

T and the special tangent space F0 . There is also a rela

tion between Sand T given by the correspondence of all 

elements of T to their origins which are elements of S. 

And then there is a group structure given on Fo and on each 

Tp. 

The sphere Sis called the base space; the manifold T 

is called the tangent bundle; the set F0 , which is homeo

morphic to every TP is called the fibre;. the affine or rc

tation group of homeomorphisms of F0 onto itself is called 

a transformation group in the fibre; every non-zero tangent 

vector to the sphere is a point in the tangent bundle; and 

the mapping of any such tangent vector into its origin is 

called a projection 

M is ~o:vered<:by::·a:. ·r~1ii: [ "1&11} of :neighborhoods. If 
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is one such neighborhood and p 6 U, then 11-l(p) must be Tp 

itself and should also be topologically the same asp x Fa· 
The set 1T-1 {U) should be topologically the same as the set 

formed by U x Fa· And finally, any homeomorphism of p x F0 

into itself is simply a homeomorphism of F0 into itself. 

Among these properties pertinent for a rigorous defini

tion of a fibre bundle the topological equivalence of 

71-1 cu) and U x Fo is most fundamental. It is the key to 

the essence of fibre bundles. Consider a curve on the 

sphere S. This curve can be fixed by knowing all the points 

x of S which lie on it. But for each point x the curve 

picks out a specific tangent vector yin Tx(S). The set of 

all such pairs (x,y) should be a graph of the curve on the 

space of all tangent planes to the sphere. This.idea leads 

to the idea of trying to create a sort of cartesian product 

of the two topological spaces g and T. If this could be 

done, then graphs of any function of points on S to vectors 

in T could be considered in much the same way as graphs of 

functions in the cartesian product. The fibre bundle is 

thus a generalization of the cartesian product - it may not 

be a cartesian product of the base space with the fibre, 

but locally it is precisely this. 

At any rate if one uses the machinery of the fibre 

bundle, one may be able to ascertain whether a function 

from S into Tis a differentiable function of x. Moreover, 

the same type of structure created by tangent bundles may 

hold for other types of bundles. 



The definition of fibre bundle which follows is that 

given by S.S. Chern.4 
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A fibre bundle Fis a topological sp~ce having the pro

perij.ies that: 

1) There exists a co;ntinuous mapping ,r of F onto a

nother topologioal space M. 

2) There exists a family of neighborhoods which cover 

M.and if U is a neighborhood of the fam;i.ly, the inverse 

image 1T -l (U) is a topological product. I.e., there exists 

a homeomorphiqm \i' u depending on U such that 'f' u ( 1T - 1 (U ~ 
U x F O and 4' U ( 1T -1 ( p )) = p x F O for every p f; U. F O is a 

definite topological space which is homeomorphic to 1r-1 (p). 

3) I£ U and V are two such neighborhoods of Mand if 

p e. U n V, then the mapping "'v< ·"¥ 1j1(p x F 0 ) is a homeo

morphism of F0 into itself. This homeomorphism belongs to 

a group in F0 given in advance. 

Using the theory of fibre bundles, Auslander$' was able 

to prove that a non-Riema.nnian F;Lnsler metric could be de

fined on any differentiable manifold. 

4s. S. Chern, 11 S0me New Viewpoints in Differential 
Geometry in Large 11 , l?JJ.JJ... A.!!l~I.. M§,J;,.h. §.9.9 .• , 52, 1946, pp. 7-8. 

1Louis Auslander, non Curvature il;l Finsler Geometryn, 
11'.?-D.§.· A.!!1.§.r •• ~. §..9.9.. , 79, l955, PP. 378-381. 



CHAPTER V 

SUMMARY AND CONCLUSION 

' In the preparation of this brief :i,.nt:roduction to the 

theory 9f Finsler manifolds three aims have been attempted~ 

The fi:rst was to raise the question :i,.n the mind of the un

dergraduate ~a.thematics major of the possibility o,f geo-

·metric beings not embedded in a preco;nceived Euclidean 

space. This idea is expressed today in the concept of the 

diff~rentiable manifold. 

The second aim wae to ;r-aise the issue o.f generalized 

~et~ic spaces. After so many years of early training in 
.. . 

the use of the ordinary Euclidean metric;the fact that this 

metric is defined rather than natural is sometimes forgot

ten. The developm$nt of the basic notions regarding the 

Finsler metric was used in the dissertation to streng~hen 

the awakening that nietric geometry need not be Riemannian. 

The third aim, to introduce the def:i,.ni.tion of the fibre 

· bundle at the undergraduate level, was decided upon in the 

belief that the reason behind this.complicated machinery 

can be appreciated even before the machinery itself is un

derstood. 

These concepts are not eiementary, and there has been 

no attempt here to make them appear so. 
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Recall the basic ideas. 

In the first place, a differential manifold is a topo

logicaJ. space, t;hat. is locally homeomorphic to a Euclidean 

n-dimensional sphere and tha.t is endowed with a structure 

which enables concept:;, of differentiability to be defined 

by way of mappings in Euclidep.n space. 

When the ~angent space at each point of the manifold 

is given a metric, this J.ocal metric may be one which de~ 

pends on direction. The Finsler metric is such. It can 

be defined on the tangent space whenever there is a func-

~ion F(x,x) satisfying-certain conditions. This metric 

associates an inner product to the·tangent space. , 

For the study of global metric geometry and in order 

for the metric defined on the tangent space to be of use in. 

this study ::Lt is necessary that the inner product vary &if

ferentiabl7 over the manifold. The problem is therefore to 

find means to relate functions defined on one tangent space 

to similar functions on other tangent spaces. One way of 

doing this is through the creation of fibre b~ndles. 

All of ~hese ideas are of current value in' present day 
• geometry. That these topics can be ta'U.ght at the underT 

graduate level in ·some honest form is an assumption -upo~ 
j;" 

which th(;:) significance of this di.ssertation rests. It is . 

hoped that this introd~ction ~ill lead some college teacher 

or his student by way of the ~ccompanying bibliogr~phy to a 

study of the Finslermanifold. 
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