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CHAPTER I 

INTRODUCTION 

1o1 Statement of the Problem 

The analysis of shells of double curvature, in par­

ticular hyperboli_c _ paraboloidal shells, is investigated. 

Both membrane and bending deformations are considered. The 

continuous shell is discretized by a number of triangular 

shaped plane finite elements which are connected together 

only at their node points. Continuity of deformations is 

maintained across the boundary lines separating the elements. 

Equilibrium is established within the element and at the 

node points. The element properties are determined and com­

bined to define the elastic characteristics of the total 

shell and deformations corresponding to a particular set of 

load and boundary conditions are determined. The critical 

phase of the analysis is the evaluation of the elastic 

characteristics, expressed in stiffness matrix form, of the 

individual finite elements and it is with this phase that a 

major portion of this investigation is concerned. 

Material of the shell is assumed to be continuous , 

homogenous and isotropico Shell thickness is considered to 

be small in comparison with other dimensions and the well 

1 



known assumptions of small deflection theory are employed. 

For the purpose of this study, the problem is con­

sidered solved when the structural stiffness matris is 

derived and deformations of the shell are determined. 

1.2 Historical Notes 

2 

In recent years thin shells of double curvature have 

been frequently used in construction, especially for roof 

systems. The hyperbolic paraboloid is one of the most popu­

lar of the doubly-curved surfaces and has received consider­

able attention in the past decadeo Felix Candella (1) has 

summarized the many advantages of the hyperbolic paraboloid 

in one of his numerous contributions to the field of shell 

construction. One of the advantages he lists is the sim­

plicity of the differential equation which governs the state 

of stress in the shell provided that the shell acts as a 

membrane. 

The potentialities of this doubly-curved surface were 

first exploited by Aimond (2) in the early 1930's. Since 

that time an extensive amount of literature on the subjec t 

has been published. However, it has been restricted almost 

entirely to the membrane, or momentless, stress condition. 

Past experience with structures designed by the mem­

brane theory has shown that they perform satisfactorily 

when subjected to l oads that are uniformly distributed with­

out abrupt changes in intensity. For other load conditions 

however, the membrane theory is inadequate and does not 
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yield realistic results. There are also a number of support 

conditions for which the membrane theory yields unsatis­

factory solutions. In these cases the effects of bending 

action must be included in the analysis and design. 

Although a complete general theory of shells of arbi­

trary shape has been formulated, its application to the hy­

perbolic paraboloid is mathematically complex (3). The 

complexity of this formulation is greatly reduced by intro­

ducing the concept of shallow shells, however, the solution 

remains difficulto .An equivalent shallow shell theory has 

been given by Margurre (4), while perhaps the most exact 

existing theory of hyperbolic paraboloids bounded by a rec­

tangular set of characteristics is due to Bongard (5). 

A recent paper by Chetty and Tottenham (6) investigates 

the linear bending analysis of the stresses and deformations 

of a thin shallow rectangular hyperbolic paraboloid shell 

subjected to uniform normal pressure o The authors discuss 

and compare the Vlasov and Bongard governing equationse 

The idea of representing a continuous elastic medium 

by discrete finite elements is by no means new. Hrennikoff 

(7) used a system of elastic bars to represent a flat plate 

structure as early as 1941. In the late 1940's and early 

1950's several investigators reported contributions in con­

nection with wing deflections and other aircraft related 

structures by using plate assemblages and influence co­

efficients (8, 9 , 10). 

One of the first signifi cant contributions on finite 



elements, as such, was presented by Turner, Clough, Martin 

and Topp (11). They derived a stiffness matrix in implicit 

form for a triangular and a rectangular element subjected 

to a plane stress condition. The solution was based on an 

assumed displacement function over the element. 

4 

Clough (12) presented a paper dealing with finite 

elements in plane stresso He also derived the element 

stiffness matrix on the basis of an assumed displacement 

function. In 1961, Melosh (13) contributed a paper concern­

ed with the analysis of thin plates in bendingo An assumed 

displacement function was used to derive the element stiff­

ness matrix. A second paper by Melosh (14) listed what he 

termed requirements that must be satisfied by an assumed 

di splacement function. 

Zienkiewicz and Cheung (15, 16, 17) have contributed 

a number of papers to the rapidly growing list of liter­

ature related to the use of finite elements in structural 

analysiso They discussed the successful use of finite 

elements in the analysis of flat plates and arch dams. 

Rectangular elements have been shown to yield accurate 

displacement results for plate structures and shell struc­

tures of single curvatureo Results obtained with the use 

of triangular elements for the same structures have proved 

to be somewhat less accurate o The inaccuracies appear to 

be due to the lack of compatibility of deformations along 

common sides of adjacent elements. Using an assumed dis­

placement function for a rectangular element, compatibility 
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of vertical displacement and slope tangential to the boundary 

can be maintained, however, compatibility of slope normal 

to the boundary is violated. For other shaped elements even 

the vertical displacements are discontinuous. This appears 

to have a very significant influence on triangular elements. 

Because of this, rectangular elements have been used much 

more frequently than elements of other geometric shape. 

Certain types of structures, irregular shaped plates, 

plates with openings, doubly-curved shells, et cetera, can­

not be discretized by rectangular elements and thus it is 

necessary to use some other geometri.c shape.. The above men­

tioned disadvantage of the triangular element can be elimi­

nated, or reduced, by using an assumed stress function, 

rather than displacement function, as,the basis for deri­

vation of the element stiffnesses .. Such a procedure is dis­

cussed by Pian (18) for a plane stress condition. Severn 

and Taylor (19) use an assumed stress .function for solving 

plate bending problemso 



CHAPTER II 

MATHEMATICAL FORMULATION OF ELEMENT STIFFNESSES 

2o 1 General 

A major criticism of triangular elements used for 

forming the model of a two-dimensional structure is that 

the resulting accuracy is not as good as that obtained with 

rectangular elements o Such results have been reported by 

a number of investigators when using a displacement function 

to calculate the element stiffnesses (20)o The basic reason 

for this is that the assumed displacement patterns do not 

satisfy conditions of compatibility across the edges sepa­

rating the elementso When a cubic displacement function is 

assumed for a rectangular element, the displacement along 

any edge may be described by a cubic equationo The form of 

this cubic equation may be specified by four constants, two 

slopes and two vertical displacements at the node points 

which the edge connectso Thus, the vertical displacement 

along any edge is expressed in terms of only two nodes and 

continuity is maintaineda However, two slopes, one at each 

node, are not sufficient to determine the three constants 

in the quadratic slope displacement functiono Thus, in 

general, compatibility of normal slopes at the edges of two 

6 



7 

adjacent elements is violated. For geometrical shapes other 

than the rectangle, the cubic equation for vertical dis­

placement along an edge involves node points not necessarily 

on that edge and, therefore, vertical displacements are also 

discontinuous. This incompatibility has a pronounced effect 

on solutions involving triangular elements. 

Compatibility of vertical displacements and slopes 

along the edges of two adjacent elements can be forced by a 

procedure discussed by Severn and Taylor (19) and used in 

this paper o The element stiffness matrix is derived on the 

basis of an assumed stress distribution rather than a dis­

placement function by applying the princi~le of minimum com­

plementary energy o Details for a plane stress condition and 

bending are presented in the following sections of this 

chapter. The two important quantities to be determined are 

t he strain energy stored in the element and the work per­

f ormed by equivalent edge forces acting through the edge 

displacements o Geometry of the triangular element is shown 

in Figure 1o 

The steps in the mathematical procedure for deriving 

the element stiffness matrix are listed below. 

a) Stress functions. 

b) Stress resultants. 

c) Equilibrium. 

d) Stress-strain relationship. 

e) Strain energy. 

f) Boundary displacements. 
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g) Edge forces .. 

h) Work of edge forces .. 

i) Complementary energyo 

j) Element stiffness matrixo 

The steps are carried out for a plane stress condition in 

section 2.2 and for bending in section 2.3 .. 

2$2 Plane Stress Stiffness Matrix 

a) Stress functions~For any point in the triangular 

elem~nt of Figure 1 it is assumed that the three stress 

components may be expressed as a function of the coordinates 
' ' 

of the point and a set of parameters, . ~ o The three stresses 

are assumed to be of constant magnitude ~cross the depth of 

the element while varying parabolically in the plane of the 

elementa An infinitesimal element is isolated and shown 

in Figure 2a .. The assumed stress equations are: 

- -2 -2 -- ' -2 ax = 0'1 + a2x t a 3y, + a4:x;, + a 5:;v + a6y ( 1a) 

(1b) 

- ~2 -- -2 
0 xy = 0 13+a14X+0'15Y+a16x +a17xy+a18Y ( 1c) 

where· 

-X 
X =a: -y = t Q 

b) Stress resultants~Stress resultants per unit 

length are calculated by integrating equations (1) over the 

depth of the element and are shown in Figure 2b. They are 

expressed as: 
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y 

z 

Figure 1o Element Geometry 

(Jxy 

I cry 
N 

ry 
xy 

crx I ax+ dax 

Nx Nx +'dNx 

I 

l 
. crxy + dcrxy 

j 
'lxy + dNxy 

.. 

(a) (b) 
cry+ doy Ny+ dNY 

Fi.gure 2o In-Plane ·Stresses and Stre.ss Resultants 
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t/2 
Nx = J_ t/2 

cr-xdz = t(ox) (2a) 

Ny 
= Jt/2 

- t/2 
o-ydz = t(oy) (2b) 

t/2 
Nxy = J_ t/2 

er dz= t(oxy) 0 (2c) xy 

c) Eguilibrium-The assumed stress variation must 

satisfy the conditions of internal equilibrium: 

oNx oNxy = 
0 (3a) oX + oY 

(3b) 

Performing the operations indicated in equations (3) relates 

six of the a 8 s in terms of the remaining twelve and leads 

to the following stress equation. 

(4) 

The matrices of equation (4) are given in Table L, 

d) Stress-strain relationship-The relationship be-

tween stresses and strains for an. elastic, isotropic and 

homogeneous material obeying Hooke's Law may be expressed: 

e 
X 

1 -\I 0 a 
X 

1 
ey = E -\I 1 0 " y (5a) 

-
Yxy 0 0 \I 0 xy Q 
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- -

O'x I 
X y 

(Jy 1= 10 0 0 

o-xy I b -Io -a: y 0 

Whereg X - X - -a 

TABLE·I 

STRESS FUNCTION FOR PLP~JE STRESS 

-=2 -- <-2. 0 0 0 0 X xy \y ', 

b2 -2 
0 0 1 - - -2 ;?- y X y X 

2b =- b - a --a xy -7a y 0 0 0 b X 0 

Y=t 

0 0 

xy 0 

a -2· 
-~ X 1 

Q' 1 

Q'2 

Q'3 

Q'4 

Q/5 

Q/6 

0:7 

as 
Q'g 

Q'10 

. Q/11 

0 13 

~ 

~ 
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Where "is the Poisson's Ratio of the material and -\I = 
2(1 + \I) • Equation (5a) may simply be written as 

{ ep} = [Np] ,,{o-p} • (5b) 

e) Strain ener~-The internal . strain energy of the 

element may be expressed in matrix form in terms of stresses 

·and strains .. 

up = ~ f L o-P J { eP} dv 
V . 

(6a) 

Where, as indicated, the integration is performed over the 

volume of the elemento Using equations (4) and (5) the 

strain energy becomes 

UP = ~ f Led [Pp]T [NP] [Pp]~{~} dv .. 
V 

Since the a-vector is independent of the integration,. 

equation ... (6'b) may be written as 

where 

[Hp] = f [PpJT [Np] [Pp] dv o 

.·.v 

("6b) 

(6c) 

(7) 

Matrices [PP] and [NP] are determined from equations (4) 

and (5), thus, [Hp] may be evaJ..uatedo The triple matrix 

multiplication is performed and the elements of the re­

sulting matrix are integrated over the volume of the tri~ 

angular elemento Matrix [Hp] is shown in Table II and 



- iv 
A1 A2 A3 A4-a2A6 As 

. 2 . 2-
A . b ( - ~ A . 15 VA CC1 A=- 2v-vA 10+ 2a2. 9 5- 1 a2 . s 

A5 
tr \I 

A10-7 A9 As 

CC2 
b2 = 

A13+ a:z( v - v)A14 

- t-
A1s+ 4l2 A,2 

2 L ·.· . 
A l:5vA cc,= 4+~ .6 

b4 21:r -
ccz= Ali~ a4Ait°a2(2v - v)A15 

- lf ·. 
. cc= A -.!l.fA12 3 1s a 

.· b2 
cc4 = -~A4+ a2A6 

. b2 
cc5= -vA7+ a:2A8 

-· 2 . 

. CC6= ~2A9+ ~ 0(2v - v) 
- .. · .. ~ -0~ 

CC7= -v . 1+ a 15 

,._ 

TABLE II 

MATRIX [J:I, . .J 
k' 

A5 =vA1 -vA2 

As -vA2 -vA4 

A9. -vA3 -vA5 

cc3 cc4 cc5 
- . 

A14 -vA 5 -vA10 

A,2. -vA6 -vA8 

A - . I A2 

_ A4 

.-. 

--

-vA3 -\)~ -vAs 0 

As~ - v) -vA7 A10C1- v) 
· · bv 
--A3 a 
-· 

-vA6 -.vA10 -vAs 0 
,· ---

b2 
...: 2bvA cc6 cc7 a:2A1t Aiv - v) a· s 

-A8 (~ - v. -vA1:: A,/t- v) b~ 
- 2aA6 

-vA9 -vA1s -vA14 0 

A3 A4 As 0 

As A1 A10 0 
~ 

2- " ·. 2-a V ·· 
A10· . av _ avA As+ b 2~~ Aa+ 2b2 p,_1 _-1:, 2 

A,1 A13 0 

. j-
A1s+ 4b~A11 

a-
-~A4 

-

VA1 -

-i. 

w 



{ ·A __ }: bt ::::· 120E 

60a 

TABLE III 

COEFFICIENTS FOR MATRIX[HPJ 

20(2c + d). 

20a 

5(3c + d) 

10a 

2(4c + d) 

6a 

4a 

-~ (10c3 + 10c2d + 5cd2 + d3) 
a 

5c + d. 

ta (10c~ + '5cd + d2) 

14 



15 

Table III. 

f) Boundary displa?ements~The in-plane boundary dis­

placements are assumed to vary linearly along each edge of 

the triangular element. They are expressed as a function 

of coordinate position and generalized nodal displacements. 

Figure 3 shows the generalized nodal displacements, U in the 

x-direction and V parallel to the y-axis. Edge displace-

ments u and v for each element boundary are shown in 

Figure 4o They are expressed in matrix form as 

(8) 

Where .{up} is the vector of in-plane edge displacements, 

[LP] is a coefficient matrix and {qp} is the vector of 

generalized in-plane nodal displacements. Equation (8) is 

recorded in Table IVo 

g) Edge forces~Equivalent edge forces acting along 

the boundaries of the finite element are shown in Figure 5. 

Using stress equations (4) the edge forces are calculated 

in terms of the a-para.meterso Letting the six edge forces 

shown in Figure 5 be represented by the matr~x {sp}' they 

can be expressed as 

{sP} = [Rp] {a} (9) 

where 

{sP} = LNx Ny N~ N~ NA N~J • 

The transpose of matrix [RP] is shown in Table V. 
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1 
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~ 
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Figure 3o Generalized Nodal Displacements for Plane 
Stress 
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Figure 4o 
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Edge Displacements for Plane Stress 
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TABLE IV 

EDGE DISPLACEMENT MATRIX FOR PLANE STRESS 

u(x) I I 1 - X 0 - 0 0 0 u. X 
1 

v(x) I I o 1 - x 0 - 0 0 vi X 

u< 11> I . I ~ < 1 - li) b (1 - li) 0 0 C - b Tl 

I I uj g g Tl .g 
= I b (11 - 1 > b -v( 11> I ~ ( 1 - i)) 0 0 C -

I I "j 
-- 11 g 11 g E, g 

u(t,) I I o 0 d - b - d -) ~ ex - 1) I I Uk "f A -f A f ( 1 ,- X 

v( A) I I o b - i X b - j (1 - Xj Lvk 0 "f A -f o..-1) 

- -Where: - X ,- ax - .. ax-c X=- lj = - A--a C .. - d 

...... 
-.J 
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I 
I 

I 
/>' 

-~ 

I 
I 

I 

I 
I 

I 

Figure 5 ~ Edge Forces for Pl.ane Stress 

h) Work of edge forces-The boundary displacements of 

section (f) and edge forces of section (g) may now b~ em­

ployed to evaluate the work done by the edge forces. The 

work is conveniently expressed in matrix notation.as 

( 10) 

mere the integration is performed around the boundary of 

the elemento Substitution of equations (8) and (9) into 

equation (10) yields 

or 

( 11) 

X 
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0 

0 

0 

0 

0 

TABLE V 

MATRIX [Rp-]T 

be ~ 
0 - ~ -2 g ' g 

O b3g _ bc2¥ _ bcx cf x 2-J cy 
ag ag F gz+ x 

- 2-
0 -~ E..Z 

ag2 g2 

3 -- a,.._ 3 - 2 - 2 2- 2 2 &-2 2 - -0 21::5 xy _ 2bc¥ bf~- bex ox oey 4bcxy 
ag2 ag + ag gT gz+~+ agz 

~3yz - be2;2 - befy 15 xy b2 e~2 
0 g2 2ag g g2 + ag 

_ _ bcy2 ~Y2 
0 g2 gz 

bd 
I2 
3- 2- -
by_~ bdx 
~ arr+rz 
~~y 
21{""~ 2bd2Jcy bdx2 15~~2 
af - af 2 + ~ - a f 

b3-2 bd2-2 
~2-~+ 

--
b~¥ 

bdy 2 

f2 

0 -1 be 
g2 

e2 
g2 

bd 
-F 

0 

ax 
0 

0 

ax2 
~ 

-1 

- bei 
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where 
[Tp] = f [Rp]T [LP] ds o ( 12) 

The matrix multiplication indicated in equation (12) is 

first performed and the elements of the resulting matrix 

are then integrated along the appropriate edgeo [Tp] is 

shown in Table VIG 

i) Complementary energy~Having formulated the in­

·ternal strain energy and the work of the edge forces, the 

complementary energy may now be.formulated. 

(13) 
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Equations (6c) and (12) are substituted into (13) to obtain 

The principle of minimum complementary energy requires 

orrcp - 0 
oO:m -

Therefore 

(For all om) G 

( 14) 

(15) 

(16) 

j) Element, stiffness matrix-Equation ( 16) may be 

solved for {o} to yield 

(17) 

Equation (17) is substituted into equation (6c) to obtain 

the following expression for strain energyo 
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(18) 

If[~] represents the matrix of stiffness coefficients, 

strain energy may also be expressed as 

( 19) 

Comparison of equations (18) and (19) yields the stiffness 

matrix of the element in terms of [Hp] and [Tp]: 

(20) 

Equation (20) represents the end product sought in 

this section~ It is the plane stress stiffness matrix 

referenced with respect to the elemental system of axes. 

In the following section, a similar procedure is 

employed to develop a bending stiffness matrix. 

2.3 Bending Stiffness Matrix 

a) Stress functions~For any point in the triangular 

element of Figure 1 it is assumed that the five stress 

components ox, cry, oxy' oz~ -, ozy may be expressed as a 

function of the coordinates of the point and a set of 

22 

parameters, ~m -~ ·'!i,· oy and oxy are assumed to have a linear 

variation across the depth of the element and a quadratic 

variation in the plane of the elem~nt. ozx and ozy have a 

parabolic variation across the depth of the element and a 

linear variation in the plane of the element. Figure 6 sh,ows 
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the assumed stress variation across the element thickness. 

0 zx 

Figure 6.. Bending Stress Distribut,ion 

The five stress.equations are: 

z ( 131 - -2 + 135xy + 136y2) (21a) ox = + 132X + 133Y + f34X 

z (137 + j38X + 139Y + 
-2 

+ 131'1xy + i:s12Y2) (21b) cry = l:S1ox 

axy = z (1313 + i314i + 1315Y + i316x2 + r:>17:iy + r:>1aY 2) (21c) 

azx = Z' (r:>19 + f:l2oi ,+ ,"21Y)· (21d) 

ozy = z, (1322 + r:>23i. + f:l24Y) 0 (21e) 

Where 

Z' 4z2 :,.1-7 

and - -x and y are as· previously defined. 

Having assumed stress equations (,21), the stress re­

sul,tants may be determined .. 

b) Stress resultants~The five stress resultants are 



determined by integrating equations-(21) across the depth 

of the element .. 

t/2 

24 

Qzx = f / 2t 
0 zxdz = 3 (1319 + !320X + 1321.Y) . (22d) 

-t 2 

t/2 2t 
(1322 + !324Y) Q -f a dz = -· !323X + zy .- - t/2 zy , 3 (22e) 

c) Eguilibrium--Application of the conditions of 

equilibrium of the element shown in Figure 7 all.ows for 

seven 13-parameters to. be solved for in terms of the re­

maining sevent·e-eno Equations of equilibrium to be satis­

fied: are 

(23a) 

(23b) 

(23c) 
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Figure 7o Bending Stress Resultants 

Equations (22) ,are substituted into (23) to obtain .the re­

lationship between the p. parameters., In terms of the re­

duced number o.f p I s, st~ess equati?ns ( 21) may now be ex­

pressed as 

(24) 

Wl).ere 

and matrix [Pb] is as shown. in Table VIIG 

d) Stress-strain relationship-The stress-strain re­

,1ationship for an ela.stic, isotropic and homogeneous. 
' ' 

material obeying Hooke' .s Law may be expressed in the fol­

lowing manner: 

25 



- ·-- ·-= --2 --- --2 0 0 z zx zy zx zxy zy 

0 0 0 - --0 0 0 z zx 

0 0 0 b --- 0 -- zxy a 0 0 0 

0 1 z' 0 ·1 - 1 - 0 0 0 - z'x - z'y a a a 

0 0 0 b - 0 0 0 -"':2z'y0 
a 

TABLE VII 

MATRIX [Pb] 

0 0 0 0 

-- --2 --- --2 zy zx ·zxy zy 

0 0 0 a ---- 0 zxy 

0 0 0 a ---z'x 
b2 

1 z' 0 1 -tz'.x 0 
1 -
bz'y 

0 0 0 

0 0 0 

-z zx zy 

0 0 t z' 

0 1z,. 
a - 0 

0 

0 

--2 zx 

0 

_g z 'x a 

0 

0 

--2 zy 

2 -oz'y 

0 

I'\) 
. 0\ 
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ex 1 -\I 0 0 0 ox 

ey -\I 1 0 0 0 cry . 

1 0 0 Yxy = E 0 0 oxy (25a) 

Yzx 0 0 0 \I 0 0 zx 

'Yzy 0 0 0 0 \I ozy 

or, more concisely as 

(25b) 

e) Strain energy~Referring to equation (6) the ex-

pression for strain energy due to . bending may be written: 

(26) 

where 

0 (27) 

The matrix [Hb] is evaluated in the same manner as for the 

plane stress co~dition and is presented in Table VIII and. 

Table . IX. 

f) Boundary displacements~Expressions for boundary 

displacements are assumed such that compatibility of the 

three deformations along a line separating two elements is 

achievedo . That is, compatibility of the vertical deflection 

and the slopes, normal and tangent to the line. Edge dis-

placements are expressed in terms of the gene~alized nodal 

displacements at the ends of the line. Consider a gene~al 



TABLE VIII 

MATRIX [H] ,_. b 

Ar Az A3 A4 A5 A6 ,-,vA1 -vA2 -vA3 . -vA4 : -vA5 -vA6 0 0 0 0 0 

V~s ,6!; ¥~rt 1icl""i21'1s "s '-vA2 -v,'4 -vA5 -wJ..7 -\IAIO -•A!f"S!Ai7 o 0 ii:5A15 0: &A19 

As ~ ·As As • -vA3 -:-vAs -vAs -vAJo -vAa ·-vA9 0 0 ·O 0 0 

ira, ~~9 A15 -vA4 --.vA-7 -vA,5~9 -vA1 I -_•/;s"i21'19 BB2 
- - - b- 2 - 2 

- ~v As -~(~~J f<-~i.AJ -7<~w -i'i<b\rb~J 

~51°'21 A14 -v"5 -v.Aio -vAe -vA-13 -vJli5 -•"'4i;.Ai9 O 0 i!jA15 0 
2-
*A21· 

A12 -vA5 -vAe -vA9 . -,1A15 -vA14 -v.Ai2 0 0 0 0 0 

- 2 · t 
mi1 = Ai,+~CP-'i5~~11 A1 A2 A3 ~ As ~ 0 0 0 0 0 

Bll2 = A,s(v:.. v) -~~I A4 A5 A7 A10 As 0 .0 0 0 0 

Bll3 = Ag+ *2Ca2Ais+ ~Az,i' ~t,A,s Aio '\f't,A,1 Ag+~,s 0 at;Ai6 0 
2-
*A17 0 

.All A13 A15 0 0 0 0 0 

A15t,A20 ~~19 0 i!jA17 o· 2-
*A20 0 

BB3 -~.&s i<-~iAi~ -~<v~t i<-~iAi~ -~(Ait~i[ 

vA1 vAz vA3 vA4 v"6 

(SYMMETRICAL} 
v"4"-iA16 vA5 

2-
~~A17 vAa 

;;~i.a,16 vA,o 
2-

'vAttfA19 

'vAittlA20 vAi5 

vA2jA I 2!.,_, 
I\) 
CX> 



.TABLE IX 

COEFFICIENTS FOR ]UTRIX [H . ] b 

a+ C 
jEl 

1 
1 
3c2 + 3cd + d2 

6a2 

3c + d 
12a 
1 

"6 . . . 
4c3 + d3 + Gc 2d + 4cd 2 

1ou3 

. 4c + d 
30u 

1 
19' 
6c2 + 4cct + a2 ,, 

JOuG;. 0 

{A}. _ 8ubt 5c4 + 10c3d + 10c2a~ + 5cd3 + a4 
- 3E 15n4 

f, 
3 2 . 2 3 

10c + 10c d + 5cd + d 

5c + d 
60a 

GOE) 

10c2 + 5cd + d2 
90a"" 

t2 
lo 

t 2 (a + c) 
JOu 

t2 
~ 

t 2 (3c + d) 
120a. 

t 2(3c2 + 3cd +·d2) 
· 60a2 

t 2 I 

tin 
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edge st shown in Figure 8. The orthogonal axes system has 

a general orientation. 

evs 
e '0 t y 

y ·-

l a(I a/ I 
ws w >1.t wt 

t 

Figure 8 .. General . Disp~acem.ents 

Vertical.deflection along st is represented by a third 

degree polynomial in y. 

30 

(28a) 

This polynomial involves four constants Which_ may be evalu!...' 

ated in terms of· the four nodal displacements W8 , ex.s' Wt 

and ex.t" The torsional rotation, ey is asE;nimed' to vary 

.linearly along st and· i,s expressed in .terms of e..,,s and 

e'Vt as 

-
ey = e..,,i ( Y - 1) - eYj Y '(28b) 

where 

Y = s\ .. 
Equations (28) are appl::ied,;.to each of the three edges of 
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the triangular element shown in Figure 9o This yields' a 

set ~f nine equations which are most conveniently expressed 

in matrix form 

(29) 

Where {ub} is the vector of edge disp~~cements, [Lb] is ·a 

coefficient matrix and {qb} is the vector of generalized 

nodal displacements. The gener~ized nodal di~placements 

are shown, in Figure 10. Equation (29) · is recorde.d .in 

Table x. 

y w \\ 
\ ' \ 
' \ 

z \ \ ~ 
Tl ~ 

Figure 9. Boundary Displacements Due to Bending 

. g) Edge actions-Equivalent edge actions. are shown i n 

Figure 11. They are evaluated from ' the :Stress -equations <;24) 
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Figure 10 .. Generalized Nodal Displacements Due. to 
Bending 
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Figure 11. Edge Actions Due to Bending 
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and expressed in matrix notati.on as 

(30) 

where .{sb} is the vector of edge. actions due to bending 
; 

and [Rb] is a coefficient matrix.. The transpose of ,[Rb] 

is presented in Table XI. 

h) Work of ·edge actions-As,previously dis~ussed in 

connection with equation (10) the work of the bending·edge 

actions acting through their ~espective· displacements'may 

be expressed as 

(31) 

where 

(32) 

-The elements, of matrix [Tb] are listed in Appendix A._ 

i). -Complementary energy-Applying the principle of 

minimum complementary energy leads to results similar to 

equati'on (16)o The following expression is obtained: 

(33) 

j) Element stiffness matrix, in bending~The matrix 

.algebra involved here is the same as in paragraph.(j) of 

secti'o~:-- 2o 2· and ~esults in the, :,foitlowing equation: 
:.. : . . " ·'-, I I' ,' ' 

0 (34) 

Equation (34) represents the bending s,tiffness· matrix . i ' 

referenced with respe.ct to the elemental system of axes, 



0 

0 

0 

0 

0 

.o 

- 1 

-x 

0 

-2 -x 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-.1 

-.x 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

X -:o 

0 

0 

_1 
a 

0 

-2 _ 2i 
-x a 

0 0 

ucx -~ 
g 
C2X2 

--2-
g 

acx2 
---r. 

g 
3a2:x2 -~ 

g 

2bc 

7 
2bcx 

7 
2ubx 
~ g 

2bcx2 

-r 
2a2bx2 

2 cg 

TABLE XI 

MATRIX [Rb~T 

be -~ 
g 

bcx 
-i 

abx -~ 
l!,. 
-2 

bx2(b2 - 2c2) 
cg 

abx2 
--.·-2-· 

g 

a2bx2 
---y. 

. cg 

be 

7 
bcx 
~ g 

X - 2x2 

-2 
·X - X 

b 
ag 

0 

_ 2bx 
ag 

_ bx 
cg 

0 

0 

0 

C 

~ 
0 

ex 
og 

. 2ax 
bg. 

0 

.cL 
ag 

_1 
g 

2cx 
ac; 

2ax 
cg 

- 2i 

bd 

? 
bdx 

7 
abM 
f2 1 

b b2 
~(crM4-dM 1 ) 
f . -· 

a~ ?;4 
2 

a ~M 
df~ 6 

bd 
- -;:'2 

f 

bdx -7. 
ab 

-°?M1 
bdx2 

---::r 
f 

0 

b 
al' 

0 

b 
~5 

0 

0 

0 

d 
"6? 

0 

dx 
"6? 

0 

d 
al' 

1 
1' 

1 - 4i + 3x2 

1 - 3x + 2x2 

35 

2t2 
-3-



x, y and z. 

2.4 Total Element Stiffness Matrix 

Equations (20) and (34) express the matrix formu-

lations for plane stress ~tiffnesses and bending stiff­

nesses respectively. The plane st;res~ stiffness, derived 

on the. basis of the theory ~f plane stress, indicates .. that . 

36 

. displacements U and V are related ~nly with the in-pl~e, lr 
I , 

· .. forces Nx and Nyo. The bending stiffness, . .,... derived on the 

basis of the Lagrangian - Kirchoff Plate Theory, indicates 

that displacements ex, ey and W are related only, with 

actions~' Mx and Qz• Thus, the total element stiffness 

matrix may he expressed.as 

[K] = 

· where 

I 
I 
I 

0 

-------i----

0 
1 

I 
I 

K - total element stiffness matrix 

K = plru+e· stress stiffness matrix p 

Kb =-·bending. stiffness matrix .. 

(35) 

However, the form of equation (35) may Qe improved,by 

grouping line.ar, and, rotational· displacements and. the cor­

responding forces and momentso. Di1;1pl
1
acement .and action 

vectors for a.node i of the triangular element.are: 
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u. 
J. Nxi 

v. 
J. Nyi 

i{qi} 
w. Qzi J. {s-} = (36) = 

L J. 
,I 6xi ~i 

e . yi lVIxi 

8zi Mzi 

The total element stiffness matrix conforming to equations 

(J6) is built up from the e:Lements of [KP] and [Kb] as 

demonstrated in Table XIIo The rotation ez is taken to be 

zero in this pape:r since the,angle at,which the finite 

elements meet in, a smoothly curving shell is small. For 

structures in which the plate elements meet at a significant 

angle, a,s at the fold line in a folded plate structure, the 

stiffness corresponding to 0z could have a, controlling in­

fluence on the plate bending actions (21) .. The moment lVIz 

is zero in the elemental systemo 

If an element has node points i, j and k, the total 

element stiffness matrix·(Table XII) may be partitioned 
\ 

into 6x6 sub.matrices as 

K.,. I K .. I K1.k 
J.I I J.J I 

----i----, ----
[K] = Kji I Kjj I Kjk 

I I 
(37) 

. -- I------,----
Kki I Kkj I Kkk Q 



Nxi 

Nyi 

Qzi 

I,lyi 

Mxi 

J.1zi 
·-- .. 
Nxj 

Nyj 

Qzj 
t= 

:Myj 

:M . 
XJ 

:Mzj 
---
Nxk 

Nylr 

Qzk 

Myk 

Mxk 

Li.zlc 

Kp11 Kp12 O 0 0 o I 

Kp22 0 0 0 0 

Kb33 Kb31 Kb32 O 

I 
I 
I 
l 
I 

T_ABLE XII 

ELEMENT STIFFNESS MATRIX 

Kp13 Kp14 0 0 0 0 I y'1,15 ~16. 0 0 0 O 

Kp23 Kp24 0 0 0 0 I Kp25 Kp26 0 0 0 0 

0 0 Kb36 Kb}4 Kb35 0 : 0 0 Kb39 Kb37 Kb38 0 

Kb11 Kb12 O I o 
I 

Kb22 0 1 0 
I 

0 Kb16 Kb14 Kb15 O; O 0 Kb19 Kb17 Kb18 O 

(SYMIJETRICAL) 

0 Kb26 Kb24 Kb25 O .IO 0 K K . 
b29 'b27 Kb28 0 

o: o o o o o ojo ·o o o o o 
L_· ·--------------L-------- --- · -

I 
KpJJ ~ 34 0 0 0 0 I Kp35 KpJ6 0 

I . 
0 0 0 

K P44 O 0 0 O I Kp45 Kp46 O 
I . 

0 0 0 

Kb66 Kb64 Kb65 O I O O Kb69 Kb67 Kb68 O . I . 
r;:b44 Kb45 0 I O O Kb49 1{b47 Kb48 0 

I 
Kb55 0 I 0 

I 
0 Kb59 Kb57 Kb58 O 

010 0 0 0 0 0 
L__ ____ --------

Kp55 Kp56 O 

Kp66 0 
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0 
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Kb88 O. 
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CH.APTER III 

FORMULATION AND SOLUTION 

3 .. 1 Axes TraiJ.sfo'rmation 

The element stiffness matrix (Tal?le XII)' developed in 

Chapter II is referenced •to the ax~.s system. of the element. 

:Before the,eleme~tal stiffnesses O(\Tl be ~ombtned to form 

the structural stiffn,ess it is necessary to transf<?rm: .\each 

elemental stiffness ,from its owr.i. system to'one oommop. 

system, referred to as the' structural system .. Figure 12 

shows an elemental system and the structural system. Super-. 

script 11 a 11 refers to the elemental system while "o" refers 

to the structural system .. 

XO 

i --~- I 
y I 

la 
z 

Figure 120 Axes Reference Systems 
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Displacements and forces are transformed from the ele-

mental to the structural system by performing three rota-

tions" The transformation for a node point i may be ex-

pressed as 

{q~} = [ '11 J {q1} (38) 

and 

{s~} = [ '11] {s:} 0 (39) 

The vectors {qi} and {si} are as in equation (36) and the 

transformation matrix is: 

. Cl'oax ~oax · Yoax 
I 

/ I 

~ I 
I 
I 

o:oay lSoay Yoay I 0 
I 

~ 
I 

/ I 

aoaz _f3oaz Yoaz I 
I [ '1i] = -------------~------------- (40) 

~ / 
I 

f3oax I o:oax Yoax 
I 
I 

0 I Qoay f3oay Yoay 

/ ~ 
I 
I 
I 

. I (l'oaz l3oaz Yoaz I 

where 

(l'oax = cosine of an.gle between xa and XO axes 

cosine of angle between a and yO 
f3oax = X axes 

Yoax ;- cosine of angle between X 
a and zO axes 

" 
0 

" 

cosine of angle 
. a 

and zO 
Yoaz = between ,z axes .. 



The element transformation matrix is constructed from 

equation (40) and may be expressed as 

'1t O : 0 
I 

-----+-----+-----
! 

I [o] = 0 : 'Ii 0 
I I 

-----+-----+----- ---
1 I 

0 : 0 : .'t • 
I I 
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(41) 

Elements of the '1!-matrix are. derived by expressing 

each of the elemel;ltal axes as a vector in terms of the 

structural system coordinates of the node points •. This 

results in the following nine equations for the direction 

cosineso 

X- - :x:. 
J 1 (42a) aoax = a 

Y· - Y· 
l:loax = J ,,; 1 (42b) a 

zj - z, 
1 (42c) Yoax = a 

xk - xi .,. caoax 
aoay = b (42d) 

yk - Yi - C(:l 

l3oay 
. , , -oax .(42e) -· 

zk - z. - c Yoax 1 (42:f) Yoay = 

aoaz = f:3oax Yoay - floay Yoax (42g) 

~oaz = aoay Yoax - aoax Yoay . (42h) 

'Yoaz ·= aoax f:3oay - aoay l3oax (42i) 
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The element stiffness is transformed from the·ele:mental (a) 

·system to the structural (o) system by the following matrix 

oper~tions: 

. (43) 

or 

therefore 

or 

(44) 

where 

(45) 

3a2 Structural Stiffness ,Matrix 

Equation (45) expresses the stiffness of a single 

finite element in reference to the structural system. There 

are as many such matrices as there are finite ·elements .. 

These are evaluated and then qombined to form the structural 

stiffness matrix which is of size 6n x 6n, wher.e n is the 

number of node points in the·entire structure .. This struc­

tural stiffness matrix, designated [SK], relates. the .gener­

alized displacements of each and every .node to the external 

load vector, 

(46) 

Where, {F} is the vector of external loads, [SK] is the 

matrix of stiffness coefficients ~.d .. { q} is the· vector of 



generalized nodaJ. displacements. The superscript de~ig­

nating system of axes is omitted from equation (46) since 

the formulation ·requires that all-loads and- displacements 

b~ referenced to the structural system. 

3.J . Bormdaq .Condit,ions 

· The formulation of equation :(46) allows for solution 
. ' 

of generalized displacemen_~s:··{q} only after proper.·con-
' 

strain ts have been· applit3d to rend.er the structure -.stable. 

These constraints are'applted in the form of boundary, or 

support, co::qditions .. 

It.is in the.application of boundary conditions.that 

! the fini.te element method has a_ -distinct advantage _,_over 

classical theory. Boundary conditions can be physically 

reasoned without concern for _such effects as concentrated 

corner forces .which occur in Kirchoffean plate theory or 

. shear force-s which occur along plate. edges. 

Since there ·are.six degrees of freedo:Qi at each node, 

there are six possible -condi ti_ons of constraint at., each 
I 

node which may be; applie.d singly or in any c,ombination. 

For a:ey; node point i, these are: 

u. = 0 
' ]_ 

v. = 0 
]_ ' 

w., = 0 
]_ 

e . n ·=. 0 

6yi,1 = 0 

0zi - 0 ·o 

43 
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For each rigid constraint, the corr~sponding row and 

column of the,stiffness matrix is deleted and the order of 

the. ma.trix is reduced by one. Therefo_r~, if r is the number 

of constr~ints, the order of the reduced stiffness matrix 

is (6n-r). 

3.4 Skewed Boundaries 

The ability to. work with skewed boundaries is a neces­

sity for analyzing arbitrarily shaped plates or shells. It 
\ 

is also desirable when working with regular structures.which 

have .skewed axes. Since computer storage, capaci.ty is 

critic al in the finite elemen.t method, it is important to 

take full advantage of symmetry whenever possible... ,For 

example, a symmetrical umbrella shell,. symmetrically loaded, 

may be analyzed by considering only one-half of one quadrant~ 

The stiffness matrix must be modified by transforming 

the· rows and col,u.mns which correspond to node· points lying 

on a skeVfed boundary. Figure 13 represents a boundary which 

is skewed wit~ respect to the structural system. The angle 

of skew is in the X-Y planeo 

Figure 13a Skewed Boundary Axes 



The rel~tion between displacements at node i in the two 

systems may be expressed: (superscript "b" refers to 

skewed system of axes)., 

I 

u? u<? cos w -sin w 0 I ~ / l I l 

v? sin w cos 0 I 0 v? w I l 

/ ~ 
l 

w<? 0 0 0 
I w? I l ·i 

= -------- ---- +-- -.-- ----- --0--0 
·~ / I -sin 0 .6xi cos w w 6xi I b 0 

0 I sin 0 eyi I 
ti.) cos w eyi 

0 / ~ I 0 0 1 
b 

6zi I 6zi 
I 

or 

In a similar manner: 

(47) 

(48) 

The stiffness matrix for ,a structure in. which some 

of the nodes lie on non-skewed axes while others lie on 

skewed axes is a "mixed" matrixo That is to say, some of 

the elements are in the structural system, others are in. 

45 

the skew system whi;:Le still others are in a structural-skew 

systemo In the mixed matrix there are four different 

relations between forces and displacements., 

i) Fo related with 0 
q 

ii) 
. 0 

related with b 
F q 

iii) Fb related with 0 
q 

iv) Fb related with b 
q 
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Condition .( i) requires no modification in the stiff­

ness matrix .. Conditio~ (ii) requires that all columns of 

[SK] corresponding to a node on the skew boundary be post­

m1lltiplied by [w] .. Condition (iii) requires that all rows 

of [SK] corresponding to a node on the skew boundary be pre.:. 
' \ . 

T multiplied by [w] • Condition (iv) is satisfied by the 

,operations of (ii) and (iii)~ These matrix operations are 

conveniently carried out by working with the 6x6 submatrices 

which correspond to each node poi~ta It is, of course, 

possible to have many different skewed boundaries in'a 

single structurea ·such would be the case fo~ a circular 

plate or any irregular shaped'plate or shell .. 

3,,5 Deformations 

The elemental stiffness matrices (Table XII) are trans-. \ . . 

formed to the structural system and combined to form the 

structural stiffness matrix .. This.matrix is then reduced 
i 

in accordance with applied boundary conditions and modified, 

if necessary,' for skewed axes.. This re.sUlts in. a set of 

( 6n-r) simul taneou's equations which are solved to' yield the 

deformations at each and every node point .. 

. 3 .. 6 Stresses and Stress Resultants 

Having determined t~e ~eneralized displacements at , 

each node point, stresses in the individual finite eleme.nts 
. '' 

may be evaluatedo This is.accomplished by selecting from 

the q.isplacement vector :those values corresponding to the 
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three nodes of the particular el_ement in question. These 

displacement values are then transformed from the atruc·tural 
·. . ~ 

system to the elemental .. system and used to build vectors 

{~P} and.{qb}•_ Equations (17) and (33) are substituted 

into equations (4) and (24) respectively to yield 

(49) 

and 

(~O) 

·, 

After solving equations (49) and (50), th~ in-plane 

and bending actions are evaluated from equations (2) and 

_ (22) respeetivelyo 



CHAPTER IV 

APPLICATION TO HYPERBOLIC PARABOLOID SHELLS 

4 .. 1 General Procedure 

The first step in applying the finite element. method 

-0f analysis 1:;o a shell,. or any elastic c·.ontinuum, is to 

idealize the structure by subdivid.ing it into ·an assemblage 

of discrete members, triangular elements in the case .of 

doubly curved shellso There are many different ways·in 

which this can be done and, of course,·the closer the ideal-

ization is to the·actual structure, the better the results. 

Secondly, the elastic characteristics of the finite 

element are.determinedo This has been presented in detail 

in Chapter II .. In this presentation matrices. [HP] (Tables· 

II and III), [Tp] (Table VI), [Hb] (Tables. <VIII and IX) and 

. [Tb] (Appendi,x A) are hand formulated in ~erms of the 

elastic properties and the geometry of the f'inite element. 

They are .then coded in FORTRAN and an IBM 7040 Digital Com­

put.er is used to evaluate the element stiffness matrices · 

(equations 20 and 34; and Table XII). 

The .third step consists of the structural analys'is 

of the entire assemblage of elements. Details concerning 

axes .transformati'on, boundary conditions a:n.d. skewed axes 

48 
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are presented in Chapter IIIo This step is carried out com~ 

pletely on the computero · · A flow ,chart of the computer pro­

gram is given in Appendix B. 

The procedure outlined above is applied to the analysis 

of two hyperbolic ·paraboloidal shells, details of.which are 

given in the next sectionso 

4.,2 Edge Supported Shell. 

The shell shown in Figure 14 is analyzed for defor­

mations due to a uniformJ,.y distributed vertical load of 

0 .. 3472 pounds per square inch. The middle surface of the 

shell is defined by the equation 

(51) 

The shell is supported along all four edges by diaphrams 

which are considered to be incapable of vertical deflections 

while offering no resistance to normal displacementso Elas-· 

tic properties and dimensions of the shell 13,re giyen in 

Table XIIIo 

The shell is subdivided into an assemblage of tri­

angular ,elements as shown in planform in Figure 150 A 

finer grid is selected near the center of the shell an-

.ticipating this to be the region of larger deflections. 

Since the shell is .symmetrically loaded and, is also geometri­

cally symmetrical with respect to aoc and bod (Figure 14), 

it can be analyzed by considering one quadr,ant such as cod .. 
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b 

X 

Ly 

y 

z 

Figure 140 Edge Supported Shell 

TABLE XIII 

PROPERTIES OF EDGE SUPPORTED SHELL 

. LX = 180 in • E = J X 106psi 

Ly = 180 in. t = 2.5 in. 

Lz = 36 in. 'J = 0.16 
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13 

Figure 15~ 

0 I X 
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L 
Finite Element Idealization of'. Edge ~upported Shell 

\J1 ..... 
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_ ,Deformations at the node points of the shell are listed 

in Table XIV while Figure 16 shows a contour plot of vertical 

deflections .. 

4o3 Inverted Umbrella Shell 

The shell shown in Figure 17 is a popular form of the 

· hyperbolic paraboloid and is known as the inverted umbrella 

shell" This shell is analyzed for deformations due t-o a 

uniformly'distributed vertical load of 004861 pounds· per 

square inch .. ·. The middle surface of the shell is defined 

by.the.equation 

(52) 

The, shell is supported by a single column at the center and 

stiffened by ribs and edge beams as shown in F-igure 18 .. 

The tapered rib is approximated by elements of constant 

thickness, each having a different thickness o _· Elastic pro­

perties and dimensions of the shell are given in Table X!lo 

,The idealized-shell is shown in plan:form in Figure 190 

Due to conditions of. symme,try .the shell can he ana!-yzed by 

considering. one-:}'.lalf of on_e quadrant a Deformations at the 

node points are listed in Table X!-II and a contour plot of 

the vertical defl-ections is shown in Figure 20 .. 
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NODE u 
POINT (ino) 

1 OoOOOOOO 
2 -0(1000710 
3 -00000700 
4 -0~000710 
5 -0~001780 
6 -0~001302 
7 -0~001780 
8 -0~002086 
9 -0~003140 

10 -0~002936 · 
1 1 -00003140. 
12 -0~002086 
13 0,;000000 
14 ·00000000 
15 0.,000000 
1-6 o~.000000 
17 0.,000000 
18 0 .. 000000 
19 0 ... 000000 

TABLE XIV 

NODE POINT DEFORMATIONS FOR EDGE SUPPORTED SHELL 

V w -ix 0y 
(ino) (ino) (rado) (rad .. ) 

OcOOOOOO 0,.028153 00000000 00000000 
00000710 0,,025991 00000001 0 .. 000001 

-00000000 0 .. 026559 0 .. 000163 -0 .. 000000 
-0 .. 000710 0 .. 025991 0 .. 000001 -0 .. 000001. 

0 .. 001780 0 .. 033467 0.,000152 0.,000152 
-00000000 0 .. 0,26027 0 .. 000089 -0.,000000 
-0.,001780 00033467 0 .. 000152 .. -0 .. 000152 

00002086 00022003 -00000299 . -00000299 
0.,.001625 0 .. 030958 -0 .. 000243 -0 .. 000089 
00000000 0 .. 029764 0 .. 000118 -0 .. 000000 

-0 .. 001625 ·: 0.,030958 -0 .. 000243 0~000089 
-0 .. 002086 00022003 -00000299 0 .. 000299 

0 .. 000000 0.,000000 0.,000000 0 .. 000000 
-00000732 0 .. 000000 -0 .. 000440 . 00000000 
-0 .. 000395. 0 .. 000000 -o .. 0·00691 0 .. 000000 

0 0 0000.QQ. ' 0 .. 000000 0 .. 006675 0 .. 000000 
0 .. 0003-95 00000000 · -0 .. 000691 .0 .. 00.0000 
0 .. 000732 0 .. 000000 -0 .. 000440 0 .. 000000 
0 .. 000000 0 .. 000000 0 .. 000000 0.000000 

0z 
(rad .. ) 

0 .. 000000 
00000000 : 

-0 .. ·007813. 
0 .. 000000 
0 .. 000000 
0 .. 000414 
0 .. 000000 
0 .. 000000 

-0 .. 000606 
-0°0002285 
-0 .. 000606 

0 .. 000000· 
0 .. 000000 

-0 .. 000009 
0 .. 000211 

-0 .. 036501. 
0 .. 000211 

-0 .. 000009 
0 .. 000000 

\J1 
..r::,,. 
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X 

z 

Figure 17a Inverted Umbrella Shell 

TABLE X:V 

PROPER.TIES OF INVERTED .UMBREiiLA _SFIELL 

.Lx .. = 144 ina E = 3 .. 85 X 106psi 
•,) 

.Ly =· 144 ino t = 1o5 in. 

L = 36 . z in .. 'V = . 0.10 
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Figure 19., Finite.Element, Io.ealization of 
Inverted Umbrella Shell 
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y 

Figure 20a 
l 

Vertical Deflections For Inverted 
Umbrella Shell 



NODE 
_pQINT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

- 17 
18 
19 
20 

-- TABLE XVI 

NODE POINT DEFORMATIONS FOR INVERTED UMBRELLA SHELL 

u V w 0x 9y 
(ino) . (ino) . (ino) (rado) (rad .. ) 

0~000000 0 .. 000000 00000000 00000000 . 00000000 
0~000000 0 .. 000000 00000000 0 .. 000000 0~000000 
0~000000 -00000024 0 .. 013445 0 .. 000436 0.,000000 

\,, 0~000010 0 .. 000325 00013332 -00000311 -0 .. 001072 
. 00000000 00004634 00041636 00000575 . 00000000 

0~000009 00004886 0 .. 04.1539 0 .. 000487 -0 .. 000221 
0~000000 00014046 0 .. 080'419 00001574 0 .. 000000 
0~000000 00016827 00089709 . 00001538 00000000 
0~000052 00013983 0 .. 080457 00001584 00000145 
0~00376.6 0 .. 011992 0 .. 095786 . Oo001969 -00000712 
0~004963 0 .. 013923 0 .. 107720 0 .. 001980 -00000227 

.0~006772 Oo008703 0 .. 152754 00002603 -0 .. 002361 
0~008003 00009949 00168241 0 .. 002608 -00002190 
0~008957 0.,008957, - 00258872 0.002806 -0 .. 002806 

-0~009129 -0.,009129 0 .. 292626 00002851 -00002351 
-0~003206 -0 .. 003206 . -0 .. 004403 -0 .. 000436 00000436. 

-.:..0~·003839 -0~003839 -0 .. 002405 0 .. 000337 -0 .. 000337 
0~000029 0~000029 0 .. 040601 0.001751 -Oo001751 
0~006548 0~006548 0.158948 0 .. 002888 -0 .. 002888 

-0.000999 - 0.,001422 0 .. 028810 o.00120~ 0 .. 000393 

0z 
. (rado) 

... 

0~000000 
0~000000 

.. 0~000000 
-0;004526 

0~000000 
-0~001061 

0~000000 
0~000000 

· 0 .. 000630 
-0 .. 000078 

0000323-2 
-0 .. 003781 
-0 .. 001030 

0 .. 000000 
0.000000 
0.000000 
00000000 
0 .. 000000 
0 .. 000000 

-0 .. 001361 

\.fl 

'° 



CH.APTER V 

SUMMARY AND CONCLUSIONS 

5., 1 Summary 

A stiffness method for the analy!3is of_ shells of double 

curvature is p'resented in this disse:vtationo The shell is 

idealized as an assemblage of plane triangular shaped 

el'ements connected together at their node points .. Equi­

librium is established within each element and at the node 

points and comp~tibility of deformations is satisfied along 

the line separating adjacent elementso. The development 

consists mainly of formulating the elemental. stiffness 

matrices which are derived on the basis of an assumed stress 

functiono Final solution is effected by the use of a 

digital computero 

Two hyperbolic paraboloid shells, one supported along 

all four edges and the other supported by a central column, 

are analyzed for deformations to demop.s,trate .the method,. 

5.,2 Discussion of Results 

The number of doubly curved shells-for which solutions 

are reported in the literature is very limitedo · The shells 

selected as examples in this paper have. been analyzed by 

60 



other methods a.nd.the,results, to a certain extent, are 

available for comparisono 
·' 

A solution or application of Bongard's simplified 
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equa~ions :for the edge supported shell shown in Figure 14 is 

reported by Chetty and Tottenham (6)0 ~hey list vertical . ' 

deflections for a· section along the. y-axiso Figure. 21 shows 

a comparison of deflections .obtained by the two me.-thods. 

There is considerable variation in· the deflecti.on pattern 

although maximum value~, Oo038 inches as opposed to ,0.033 

inches, compare. quite favorably a 

1/4 1/2 3/4 
I 

Oo01 
'I 

I 

0 .. 02 / 

(W) //~inite Elements 
/ 

Oo03 / 
/ 

Oo04 Bongard (6) 

Figure 210 Vertical Deflection Profile Along 
Y-Axis of Edge Suppor,ted Shell 

Bending stress resultants are calculated in accordance 

with the procedµre-discussed in section 3.,60 Discontinui­

ties in the bending mome.nts. do occur according to wh:i;.ch of 

the contiguous ele-ments is used in the calculation, at a 

-particular no.depointo As indicated by equations (49) and 

( 50) th,e ::stresses, and; therefo.re. the stre.ss resultants, are 
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a function of the generalized ,displacements at all three 

nodes of an element a Thus,· it is .expected that .there should 
I 

be a certain amount of discontinuity in.the.moment values. 

The magnitudes of the discontinuities are dependent upon the 

element size and orientation relative .to other elements 

joining at the node pointo .Table XVII.lists·values of My 

at several node points as calculated from different elements 

·to illustrate the discrepancies. 

TABLE XVII 

BENDING MOMENTS FOR SHELL OF FIGURE 14 

Node Point Moment ~ (In-Lb/In) 

3 -22050 -22050 - 2 .. 08 

6 27 ... 93 12.,68 21.24 

10 !"".19 .. 24 -25.,27 ,-20.08 

1 1 -11,o67 -28.,55 -11057 

12 -45017 ~28028 -19087 

The deformations calculated.for the inverted umbrella 

shell. (Figure 17) are comparable with experimental results 

obtad.ned in a laboratory test and reported by the Portland 

Cement Association ( 22)o The vertical deflecti~m contours 

calculated in this dissertation are in very close agreement 

with·the experimental results~ There is a difference in. the 

magnitude of the deflections as the experimental results in­

clude .the effects of creep and plastic flow of the concrete .. 

Discontinuities of the stress resul tan.ts·, simila~ ,to those 



discussed .in the previous paragraph, also oc'curred .for. the 

inverted umbrella·shell. 

5.3 · Conclusions and Possible Extensions 

63 

Th_e. presentation provides a general solution: for dete~ 

mining. deformations in shells of doubl·e curvature. . The · . . . ' 

method applies equally well to other plate ,and shell struc;.. ' 
I I ',, 

tures provided that the middle surface ·is either flat or 

smoothly curveda · Based on a limited number. of applicatio:r;i.s, 
I ·' 

it is concluded that' the method' yields aceurite deforma'tiil&nsi •. 
• ·'· . . .: . ·'l : ., . ·. ·. ~: . ' \ • ', •' 

It is believed·that this is the·first general solution for 
., 

shells in which the stiffnesses of ribs and edge.beams h9ive 

been incorporated directly in the analysis. 

The method does not admit to accurate results as far 

as internal forces and moments are concerned. The orien~ 

tat-ion of the elements within the struc.ture appears to have 

a significant: influence: on the results. A conside~~Qle 

a.mount of work. remains to be· done in this area and perhap13'' . 

a method for p·redicting an optimunr orientation c:an be 

-derived. 

The use ·of curved elements to represent shell surfaces 

is almost an untouch~d field and holds prq•ise as a better 

way· of ide~izing complicated shapes. .The curved element 

itself-could be idealized as an assemblage of triangular 

elements and its elastic characteristics· eyaJ.uated by the· 
\ 

method of.this disser!tation~ 
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APPENDIX A 

The general nature of the geometrical shape of the 

finite element requires that many of the elements in matrix 

Tb be lengthy expressions~ Therefore, rather than pre­

senting Tb in matrix form it is more convenient to list 

the. individual elements. 
b 2 c 

T1 1 = -'"2' 
' 2g 

T1,3 
be 

= -2 
g 

T 1 ,4 
b2d = 
2f2 

T1,5 
b3 

= 
2f2 
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b2 2 2 = [6cd + 2d - b] 
12af2 

T2,6 
b [b2 2cd] = 2af2 -

T2,7 
b2c2 b 2d [2c d] ==~+- + 

· 4ag 4af2 

T - be [-5b2 - 2c 2 ] + · b [6b2c + b 2d - 2d3] 
218 - 12ag2 12af2 

T - bc2 + ....!?.L [2c + d] 
2 ,9 - 2ag2 2af2 

b 2c 
T3, 1 = ~ 

4g 

be 
= - 2g2 
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b 2 2 T3 5 = ~ 2 [2b - d] 
' 12f 

bd 
T3,6 = - 2f2 

T 3,9 

T 4_, 1 

be bd = - ·+ ·-
2g2 2f2 

T4,2 = bc2 [4c2 - 5b2] 
20a2g2 

9bc3 

10a2g2 

b 2d [ · 2 2] 
T4 4 = 2 2 10c - d 

' 20a f 

T 
. .4' 7 
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bc2 2 2 b 2 2 2 
T4 ,8 = [-15b - 6c ] + '· [30b c· - 20b cd- 5b2d2 

20a2g2 60a2f 2 

T5,3 = b [-3b2,_ 9c2] 
20ag2 

b 2 2 2 
T5 4 = 2 [15cd + 4d - 2b] . , 6oaf 

b 2 2 2 3 
T5,5 = 2 [jQb C + 7b d - 5cd + d] 

60af 

T5, 6 = b 2 [3b2 - 10c~ - d 2] 
20af 

b 2 2 2 b 2 
T5 , 7 = 2 [2c - b] + 2 [5cd + Jd2 + b 2] 

20ag · · · 20af · 

T5., 9 = b [-7b2 - c2J + b [10cd + 1td2 + 7b2] 
20ag2 20af2 

2 T _ 3b c 
6, 1 - 20 2 g 



T . =-1£L 
6,6 10f2 

T 3b2c 3b2d 
6 ' 7 = 20g2 + 2or2 

T6 8 = ~ [-5b2 - 2c2] b [ 2 2d2] 
' 20g + 20f2 5b + 

T = 3bc + 1£2:.._ 
6 'g 1 Og2 1 Of2 

a CJ = - - +-2 2g2 

bc2 
T7,2 = - 72 

2g 

T7 -- ££ ,3 - g2 

a d3 
T7,4 = - 2 + 2f2 

T = bd2 
7,5 2f2 
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, 3 d3 C -
T7,7 = 2g2 + 2f2 

bc2 bd2 
T7,8 = - ~ + ~ 

2g2 2f 

. bc3 
T3 2 = -~ 

' 4ag 

bc 2 
T3 3 = 72' 

' 2ag 

T8,4 ·='- 3a + d2 [6cd + 4d2 + b2] 
12af2 

bd2 
T3· 5 = ~ [ 2c + d] 

'· 4af2 

bd 
Tg 6 = ~ (2c + d] 

' 2af , 

T3,7 = c2 [4c2 + b2] + d2 [6cd + 2d2 - b2] 
12ag2 12af2 

bc3 bd2 
T3_.,8 = - ~ + ~ [2c + d] 

4ag2 4af 

bc2 . bd 
T3, 9 = -~ -~ [2c + d] 

2ag2 2af · 
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C [ 2 2] = ---"2' C -2b 
12g 

1 [ 2 . 2] bc2 
=ma-c .... 2' 

4g 

d be 
=-2r5+~ . . 2g 

d [ 2 2] 
T9,4 = 12f2 d - 2b 

C bd - --+-- 2b 2f2 

T9 , 7 = ~ [2b2 + 5c 2] + __£._ [2b2 + 5d2] 
12g 12f2 

T10,2 

bc 2 bd2 1 . 2 2. 
= - ~ + 2' + 12b Jc - d :L 4g 4f .. 

a be bd 
= 2b - 2g2 - 2f2 

a c3 [ 2 2> · = - 12 + 2 2 5c - 4b J 
60a g I 

= -

3bc3 
= 

·1oa2g 2 

= - a+ d 2 [30c 2d + 40cd2 + 15d3 + 10b2c + 6b2d] 
4 ·· 60a2f 2 

73 



74 

T10,5 
bd 2 

[10c2 + 10cd + Jd2] = 
20a2f 2 

T10,6 
bd 2 6d2] = 

20a2f 2 
[ 20c + 2,0cd + 

T10,7 
CJ 2 2 d2 [ 2 2 5d3 = [5c + 2b J + 

20a2g2 .6oa2f 2 
30c d + 20cd + 

- 10b2c - 4b2d] 

T10,8 
3bc4 bd 2 

[10c 2 10cd + 3d2] ·-
20a2g2 + 20a2f 2 + 

T10,9 
3bc3 bd 2 10cd + Jd 2 ] = 

10a2g2 
[10c + 

10a2f 2 

'.11 11 ' 1 
c2 

[·c 2 2b2] = 
20ag2 

-

T 11 , 2 
1 [2a3g 2 2c3g 2 9b 2c3 J = 2 -

60abg 

T 11 , 3 
9 2 ·'[-a2g2 + c2g 2 2b2c2 ] = + 

60abg 

T d [5cd 2 - 10b2c 4b2d + 2d3] 11 , 4 ·-
60af2 

-

T C [-7c - 4d.] + bd [10c + 4d] 11 , 6 = 20ab 20af2 

Jc 2 2 2c'2 ] + T 11, 7 = s(b + d [25cd 2 + 10b2c + b 2d + 7d3 J 
20ag 2 60af2 



T = __£_ [15c2 - 12b2] 
12, 1 60g2 .. 

9bc 2 
T12,2 = - 20g2 

9bc 
T12,3 = 10g2 

1 [ 0 2 2 2b2d - 5d3 J T12 , 4 = 60 f 2 · -2 cd + 10b c -

T12 , 5 - --12._ [-30cd - 3d2] 
- 60f2 

b 
T12,6 = 10f2 [-10c - d] 

T 1 2 7 = ~ [ 1 5 c 2 + 6b 21 + ~ [ 5 d 3 - 40 cd 2 - 1 Ob 2 c + 8b 2 a'j 
' 20g 60f 

2 
T12,8 = - 9bc2 - 3bd2 [d + 10c] 

20g 60f . 

T12,9 
C 2 10c2] + d [b2 - 10cd] = 

10bg2 
[b + 

10bf2 

T 13, 1 
bc2 

= - g2 
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T bc 2 bd2 
13,7 =..,. g2 + f2 

b 2c b2d 
T13 8 = ~ + ~ 

' g f' 

T13,9 =; [b2 - c2] + ~ [d2 - b2] 
g ' f 

bc3 · 
= - 2ag2 

c3 
T14 3 = ~· - 1 

' ag 

T a d 2 2 14 5 = - b + ~ [6b C + 4b d + dJ] 
' 6af2 
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2 
T14 8 = ~ [4b2 + 

' 6ag 

T b [b2 - 2c 2] 
. 15, 1 = 6g2 

b 2c 
T15,2 = 2g2 

b2 
= -7 

T - --12_ [- -b2 2] b [·b2 + 4d2] 
15,7 - 6g2 - 4c + 6f2 

_ b2c b2d 
T15,8 = 2g2 + 2f2 

T = d2 - c2. 
15 ,9 f2 7 

3bc4 

10a2g 2 
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2a c3 2 2 
T16,2 = 15 + 30a2g2 [5b - 4c J 

3 3c4 
T16 3 = - ~ + 2 2 ' :; 5a g 

bd 3 
T16,4 = 10a2f2 [10acd + 3d J 

3bc4 bd 2 2 
T16 7 = - 2 2 + 2 2 [10c d + 10cd + 3d3] 

'· 1 Oa g 1 Oa f _ -

b 2 2 T = - 2 [4b - 5c ] 
.17' 1 30 g 

2 T _ 3b c 
17,2 ~ 10g2 

b 2 2 
T17,4 = 30f2 [5d - 4-b] 



3b2~ 
T17,5 = 10f 

T _ Jt:i2 
17,6 .- -;?° 

b 2 2 b 2 2 
T17 ? = ~ [-2b - 5c] + ~ [6b + 15d] 

' 10g . 30f 

T 3b22 3b2d 
17,B = 10g + 10f2 

1 2 2 1 2 2 
T17,g = ~-[-2b - 5c -] + :-:'2° [2b + 5d] 

5g. 5f . 

79 



AP;FENDIX B 

COMPUTER ANALYSIS 

A.computer program was written in FORTRAN I.V language 

.forL the IBM 7040 digital computer for a complete analysis 

of the shell. .All of the matrix algebra was performed by 

the us£? of the Scientific Subroutine Package (SSP) as 

provided by IBM. Due to the limited capacity of core 

storage, it was necessary to write the program in three 
' . -

. phases. Output from, the .first two phases was recorded on .. 

tapes_ and read into the final phase of the program. A macro 

flow diagram is given in Figure B-1 to illustrate .the basi,,c 

~teps in the so~ution of a. shell. 

The program requires the use of two data tapes,_ one 

for recording elemental properties and structural. s.tiffness 

and the other for recording de_forJ!lations,' All node point 

deformations are determined at the .~nd of .Phase II. whj,le 

Phase III calculates. the internal ac.t~ons. 

In the flow diagram; ELE .. is _u~ed to ~epresent the 

elastic c.ons:ta;n,ts, numper. of elements, _nu:mp~r of IJ,odes, node 
. ' ' . ··., . 

id~nt-ifica.tion, element geo~e.try, [ '11] , .. [~], [TP], [~b], 

[Tbl and [K0 ] o 
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Read Number of 
Elements and Nodes 

Read Node Designati:) 

Read Coordinates 
of;Node Points 

ead_ Elastic Constant 
and Thickness 

Calc.ulate Element 
Geometry 

Calculate ['1!] 

Calculate [H J p 

NO 

Calculate [K J p 

Calculate [Tb] 

Calculate [K0 J I 

Write ELE on Tape 

YES 

Figure B~1o Co~puter Flo~, Diagram 
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Read ELE 

Build [SK] 

Modify [SK] and 
{F} for Boundary 
Conditions and 

Skewed Axes 

·Solve for {.q l ,· J 

Wri.te {q} on Tape 

Read {q} 

Figure B-1 .. Concluded 

Read ELE 

Bui ... ld . ·.{q." ~ 
1' ,, bJ 

Calpul0s,te { 0/} 

Calculat,e {~} I 
Calculate Js l I . . L pJ 

YES 

STOP 
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