PADE APPROXIMANTS

By
JOSEPH L. ﬁVARD

Bachelor of Science
Southeagtern State College
Durant, Oklshoma
| 1961

Master of Sclence
Oklahoma State University
Stillwater, Oklahoma
1965

Submitted to the faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the reguirements
for the degree of
DOCTOR OF EDUCATION
May, 1967



OKLAHOMA
STATE UR:VERSITY
; LIBRARY

JAN 9 1968

PADE APPROXTMANTS

Thesis Approved:

L/f\/&f%ﬁ

Thesis Adviser

_Cj/i%%f%/\w/:ﬁik§ "
9, csz,__x e 4:1 ,w.;/

/M/ g
B0 s /P

558313

ii



ACKNOWLEDGEMENTS

It 1s a pleasure to express my gratitude to Professor R. B.
Deal, Jr. for his help in the selectlon of this thesls topic, for his
counsei and guidance throughout my research, and for the opportunity
of working with an outstanding teacher of mathematics; Professors
Milton E. Berg, John Susky, and- Vernon Troxel, my advisory committee,
for thelr help 1in preparing the plan of study and the thesis; Dr.

L. Wayne Johnson, Head of the Department of Mathematics, for my
graduate assistantship; the National Science Foundation for thelr
financial support; June Gilliam and Cindy Sjoberg for a great job
done in typiné the manuscript;lana most of all, my family, Martha,
Steven, Samuel, Nathan, Alan, and Jamle for tﬁéir support and many

sacrifices.

111



TABLE OF CONTENTS

Chapter Page
IO INTRODUCTION- L] * ° L] * . L] . . LI L) * » L] * Q} - - . ® s . . l
II. PADE APPROXIMANTS IN GENERAL. « o « « o o s o « ¢ s s o s &

Nota-tion L) . . L] L] L) . . L) L o L) » . - L] L] . » L4 ° L ° L
Definition of Padé Approximants. . o « o o o o o o o o

AU \n

ITI. APPROXIMATION OF THE SERIES OF STIELTJES: ¢ ¢ o o o o o o » 31
Definition of Series of Stleltjes. « « ¢ « ¢ ¢« ¢« ¢« « o 31
Culminating Theorem. . « « « « o o « o s s s« o« » » « « 58
Solution of Stieltjes Moment Problem . . + o« &« « « . . 67

IVO SUMRY ¢ ¥ ¢ @ o » $ & e @ 2 o° 6 & @ © ® @ ©° ‘9 . 2. & e e o » 80
PAdé COnJEctUre. « o v o« o o o o o s o o o o o« s o o o 84

BIBLI CX}RAPHY @ * e 9o e & e =+ » o ¢ + 3 2 e+ » & 8 & & H» O ° & © s o 88

iv



CHAPTER I
INTRODUCTION

In 1892 a thesis entitled, "Sur La Representation Approchie D’une
Fonction Par Des Fractions Rationnelles”, Par M. H.‘Pade', Ancien Ele‘ve
De L E’cole Normale Supe’rieure, Professeur Agrege De L Universite was

published in the Annales Scientifiques gg S'Epole Normale Supeiieure,

Serie 3, Yolume 9, pages 1-93 1n the supplement. This paper was the
inception,sf what 1s now called "Pade' approximants" which are rational
function approximations of functions known by thelr power series. In
his thesis he looks at several examples and proves theoreme which have
been used as a basis for recent studies that appear in the literature,
gome of which, are 1n this paper.

Though thils thesis 1s about Pade’ approximants which started with
~Pade’ and his thesis, there was another mathematician, T. J. Stieltjes,
who was interested in summing divergent series and influenced greatly
that which has been done relative to the subject of Pade’ approximants.
Hence, some of the basic results printed in this paper, which appeared

first in the Annales Faculte’ Sciences Toulouse, Volume 9, 1894, are

due to T. J. Stieltjes. ;

Also G. A. Baker, who has been publishing articles on.Pade'
approximants recently, must be Eredited wlth many of the results in
this paper.

Pade’ approximants are usually studied relative to two obJec@ivesc



Thé physicist or applied mathematician uses Pade’ approximants to
provide rational function approximation to mathematical fﬁnctions that
describe certain physical phenomona. For instance, the physicist uses
Pade’ approximants in studylng perturbation series assoclated with wave
propogation. Also, there is effort toward abstracting quantitative
information about functions that are known only from their power series
and qualitative behavior. For example, mathematiclans have sought for a
long time to sum divergent series or to fin& methods of intéerpreting
divergent séries °

In the second chapter an algebraic setting is deveéloped in which
the Pade’ approximants are explicitly defined. Then two fheorems are
presented which show when the Pade’ approximants are invariant relative
to 1inéar fractiona) transformations. In realizing their‘proofs some
lemmas are proved which facilitate understanding the concept of Pade’
approximants. Also in this chapter are theorems on what can be said
when the Pade’ approximants are uniformly bounded. In effecting such
answers the concepts of polynomial functions and power serﬁés functions
are Important as is the concept of analytic continuation. Hence the
analogy between the algebralc setting and the symbology often used in
studylng these concepts in analysis is made so that these concepts may
be treated and utilized in the proofs of certain theorems. Along with
these results there is presented a method of calculating the Pade’
approximants if the power series is given and a method of calculating
what the coefficients of the power serles are if the Pade' approximants
are glven.

In the third chapter & very important type of power series is

studled. This series 1s a series of StieltjJes and is important because
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many power series occur in this form. In fact there are many differentl
power serles which describe physical phenomens that may also be reduced
to a series of Stieltjes. See (4). One important result presented in
this chapter is the solutipn to the Stieltjes moment problem which must
be used 1in proving some of the thgorems pertaining to the series of
StieltJes. An interesting result 1n thls exposition relative to a
serles of Stieltjes, the proofs of which are detailed, is that the poles
of a glven sequence of Pade’ approximants interlace. Furthermore R
relative to these Pade’ approximants, it i1s shown that the residues are
all poslitive and that the zeros of the numerators interlace thogse of the
denominators.

Relative to the nonnegative real axis the Pade’ approximents will
be seen as a monotonic sequence which converges to an analytic functlon.
This functlion 1s above one sequence and below another so that for a
Berles of Stieltjes upper and lower bounds are obtained for the limit
function whether the serles converges or not. Finglly, 1t 1s shown
that the Pade’ approximants, under suitsble restrictions, converge to an
analytic function in the cut plane (- = <z < 0).

The theorems that have been proved in the dissertation do not in
any sense exhaust the questions that one might ask relatlive to the ’
subject of Pade’ approximents. In fact they add to the questions that
one might ask and point to the infancy qf the subject. The theory !
presented then motivates the last chapter in which some of these
questions are discussed.

The initial problems, that were solved iIn effecting the thesis
Jusf mentioned, were those of bringing to some logical order, the

recent publications in the area of Pade’ approximants, the proving of



certain assertions, by supplying the details to skeleton type proofs,
that had been made in the literature; and the writing of these proofs
so that, at the high undergraduate level or beginning graduate level, a
seminar can be profitably conducted. As a result of this type of
research new facts sometimes unfold as does the discarding of old facts
which are found to be in error. In the last chapter the former is
exemplified and a counter example to a statement used in proving that
certaln of the diagonal sequences converge to the same limit function is
offered.>

The preceeding gives some historical facts about Pade'’ approximants
and gives some information about three men who influenced their
development. Some of the pfoblems that have been solved were discussed
and a brief introducticn to the content of the thesis has been
presénted° Now a look at scme of the general results in the thesis will

be taken.



CHAPTER II

PADE’ APPROXIMANTS IN GENERAL

3

Some Preliminary Remarks

An algebralc setting wlll now be developed in preparation to
defining the Pade’ approximants.
L = [(°'°’O’am’°°°’a-1’a0’a yoee) a, e Fa field}
will be called a field of formal meromorphic serles. If

f =.(""’:o)_am:“') €L

and g = (,o,)o,bn,.ao) e L
then | f+gs= [ak + bk}k
[--}
and fog= 3% anbk-n}k'
n= M

Notice in the definition of multiplication that each element is a
finite sum.

In this fleld

1 = (.,,,o,ao,a):t.)
vhere a, = 1 and 0= (°2°,0,002),

The additive inverses are obvious but slnce the multiplicatlve
inverses are not quite so obvious & ﬁethod for calculating them will be
presented. Let

f = (e»o,o,am,o_u) €L

where it is belng assumed that if n < m then a = O but that a_ # 0.



o

Also set g = (+°°,0,b m,oo.) and meke & b = 1. Observe that

™

o

o
{

=0 1ifk<0O,

¥ ab = 1 it k=20
oo B k-n ?
T ab b b if k=1
Z &0y 8 w1’ e
n= -0
If .a'mb-m+1 + a'm+lb; — 0 then b-m+1 can be unlquely solved for since

a,m;éoo Now for any k > 1

e
nE_ma'nbk-n = at'mbk-m + a'm+i].bk--m-l+"“+ a'm+l1:b:—m =0
implies that bk-m can be unlquely solved for provlided the bi y 1<k -m,
have already been determined.
Define Pas ((-.-, O, By Bys By "%, 85 O0) sue)},
Then P L. If f ¢ P, £ 1s often written as (aoy CPIRARY an)‘
If , Lm=[a:a,eLandforn<man=O}
and
1" = {a: & ¢ Land forn>ma =0}
define
Lo =L"+ 1

and define a function 7n on L to L such that if

f=(c0°, 0, &, """, 8, 8 e00) € L

n’ “n+l’

n
then 7 (f) = (°°o’ 0‘9 ar’ ces, an’ 0, ood)o

For nonnegative integers M and N let A, = [7M(f) : fe LO} and

N ~
| By=[r(£): e ={r: el atoll.
' Denote arbitrary elements of A, as B = (a.o, 8,
*+°, by), vhere it is realized that

sve aM) and arbitrary

elements of By as Qp = (bo, b,
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‘many of the a, and bi may be zero. In concluding these preliminary
‘remarks‘define ‘

M .
Ry = {PM/QN i A.Ml,QN € BN}.
The Pade’ Approximant

The Pade’ approximants are rational function approximations to s
formal power series. The algebralc analogues are dlscussed first.
After a brief discussion of the approximants for elements in.i% it will
be easy to see how to handle all other members of L.

For every pair of integers N and M define s function xg on LO to

,‘R;: as follows: If f e L, then’:t;g(f) = PM/QN is called the [M,N] Pade’

approximant of f, where QN is some non-zero element of B, such that

N
M : '

w = “f - i
QT € Ly, and Py 7M(QN ). That at least one non-zero QN.gxlsts
from the fact that N equations in N + 1 unknowns always has a non-
trivial solution. See Corollary 5.6.3, page 119 in (16).

Notlce that f-Qu - B, =g € Ly . - or f.-(PM/QN) =hely .
where if
g = ("',O,gM+N+l,gM+N+2,°'°o)
then

Bo= (oo 0y By 2 ** )

is obtained recursively by taking A € LM+N+1 and setting QNA = g after

which A is calculated and is h. '

Now a shifting function and another cutoff function will be
defined so that for any f ¢ L the Pade’ approximants can be calculated.

Letm>0, fel, a, #.0 and define ¢m(f) = (m,bo,b °e+) where

l}

b =&, vhich is the shifting function and is in Tio.



If £ = ('--,O,am,eo-,a

o) e Lwith a # 0, aj # 0 define
7o(f) = (ao,a1,~v-) which is in L.

The Pade’ approximants relative to the former f will be those
calcuiated from $m(f) but in the latter case (am,oo',aul) + ﬁ%(?o(f))
will be called the Pade’ approximants for f. Hehceforth in this
paper the Pade’ approximants wlll be calculated relative to f € TB even
though, using the preceeding, the theorems would follow for f € L.

It cannot be guaranteed that nﬁ(f) the [M,N] Pade’ approximants of
f will agree with £ for more fhan the first N + M + 1 places but it
does agree with f for at least this many.placeéo It QN 1s any element
in AN éuch that PM/QNbagree with f for the first N + M + 1 places then
for any other such |

U B%y = By
Another way of saylng this is that;the Pade’ approximants agree with a

given f € LO

furthermore ﬁg(f) is unique. Whence the following theorem.

for more places than any other such element of Rg and

Theoremjin If n and m are nonnegative integers and f ¢ Tb there exists

one and only one [n,m] = q ¢ Rz such that x:(f) = q or equivalently

f-ael e

Proof. Assume that (Pi/Qi) € Rﬁ and (Pi/Qi) € R:° Further assume that

f - (Pi/Qi) €

I"m+n+l,

and

£ - (F2/a) e

I"m+n+l'
Then

£ - (F2fa2) - (r - (BYQL)) = (BH/Ql) - (F/e2) e

Ih+n+l°



Now if g ¢ L .. then PlQ g el

1,1 2,.2
aney 20d hence (Pm/Qn) - (Eﬁ/Qm) ie

an element of L if and only if

m+n+l
2 1.2
Piqn - Qum € Lm+n+l'
But
2 1
Iign - QnPi € A'm+n
and
1 2,2
(Pi/Qn) - (Ph/gn) is {O}
since

nL = {o}.

A'm+n+l “m+n+l

Let £ = [an}n and g = [bk}k be elements offﬁo and define a mapping

bi for each pair of nonnegative integers n and k on'i'O to F as follows:

n 0
bk(g) =by=1 if n,k =0

n
bk(g) = bk m1+°§.+m Pmy - +<bm, Otherwise.

For each (+++,0, £of feee) = f € L consider L—[g = (oo 10,848, 5

l,

...) : n;O =2z is in the circle of convergence of f}. For each

nonnegative integer k and g € Lf define a mapping from ;f.to F as

‘follows:
.8 =» Zof (s)
. Now for each (f,g) € T% X Ly define a mapping, called a composi-
tion mapping, f¥g on T% X LO to LO as
(r%2)(1,g) = % = (f,8}; o = (£, (&)"}] -

In notation (P /QM)*g = P *g/QM*g (f)*g.

Now it 1s possible to prove some lemmas after which two basilc

theorems will easily follow.
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Lemma 1. If g € Ll’ g = [gn}, gl % 0 and h ¢ L0 then there exlsts one

and only one f € LO such that f*%g = h and 1if h »h ,o-o,hk only are

given there exists one and only one {fo,fl,--.,fk} such that for every

1= 0,1,e00,ke

f e‘LO of the form [fo,fl,...,f ’fk+l""} (f*g)i = hi’

Proof. Now f4g = (£ g}, = [ z £ bk}
= {(f b + flbl + ooc) (fobl + flbi + ooo)’ao.’
1,
(f b + flbk + -oo)’ o}
1 k
= {fo’ l l,( + T b ),000,(f bk + soo +fkbk),aao}

: 2 : k
= [fo,flgl,flSE:+‘f2gl,..., flgk 4+ ses. + T gl,...}

where 1t 1s seen that upon equating to h that the f, are uniquely

1
determined. Also an observation of the above brings to mind that if
only the hi’ 0 S 1 <k, are given then first of all fo = hO and, since
gl % o, fl can be uniquely solved for. Continuing in this mﬁnner fk
can be uniquely solved for since gi £ 0. But ihis means that

[f*g}i = hi for 1 = 0,1,+++,k which completes the proof.

Lemma 2. If g € Ly, gli% 0, f,h € L, then(f*g)1 = (h*g)i for

1=0,1,»-+,k if and only if fi = hi for 1 = 0,1,+++,k,

Proofy As in Lemma 1, write f¥g as

2 k
B L L TR

"~ and h*g as ( lgl’hlga + hegl, ’hlgk 4+ o0a0 4 hkgl,ooo .

1

Hence if (f*g)0 = (h*g)o, then f h, and conversely. Since g A O

0

and hlgl = flgl if and only if hl

H

fl the theorem is true for k = 1»
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Assume the first k - 1 fi and h1 are equal and consider the following

equation
‘ k : k
higk + eve + hkgl = flgk + ses + fkgl
which 1is true 1f and only 1f hk = fk and concludes the proof.

Lemma 3. If f,g,h'e Lo, g¥*f and g*h are defined and fi = hi for

1 =0,1,s00,k then;(g*f)i = (g*n), for 1 = 0,»- k.

PrOOf. Since g*f = [ z g o, 2 g b ooq}
n=0 ° n=0 °
(-]
={Z¢g T Ty oofm s T 8 z £
n ml +*°°4+m "o l mn n"O ml+°¢o+m =
n.afmn’ono}
\n
=[zg(f), zg z f Ooof ,ooe,
n=0 n'o n=0 n ml+oo.+mn=l 1 Tn

1
™8
m
A
=2

(]
v
-

s ]

0]

n z hml".h%)9'°)

n~0 n=0 m1+---+mn=1

Zey I bg thpeer)

n=0 m1+~~v+m =k

because h, = f, if 1 <k and in each of the first k elements of g*f the

second sum is composed of hi = fi'
Now these three lemmas will be used in proving two theorems which

are basic to the study of Pade’ approximants.

Theorem 2. If f e Ly, g = (0,A)/(1,B) ¢ L , and ::g(f) = PN/QN is the

[N,N] Pade’ approximant of f then n'g(f)*g = (PN*g)/ (QN*g) is the [N,N]
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Pade’ approximant of f*g.

Proof. Now hN(PN*g)/(QN*g)hN = (PN*g)/(QN*g) where h = (1,B), which is

(1,8)%a, (0,8)"/ (1,8 1]_/ (1,8)"(v, (0,8)"/(1,8)1]

= [la, (0,m)(1,B) 1 /1o, (0,070, M o1 € =y,

and by Lemma 2, ag(f)*g is the [N,N] Pade’ approximant of f¥g.

Theorem 3. If f;g €Ly, g = (4,8)/(c,D), (C,D) # 0 and ::NN(f) is the
[N,N] Pade’ approximant of f then g*uﬁ(f) is the [N,N] Pade’ approxi-

‘mant of g*f.

Proof. Since_ug(f) agrees with f for the first 2N + 1 places g*ﬁg(f)

agrees with g#f for the first 2N + 1. places by Lemma 3. If it can be

. shown that g*ng(f) € Rg then the proof will be complete. Now

g*(By/Qy) = (A,B(Py/Qy))/(C,D(Ry/Qy))

H

Qy(4,B(Py/Qy))/ay(C,D(Py/Qy))

]

“ . N
(QNA,BPN)/ (cq. N,DPN) e Ry
and the proof is complete.

Now a lemma will be presented after which a generalization of

Theorem 2 will follow.

Lemmg, 1. Let T = (0,...,h¥;...) e T; where r > 0. If f = (fo,f,...),
g =_(go,g,...) € LO and agree for q places then f*T agrees with g*T for

(g+1)n-1 places.
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Proof. In £#T the (k + 1)th element is

.
e, = ¢ F z h ++<h
k n=l ® m +eeetm =k "1 Ty
1 n
1f k >0 wvherem; >r and k > nr or n < k/r. Hence
[k/r]
c, = = r Z h sesh °
k n=l B m

m, +°°°+m_=k n
1 n

If [k/r] < q then k <rq + t where 0 <t <r. Since f, agrees with»gi,

if 1 < [x/r] < q, then

[x/r]
(o] = Z q b h..eeeh
k 1 m. m
n=1 m1+nw«+mn:k 1 n

and agreement will be realized for all k <rq + t or through

k=rg+r-1l=1r(qg+1) -1

Theorem 4. Let

n
Aw _ (0,0, ...,An)
pn(w) (éo’al,c-o,aﬁ)

~

T = = (O)uoo’hr’cQ-) € Lr

and P /c,zN be the [N,N] Pade’ approximants of f € L,. Then the

[nN + 1, nN + £] Pade’ approximants of g = £*T are P *T/Q *P,

Proof. Now n

A w B (w)
ks rr)/% W nw

nN
that PN*T/QN*T agrees with g = f¥T for 2nN + r + s wherer + s <n -1

is a Pade’ approximant in Y put by the lemma with Pﬁ/QN = q it is seen

so that its (nN + r, nN + s] Pade"appipximants to g are glven by

PN*T/QN*T.

The preceeding definitlons are generallzations to some extent when

contrasted with the usual approach of defining the Pade’ approximant.
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And they offer insight as to what the Pade’ approximant is provided one
is just in the process of reading the current literature relative to the
subject. In the next two theorems, the latter one of which is a result
of several lemmas, the condepfé of uniform boundedness and anzlytic -
continuation are of much importance. Relatlive to these concepts the
concepts of polynomlals and of power serles facilitates such a
discussion. Hence a mapping will be defiﬁed so that power serles and
polynomials will be synonymous with the algebralc elements already
defined.

i

For every f = (ao,al,...,an,a..) € Tb let o(f) = § a,z Notice

- n=0 1=
that 9(f) makes sense for at least one z, namely z = O. Of course the
rad;us of convergence is not necessarily zero. If f ¢ P then o(f) is a
polynomial. 1In the future f(z) = @(f) and f will be used interchang-
ably.

Relative to the image under ¢, the Pade’ approximants are given by
the equations fﬂz) QN(z) - PM(z) = AL | g, M2 Feonr, (1)

and QN(O) = 1, (2)

The following remarks are important. As noted earlier there
always_ exists a nontrivial solution for the coefficlents in QN(z). By
Theorenm 1, PﬁﬁQN is unique and agrees with f(z) for at least the first
N+ M+ 1 terms. So if the nontrivial solution for Qn(z) has z = O as
a zero of multiplicity M then also Ph(z) must have z = 0 as a zero of
multiplicity n for otherwise it is impossible for PM./QN to agree with

® n
f(z) even for one place since f(z) = I az and a, # 0. That is QN(O)

n=0
can always be made 1.
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A geries 1s normal if the

a » * - a
n m+n
* ] L
D(n,m) = |. . .
'Y hd L]
. a -
Bpm ° * “n+2m

are not zero and like determinants formed with the coefflcients of the
reciprical serles are different from O,

_ If a normal power series f(z) = & aizi, is given then a, # 0 and

. 1=0
the Pade’ approximants are given by

SM-N+1 BN+ R 151
‘aM S+l © N
% a zJ g - a J g z

| , a

PM(Z) N=N J-N J=N-l J-N"‘l 2 e onO J ‘

1z) =

IE) (3)
SM-N+1 AM-N+2 R "]
M SMe1 T By
zN ZN.-l e o o 1

where ay 2 0 1f J < O and where sums with the initial number larger
than the terminal number are also zero because equations 1 and 2 are
satlsfied by the array 3. The proof that 3 satisfles 1 and 2 follows.

IfM+K=N and.Ai,is the array

gy S ] "MoNe2 0 el

L . -

&M aM}; R "

with the (N + 1 - 1)th column deleted, then equation 1 becomes
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a A ~ (-ao%_+a )z+(a +(-a, )1-5_+a. )z2+”,+(aMAO-aM_lA1+...iaOAM)zM'
+ooot(a A -8 +ooowd J )zN+ +( Feeeta )zN+M
cootlagho-ay (A teerahy)zre ooy Aoty y A teeeBghy
2 M 2 M 2 M
+...-{a.0 12H8L7 Hodatlyz )Ao-(aoz+alz +oootay 17 )Al+(aoz Fooetly 7 )AE

M'l-ale)AN_kﬂj-_ a.on Ay e M} & A -ashAst a A -8 A -8 A +aoAl)z

+o °'°+(8'MAO;'B’M-:1A1+° . ,iaoAm-a NPT .+a0%)z

-a o oi(aoz

M+l

+ (g Ag-aydyte e oty o Ap-ay Agteetay v Az

M+N+ AZM+N+1

*eo °+(aM+NAOv'a’M+N-lA1+°. ° °iabfA“N'a’M+NAO+&M+N-1Al’° - dayy)z

+ BzM+N+2+., se = 0 + AL + BzM+N+2 + oee

where it is Fhloticed that the constant term and the coefficients of
Z, ,.,,zN all add to zero but that the reascn for the coefficilents of
zM+l,a“,zM+N' vanishing is because in each case the coefficlent is a
matrix with 2 identical rows. See Theorem 7.6, page 17 in (16)?

If PM(z)/QN(z) is given such that PM(O) = &, and QN(O) = 1 ‘then a
power serles for which PM(Z)/Q'N(Z) is the Pade’ approximant can be

calculated. If
P (z)/Q (z) = z c, z
n—-O

then
&, + 8.2 +eaost zM.—. c+(1;lc + t,C )z+()3 kc)z2
o' % °M yoxn Ik

+ (2 tc)z Feoot (B t 10, )2t
J+k—-3 J+k-—M

y N
+ (g toe )2 e (g te )z et T tie )2 L.,
Jrk=M+l 9 K Jik=N 9 E Sy T K

Sincet =1, ¢, =a Assume that ¢y, 1< M has been uniquely

0 o °~o°
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determined. Then ti+1 co + ticl +o00t tlci + thi+l = ai+l

determines Ci1° Hence the ey for 1 <M can be uniquely calculated.

uniquely

Let UO’U1’°°°’U‘ be the result of these calculations. Now

M
tOcM}l+ tch +o0ot tMFl + tM}lcO =0 o0 tOCN»l+ tlcNm2+"°+ nmnlco é Q
uniguely determines Uﬂ}l,ao.,Uh_l and
ul O l O o @ e 0 O uo
u2 0 0 l...0 0 ul
B . ) @ o o & ‘ ° ' ° (}_'_)
uN-l 0 0 Qwe s Q 1 uN-e
Uy “y by v % % Uy.1
in & matrix in which UN is uniquely determined. Now notice that for
t.z 1
u 0 1 0 0 0 K u
o+t et 0
ul+t 0 0 l1...0 0 ul
o = ‘e ° ° ' . ° ° ° (5)
W oyt 1o "0 0o..0.0 1 LI
Uyast| v twa et Y Uyl
' : ® k ® k
which then determines the uk for k E-N and ¥ ckz becomes T ukz

=0 k=0
relative to which the given PM(z)/QN(z) is the [M;Ni.Pade’ approximant.

Although certaln assumptions about how M and N are related have
been assumed in the preceeding proof, a proof of the alternative is
similar and for this reason is omitted.

For the moment & look at sequences of the form [N,N+k] with k
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finite will be taken. The study of such a sequence can be confined to
the study of the [N,N] Pade’ approximants by simply looking at

g(z) = 2 7E f(z) if k <o

or
k-1
g(z) = [f(Z)-zfz]z 1f k >0,
J=0
where the fJ are the coefficlents in the power series expansion of f(z),
because if k.< Oand N+ k=Mor N =M - k then z™p (z)/Q (z) is a

N+k
rational function with numerator and denominator polynomials of degree

no more than N and they approximate z~ f(z) in the same sense that

(z)/Q (z) approximate f(z). Since

N+k
2N+k+1
f(Z) QN(Z) - N+k(Z) = A + o900
then
-k -k oN+1
Z f(z) QN(Z) - Z N+k( ) = AZ 4+ o000
and

2P (2)/a,(2)

is the N;N] Pade’ approximant for z~ f(z) Notice that PN+k(Z)/QN(Z)
converges 1f and only if z~ N+k(z)/QN(Z) does. Furthermore if for a

given f£(z) the [N,N+k] approximant of f(z), k > 0, is gotten by

equating like coefficients in Qu(z) £(z) - By, (2) = azeNEL
then '
kK-l k-1
Qu(z) £(z)-P (2)Q.(z) z £z T.q.(2) ¢ £ 29 = agoWkHL |
N+k N N J_o
or
k-1 k-1
Q (z)[f(z T £z ]+[Q (z) ¢ £ . p (z)] = Azl
N N N+k
O : J= o :
or
K-l k-1
Qy(z)[£(z)- z: £z P +[Q. (z) z £ zJ-»P (z)1z Fetz®ML 5 2M2, .,
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or
QN(Z)[S(Z)] + P;(z) = AgPEL | pPM2

where

k-1 J. -k .
g(z) = [f(z) - EOsz lz = fk + fk+l Z 4+ e

and P%(z)vis a polynomial of degree not more than N because first

k-1 3 S

is at most an expression that has no degree of z greater than N and
secondly if 1 < k - 1 then the coefficient of zi in PN+k(Z) is exactly

. k.‘“l
the coefficient of zi inq.(z) T T zJ since this 1is the way P (z)
N -0 J N+k

was determined initially. Finally

| k-1 '
Py(2)/Qy(2) = (ay(a) & £27- P (2)12 /2y (2)

(k=1
» f.z
J=0 J

T py, (2)/ay(2)2

which implies thatiP%(z)/Qk(z) converges if and only if Pﬁ+k(z)/QN(z)
does .
The next theorem is basic to the theory and it will be proved in

the classical setting.

Theorem 5. Let Pk(z) be any infinite sequence of [N,M] Pade’ approxi-
mants to a formal power series where N + M tendto Infinity with k. If
- the absolute value of the Pk is uniformly bounded for Izl <R, then the

Bk converge uniformiy for {z] < © <R ©o an analytlc funcuion £{z)

whose pover serles hes & radius of convergence of at least R.

Proof. If any lPk(z)l is bounded by W for |z| <R then since Pk(z) is

a rational function of z 1t is aﬁalytic in |z| <R, and its power



series must have a radius of convergence of at least R. How consider
the region ‘zl_ﬁ r < R. The power series coefficients, ak(n), of z"
. must, by Cauchye' inequalities, see Theorem 5.15.1, page 187 in (18), be
| bounded by W/R" uniformly in k. Hence
IPk(z)— ; ak(n) 2" < ; |ak(n) 2" < g W(r/B)n = W(r/R)Jfl.
n=0 n=J+1 . =J+1 1r/R

Now

D e(J+1);Ln(r/R) -0

J =

lim(r/R)
J- -0
since 1n(r/R) is negative. This means that there exists a J such that

J .
l(Pk(z) - % ak(n)znl < ¢f2
n=0

uniformly in k. As N + M tends to infinity with k there exists K such
that 1f k > K; N+ M >J and therefore by equation 1 the first J + 1
power series terms are ldentical for all such k. Hence if J and k are

greater than K and Izl <r,

lPk(z)aPJ(z)l < IPk(z)ungoak(n)znl + |PJ(Z)~n%OaJ(n)zn|§ e/2+e/2=¢

which 1s the Caughy eriterion for comvergence of the se@ﬁence.ka}o
B ﬁy‘a theorem on uniferm convergeénce of a sequence of analytic functions,
éée p&ge»226 in (18), thevlimiting function f(z) is snalytic for all
lz| < =&. By Taylor's Theorem, see page 201 in (18), £(z) can be written
as a pover series which has a radius of converéegce of at least R
which completes the proof.

Incidently this is a generalization of a proof for continued
fraétions due to Van Vlieck in 1901, Before going into the next
theorem certain definltions and helpful lemmas will be detailed which

will be helﬁful in an analytical continuation process.
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Elementary transformations of power series is of fundamental
importance in the study of holomorphic functions and snalytic continusa-

tion in which the binomial theorem

Pe(z-a+a)P= B@ (z-a)F (6)
k=0
willl be usedo' Suppose that
T e’ = flz) (7)

n=0 n

has the radius of convergence R > 0 and let |al < Rs 'Then for lzl <R

[--]
£az" - 5 a_ 5 (}) (z - a)%aPk, (8)
n=0 n=0 k~ g

k n =k

Let an = a (k) (z-=-a) if kX <n and an = 0 if k > n. Then

- .
equation 8 can be regarded as a double series E ¥ Q Three

n=0 k=0
lemmas are needed at this time which will come after some definitions.

nko

Let @(J,k) be & nonnegative Integer defined for j,;k = 0,l,°°9,
such that: |
i (0,0) = 0; ,

11 (k) < CP(J + 1,k), o(3,k) <93k + 1); (9)

111 cp(,j,k) - o with J + k.
Examples of such functions are ¢(J,k) = max(J,k) and o(j,k) = J + k.
Pick any such ¢ and define A (¢) J Jk’ ¢(J,k) < n. The sequence
{An(Q)} 15 monotone increasing.. Suppose:that it 1s bounded, then it
has a limit, see (1k), call 1t A. Let ¥(J,k) be another»fﬁnction of
the type of 9. It is desired that fAn(y)} = A. Since for all
n,An(¢) < A 1% would be nice if the/same is true for A (’#-)o Let
max ¢(J,k) = m(n) for ¥(J,k) < n, then A )(¢) is summed over all the

a,, occurring in Ah(w) and possibly other a_, which means that

Jk Jjk
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An' () < Am(n)(q’) < A as desired. Hence it follows that

*
lim An(w) = A <A, Now exchange y for ¢ and repeat the argument to
e -

* *
find that A §‘A so that A = A .

The double series © T a >0, is said to be convergent if

3 %3k
for s particular choice of an admissable function;y(g,k) the corres-

ponding sequence {An(¢)} is bounded. In this case lim Ah(¢) = A is
called the sum of the series. The series is sald to be divergent if

one such sequence ig unbounded. The series T T Q K is said to be

J

absolutely convergent iIf Z L a = Iojk‘ is convergent.

ak %3k
The preceeding gives a_method of exhaustion which may be applied

to double series with complex terms. If T I QJk is the given series

and 9(Jj,k) is a function as defined in eguation 9 and Wn(cp) = Iy Q 1K
>

©(J,k) < n then it may happen that ‘wn(fp) exists but that lim wn(qo) does
not equal lim Wn(w) where the latter may or may not exist. However

under suitable restrictions something can be said.

Lemma 1. If » ¥ Q. is absolutely convergent, then lim Wn(¢) = W exists

Ik
for every choice of ©(J,k), and the limit is independent of ¢.

Proof. NMQW-FJWl=Bﬂu|§ﬂ%JWan<¢(Lw5n+k
- o ; : el s
and Zlnij‘ = An+k(?) - Ah(w) which goes to zero by Cauchys' criterion

and because it is given that § ¥ Q,, is absolutely convergent. Hence

|
Jim Wn(¢) = W exists.  If € > 0 and another function §(J,k) are given,
select an n such that |A - Aﬁ(ﬁ)l < g. If m(n) is given as before then
Au(n)(®) - A (¥) <e. Since Wy () @), (D)]=[Z @, 1< zlni‘,l#m(n)(ep)

- Ah(w) where T Qi is comprised of those terms that appéar whenever

J
mex P(J,k) = m(n) but not those terms that appear whenever $(J,k) <n

it is seen that lim W () = W.



. Lemma 2., If the double series is absolutely convergent, then

Z{ZQJK} = Z{ZQJk} =.Wo

J=0 k=0 k=0 J=0
Proof. It must be shown that each of the series S 5= Kij@ggkﬁ 3 = 0,15
- =
ses 15 convergent and that JEOSJ = W and that similar results hold for
columns. For any n,m
F{fa 1<a . (10)
3=0 k=0 ¥

and upon letting n — ® it is noticed that the first m serles SJ are

absolutely convergent and that

m
L8, <A (11)
J=0

_for every m which impllies that equation 1l is absolutely convergent
with sum not greater than A. iLet-¢(J,k) = max(J,k) and € > 0 and
choose n such that

W -w (®)] <a-4 @) <e (12)
where

n n
W, (®) = J§O£k§O Q-

It is also known that

| £ s

s, = wn(¢)| <A - Ah(¢) < e, -(13)

Now adding the appropriate parts of equations 12 and 13 gives

| i"osj -W| <2 e. | (14)
J::

Columns are handled in the same way after which the lemma follows.
Now with respect to the double series in equation 8 and being
cognizant of the preceeding lemmas it is noticed that the order of

summation can be altered 1f the series 1s absolutely convergent.
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This will be true if and only if

lk la‘n-k g

x n n
zlal £ @)z -2
n=0 k=0

(Jz - a| + |a])* (15)
0

n=
converges, that isg, if [z - aI <R - ‘al. Let this condition be

satisfied and sum 8 by columns instead to obtain

£(z) = £ (z -a)¥1/k! T a(m -1)e-+(n - k + 1)a a® %, (16)
k=0 n=k n
@ gy Kk
For |a] <R f(z) = = ;—ET-—-(Z -a) (17)
k=0 *°
since fik)(z) = ; n(n - 1)eee(n - k + 1)anzn'k. (18)

n=k
(For the proof of equation 18 see Theorem 5.5.3 in (14)).

Formula 17 represents f(z) in |z - a] <R - Ial and the right side has
a radius of convergence ﬁa. The sum of the series 1s a holomorphic
function f(z;a) in the circle |z - a| < R, . Since |2 —'al <R - |a] is
in the circle with radius R, f(z;a) = £(z) for |z ~a|] <R - |a] end a

lower and upper bound can be given for Ré.
Lemma 3. R - |a] <R <R+ la] .

Proof. Since f(z;a) = £(z) for |z - a] <R - |a| the left inequality

holds. For the other inequality suppose thbt R, > |a| for 1r R < |a|
then Ra <R+ Ial and there is nothing to prove. Hence z = 0 is in

both regions of convergence where f(z;a) = f(z). That is,

( o f(k)( )
o) = I Tt (o

k-n
) (19)
for every n. Now the power series f(zj;a) was derived from the power
series f(z) by setting z = (z - a) + a and using equation 6 to

rearrange the resulting double series in powers of (z - a) all of which



was done under the assumption that the double series is absolutely

convergent for |z| < Ra - Ial. Now apply the same technigue to

o p(k) o ¢(K)
£(z;a) = A _1_*_1__{_'_(_a_)_ (z - a)" = kzoim-(—a;l %O(%)zn(-f&}km (20)

which can be thought of as a double series

(k)
[--] © f (a) k! n k_n
N 21
kEO nio KT . al(Ea)f ” (-2) ‘ (21)

where (g)zn(-&a.)k"n vanishes for n > k. Since it is assumed that the

double series 1s absolutely convergent expression 21 becomes

n (x), @ o(n), y n
® gz ® f ) k- £17(0) =z
n§0 nt kfn rirrr(ﬁ— (-a) n=n§0—m—~ = £(z). - (22)

The last equality follows from equation 19. Hence the rearranged
series at 2z = a rearranged agaln at z = 0 gives the original series.
Since the radlus of convergence of the original series is R,
Ra -'|a| < R which is what was to be proved.

That the two bounds for Ra are the best possible follows from a

consideration of

1 2 n
= 2. (23)
n=0
® n
Here f(z;a) = % ﬁf-,'-f-a-)-ﬁd, = |1 - al a.ndR =R - |aj ifo<a<1
n=0 (1 - a) .

while R, = R + |a| 1f -1 <a<o.

Lemms 4. The functions f(z) and f(z;a), defined by the equations 7 and

17 respectively, coincide in their common domain of definition.

_Proof. It is obvious that £(z) and f(z;a) coincide in |z - af <R-|a].

It will now be shown that f(z) and f(z;a) coincide in a neighborhood bf
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b vhere |[b] <R, R - |a] < |b - a] <R . Let
5 = min[m%n(R - |z]), m%n(Ra -lz - al)

where z ranges over [a,b] and choose points a = bysBysesesb = o on the
line segment [a,b] such that |b_ - b .| <& for k = 1,.4., n. Since
Ibl - a|v<v8 <R - lal, f(z) = f(z3;a) in some neighborhood of bl. Now
take equations 7 and 17 and rearrange about bl obtalning

(k)

(- -] . [, .

T _E.,_l..f (b7 ) (z -b, )% ana = £ ) _l_,_.(b ELY (z - b, )~ (24)
H 1 3 1

k=0 k=0

respectively. The first serlies converges and represent f(z)ufor

z - bl <R - Ibl‘ while the second converges and represents f(z;a) for

Iz - bll < Ra - Ibl - al. Yet the two power serles are ldentical in
that they have the samevcoefficients because f(z) and f(z;a) coincide
in some neighborhood of bl and have derivatives of all others.  That is
f(k)(bl) = f(k)(bl}a) for all k. This power series represents f(z) in
one circular disk and f(z;a) in another concentric disk. The two
functions then have to coincide on the smaller of the two disks which
will be denoted Cl° Its radius is at least b and b2 € Cl°

rearrange the power series for f(z) and for f(z;a) about b,. The

Now

rearranged series have identical coefficients which means that f(z) and
f(z;a) coinelde in a disk C, about b, After this has been done n
times f(z) will agree with f(;;a) in a disk C_about b =b . Since b
was an arbitrary point within each ecircle ofhconvergence the theorem
is proved.

If it happens that R >R - lal ana ir c, |z - a] < R,

¢ : |2} <R then
0 . .

F(z)= (25)

f(z;a), =z €. C~C,NC,



27

defines a holomorphic function 1n'Cb U Cae It 1s said that f(%;a)

gives an analytic continuation of f(z) in Ca\\C0 n Cyo

Theorem 6. Let-?k(z) be any sequence (infinite) of [N,M] Pade’

approximants to a formal power series where N + M tend to infinit'
with k. If the lPk(z)l is uniformly bounded in any closed, simply-

connected domain Dl which contains the origin as an interior point and

|Pk(z.)| -1 1s uniformly bounded in any closed, simpiy-cqnnected domein

D2, which contalns the origin as-an interior point, then the Pk converge

to a meromorphic function f(z) in the interior of D, U D,

Proof . Dl wlll be considered first. If OCR denotes an open disk with

radius R about the origin then there exists a OCR c:Dl. That is 1if
1
|zl < Rl then z € Dl° The Pk are uniformly bounded rational functions

in Dl and therefore analytic in Dl and oCRl°

converge to an analytic function fl in OC . Now pick any a such that
1

Slince the Pk(z) are analytic in a nelghborhood of a, they

By Theorem 5 the Pk(z)

laljﬂl

can ‘be éxpanded in a power series about a. See Theorem 6.%.1, page 201

in (18). This power series

e .
()= § B g (26)
n=0 = @n%

has a radius of convergence R2. Let acR denote the open dlsk with
: 2

center a and radius R2 ; then by Lemma 4, the power series representa-

tion of Pk(z) about a agrees with P on a.CR2 N D . As in Theorem 5

let lz - é.l <r< R2 where 1t is being assumed that a.cR c Dl. Bince,
2

as In the proof of Theorem 5, the

T t
P(n)(a) <Wno
k - N
R2
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and the coefficlents

™(s)

ak(n) -——T—*—
in equation 26 are bounded uniformly in k,

U’h)»z a, (n)(z-a)"] < 5 e, (2)(z-2)"] < ziﬂdﬁ)
n=0 p=J+l O ne=J+1

= w(x/R)Y 1/ (1 - v/RY) (27)

which is less than e/2 if J is sufficiently lg.rge° There exists a K
such that k > K implles that N + M > J and by equation 1 the first
J + 1 power series terms are identical for all k > K. Hence 1f k > K

and j >K and |2z - a| <r then

|2(2) - B,(2)] < |7 (2) - néoak(n)(z - a)"

lP (z) - z a_(n)(z - a)n|‘< e/2 + ¢f2 =

n=0 J
which is again the Cauchy criterion for the convergence of the sequence

so that the P (z) converge to a f (z) analytic in |z - a| < R,. If

R, >R, - |a] then £, (z) is an extension of £ (z) in aC
i R2 O Rl

because they obviously (see Lemma 4) are equal in C n oCp  Since both
1

are limits of the same sequence Pk'in this common domaina

Now suppose that b ¢ D such that [0,b] is in the interior of D).

For each a ¢ [0,b] chaose an Ra such that acR is contained in the
" 8

interior of D+ Think of [0,b] as the line segment with length |b| and
cover [0,b] with {(a - R, a+R):aece[0,b]}. Since [0,b] is

compact there exists & finite subcover of [0,b]. Denote the subcover

0, . c
;:l bi Ri

The concept detailed above'will be used now. Relative to b CR the
171

Pk are uniformly bounded and adiit to a Taylor serles expansion aboutti-
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. - . C . . ,
As shown above Pk(z’bl) = Pk(z) in OGR&W b Rl and the limit function

1

of Pk(zl,bl)-and Pk(z) must agree on this common domain. Let

iim P (z) = f (z) and iim P (z bl? = fa(z)e

Then if z ¢ C_ N
0 R bl Rl

defined to be £, in €, and £, in . C.~(.C
1 O‘RO 2 b, 'R, O'R, bl R,

one has fl(z) = fa(z) and the function F,

) is an analytic

o

function in 0CR U bl Rlo

Now consider b CRE in which the Pk are unlformly bounded. Hence
272

the Pk can be expanded about b2
representation agreement with respect to Pk(zi;bl) is a state of belng.

using Taylor series and in this

Since the P, (z ;b ) converge uniformly in . C and agree with
k1 b2 32

3 c , . 7
Pk(zl,bl) in 20 2n b, Ry the 1imit function of° Pk(zl,ba), call it fé@),
must agree with f (z) in N. C_ . Hence the function F_, defined

b, 32 bl Rl 2

to be F, in C_ U and £, in ., C~J( C. U ) is analytic in
1 0'Ry” by Rl 2 b, R, OR 1 R,

c,u.c, U, _=¢C Continuing un*il
0 RO bl Rl b2 R2

one gets that the Pk(b) converges to F(b) where F(b) is an analytic

b R is treated analogously

continuation of fl(z) in Cp . For any b € intD, there exists a poly-
0

gonal line fI.,n,_in’oD:L Joining:zero to b so that after a finite number of
comnntations, treatment of the finite number of line segments in the
polygonal line, the Pk(b) = F(b) where F is an analytic continuation
of £ . 8ince b was afbitrary the assertion follows.

1
Now consider D, and notice that [Pk(z)]nl = [M,N] Pade’

2
analytic throughout D2° By repeating the proof above but thls time

approximant. The [Ek(z)]ml are uniformly bounded in D, and hence

relative to D, and the [Pk(z)]”l one can show that the [Pk(z)]"l
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converge uniformly in the interidr of‘Dg to an analytic function g(z).
Now the [Pk(z)]"l will converge uniformly to 1/f(z) in the interiorlof
Dluﬂ Devahd 1/f(z) is apalytic herein. The.[Pk(z)]”l will converge
uniformly in the interior of Dé\\Dl n D, toza function g{z) given by a
power serles which is an analytic continuation of 1/f(z)° Hence the

: P&(z) will converge uniformly to f(z) in the interior of D, and to
1/g(z), which is at worst meromorbhic in the interior of D;~D, N D,.

See page 233 in {B). This completes the proof.

Theorem 6 gives a rule of procegure in practice. Let a region
be.givgn in the complex plane in which it is known}(based on physical
groqus) that the function is meromorphicfzaFor igstance the reglon
migh£ be a neighborhood of a part of the real axis. If an infinite
sequence of [N,ﬁ] Eadg’ approximants is given select an infinite syb»
seéuence which éatisfiés the conditions of Theofem 6 in the given
regiona Then thej will converge to the meromorphic function by
Theorem 6. But in practice, finding this subsequence i1s a problem
whenever M and N tend to infinity.

This theorem is the last ome in this chapter on the general theory
of the Pade’ approxima%t method of approximation. Attention will now

y
be given to a particulaf power series in conjunction with the Pade’

method.



CHAFTER IIT
APPROXIMATION OF THE SERIES OF STIELTJES
Introduction

Physical phenomenon in a mathematics setting can often be reduced
to a series of Stieltjes which offers motivation for the study of the

series of StieltJjes.

Definition of Series of Stieltjes

A series of Stieltjes is defined as

22) = 3 1,(-2)] 1)
Jj=0

if and only if there exlsts a bounded non-decreasing function p(u)
taking on infinitely many values in [0,%) such that
(2]
f = I qucp(u)o (2)
J 9

The series is not assumed convergent. Define

f f o - Q f
m m+1 m+n
fm+l fm+2 ° fm+n+l

D(m,n) = det : ‘ ’ ° (3)

,f‘ o ° " o
m+n m+n+l m+2n
Now 2 implies that
D(0,n) >0, D(1L,n) >0, n = 0,1,2,0, (&)

31
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To see this consider the quadratic form

T s Yy JQ Wy, 4 Y, Wt eee 4y un)gd@(u) >0 (5)
p,q=0 Tp+qem’pYq o 0" 71 nt /&
, _

which can be well considered by definitlon of the Stieitjies integral.
It is known that if a quadratic form is positive definite then all
of the prineipal minor determinants are greater than zero and hence

D(m,n) > 0. See Theorem 9.13.2, page 256 in (16).

Theorem 1. Let f(x) = 1/¢4(x) = £+ Ty % +oeeet fmxn + oo

ﬁ(x) 20 4 C.X 4+ CX 4 coe 4 C X0 4 soo, If (-1)®* p(1,n) < 0 and
0 1 2 m
(1) D(2,n) < O then if D are the D's formed by the reciprical series

#(x) the following relations hold:

- B(1,n)

it

(™ p@n)/e5™E >0

(6)
2n+l

"

5(0,n) = (-1)" B(2,n - 1)/£5 "~ >0

which means that ¢(x) is a series of Stieltjes. Bee Theorem 5.

Proof. Consider the egquations »
i h ; n

Cm,+n + A cm.+n--1 oo F A'mcm+nwh e A Amcm ‘ =0
1 h n
Cornsl * ACmen et A e T AL = O
° ° . » - ° (7)
l ) h . a. o a n =
Curoson1Pulmien-2  * * Amcm+2p-=l-h o Amcm+.p--l =0
' 1 n
and set H = Cm+2n + Amcm+2n=1 + + Amcm+n° (8)
Now use Cramers rule with equations 7 and 8 in solving for A;, oo AZ

to get, upon substitution into 8,

H= D(m,n)/D(m,n - 1). (9)
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Now for a moment think that the f, in f(x) are given and consider

£(x)§(x) = 1, that is,

1

]

oo

focl + flco

° L] . [

o e« . s (10)

° 3 [

©
i

(=}
]

focm + flcm-l 4 o o » + fmcoo

Aggin like in the preceeding it 1s seen that

£, 0 e s e 0 1 £ fo o .20

fl f2 L] ° -] O O f2 fl Qo > o O

£1 Tppe e efy O £f.3 Tmo o T 1)
c = fm fm_l 9 L] L] l O = fm fmnl o o o fl
m o+l m *

fo 0 s s s 0 O f, (~1)

2 fg o420 O

fo1 Tpop Ty O

fm fm_l ° o L fl fo

-The equation llxwill be used soon. Regress again and suppose that

(L +8G) + o« o+ A2E)) ¥(x) = (1 + AL(x) + + =+ + AR")/£(x).
Now by equation 8 the ceefficient of 20 4oy ﬁ(m,n)/ﬁ(m,n_u 1).

Consider the product f(x) T azxm =1 + Ai(x) + 0 & o 4 Az(x) with the

. 1 1 1
added reguirements that H = &m+2n and am+n =B el <0 am+2n~l = 0,
Now the al for 1 €1 < n are selved for by equating the coefficlents of

i
X, o0, = with A;, eee, Aﬁ respectively. For the m + n + 1 remaining

equations, that is,



{¢he system of equations below will be referred to as (12))

]
1= foao + 0 +eee+ O + 0 +oea4 O + 0
N ]

= ! . L 4 ? a0

0= fn+la0 + fnal_ +200q fo&n+l + 0 +eaet O + 0
= . ! 4 90 ! ! P

0= fn+2ao + fn+la1 +oo o flan+l +.f0an+2 + + 0 + 0
— ‘s : ] 2o [ ] e e 1

0 - fm+n--lao + fm+n-2a1’+ + fm-2an+l + fm-}a’m+2 o fOa”m-i—n-l +0

= f ' ! Loew t ! PR ?

0 fm+nao + fm+n—la1 oot fm-3am+l + fm-ham+2 + + flam+n—l + 0

° ° ° . ° ' ° & ° °
— ' ' 0.0 04 ' ' o9 0 '

0= fm+2n-la’0+ fm+2n-2a1+ + fm+n-2am+l+ fm+n~33m+2+ + fnam+n-l +0
= _a! . thoooe : ' ! o ! °

0 fm+2na0‘ + frn+2n-1a1+ + fm+n-39‘m+l+ fm+n=l+a’m+2+ + fn+la‘m+n-l+Hf0

H is solved for (as before) to get

fo o @ L] L] O O o ] o o l
n+l fn o L] L] fo o » o 9 o o
° Ld - L L] H L] L
L fm+2n-=l * ° ° “mtn-3 vfm+n-h ve o B ©
fo 0 i o o O 0 o 40 O 0
fn+1" fn ° o L] fo o L] - @ o o
fm+2n Tp+2n-1 ° ° ° fm+n-=-3 fm+n-1+ c o T fo
mn+2.
- (1) "E(m,n)

el
fE(m,a-1)

But

B(n,n)/5(m,n-1) = (-1)"""E(m,n)/r5E(m,n-1)



R
\Ji

> i (a41)
. (n+l
fanﬁ(m,n)/(-l)mn n'§+ E(m,n)

-1
2(n l)D(m,n 1)/ ( 1)m(n'1)+“££;“l'ﬁ(m,n~l) (x3)

and 1t is noticed that the equality holds when n i1s increased or

decreased by unity. So if n = O, then, by equation 11, the followling is

true:
£ D(m,O)/(e—l) £ (1) M2 c o ()Rt = (a)T/eRt (14)

Hence, from 13

n(n+l)
B(m,n) = (1™ 2 E(m,n)(-1) BRIt
n(n+l)
= (™7 B(m,n)/ e (15)
n(n+l)
Also B(1,n) = (<) (4)“"73—‘ E(1,n)/£5 2, (16)
Now
fn+l fn o o o fl fl N ° fn+l
fn+2 fn+l 9 L] L] f2 ‘ f2 - L] L] f 2
n+l
° ° . ° - . [T] ° * L
E(lﬁn) = o ° Ed ° . = (‘-&l) ° 44 e (17)
Tonsl Ton * 0 Tha ol 0t Tonal
n+l

-
- (1) 2 b(1,n)
vhere [(n + 1)/2] 1s the greatest integer less than or equal (n + 1)/2.

Hence n(n+l) n+lq .

B(1,n) = (A () 2 (4) 2 p(a,n)/£ER,

If n + 1 is odd then [(n + 1)/2] = n/2 ana (-1 )¥/2 )(n+l),(_l)[(n+l)’2]

18 (-1)2(8+2)/2 _ ((m.J.)n”z)n/2 = 1. On the other hand if n + 1 is

ven ()R(RH)/2,()ln¥e] | (qyalelf2). o felf2 | ()G - 3)

= 1 and D(1,n) becomes D(l,n) = (-1)*"*en(1, n)/f2m+2 > 0. (18)
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While if m = O and a;‘a a'

— = ] . - "i = F he
el = teC 801 0 and agp H; then
n+l < » » f2 f2 » £=] £l n+l
n+2 » ° L] f3 ‘ f5 - L] * fn+2
E0m) = |- . . |=(ubee s (19)
[ (3 & o ., -
fon ° ° o Tha Taed © ¢ Top
= ()2l po 0 1),
Hence
= : ‘ n+l)/2 2n+1
B(o,n) = (-1)*(E)/ E(0,n)/f

- (P2 ()/2) pon L1y (o)

where it is seen that if n is even [n/g] = n/2 and (_l)n(n+1)/2%(_l§h/2)
= (_lfh/?Xh+2) = 1. But whenever n is odd, [n/2] = (n - 1)/2 and
(wl%p/a(n+l)°(=l)n"1/2 = (-1)(n2+2n""1;v2 = «1. The last equality follows
from the fact that if n = 2k + 1 an odd number then ((n°+ 2n - 1)/2) =
(hk2 + 4k + 1 + b4k +2 -1)/2 which is [2(2x® + 2k + 2k + 1)/2] =

2(k® + 2k) + 1 an odd number. Therefore (qlfh/gxn+l)~(.1)n/2 = (1) :
and equation 26 becomes\ |

‘ ’E(O,n) 2n+1

0

#

(-1)* D(2,n - 1)/f (21)

which becomes, if k = n - 1, D(0,k + 1) = (-1)¥*. D(2,k)/fgk+3,
Since D(O,n + 1) = (-1)nfl- D(2,n)/f§n+3 > 0, holds by hypotﬁssis, 21 is
gfeater than zero. Therefore under tﬁe hypothesis it has been showg
thét the féciprical series is a series of Stieltjes. Most of the above
was done by Hadamard. See pages 101 to 186 in (10).

The importance of the inequalities in this theorem follows from the

fact that D(M - N+ 1, N - 1) >0 for M >N - 1 >0 for a series of
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Stiéltges. Now it will be shown that these determinantal inequailties
. determine the location of all poles of any [N,N + J] Pade’ approximant

where J > -l

Theorem 2. If ¥ fj(-z);j is a series of Stieltjes then the poles of the
[N,N + J]v, where J > -1, Pade’ approximants are on the negative real

axis. Also, the poles of successive approximants interlace, and all of
the residues are 'positi've. Furthermore the roots of the numerator also

interla ¢ with those of the denominator.

Proof. Multiply the second column of the denominator in equation 3,

Chapter II by x and then subtract it from the first column. Continue in
this manner until this has been done with the next to last and the last

column. In this fashion the denominator of eguatlon 3, Chapter II can

be reduced to : (22)
fl+j + xf2+J f2+J + Xf5+,j . o o 15‘1@*_'j + XfN+,j+l

() (M) : : " )

° = . ° - K] °

fN+J + XfN+1+j f}}hj.+l + XfN+J+2

o

+ xf2 o

° e f2N+J-l ¥

To prove this one might procede as follows. The denominator of

equation 3, Chapter II ‘is

ifl+,j * f2+;j Poee X fN+J+l
+fﬂ+,j - fH+,jj+l cec f21w1+,j
xN xN’-l o ° -] l °




| After performing the'qperations menfiohed this becomes

G xf2+3) Cee +W(fN+J txfy )t Tyege1
Y Ty * x?N+J+1) voee s (opegy ¥ X y) oy
o ... 0 1 ,
or expanding about the last row one gets . : (23)
i'(fl+J + xf2+J) o o o ¥ (.f.‘N+J + XfN+J+l?
¥ (fN+J + fo+J+l)‘. s e (f2N+J_l + xf2N+J) .

In Qrdér to get rid of the + in expression 23 which will thereforeugive
the (wl)N(N+J) facﬁor in expression 22 consider first that j + 1 is even
and ﬁhat N+ J+ 11is even. There are N rows in the expression 23 ané
by éésumption N is even and N + J iévodd. Hence there will be exactly
N/Q different rows that begin with negative signe in expression 23.
Likewlise there will be the same number of columns with like beginnings

" and after (-1) is factored out of 23 in the N/2 fore-mentioned rows each

column will have & constant sign for its elements. That is, expression

23 becoﬁés o : (24)
&1+J * x:2+j) - (féfg + xf5+3) R (fN+J +XfN+J+f
y y
. @2+J + xf3+,j) - (f3+3 t xfh+3) Cee (fN+J+l Rl TR
Ve | ) ' . " .
ng+J + xfl’ﬂ‘-r;j+l) - (fN+J+l + X?N+J+2) e (faN+j-l+Xf2N+J)#‘

Now factor (-1) N/2 times which will make the totality of signs in

expression 24 pésitive to get
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(f1+J + xf2+-J) o o o = (fN+J + xfm_ﬁl)

(-1)N/2 + I_"/2 : o | | (25)

< ) v *

+ XféN+J) A

(fiv+;| + x.'fN+J+1) A (f2N+J-l

= ("l)N D = Da

But (-1)N(J)

= 1 since N is even and 23 is 22 in this case.

Now suppose in 23 that j + 1 is even and N + J + 1 1s odd. Then
N + J 1s even and N is odd. Thé number of rows beginniné with negative
signs is (N - 1)/2 and there are after the above operdiions have been
performed (N - 1)/2 (-1)'s to be factored from the columns. Hence
expression 23 becomes

()"t p=p- ()M, g (26)
If in express;bn.25 it is assumed that J + 1 is odd and N + J + 1.

is odd then N is even and as before 23 becomes

(fl+J + xf2+J) - (fN+J + fo+J+l)
(-1)V/2 ) . )
(fN+J + XfN+J-l) e o 8 = (f2N+J-1 + xf2N+J)

= (-J_)N/2+N/2 D= (—'l)ND - l"D - (—l)N(N+J).D .

- And in the last case let J + 1 be odd and N + J + 1 be even. Then
N is odd and N + J is odd which means that N(N + J) is too and

(~1)N(N$J) = «l. AlsO expression 23 becomes

N+l/2 N-1/2 2N/2 N(N+
(-1) /°(~1) /°D,,= (-1) /D: (-1)p = (-1)F(Ea)p, (27)
Hence 22 is valid. |
Denote expression 22 yithout the sign AN and the coaxial minor

formed by striking off the last r rows and columns by AN e Note that
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AH-r is the denominator for [N - r, N+ ] - r]. Therefore the sequence
AN’ AN—l’ cse AO = 1 is a Strum sequence, that is, if Ak = 0 then Akql
and Ak+1 have opposite signs. In order to see this a lemma will be

proved.

Lemma 2.1. The product of a determinant and any one of its minors M is
expressible as a sum of products of pairs of minors. The first factors
of the products are obtalned by taking q rows in which the rows of M are
included and forming from them every minor of the qth order which
contains M and the second factor of any product is that minor which
includes M and the complementary of the first factor. The sign of any.
product is gotten by transforming the second factor so as to have its
principal diagonal coincident with those of the two minors which it was
formed to include, and then taking plus or minus according as the sum of
the numbers indicating the rows and columns from which the first factor

was formed i1s even or odd.

Proof. Let |a1n| be the given determinant and let the minor M be

denoted |a a °
l PP p+l,p+l

that include M.

5 & aqq" Let the q rows be the first q rows

By the laplace expansion, see Theorem 2.13.4, page 56 in (16), the
product of lalnl and M can be written as the following determinant,where

the determinant on the next page is a continuation of the determinant

bElW,
a Hj, ce e ﬁp vo e ﬁ s0 e 51 0 eee 0
11 2 q n
85y 8o oo By cee By cee By 0 ses O (28)
a a Eine on i 0 .0
p-1,1 “p-1,2 *°* %p-1,p p-1,q p-1,n




bl

8 a cce 8 eso .8 toe 8 0 sae O
opl ap2 14 oPP ] . apq » opn © .. %

8 do: aa oo: a8 w.t'a O o»: O
ql q2 qp aq an

’ ves & 'R -
?q+l,l %q+l,2 2oe ?q+l,p . La+l,a | ?q+l,n ?q+l,p! ?q+lﬁq
arﬂ- anz OV'O ] anp .00 anq o900 an-n anp o 8 0 anq.
0 O L ] O 06 O o Q0 0 a o099 a
e 2 L3 ov L3 '] L ° oPP L3 apq'
0 0 cee O cee O vee O a cee 8
ap qq

where 'alnl is in the first n rows and columhs ﬁith‘nothing but zero
elements below it. Expression 28 will also be called A. Notice that M
is the compliment of Ialnl in A and that the first ¢ rows of Ialnl aré
extended with zeros but that from row q + 1 to n the extension is com-
prised of the elements in columns p'to g. In A the minor M occurs twice.
Now add each element of the first row where M occurs first to each
element of the first row where M occurs second and continue this process
until all the rows in which M lies has s0 been operatedléﬁ; Now sub-
traét each elementviﬁ the first column of where the second M begins from
the corresponding elemént in ?he first column where the first M begins.
Continue until all such columns have been taken care of. The result is

that A becomes

84 8, e By o eee alq oa o éln -0 eeo O
% % e T 0 O
e e ala e ulo| @@
p-1,1 “p-l1,2 p-1,p P-1,q p-l,n

Pl e e m DT

8,1 aqbe oo By oo 8,q cos an,nv 0 eoo O




Lo

?q+l,l ?q+1,2 :°° ? :°° ? :°° oq+1;n ?q+l,p:°° ?q+l;q
a4 an oes Q aos O soa an,n anp see anq
o .

: D e o - .l

aql aq2 eoa aq,p-l see O oio‘aqn aqp oo aqq °

Now if relative to the first q rows every minor of the qth.order is
formed in preparatibn to.finding the expansion of A as a sum of pfodncts
of complementary minors (Leplaces expansion) it 1s seen that, although
the totality of‘such minors-is ex&étly the same as for lalnl’ the only
ones relevant are those that include M because all of the»dﬁhers h@ve
complementaries which vanish. Now each of fhe complemehtaries of those
thus taken includes or contains the complementary of the same minor in
‘alnl snd the seleéted minor besides and each complementary itself is a
minor of lalnl being formed from those n - P + 1 rows of lalnl which are
made from the n - q rows not included in the chosen q rows and the

q - P+ 1 rows in which M is located. But thls sum of products is the
sum of products specified in the theorem and since it is the eguivalent

of A and of |al °M the lemma is proved.

ol
Now 1f A 1s symmetric then by the lemma
A = A A, - A (30)
A12,12 A11 A22 A12

whgre A is a given determinant and All’AIE’A22 are the respectiv?
minors of all,glayvand 8o A12,12 is the minor formed by deleting the
first and second columns and rows. Now if All = 0 then A and A12,12
must have opposite signs.

In order to locate the roots notice the following remark. If

(-1 )K(N‘”J)oqg(z) is the denominator given by equation 3 in Chapter II



for the [N,N + 3] approximant then QJ(O) D(1 + §9N -1} > 0 for all N.

Now Qi(z) = f1+3 + xf2+3 and

® x , .
£, ::i; u ao(k) = (k,0) >0

- 1
which implies that the root of Qi(z) is real and negative. Call it xza

Also o 3
fl+3 + Of2+; f2+j + Of3+j .

J _ >
as(0) = | =f  f, . =fo >0
2" fopg * Ofsy  Taiy + OF) 1+§ 5+37 T2+

and by expression 22 and equation 30 is -(f + zf )2 < O where z is

2+ 543

s

the root of Q,i(z)° Qg(z) is a polynomial of degree 2 and must therefore

vanish between zero and the root of Qg(z)q The coefficient of x2 is
Torg Taag
= D(J + 2,1)
T3y Ty |

and, since N is even, is greater than zero by expression 22. Hence as
®x goes to -® the second degree equation; with leading coefficlent.
positive, must become positive which means there are 2 negative real

roots.  Let xl and x2 denote the roots for Qg(z)o Ir

2 2
fl+j + xf2+J f2+J + Xf5+j f5+3 + th+5
Jie) = " .
QB(X) f2+j + xf3+J f5+j + th+j Ih+3 + Xf5+3
f3+j + th+j fh+j + xf5+J f5 + Xf6+j|

then Q3(0) = D(3 + 1,2) > 0 and if £, i+ xf,, . 1s Put in the first

5+J

column and first row and f, + is put in the last row and uOllMﬂ

1+ xf2 +J
then Qa(x) remains exactly the same. Denote this Qj(x) Assume that
2 1 1 1

< 9 -2 L3
x2 xl < x2 Let % x2 Then

]

B30 (8, 55, ) = @30y o8 gD (%)) -0



b

ol 1,

since fl+J + x2x2+3 f2+5 ¥ x2f§+3‘

- = 1 l__ o= O.

TA11 | f2+j + x2f3+J f5+5 + Xth+3
Now since f, xof > 0 (this is because X > *y } xi) must be

143 1 %oTogy 2 Pot¥a)
negative. Hence it must have a root xé such thaﬁ xé < xg < 0, Yet
.2 J

) - > ,
when x = x,, then fl+5 + xf2+j < 0 and Q {x)} > 0 and there must be =&
root for &Qg(x) between x; and xgo Then the limit as x goes to minus

infinity of the third degree polynomial Q%(x) becomes negative and this

N(w+3) > 0, then the

is the last root (call it xg) of Q,%(x)n Now if (-1)
denominator which is a third degree equation must become negative a8 x
goes to .o, Of course if (ml)N(N+J) < 0 then the denominator is nega-

tive at zero and positive at x; and negative at x2 and the trinomial

2 2
will become positive as x goes to negative infinity so thet again the

third root will occur some place smaller than x2, Assume for N = k that

2
the roots are as for N = 2 or N = 3 above snd consider N =k + 1.
Without loss of generality assume that (ml)(N*l)(N+l*J> > 0. Put
\ J
fromer * XfN+2+J in the first column and row so that in Qp 1(x)

one has Q l(x)ll = Q%(x) and.Qg+l(x)12,l2 = Qﬁml(x) where it is

‘regalized that f1+j + xf2+J is in the last row and celumn. The deter-
minant stays the same in fulfilling this obligation, in that starting
with an Interchange of the firsgt and last columns and conbtinuing with
the second and next to last column belng interchanged, it is noticed
that there will be [n/2] interchanges, depending on whe%her n is odd.
Now. do the same thing with the rows. Altogether there have been

{n/2] + [n/2] interchanges and this means that the sign of the determi-

nant is the same.



J e
- Q (x) = 0 and ¢W&1( ) w

\ L F oo
How for x = LN o §.1

N+1(x)11

siuce the first root of ngl(x) ig to the left of xig Hence Qi%w{x) 18

negative and has & root bebween x% and 0. How at x&, %é.w O and
2o 2 1 g P » ;L2 1
Qmml < 0 since XN < xNal which defines a root xm%l g { Kmyxw o

Continuing in this manner until the last of the x; have been passedxit
is noted that the leading coefficient (coefficient of xN+l) is pogitive

and if W+ 1 is odd, N is even, and under the assumption that

(V3D 5 6 one has that P . = (o) DIIRIRIDNT o 6 g ae
N+l N+l
goes to = Pﬁ+l will become negative. While if N +.1 is even PN+1 is

negative and still a polynomial of degree N + 1 = 2k which\me&ns that,

8y x tends to -w, Ph#l

. This was done under the assumption that (-1)

will become positive which gives the last root of

(N+1 ) (B+143) o oy
PN’!"E.. ‘ > O but
should it be octherwise an ldentical asrguement will validate the
assertion.

In showing the positiveness of the residues it is helpful to show

first that 1e (<L)VH)

P%(z) is the numerator given in equation 3 of
Chapter II for the [N,N + j] Pade’ approximant then
J J N 2N+1+3 2 ;
N+l<Z)Q7 ) = PN(Z)QN+1<Z) = (‘:’Z) [D(l+59N)] \d (z’r‘")
By eguation 1, Chapter II

2N+l+J)

[PN+1(Z>/Q%+l(Z)]Q§(Z) - Pg(%) = 0z (%2)

because the [N,N] Pade’ approximent is considered in the determinstion
of the {N+1,N+1] approximent. Multiply by Q (z) to obtain a poly-
nomial of degree 2N + 1 + J and notice, on examination of this result,

_that only the coefficlent of z-0 %3 goes not vanish. To establish

equation 31 this coefficient must be evaluated. The (2N + 1 + j)th



C@eflicient in [N*13N+l+3j is (=1)l+3 since this spproximant mush

“?N+1+J

agree with £(z) through the coefficient of z In

?

2K- ?“..L,“f'j

fm@f’(z) . P«"m - c I ST A

(33)

it is realized that PJ(Z)/QN(Z) agrees with f(z) for all soefiiclents

through z EMI | Now in f(z)Q%(z)p the coefficient of zo 9% 1g given
by
14 f°’fN+J TNegel
g+l 143 |2 - ’ - ;
(-1) i2N+j+l D(1+J,N=1) + (-1) fN+J soofonga f2N+j = A (5&)
Tpegers o Tomey  ©

where A is in 3% and (ml) *d exists in the last addend to give

N(N+3)
N+Jflgooay owey SEELT approprlate sign., Notice that (-1) has

been divided out. And also be aware of, in the computation Qf A, that

2 in Q%(z) can be considered zero.

Kow the coefficient of z

2N+3+1

Therefore 5,
PN(z) oS S A B22N+J+2 poee
f(Z) - 3 = 5
a(z) o)
R 2N+J+l 5 22N+J+£+ﬁoo
_ D{I¥3,§-1) BT, N-1) N
(Polynomial of degree N with constant term 1)
f ﬁOOf i
_ 1+ Nt J N+ J+1
2N+J+l j+1 ‘ ESRNE NI e R
((“‘l) 2N+'j+1D(l+J.9Ngl)+(”l) : “F : ‘:@ )
Ty o Tomegafom;
Tyeger e Famey ©
D(1+J,N-1)
{(Flus a power series beginning with ng+5+2)°

of the left side must be the same &8 the



: 2N+ .
right side. Hence the coefficient of A in Pj(é)lQ%{Z) ig

1+ J+l . 1+
(-1} fomegel D(1+;1, 1) - (1) el D{1+J,N-1) - (ml) T
which is
fl+g o fN+j fN+J+.l
: I | s . 5
- (1) fN+J fgmﬂngl - /D{1+3,N-1). (35)

This means that the coefficient of 22N+J+1 in [N,N-j] must be expres-

sion 35. After subtracting [N,N+j] from [N+1,N+j+1] the coefficient of
ZEN+J+1

becomes
fl+j :”“ fN+g+1
J+l , RUES I - /
(-1) f2N+j+l D(1+3,N-1) + (-1) fm_J ooo I /D\l+j,N-=l)
fN+J+l a0 O

- () D(1+j,N)
DI, NI

8o from eguatlion %2

J
M+1<Z> Py(z) L1yd+t D(2+3,N) e SCA

() al) DL+, N-1)

b (2W2H

2
where (z NH2+J) stands for a power series beginning with a term contain-

ing no power of z less than 22Nf2+50 Fow. multiply by‘QN+l(z)QJ(z) to

get

N+l(Z)Q’ (z) - N+1(Z) = (°1)J+l % N+l(Z)QJ(Z)2N+J+l (36)

where the rest of the right portion.of the equality vanishes because the

°4

left side is a polynomial of at degree most ;ng;HM:j Now for all
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z £ 0 QN l(z) or Qj(z) must vanish so that Q l\z)ngz) ig meaningful

only if z = 0. But this implies that

Q“(Z)Q (z) = D(1 + §,M)D{L +.j,N-1) .

N+l

and equation 36 becomes

P (#(2) - Qg ()Fy(z) = (2001 + g7

A

which 18 eguation 31. It is convenient to write 31 as

J
Pra(s) Fyle) (@G R
@l (=) alz) el (ki)

(37)

The interlacing property implies that the residue at the first
(going from right to left starting at the orlgin)root of QJ must be

positive on the right because [D(1 +j,N)] > 0 and QV is positive to
the fight of its first root x% < X§+lo Now Q (x) is a polynomial of
degree N + 1 which has for all its roots negative distinct values. By

1 N+l
(x) = Alx - 2y, MR

ently small neighborhood N of x§+l eguation 37 is analytic except.a%
1

& theorem, see (5), Q9 Yooo(x - x In a suffici-

N+1

For &ll x e N, (x = x§+l) >0 for 1 = 2y000,N + 1. This means

N1
1 1 N+l
that A is positive, for if x - x . 4 > 0 then Alx - Xe1 Jooo(x = XN+1)
. 1 1 :
O or A >0. Also if zy . < O then -z, . >0 and by page 239 in (18)
“the residue
(-2 2N+1+3[D<1 M 1
Res 4
] (Z)Q,J(Z N+1
N+l
which is
2
1 (=) N+l+'j[D(l J;N)]
g (2 - 2y,) 3 (38)
kY : A(za - l)ooo(Z ZN+1)Q {z)
2N+1+j
(ea 2 ) [D(1+3,M) 7

. S 0. .
A(zl - 7 )ooo(zl - N+l ) 0 (39)
N+l N+1 N+1 N+l N N+l



&

k9

1
Hence the left side of equation 37 has a positzve regidue at Ll : ﬁ@w

M1
go by the first root of Q%(z) and only the first root until the root

f‘

N 1 is rea.ohed° In the region from zl

to 2o . Q3(z) <0 as i
N o5 e A 5 L8

QJ (z)o Using the same residue theorem one gets

N+1L
(_22 . )2N+J+l

2

2 1 2 3y (2 WL\.J
A<Zm+1° 23410 Py - ZN+1)°°"(ZN+1 N+1)Q (25

)

n+l
Continuing in this fashion one realizes that all of the residues are

positive. Since

k+l(z [D(1+3,N)1

Pg(z) (e 2N+ 341
Q) (2) Qi(;) a3, (2)a3(2)

and 1lim k+l(z) (z -z

4 k+l) 1s the residue given in expression 39.
27 3 N ‘ .
N+l Qk+£z

the residues of all Fade’ approximants are positive. Consider

P%(z)/Qg(z). QJ(O) i8 positive and li§ (z -~z ) (z)

>0
Z 2y QJ(Z)

which means that P%(z%) > 0 because
< 1y nd B 2 Ny
(z - ZN)/QN<Z) = 1/A(z - zN)aoa(z - ZN) > 0.

Now at zgg (z - zﬁ)/Qg(z) is negative and the residue is positive which

means that Pﬁ(zg) < Q. Hence P%(z) must have a negative real root

N N

between zl and Zeo Cpntinue the argument to get that the first N - 1

roots of P% interlace those first N roots of Q%o
It is now convenient to prove a theorem which provides upper and

lower bounds for the exact sum of a series of Stieltjes whether the

series is convergent or not.
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Theorem %. The Pade’ approximants for a series-of Stieltjes satisfy
the following inequalities where f(z) is the sum of the series

oM fJ(nz)j, J > -1, and z is real and nonnegative:

(LML IwL, W3] - (9,841} > 0 (40)
(-1 Iw,meg] - [N-1,8+341]) > 0 (¥1)
(w,N] > :f‘l(z) > [N,N-1] (ha)
(NIt > £l(2) > N1t (13)

These inequalities have the consequence that the [N,N] and [N,N-1]
sequences form the best upper and lower bounds obtainable from the
[N,N + j) approximants with a given number of coefficients and that the
use of additional coefficients (higher N) improves the bounds.

Expressions 40 and 41 are valid when differentiated if J > O in 40.

Proof. By Theorem 2 and 37 whenever z >0 Q (z) > 0 and QJ(Z) >0

so that
()M ()P 0,5 112 .
ag,; (2)ad(2) -
or (~l)l+3[[N+l,N+l+J] - [N,N+31} > 0.

In proving 41 first consider the following equation.

342 Pi?x(z ) J+2 2N+ J+1
N1 () = - By, (z) = 0(z )
. ay(=)

or
oJ*2(2) PJ(z> -0)(2) P2(z) = Q)(z) o(PMIT)

which is a polynomial of degree 2N + J + 1 w?ere only the coefficlent

2R+ J+1

of z does not vanish. Since [N,N+j] and [N-1,N-1+3j+2] both agree

with £(z) for the first 2N+J places only their coefficients relative to

22N+J+l must be calculated. Now if equation 1 in Chapter II is to be



satisfied, that is,
QJ(z)f(z)-pJ(z) AP
then

= (1) £ . D(1+g, N~1>+(-1>1+J

2N+J+l

- D(1+J,N-1)

times 22N+J+l plus a powér gserles beginning with zey*sﬁa';

Hence the coeffleient in Pﬁ(z)/gg(z)\of 22 L g as before

f1+J ' fN+J+l ,
l+J ° ¢ . -
-(-1) : . /D(1+3,N-1). ()
fN+'j+l .aee O )
Now
J+2 f5+3 e fN+J+2
£(z) - (( 1)J+1f D(3+3,8-2)+ (1) | " }
aﬁﬁfj 2N g41 NI TN I o
fN+J+2 LIE N ] O
times (zoV9*/n(3 + 3, N -2)) 4 (2 2N+J+2).

Hence the coefficlient for z2N+J+l in J+2(z)/QJ+2(z) is

[Fa+43 = Tnegir Twegee

L]

L

o ‘
1+) ol
-(.1) fN+J+l.., f2N+J_l 2+ /D(3 + 3, N -2). (45)

fN+:j+2 ver f2N+,,j

Therefore

p 3 PJ +2 .
5(2) 1(2) - L) - (u5)] 2 L (BIR) )

ag(z) QJ+2(Z)

or

Fy(z )Ry (2) - Q(2)R; (2) = q3<zya3'§%z>t(uu> - (15)122MI )
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where it 1s necessary to consider only QJ(O)QN l( 0) since otherwise 47

2N+J+1

would not be a polynomlal wlth one term in 2 As was done for

expression 22 one gets

2
Q(0) = D(1 + 3, N - 1), Q4'3(0) = D(3+3,N-2)

and 47 becomes

fj+3 "o fn+J+1 fN+J42 . fl+J f"fN+J fN+J+l

: 143 Z’ * :A, . +3 . .fi. .

(-1) fn+g+l e f2m+3-1 f2N+J '(‘1} Tyl "’*2N+3-1fan+3
Tnegee " Toneg 0 fN+3+1"ff2N+J 0
D(3+3,N-2) CD(1+g,NA1)

times D(1+J,N-1) D(J+3,N .2)22N+J+l
() In(eg,80) T - (2)Ip(ge3,0-2) 12037 (48)

Now T n‘D(J+3,N-l)-f2N+J+lD(J+3,N—2)

and . L = D(J+1, N) - f2N+J+l D(1+3,N-1)

so that 48~bec6mes
LI AV ID(243, KoL )D(343,N-1) £, 1,1 D(343,K-2)D(1+3,8-1)
- D(J+3,N-2)D(J+1,N) + f2N+J+lD(l+J,N—l)D(J+3, N-3)]

= (1) ID(1+3,N-1)D(3+3,8-1) - D(3+3,N-2)D(J+1,N) 1259, (ug)
And from 47 one has |

J 2
By PJ+ 1(2) = (-2 )2N+J+1 [D(1+J, N-1)D(3+J,N-1)-D(J+3,N-2)D(J+1,N)]

ad(z) QJ+2<z) | ad(z)d(2) (50)
1 fl+J f2+,j f3+J e fN;1+J fn+3 : fN+J+i
f2+J f343 fh+J eee fN+J fN+j+l :N+J+2
fyj fMg f%ﬂ ““fm¢u %Hye ,%hya
= D(1+3,N) = |, . . . . o i I




fN+,j-l

Thed

fN+J+l

fN+J

fN+J+l

j"’3”1\1+J+2

'fN+J+l

fN+J+2

fN+.\..‘J%r5

f2N+J_5

f2N+J-2

f2N+:J-l

ToNs j-2

f2N+J--l

'f

2N+]

53

(51)

then by changing the second and last column and then the second and

last row 51 becomes:

~f1+J fN+,j+l f3+J ses fN--l+J ,fN+J f2+J
Tyegir Tomeg fN+j+§ cor Tomvgee Tomega rfn+g+2
f3+3 fﬁ+a+3 f5+3 eee fN+J+l foJ+2 fh+3‘
: : : o : ) (52)
fyegar Tomegez itN+,j+l o Tonesh Tomegez T
Wy Toweg-l Twegez 0 Tomegs Tomegee  Twegn
f2+;j fN+J+2 fh+3 e fN+,j fN+J+J: f3+:1 °
The value of A has not changed and likewise for Ali' Now by

exchanging the last and next to last column and so on until the next to
the last column is in the last column there will have been N - 2 inter-

changes for both A and A11°

the rows. There will be N - 2 of these. And again the A and Ail

had N - 2 interchanges of rows. Hence A and All have had 2(N - 2) sign

Now perform identical transformation on

have

changes and remain the same. Notice that in 51, A11 = D(3+J,N-1), and
after all of these transformations it still is but now Ay, = D(3+],N-2)
and also after these transformations A12 10 18 D(3+j,N-2). Using 30,
>
a2
that is, 0 <Ay = Ay A - A'hyp 10
seen to be positive. The Q's are positive for z >0 go that (-1)

the quantity in brackets of 50 is
1+3

multiplied on the right of 50 is a nonnegative number. This proves kl.
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Now repeated application of 41 shows one how to bound [N,N+j] by the

first 2N + J power series terms. That is
1+
(-1)779{[N,N+3] - [N-1,N+3+1]} >0

(-1)1*J+2[[N.1,N+J+1] - [N-2,N+3+2]]} >0

(1) (02, megs2] - [N-3,0343]) > 0

(@

(_1)1+J+2<N‘l)[[1,2N+J-l] - [0,2N+31} >

and upon adding, the term; telescope and become
Gnh%mmu]-wgmﬂ}zm
If J is even [N,N+J] - [0,R2+3] < 0 or [N,N+J] < [0,2N+]] and it is
"noticed that the right side of the iﬁequality is the first 2N+) terms

of the power serles of which the approximants are calculated. Now

0 =1 0] -1 :
: 2N 0 0
is a polynomial with one term in z° and PN(z)/QN(z) has for its
coefficlent f, . Now the coefficient of 22N 1n P&l(z)/Qﬁl(z) will be

computed as before from 1 in Chapter II. Since

Q];:L(z)f(z) = P];l(z) = AZaN + B22N+l 4+ 400

the coefficlient A of 22Nis.
- %o oot Tya Ty
faml?(o,N_l)'l' :v ". : ° :
- fN L3R faN_l O o

Now (f(z) - Pﬁ;(z)/Qﬁ;(z)) = (AzaN + B22y+l+a..)/Qﬁl(z) so that the

2N

coefficient of z~ in Pﬁ;(z)/Qﬁl(z) is as before
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f ¢ o Q f

0 N
- /D(0,N-1),
fN‘°‘° 0
Since (BX(z)/ap(2))a; (2) - BFH(z) = (22W),

f o9 f
0 -1 0 N ,
PN(Z') Py (z) o oo |y 2N+ ..v(22N+l)
-0 - -1 .‘ = (faN + 0 i o ) 4
Qp(z) Qg (2) £y oee O

D(0,N-1)

D(O,N) 2§ . 2N+l
ﬁTﬁ?ﬁ:IT z= + (z )

or

B3z )ar (z) - Qp(2)PFH(2) = (ag(z)ag (2)D(0,N)/D(0,N-1))z" .  (5t)

- 0
Now QNl(z)QN(z)D(o,N)/D(o,N_l) cannot have a term in z. Therefore it i

only 'necAe‘ssary to evaluate Qﬁl(z)Qg(z) at zero for otherwise there would
be z terms which would raise the‘ power of za.N so that a contradiction
to 53 arises, that is, the product in the coefficient must vanish
, whenéver z is involved but will not necessarily so vanish when z is not
Anvolved and this is when

Q,;(z )ngl(z)_ = D(1,N-1)D(0,N-1).

Hence 54 is

Py(=)ay (2) - Qu(z)By (z) = D(1,N-1)D(0, W)z

~

or

(23(2)/ag(2))~(35" (2)/a5H (2))=((D(0,M)D(1,N-1)=") /oy (z)ag (2)) >

(55)

or [N,N] > [N,N-1]. Now from 40, when J = -1, [N+1,N] > [N,N-1] so

that “N,N-l]} is monotonic increasing. Hence [2,1] > [1,0] or
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[N,N-1] > O for every N which makes [N,ﬁ] > [1,0] for every N. For
évery a > 0, and since by Theorem 2, Chaptef II the Pg(z - a)/Qg(z -a)
is the [N,N] approximant to f(z - a) and since the [N,N] are monotone
decreasing by 40 with J = O and uniformly bounded in Iz - al S a slnce
(§,N] < {1,1] for all z the Pade’ approximants converge to an analytlc
function g(z) by Theorem 5 in Chapter II. Likewise [N,N-1] evaluated
at (z - a) where |z - a] < a 1s uniformly bounded by [1;1] aﬁd mst
also converge to an analytic function h(z). By 41 [N,N] < [0,2N] and
[¥,N-1] > [0,2N-1]. 1If [o;en]-w fl(z) and [0,2N-1] ~ fl(z) then since
[o,em-ijjg [w,N-1] < [N,N] < [0,2N] one gets h(z) = fl(z) = g(z).
Hence [N,N-1] < fl(z).f [N,N].

Now differentiate 55 and obtain

#¥1p(0,M)p(1,8-1)-2""D(0,M)D(1,N-1) [a(2) (@51 (2))']

ay(zeg ()
[ay(z)ag (2)17

2N-1

+ Qg(z)Qﬁl(z) N D(O,N)D(l,N-l)-zeND(O,N)D(l,N—l)[Qﬁ}(?)(Qg(z))']

[@0(z ) (2) 12

the numerator of which is

= (0, M)p(1,8-1)[2n" et 2P0 (2 ) (a7t (2)) et (2) (a3(2)) 127N

2N-1

=D(0,M)D(1,N-1)z""  [2m Rt 40(2) (@7 (2)-D(0,N)) G (2 Xag(2) -D(1,541))]

2N-1

=D(0,M)D(1,N-1)z"" " {a Rt (8-1)+a 00(0, )+ Rt (N1 )4071D(1, 841 ]

which is greater than or equal to zero so that in using 55 one has

Po z Pﬂl Z
Qp(z) Qy (2)

Now differentiate [N,N+j] - [N-1,N+J+1] to obtain
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(-1)“J kleg(z )y s ()™ " 2 (ad(2) (@3 5(2))" + @372 (2)(@](2))']
@JGERIZ(T

=P ) (IR () 43 (2)2 @32 (2) ) i (m(z)  (56)
.QJ+2(z)z(ag(z>>'1
= (DM e (2) (R ()2 @] 5 () )3 (2) () -2(@ ().

By Theorem 7 on page 17 in (8) the coefficients‘of both Qﬁig(z) and
QN(z) are all positive so that NQJ+2(Z) - z(QJti(z)iEz 0 where it is
realized that the coefficlents of Q,j (z) are multiplied by N and
z(Qj+2(z))' is Q%ti(z) minus its constant term with the exceptlion that

each coefficient in z(QJ+2(z))° is 1/N of the coefficient in QJ+2( )
minus its conmstant where it is assumed that 1 < N. Hence (-1)1+J times
56 1s positive and
(-1 900N, w310 - (81,8 3411%3 > o, (57)
Now differentiate [N+1,N+1+j]-[N;N+j] to obtain
(-1)"* k(o] et 22(ag, (2)(@n(2)) a3 (2) (R, ()]

N+l(z)Q§(§)2Nz
[Q,J(Z)QN+1(Z)]2

(1)L 2NL ]

1 (2) (M (2) 2@y (2))* 1o (2) (R(2)-2 (g, (2))")]

which by an identical arguement as above implies that

(LM, e geL]e - (¥, 5+31'}>0 1f J.> 0. - (58)

If J = -1 and N = O then upon differentiating as above one gets
[k/Q“l(z)Q°l (2)1{0 - positive number] and 58 would not be valid.

.As argued for the approximants the {[N,N]'} is monotonically decreasing
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as long as N > 1 and since they converge to g'(z) by Theorem 6.8.2,
page 226 in (18) [N,N]*' > fi(Z)f 'Also‘gs argued for {[N,N-1]},
{[N;Nwl?} is asserted to Be monotonic increesing and they too must
conVérge fob:'(z)° Hence |
[N,81' > £{(z) > [N,8-1]" £] (2)=n'(2) or £](z)=g'(z)

This completes the proof of Theorem” 3. |

The following theorem is the last theorem directly related to Pade’
approximants in this chapter and it is the climax of what has already
gctually-been proyed‘relative to the Pade’ method. Although it must
quickly be added that there are some conjectures wlth partial proofs,

which is the substance of the last chapter,which wil}‘fol;ow after the

rest.of the big moment problem is solved which is Theorem 5.

Theorem 4. Any sequence of [N,N+j] Pade’ approximants for series of
Stieltjes .converges to an analytic function in the cut complex plane
(e <z < O)f If the fp are & convergent series with a radius of
convergence R, then any {N,N+j] sequence converges in the cut plane

(+» <z < -R) to the analytic function defined by the power series.

Proof. 'The first thing to notice is that the sequence [N9N+J] is

strictly monotonic decreasing for j even and for real positive z by 40.

If j.is even then from 40 and 41 one has
[N+1,N4+14+3] < [N, N+31 < [an,nf3+1] = [N-1,N-1+j+2]. (59)
So for & given [M,M+k]:with k even one can well.cénsider N-1l=M
and j + 2 = k. In this case
[M;M+k] = [N-1,N-1+3+2] = [N-1,B+3+1] > [N+1,N+1+]3]

since J is even and 59 is valid. Now [N+1,8+1+J] = [N+1,N+3+j-2] and
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J ~ 2 1is even. Tneréfore9 again using 59, -
[N+3, M3+3-2] < [, Nel+g] < [N-1,N-1+3+2) = [M,Msk].
Similarly one gets
(45, M45+3 4] < [N43,M43+3-2] < o0 < [M,Mik].
Since J.is.even; after a finlte number of steps one will have
(Ml M)+ 3=g] = [N+Ni',',N+Nl] < [M,M+k]. By 51

[N+N1,N+Nl] = [N,N] > [§,N-1] > [1,0]

where N=DN+ Ni and the monotonicity of [N,N~l] iz used.: Hénce the
[N,N+]] are decressing and bounded below by {1,0].
On the other hand if J is 0dd, j + 1 is even and
(N+1,M4143] > [F-1,0+3+1] = [N-1,N-1+3+2], - (60)
Let [M,M+k] be given and set M =N -l and j + 2 = k wneie k 1s odd a.nd'
‘:j + 2 1s odd. Then from 58 [M,M+k] = [Nfl,Nwl+J+2] < [F+1,N+1+3] and
[N+1, N+143] < [N+3,N+3+3-2] < oeo < [N+Ni9N+Nl=l] the N+N1~l coming
about since 1n each case an even number 2 is being subtracted from an
odd-number j., By 42 [Nngl].S [N,N] and [N,N] is monotonic decreasing
which means [N;N] < [1,1] or that [M;M+k] < [1,1]. Hence if j is odd
[M;M+k] is monotonic increasing‘and bounded above by [1,1]. By the
. Bolzano-Welerstrass Theorem for every,regl point these sequences

converge. The assertion

lonmesll < | 3 5, (20 + [a ™

for R(z) >0 (61)
p=0 ‘

1+
will be shown to follow from Theorem 2. Write

. ) |
£ (-2 (20 gz /(). By >0, 7, >0, (62)

[N, N3] = &
- le b

P=0
which can be done by partial fractions and Theorem 2, which states that

the residues are positivé and the poles are negative.  Notice that
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[N, N+3] agrees with f for 2N+j+l places so that Pj(z)/Q%(z can be

written as y f (--z)P+<wz)l ej[a 8y 2t ooe B o ]/QN(Z) The second
p«O .

factor of the last term is the ratio of a polynomial of degree less

than the degree of the donominator to the denominator which by the

theory of rational fractions, as can be found in undergraduate calculus

books, can be written as ¢ Bp/l+7 z where the B >0 by Theorem 2.

p=1
That is,
llm (Z+l/7l % fp(-z)PF(-z)l*—J(Z+l/71)51/71(2+l/7l)+(-Z)l+3
-1/71 p=0 -

times (z+l/7l) g ﬁp/(l+7pz)1= li/71F*351/71>'0'and 7P> 0 by Theorem 2
p=2 ~ '

too. Hence,

SR Y d £ ( 2P+l Bg /l:t+7 2|
p~o p-l

and since R(z) > O this means that

}[N,N+g]g < | 4 § T (az)p+gz$ | 5 By | (63)
RE T p=0 p:l
Now (3] - § e(a) ) (-2 Fo /(s 2)
p»O p*l
and 5t e (2P (@I (2)Te B/ (L 2). (64)
p=j+l _ pml

Evaluate 6% at zero to obtain fJ 1 g B so that 63 becomes

(65)

| % fp(mz)pg + 2] 1+ f3+l°

' o0
If R(z)<O the absolute value of the dencminstors in the preceeding

are larger than ]jplm(z)' since if z=a+bi then
, o ~ 2 2\1/2 2.1/2
[L+7,2] = [Laypasy bif = ((+7 ) (7 D)7F7° > ((7,)7)
which is |7 Im(z)‘o Hence [N,N+j] < q-g £ (az)p‘+‘z‘l+3/glm(z)|

plus E B ,7 » Yet for the coefficient of the largest power of z,
p=l

N+j

that is, the coefficient of z , from expression 3 chapter 2 is
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(D(J N)/D(l+J;N=l)) > 0 since all D{(N,M} > 0. Now

mmm]:yf(awm%ﬁzﬁ<4vuwz>

p=0 p=1
= rof <~Z>p+<wZ>J 5 (B 78,/ 7 ) (1+7,2))
p-,:z .
J-1 P J N , .
= onfp(=z) +(~z) (fjwpglﬁp/7b)+p§1(az) (ﬁp/yb)/(l+7?z)

sc that the coefficient of («-z):j which is the highest power of z in

[N,N+3] is fJ - g Bp/7p = D(J,N)/D(1+j,N-1) > 0. Therefore if R(z) <0
p=1 '

Lt J/ Tn(z)], (66)

H[N,N+g]g J fp(az)P+f

,o J

If J = =1,{N,N-1] = 2 B /(1+7 z) < fo/Im - And if Im(z) >, when

p~1
R(z) < 0, then LN, N30 < % fp(-z)pq+fjlz]l+3/6 and if R(z) > 0O
then ([N,N+jly < i f f (az)p [+]21 3 l+J g0 that in Afz:Im(z) <
,> i “"po : . b

and R(z) < 0} where A is compact the f[N&N%J]} is uniformly bounded

independent of N. Cocnsider 0 < x every

0 0

<o go that in ]zwxo] < x
[NJN+J] approximant is uniformly bounded by say W. As was shown in
Theorem 5 chapter 2 the {N,N+j], since they are uniformly bounded

rational functions which must thus be analytic and admit to a Taylor

series expansion in jz-x < x, can be made vo sabisfy the following

ol =
inequality uniformly in N: ([N, N+37m 2 a, (z) l < > 0. In &his

inequality 2 a (z) is the first k terms of the power series ex-
n=0 *
pansion of [N,N+j]. In using Taylors theorem with remainder one has

0r) = [MegT(x) = (W3 (rg)e & D033 Gxg) o

plus [N,N+J](n+l)(g)(x=xo)n*l/(n+l)ﬁ where g 1s between x and x .
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Hence [N,N+J](xo) = g(x o HNow if t is allowed to vary, then
glxg+t) = glxg)etg ) (x )62 (gt 142/2 where

0 <®<1l. Take the first difference of both sides, see pages 2 and
58 in (9) and Theorem 4 page 8 in (12), to obtain

eaget)-a0xget) = 63 0rg o162 (e (bom) ()P )

of (xo+9t)t 1/2. . (67)
Notice that v‘bg(l)(xo) - g(l)(xo)v(t) - g<l)(xo) and that the
brackets follow frd&'difféfeﬂcing ge(x0+gt)t2/2° Now let &t = O and

6% becomes ,
g{xy+h)-g(x,) = g(l)(xo)+g(2)(xo+@h)h/2 = g<l)(xo)+g(2)(xo+eh)h/2«

In general [N,N+J](x0+t) = g(xo+t)

= glxg)ete ™ (x )+ (8372083 (x o wour (6010 () (47 (a1 )1)

times gnfl(xo+@t) (68)

where 0 < ) <1, DNow take the nth difference of both sides where the

difference is h and ¥ is thought of as a variable to geb:
Pelrgrt) = ot (€%nt)e ™) G e (15 (me2) )6 (x 1) (69)

k .
since vncx = cvnxk = c.0 = 0 1f k < n. Also vntn = n! so that 69

becomes yo(wl) Fle(x +t+(n=r)h)

g™ (x )+ B SACHLCERRCRNCIE DICRTCEM I Vags

Let ¥ = O ©o obtain
g (x,) = y (-1)7 (Bg(x g+ (a-r I }Ha™/ (ne1)1) fo<a1> )
Z

times g( )(xo+9(nar)h)(n»r)n+l
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or g (x) 2 ()" (Belx t(a-r)n) <<“*l/<n+1)s>%o(%>
=

r=0
(n+1

times |g »)(x0+9(n-r)h)!!n-r!n+l; (70)

By Cauchy's inequality g(n+l)(xo+9(nmr)h) < W(n+1)!/xon+l the proof

of vhich can be found on page 187 Theorem 5,15.1 in (18). Write 70
in the following way
8" (rg)- § (1) Rlalngr(a-rin) < (i(aed)? B/ (1) 1 2
times Z (r)‘n-r]
r—O
< (wn n+l/ n+l)nn+1 n (3
r=0

n+1/x n+1)nn+l n

< (wn 2", (71)

Hence ((z-xy)|"/n! ),“‘(e) () (x,) ) B ()" Byt (n-r)n)j

n—O r=0

< W/x m(i) n+l n n+lqz-xoq /xo?l/no

11560 () (2 m) ) 3 ()T ey

n ~O

times (z-xo)n/n!’

< wem(e)m(@)m(é)ﬂh g E

r=0

< wemge)m(e)m(g)+lh/(xo—qzaxof) (72)

- n > n
z=xq] /%,

m(e)+l

where it has been assumed that h < 1 so that h and

|2-%y] <%, which gives rg RN /x < z gzmxoq /x l/(lquexo‘/xo)‘

equals xo/(xo@jzaxowo' Now as was seenin the proof of TheOrem 5 chapter
2 there exists an m(e) such that 1 [w, N+31(z)- m(e) (n)(xo)(z-xd)n/nll
n—O _ ‘ :
is less than ¢/6 uniformly in N. And
119,931 (2)- 58 ) )2 Y/t e P () (2o Pt
_ ‘ n=0

n=0



m(e) n (gl) (Prg(x ot (n-r)h(z—x, ) /ne
n~0 r~O

< ¢/6+¢/6 = ¢/
vhere the second §/6 is gotten by, after having first found m(e¢),

solving for h in 81 which is W2m(€)m(e)m(e)h/(xo-|z-xo') < ¢/6.

The [N,N+j1(z) = g(z) converge uniformly by Theorem 5 chapter 2 %o
an analytic function. If N(g) is picked sufficiently large so that

for t =0, ..., m(e) ‘[Nl,Nl+J](xo+th)-[N2,Né+J](xo+th)!

< (e/§m(e)2m(€))2‘;‘»l/(2]rgn+l/(n+l)-gr[n+l/(n+1))

hen 2¢/3 > [N ,N+31(2)-[Ny,Ny+3](z) =

5E) & (g, () (x e (n-2)m))-(, ) (x +(mr et Yz P (-7 ()

n=0 n=0

2 LNy +J](Z)-[Né,Né+J](Z)|—

!m(ﬁ) B )R )(z-x Y*/nt )\@/2 3m(e))(2]rg/(n+l)—1/(n+l)/

n=0 rzO

(2121 ™/ (0r1)8) 1) ™Y/ (n42)1)

= r[Nl,Ni+J](z)—[Né,N2+J](z)g—(e/em(€)3m(e))» times

iﬁée) n

L2 B ()T () e) nt 21/ (s (002))/ (21 )Py P (e )0y
![Nl:Nl'*J](_Z)“[V s N, +J](Z)[ (6/3m(€)gm(€) a (..,]_) (r)l < (e/}m(e)e (€))

n=0 r=0
m§€ )2 )
n=0

times

o
(73)

Inequality 73 is the Cauchy condition for convergence. Hence

1[Ni,Ni+j](z)—[N2,Né+J](z)] < ¢ for Ni,Né >-N(e),izmxog <r<x

the sequence of [N,N+j] Padé approximants converge in Jz=xy] < x, to

a regular function of z. Now proceed as in Theorem 6 chapter 2 in

extending the convergence to any point in the cut plane which proves
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the first statement of Theorem 4.

If 2N+) > p then f_ = | [N,N+J)%/pt). Consider p > 2N+j and

-]

expand the right side of 37. One can write the right side as
+o< Z)-l‘z k

2N+J+1 2N+l ,
T ! = L
k=1 k y=pf41ey 7t 00 FPanyy = 7-EN-9-L

2N+l ¥
T % ) ()

where k and “k are poslitive. From 37 one also has

fp-(—l)p[N,N+J](p)/p! = (_l)p{[N+l,m+l+3](P)/pz-[N,N+J](p)/ptj+,.,+
(0P ()P - w431 Bty >0 (1)

where N, is sufficlently large to make (»l)pr = [Nl,Nl+J](p)/p!°

Thus 75 i1s greater than zero because as is seen in T4 the coefficient

of z¥ has sign (-1)P for any (P%+l(2)/Q§4l(Z))Q(P%(Z)/Qg(z)) ~(76)

so that for 75, since the successive coefficients iIn 7% are nothing
more than the coefficlents of & particular 76 and are multiplied by
(.=1)P, are each (»l){([N+i,N+i+,j](p)/p?.)«([N+i-l,N+i—l+j](p))/p?,j > 0.

In 62 first write it as; % fp(sz)(p)+ polynomial of degree p+N times
p=0 ‘

polynomial of less degree than p+N times a constant remainder, where
the division algorithm was used. See page 105 in (5). Differentiate
p times, divide by p! and multiply by (-1)° which verifies that

(al)P[NyN+J](P)/pE > 0. Now using T4, 75 and the last statement one

gets I, > ![N,N+J](p)/P5]o

Therefore the power series for [N,N+j] is dominated by the one

for f£(z) and the former must converge whenever the latter one does.

-1

Thus the v, of 62 are such that 0 < 7 < R™". ‘From 63 and the

immediately following it was seen that



1IN, Mg1) < r' £ (az)pi+izq R(z) >0,

p-—O
[0, Ngd) < g (-2 )Py+s ](z)'1+‘1/jlm(z ), R(z) < 0.

l+J ?

For all z with R(x) > 0 and for all z with R(x) < O such that

Im()’) 2 B,

l+J(

| V,[Nym'ﬁ'a](Z)‘ < gpgofp(mz)P“R +fJ/8

l+J
Hence { [N,N+,j]}. is uniformly bounded in the closed region

= {z: Im(2) < & whenever R(z) < OC, where Cp is a closed disk

with radius R. How if jzf <r <R and r+d = R‘then; if z = x+iy,
-r <x<r
- < x <
5% v_7px 7pF
and since 7 < 1/R
< r/R
7, r/
-ry . > -r/R
7y, > -t/
0<1l-r/R < < 1+
r/ 1-r7, vypx
or ler/Rgz = (lar/R)2 < (1+7bx)2+7pay2 = gl+zpz§2
and 1/ |147,2) < 1/11-r/R|

Hence for all 12 S r

!

1+ N
p—

10,831(=2)) < § & 2, (24127 5 (B/ 1147 2]
| ST E

iA
.d.

§ £ (-2)P+(2)"0 3 (e /i1w/R)
=0 p::

J by 1+3

PEofp(mz) + 2] (fl+J/|l=r/RQ)°

il

Hence by Theorem 6 chapter 3 the last statement of this theorem

follows. Now a look at the converse of statement 4 will be taken.

66
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Theorem 5. Qonversely,'if p(o,n), D(1,n)are both greater than zero
then there exists a bounded nondecreasing function , taking .on in-

r.w
finitely many values in [0, ®] such that £ = % " dp(n), n =0, 1,
2, ves,

Proof. The proof will follow after six lemmas and fivé.definitions.
A good reference is (22). The moment M[P(v)] of a polynomial
P(t) = §at" ’
A

with respect to a sequence [fnj is

M[P(t)] = 3 af .
’ oK k

The sequence is said to be positive if the moment of every nonnegative
polynomial 1s nonnegastive.
The sequence {fk3 is positive definite if the moment of every non-

negative pdlyn&mial which is not identically zero is greater than zeéro.

Lemma 1. Every real nonnegabive polynomial is the sum’of the squares

of two real polynomials.

Proof. Since the polynomial is real its complex roots appear in

conjugate pairs. - And since the polynomial is positive tlie real roots

3

are of multiplicity 2 which is seen by taking the first and second

derivatives of a factdr of the second degree. Hence its factored form

' i - n 2. m 2

is P(x) = & [(x-a,) +b,°] & (x-c,) (77)
iy 1 i 170 i

where &y, bi’ c

1 are real numbers. Since
|

2 2 2
1% + )7 1%+ 2pl = 10y + 43y )(xp + 23]

or (xZ+y.2)x2+y 8y = (x, x, - V.3, )%+ (7, x, + ¥, x,)°
1 1 V¥ o /=X Xy - T¥o 2 X T %
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one has [(x - ai)2 + biE][(x\‘-’aJ)2 + bjg].= [(x -ai)(x - &j) - bibj]2
+ [bj(x - ai) + bi(x - aJ)]2

Let {g 1 be the set of all rational numbers arranged in some
gm,ll

order. Note that the set is dense on the interval (—»,m). Let
hm(;) =1if ¢t <g

and =0 if t > Cn®

The set of functions E is the set of all linear combinations over
the real field of a finlte number of the functions

2
oeRy t 3 t, l, h].(t)j he(t)’ o0,

or that the product or the sum of two squares by the sum of two squares
is the sum of two squares. Repeated application of this result used in

T7 validates the lemma.

Lemma 2. . A necessary and sufficient conditvion that the sequence {fp)

should be positive definite in that the quadratic forms

n n

E T3 C €3

3 (n=0,1, 2, ..c) (78)
i=0 J=0

should be positive definite.

Proof. Suppose that the quadratic forms in 78 are all positive
definite. That is;, no form vanishes unless all the variables vanish.
Lev P(t) be an arbitrary nonnegative polynomial. By the preceeding

lemma P(t) is a sum of the squares of two polyncmials Pl(t) and Pé(t):
‘ i m i |
P.(t)= 5 a t, P(t)= 3 b, t
1 120 i 2 120 i

in which the a; and bi are not all zero. Hence

MPH) = 3 3 a

m m
+ T b bi
1=0 J=0

i aJ fi+,j 120 320 bJ fi+J
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which is greater than zero by hypothesis.
Now suppose that {fn1 is a positive definite sequence. Let n be

an arbltrary positive integer and CO’ gy’ ooy T be arbitrary con-

stants not all zero. It needs to be shown that g g f

> 0.
1=0 3J=0 ’

1+3 €1 C3

This follows from the definition of a positive definite sequence since

ﬁhe polynomial [ g Cy ni]e is nonnegative and not identically zero
i=0 ~

1,2 n n
and O<MIg p, 715 = F 5 £y €y Tyune
120 C1 20 i €1 &3 “1+3

Lemma 3. If {un}: is a positive sequence, there exists an operator M

which is applicable to the class of functions E, is positive and
distributive, and reduces to the moment‘of a polynomial when applied

%0 a polynomial.

Proof. Define the set of functions El as the set of all linear combi-

nations over the real field of a finite number of the functions

2
hl(t), 1, &, t7, oo,

Define’
hy = sup Mip(t)]
p(t)<b, (t)
and
Hl = inf M[P(t)].
hl(t)<P('c)
Now

h<h

because if

p(t) <h (t)'<P(t)
then

M{p(t)] < M[P(t)]
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since M is a positive distributive operator when applied to polynomials.
~ Polynomials p(t) and P(%) exist less than and greater than hl(t)
respectively which implies that El and Ei are finite numbers and that

El < Ei;‘ Let

Mh, (¢)] = h = (b, + B )/2
and

M[P(t) + ey hl(t)] = M[P(%)] + e, by

for any polynomial P(%) and any real constant c. Hence M remains a

distributive operator when applied to E1° To see that it also remains

positive, suppose that p(t) is a polynomial and c, a constant such that

p(%) + e h(t) >0. 1If c, >0, then -p(t)/cl < hl(t). By definition
of El gnd hl

| Mlp(t)1/c; = MI(-p(t))/e;] <b <h
or

Mp(t) + c) B (¥)] >o0.

1
A similar proof holds using the definition of Ei when e < 0,
Now define E2 a8 the set of all functions which are linear combi-

nations of a finite number of functions in E, U he(t)°

Define h = M. (%)]
Define h, fl(23p< b (t) { l( )
2
and
h o= inf {M[F. (3)]
2 (t)<w, (1) 1

where fl(t)*and Fl(t) are funcvions of El satisfying the indicated
inequalities.
Also let
Mgha(t)] =h, = (hy+B,)/2
and

MIF () + ¢y by(t)] = MIF, ()] + c, hé



for any funcvion Fi(t) of E. and any real constant c.. As before it

1 2
can be shown that M remains positive and distributive. Continuing

validates the'theorem.'i

Lemma 4. A necessary and sufficient condition that there should exist
one nondecreasing function a(t) such that

w={ @k (=012 ..) (79)

All of the integrals converging, is that the sequence {un} should be

positive.

Proof. < First suppose thatva(t) is a nondecreasing solution of equa-
tions 79 and that P(t) is an arbitrary nonnegative polynomial,
; k
P(t) =5 & k.
k=0 "
Then

M[P@) = éo 8 Uy = j: P(¢) a a(tg >0

so that the sequence [un1 is positive.

For the sufficiency suppose that the sequence fun3 is positive°
. A nondecreasing solubtion of @(t) in 79 will be exhiblted. It is
defined at the regional points by the equations a(,;m) = M[hm(t)],'

m= 0, 1, 2, cce, If g4 < EJ then from the positive character of
M, hi(t) < hJ(t) and a(gi) S_\a(cj)o Hence (%) is nondecreasing in as

far as 1t has been defined. To complete the definition define for any
irrational number v.

= inf a(gm)y

o= s ale);
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(1(\)) = (m' + m)/2.
Since a(t) 1s nondecreasing on the rational points it is true that
ﬁ <f® and that &(t) is now completely defined and is nondecreasing.

Now let n be any positive integer. It must be shown that
u = j‘“ 7 ao(t).
n ©

Since, @(t) is nondecreasing it will be sufficient to show that for a
given €> Othere exists a TO > 0 such that for every pdair of rational

numbers T_ . and T2 greater than T

1 0]

T
‘lTicndz(t) -u | <e.

Let m be an integer such that 2 m > n. Now t2m > 0 implies that

2 0 0

@(t) = 0 13 a solution to the problems . To see That 0, = 0 if u, = 0

consider (x + c)a >'0, which is true for all c. Now

u " > 0. Assume that u. > 0 for if u. = 0 allof the un are zero and

M(x2 + 2xc + ca) =u, +2u c>0

n

and is true only if u 0. Again and since (x2 + c)2 > O one gets

1

2c u, + uy, 2 0 and u, = 0. If one consliders successively the

polynomials (x2 + c*)%, (%0 + ), (20 + ex2)2, (x' + cxP)2,+++ then

one notlices that all the un,= 0. Let

L
€' = e/2(u0+u2m),
which can be well done by the comments above, and determine TO such

that 1t < e 7, 14y > (80)
Let Tl and T2 be any two rational numbers greater than TO° Divide the

interval (- 1’T2) into p subintervals by choosing rational points

ty = Qki, that is, t, = -T, < ¢, < by < eee < tp = T, where p is

0 1 1
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large enough and the subinvervals sufficiently small so that for g?
sup {x° - v xBy € I, an invervaly < ¢'

P-1 ,n

and K B el ) - ate)] -f% au(t) | < e/

l

i+1’

which is possible by the uniform continuity of " and by the definition

of the Stieltjes integral.

Next let
v(t) =0if £ < 1, & >,
and
n
v(t) = g it b <t< ti.+l’ 1=0,1, coo,p = Lo
Then
p-l ,n
V() = Z £ [, (%) -nh (¢)]
1+1 ki+l hki
and
v(E) - t%) <e' 2" by L,
Also
p-1 ;
MOE SRS -t.f; (e () -n (8)] -t
1— i+1 b1
= t1+1 k+l(t) -t
< g!

if T <t <T, so that |V(t) - 7 <e' + of 20 <t <o,

V(%) belongs to some E:j since sooner or later one gets to hk(ti)

for every ti in the partition and a linear combination of these will
vanish and be otherwise in the appropriate intervals. Hence the
operavor M is positive and disiributive when applied to V(t).

Or ;M[V(t)] - u f~€'(uo + ugm) = ¢/2.

Butv

Mv(t)] = g ti+l[a(t ) - a(ti)]

i- i+l



Th

and from the above

v T
[ 2 aa(t) - up = [ %" an(t) -+ MIVE)] MR
. "y |

| M{V($)] - sz € a(t)] + | MV(¥)] - u
| o i

1

fl

LA

<ef2+ef2=c¢
Now all but the boundedness of the proof of the theorem will

follow: The equivalence of the two forms

[--] .-} n
{fn30’ [fn?l and 3

£ Tiny €1 C £ g f ¢
iZo S0 1 Lby Ey B, Tingn b1 by

x=0 y
is given by Lemma 2. In proving the theorem the quadratic forms will
be used. Cohsider the quadratic forms positive and the new seguence

-]
{v jo vhere V, =1f , n=0, 1, -, and Y2n+l =0, n=0,1, see o

If n is odd
n n-1/2 n-1/2
z E 7 : Ls = f ¢
120 =0 i+ Ci Gy 120 o 1% Co1 C2j
n-1/2 n-1/2
ty ¥ f ¢
Zo 150 i+j+1 C2i+1 Coj+1
and if n is even
n n n/2 n/2 n/2-1 n/2-1
T T 7 0y = £ Loy * 'T
iZo o i+ Ci 637 5, 2o 1+ Co1 b2 1% 5%
times T

1+3+1 C2141 Cogun’
Hence {7y 1: 1s positive and by Lemms 4 there exists a nondecreasing
function B(t) such that

7n = I tn dﬁ(t) n=0,1, 2, «co,
. o .

0, 1, 2,0¢-, (81)

|}

u = Jm 28 a(t) n

and
o0

0 = f tgn+l ag (z) n

il

O, l, 2,°°°o
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Set

7(£) = (B(t) - B(-t))/2, =<t <e.
This function is odd and sgtisfies the equations in 8l. Also y(t) is
nondecreasing. That (1) is odd and nondecreasing follows by looking
at it in conjunction with what-is known about B(t). To see that it

satisfies equations 81 proceed as

jTl 2n k 2n
o ¥ ar(y) = Zo G (B(ty,y) - By W2 -(B(L;) - B(-t;))/2)

.
[T 0 ay(e) = 5o, (Blyy) - B3, V2 - (B(-vy,) - B(5y,))/2)

L i=0
or
1 .2n 1.2n O on
J\ 77 ay(zx) = 7 ar(x) +J' 177 ay(t)
T, 0 -T,
X 2n .k 2n
1=0 ' i=0
i - 0
S R IO RS -
0 T '
1
T
- [t 2% ap(t).
..Tl
Let o(t) = 2 7(t%) for + > 0. Then
' °° ® on ® on
=t o - [ e« [ 47 e (e2)
. ] 0 ]
or upon letting u = -t 82 becomes
© 5 © © ©
[ o) + | o) =] P aw - & a(e). 6
*0 © 0 - 0

But since ¥y is odd 83 becomes

‘r t2n dy(s) + rb ten. dy(t)
0 0 '

w®

2]

0

£ ay(t) = r Palzy(t8)]
0

H

f: 2 ax(t).

Since @(t) is nondecreasing in [0, =) everything except the bounded-
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ness of &(%) has been proved. That is, to now it has been shown that
if D(O M), D(l M) > O then there is a nondecreasing function o ‘taking

on infinitely many values in [0,®] such that £ f " dep(n),

n= 0,1, cee,

It remains to be shown that o can be made a bounded function.

Lemne 5. A necessary and sufficient condition thet a non-singular
algebraic quadratic form (aiJ), i, 3 =0, 1, s+, n-1 be positive

definite is that
g0 %o

10 %

6 oooSma
)8 =

1= 80 % = 1]

for 1, =0, ¢+, n - 1 be all positive.

Proof. This is given in (6). First consider the form

+8. X C428. X X +8 X2 (84)

+2(""01"1 %0 X gtey 1 Xy +28) Xy XoHR Xy

2
yo= aijxixj = 200%0

vhich is the quadratic form in X A necessary and sufficient con-

dition that 84 be positive definite is for all real (xl,xe),# (0,0)

2 2 2
aoo(&llxl 2 8 XXy F By Xy ) - (alel + a02x2) >0 (85)
and 84 > 0 - (86)
Write 85 as a quadratic in x, and get
D, x 2 + 2D % X, + Do 2> 0 (87)
11 71 127172 2
vhere D5 = 200 215 ~ 210 203 (i,3 = 1,2).

A necessary and sufficient condition that 87 be satisfied is

D.. >0
and 11
Dy, Dy
> 0.
D.. D

21 22
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But
%00 Zo1
Dll = . . = 520
10 %11
Dy Dy 80 %31 210 %1 %00 %12 *10 %2
and =
Doy Doy 80 21 o %1 200 %22 %o B2
%0 %01 %o
=800 (%50 B3 By
80 - By Bopf ,
Thus conditions 86 and 85 become
D.. D
11 P1e
840 =By > 05 D)y =8, >0, o >0
o1 Dop

so that 61 >0, 8, >0 and 83 > 0.

‘Now proceed to the general case under the assumption

8pp = 8y >0, By >0, ¢o0, 8 >0

are necessary and sufficient for positive definiteness of a nonsingu-
lar quadratic form in n variables. Consider the (n + 1) ary form

_ n
Yy = 8y XyXye

In order that

% )x b8 X P+ 2 a X X 4eeet 8 X2 >0

a_ x 2+ 2(a
1171 127172 nn n

0050 teeota

011 On

it is necessary and sufficient that for all real (;2, .e.,xn)%(0,0f°°0)

2 2
(all l seot g xn ) - (E.lel+ooo+ a,onxn) > O, a,oo > 0. (88)
Write 88 as
D 2 +2D X, +°°°+ D _ x 2 (89)
1171 12%1%2 nn *n

with DiJ (1, 3 =1, cc», n) defined as before. Now 89 is & form of n

variables (xl’ coo, xn)o By hypothesis the condition that it is
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positive is k. > O; w000y, kn > 0 where the ki are principal minors of

1
its determinant. But kl = Dll >0, ky = 850 53 >0, oo,
n-l
kn = a0 5n+l > 0. Whence condltions 88 and 89 may be written
61 = a.oo> O, 62 >0, 63 > 0’ LEEIN 8n+l> Oo'
-
Lemma 6. The equations u = f t® ax(t) n =0, 1, «++ always have
"0
a solution &(t) of bounded variation for which
w0
f | ax(t)] <.
0
. ow -]
Proof. Set up 2 sequences {ﬁnio and {7n10 such that
un = d]'n - 7n’ (90)
" .n
R 1O (91)
0
(-~
and 7, = | € are) | (92)
n. 0

where B(t) and 7(t) are bounded nondecreasing functions. First

o 10 7o 7 should be chosen so that they satisfy 90. Proceed by
induction. Suppose @k.and 7k have already been determined for
K=0,1, o°°, 2n - 1 in which 90 holds and the following determinants
are poslitive:

\ﬁ,o ‘!'1 e o o *k

[‘ho.’ 1[!13 ey ¢2k] = | . ' (93)

o . -

‘bk "Tk.‘.l 900 ¢2k

& L] ' o

[ .. 1 = .; " bl

¥12 $27 "% dokn! T |0, L | e
Vel ... ¥2ke1

o 9o

and [709 792 °°%s 72k]’ (713 Tps ’ 72k+l]°

Now #on’ ¥on’ ¥oni1’ tonil will be defined. With undetermined



9

bd one has
2n

~";["!ro«' “**5 dpn] = boplbgr s #oppl * F - (9h)

vhere P is a polynomial in $o? ¥1° end similarly for

noc’ \bEn_l
['70’ ‘7’1’ s00, 721'1]0 Since [,&O, ‘1'1, ev o, ‘!’2!1-2] and [7097130."’721'1-2]
are both greater than zero one can choose ¥op and Yo positive and

and [WO’ eos 1 >0,

*Yop

large enough so that Yon = Von = Uy

[70Joon,72n] > Oo
It is observed that 9% holds when the subscripts are increaseéd by
unity, P then becoming a polynomial in #10 ¥22°°° ¥Yop with a similar

equation holding for the.yk. Now that and 7oy, have been deter-

‘ Yon
mined proceed as before Yonel and 72n+l which completes the induction.

By Lemma 5, if the determinants in 93 are positive for k = 0,1,
seo, equations 91 and 92 have bounded nondecreasing solutions B(t)
and y(t) respectively, so if a(t) = B(+) - y(t) the proof is complete
as this is a characterization of a function of bounded variation.
See (1). |

Hence there always exists a nondecreasing function (%) as given
in the theorem.. That is, iIn light of the last 2 lemmas, @(t) can be
made bounded.

Not only in this chapter has it been shown what has been proved
relativeto geries of Stieltjes but a solution to the Stielt jes

moment problem has been given.



CHAPTER IV
SUMMARY

In studying the theorems presented one might ask if there is a
relation between the given divergent series of Stieltjes, call it f(z),

and the fl(z) given in Theorem 3 of Chapter III. ZFor instance the

series 1 -1 %'z +2 ¢ 22 31 22

+ =°- 15 a series of Stieltjes that
. T A 7 ® n -t
diverges. In this series 4(t) = J e’ dt and f = t ¢ ’dt =n?t
o 0 0
It can be shown that

® ;
1im e tdt g (--l)k k! zg
0 1+zt ~k=0_ =0

24,0 5
' 12

see(12) and (19) for a treatment of this, which is by definition of what

13 meant when it is said that

o -t
T et ® k., Kk
f(z) = . Tt~ 1S asymptotic to kEO(-l) k$z.

Formally, it is said that f(z) is asymptotic to sn(z) if for every n

1im 1£(z) -8 (2)] _ o
20 izt

Thus one might ask the question, is fl(z) of Theorem 3 Chapter 3
,_o

equal to J e tat where the power series is given by f(z) = ; (-l)k
0 j-.-i'Z E k=0

k!5 Atz = 0, f; (z) thus defined, is 1. The [1,1] and [1,0]

approximants are 1 when evaluated at O since [1,0](0) = 1 and
' 0 IFIx

80
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2
£ f+f T(x) - £.fx
[l,l](O) - 01l "1 270 =1,
' fl - f2 X
it being noticed that fy =1, £, = -1, a,nd'f2 = 2!. Hence by

O.

Theorem 3 in Chapter 3, since 1 is real, the [N, N+j] Padé

approximants evaluated at z = 1 must all be 1. Baker in (3) shows

that 1im [1,1](z) = % and 1im [5,5](z) = é and that the Lim[N,N](z)=0
Zp @ Z=® . N

Zmy 0

where the Padé approximants are calculeted with respect to
; (—l)kklzk° This can be compared to lim f(z) = jP e'tdt . He also
0

k=0 Z-® 1+z%
© v
notes in passing that the exact value of I »e't is .5963 and that
at
0IF

Lacroix's calculated, using three Euler transformations and 13 terms
of the divergent series, this function evaluated at z = 1 to be 0.5992.
The [6,6] Padé approximant, which incidentally is obtained by using
the first 13 terms of the divergent series, when evaluated at 1 is
0.5968. These examples then might promote effort toward answering
what fl(z) really is.

In Theorem 4 of Chapter III it was proved; for each fixed J, that
the [N,N+j] Padé approximants relative to a series of Stieltjes,
converge to an analytic function in the cut plane (-= < 2 < 0). It
would be nice to have a condition that is suffi;ient for all such
[N,N+J] sequences to have a common limit. If it can be shown for a
series of Stieltjes that

£, P(L,2)/D(D,p4l) 2 1 (1)

then the divefgence of ; (fp)«l/2p+l) is sufficient for all of the
P:l .
sequences of [N,N+j] Padé approximants, J fixed, to have the same

limit function. Most of this is proved in (2). A counter example,
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due to Professor R. B. Deal at Oklahoma State University, will be
given for 1. Now this does not disprove Baker's assertion, because,

if for all but a finite number of the p in ; fp(-z)p 1 holds
p=1 :

then the assertion can be verified.
Let 0 if % <D
Px) ={x*if 0cx < 1, @> 0,

1 ifl1<x.

Then
f.o= [ t2 a9 (¢
am f )
1 n a-1
= .fo tT ot at
@
= s
Now
_ o o
p(0,2) = 1 Tvx) - (2+x)
o x @ o«
(1)  (2+x) (3@)
o (54 o
(2+x)  (5wx) (5+d)
AR 1 1
= 1 (Ixa) T24)
o 1 1
Ty @) 13y
| o 1 1
(2v@) @) T&)
= ag ¥ (a)
1 1
3 (1+x) (2+x)
o
1 1
Zx@) )| -
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Ak 1
Hence f D(1,1) = 05 o~ b
2 D(0,2) (&%) 1 1
Zx) )
o2 : 3 1 1
x il ik
wE e )
(04 1 i
) ) )
.o Xa)
T 0 ¢
Ao
Now lim 4 (@) = 1l and 1im xax) = 1 or lim x(@) _ 3 so that times
00 ’ 72 0~0 2k o0 ¥\ 7

@) = 0. In fact 1f & = o=, & 5%‘% < 0.4 which contradicts
;(E)' 10’ Isa 4 (@

£, D(1,1)/0(0,2) » M

Yet another question or Padé conjecture that is yet to be proved
or disproved probably evolved from a theorem proved by de Montessus de
Balloire which will now be stated. ;

Let P(z) be a power series representing a function which is regular
for 1z| ¢ R except for m poles within this circle. Then the (m +1) st
horizontal file of the Padé table

o,0], [0,1], [0,2], «--
[1,0], [1,1]), {1,2], ---

[2,0], [2,1], [2,2], -~

[n;O], [n;l], [n;2],

for P(z) converges to P(z) uniformly in the domain obtained from



1z| <R by removing the interiors of small circles with centers at
these poles. See page 112 in Wall.
Now notice the likeness of the theorem due to de Montessus

de Balloire and the Padé conjecture that was mentioned.

Padé Conjecture. If P(z) is a power series representing a function

which is regular for {z| <1, except for m poles within this circle
and except for z = 1 at which point the function is assumed continuous
when only points |z| <1 are considered then at least a subsequence of
the [N,N] Padé approximants converge uniformly to the function (as N
tends to infinity) in the domain formed by removing the interiors of
small circles with centers at these poles.

In order to prove some theorems that are results of this conjec-
ture, define a function f(z) as one of type I if a straight line can be
drawn in the z plane, such that f(z) is regular every place, except for
a finite number of poles, in the open half-plane containing the origin
and is continuous in this half-plane at infinity. Let Rg(f) be a half
plane, except for the interiors of certain small circles containing
the finite number of holes, contained in this half plane such that its

edge is parallel to the edge of Re(f) and betweenit and the ortgin.

Quasitheorem A. If f(z) is of type I, then the [N,N] Padé approxi-

mants converge to it uniformly in R2(f).

Proof. By Theorem 2 Chapter II g(w) = f(A'lw(l-w)) may equivalently
be studied. If the line that bounds Rz(f) passes through the point
-1/2A, then the transformation w = Az/(1+Az) maps Rg(f) onto the unit
circle. The point at infinity is mapped onto w = 1 and the origin goes

to the origin under this mapping. Thus g(w) is regular in the unit
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circle except for the finite number of poles in lw! <1 and continuous
at w = 1 from theinterior of |w| <1. Hence the conjecture implies
that the [N,N] Padé approximants for g(w) converge uniformly to g(w)
in jw| < 1 except for the interior of small circles centered at the

given poles and the theorem follows.

Quisicorollary A.. The [N,N] Padé approximants converge uniformly to

any function f(z) in any circle containing the origin as an interior
point minus the interiors of a finite number of small circles with
centers which are the only poles of f(z) in the circle and which are
the only places where f(z) is not regular except at one boundary point

where f(z) is continuous.

Proof. By Theorem 2 in Chapter 2 and the Quasitheorem A the proof
will follow if it can be shown that any such circle can be mapped onto
the unit circle under a transformation as in Theorem 2 in Chapter II.
Now for a circle with center at A and radius R,
= ein

(R( - 14/R|%) + (R2)R)

will accomplish this transformation where it is realized that g is such

Z
w

that the nonregular boundary point goes to w = 1. The corollary thus

follows as was shown in the theorem.

Quasicorollary B. The [N,N] Padé approximants converge uniformly to

f(z) in the union Rj(f) of any finite number of regions Rz(f) end

circles as given in Corollary A.

Proof. By Quasitheorem A and Quasicorollary A, [N,N] converges at

every point in this union. Since the union of a finite number of
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closed sebs is closed the [N,N] converge uniformly in R3(f)°

The conjecture and the Quasistatements that followed are desirable
results relative to the Padé approximents and it is interesting that
the Quasistatements can be gotten moré’cheaply° That is, the Padé
conjecture can be weakened as Baker proved in (2). This weakened

conjecture will be presented which concludes the dissertation.

Conjecture. If P(z) is a power series representing a function which is
regular for jzj <1, except for m poles within this circle and except
for z = 1, at which point the function is assumed continuous when only
points {z] <1 are considered, then at least a subsequence of the [N,N]
Padé approximants are uniformly bounded in N, in the domain formed by
removing the interiors of small circles with centers at these poles
and uniformly continuous at z = 1 for Iz < 1.

To see that this conjecture implies the Padé conjecture will be
shown. Now f(z) is regular at every boundary point of the convergence
domalin, except at z = 1, in the Padé conjecture. If & > 0 and L 1s the
set of boundary pointes such that 6 <argz <2z -9 then the closed
set can be finitely covered by the interiors of circles in which f(z)
is regular. Hence there exists a c¢ircle containing L in the interior
in which f is regular where it is realized that there is a small piece
of the circle at one excluded. Yet for any point not 1 there exists
such a circle with piece missing in which the point is interior. Its
tacitly assumed that points on the interiors of the small circles are
excluded too. This circle can be mapped onto the unit circle by a
linear franctional transformation under which by Theorem 2 in Chapter
IT the [N,N] Padé approximants are invariant. Since as already stated

any point in the Padé conjecture 1s interior to some such circle by the
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conjecture and Theorem 5 in Chapter II there exists an infinite
gsubsequence of Padé approximants which converge to a limit function
that is regular everywhere in the domain of the Padé conjecture except

at z =“,l° But by the uniform continuity of the subsequence the con-

vergence is realized at z = 1.
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