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NOMENCLATURE

a, b, ¢, d, I, g Geometry of triangular element.

a - superscript Indicates quantity in elemental system.

b — superscript Indicates quantity in skewed system.

b — subscript - Quantity refers to bending action.

E Modulus of elasticity.

F - External loads.

i, i, k Node points of finite element.

K Stiffness matrix.

Mx’ My’ MZ, Mxy Moment stress resultants.

Nx’ Ny’ ny Force stress resultants.

n Number of nodes.

0 — superscript Indicates quantity in structural system.

p — gubscript

Quantity refers to plane stress.

sz? QZy Force stress resultants.
q Generalized nodal displacements.
r Number of boundary restraints.
S Actions.
SK Structural stiffﬁess matrix.
t Thickness.
U Internal strain energy.
y V In-plane node displacements.
U, V In-plane displacements.
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W Work of edge forces.

W Normal bending .displacement.

X, ¥, 2 System of axes. ]

7, 2 Multipliers of bending stress function.
ay, By Y Di_rection'cosineso |

o By Parameters in stress function.

Strain components.

€xs ey"exy | Strain components.

1 - Coordinate.

- Rotational displacement. -
A ‘ Coordinate;

v Poisson's ratio.

v (1 + 2v).

g Coordinate,

m Complementary energy.

Oys Gy’ oxy’ Opx? czy Stress componentsa

v - Transformation matrix.

Q Transformation matrix.

w Angle of skewed boundafyq
L] Square or rectangular matrix.
L Row matrix.
,{ } Column matrix.

L ]‘1 Matrix inverse.

L ]T Matrix transpose.



CHAPTER I
INTRODUCTION

1.1 Statement of the Problem

The analysis of shells of double curvature, in par-
ticular hyperbolic paraboloidal shells, is investigated.
Both membrane and bending deformations are considered. The
continuous shell is discretized by a number of triangular
shaped plane finite elements which are connected together
only at their node points. Continuity of deformations is
maintained across the boundary lines separating the elements.
Equilibrium is established within the element and at the
node points. The element properties are determined and com-
bined to define the elastic characteristics of the total
shell and deformations corresponding to a particular set of
load and boundary conditions are determined. The critical
phase of the analysis is the evaluation of the elastic
characteristics, expressed in stiffness matrix form, of the
individual finite elements and it is with this phase that a
major portion of this investigation is concerned.

Material of the shell is assumed to be continuous,
homogenous and isotropic. ©Shell thickness is considered to

be small in comparison with other dimensions and the well



known assumptions of small deflection theory are employed.
For the purpose of this study, the problem is con-
sidered solved when the structural stiffness matris is

derived and deformations of the shell are determined.

1.2 Historical Notes

In recent years thin shells of double curvature have
been frequently used in construction, especially for roof
systems. The hyperbolic paraboloid is one of the most popu-
lar of the doubly-curved surfaces and has received consider-
able attention in the past decade. Felix Candella (1) has
summarized the many advantages of the hyperbolic paraboloid
in one of his numerous contributions to the field of shell
construction. One of the advantages he lists is the sim-
plicity of the differential equation which governs the state
of stress in the shell provided that the shell acts as a
membrane .

The potentialities of this doubly-curved surface were
first exploited by Aimond (2) in the early 1930's. Since
that time an extensive amount of literature on the subject
has been published. However, it has been restricted almost
entirely to the membrane, or momentless, stress condition.

Past experience with structures designed by the mem-
brane theory has shown that they perform satisfactorily
when subjected to loads that are uniformly distributed with-
out abrupt changes in intensity. For other load conditions

however, the membrane theory is inadequate and does not



yield realistic results. There are also a number of support
conditions for which the membrane theory yields unsatis-—
factory solutions. In these cases the effects of bending
action must be included in the analysis and design.

Although a complete general theory of shells of arbi-
trary shape has been formulated, its application to the hy-
perbolic paraboloid is mathematically complex (3). The
complexity of this formulation is greatly reduced by intro-
ducing the concept of shallow shells, however, the solution
remains difficult. An equivalent shallow shell theory has
been given by Margurre (4), while perhaps the most exact
existing theory of hyperbolic paraboloids bounded by a rec-
tangular set of characteristics is due to Bongard (5).

A recent paper by Chetty and Tottenham (6) investigates
the linear bending analysis of the stresses and deformations
of a thin shallow rectangular hyperbolic paraboloid shell
subjected to uniform normal pressure. The authors discuss
and compare the Vlasov and Bongard governing equations.

The idea of representing a continuous elastic medium
by discrete finite elements is by no means new. Hrennikoff
(7) used a system of elastic bars to represent a flat plate
structure as early as 1941. 1In the late 1940's and early
1950's several investigators reported contributions in con-
nection with wing deflections and other aircraft related
structures by using plate assemblages and influence co-
efficients (8, 9, 10).

One of the first significant contributions on finite



elements, as such, was presented by Turner, Clough, Martin
and Topp (11). They derived a stiffness matrix in implicit
form for a triangular and a rectangular element subjected
to a plane stress condition. The solution was based on an
assumed displacement function over the element.

Clough (12) presented a paper dealing with finite
elements in plane stress. He also derived the element
stiffness matrix on the basis of an assumed displacement
function. In 1961, Melosh (13) contributed a paper concern-
ed with the analysis of thin plates in bending. An assumed
displacement function was used to derive the element stiff-
ness matrix. A second paper by Melosh (14) listed what he
termed requirements that must be satisfied by an assumed
displacement function.

Zienkiewicz and Cheung (15, 16, 17) have contributed
a number of papers to the rapidly growing list of liter-
ature related to the use of finite elements in structural
analysis. They discussed the successful use of finite
elements in the analysis of flat plates and arch dams.

Rectangular elements have been shown to yield accurate
displacement results for plate structures and shell struc-—-
tures of single curvature. Results obtained with the use
of triangular elements for the same structures have proved
to be somewhat less accurate. The inaccuracies appear to
be due to the lack of compatibility of deformations along
common sides of adjacent elements. Using an assumed dis-—

placement function for a rectangular element, compatibility



of vertical displacement and slope tangential to the boundary
can be maintained, however, compatibility of slope normal
to the boundary is violated. For otﬁer shaped elements even
the vertical displacements are discontinuous. This appears
to have a very significant influence on triangular elements.
Because of this, rectangular elements have been used much
more frequently than elements of other geometric shape.
Certain types of structures, irregular shaped plates,
plates with openings, doubly-curved shelis, et cetera,_can—
not be discretized by rectangular elements and thus it is
necessary to use some other geometric shape. The above men-
tioned disadvantage of the triangular element can be elimi-
nated, or reduced, by using an assumed stress function,
rather than displacement function, as the basis for deri-
vation of the element stiffnesses. Such a procedure is dis-
cussed by Pian (18) for a plane stress condition. Severn
and Taylor (19) use an assumed stress function for solving

plate bending problems.



CHAPTER II
MATHEMATICAL FORMULATION OF ELEMENT STIFFNESSES
2.1 General

A major criticism of triangular elements used for
forming the model of a two-dimensional structure is that
the resulting accuracy is not as good as that obtained with
rectangular elements. Such results have been reported by
a number of investigators when using a displacement function
to calculate the element stiffnesses (20). The basic reason
for this is that the assumed displacement patterns do not
satisfy conditions of compatibility across the edges sepa-
rating the elements. When a cubic displacement function is
assumed for a rectangular element, the displacement along
any edge may be described by a cubic equation. The form of
this cubic equation may be specified by four constants, two
slopes and two vertical displacements at the node points
which the edge connects. Thus, the vertical displacement
along any edge is expressed in terms of only two nodes and
continuity is maintained. However, two slopes, one at each
node, are not sufficient to determine the three constants
in the quadratic slope displacement function. Thus, in

general, compatibility of normal slopes at the edges of two



adjacent elements is violated. For geometrical shapes other
than the rectangle, the cubic equation for vertical dis-
placement along an edge involves node points not necessarily
on that edge and, therefore, vertical displacements are also
discontinuous. This incompatibility has a pronounced effect
on solutions involving triangular elements.

Compatibility of vertical displacements and slopes
along the edges of two adjacent elements can be forced by a
procedure discussed by Severn and Taylor (19) and used in
this paper. The element stiffness matrix is derived on the
basis of an assumed stress distribution rather than a dis-
placement function by applying the principle of minimum com-
plementary energy. Details for a plane stress condition and
bending are presented in the following sections of this
chapter. The two important quantities to be determined are
the strain energy stored in the element and the wbrk per—-
formed by equivalent edge forces acting through the edge
displacements. Geometry of the triangular element is shown
in Figure 1. |

The steps in the mathematical procedure for deriving
the element stiffness matrix are listed below.

a) Stress functions.

b) Stress resultants.

c) Equilibrium.

d) Stress—-strain relationship.

e) Strain energy.

f) Boundary displacements.



g) Edge forces.
h) Work of edge forces.
i) Complementary energy.
j)  Element stiffness matrix.
The steps are carried out for a plane stress condition in

section 2.2 and for bending in section 2.3.

2.2 Plane Stress Stiffness Matrix.

a) Stress functions—For any point in the triangular

element of Figure 1 if is assumed that the three stress
componeﬁts may be expressed as a function of the coordinates
of the point and a set of parameteré,w%no The three stresses
are assumed toc be of constant magnitude‘across the depth of
the element while varyihg parabolically in the planévof‘the

element. An infinitesimal element is iselated and shown

in Pigure 2a. The assumed stress equations are:

Oy = 04 +a'23_c+‘-oz3§g+ a4§?+a.555; +‘d6§2 (1a)
O = n o+ QR 4 QT + U EO + Ay 4 XT + ag T (1b)
y T %7+9%8 gV + ¥qpX. + XXy + aqp

e @t 0y T AaeT Oy KO 4 @y 4 @l gTO (1e)
Iy = F3 T XXt @Y+ g XY + aqg¥ ‘

where

- X - -
X = "'é y = % <

b) Stress resultants——Stress resultants per unit
length are calculated by integrating equations (1) over the
depth of the element and are shown in Figure 2b. They are

expressed as:



- X
Z
Figure 1. Element Geometry
oy Ny
ny ny
Oy N, N +dN,
I | o, +do R -
—  Cxy* %y — - Nxy Wy
(a) (b)
cy+-doy Ny-dey

Figure 2. In-Plane Stresses and Stress Resultants
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t/2

NX =j. -t/z O‘Xdz = ‘t(O'X) (2&)
t/2

Ny :f o/ o—ydz = t(oy) (2b)
£/2 |

Ny =.[ t/2 TxydZ = tlogy) - (2¢)

¢) Eguilibrium—The assumed stress variation must

satisfy the conditions of internal equilibrium:

N oN

x xy
%t Tay © 0 - (3a)
olN SN

y Xy _ b
il 0 » (3b)

Performing the operations indicated in equations (3)relates
six of the o's in terms of the remaining twelve and leads

to the following stress equation.

i *{Up} = [Ppl’{a} (4)

The matrices of equation (4) are given in Table I.

d) Stress—strain relationship-—The relationship be-

tween stresses and strains for an elastic, isotropic and

homogeneous material obeying Hooke's Law may be expressed:

(5a)




Where:

.ol

b1

O

wi

o

-TABLE T

STRESS FUNCTION FOR PLANE

FooOR° %5 \gé“ o 0 o0

0 E; 7° o0 o 1 X 3
a,

0 -=%§ X =523y 0 0 0 &

m i
=y
I

ot

STRESS

L
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Where v is the Poisson's Ratio of the material and v =

2(1 + v). Eguation (5a) may simply be written as

RS ERCSRIN (5D)

e) Strain energy—The internal strain energy of the

element may be expressed in matrix form in terms of stresses

‘and strains.

U, = %'.[ Loyl {ep} av (6a)

v

Where, as indicated, the integration is performed over the
volume of the element. Using equations (4) and (5) the

strain energy becomes

ﬁp :% f Lol [Pp]T [Np] [Pp]ff {a} av . (6b)
v

Since the a—~vector is independent of the integration,

equation (6b) may be written as

T, =

5= Lol (8] {o} (6c)

N —s

where

[Hp] = f [ijT [Np] [Pp] av . (7)
v

Matrioes‘[Pp] and [Np] are determined from equations (4)
and (5), thus, [Hp] may be evaluated. The triple matrix
multipiioation is performed and the elements of the re-
sul ting matrix are integrated over the volume of the tri-

angular element. Matrix [Hp] is shown in Table II and



By

 TABLE II
MATRIX [H_]

b v
Ag Axo""’?i?’ Ag

ce,

bv

cc..A+ Ag

'b4

ccz=A“+ [2 32(2\‘"‘ )A‘IS

by,

cC = =vhA+ 2Aq

s .
CC,= FoAgh ‘%oizv =)

, R
CcC,= -VA1|+ EZAIS

Ag | =vA | ~v4, ~vAsg
As ""\)Az ~yh, As(\j = V) AIO(% - \))
Ag | =vA3 | =vAs —vAg
. v »—
cey| ce, | ccg A+ AB(K? ~-v)
Al4 "“\)AS ~VA]O As (% = VJ AIS(ﬁ{ - \))
A | =vAg| —vAg vAig
A A, Asg
RI.¥ AIO
| &y
Agt o1 &7
Ap
. 2—
Al5+4b2 Ay

¢l
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20a,

10
2

a

5(3

¢ﬂ40\

2(4

TABLE TIIT
COEFFICIENTS FOR MATRIX[ﬁp]

60a

10a

2¢c + &)

(303 + d3 + 602d + 4cd2)

c + 4)

(4¢3 + 66%a + 4ca® + ad)

c + d)

6c° + 4cd + d2)

(504 + 10c3d + 10c2d® + 50d3 + d4)
(1003 + 10¢d + 5ca’ +‘d3)

+ 4

(10¢? + ‘5ca + a°)
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Table III.

f) Boundary displacements—The in-plane boundary dis-

placements are assumed to vary linearly along each edge of
the triangular element. They are expressed as a function
of coordinate position and generalized nodal displacements.
Figure 3 shows the generalized nodal displacements, U in the
x-direction and V parallel to the y-axis. Edge displace-
ments u and v for each element boundary are shown in

Figure 4. They are expressed in matrix form as

{up}‘=[Lp] {qp} ¢ (8)

Where {up} is the vector of in-plane edge displacements,
[Lp] is a coefficient matrix and {qp} is the vector of
generalized in-plane nodal displacements. Equation (8) is
recorded in Table IV.

g) Edge forces—Equivalent edge forces acting along

the boundaries of the finite element are shown in Figure 5.
Using stress equations (4) the edge forces are calculated
in terms of the o—parameters. Letting the six edge forces
shown in Figure 5 be represented by the matrix {Sp}, they

can be expressed as
{s,} = (R,] {a} (9)

{sp} = LN, N, No N, N, Nl o

The transpose of matrix [Rp] is shown in Table V.

where
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y Vi

Figure 3. Generalized Nodal Displacements for Plane
Stress

Pigure 4. Edge Displacements for Plane Sitress



u(x) |
v(x)
u(n).
v(n)

u(a)

#(k)

Where:

1

TABLE IV

EDGE DISPLACEMENT MATRIX FOR PLANE STRESS

:
][

0l

mlo

o

(1 -

(1 -

X

Ho  He '®

=31

|

>1

>

o

>

Mo Hie .l ®lo

=1

=31

(1 - 2A)

G- 1

_ax - ¢

(@]

] fog

Ho Hlo ile

=31

(% - 1)
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Figure 5. Edge Forces for Plane Stress

h) Work of edge forces—The boundary displacements of

section (f) and edge forces of section (g) may now be em-
ployed to evaluate the work done by the edge forces. The

work i1s conveniently expressed in matrix notation.as

Wp = ngspJ {up} ds (10)

vihere the integration is performed around the boundary of
the element. Substitution of equations (8) and (9) into

equation (10) yields

i - $lal (m)F (1] {op} as

1

or

W

il

Lel-L2,] {ap} (11)
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where
o Imp) = frmgttng) e (12)
The matrix multiplication indicated in equation (12) is
first performed and the elements of the resulting matrix
are then integrated along the appropriate edge. _[Tp] is
shown in Table VI. '

i) Complementary energy-—Having formulated the in-

‘ternal strain energy and the work of the edge forces, the

complementary energy may now be formulated.

Tep = ﬁp - Wp : (13)

~

Equations (6c) and (12) are substituted into (13) to obtain

mep = 3 Lad [Hp] {af - Led [2.] {o (14)

The principle of minimum complementary energy requires

ot

‘sgiﬂ = 0 (For all o) . (15)
Therefore

(] {o} = [2,] {aph - (16)

i) Element stiffness matrix—Equation (16) may be

solved for {a} to yield

{a} = [Hp]"1 (7] {qp} . (17)

Equation (17) is substituted into equation (6c¢) to obtain

the following expression for strain energy.
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TABLE VI
MATRIX [z,]
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b2
24a

c
-z
- %E(2c +4d)

- %(3c +4d)
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=4 T oy =1
Uy = 2 Lapd (207 [H177 (250 {ap} (18)

i [Kp] represents the matrix of stiffness coefficients,

strain energy may also be expressed as
= 1
T, =5 Loy (k] {ay} - (19)

Comparison of equations (18) and (19) yields the stiffness

matrix of the element in terms of [Hp] and [Tp]:
(x ] =[r 1% (37" ] . (20)
p P P P

Equation (20) represents the end product sought in
this section. It is the plane stress stiffness matrix
referenced with respect to the elemental system of axes.

In the following section, a similar procedure is

employed to develop a bending stiffness matrix.

2.3 Bending Stiffness Matrix

a) Stress functions—For any point in the triangular

element of Figure 1 it is assumed that the five stress

x? g1 gy dﬂx’ Opy MY be expressed as a

function of the coordinates of the point and a set of

components o

parameters, B e 'QQ3°y and Oxy 8re assumed to have a linear

variation across the depth of the element and a quadratic
variation in the plane of the element. O i and °zy have a
parabolic variation across the depth of the element and a

linear variation in the plane of the element. Figure 6 shows
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the assumed stress variation across the element thickness.

_______ —_—————y PP ugay > SRS b —— 4 e ———F

Figure 6. Bending Stress Distribution

The five stress equations are:

o, =T (By + BoX + By7 + ByE + BsET + By ) (21a)

- - - -2 — -2
o =12 (B + BgX + BgV + BqoX + BqqXV + B¢V ) (21b)
6o =2 (Byqg+ BygX+Bqcy +B §2+B X7+ 8,a72)  (21¢)
xy = 131 B1g* * By5T + Bag 7%+ Bqgy
Gzy = 4 (522 + 523SE + 5245) ° (21e)
- Where
‘ : 2
3 =82 20 = 1 -2
't

and X and ¥ are as previously defined.
Having assumed stress equations (21), the stress re-

sultants may be determined.

b) Stress resultants——The five stress resultants are
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determined by integrating equations (21) across the depth

of the element.

/2 2
2t - = =2 = -
M, =-[~t/2 oxzdz = =3 (51-+Bzx-as3y-+s4xzj+55xy-+B6y2)
(22a)
/2 042 - - -2 — o2
My =f__.t/2 opzdz = =3= (B7 + BgX + BgV + BypX +B4XY + BqpY )
4 - (22b)
t/2 242 - - =2 —
Vay = ]:. /2 oxy?d2 =37 (By3+ B;‘A'Xf P1g¥ ¥ Bag* + Ba7Y
+ 81“8? ) (22c)
/2
2% L= -
QZX = /2 UZXdZ =3 (819 + BopX + 621‘3[) (224)
/2
, _ 2% = =
Yoy = Lt/2 ogyd% = T (Bap + Bp3* + BoyY) (22e)
¢) Eguilibrium-—Application of the conditions of

equilibrium of the element shown in Figure 7 allows for
gseven p-parameters to. be solved for in terms of the re-
maining seventeen. Equations of equilibrium to be satis-

fied gre

3Q, dQ
X . _¥ _
= "3 0 (23a)
M oM
M Xy -
55+ Thx sz =0 (23Db)
oM oM
X Xy _ _
55 T T3y Qux = 0 (23c)
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zy

Figure 7. Bending Stress Resultants

Equations (22) are substituted into (23) to obtain the re-
lationship between the p parameters. In terms of the re-
~duced number of g's, étpess equatiéns (21) may now be ex—

pressed as

{on} = 2] {8} - (24)
Where o

,{ob} ; {ng Uy’ ny’ Cox? GZ&} ’

 {3} = {81’ 32’ 331 seo 316’ 318} ’

and matrix [Pb] is as shown in Table VII.

d) Stress—strain relationship—The stress—sffain;re—

lationship for an elastic, isotropic and homogeneous.
material obeying Hookets Law may be expressed in the fol-

lowing manners:
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O

zZX zy

zZX

ZXY

zX

TABLE VII

MATRIX [Pb]

0 0

0 0

oo =2

Zy zX ZXy Zy

0 0
0 0
%:ﬂ 0

0 -5 ZX¥

0 -2 %
b2

‘%zfi '%2'7

N

zX'

o oy

zy

9z
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ﬁgx y 5 1 -V 0 0 0-_ hcx f

€y =y 1 0 0 0 oy

wl=€|0 ©°© % o0 o % (25a)
Yoy NIRRT SEEE S O px

Bl R S

or, more concisely as
{.eb} = [Nb] {Ub}° (25b)

e) Strain energy—Referring to equation (6) the ex-—

pression for strain energy due to bending may be written:

T, = 5 LeJ [H,] {8} (26)
where

yd = [ 12" ) B av (27)

The matrix [Hb] is evaluated in the same manner as for the
plane stress condition and is presented in Table VIII and
Table IX.

f) Boundary displacements—Expressions for boundary

displacements are assumed such that compatibility of the
three deformations along a lihe separating two elements is
achieved. That is, compatibility of the vertical deflection
and the slopes, normal and tangent to the line. Edge dis-
placements are expressed in terms of the generalized nodal

displacements at the ends of the line. Consider a general
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TABLE IX

COEFFICIENTS POR MATRIX [H, ]

—

403 + d3 + 6c2d + 4062

1003

i

10

6c“ + dcd + (12
300°

5cd 4+ 10¢3d + 10c2a2 4+ 5cald 4+ a4

1 5514

sl

15

3 2 a2 3
10c” + 10c™d + Hed® + d

CO{';3
2ot

t2(3c + d)

7200

£2(3¢2 + 3cd + %)
' 60:'.2
2

!

ct

g

29
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edge st shown in FPigure 8. The orthogonai axes system has

a general orientation.

0.
ys 6 o
0t
U Y.
/ Y
Ous l / /
en v
Wy | W Sut W,
| |

Figure 8. General Displacements

Vertical deflection along st is represented by a third

degree polynomial in y.
2 3
Wiy) = Ag + Ayy + ApYT + A3Y (28a)

This poiynomial involves four constants which may be evalu-

ated in terms of the four nodal displacements WS; 0 _ Wt

nS
and ¢ .. The torsional rotation,eY is assumed to vary

.linearly‘along-st and'is expressed in terms of ¢ and

Ys
eYt as
Oy = By (Y - 1) - 6y; Y (28b)
where
' T = L
Y =%5% °

Equations (28) are applied:to each of the three edges of
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the triangular element shown in Figure 9. This yields a
set of nine equations which are most conveniently expressed

in matrix form

{ub} = [Ip] {%} . (29)

Where {ub} is the vector of edge displacements, [Lb] is a
coefficient matrix and {qb} is thé védtor of generalized
nodal displacements. The generalized nodal displacements
are shown in Figure 10. Equation (29) is recorded in

Table X.

Figure 9. Boundary Displacements Due to Bending

g) Edge actions—Equivalent edge actions are shown in

Figure 11. They are evaluated from the stress equations @4)
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EDGE DISPLACEMENT MATRIX FOR BENDING
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FPigure 10. Generalized Nodal Displacements Due to
Bending

Pigure 11. Edge Actions Due to Bending
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and expressed in matrix notation as
sk - ] e (30)

where:{sb} is the vector of edge actions due to bending
and [Ry] is a coefficient matrix. The transpose of [Ry]
is presented in Table XI. |

h) Work of edge actions—As previously discussed in

connection with equation (10) the work of the bending -edge
actions acting through their respective displacements may

be expressed as

W, = Ll (7] {ap} (31)
where

(1] = 9§[ijT.;Lb] as. (32

-The elements of matrix [Tb] are listed in Appendix A.

i)v~Complementary energy-—Applying the principle of

minimum complementary energy leads to results similar to

equation (16). The following expression is obtained:
[m,) {e} = (7] {ap} - (33)

j) Element stiffness matrix in bending—The matrix

algebra involved here is the same as in paragraph (j) of
seqti@ﬁ”ZpQﬂand tesults in”th¢£§éalowing equation:
(k] = [7,17 [H )" (1] (34)
L R ¢! b b °

Equation (34)‘representé the bénding stiffness matrix

referenced with respect to the elemental system of axes,'
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X, y and z.

2.4 Total Element Stiffness Matrix

Equations (20) and (34) express the matrix formu-
lations for plane stress stiffnesses and bending stiff- .
nesses respectively. The plane stress stiffness, derived
on the.basis of the theory of plane étress indicates that.
ﬂvdiéplacements U and V are related 6n1y:with the ihfplane-%‘
y° The bending stiffnessr-derived'on the‘
basis of the Lagrangian - Kirchoff Plate Theory, indicates

..fp;ces Ni and N

that displacements‘ex, 0., and W are relatedvoniy,with‘

y ,
actions My’ MX and QZQ Thus, the total element stiffness

matrix may be expressed as

(K] = [——— === (35)

- where

il

total element stiffness matrix

i

Kp plane stress stiffness matrix

Kb =:~bending‘.stiffness'mat‘rix°

. However, the form of equation (35) may be improved by
grouping linear:andxrotational»displacements'and_the cor-

responding forces and moments. Displacement and action

vectors for a node i of the triangular element are:
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-t s} | (36)

zi Mzi

b —d

The total element stiffness matrix conforming to equations
(36) issbuilt up from the elements of [Kp] and‘[Kb] as
demonstrated in Table XII. The rotation 6, is taken to be
zero in this paper since thehangls;at,which the finite
elements meet in. a smoothly curving shell is small. For
structures in which fhe plate slements meet at a significant
- angle, as ét the fold line in a folded plate structure, the
stiffness corresponding to e, could have a,controlling in-
fluence on the plate bending acfions (21). The moment M,
is zero in the elemental system.

| If an element has node points i, j and k, the total
element stiffness matrix?(Table:XII)'may.be partitioned

into 6x6 submatrices as

Ksi } Ky j : Kix
S

[KJ = Kji Il KJJ : Kjk (37)
S S
| Kes ) By | K|
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ELEMENT STIFFNESS MATRIX
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CHAPTER ITII
FORMULATION AND SOLUTION

3.1 Axes Traﬁsformation

The eleément stiffness matrix (Table XII) developed in
Chapter II is refefencedito the-axes system_of the element.
Before the .elemental stiffnesses can be qombinéd.to form
the structuralvsfiffness»it,is necessary to transform each
elemental stiffness from its own system to one common
system, referred to as the' structural system. Figure 12
shows an elemental system and the structural system. Super-.
script}"a" refers to the elemental system while "o" refers

to the structural system.

Figure 12. Axes Reference Systems

39
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Displacements and forces are transformed from the ele-
mental to the structural system by performing three rota-
tions. The transformation for a node point i may be ex—
pressed as

Ca’ 0
{af} =191 {dl} (38)
and |
a 0
{3} =191 {si} - (39)
The vectors {qi} and {Si} are as in equation (36) and the
transformation matrix is:

. N § —_
%ax Poax Yoax

|

|

|

|

« B Y '
oay Poay Yoay !
|

|

|

|

“%az Poaz Yoaz
B 07 R F (40)
. ! .

\\\\\\ ///// : %ax Poax Yoax

|
0 : “cay Boay\ Yoay
| ) 7

///// \\\\\\ |
| %oaz Poaz Yoaz

where

Yo ax = cosine of angle between X% and x° axes
Boay = COSine of angle between x% and Y° axes
Yoax = cosine of angle between x% and Zobaxes

Yar = cosine of angle betweeﬁJZa and 2° axes .
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The element transformation matrix is constructed from

equation (40) and may be expressed as

[al =

Elements of the Y-matrix
each of the elemental axes as
‘structural system coordinates

results in the following nine

cosines.

oax
Boax
oax
oay

any

oay .

oaz
ﬁan

oaz

_ ; '
¢ 10
_____ S
1 i
i
0 | v |

|
_____ +——
| I
o ! o |
| [ [

Ve = Y1 7 CPoax

0
Zk -~ Z=

i~ ©Yoax
b

Boax Yoay ~ Poay Yoax
“%ay Yoax T %ax Yoay

Y%ax Poay ~ %ay Poax

(41)

are derived by expressing
a vector in terms of the
of the node points. . This

equations for the direction

- (422)
(42p)
- (42c)
(424)
(42e)
(42f)
(42g)
(42n)

(421)
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The element stiffness is transformed from the elemental (a)
system to the structural (o) system by the following matrix

operationss

{5 = ¥ {® (43)
or |
Lal {s°} = [x°] [a] {a°}
therefore
- {s®} = " (%] [a] {0

cr

—
[#2]
o}
% g
i

= [x°7 {a°} (44)

m
N
o
L
i

= [a]® [¥*] [a] . (45)

3.2 Structural Stiffness Matrix

BEquation (45) expresses the stiffness of a single
finite elemént in reference to the structural system. There
are as many such matrices as there are finite elements.
These are evaluated and then combined to form the structural
stiffness matrix which is of size 6n x 6n, where n is‘the
number of node points in the entire structure. This struc-
tural stiffness matrix, designated [SK], relates the gener-
alized displacements of each and every node to the external

load vector,

f[ml _ P
ERURAC SRS (46)
where {F} is the veector of external loads, [SK] is the

matrix of stiffness coefficients and {q} is. the vector of



generalized nodal displacements. The superscript desig-
nating system of axes is‘omitted from equation (46) since
the formulation requires that all loads.and'displacements

be réferenced to the structural system.

3.3 Boundary Conditions

+ The formulation of equation (46) allows for solution
of generalized displaceméntsf{q} only affer proper 'con-
straints have been applied t6 render the structure stable.
These éonstraints are‘applied in the form of boundary, or
éupport, conditions.

It is in thefapplicatiqn of boundary conditions. that
t the finite element method has a distinct advantagé«over
ciassical theory. Boundary conditions can be physically
reasoned without concern for such effects as concentrated
corner forces which occur in Kirchoffean plate theory or
- shear forces which occur along plate edges.

Sinée there are six degrees of freedom at each node,
there are six possible conditions of constraint at each
node which may be applied singly or in any-qombina%ion.
For any node point i. these are: |

U; =0

0
0
B, = 0
0
0

43
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For each rigid constraint, the corresponding row and
column of the stiffness matrix is deleted and the order of
the matrix is rednced by one. Therefore, if r is the number
of constréiﬁts, the order of the reduced stiffness matrix

is (6n-r).

3.4 Skewed Boundaries

. The ability to work with skewed boundaries is a neces-
sity for analyzing arbitfarily shaped plates or shells. It
is also desirable when working with regular structures which
have skewed axes. Since computer storage capacity is
cfitical_in the finite element method, it is important to
také'full advantage of symmetry whenever possible. For
example, a symmetrical umbrella shell,vsymmetrically loaded,
may be analyzed by considering only one-half of one quadrant;

The stiffness matrix must be modified by transforming |
the rows and columns Which‘coffespond to node points lying
on a skewed boumdary_o Figure 13 represents a boundary which
is skewed with respect to the structural system. The ahgie‘

of skew is in the X~Y plane.

> X

yo‘ $

Figure 13. Skewed Boundary Axes
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The relation between displacements at node i in the two
systems may be expressed: (superscript "b" refers to :

skewed system of axes).

— I~ _ | | .
Ug cos w =-sinw O : \\\\\\ ////// U?
Vg sin @ cos o O : 0 V?
I
W 0 0 o 7 \\\\\\ W
_____ =}--—--""-"" "« e - ———— |}
0 . . b
L \\\\\ ///// :cos w =-sin w O exi
0 | ad _ b -
eyi 0 | Sin o cos w O e
0 \\\\\\ I 1.b
Gzi / : 0 0 1 'ein
or
o _ by
{qi} = [“"] {qu . (47)
In a similar manner:
POt = [o] {F0] (48)
{755 = Lol {75} - |

The stiffness matrix for a structure in which some
of the nodes lie on non-skewed axes while others.lie on
skewed axes is a "mixed" matrixo That is to say, some of
the elements are in the structural system, others are in.
the skew system while still others are in a structural-skew
system. In the mixed matrix there are four different-

relations between forces and displacements.

i) F°® related with ¢°
i1) P° related with q°
iii) F® related with q°
b

q

iv) F° related with
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Condition (i) requires no modification in fhe stiff-
ness matrix. Condition (ii) requires that all columns of
[SK] corresponding to a node on theVSKGW-boundary be post-
multiplied by [w]. Condition (iii) requires that all rows
of [SK] corresponding to a node on the skew boundary be pre-
multiplied Dby [w]Ta Condition (iv) is satisfied Ey the
operations of (ii) and (iii). These matrix operations are
conveniently carried‘dut by working with the 6x6 submatrices
whioh correspond to each node point. It is, of course,
possible to have many different skewed boundaries in ‘a
single structure. Such would be the case for a circular

plate or any irregular shaped plate or shell.

3.5 Deformations

The elemental stiffness matrices (Table XII) are trans-—
formed to the structural system and combined to form thei
structural stiffness matrix. Thislmatrix is then reduced
in accordance with applied boundary conditions and modified,
if ﬁeoessary; for‘skewed axesg. ‘This results in -a set of
(bn-r) simulfaneous eguations which aré solved to'yield the

deformations at each and every node point.

3,6 Stresses and Stress Resultants

Having determined the generalized displacements at
each node point, stresses in the individual finite eleménts
may be evaluated. This is accomplished by seleCting from

the displacement vector those values corresponding’to the
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three nodes of the particular element in question. These
displacement values are then_transformed fromvthe Structﬁral
system to the:elementalhsysfem and used to build vecforsx
{gp}_and‘{qb},v Equations (17) and (33) are substitutéd

into equations (4) and (24) respectively to yield

ECY S e [Hpr1 [Tp],:-_{qp} (49)

and
Aop) = 2] (8,17 I {ap) - (50)
After solviné,equations (49) and (50), the in-plane

‘and bending actions are evaluated from equations (2) and

(22) respectively.



CHAPTER IV

APPLICATION TO HYPERBOLIC PARABOLOID SHELLS

4,1 General Procedure

The first step in applying the finite element method f
of analysis to a shell, or any.elastié continuum, is to |
idealize the structure by subdividing it into an assemblage
of discrete members, triangular elements in the case of
doubly curved shells. There are many different ways in
which this can be done and, of course, the closer the ideal-
ization is to the actual structure, the better the results.

Secondly, the elastic characteristics 6f the finite’
element are determined. This has been presented in detail
in Chapter II. In this presentation matrices.[Hp] (Tables
II and III), [Tp] (Table VI), [Hbj (Tables VIII and IX) and
,[Tbj (Appendix A) are hand formulated in terms of the
elastic properties and the'geometry of thé finite element.
They are then coded in FORTRAN and an IBM 7040 Digital Com~
puter is used to evaluate the element stiffness matriceé-
(equations 20 and 34; and Table XII). |

The third step consists of the stru?tural analysis
of the enfire assemblage of elements. Détails concerning

axes transformatibn, boundary conditions and skewed axes

48
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are presented in Chapter III. This step is carried out com—
- pletely on the comp‘utef° ‘A flow chart of the computer pro- |
gram is given in Appendix B.

The procedure outlined above is applied to the analysis
of two hyperbolic paraboloidal shells, details of which are

given in the next sections.,

4.2 Edge Supported Shell

The shell shown in Figure 14 is analyzed for defor-
mations due to a uniformly distributed wvertical load of
0.3472 pounds per sqguare inch. The middle surface of the
shell is defined by the egquation

LZXY

7 = . 51
Iy (51)

The shell is supported along all four edges by diaphrams
which are considered to be incapable of vertical deflections
while offering no resistance to normal displaceméntsp Elag~
tic properties and dimensions of the shell are giveﬁ in
Table XITI.

The shell is subdivided into an assemblage of tri-
angular elements as shown in planform in Figure 15. A
finer grid is selected near the center of the shell an- ‘
ticipating this to be the region of larger deflections.
Since the shell is symmetrically loaded and is also géometri-
cally symmetrical‘With‘respect to aoc and bod (Figure 14),

it can be analyzed by considering one quadrant such as cod.
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Figure 14. Edge Supported Shell

TABLE XIII

PROPERTIES OF EDGE SUPPORTED SHELL

. = 180 in. E = 3X 106psi
Ly = 180 j_l‘la _t = 205 ine
L = 36 inc v = 0016
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Figure 15. Finite Element ‘Idéaliz’ation of Edge Supported Shell
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.- Deformations at the node points of the shell are listed
in Table XIVwhile Figure 16 shows a contour plot of vertical

deflections.

4.3 Inverted Umbrella Shell

The shell shown in Figure 17 is a popular form of the
hypefbolic paraboloid and is known as the inverted umbrella
shell. This shell is analyzed for deformations due to a
uniformly 'distributed vertical load of 004861 pounds per
square inch. . The middle surface of the shell is defined

by  the equation

s
LxLy

7 = (L, - x)(Ly -y) . (52)

The shell is supported by a single column at the center and
~stiffened by ribs and edge beams as shown in Figure 18.
The tapered rib is approximated by elements of constant
thickness, each having a different thickness. Elastic pro-
perties and dimensions of the shell are given‘in Table XV.
The idealized shell is shown in planform in Figure 19.
Due to conditions bf.symmejry the shell can he analyzed by
considering one-half of one quadrant. Deformationé at the
node points are listed in Table XVI and é contour plot of

the vertical deflections is shown in Figure 20.
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Figure 16. Vértical,Deflections-For”Edge Supported Shell
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NODE POINT DEFORMATIONS FOR EDGE SUPPORTED SHELL

TABLE XTIV

NODE

U

ox oy oz
POINT (in.) (in.) (in.) (rad.) (rads) (rad.)
1 0.000000 0.000000 0.028153 0.000000 0.000000 0.000000
2 ~0.000710 0.000710 0.025991 0.000001 0.000001 0.000000 -
3 -0,000700 =0.000000 0.026559 0.000163 -0.000000 -0.007813.
4 -0.000710 =0.000710 0.025991 0.000001 -0.,000001. 0.000000
5 -0.001780 0.001780 0.033467 0.000152 0.000152 0.000000
6 -0.001302" -~0.,000000 0.026027 0.000089 ~0.000000 0.000414
7 -0.001780" -0.,001780 0.033467 0.000152 -0.,000152 0.000000
8 -0,002086 . 0.002086 0.022003 -0.000299 . -0,000299 0.000000
9 -0.003140 0.001625 0.030958 ~0.000243 -0.000089 -0.000606
10 -0.002936 - 0.000000 0.029764 0.000118 -0.000000 -0.002285
11 -0,003140 =0.001625 o 0.030958 -0.000243 0.000089 -0.000606
12 -0.002086 ~-0.002086 0.022003 -0.000299 0.000299 0.000000
13 000C000 . 0.000000 0.000000 0.000000 0.000000 0.000000
14 -0.00C000 -0.000732 0.000000 -0.000440 0.000000 -0.000009
15 0.00C000 -0.000395. 0.000000 ~-0.000691 0.000000 0.000211
16 0000000 0.000000 0.000000 0.006675 0.000000 -0.036501.
17 0.000000 0.000395 . 0.000000 - -0.000691 .0.000000 0.000211
18 0.000000 0.000732 0.000000 -0.,000440 0,000000 -0.000009
19 0.000000 0.000000 0.000000 0.000000

0.000000

0.000000

142
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Pigure 17. Invefted Umbrella Shell

TABLE XV
PROPERTIES OF INVERTED UMBRELLA SHELL

L, = 144 in. E = 3.85 x 10§psi
I, = 144 in. | £t = 1.5 in.
L, = 36 in. v =.0.10
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TABLE XVI

NODE POINT DEFORMATIONS FOR INVERTED UMBRELLA SHELL

\Y

NODE U 6x Gy Oz
POINT (in.) (in.) {in.) (rad.) (rads) (rad.)

1 0.00C000 0.000000 0.000000 0.000000 - 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3 0.000000 -0.000024 0.013445 0.000436 0.000000 0.000000

4 « 0.000010 0.000325 0.013332 ~0.000311 -0.001072 -0.004526

5 . 0.00C000 0.004634 0.041636 0.000575 ..0s000000 0.000000

6 0.000009 0.004886 0.041539 0.000487 -0.000221 -0.001061

7 . 0.00C000 0.014046 0.080419 0.001574 0.000000 0.000000

8 0.000000 0.016827 0.089709  0.001538 0.000000 0.000000

9 0.000052 0.013983 0.080457 0.001584 0.000145 - 0.000630

10 0.003766 0.011992 0.095786 | 0.001969 -0.000712 ~ -0.000078
11 0.004963 0.013923 0.107720 0.001980 . -0.000227 0.003232

12 0.006772 0.008703 0.152754 0.002603. -0.002361 -0.003781

13 0.008003 0.009949 0.168241. 0.002608 -0.002190  -0.001030

14 0.008957 0.008957. . . 0.258872 0.002806 -0.002806 0.000000

15 0.008129 0.009129 . 0.292626 0.002851 -0.002351 0.000000

16 -0,003206 ~0.003206 . -0.004403 -0.000436 0.000436 . 0.000000

- 17 -0.003839 ~0.003839 -0,002405 0.000337 -0.000337 0.000000

18 0.000029 0.000029 0.040601 0.001751 -0.001751 0.000000

19 0.006548 0.006548 0.158948 0.002888 - -0.002888 0.000000

20 -0.000999 - 0.001422 0.028810 0.001202 0.000393 -0.001361
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CHAPTER V

SUMMARY AND CONCLUSICNS

5.1 Summary

A stiffness method for the analysis of shells of double
curvature is presented in this dissertation. The shell is
idealized as an assemblage of plane triangular shaped
elements connected together at their node points. - Equi-
librium is established within each element and at the node
points and compétibilify of deformations is satisfied along
the line separating adjacent elements. The development
consists mainly of formulating the elemental. stiffness
matrices which are derived on the basis of an assumed stress
function. Final soluticn is effected by the use of a
digital computers

Two hyperbolic paraboloid shells, one supported along
all four edges and the other supportedvby a central column,

are analyzed for deformations to demonstrate the method.

5.2 Discussion of Results

The number of doubly curved shells for which solutions
are reported in the literature is very limited. ' The shells

selected as examples in this paper have been analyzed by

60
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other methods and.therrésults, to a certain extent, are
available for comparison.

A‘solution By application of Bongard's simplified
equatiansforthe édge supported shell shown in Figure 14 is
repérted by Chetty and Tottenham (6). They list vertical
deflections for a section along the y-axis. Figure 21 shows
a comparison of deflections obtained by the two mexhods.
There is considerable variation in the deflection pattern
although méximum values, 00038 inches as Opposed to 0.033

inches, compare gquite favorably,

1(4 1(2 3{4

0,01
0.02L C s
w /‘"—El_?lnlte Elements
0.03~"7"
0,04 Bongard (6)

Figure 21. Vertical Deflection Profile Along
Y-Axis of Edge Supported Shell

Bending stress resultants are calculated in accordance
bwith the procédure-discussed in section 3.6. Discontinui-
ties in the bending moments. do océur dgccording ﬁo which of
the contiguous elements is used in the caiculation&at a
~particular node point. As indicated by equations (49) and

(50) the .stresses, and- therefore the stress resultants, are



-~ Joining at the node point. Table XVII lists values of M
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a function of the generalized displacements at all three
nodes of an element; Thus, it is expected that -there should
be a certain amount of discontinuity in the moment wvalues.
The magnitudes of the discontinuities are dependent upon the
element size and orientation relative to other elements

y

at several node points as calculated from different elements

- to illustrafe the discrepancies.

TABLE XVII
BENDING MOMENTS FOR SHELL OF FIGURE 14

Node Point Moment M (In-Lb/In)
3 -22.50 | -22.50 - 2,08
6 27m93 12.68 - 21.24
10 =~19.24 -25.27 -20.08
11 ~11.67  -28.55 -11.57
12 =45.17 -28.28 -19.87

The deformations calculated for the inverted umbfella
shell (FPigure 17) are comparable with experimental results
obtained in é laboratory test and reported by fhe Portland
Cement Aséociation (22); The vertical deflection contours
calculated in this dissertation aré in very close agreement
with the experimeﬁtal results. There is a difference in the
magnitude of the deflections as the experimental resulfs in-
clude .the effects of creep and plastic flow of thékconcretea

Discontinuities of the stress resultants, similar to those
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discusséd in the prévious‘paragraph, also oécurred,for,the

inverted umbrella shell.

5¢3 'Conclusions and Possible Extensions

The presentation provides a.general solution:for deter-
mining deformations in shells of dOuble“cufvature. -The :
method applies equally well.to othef.platefand shell struc-~ .
tures provided that the'middlp surface'is eithef flat or
smoothly éurveda Based on a i?mited number of applications,
it is concluded that the method}yieldéagcuxétedeforqatibhs%;“
It is believed that this is the first general éoluﬁion‘for
shells in which the stiffnesses of ribs and edge beams have
been incorporated directly in the analysis.

The method does not admit to accurate results as far
as internal forces and moments are concerned, The orien-
tatLOn of the elements within the structure appears to have
a significant influence on the results. A considerablg
amount of.wofk remains to bg'done.in-this area ahd pérhéps;

a method for prediéting an optimum'drientation can be
derived. .

The use-of‘curvéd elements to represent shell surfaces
is almost an untouched field and holds pramise as a better
way of idegdlizing complicated shapés. The curved‘elément
itself-could be idealized as an assemblage of triangular

elements and its elastic characteristics eyaluated by the-

%

method of this dissertation.
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APPENDIX A
MATRIX [Tb]

The general nature of the geometrical shape of the
finite element requires that many of the elements in matrix
Tb be lengthy expressions. Therefore, rather than pre-
senting Ty, in matrix form it is more convenient to list

the individual elements.

b e
Ty 1= 222
3
T1,0= - E‘?
’ 2g
be
Ty 3= 22
I
1,4 = 522
R
1,5 = 72
bd
Ti,6 =7 22
T :P_?—_C._{,.PE_@.
1,7 = 552 ¥ 572
> Bl
Ty g=-"7+"7
! 2g 2f
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1l

be . ba
g2 f2
2 |
b 5 [4c2 + b2]
12ag
be [202 - b2]
12ag™
S ? s 2
2ag :
1% 5 .2
5 [6cd + 2d° - b ]
12af ‘
D [60b%c + 5b°d + 23]
12af :
b [b° - 20d]
2af
2 2 2
_b ¢2 + 2 d2 [2¢ + 4]
dag 4daf
DO [-50° ~ 207] + —L2—s [6b%c + b4 - 2a7]
12ag 12af
2
be 5+ bd2 [2¢ + 4]
2ag 2af
b2c
4g2
b [e? - 2v?]
12¢g
~ be
2
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v, , - 28
3,4 4f2
b 2 2
. =_____[2b-d:l
3,57 1062
bd
Ty = =
3,6 2f2
357 4%2 45°

s [4b® = Plow =2 [407 4 0°]
1052

2
be 2 2
T = ——ioee [4c% - 5b°]
4,2 2Oa2g2

o .. 93

2

bed De? a2

T :w[»]oc ad]

4,4 20&2f2

N | oo o 2.2

) = =2 [30b%c® + 20b°cd + 5b%a

4’5 60&2f2 |
b 3 2

T ‘= s 37 -~ 10c%d]

4,6 10&2f2 ’

.
L4 [10¢° - a?]

9pec3 +
2 -20a2f2

T =,
4,7 2Oa2gz
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+ 20cd> + 8a%]



bc2

= ——— [~15p

20a“g

—22 - [~1002
10ag
2
b 5 [11c°
60ag
' b02 [20? -
. 20ag” -
2 [-3p°
20ag
.2
25 [15¢a
60af
—2_ [100%c
60af
b 302 -
20af
L2
b > [202 _
20ag™ -
20ag
2 [-70°
20ag
3b20

70

2 2

2~ 6c°] + bé 5 [30b°c® - 200%ca - 50%
60a“f

- 20cas - 2a%]

- 0?1 + —B— [10¢%d + 10042 + 10b%c - 3]

10a°f
+ 2b2]
b?]
- 9¢°]
+ 4d2 - 2b2]
+ 724 = 5ca? 4 @3]
10cd - d2]
> 12 o .2
<] + 5 [5cd + 33 + 1]
20af
- 3¢%] + —P— [20b%c + 2074 + 50a° - 4a3]
60af

- ¢°] + —2— [10ca + 118% + 7%%]
20af



il

._.,..13__2... ,[402 - 5b2]
60g
_ 3bc
10g°
3b%4
2012
—Ls 502 - 4a?]
60f
3bd
1012
3b%c  3b4d
— Dot 2
20g° 20T
B [-5p? « 2027 « L [502 4+ 242]
20g 20f
3be 3bd
5t P
108 10f
_a, o
2t a?
_ be?
2g2
be
2
g
_a, &
3t 5T
bd?
-3
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bd
f2
3 3
£.§+_d_§
28 2f
_ b02 + bd2
g2 | 2f2
. bc _bd
g2 f2
2
- 24 —£ 202 - b7]
12ag
_ bc3
sag”
b02
2ag2
a d2 2 2
-5+ 5 [6cd + 44° + b“°]
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2
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a
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a ;
2 2
< 2 [402 + b2] ;=2 s [6cd + 24°
12ag 12af
3 2
dag 4daf
2
2ag 2af

72



10,3

10,4

Il

it

i

il

12g2
2
1 2 2 be
725 [87 -7l -5
4g
_ 4 be
E‘b**_"zgz

5 [20° + 5¢°] + =5 [2b® + 58°]

12g 12f

a 2 2 2 3
- 7 + =3 [30ec"d + 40cda” + 1547 + 10D
T 60a“f

2

c 4+ 6b2d]
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2
bd 2 2
T = w————s [10c“ + 10cd + 3d°]
10,5 P
208°f
b 2 2
T = ——— [20c“ + 20cd + 64°]
10,6 55
20a°f
3 2 2 a° 2 2 3
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4 2
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bd
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e 2 2 d 2 2 2 3-
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12,27 7 5.2
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bd 3
7 - [10acd + 3d°]
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~ APPENDIX B
COMPUTER ANALYSIS

A computer program was written in FORTRAN IV language
for. the IBM 7040 digital computer fof a complete analysis
of the shell. A1l of the matrix algebra was performed by
the use of the Scientific Subroutine Package (SSP) as
provided by IBM. Due to the limited capacity of core
storage, it was necessary to write the programlin‘three
phaseso Output from. the first two phases was recorded on
tapes and read intovthe final phase of the progran. A macro
Jflow diagram is given in Figure B-1 to illustrate tne basic
steps in the‘so}ution of a shell.

The program requires the use of two data‘tapes, one
for recording elemental properties and structural stiffness
and the other for recording deformations. All node point
deformations are determined at the end of Phase II while
Phase III calculates. the internal actions.

In the flow diagram, ELE is used to.represent the
_elastlc constants, numper of elements, number\of nodes, node

identification, element geometry, [¥], [H ] [T 1, [Hb],
[T,] and [K 1.
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@ Calculate [Kp]
'Calculate‘[Hb]
Read Number of ‘\\
Elements and Nodes ' i
| Calculate [Ty]
Read Node Designation _
r -Ca.lqulate [Kb]
‘Read Coordinates 2
of Node Points C?lculate [x™]
[x°]

ead Elastic Constant ~ Calculate
and Thickness

Calculate Element

<Write ELE on Tape‘>

Geometry

NO

Calculate [¥]

Calculate (8]

Calculate [Tp]

.

Figure B-1. Computer Flow Diagram

All Elements
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<:. Reaé ELE j>
|

(: Build [SK] i:>

<:Read L;ads {FE>

/
Modify [SK] and
{F} for Boundary
Conditions and

Skewed Axes

-y
~Solve for‘{Qf

£

Write {q} on tape

<: Reai {q} :>

Pigure B-1.

Concluded

=<: Read ELE-j)

. Build {qp}

Build, {ap}

Calcu_la'té [Pp]

Calculate [Py ]

Y
CalCU1aFe'{°j

]
calcul%tew{s}

3
13

caloulate {5}

calculatel{sb}

<11 Elements

YES

STOP
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