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PREFACE 

This investigation is based upon management's need for operating 

ranges to provide managerial flexibility, These ranges must be pro

vided in such a way that any selected value will yield an insignificant 

increase or decrease in the objective function (the total cost function 

or the total profit function), 

This thesis consists of five chapters. 

Chapter I, Introduction, is intended to present to the reader the 

need for undertaking a study of the Sensitivity Analysis of Decision 

Models. It explains why the Sensitivity Analysis of Decision Models 

is needed for management. 

Chapter II, Review of the Literature, presents the results of the 

literature review. It summarizes the most of the work in this field 

which has been published as articles and technical notes. 

Chapter III, Mathematical Models, develops the basis for the 

mathematical analysis required. 

Chapter IV, Inventory Systems, derives a variety of inventory 

models. It also presents the sensitivity analysis of these models 

around their mathematical optimum for the purpose of establishing 

decision ranges. 

Chapter V, Reconnnendations and Conclusions, summarizes the results 

achieved and recommendations for further studies, 

Interest in this area of Sensitivity Analysis of Decision Models 
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CHAPTER I 

INTRODUCTION 

When Operations Research techniques are applied to industrial 

situations, the most common procedure is to determine the optimum trade

off relationshi p between increasing and decreasing cost factors . To 

produce the least cost and the most profit, current Operations Research 

techniques have been carefully developed to determine the point at whi ch 

the objective function is maximized or minimized . 

The exact optimum point is not required in actual practice . From 

management's point of view, it is no; even desirable due to the diffi

culties involved in its exact calculation . Instead, the vital informa

tion is the range or region of the operating variables which will result 

in an approximately minimum cost and maximum profit. Sometimes, the 

problem of determining this range is solved by asking from what range 

variables may be selected to avoid a significant increase in the cost 

for a system or a significant decrease in the profit. A knowledge of 

this range then provides management with a flexibility sufficient to 

perform its function of managing according to the dynamic needs of the 

situation and the environment . 

The procedures which are used to establish these management ranges 

are broadly classified as sensitivity analysis. For a number of rea

sons, an understanding of these ranges and their effects as studied by 

sensitivity ,analysis is often of major importance to management , Under 
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changes of parameters, for instance, the stability of the optimum solu

tion may frequently become critical. Using the exact optimum solution 

point, a slight variation of a parameter in one direction may result in 

a large, unfavorable difference in the objective function ( total cost 

function or total profit function). At the same time, a large varia

tion of the parameters in a different direction may result in a small 

difference. In industrial situations, where there are certain inherent 

vari abilities in the estimates of the parameters not taken account of 

in the model, it may sometimes be desirable to move away from the 

optimum solution in order to achieve a solution less likely to require 

essential modification. 

The values of the coefficients of the objective function may be 

controllable to some extent. If this is the case, it is essential for 

management to know the effects which would result from changing these 

values. Even if these coefficients are not controllable, the estimates 

for their value may be only approximate. This makes it important to 

know for what ranges of their values the solution is still desirable. 

If it is determined that the optimum solution is extremely sensitive to 

their values, it may become necessary to obtain better estimates . 

In a like manner, a model that involves a fixed or a first cost 

which does not vary with the decision variables may be insensitive as 

2 

a whole. This might be in spite of the fact that variable parts in it 

are sensitive within a predetermined increase or decrease in the 

objective function above its optimum. This is yet another factor which 

serves to establish the validity and importance of sensitivity analysis . 

In view of this importance, this research project proposes to 

develop several general mathematical models and investigate their 
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sensitivity. With these models as a guide, the project will continue 

to investigate the application of sensitivity analysis toward general 

trade-off relationships which might be encountered in the wide spectrum 

of problems facing the analysts who are currently engaged in applying 

quantitative methods to management. 

Specifically, it is proposed that this research develops models for 

a variety of total cost curve or surface equations and total profit 

curve or surface equations in general mathematical forms, 

It is further proposed that the project classify types of problems 

which may be treated by those generalized equations and fully develop 

this method of analysis for some of the classical Operations Research 

techniques now in use, 



CHAPTER II 

REVIEW OF LITERATURE 

The initial reference to the use of an economic lot range to find 

the purchase quantity in situations where a quantity discount was offered 

apparently occurred in a journal article by Munn, Mary and Sarah Hayward 

(12)early in 1951. A similar approach to selecting buying quantity was 

published in 1957 by Norman, Lang E. (10). 

Since that time,. Solomon, M. J. (15) has published a significant 

and useful study on economic lot ranges. In a journal monograph of 1959, 

Solomon differentiated the total cost function to obtain the economic lot 

size and the optimum total cost as: 

and 

T = YC + YS + .. Q0 C I + S I , 
0 Q -r 2 

0 

Manipulating these functions, Solomon obtained: 

Let: 

T the 
0 

Qo the 

y = the 

6 = the 

(P-1) 2 

2P 
= l '1 + YC + S/21. 

L CIQ J 
0 

optimum total cost for the year 

optimum lot size 

number of units sold in one year 

c<>st per lot (set-up and paper-work) 

Q the lot size 
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I = the cost of carrying inventory on an annual basis 

the yearly cost increases of the optimum cost equal to 
some predetermined proportion 

5 

p = the proportion of Q that corresponds to a penalty propor-
tion of 'A . o 

Using a numerical example, Solomon allowed= 0.01 and finally derived 

values for the lower lot size QL and the upper lot size Qu. He deter

mined that: 

o. 72 Q 
0 

and 

Q = 1.40 Q . 
U 0 

The author tabulated tables for lot size versus total cost, for P 

2 
versus (P-1) , and for different monthly useages for one product using 

2P 
the routine and expediting ranges in which the last ranges correspond to 

a penalty of k and in which k<:1 . The last tables was computed for 

relatively homogeneous groups of products with approximately the same 

fixed and variable cost factors. If, however, a product involves an 

operation with a temporary bottleneck, the load on the bottleneck facility 

can be reduced by using the l ower part of the range . If the situation 

is critical, then the critical range (expediting range) can be used . 

Thus, the expedit i ng range can be resorted to in emergency situations . 

Such a table has the advant age of enabling a clerk to make scheduling 

and inventory decisions that are consistent with scheduling criteria on 

a roughly optimum basis . The proposed approach is a way of dealing with 

one dimension economy of manufacture for scheduling purposes . 

The approach proposed by Solomon is a form of sensitivity analysis 

which should prove useful wherever the objective is t~ minimize or maxi

(P-1) 2 
mize the quadratic function 2P subject to other considerations 

which are more intangible. 

· ·J 
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Another significant contribution to sensitivity analysis concerning 

the range of variables was made by Disney, R, L. (3) in a journal 

article published in 1962, In presenting a model of an inventory system 

for his research, Disney provided several assumptions. He assumed that 

demand is known and constant, lead time is known and constant, that run-

ning out of goods is prohibitively expensive, and that the yearly cost 

to hold and the cost to place are not inclusive, Disney neglected the 

fixE:,d costs in his study because they do not affect the quantity to 

purchase nor the time of purchase, 

Disney expressed the variable cost factors in the inventory system 

as a function of the exact data needed as: 

When, 

Let: 

C 

C 
0 

r 

N 

100 c-co -c-a 
0 

r "' 
N 
N 

0 

(r-1) 2 

2r 

(N/N) (c'z/C2) , 

c\/c1 

the cost of the system at any time 

the cost of the system when all needed information 
is known exactly 

the ratio of the quantity to purchase at any time 
to the quantity to purchase when all needed information 
is known exactly 

= the demand for a year 

the yearly cost to hold 

the cost to place one order. 

(Par values indicate estimated values; values without 
par indicate exact values). 

The author tabulated the results of changing the ratios Ji, .£2.., and 
N Cz 

~ and then gave the corresponding effect on the total variable cost, 
c1 
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Disney concluded th~t the quantity to purchase can take a value between 

sixty-five per cent and one-hundred and fifty-five per cent of the exact 

value when the yield on the total variable cost is less than ten per 

cent above the optimum value, 

A somewhat similar study was published by Wi.thycombe, Richard (19) 

a year later in 1963. In his work, Withycombe defined q as the 

multiplier of the cost of ordering and carrying inventory in dollar 

units, and pas a multiplier of the economic order quantity (EOQ). This 

author then defined the relationship between these multipliers as: 

2 
q=,l+p 

2p 

Giving a numerical example as an application to the above formula 

and table, the author tabulated q versus p. Withycombe concluded that 

a considerable latitude can be tolerated in making derivations from the 

calculated EOQ, and that the EOQ, as a general policy, may be rounded 

to within plus or minus ten per cent in order to form convenient lots. 

If other factors such as price concessions or standard packaging 

indicate that it may be desirable to deviate by more than ten per cent 

from the EOQ, the cost of sueµ an action should be evaluated. 

A later .technical note by Rutenbe.rg, H. Y, (14) in 1964 stressed 

the study of the ranges of set-up cost, Here, the variable is the set-

up cost while the other parameters in the total cost equation are 

assumed to be constants. Rutenberg derived the.optimum values as:. 

and 

Let: 



Q0 = the economic order quantity (EOQ) in units 

Y = the annual usage in units/year 

S0 = the true set-up cost in dollar/units 

C = the inventory cost at standard in dollar/units 

I = the inventory carrying cost in dollar/dollar of 
the inventory year 

T = the optimum total variable cost in dollarso 
0 

If the set-up cost is taken from the calculation as S instead of 

as the exact value of S, then the above optimum values equations yield 

to become: 

Q (s) = fii.f J CI 

and 

T(S) =F O 

The author defined Pas the per cent of increase in the total 

annual cost when using S instead of S. He then derived the expression: 

P 1fi ff- 1) 100 • 

Manipulating this expression, the author substituted: 

R = l(.[ + §) 
2 s S 

and came to a quadratic function: 

s2 - 2Rss + sz = o 0 

8 

The solutions of this quadratic equation are the lower limit of the set-

up cost (SL) and the 

and 

uppe:L l~m;t( :f -A cost (S0 ): 

Su= S (R +~)• 
As a direct application to his study, Rutenberg gave a significant 

and interesting example demonstrating that even with a set~up cost 
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ranging from one to over one-thousand dollars, the use of the estimated 

value S rather than the exact value Shad very little effect on the 

total annual cost of ordering and carrying inventory, The benefit from 

Rutenberg's study is that it gives a wide range for set-up cost while, 

at the same time, the net increase in the inventory total variable cost 

is very little, 

Important recent work has extended inventory theory beyond its 

strictly classical bounds, With the presentation of many new models by 

Dr, Naddor, Eliezer (11), there has been a new basis showing that sensi-

tivity analysis can be based upon tabulated data, 

In summarizin& the related articles, notes, and citations which 

make up the bulk of the general literature prior: and relevant to the 

present research, we finq that all previous authors who have dealt with 

ordering and set-up cost and the carrying or holding cost haye, regard-

less of their purpose, considered only the simple inventory model of 

the two cost elements. This simple inventory model can be represented 

mathematically as: 

Y=AX+! 
X • 

The most recent work by Dr, Naddor does, indeed, include more extensive 

inventory models and their sensitivi.ty analyses, But, again, these 

sensitivity· analyses are based on the tabulate.cl .data only, 

The purpose of this research project is to provide a variety of 

mathematical models and to inclucle their mathematical sensitivity ex-

pressions, It later seeks the application of these models and their 

sensitivity expressions to decision models in the Operations Research 

field, Some of these applications might be inventory models, replace-

ment models, production models, or queuing models, The scope of this 



dissertation is limited to the continuous functions, leaving discrete 

functions to further investigation, 
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C~ER lll 

MATHEMATiCAL MODELS 

· This chapter is devoted to the development of mathematical models 

of one independent variable X. The investigation is for t.he purpose 

of obtaining the optimum value X and the corresponding optimum value 
0 

Y0 • Knowing the mathematical optimum (X0 , Y0 ), from what range may 

the independent variable be selected in a way that yields an insigni

ficant change in the dependent variable Y. above the optimum value· 
w ' 

Y ? The det.ermi.nation of the model range according to a predetermined 
0 

setting.standard allowance is made through the derived sensitivity 

formula. The setting standard allowance assumed in this study is 

a 10 per cent increase in the total variable elements over its opti-
' .· . ·.: . . . 

mum value (minimization function), and a 10 per ce.nt decrease. in the 

total variable elements, over its optimum value (maximization £uric-

t:ion). 

Thef:lrst part of thischapter describes the mathematical techniques 

using an Ulustrated example. The second part investigates the mathe-

.matical II1odels graphed as one standard curve such as the straight line, 

, circle, -ellipse, hyperbola, rectangular hyperbola, Gaqssian, and catenary 

. curve. The third part -analyzes the mathematical models graphed as a 

sum of two-stand,!1:rd curves such as a straight line versus. a parabola, ,a 

·straight line versqs rectangular hyperbola, and others.· The first curve 

11 



in these mathematical models is assumed to be an increasing function 

while the second curve is assumed to be a decreasing function. This 

assumption is necessary to provide the conditions for the existance 

of optimality for the model. The fourth part investigates the mathe-

matical models graphed as the sum of three different standard curves 

such as a straight line versus a parabola and a rectangular hyperbo-

la, a straight line versus a straight line and a rectangular hyperbo-

la 1 and a parabola versus a straight line and a rectangular hyperbola. 

The first curve(s) is (are) assumed to be an increasing function(s) 

and the other(s) is (are) assumed to be decreasing function.Cs), This 

assumption is again essential in providing the optimality in the model. 

The last part surmnarizes the mathematical models discussed and their 

sensitivity formulas. 

Mathematical Techniques 

As was mentioned before, the study is concerned with obtaining 

the optimum point for these models as well as their sensitivity ex-

pressions. For the predetermined setting standard allowance increase 

or decrease above or under the optimum value Y, the study is devoted 
0 

to establishing a range from which the variable Xis selected. For 

the time being, we will call this range the decision range (defined 

in Chapter IV). 

The mathematical techniques used are differentiation and trans-

formation. Differentiation provides the optimality, and both differen-

tiation and transformation are used for obtaining the general sensiti-

vity expression. The model can be expressed mathematically as 

Y = F(X) •. 

12 



By differentiating the function Y with respect to X, the derivative-of 

the function-is expressed as 

dY - = F' (X). 
dX 

At this point, F 1 (X) should be equated to zero to obtain the opti-

mum value.X. Thus .. 0 

F' (X) = 0 
0 

and can be solved to find X. By substituting X in the original func-
o 0 

tion Y = F(X) the corresponding optimum value Y can be obtained. This 
0 

can be expressed mathematically as 

Y0 = F(X ) • 
Q 

Therefore, the mathematical optimum point of this function-is (X, Y ). 
0 0 

The sensitivity expression of this mathematical model can be found by 

assuming an error w incurred in the calculating or estimating of the 

optimum variable X in such a way that 
0 

X = wX 
W 0 

where w is zero or a positive value by definition. 

The effect of this error won the pptimum value Y0 is an increase 

in the case of a minimization curve or~ decrease in the case of a ,: 
;, 
I 

maximization curve. The measurement of' the sensitivity can be done 

through these ratios 
I 

the ~rror value Y ,, w· 
= the exact optimum value Y 

0 

13 



or 

y - y 
W 0 

Yo 
= 

the difference between the error value 

the exact optimum 

Y and the exact optimum Y 
W 0 

value Y 
0 

The result from the first expression is the same as the second, 

with 1.0 being the only difference between them. Thus, for the pur-

pose of this dissertation we will deal with the first expression. 

Both ratios define the sensitivity expression. The sensitivity 

expression is known as a general one if it is only a function of error 

14 

w, otherwise the sensitivity expression is a special one. As is explained 

later in the illustrated example, the transformation technique is used 

to eliminate the constant term in the original function, and, subse-

quently, it is sometimes helpful to provide a/the general sensitivity 

expression. 

Illustrated Example 

The following cited example is the sum of two independent curves: 

2 an increasing parabola curve Y1 = AX and a decreasing straight line 

'curve with a positive intercept on the Y-axis Y2 = C - BX. Thus, the 

sum of these two curves is 

2 
= AX + C - BX. 

The optimum point (X, Y) of this total function can be obtained 
0 0 

by differentiating Y with respect to X, equating the result to zero, 

solving for X, and substituting X in the Y function to obtain Y as 
0 0 0 

follows 



dY 
dX. - 2 AX + 0 - B 

0=2AX -B 
0 

-X B 
o = 2A 

y = AX 2 BX 
0 0 

+ 
0 

C 

i B 1!.._ + = A--
4A2 2A 

B2 
C = • -+ 

4A 

C 

Therefore the optimum point of the function (X , Y ) is 
0 0 

B2 
' -- 4A + C). 

The sensitivity expression can be obtained by assuming that an 

~rror w has been associated with X in such~ way that 
0 

X = wx· 
W 0 

and 

w = zero or a positive value. 

Thus, the corresponding value Y which results from considering 
w 

X = wX instead of the optimum value X is 
W O 0 

y 

and the sensitivity expression 

y 
w 

Yo 
(w2 - 2w) + C 

15 



At this point the expression is not a general one. To obtain a 

general expression, transform the original function Y to another new 

function Y' such that the origin (0, 0) is shifted to another new 

origin (0, -C). Thus, 

and 

X· w 

w 

y I 

w 

y 
0 

y I 

w 

IYo'I 

I 

= X I wX = wx I 

w 0 0 

= w' = zero or a positive value 

y 
B2 

(w 
2 2w) = - C = 4A -w 

y - C = - i 
0 4A 

y 
w - C 2 

= = w - 2w. Iyo - cl 

By setting a standard 10 per cent increase over the transformed 

optimum Y 1 (the minimum value of the variable parts in the function) 
0 

or the 10 per cent decrease under the transformed optimum Y 1 (the 
0 

maximum of the variable parts of the function) four possibilities 

arise as in Figures 1 and 2: 

a) The original function is a minimization and the optimum 
of the transformed function Y I ie a negative value.· Thus 

0 
y I 

w 

IYo'I 
= ""o90 

1.00 
-· o. 90 

h) The original function is a minimization and the transformed 
optimum Y0 is a positive value. Thus 

y I 
w 

Iyo 'I 
LIO 
1.00 

= 1.10 

16 



y 

(b) 

y 

~ = 1.10 

j ~: :I E:'.~~~~~~~~~~'.:::====~Y~o!' ;;-i. ool Yo' I 
X 

Figure (1). Minimization Curves 
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y 

(c) 

-1.10 

(d) 

Figure (2). Maximization Curves 

y I a: -1.0Q 
0 

X 

X 
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c) The original function is a maximization and the transformed 
optimum value Y I is a negative Vtl:l,lue. Thus 

0 

-1.10 

d) The original function is a maximization and the transformed 
optimum value Y I is a positive valu~. Thus 

0 

y I, 

w Oo90 
Iyo '1 = i.oo 

=r 0.90 

The using of an absolute value of a transformed optimum valuelYo'I is 

19 

for the purpose to be consistent with the directions of the axes of the 

original function Y. 

In our example the curve is a minimization and Y is negative. 
0 

Thus, the sensitivity expression yields to 

w2 - 2w + .90 = O. 

The roots of this quadratic equation show the lower decision 

range w1 and the upper decision range wu to be 

2 - ¥4 - 4x. 90 
wl = 2 

= 1.0 -fa = - .68377 

and 

2 +{4 - 4x. 90 
w = --------------u 2 

= 1.0 -~ = 1.31622. 

The decision range is 

o. 68377 ~ w ~ 1. 31622 



and 

20 

0.68377X ~ X ~ 1. 31622X • 
0' W 0 

Numerical example: For the above model, assume .A= 1.00, B = 1.00, 

and C = 10.0. Thus by substitution 

X = X I 
0 0 

2 . 

B = 2A = 2.00 

B 
Y0 = - 4A.+ C = 9.75 

y I 

0 

. y I 

B2 
= - 4A. 

w -.90 IYo'I = 

w 
u 

X 
u 

and the decision range 

- -.25 

= w2 - 2w 

= o. 68377 

= 1. 31622 

= 0.68377 (2.00) = 1.36754 

= 1.31622 (2.00) = 2.63244 

The effect of an ~llowing a io per cent increase in the total 

vadable parts of the function on '•the resulting net per cent in" 

crease is 

y I 
w 

yi ;:: 
0 

. i 



By substituting we have 

Y - 10.0 w 
• 9o = -Y---. -1-0-.-0 

0 

Y = • 90Y + 1.0 
W . 0 

• 90 X 9 • 7 5 + 1. 0 = ----------------9.75 

9. 775 
:= 7. 750 = 1.0025 

The 10 per cent increase in total variable items will yield 

only 0.25 per cent in total function which in prac~ice is negli-

gible. 

Models of One Standard Curve 

Straish~ ~ine Model 

where 

The straight line model can be represented mathematically as 

Y=MX+B 

M = the slope of the line and a positive a:mount 

B = the intercept of the line 'on the Y-axis and a 
positive amount. 

( 
,/ 
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Follow the same procedutes as in the illustrated example pp. 14 - 21. 

Thus 
dY 
dX = M + 0 

therefore, 
0 = Mo 



This result contradicts the assumption that M > O. Therefore, 

one can conclude no optimum for the straight line model and conse-

quently no sensitivity analysis around the optimum. 

Circle Model 

The mathematical circle model can be represented as 

Y F ± /R2 - (X - H) 2 + K 

·The positive sign indicates the upper semi-circle, while the negative 

sign indicates the lower semi-circle. The following discussion is 

limited to the lower semi-circle, the minimization curve, where 

and 

(H, K) = the coordinates of the center of the 
cite.le 

' 

R = the radius -0f the circle. 

Follow the same procedures given in the illustrated example pp. 

14 - 21. Thus 

and 

-JER2 
dY 
-= 
dX 

0 = -! [R2 -

X = H 
0 

2 - -J 1 {X-H) 2 

1 

(Xo -H) j-'.i 

. p--y = - R + K = -R + K 
0 . . 

[-2{X-H)] 

t2(X0 -H)J 

Transform the origin of the function (0, O) te> another new one (0, -K). 

Thus, 

y I :s: y - K = -R 
0 0 

22 



Assume an error w has been associated with X in such a way that 
0 

X wX 
W 0 

and 

w zero or a positive value. 

The corresponding value due to this error w is 

The sensitivity expression is 

- 1) 

This sensitivity expression is a function of the error w, the 

parameter of the circle R, and the abcissa of the origin of the circle, 

Thus, it is a special expression and the sensitivity analysis varies 

from one model to another. Howev~r, there is a general expression for 

the family of circle models when R =Hand is presented as 

2 
- (w - 1) 

Numerical example: Let 

R = H 

The sensitivity expression for the lower semi-circle model is 

- • 90 = / 1 
2 

- (w - 1) 

By squaring both sides, one can obtain 

23 



w2 - 2w + 0.81 = O. 

The upper limit of the decision rangew1 and the lower limit of 

the decision range w1 are 

w 
u 

2 + J4.00 - 4x.81 = ~--......_ __________ ~ 
2 

and 

1.4357 

2 - /4.00 - 4x.81 
w1 = 2 = • 5643 

Thus, the decision range is 

• 5643 ~ w ~ 1.4357 

The decision range, due to the 10 per cent increase in the 

total variable items for the family circle models when R = H, 

results in the 43 per cent above and under the optimum value X. 
0 

Ellipse Model 

The circle is a special form of ap ellipse. Thus, results similar 

to those obtained from the circle model can be obtained for the ellipse 

model. The only difference is that the semi-major axis is replaced 

instead of the radius if the major axis is parallel co the x-axis. 

Parabola Model 

The', general mathematical expression for the parabola model is 

Y = 4! (X - H) 2 + K 

where 

24 



and 

4p = the length of the latus rectum 

(H, K) = the coordinates of the vertix of 
the parabola. 

Follow .the same procedures as in the illustrated example pp. 

14 - .. 2:i::· Thus 

and 

dY 2 
dX = 4P (X - H) + O 

1 
0 = 2P (Xo - H) 

X = H 
0 

y = K 
0 

Assume that an error w has been incurred in calculating or 

estimating the optimum value X in such a manner that 
0 

X = wX 
W 0 

and 

w = zero or a positive value 

The corresponding value Yw due to this errorw is 

y 
w 

i 2 
= 4P (w ~ 1) + K 

and the sensitivity expression for the total functions 

H2 . 2 
4P K (w - 1) + 1. 00 

The transformation here is not valid due to having yielded Y O. 
0 

25 
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Therefore, the sensitivity expression is not a general one and varies 

from one function to another. 

Numerical example: The following two examples show that the 

sensitivity expression varies from one parabola model to another 

due to the different parameters. 

Example 1. 

Given for the parabola model: 

H = 100 K = 100. and P = 5.00. 

Thus, 

XO = 100 

and 

H2 lUO x 100 
4-PK = 4 X 5 X 100 = 5. 00. 

For a 10 per cent standard allowance increase in total variable 

elements above its optimum, the sensitivity expression is 

yw 2 
Iyo(' 1.10 = 5(w - 1) 

Solving this quadratic functi.on the lower and upper limits are 

obtained as 

and 

2 
w - 2w + .88 = 0 

w 
u 

2 - J 4 - 3. 52 
-----...... 2----= 

2 + J4 - 3.52 = ·= 
2 

.65375 

1.34625. 



Therefore, the decision range is 

Thus, 

and 

0.65375X ~ X ~l.34625X 
0 ' W ' 0 

65.375~Xw~l34.625 • 

Example 2. 

Given the parameters of the. parabola model as 

H = 100' 

K = 100 

p = 10 

X = 100 
0 

Y 100 
0 

H2 100 x 10.0 
4PK = 4 x 10 x 100 = 2.50 • 

For a 10 per cent standard allowance increase in the 

total variable elements above its optimum, the sensitivity 

expression is 

= 2.S(w - 1/ 

Solving this quadratic function~the lower and upper limits 

of the decision range are obtained as 

2 
w - 2w + .56 = 0 

27 



·~. 

2 - /4 - 2.24 
w1 = 2 = .3375 

and 

w = 
u 

2 + J4 - 2. 24 
2 = 1.6625. 

Therefore the decision range is 

2 
These two examples show that as the ratio 4!K is smaller, 

· the decision range is wider and vice versa. 

Gaussian model 

The general mathematical expression of the Gaussian curve is 

-x2 
Y= E 

28 

Follow the same procedures as in the illustrated example pp.14 - 21. Thus 

and 

that 

0 = -

0 = X 
0 

Y = E-o 1.00 
0 

Assumed that an error w has been associated with X in such a way 
0 

X = wX 
W 0 



and 

w = zero or a positive value. 

The corresponding value Y due to this error is 
w 

and the sensitivity expression is 

y 
w r~r 

This sensitivity expression is a general one. For setting a 10 

per cent standard allowance, the decision range can be obtained as 

and 

1.10 
2 -w = E 

2 
w = .1005 

w1 = -0. 317 

w = 0.317 
u 

Thus, the decision range is 

-0. 317 ~ w ~- 317 

and 

Catenary Model 

• 

The general expression of the cat1:1nary curve is 

29 



where 

A= parameter of the catenary model or 
specifically they-intercept. 

Follow the same procedures given in the illustrated example pp. 

-1$ - 21. - Thus 

and 

or 

This result implies that 

X = 0.00 
0 

By substitution, one can obtain 

! + E-X/A • (!)] 
A A 

Assume an error w occurs with X in such a way that 
0 

X = wX , w>o W . 0 

The resulting corresponding value Y is w 

and the sensitivity e~pression is 
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yw = .! ~w/A + E-w/AJ' 
~ 2 L: . . 

The decision range for an allowance 10 per cent increase inY over 
w 

Numerical example: If A= 1.00 is given for the catenary model, 

the following results are obtained by substitution: 

and 

X = 0 
0 

y = A 
0 

= 1.00 

y 
w L 10 = _21 (Ew + E-w ) • r:r 

To solve this equation, put Ew = z. Thus, 

and 

2 ·20· Z + .!. • = z 

z2 - 2.2oz + 1.00 = o 

The roots of this quadratic equation are 

2. 20 - I 4. 84 - 4. oo • 6418 
zl • 2.00 = 

z 
u 

= 2.20 t {4.84 - 4.00 = 
2.00 

1.4582 
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The lower and upper limits of the decision range are 

and 

w1 = -.376 

w = 0.376. u ' 

Therefore, the decfsion range is 

Models as a Summation of Two Different Standard Curves 

32 

A condition for providing the trade-off relationship in each of the 

following models is.to have one curve as an increasing function while 

the other curve is a decreasing function ... Throughout this discussion 

the first curve is referred 'to as an increasi'J;ig.f,u,rtptJ.911 .while the 

secbtfd'. curv'e· :Fs;i'rHerred'.to as ··;1· decreasing one. 

Straie;ht Line Versus Ellipse Model 

The equation o:I; an increadng straight line function is 

The equation of a lower semi-half of the ~llipse is 

2 . 2 
Y 2 = -.A · - (X-H) + K 

Therefore, ·. the equation of the sum of the two curves is 

where 

M = .the slope of .the ltne a:µd a positive amount 



and 

and 

Thus, 

and. 

A = the. semi-:maj or axis of the ellipse 

(H, K) = the coordinates of the center of the 
ellipse. 

Following the same procedures, it is found that 

2 
M = 2 

A 

(X - H) 2 
0 ' 

' 2 
- (X - H) ' 0 

X= MA +H. 
o /1 + M2 

33 

The corresponding optimum value Y0 is 

MA 2 • ( + H - H 
. 1 + M2 

+K 

= M r:==:5:. MA · +. H -y 1 + M2 . . 



Transforming the.origin of the function (0, O) to another new 

one (O, -K), the result is 

y I = y 
0 0 

Assume an error w has been incurred in calculating or estimating X 
0 

in such a way that 

X = wx 
W 0 

and 

w = zero or a positive yalue. 

Thus, the corresponding value Y I which results from inducing this 
w 

error w is 

and the sensitivity expressipii. i.s 

2 + wH - H 

MAw + 82 
2 wH - · 

l+M 

This expression is riot a general one because it is a function of 

the error w and t.he parameters of the function. Thus, one can expect 

the sensitivity analysis to vary from olie model to artother according 

to .the values of the parameters. 
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Straight Line Versus Circle Model 

.Tlle circle is a special case of. the ellipse., . Thus, for the straight 

line VE!rsus the circle model the same results can simply be obtained by 

·replacing the radius R instead of the semi-major axis if the major a:x:is 

of the ellipse is parallel to the x-axis • 

. Straight Line Versus. Parabola Model 

The straight line.as an increasing function can be represented mathe• 

matically as · 

y = MS 
1 

and the half of the parabola as a decreasing function as 

. Y2 =:=. - A{x + C • 

Thus, the sum of the tt-10 functions is 

where 

M =.the slope of the straight line and a 
'positive value 

.. . . 

A = 2 JF, the pat'amete:i:- · of the decreasing 
parabola 

4P = the latus rectum of the parabola 

C = the ordinate of the parabola vertix of the 
y~axis and a positive amount. 

FoUom.ng the same procedures as before .. the following steps 

can be obtained 

dV A 
~. = M • 2f"X 

·A 
()=ij-~ 
. · .. V ""o 

2 
M2X A 

0 =4 



and 

X 
0 

A
2 

/ 2 A
2 

Y=M-2 -A 2 
o 4M M 

= -

+ C 

As the function involves a constant term, the transformation is 

used to eliminate this constant term. Thus, after transforming the 

origin (0, 0) of the function to another origin (0, -C), it is 

found that 

that 

and 

y I = 
0 

y 
0 

.;. C = -

Assume an error w has been associated with X in such a way 
0 

X = X 1 = wX = w I X 
W W O 0 

w' = w = zero or a positive value. 

The transformed corresponding value Y I is w 

and, thus, the sensitivity expression is 

y I 

w 

r:ri= 
w.;. 2 -r;. 

This mentioned function is a minimization and the transformed 

optimum value Y I is negative thus for a setting 10 per cent increase 
0 
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in Y I above its optimum one can obtain (Illustrated example pp. 14.:.. ~1) w 

-0. 9. =. w - 2 {w. 

This expression is a general one since it is a function of th°e''~rror w. 

To obtain the roots of this expression let fw = Z thus by substitution 

one can obtain 

2 . . 
Z · - 2Z + ~90 = O. 

The roots of this quadratic function are 

2 + {4 - 3.6 zu = 2 = 1.31622 

and 

2 - /4 - 3.6 Z = = 0.68377 • 1 . 2 

The corresponding roots w and w are the lower and upper limits ot the 
1 u 

error for predetermined 10. per cent increase in Yw' above its·optimum 

as 

and 

w • Z 2 
u u 

= (1.31622) 2 = 1.73245 

= (0.68377) 2 = 0.46756. 

Therefore the decision range is 

0.46756 ~ w ~1. 73245 

or 

0.46756X ~ X ,&L 73245X 
0~ W " . . .. 0 



A2 A2 
o.46756 - 2 <x ~ 1. 73245 2 

4M w --.;:: 4M 

The curve is flatter in the upper range than in the lower range within 

the decision range. A complete evaluation and ranges are obtained by 

the aid of digital computer in Appendix A. 

Numerical example: For the straight line versus parabola model 

let 

M = , 0.50 

A= 2.0 

C = 10.0 • 

By substitution, the following results can be obtained 

and 

Th~ decision range is 

X I = X 
0 0 

y = -
0 

y' 
0 

A2 2 x 2 
= 4M2 = 4 x ( 172) 2 = 

-2+10:;: 8.0 

== -2.0. 

C.'J:467 56 (4.0) ~ X ,( 6:. 92980. 
--..;;: w-....;: 

4.0 

At this stage the question can be asked, what is the net increase 
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in the total function if the constant.term is taken into consideration? 

i 
. I 



The answer can be obtained by manipulating the ratios as 

y • 

and 

w 
~ = .90 y 

0 

YW I = • 90 X (-2.0) = -1.80 

y = y t + C 
w w 

y 
w 8.20 

Y = 8.00 
0 

= a.20 

= 1.025. 

This means that the 10 per cent increase in Y I over Y 9 
W 0 

will yield only a 2.5 per cent increase in the total function 

above its optimum. This slight increase in the total function 

provides a wide range for decision making process that is a 

range of about 53 per cent in the lower side and 73 per cent 

in the upper.side of the optimum value X. 
0 

The evaluation of this kind of models is given in the Appen-

dix A. 

Straight Line Versus Rectangular Hyperbola Model 
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The sum of the two curves, a straight line as an increasing function 

and a rectangular hyperbola as a decreasing function, is 

where 

Y=MX+! 
X 

M = the slope of the straight line and a positive amount 

B = the parameter of the rectangular hyperbola and a 
positive amount. 
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Following the same procedures as in the il~ustrated example, pp.14 ... 

21, the following steps can be obtained 

dY 
-· - . 
dX 

and 

M - B 
x2 

The assumption of an error w is provided to describe the sensitivity 

analysis of the curve. Assuming an error w has been occurred in such 

a way that 

X = wX 
W 0 

and 

w 9 zero or a positive value 

the corresponding value Yw due to this error w is 

and the sensitivity expression is 

y w2 + 1 

I y:I = 2w 

This is a minimization type of expression curve with Y positive. 
0 

Thus 

y 

I y: 1= 1.10 = w2 + 1 
2w 



The solution of this quadratic function gives the upper and lower 
' ' 

limits of the decision range as 

and 

2 
w - 2.2w + 1 = 0 

w ... 
u 

2.2 + f4.84 - 4.00 
2 

2. 2 - ~ 4. 84 - 4. 00 
wl = 2 

!he decision range will be 

0.641743 < w <1.558256 

0.641743X ~ X / l.558256X 
o~ w~ . o 

The curve is flatter in the upper range than in the lower range 

within the decision range. 

Numerical example: For the above model assume M = 0.50, and 

B = 8.00. 

By substitution, the results obtained are 

= J 1,2 = 4.0 

0.641743(4.0) ~xw ~1.558256(4.0) 
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2.566912<x <6.233024. 
-w-

The evaluation of this kind of models is evaluated on the digital 

computer (Appendix A) • 

• Parabola Versus Straight Line Model 

The sum of an increasing parabola curve and a decreasing straight line 

is 

where 

2 
Y=AX +C-MX 

1 A= 4P, the parameter of the parabola 

4P = the length of the latus. rectum .?f the parabola 

C = the ordinate intercept of the straight line 
and a positive value 

M = the slope of the straight line and a positive 
value. 

Differentiate with respect to X, equate the result to zero, solve 

for the optimum value X, and substitute with X in Y function to obtain 
0 0 

dY dX=2AX+O-M 

0=2AX -M 
0 

M 
XO = 2A I 

M2 M Y =A-+C-M 2A 
o 4A2. 

I 2 . 
M = - 4A t c. 

The sensitivity expression can be obtained by assuming an error 

w has been associated with X provided that 
0 ' 



and 

X. = wX 
W 0 

w = zero or a positive value. 

The corresponding value Y due to this error w is 
w 

Tran form the origin of the function (0, 0) to another new 
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origin (0, .. c). Thus the transformed value Y' is w 

The sensitivity expression is 

y I 

w - w2 - 2w 1~,-
The type of this expression curve is minimization and Y I is 

0 

negative. Thus 

- 0.90 
2 

= w - 2w 

2 
w - 2w + 0.90 = 0. 

The solution of this quadratic function gives the upper and lower 

limits of the decision range as 

2 + / 4 - 3.60 
WU= 2 = 1. 316228 

and 



w = 1 
2 - {4 - 3.60 

2 = 0.683774. 

The decision range will be 

0.683774 -<w (1.316228 

and 

0.683774X /x ~l.316228X . 
· o~ w~ o 

0.683774 2: <:xw ~1.316228 2: 

The flatness of the curve is quite equal in the upper and lower 

range of the decision range. The 32 per cent upper the optimum X 
0 

and 32 per cent lower the optimum X is the result of an allowance 
0 

10 per cent increase in the total variable elements. If the constant 

term is concerned in the function this 10 per cent is going to be less 

and as the constant term is high the reduction in this 10 per cent 

will be more. 

Numerical example: For the above model let 

A = 0.10 

M = O. 50 

C = 6.00. 

By substitution, the following results can be obtained 

10 2x2 = 2.5 = 

Yo = -

= - 4 !04 + 6.00 = 5.375 
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Y'= 
0 

10 
- 4 X 4 = -.625. 

The decision range is 

0.683774(2.S)<x <1.316228 (2.5) _w_ 

l.70943s<:::x ~.292570 
-W- • 

The evaluation of·this kind of models is evaluated on the digital 

computer (Appendix A). 

Parabola Versus Parabola Model 

The sum of an increasing parabola and a decreasing parabola is 

where. 

2 -
Y = AX - B /x + C 

1 . 
A=~ , the parameter of the increasing parabola 

4Pl 

4P1 = the latus rectum of the increasing parabola 

B = 2 .fi;_, the parameter of the decreasing parabola 

4P2 = the latus rectum of the decreasing parabola 

C = the ordinate of the decreasing parabola vertix 
and a positive value. 

The optimum point (X, Y) of this function can be obtained by 
0 0 · . ! 

differentiating they-function with respect to X, equating the result 

to zero, solving the past equation to obtain X0 , and again substituting 

with the value X in the Y-function to obtain Y as follows 
0 0 

dY _ 
2AX -

B 
dX - 2p 

0 = 2AX.O 
B -·-

2 Jx;, 
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2/3 

X = [!A] 0 

y 1 iA3B4 -1838 + C = 4 0 
4A4 4A • 

This function contains a constant term c. Thus, to obtain a 

general sensitivity expression, transform the origin (0, 0) of the 

original function to another new origin (0, -C). 

The optimum of the transformed function (X ', Y 1 ) is (X ,Y - C). 
0 0 0 0 

At this point assume an error w has been associated with X or X I in 
0 0 

such a way that 

X = X 1 = wX = wX 1 
W W O W 

and 

w = zero or a positive value. 

The corresponding Y I is calculated by substituting wX instead 
W 0 

of \ in the y-function. Thus r 1/3[ w2 l/2] 
y ' = 4A] 4. (w) • w 

and 1/3 

y I = ~:] ~+] 0 

The sensitivity expression of this kind of models is 

The type of this curve for the ,sensitivity expression is a 

minimization with negative optimum value Y 1 • The sensitivity expression 
0 

will be 



Y ' 2 4 1/2 w w lyo'I = -0 .. 90 = 3 - 3 (w) 

or 

w2 - 4(w) 112 + 2.70 = O. 

The two positive roots of this equation around its optimum are 

obtained from Appendix A .. These two positive roots are the lower 

and the upper limits of the decision range as 

or 

and 

w1 = 0.5733071 and wu = 1.4612770 

x1 = the lower range = 0.573307l(X) 
0 

X = the upper range = l.4612770(X ). 
U 0 

The decision range corresponding to the predetermined 10 per cent 

increase in transformed value Y' above its optimum Y I is 
W 0 

0.5733071(X )<::::"x C:::::::1.4612770(X) o _ w_ o 

B 2/3 . B 2/3 
0.5733071 ( 4A ) <xw<l.4612770( 4A ) • - - . 

The curve is slightly flatter in the upper range than in the 

lower range. 

If the model is a sununation of an increasing parabola of a type 

Y1 = B(X) 112 and a decreasing parabola of a type Y2 = p;y;2 the dis

cussion will le~d to a sensitivity expression 
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y I 2 . 
w _ .!!...+ ! (w)l/2 

f Y0 '( l · 3 · 

This type of curve isa maximization.with a negative optimum value Y '. 
' ,· ' 0 

Therefore, for 10 per cent decrease i.n the Y value under its optimum, 

. the. sensitivity expression will be 
' 2 ' 

0.90 = - w3 + % (w)l/2 

or 

2 1/2 . 
w - 4(w) + 2~70 = 0 

The positive two roots of this equation around its optimum are. 

the lower and. upper limit.s of the decision_ range and are obtained 

f.rom Appendix Bas 

w1 = O. 5734145 and wu = 1.4612045 

which is the same result. obtained in the minimization (neglecting these 
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$light clifferences) ; and this is true due to. the fact that the maximizing 

of the n.egative of the function is. the minimizing of the same function. 

Numerical .example: For the above model let A= .10, B = 2.0, and 

C = 10.0~ 

· By substitution, the following results are calculated as 

2 1/3 
B 

X =-
. o i6A2 

= (25)1/3 

4 1/3 
B 

yo = 4A 

i 

3 
4 

= 2 X 2 X 10 X 10 
16 

= 2.924 

+ C 

16 X iol/J X (-3/4) + 10.0 
= -----4 

1/3 



-2.4825 + 10.0 = 7.5175 

YI= - 2.4825 
0 

and the decision range is 

o.57330710(2.924)<:::x <::1.4612770(2.924)0 __ w_· 

_j.)~rabola Versus Rectangular Hyperbola Model 

The sum of an increasing parabola and a decreasing rectangular 

hyperbola is 

y AX2 +]. 
X 

where 

1 A= 4P the parameter of the parabola 

4P = the latus rectum of the parabola 

B = the parameter of the rectangular hyperbola. 

D:l.fferentiate with respect to X, equate the result to zero, solve 

for the optimum value X0 , and again substitute in Y-function with X0 

to obtain Y as 
0 

dY B 
-dX=2AX--

X~ 

B 
0=2AX --

o X 2 
·o 

X0 =h 
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and 

Assume an error w has been associated with X0 in such a way that 

X = wX 
W 0 

w = zero or a positive value. 

The corresponding value Y due to this error w is 
w 

(2)1/3 2 
w + w 

and the sensitivity expression is 

.6295 2 1.2599 
1.8894 w + l.8894w 

= 1:. w2 + ~ 
3 3w 

The type of this sensitivity expression is a minimization with 

a positive optimum value Y0 • Thus the sensitivity expression for 

a 10 per cent increase in the Y value above its optimum Y will yield 
0 

to 

y 
1 · 2 2 w 1.10 -= = -w +-I y 0I 3 3w 

or 

3 3, 3w + 2. 0 0 w - . 

The two positive roots of this kind of model around its optimum 

are obtained from Appendix A, These two positive roots are the lower 

and upper limits of the decision range as 

or 

0.7186767 and w = 1.3473911 
u 
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or 

x 1 = 0.7186767X0 and Xu= l.3473911X0 

or 

B 1/3 B 1/3 
0.7186767 ( ZA) and Xu= 1.3473991 ( ZA) 

and the decision range is 

B 1/3 B 1/3 
0.7186767 ( 2A) ~xw..::::;,1.3473911 ( 2A) 

The model is flatter in the upper range than in the lower range 

within the decision range. Complete evaluation of this kind of mode ls 

is given in Appendix A, 

Numerical example: 1 For the above model let A= 8 and B = 16.00. 

By substitution the following results are calculated as 

X 
0 

y 
0 

and the decision range is 

1/3 
1.8894 (Al) 

( -16xl6 ) l/ 3 
1.8894 8 

O. 7186767X / X / l.3473911X 
o~ w~ o 

2.8747068 ~x ~5.3895644 
""" w-.....;:: 

Cubical Parabola Versus Straight Line Model 

( 16x8 
2 

6.000 

1/3 
) 4.0 
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The equation of the sum of a cubical parabola as an increasing func-

tion and a straight line as a decreasing function is 



where 

3 
Y=AX -MX+C 

A= the parameter of the cubical parabola 

M = the slope of the straight line and a 
positive value 

C = the intercept of the slope of straight line on the 
y-axis and a positive value 
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Follow the same procedures as in the illustrated example pp. 14 - 21. 

and 

dY 2 
dX = 3AX - M 

0 = 3AX 2 - M 
0 

. 1/2 
M 

Xo = ( 3A) 

y = ~2 -. M3 l. 1/2 -[:ti~ll/2 + C 
o ~ • (JA)3j 3AJ 

3 1/2 

= (~) ( J. - 1) + C • 
3A 3 

·Transform the origin of the function (0,0) to(O,-C) thus 

Y' = 
0 

Assume an error w has been associated with X in such a way that 
0 

X = wX 
W 0 



w = zero or a positive value. 

The corresponding transformed value Y I due to this error w is 
w 

y I 

w 

M3 1/2 wl 
= ( 3A ) ( 3 - w) 

and the sensitivity expression is 

where 

y ! 

__ w_ = 

.I yo' I 

the absolute optimum transformed 
value in order to be consistent 
with the original directions of the 
axes. 

The type of this sensitivity expression is a minimization with a 

negative optimum value. Thus 

y I 3 
w -.90 

3 w 

l~I= = - -w+-
2 2 

and 

3 
- 3w + 1.80 o. w -

The two positive roots of this function around its optimum are 

the lower and the upper ranges of the decision range and are given in 

Appendix A as 

or 

0.7293004 and w = 1.2479858 
u 

0.7293004X and w = l.2479858X 
0 U 0 
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and the range is 

1/2 M 1/2 
0.7293004 ( 3:) ~ xw~l.2479858 ( JA) 

This kind of model is flatter in the lower range than in the 

upper range within the decision range. The complete evaluation of 

this kind of models is given in Appendix A. 

Numerical example: 
1 1 

For the above model let A= 16, M = 3 and 

C = 10. 

By substitution, the following results can be obtained as 

M 
1/2 16 1/2 

4 
X = ( 3A) = ( 3x3) = -

0 3 

M3 1/2 
1) + y = ( 3A ) ( - C 

0 3 

2 10 112 
= - 3 ( 3x3x3x3) + lOeO 

= - % X 3 • !6 3 + lQ • 0 

= - 0.2343 + 10.000 = 9.7667 

Y 1 =Y -C -0.2343 
0 0 

and the decision range is 

O. 7293004X ?._ X ~ 1. 2479858X o·~ w--...;:: o 

0.9724005 ~Xw ~L6639811 • 
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Cubical Parabola Versus Parabola Model 

The equation of the sum of a cubical parabola as an increasing 

function, and a parabola as a decreasing function is 

3 -
Y = AX + C - B /x 

where 

A= the parameter of the cubical parabola 

C = the ordinate of the parabola vertix 

B = 2 {i, the parameter of the parabola 

4P = the lat us rectum of the parabola. 

Follow the same procedures as in the illustrated example pp. 14-2L 

Thus 

0 3AX 
2 _.B_ 

= 
0 

2fx: 

B 
2/5 

X = ( ) 
0 6A 

6 1/5 1/5 

y = (AS B ) + C - (B::) 
0 66XA6 

= (Jl) l/5 (! - 1) + C 
6A' 

5 ("~(5 + = - 6 6A. C 
# 

Transform the origin (0,0} of the original function to another 

new origin (0, -C). 
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Thus, 

y I = y 
0 0 

- C 
S (B6)1/5 
6 6A • 

The two positive roots of this function around its optimum are 

the lower and the upper limits of the decision range for the assumption 

of 10 per cent increase in the transformed value Y 'above its optimum 
w 

Y 1 • These two roots are 
0 

or 

0.6252769 and w = 1.3537807 
u 

1. 3537807X 
0 

and the decision range is 

0.6252769X .<x ~l.3537807X 
o-..... w~ o 

or 

0.6252769 { 6f) 21< xw~l.3537807. ( 6!) 215 
• 

and the sensitivity expression is 

where 

y ! 

w -~I- -
3 

6w + !!..._ 
5 5 

the absolute value of Y I to be consistent 
with the original direc~ions of the axes. 

The type of this sensitivity expression is a minimization and Y0 ' 

is a negative value. Thus 



or 

-0.90 

3 
w - 6w + 4.50 = O. 

3 6 ,W = - -w+-5 5 

The curve is flatter in the lower range than in the upper range. 
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The evaluation of this kind of model.sis evaluated on the digital computer 

(Appendix A). 

Numerical example: Let for the above model A= .083, B = 2.83, 

and C = 10. 00. 

By substitution, the following results can be obtained 

[LJ's 1/5 

X = _ [ (2.83)] 
0 6x6A2 - 36x(.083)2 - . 

= 2/3 

[ 61'l J y = (2.83) - 2 + 10,0 
6x .083 6 0 

y I = y - C 
0 0 

and the decision range is 

0.6252769 ( j ).:Sxw~l.3537807 ( j) 

0.4168506.(X /0.9025204. 
-..;;: w~ 

Cubical Parabola Versus Rectangular Hyperbola Mode! 

= -3 l 
3 

The sum of an increasing cubical parabola and a decreasing rectangu-

lar hyperbola is 



where 

Thus 

and 
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y = AX3 + ! 
X 

A= the parameter of the cubical parabola 

B = the parameter of the rectangular hyperbola. 

Follow the same procedures as pp. 14-21 in the illustrated example. 

0 JAX 2 B 
= -2 

0 
X 

0 

(~A ) 
1/4 

X 
0 

4 1/4 

( B
4
:A) 

1/4 
( A BJ) y = 
(3A)J + 0 

= (AB3) 1/4 [ft + 13 ] 

= 1. 741 AB3 ( ) 1/4 

Assume an error has been associated with X in such a way that 
0 

X = wX 
w 0 

w = zero ors positive value. 

Therefore, the corresponding value Y due to this error w is 
w 



And the sensitivity expression ls 

y 
w - .. y 
0 

3 .425w 
1. 741 

1.316 
+ 1. 741w 

lw3 3 
= 4 + 4w 

The type of this sensitivity expression is a minimization with 

a positive optimum value Y. Thus, 
0 

and 

3 
w + -2 1.10=-z;- 4w 

4 
w - 4.4w + 3.0 = 0. 

The two positive roots of this equation around its optimum are 

the lower and upper ranges of the decision range for 10 per cent in-

crease in the value Y above its optimum Y. The roots are obtained 
W . 0 

by the aid of the digital computer (Appendix A) as 

w1 = O. 7561323 and wu = 1. 2664232 

or 

X1 = 0.7561323X0 and X: = l.2664232X 
U 0 

or 
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B 1/4 B 1/4 
x1 = 0.7561323 ( 3A) and Xu= 1.2664232 ( 3A) 

And the decision range is 

B 1/4 B 1/4 
O. 7561323 ( 3A ) ~ Xw~ 1. 2664232 ( 3A ) 

The curve is slightly flatter in the upper range than in the lower 

range within the decision range. A complete evaluation for the sensitivity 

expression is evaluated by the aid of a digital computer for w = .05 to 

w = 3.95 with an increment of w = 0.5 (Appendix A). 

Numerical example: 1 For the above model let A=~ and B = 4.0. 

By substitution, these following results can be obtained as 

B 
1/4 

4xl2) 114 
X = ( 

3A ) = ( = 2.0 
0 3 

1/4 
y 1. 741 ( 4x4x4) 

0 12 

2 1. 521 
= 

1. 315 

and the decision range will be 

0.7561323X ~X ~1.2664232X 
o" w"" o 

1. 5122646 ~x <. 2. 5328464 '-..: w -...:; 

Straight Line Versus Reciprocal of the Quadratic Function 

The equation of the sum of an increasing straight line and a de-

creasing reciprocal of a quadratic function is 



where 

Thus 

B Y=MX+-
X2 

M = the slope of the straight line and a positive 
value 

B = the parameter of the reciprical of the 
quadratic function. 
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Follow the same procedures as in the illustrated example pp. 14-2L 

dY M _ 2B 
dX = X3 

0 

X 
0 

y 
0 

M _ 2B 
X 3 

0 

Assume an error w has been associated with X in such a way that 
0 

X = wX 
W 0 



and 

w = zero or a positive value 

The corresponding value Y due to this error is 
w 

and the sensitivity expression is 

= ±. w + _1_ 
3 3w2 

The type of this sensitivity expression is a minimization with 
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a positive optimum value Y. Thus, according to the illustrated example, 
, 0 

the sensitivity expression will be 

1.10 = ~w + _l_ 
3 3w2 

or 

3 2 
2w - 3.3w + 1.0 = 0 

The two positive roots of this equation around its optimum are 

the lower and, the upper ranges of the d~c.ision range for 10 per cent 

increase in the value Y above its optimum Y. These two roots are 
W ' 0 

obtained by the aid of the digital computer (Appendix A). The roots 

are 



w1 = 0.742112 and wu = 1.3919315 

or 

x1 = 0.7421112X0 and Xu= l.3919315X0 

or 

2B 1/3 2B 1/3 
x1 = O. 7421112 ( M ) and Xu = 1. 3919315 ( M ) 

The decision range is 

2B 1/3 2B l/3 
0.7421112 ( M) -< xw~l.3919315 ( M) . 

The curve of this type of model is flatter in the upper range 

than in the lower range within the decision range, A complete evalua-

tion for this kind of models is given in Appendix A. 

Numerical example: For the above model let A= 1.0 and B = 4.00. 

By substitution, the following results can be obtained as 

::Y0 = 1.50 (2x4.0xl.Oxl.o) 113 

and the decision range will be 

0.7421112X -c'X /"l,3919315X 
0""'" W ~ 0 

1.4842224 ../'x /"2,7838630. 
~w~ 

= ( 2xi.o ) 1/3 = 2.0 

= 3.0 
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Models as a Summation of Three Different Standard Curves 

The condition for providing the optimality (trade off relation-

ship) in each of these models can be attained by having one increasing 

curve while the others are decreasing ones, or by having one decreasing 

curve while the others are increasing ones. The discussion here is limited 

to the three unknown curves occuring frequently in Operations Research 

field. These curves are straight line, rectangular hyperbola and parabola. 

The same analogy can be applied to any kind of curve. 

Straight Line and Parabola Versus Rectangular Hyperbola 

The straight line and parabola are increasing functions, and the 

rectangular hyperbola is a decreasing function. The sum of these three 

curves is 

where 

y MX + AX.2 + i 

M the slope of the straight line and a positive 
value 

A the parameter of th~ parabola 

B the parameter of the rectangular hyperbola. 

Follow the same procedures given in the illustrated example pp. 15-19. 

Thus 

X 3 + M 2 
0 2A XO 

dY = M + 2AX - ]L 
dX X2 

B 
0 M+ 2AX 

0 X 2 
0 

B 
0 

2A 



This is the cubic function and can be solved as follows. 

Let 

3 A1 = coefficient of. X0 = 1.00 

A = coefficient of X 2 = ~ 2 o 2A 

B A3 = coefficient of X0 = - 2A 

The above function can be rewritten as 

Let 

X = Z 
0 0 

Substitute with Z in the equation (1), and obtain 
0 

Let 

and 

Thus, 

A 2 

z/ + (A1f) Z0 + ( A0 

. . A 2) 
-G = I A - i.. ·. 

· \ 1 3 

Z 3 - GZ - R = 0. 
0 

(1) 

There are three cases for solving the cubic functions as follows 
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In this case, the solution contains one real root and two 

comple~ roots. As the interest here is for the real root, there-

fore the real root will be 

a. If G and Rare both positive, thus find I, in such a way 

that 

cosh ! = (t r'2
• (~} 

Then, the real root is given by the equation 

2 z =-
0 (3) 1/2 

1/2 
G ( ·./J.) cosh 3 

and consequently by substitution 

2 . 1/2 (,13) A2 
X = -G cosh ·3 0 ~ 

·~ 2 A (.e/3) -= 
Y3 +- Al cosh 

A2 
3 

= (I I t:A2 • 1.0 cosh ( £13) · 6~ 

b. If G is a negative and Risa positive, find I, in such 

a way that 

( 3) ~'/2 ( R) sinh· !E. = -G • . 2 . 

Then, the real root is given by the equation 

and 
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X = ..2._ r:;- Sinh (~ ·)· A2 
0 . 1~ I Al - 3 3 3 

= ~ /o .. M\ Sinh/i) - :'\. y 3 · 12A \" 1 .l 

In this case the cubic equation has three real roots as fol-

lows. Find JP. in such a way that 

cos£ ... ( _G3 ) 3/2 • (!.2) • 

Then, the three roots are 

2 1/2 (£) G cos ·. 3 

and 

2 1/2 (1f+i.) 
z30 == -,___,1....,/-2 G cos . . 3 . 

3} . 

and 

and 

M 
- 6A 

A 2 

( _L_. _ A .)1/2 (rt(+ !P.. )- !:i.. 3 1 cos 3 6A 
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2 
x3o = 

(3)1/2 

2 

( A2 ) 1/2 ('l(+ 2_) !L_ 
-- - A cos - 6A 3 1 3 

3) 
2 3 

When 27R = 4G, the cubic equation has three real roots, two 

or them are equal as follows 

-3R 
2P (equal roots) 

3R z30 = 2P (single root) • 

The corresponding roots are 

-3R _ M 
2G 6A 

3R M 
X30 = 2G - 6A 

Let us assume that the equation yields one real root. Thus 

2 ( M2 ·)l/2 ( P.) X = 112 ' --2 - 1.00 cosh 3 
0 (3) 12A 

Substitute with X in Y function to obtain Y 
0 0 

y 
0 

M 
- 6A 

Assume an error w has been associated with X in such a way that 
0 

and 

X = wX 
W 0 

w = zero or a positive value. 

Thus, the corresponding value Y is 
w 
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and the sensitivity expression is 

where 

= A w + B w2 + C l 
0 0 0 W 

the absolute value of the optimum value 
Y to be consistent with the original 
drrections of the axes. 

The interpretation of this sensitivity expression is equal to 

an.other transformed curve as the sum of the straight line with a 

positive slope= A and the parabola with a parameter B, and the 
0 0 

rectangular hyperbola with a parameter C. The values of A, B, 
0 0 O 

and C are 
0 

A = the optimum part of the straight line MX 
0 0 

over the absolute optimum of the total_ 

variable parts of the function ~ Y0 'j o 

2 
:B0 ·"= the optimum part of the parabola AX0 · over 

the absolute optimum of the total variable, 

parts of the function IY0 '! , 
C = the optimum part of the rectangular 

0 

B 
hyperbola X 

over the 2 1.bolute optimum of the total variable 

parts of the. function j Y0 1 I . 
0 

The expression is general or in other w6rds the expression is a 
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function of the error w (the parameters and X are constants). Sensitivity 
0 

expressions can be easily derived for each case around their optimum real 

roots. From this discussion one can notice that there are multiple real 
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optimum solutions. 

Straight Line Versus Parabola and Rectangular Hyperbola Model 

In this model the straight line is an increasing, and the parabola 

and the rectangular hyperbola are decreasing functions. The sum of 

these three curves is 

where 

Thus, 

( )
1/2 B 

Y = MX - AX + C +X 

M = the slope of the straight line and a positive 
value 

A = 2 jP the parameter of the decreasing parabola 

L~p = the length of the latus rectum of the parabola 

C = the ordinate of the vertix on the parabola on the 
y-axis. 

B = the parameter of the rectangular hyperbola. 

Follow the same procedures as in the illustrated example pp. 14-2L 

2 !(xo) 3/2 MX 
0 

dY !( )-l/Z B 
dX = M - 2 X - X2 

( ('2 B 
0 = M -1 ~'O - -XO 

B = 0 

2 
M2X 4 - 2MBX z + a2 - !...x 3 = 0 

0 0 4 0 



.. ) 

2MBX 2+ B2 = 0 0 . • 

As the coefficients of the fourth power equation are in letters· 

instead of figures, the .solution is not available. For situations 

which have this kind of equation, the sensitivity expression for the 

variable parts is as follows 

y I 

w 
,~, = Aw-B 

0 0 
w + C l ow 

where Y 1 , A , i3 , and C are de fined in the previous mode 1. 
0 0 0 0 

!2,rabola Versus Straight Line and Rectangular Hyperbola 
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This niOdel is a summation of a parabol~ as an increasing function --

and a straight line and a rectangular hyperbola as decreasing functions. 

where 

Thus, the summation function is 

. 2 . 
Y == ·AX - MX + C + ~ 

A= the parameter of an increasing parabola 

M = the slope of the straight line and a positive value 

C = the intercept of the straight line of the y-axis and 
a positive value 

B = the parameter of the rectangular hyperbola. 

Follow the same procedures given in the illustrated example pp. 14-

21. Thus the sensitivity expression is 
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where Y 9 , A, B, and C are defined in the previous model. 
0 0 0 0 

Surnrna.r_y of tits:. Sqg.sitivity Analysis of the Mathematical Models 

The following four tables sunnnarize the optima, sensitivity expressions, 

and decision ranges of the discussed mathematical models in Chapter 3. 

Table 1 deals with a variety of one standard curve models, 

Table 2 and Table 3 summarize a variety of a sunnnation of two different 

standard curve models. However, Table 2 deals with the minimization 

functions and Table 3 treats the maximization functions. These two 

different standard curves are evaluated in detail by the aid of a digital 

computer in Appendices A and B. It is worth to mention that ranges and 

the optima of the X values of the models No. 3, .5, 6, 8, and 9 in Table 

3 (minimization) are the same as the range and the optima of the X values 

of the models No. 1, 2, 3, 4, and 5 in Table IV (maximization). The· 

optima of the transformed Y values (optimum of the variable parts of 

the function only) in Table 3 are the negative optima of the transformed 

Y values in Table 4. These results reconcile the fact that the minimizing 

of the objective function is the same as the maximizing of the negative 

of the same objective furtction. The final Table No. 4 sununarizes the 

discussions of a sunnnation of three different standard curves (straight 

line, parabola, and rectangular hyperbola). The models in Tables 2, 3, 

and 4 are discussed under the assumption that the first curve(s) is (are) 

an increasing function(s) while the other(s) is (are) a decreasing one(s). 



No. 

1. 

2. 

3. 

4. 

5. 

_._ 
~l 

~-r 
2 

* 3 

TABLE I 
SUMMARY OF THE SENSITIVITY ANALYSIS OF MATHEMATICAL MODELS 

ONE STANDARD CURVE MODELS 

Type of Mathematical 
the Model Equation 

Circle1
( 1 

Ellipse.,.( 2 

Parabola 

* G • 3 aussi.an 

Catenary 

2 
Y=E-X 

General sensitivity expression 

General sensitivity expression 

General sensitivity expression 

Optimum 
Values 
(X 'y ) 

0 0 

(o,a) 

Sensitivity 
Expression 

y ' w 
y' 

0 

H 2 2 
1-( - ) (w-1) 

R 

1-( .!! )\w-1) 2 
A 

H2 2 
1 + 4PK (w-1) 

E 
-w2 

.! Ew/A _ E-w/A 
2 

Decision Range for 
10% Increase 

Lower Upper 

-0.317 0.317 

only for the family of circle models H = R 

only for the family of ellipse models H = A 

-...J 
v.l 



No. 

1. 

2. 

3. 

4. 

5. 

TABLE II 
SUMMARY OF THE SENSITIVITY ANALYSIS OF MATHEMATICAL MODELS 

SUMMATION OF TWO DIFFERENT STAi.\JDARD CURVES (MINIMIZ.*) MODELS 

Type of 
the Model 

Straight line vs. 
ellipse 

y = 

Straight line vs. 
circle 

y = 

Straight line vs. 
parabola 

Y = MX-A<x)l/2+c 

Straight line vs. 
R. hyperbola 

B 
Y=MX+-+C 

X 

Parabola vs. 
straight line 

2 
Y=AX -MX+C 

Optimum Values 
X ' y 

0 0 

Look to the 
model 

Look to the 
model 

( ~ C _ A2) 
2' 4M 

4M 

(~~ - 2 {MB) 

(~,C-~ 2) 2A 4A 

Sensitivity 
Expression 

y I 

w 
vi 
'o 

Look to the 
model 

Look to the 
model 

w- 2F 

2 
w + 1 

2w 

2 
w - 2w 

Decision Range 
for 10% Increase 

Lower Upper 

0.467555 1. 732452 

0.641743 1. 558256 

0. 683774 1. 316228 

* Appendix A -...J 
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No. 

6. 

7. 

8. 

9. 

10. 

11. 

TABLE II (CONTINUED) 

Type of 
the Model 

Optimum Values 
XO, yo 

Sensitivity 
Expression 

y I 

w 
y' 

0 

Parabola vs. ( ~ 2 3Fi ) 
parabola _B_ c _ 3/4 B4 .!.( 2 4F) 

Y = AX2 - B x+c 2' - 3 w - w 
16A 4A 

Parabola vs. R. 
hyperbola 

Y=AX2 + ~ + C 
X 

( µ..c + ,.,"A 
C, parabola vs. 

st. line 
y = AX3 - MX + C 

( r;;- 2 /Z 
JTA·c-3)3i. l 

c. parabola vs. fi '[i) 
parabola ( 2 6 

B B 
3 --, C -. 5/6 6A 

y = AX - B X + C 36A2 

c. parabola vs. R. (fr, p:3 ) 
hyperbola B AB 
. 3 B 3A , C+l. 741 

y = AX + X + C 

Straight line vs. ( Ji 
2 2B 

2 -, X M 
B 

Y=MX+ 2 +c 
X 

C+l.50Fl 

j (w2 + ~ ) 

1 ( 3 3 ) 2 w - w 

1 (w3 - 6F) 

t (w3 + ~) 

1 (2w + >) 

Decision Range 
for 10% Increase 

Lower Upper 

0.573307 1.461277 

o. 7i8677 1.347391 

0.729300 1. 247986 

0. 625277 1.353781 

0.756132 1. 26642 

o. 74211 1. 391932 

-..J 
Vt 
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No. 

1. 

2. 

3. 

4. 

5. 

TABIB III 
SUMMARY OF THE SENSITIVITY ANALYSIS OF MATHEMATICAL MODELS 

SUMMATION OF TWO DIFFERENT STANDARD CURVES (MAXIMIZ.*) MODELS 

Type of Optimum Values Sensitivity 
the Model X ' y Expression 

0 0 y I 

w 
Y' 

0 

Parabola vs. 

( 
A2 A2 l 2p- w straight line --2 ' C + 4M 

Y=A (X) l/2 -MX+C 4M 

Straight line vs. 

( M M2 ) parabola 2w - w2 
2 2A ' C + 4A 

Y=MX-AC +C 

Parabola vs. ;; . )~) parabola . B4 1 ( 4p - w2) Y=B(X) l/2 -AX2+c ( C+)/4 4A 

Straight line vs. 

(fa,c+j{ l C. parabola i ( 3w - w3) 3 3A 3A Y=MX-AX +C 

:>arab:>la v3. 
( 5r- ~ c •. parabola J !:., ,C + 5/6 ::) J( 6Jw- w3) Y=B(X) l/Z _AX3+c 

Appendix B 

Decision Range 
for 10% Decrease 

Lower Upper 

0.467547 1.732422 

0.683816 l. 319189 

0.573415 1.461205 

0. 729380 l. 248141 

0.625325 1.353622 

-.J a-



No. 

1. 

2. 

3. 

TABLE IV 
SUMMARY OF THE SENSITIVITY ANALYSIS OF Mi\THEMATICAL MODELS 

SUMMATION OF THREE DIFFERENT STANDARD CURVES MODEL 

Type of 
the Model 

Straight line and 
parabola vs. R. 
hyperbola 

2 B 
Y=MX+AX + -

X 

Straight line vs. 
parabola and R. 
hyperbola 

2 B 
Y=MX-AX + -

X 

Parabola vs. st. 
line and R. 
hyperbola 

2 B 
Y=AX -MX + -

X 

Optimum Values 
X ' y 

0 0 

Look to the 
model 

Look to the 
model 

Look to the 
model 

Sensitivity 
Expression 

y 
w 

y 
0 

1Y}1(MXow + AX2ow2 
+ B ) 

X0 w · 

1 ( 2 2 
jY~I MXow - AXo w 

+ _L ) 
X0 w 

1 f 2 2 --AX w - MX w I y~I O 0 

+ _L ) 
X0 w 

Decision Range 
for 10% Increase 

Lower Upper 

-....J 
-..J 



CHAPTER IV 

INVENTORY MODELS 

Introduc.tion 

There are many different definitions for inventory systems according 

to the interesting points of view. Some people consider inventory systems 

as systems of keeping records of the amounts of commodities in stock, 

therefore making the problem one of where and when entries should be 

made. Other people look at inventory systems from the financial point 

of view, therefore making their problem one concerning the turnover 

and financing investments tied up in stocks. Other groups consider 

inventory systems as systems to deal with what items to stock, when 

to stock~ how many to stock; therefore their problem is the labor 

stability., utilization of equipment and facilities, and customer re~ 

lat:i.ons. Because of this wide range of the inventory systems' defini~ 

tions, it is necessary to define the inventory systems that will be 

dealt with in this dissertation. The following two definitions are 

well suited to the purpose of this research project, 

Ackoff 1 s Definition (2): "By an inventory process Operations 
Research has come to mean a process involving one or both ·of the 
following discussions: (a) how many (or much) to order (That is to 
produce or purchase) and (b) when to order. These discussions involve 
the balancing of inventory carrying costs against one or more of the 
following: order or run set-up costs, shortage or delay costs and 
cost associated with the level of production or purchasing. 11 
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Definition: An inventory is the system in which the decision maker 
is looking for the optimization of the decision var.iables normally 
called controllable variables in the light of inventory independent 
cost elements whose cost coefficients are mutually exclusive. These 
cost elements may be any two or the three of the following: 

(1) The cost of carrying or holding inventories. 
(2) The cost of running out of units or incurring shortages. 
(3) The cost of replenishing the inventory system. 

The Nature of the Costs 
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This part is devoted for elaborating the last definition for the pur-

pose of classifying the different independent cost elements in the inven

tory system. The nature of the first cost element is the cost incurred in 

carrying or holding inventories and is equal to one or more of the following: 

a •. · The cost of renting or providing warehouse space 

b. The cost incurred in the obsolescence risk 

c. The cost of warehouses• overheads such as the handling 
· of equipment 

d. The cost of the tied capital in stored units 

e. The cost of insurance and taxes. 

The second cost element is. the cost incurred in suffering shortage of 

units or running out of units. This may be one or more of the following: 

a. The cost incurred in the loss of sales 

b. The cost incurred in .the loss of good will 

c. The cost incurred in the shut-off of the related operations 
or the. decrease in their productivities 

d. The cost due to the facility being idle for the next set-up 
manufacturing 

e. The cost due to special administrative efforts. 

The third cost element is the cost incurred in the procurement and re-

plenishment functions. This may be one or more of the following: 

a. The cost of ordering the lot size 

b. T.he cost of the paper work and the customs 

c. The cost of the conunission 



d. The cost of receiving and inspecting the lot size 

e. The cost associated with the payment of invoices. 

Later it is referred to as the holding cost element or HC; the shortage 

cost element as SC, and the procurement and replenishment cost element 

as PC. Some models involve the three cost elements while others involve 

only two of these three cost elements. These cost elements are indepen-

dent and their cost factors are mutually exclusive. 

IYe~s of the Inventory Models 

The inventory models can be classified on the basis of the number 

and type of cost elements as: 

lo Models involving holding and shortage cost elements. 

2. Models involving holding and procurement cost elements. 

3. Models involving shortage and procurement cost elements. 

4. Models involving holding, shortage, and procurement cost 
elements. 

The models with two cost elements like 1, 2, and 3 are apparent 

in practice when the third absent cost element is not under the control 

of the decision maker. The model 1 appears in practice when the procure-

ment cost is not charged on the inventory system or the replenishing 

of the items occurs over prescribed constant periods. The model 2 

appears in practice when the shortage cost factor is extremely high 

and the processes cannot afford its occurance. The model 3 appears in 

practice when there are no spaces provided for the holding units or the 

processes cannot afford to tie the capital in stored units for a period 

of time. There is another characteristic which distinguishes inventory 

models from the point of their replenishment periods as: 

80 



l. Purchasing models which have the replenishment periodsare 

· approximately equal to zero. Some times they are called 

instantaneous replenishment period models. 

2. Manufacturing models which have the replenishment periods are 

greater than zero. 

Inventory Problem · 

The problem is to make an optimum decision for the.inventory sys

tem. These decisions are always made in the light of cost elements, 

but they are rarely made in terms of costs or profits. They are 

usually made in time and quantity as: 

1. When to replenish in time units 

2. How much or many to replenish in quantity units. 

The time and quantity are the decision variables and are subject 

to the control of the decision maker, usually called controllable 

variables. 

Although finding the variables that give the optimum total cost 

is the main purpose of the inventory problem, the research maker has 

to provide the amount it will cost. Also the main purpose of this 

re~earch.is not only to provide the optimum variables and the optimum 

objective function, but also to. establish the rules for the decision 

range for selecting the controllable va:riables in such a way that the 
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net increase or decrease in the total o~jective function is insignificant 

or negligible. 

Seeking for Trade-Off Solution 

The objective function has an optij:hum solution if and only if the 



rates of the increasing cost elements are equal to the rates of the de

creasing cost elements. This is the essence of the differentiation as 
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a mathematical technique to obtain the optimality. In industrial or 

business situations, it is common to say the objective function has been 

traded-off instead of saying the objective function has an optimum solu

tion. Thus, the tradeq off solutions for the decision models in inventory 

systems are obtained through using the differentiation for the continuous 

functions. However, if the objective function is a function of more than 

one decision variable, the partial derivative is used provided the limits 

exist. The objective function with one decision variable can be represented 

by a curve in two dimensions in space while the one with more than one 

decision variable can be represented on a surface whose dimensions in 

space are equal to the number of variables plus one. 

Seeking for Trade-Off Range 

The decision maker is frequently required to set a policy that 

will be flexible enough to meet the unpredictable situations in the 

future and to meet the dynamic needs of periodic change. As a rule of 

thumb, the total variable parts in the objective function is within plus 

or minus 10 per cent over or under its optimum value. The plus is 

correspondent to the minimizing of the objective function and the 

minus is correspondent to the maximizing of the objective function. 

The solution for this predetermined allowance in the objective function 

yields a range or a region for selecting the controllable variable or 

variables. This range or a region is called the decision range or the 

decision region. Looking back to the derived mathematical models in 

Chapter III, these ranges are obtained.from the derived sensitivity ex-

pressions, which are the measurements of the sensitivity analyses of 
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these models around their optimum solutions ( their trade-off solutions). 
. . 

At this point, it is necessary to define the decision range or region. 

Decision range or region 

Definition: · the decision range or. region is that where the decision 
maker can select a variable(s) in such a way that the yield in the objec
tive function due to this selection is insignificant above or under its 
mathematical optimum •. 

• Building the Total Cost Inventory Function 

The following discussions are for the purpose to build the total 

cost equation of an inventory system, by analyzing the type of the 

replenishment, the type of the demand, and the replenishment-demand 

interactions. 

Replenishment .Patterns 

Definition: The replenishment period is the length of time 
during which the replenishment lot size Q0 is being added to the 
inventory level as shown in the figure 3o 

To discuss the situations of these five cases, let 

+r = the replenishment period-time units 

R = the average replenishment during the replenishment 
period T -units · 

r 

Q = the optimum lot size to be replenished during the 
0 replenishment period T -units 

r 

n1 = the power index of the replenishment curve. 

Thus, five cases arise in Figure 3 as 

a. The replenishment period is insigniricant that is Tr~ O. 

Therefore 
. Qo 

R=- = c;x> 
0 

c .. 
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which implies that the average replenis.hment units· during the 

replenishment period Tr are infinite, and the power index n1 is 

infinite. 

b. The power index of the replenishment curve is n1 = 1.0, which 

implies a uniform replenishment during the replenishment period 

T • r 

Thus, 

Qo 
R = ~ = constant 

r 
c. The power index of the replenishment curve is n1::::::,.1.o. This 

means that the rate of replenishment varies from time to time 

within the replenishment period T and the larger portion of 
r 

the lot size occurs toward the end of the replenishment period. 

d. The power index of the replenishment curve is n1 <:1.0. This 

means that the rate of replenishment varies from time to time 

within the replenishment period T and the larger portion of 
r 

the lot size occurs towards the beginning of the replenishment 

period. 

e. It is a batch replenishment or discontinuous replenishment. 

Thus the general equation of the quantity replenished within 

the replenishment peri.od T is (for a to d) 
r 

where 

Q(T) 

T 
r 

the quantity in the inventory at any time T. 

the quantity in the inventory at the beginning 
of the replenishment period T • . r 

the replenishment period. 
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Demand Pattern 

Definition: The demand period is the length of time during which 
the level of inventory came to a point where a new replinishment is 
starting to be added to the inventory level as in Figure 4, 

Thus, 

To discuss the situations for these five cases, let 

Td the demand period 

D the average demand during the demand 
period T0 

n2 the power index of the demand curve. 

a. The demand size Xis drawn once at the end of the period. 

This means that n2 is infinite and is called infinite demand 

pattern. 

b. The demand size Xis drawn uniformly during the demand period 

Td. This menas that the average demand during the demand 

period Td is constant as 

X 
D = r"'" =constant. 

d 
c. The demand size Xis drawn through a curve with power index 

n2_>J..o. This means that the rate of demand varies from 
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time to time within the demand period Td and the larger portion 

of the demand size Xis drawn towards the beginning of the 

demand period. 

d. The demand size Xis drawn through a curve with power index 

n~<:::::1.0. This means that the rate of demand varies from time 
J. . 

to time within the demand period Td and the larger portion of 

the demand size Xis drawn towards the end of the demand period. 
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e. The demand is a discrete demand or batch demand pattern. 

The general equation of the quantity in the inventory at time T 

within the demand period Td is (for a to d) 

Q(T) = S - X n~T T • 
d 

where 

Q(T) = the quantity in the inventory at time T 

For (a) 

For (b) 

For (c) and (d) 

S = the level of the inventory at the beginning 
of the demand period Td 

X= the size of the demand to be withdrawn during 
the demand period Ta 

T = 
d 

the demand period and is equal to Tc 

Q(T) = S - X ~: J n~=GO 

- S - X • 

X [~d J 
1 

Q(T) = s - n 2=1.0 

s - X !._ 
Td 

= S - DT 

Q(T) S - {~d J n: 
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Replenishment and Demand Interaction 

In this kind of models,one can generate different combinations of 

the replenishment demand interactions. For example 

a. The power index of the replenishment curve n1 is equal to the 

power index of the demand curve n2 and each equals loOo 

b. The power index of the replenishment curve n1 is equal to 

the power index of the demand curve n2 and each is less than 

1.0. 

c. The power index of the replenishment curve n1 is equal to the 

power index of the demand curve n 2 and each is greater than 

1.0. 

d. The power index of the replenishment curve n1 is less than 1.0, 

while that of the demand curve n2_ is greater than 1.0. 

e. The power index of the replenishment curve n1 is greater than 

1.0, while that of the demand curve n 2 is less than 1.0. 

f. Or any other combination. 

The following figures illustrate these cases. 

In the figure 5, n1 = n2 = 1.0. This model has the following 

relations. The rates of the replenishment and the demand are constants. 

Thus the rate of accumulation is also constant. 
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R = Q.u 
T 

r 
(through the replenishment period) 

D 

And the rate of accumulation is 

R - D 

(through the demand period without 
replinishment) 

(through the replenishment 
period) 
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And the quantity at any time is 

And 

Q(T) = S + (R - D)Tr, 0 ~T ~Tr 

Q(T) = S + (R - D)Tr - E + (R-D)TJ E -D(T-Tr] 

= G + (R-D)TJ E -1 + D(T-Tr~ 

The following four figures explain the last mentioned four cases. 

For these last four figures, the rates of replenishment and demand 

are varied with the time. Thus, the rate of accumulati,on also varied 

with time. Therefore the quantity in the inventory at. any time is 

Q(T) - S + Q0 ~ 

and 

Q(T) 

In these models, if the replenishment is instantaneous that is 
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Tr~ 0, then the quantity in the inventory at zero time will be X + Q0 

and is represented by the point d. Therefore the demand curve will 

follow the curve df instead of abf, If there is no demand during the 

replenishing period T the replenishment curve follows the curve ac r . 

instead of ab. If these situations exist, the above equations will 

change. 

Optimality and Dimensional Parameters 

. Annual Analysis 

O' '\ (l) 
N 

\ •.-! \ 
Cl) 

\ ,I.J \ 0 
...:I 

\ 

\ 
\ 

\ 
\ \ 

One Year --~/ Time T 

Figure (10), Annual Analysis 



Let 

and 

Thus, 

Therefore, 

D = the deman.d - uni ts per year 

Ch= the holding cost factor - dollars per item pet 
year 

C = the procurement cost factor - dollars per order 
p 
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C = the shortage cost factor - dollars per unit per year s 

HC = the holding cost - dollars per year 

PC the procurement cost - dollars per year 

SC= the shortage cost - dollars per year. 

HC (average holding ~mount)(holding cost factor) 

= _g__ 
2 

o C 
h 

= (Quantity units)(dollars per quantity unit per year) 

= dollars per year. 

PC= (number of replenished units per year)(procurement 
cost factor) 

= ( total demand per year) C 
order lot size • p 

D = • C Q p 

--(quantit.Y. units per year) - - - d • dollars per order quantity units per or er 

= dollars per year. 

TC = HC + PC 



= _q_ • C 
2 h 

D +- o C 
Q p 

dollars per year. 

Differentiate with respect to Q, equate the result to zero, solve 
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for the optimum lot size Q, and again substitute with Q. in TC equation 
0 0 

to obtain the optimum total cost TC. 
0 

Periodic Analysis 

(!) 
N 

'M 
C/l 
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0 
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0 

Q = 
0 

TC per year 
0 

C 2 
h = 4C 2DC 

h p 

r one period 

10 

+ 

Figure (ll)o Perodic Analysis 

Time T 



Let 

· Thus) 

D' = 

C I = 
h 

the rate of demand - units per period 

the holding cost factor - dollars per unit per unit 
of time 

K = the number of periods per year. 

HC = (the average holding amount)(holding cost factor) 

= ,._g_ C I 
2 h 

= (quantity units)(dollars per unit per period) 

= dollars per period 

PC= (the procurement cost factor)(sharing of one period) 

1 
= Cp • number of periods in a cycle 

= C p 

• C p 

1 

( 9.,) 
D . 

Thus, the total cost per period is 

TC per period= .JL c• + .£ . C . 
2 h Q .p 

Thus, 

~n'c' 
Q = E 

0 C' h 

and 

TC0 per period = 
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and 

But 

/
2D 1 C 1 

Q - p 
o - c' 

h 

= /2c; (D'K) 
C' X K h 

TC per period= 2D 1 C 1 C 1 
0 h p 

TC per year 
0 

= number of periods per year x TC per 
0 period 

K/ 2n 1c 'c ' h p 

= 2(D 1K)(C 1K)C 1 
h p 

The same results are obtained as in Annual Analysis. Therefore, 

one can conclude the optimum lot size. Q does not affect by the dif
o 
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ferent dimensional parameters however the optimum total cost per period 

has to be multiplied by the number of periods to obtain the opttmum 

totai cost per yearo 
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Cyclic Analysis 

The time of the cycle is not known because this is the variable 

that the researcher is looking to optimize. Thus let us use the same 

cost parameters as in periodic analysis. Thus 

TC per cycle= _g_ x T x C 1 + C 
2 C h p 

As PC is not a constant it is also a function of the number of cycles in 

the planned period (assume the planned period= one year). Thus 

But 

~nd 

TC per,year = TC per cycle x cycles per year 

TC per year [i X T X C I +cJ C h 

QD'r 
D C I = ~ch +-c 
Q p 

Ch'Tc is the holdi.ng cost factor per cycle (Ch") 
in dollars per unit per cycle 

D 
Q 

ch'Tc ~ is the holding cost factor per year (Ch) in 

dollars per unit per year. 

Therefore 

TC per year 

which is the same function as in Annual Analysis before and the optimum 

values are the same as in Annual Analysis. 



Uniform Demand, Purchasing or Infinite Replinishment Models 

Models Involving Holding and Shortage Costs 

This model has the characteristics of instantaneous replenishment 

period, uniform demand or usage, and prescribed cycie periods and/or 

the constant procurement cost for the whole planned period. 'fhe holding 

and shortage cost elements are subject to the control of the decision 

maker, however, the procurement cost is not under the control of the 

decision maker. The replica of this kind of model is the supplying 

of retain warehouses at constant intervals of time without previous 

requests. Another important assumption for all the models in Chapter 

IV is the mutual exclusiveness and independence of the cost parameters 

and the cost elements respectively. 

Let 

Q = the inventory amount to be replenished every 
prescribed cycle period - units 

S = the maximum inventory quantity level during 
the cycle - units 

T == the holding time units per every cycle - time units 
h 

T = the shor.tage time uni ts per every cycle - time units 
s 

T = the cycle time - time units 
C 

HC = the holding cost per year - dollars per year 

SC= the shortage cost per year - dollars per year 

C = the procurement cost fa~tor - dollars per order 
p 

D = the demand or the usage - units per year 

ch the holding cost factor - dollars per unit quantity 
per year 

Cs= the shortage cost factor - dollars per unit quantity 
per year 
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Thus, the cost elements are 

HC = (average holding amount)(holding cost factor) 

= (quantity units)(dollars per unit quantity per year) 

= dollars per year. 

and 

SC = (average shortage amounts)(shortage cost factor) 

= (quantity units)(dollars per unit quantity per year) 

dollars per year. 

This model is illustrated in the following diagram, Fig. 4-11 
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Figure (12). Purchasing, Uniform Demand, and Holding and 
Shortage Costs Elements Model 
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Since the optimality cannot be attained except the shortage amount 

is positive, then, by definition the shortage amount is always a positive 

amount in the preceeding models in this chapter. The holding units occur 

during the holding 

shortage time T. 
s 

s . multiplied by 2 . 

time Th while the shortage units 
. T. 

Dimensionless multipliers Th 

occur during the 
T. 

and~ are 
T 

C Q S C 
and 2- respectively in order to obtain the average 

of the holding amount and the average of the shortage amount. The 

shortage units are negative in the diagram, however, 

of 

of 

and 

TC HC + SC 

T s s ~ 
( 2 ) · ch + T · 2 • cs 

= 
s. Th 
2 T 

C 

C 

T 
C +~ 2, 

h 2 T 
C 

C • s 

Th T 
At this point, the values of these multipliers - and 2- in terms 

Tc Tc 

the 

two 

interesting variables 

triangles ABC and ADE 

Th -T 
C 

T s 
T 

C 

s and Q can be 

(Figure 12), 

.. 

= 

s 
Q 

~ 
Q 

obtained from the similarity 

Substitute these two values in the total cost function. Thus, 
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82 (Q _ S)2 
TC = 2Q Ch + 2Q Cs 

If the procurement cost is not subject to the control of the decision 

maker, the model does not involve the procurement cost element. Expanding 

the TC before one can obtain, 

TC(S) 

= ~ch+ Cs) • S2 + QCS - C .s 
2Q 2 s 

Follow the same procedure as in thE! i llustra.ted example pp. 14-21 as 

dTC = _?_§. (C + C ) + 0 - C 
dS 2Q · h s s 

s = Q 
0 

TC 
0 

C s 

C + C C 2 C 
h s 2 Q s + Q ~ 

2Q (C + C )2 2 
h s 

C 
s 

-CQ---
s ch+ cs 

2 
C 

s 
C 

+ Q~ 
2 



and 

Q:· t C 

+~ 
s = 

ch+ cs 

QC [· cs + ch+ 
c~ 

s = 
2 ch+ cs 

Assume an error w has been associated with S in such a way that 
0' 

s = w s 
W 0 

w = zero or~ positive value, 

Thus, the corresponding value Y, due to this error w, will be 
w 

C 2 
=ch+ cs Q2 s 

TCw 2Q ....,(_C_+_C__,.);"Z 
h s 

QC 
2+~ w 2 

QC 

- C Q s 

s 

C 
s w 

2 (w - 2w) 
= -- [1+ 2 ch+ cs 

QCS [ch + c. + w2c s 
= 

2 ch+ c 8 

QC 
c8 ) [ch+ s 

C = 
2(Ch + s 

C 
+ Q 2. 

2 

c•J 

- 2wC~ 

+ w2c - 2weJ s 
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2 
C + w C 

s s 

ch 
- 2we8 ) J . 

'fherefore, the sensitivity expression is 

C) + C (w2 
s s - 2w~. 

The reader has to notice that if w = 1.00, this expression yields 

1.00, however, the expression is not a general one. 

If one looks to the total cost function TC(S) he can say that it 

is similar to the mathematical model - parabola versus straight line 

model. This is not true because Q and Sare not independent variables. 

They are related in a linear manner although Q is predetermined, That is 

why the sensitivity expression is not a general one and varies from 

one model to another according to different parameters. 

Example: A grocery store estimates that the shortage cost factor 

for a certain item is 25-dollars per item per year; the holding 

cost factor, 5 dollars per item per year; and the demand, 1200 units 

per year. If the replenishment is done at the first day of every 

month and instantaneously, what is the range for the level of in-

ventory at the beginning of each month for an allowance of a 10 

per cent increase in the total cost above its optimum? 

By substitution 

1200 
Q = -rz = :100 units. 



100 25 
83 units. = 05 25 = + 

TC = _g_ chcs 
0 2 ch+ cs 

100 5 X 25 208.33 dollars/year. = 2 5 + 25 

:re (Ch+ 
2 

- 2wC) C + w C .. w 
1.10 s s s --= TC ch 0 

05 + 25 + 2 
sow 1.10 25w -

= 
05 

1.10 
2 

6 + 5w - lOw 

2 
w - 2w + • 98 o. 

The upper and lower limits of the decision range are the solutions 

of this quadratic function as 

w u,l 
2 -J4 - 3.92 

= 2 
,'6~q 

= 1.141,~1,.~.895 

These results imply that the model is very sensitive, only 14 per 
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cent in lower range and upper range for not more than 10 per cent increase 

in the total cost above its optimum. 

Example: For another item in the same grocery store the estima-

tions are: Ch= 20 dollars per item per year, Cs= 25 dollars per 

item per year, and the other estimates are the same. What is the 

inventory level range at the beginning of each month for allowing 
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aq increase of 10 per cent in the total cost function above its op-

timum'? 

By substitution 

s = 
0 

TC = 
0 

TC 
w --= TC 
0 

100 20 
45 

100 20 X 25 
2 45 

20 + 25 + 2Sw2 - 50w 
20 

2 
2.25 + 1.25w - 2.50w = 1.10 

w2 - 2w + 0.92 = 0 

= 44 units. 

SSS.56 dollars/year 

1.10 

The lower- and upper limits of the decision range are 

and 

= 

w = u 

2 -·{4 - 3.68 
2 

2 + i4-. 3.68 
2 

0.767 

= 1.233. 

This model is less sensitive than the preceding ~xample and its range 

is wider, 

• These two examples emphasize that as the ratio of is very 

high the model is insensitive and as the ratio is small the model is 

sensitive. 

Model Involving Holding and Procurement Costs 

For this model the shortage units are not allowed because the 
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shortage cost factor is extremely high. The replicaof this model ap-

pears in procuring essential spare-parts for the continuous productiqn 

and assembly lines and in procuring the essential medicines for the hos-

pitals. The model can be represented in the following diagram Figure 13. 

O' 

(I) 
N 

"H 
Cf.) 

.µ 
0 

,...::i 

u 
E-1 
.µ 
(/) 
0 u 

,-1 
rd 
.µ 
0 

E-1 

D C 
- p 
Q 

Time T 

Lot Size Q 

Figure (13). Purchasing, Uniform Demand, and Holding and Procurement 
Cost Elements Model 
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Using the same notations as in the.annual analysis, the total cost 

function per year is 

TC= HC + RC 

The R.H. S. of the total cost equation is a summation of an in-

creasing straight line and a rectangular hyperbola with the variable 

Q. Thus applying the results of the similar mathematical model in 

Chapter III as 

and 

Where 

Q = ~ oJM 

TCoF· 

ch 
M=-· 

2 

B = DC 
p 

By substitution, these results can be obtained 

Q 
0 :K 

For an error w > 0 associates wit!h Q0 , the sensitivity expression 
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will be 

where 

TVC 
w -· 'TVC01 

2 
w + 1 

2w 

the absolute value of the optimum total variable 
cost to be consistent with the directions of the 
axes, 

And the decision range is 

2DC 
0.6837736 c::< Qw< 1.3162279 

Example: An assembly department estimates its demand of an essen-

tial spare part by 1,000 units per year; the procurement-cost factor, 

100 dollars per order; and the holding cost factor, 5 dollars per 

unit per year. What are the economical lot size, the economical 

total cost, and the decision range for the assumed predetermined 

allowance of a 10 per cent increase in the total variable cost 

a~ove its optimum? 

As the spare part is essential, the shortage units are not 

allowed to occur. Thus 

2 X 1, 000 X 100 
5 

= 200 units 
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TVC = /2nc c. h 0 . p 
....... 

X 100 X 5 X 100 

= 1000 dollars/year 

and the decision range is 

0.6837736 (200)C:.:::::Qw<::~.3162279 (200) 
- ·-

Models Involving Shortage and Procurement Costs 

For this model, the holding units are not allowed due to space 

consideration. The replica of this model appears in the agencies or 

the offices taking the customers' orders and supplying them later. 

The delaying of these items will lose a portion of the total demand 

in the next period,or losing the good will. The trade off relation 

is between the shortage cost an4 the procurement cost elements. The 

illustration of this model is as in the following diagram Figure 14. 

Here, again, the assumption of the shortage units to be positive 

is essential for the trade off relationship. Thus, the total cost 

equation is 

TC= _g_ C + .JL. C 
2 s Q p • 

The R.H. S. of this total cost equation is a sununation of an 

increasing straight line and a rectangular hyperbola. Thus, as 

before 



(a) 

©~..:._-.:J..-~--t,.____;_'i.....JD--~-t---...:'--¥-~...:t.-~~t--~~~....p,.__;>.-1-~~,:....;,.~t---ilr Q 
N 

•r-1' 
Cfl 

.j.J 

0 
...:I 

u 
E-! 
,µ 
00 
0 
u 
,-I 

Ct! 
.µ 
0 
H 

(b) 

Lot Size (Q) 

Figure (14), Purchasing, Uniform Demand, and Shortage and Pro
curement Cost El~ments Model 
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TVC=~. 0 "';.,J ... ,.,.., S.., p 

For an error w>o associates with Q , the sensitivity expression is 
0 

where 

ITVC0 1 = the absolute value of the optimum total 
variable cost to be consistent with the 
original direction of the axes. 

And the decision range is 

2DC ,;.- < . 2DC 
0,68377,36 ---1! ......... 'Q . · 1,3162279 --1?. ., cs --- w- ' cs 
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Example: An agency estimates that the demand from a certain item 

is 500 itetns per year; the procurement cost factor, 10 dollars per 

lot size; and the shortage cost factor, 5 dollars per item per year. 

What is the optimum policy? What \is the decision range if 10 per 
I , 
! 

cent increase is allowed in the total variable cost above i.ts 

optimum'? 

'., 

i: 
:I 
i1 
1\ 
1, 

By substitution~ the followi~g 
i' 
1: 
jl 

Q :1= 0 ,, 

' 

! i' 

i 
. I 

results are obtained 

2x500xl0 
5 

= 45 units. 
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TVC F,r.-. 2DC C = 2x500x5xl0 = 223.61 dollars per 
0 p S year 

and the decision range is 

0.6837736 (45)<:Q <::1.3162279 (45) 
w - -

Models Involving Holding, Shortage, and Procurement Costs 

This model appears widely in business and industrial fields and is 

represented in the following diagram Figure (15), 

The total cost function is 

TC= HC +SC+ RC 

= S2 C + (Q - S)2C + .JL C 
2Qh 2Q s Q p 

which is a function of Sand Q. Thus, differentiate partially with 

respect to each Q and S, equate each of these partial derivatives to 

zero, solve for the optimum economic order Q0 and the optimum inventory 

level at the beginning period of the cycle S, and finally substitute 
0 

with these two optimum values in TC equation to obtain the optimum to-

tal cost TC. 
0 

,( c)TC) ·. as"" 
2S 2(Q - S)( -1) 

= 2Q ch + 2Q C 
s 



u 
E-4 
,l,J 
ti) 
0 
u 
..-1 

Ci! 
,l,J 
0 

E-4 
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C 2 ' 0. 
~· .,.-,,-

..•. (C +"l" C·a. ) .,.,..,,-
2 b ----· "' --;.c~2 Cs ,Q · 
.1~ 
'- s 

l nc , -p Q 

Lot Size Q 

Figure (15). Uniform Demand, Purchasing, and Holding, Short
age, and Procurement Cost Elements Model 



; C 
s = Q s 

o ,Ch+ C : s 

( Q TC) oQ = _ _..§.: C + 2Qx2(Q-S) - (Q-S) 2x2 C _ _Q. C 
2Q2 h 4Q2 s Q2 p 

C 
+ _! 

2 

+ C • s 

Substitute with the value of S in the last equation. Thus, 
0 . 

- 1-2DC 
Q 2 p 

0 

2DGP (Ch + Cs) 

ch ... cs 

+ C s 
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and 

ch+ cs 
C 

s 

2DC (Ch+C) p s 
4chcs 

2DC (Ch + C ) 
p s 

nc (ch+c) ch2c 2 
p s s 

2chcs (ch+ cs)2 

DC ChC 
p '!l 

2(Ch+C 8 ) 

DC ChC 
p s 

2'C +e ··) 
' h s 
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= CF,·. C :s C J ---p-h. . h s 
. . 

TC .• r;;:;;, • 
o J ---p-s C + C . 

h s 

• 

The last term in the 1st .relation i.s due to allowing shortage units 
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while the last term in the 2nd relation is due to allowing holding units 

.for both the optimum values of lot size and total cost. 

Assume an error w1 has been associa~ed with the optimum lot size 

Q0 in such a way that 

and 

w1 = zero or a positive value.·. 

Thus the e.rror w2 associates with the optimum inventory leve 1 at the be-

ginning 

before as 

of the cycle S can be obtained from the linear relation derived 
0 

C 

80 • CQo) ch: cs 



But, the error w1 in estimating the optimum lot size Q0 is 

Qwl 
w =-

1 Q 
0 

·c ' cc • + c ') Q1 '...E... h . s 
D Cp (Ch+ C8 ) 

(C ~ C I) 
h s 

and the error w2 in estimating the optimum inventory level at the 

beginning period of the cycle is 
C I 

s -C 
s 

(C i + C. I) 
h s 

• 

If there are no errors in the estimates of C I and C 1 , 'that is the 
s h 

estimates of Cs' and Ch' are equal to the exact values Cs and Ch 

respectively, thus 

DI C I 
_. _L 

D C 
p 
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On the other hand if there are errors in the estimates of C8
1 and Ch'' 

then 

where 
C I 

s 
C' . h 

K =constant= ~-C-.~,---+~C ....... ,-
h s 
ch+ cs 

• 



and the values with the primes indicate the estimate values. 

The value of the total cost due to the error wl is obtained by 

substituting Q = wlQo in the TC function. Thus, w 

TC = ( ~+ -1...) 
w 2 2w 

and the sensitivity expression is 

where 

TC 
w - . 

jTC~ 

2 
w + 1 

2w 

(TC) 
0 

= the absolute value of the optimum total 
cost to be consistent with the original 
directions of the axes. 

Example: The procurement and inventory department in a company 

estimates the holding cost factor for an item by 4 dollars per 

unit per year; the shortage cost f1:1ctor, 16 dollars per unit 

per year; setting cost factor, 40 dollars per lot size; and the 

demand, 10,000 units per year. What is the optimum policy and 

the decision range policy for 10 per cent increase in the total 

variable cost above its optimum? 

By using the results of the above model, one can obtain 

2DC (Ch+ C) 
p s 
C C 
h s 

2xl01000xlO 4 + 16 = SOO items 
i4xl6 
'I 

C s 
S = Q C + C 

0 0 s. h 
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The decision range is 

= (500) ( 1! ) = 400 items 
20 · 

2 X 10,000 X 4 X 16 X 40 
(4 + 16) 

~10,000 x 16 x 16 • 1600 dollars/year, 

342<:::~1<:::658 units. 
- -
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Example: The PID in the preceeding example can control the parameters 

Ch, C 'a and C • What are the limits on the demand fluctuation for s p 

this policy? 

Thus, 

2 (.68377) = .467856. 

And, 

[~'J • (1.31623) 2 = 1.7424 
u 

Thus, 
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o.46786 (10,000)<0•<1.1424 (10,000) 

4676<0•<::::11,424 units. 

Therefore, the demand can fluctuate between 4676 and 17424 units 

per year while the net increase in the total variable cost over its 

optimum is not more than 10 per cent. This quite wide range of 

demand makes the model insensitive to the change in the demand 

within the above limits. 

Power Demand - Purchasing or Infinite Replinishment Models 

~,odel Involving Holding and Shortage Costs 

The same assumptions as in the similar model with uniform demand 

except that the rate of demand varies from time to time during the 

cycle. This model can be illustrated in the following diagram. 

The amount in the inventory at any time Tis 

Q(T) = 

And the total cost equation is 

s - Q 
0 

TC = HC + SC • 

The total holding units per cycle can be obtained by integration 

from zero to Th time units. The average amount carried in the inventory 

is obtained by dividing the result of the integration by the total cycle 

time Tc time units as 



Cl) 

r-1 
Q) 

> 
Q) 

...:i 

" 

Power index of demand curve n2<::::"1.0 

Power index of demand curve n;:>1.0 

-- ---

" " \ \ \ 
\ \ \ 

\ 

.. .,, 

\ 

s 

Figure (16). Purchasing, Power Demand, Holding and Shortage 
Costs Model 

122 

Q 

Time 
T 



Q(T)dT • 

Where 

I 1(s) = the average amount carrying in the inventory. 

The shortage units per cycle (positive amounts) can also be ob-

tained by integration from Th to Tc time units. The average amount 

of shortage is obtained by dividing the result of integration by the 

total cycle time Tc time units as 

Wherr.e 

1 
:a-

T 
C 

Q(T)dT. 

I 2(S) = the positive amount of shortage in the inventory. 

Let us clear these integrations first as follows, 

1 
= Tc 
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But from the diagram of the model Figure 4-15 the following relation. 

can be obtained as 

Thus, 

• 

Substituting with the value of Th in 11(S) as 

( 
n n 

1 S 2 n2 · S · 2 
I (S) = -- ST ( - ) - - Q T ( - ) • 1 T C Q n2+ 1 0 C Q 

C O 0 

n2 
T ( S ). 

C °lrc; 

l 

S n2 ~ n2~, 
= S ( -Q ) : 1 - n +l 

0 . • 2 



The average shortage amount is 

1 =r 
C 

1 

( ic )n2J dT 

1 1 +l 

ST - Q (Tl) n2 Tn2 
C 
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T 
C 

. 1 ~ 
1 ['. n2 1 ~ = - S (T - T ) - -n +l ( -T ) • 

Tc c h 2 c 

1 '+l 1 +1 J 
Q ( T 'fri' - T !ti ·) 

0 C . h 

Using the relation derived before as 

Thus, 

n2 
T =T(L)·. 

h C Q 

1 
l2(S) = T 

. C 

0 



-2:. + 1 _! + 1 .. 
1 S (-;;.·H)n2 

Qo T n2 - T n2 ( - ) n2 
C C Qo 

n2 

s - S( !.. ) Dz [ ( !.. ) = - --. . 1 
Qo n2+1 Qo ·. Qo. 

= s - s 
n2 · [ S . n2 · · S 

( -Q· ) - n +l Qo 1 - -Q 
0 2 0 

= S - S( ~ ) 
Qo 

n 
2 

( !.. ) 
n2 n2 n2 

= s - s (1 - ) - n2+1 Qo n2+1 

S( !_) 
n2 n2+1-n2 n2 

= s - ( ) - n2+1 Qo Qo n2 + 1 

( s ) 
n2 

s +n2Qo 
= s - ~ 

n2 + 1 

n2+J 

Qo 

Therefore, the total cost function is 

Where 

C = h the holding cost factor - dollars per unit 
per year. 

C = the shortage cost fac:tor - dollars per unit 
s per year. 

Thus, 
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TC= S 

. n2 
s 

[_s - _s ___ (Q_o_) _. _+_n_2Q_o_J C 

[ n2 + 1 J s· 

which is a function of the inventory levels. 

If n2 = 1.00, that is a model. with uniform demand then the total 

cost function yields to 

S2 + Q J Qo o 
- C 2 s 

- ~s - ..£ + Qo~ c 2Q 2 s 
0 

whic.h is the same result derived before for· the similar model with· uni-

form demand. 

Returning to our model with the power demand inde;ic n2, the total 

cost function is 

C • s 

The trade-off solution and trade-off decision range are obtained 

through the differentiation of TC function and the derivation of the 

sensitivity expression respectively. Thus, differentiate with respect 

to S, equate the result to zero, solve for the optimum level of inventory 

S, and substitute with S in the TC function to obtain the optimum total 
0 0 

cost TC as 
0 



n2 n2 
dTC _.., 
dS 

S · C 1 S 
(n2+1)( -Q ) h + (n2+1)( -Q ) 

0 n2+1 O 

s - . 
o - Qo 

C 
s C 

n 2+1 • s 

n2 C n2 C s . h s s 
TC O = S ( Q ) C + l + S ( Q ) n:+f 

0 h O 2 

Assume an error w has been associated with S in such a way that 
0 
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S =wS =wQ 
W O 0 

and 

w = zero or a positive value. 

The corresponding value TC will be 
w 

p C 
- C _...!... - Qo s C

8 

=Q·C n~ 

OS J ~S 

C s 

- wn2 - w 
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where 

TC0 = the absolute value of the optimum total cost. 

If n2 = 1.00, the case when the model has a uniform demand, the 

sensitivity expression yields to 

TC 
w -TC0 

2 
(w -w-w)C +ch+ C s s = ~~~~~~ .... ~--

<'- +c -c 
-h s s 

C C 
= 1 + ....! + ....! (w2 - 2w) 

ch ~ 

130 

which is the same result as in the purchasing model with uniform demand. 

If either uniform demand or power demand model involves an addition 

PC as a constant element, then the total cost function is 

TC = HC + SC + PC. 

This total cost function is a function of Sonly due to the assump
DC 

tion PC=......£= constant which consequently implies Q and T are constants. 
Q C 

Then n +1 
ch+c 8 2 . 

TC= s • -n--
n2+1 Q 2 

s~Qr;f. 
n2 

+-+·l C Q n 2 . s cs+QDc 
s p 



If n2 = 1 that i.s the model has a uniform demand, then 

ch+cs s2 1 D 
TC= 2 ""'q+ 2 QCs - CsS + Q Cp • 

This model is similar to the parabola versus the straight line model 

in Chapter III. Thus 

and the decision range is 

C C 
0.6837736 QC :c <:::::_sw<::::.1.3162278 QC~ e 

sh-- sh 

If n2 = 2.00, that is the cubical parabola versus the straight 

line model. Applying the results of the similar model Chapter III, 

thus 

and the decision range is 

s = 
0 

2QC s 

2 
TCo = - 3 Q 

2 
TVC = - - Q 

0 3 

C 3 
s +~C +2CQ -(c_h_+_c_s ). Q p 3 s 

C 3 
s 

• 
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The total cost function is 

Where 

and 

TC = HC + PC. 

HC = (average amount held)(holding cost factor) 

11(S) • the average amount in inventory above the 
buffering stock level B · 

PC= the procurement cost per year 

D = -(C) 
Q p 

D = the demand-units per year 

Q = the lot size units 

· B = the buffering stock units. 

The value of r 1(s) can be obtained by calculating the area under 

the demand curve and divide this area by T. Using the integration 
C 

as 
T 

Il (S) = T: I C Q(T)dT 

o: 

= TlJT° 
C . 

0 

dT 
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l Q 
T nji-1 

n2 
ST C = x-T C 

:F 
n2+1 

C 

s -
n2 

= Q n +l 
2 

But from the diagram of the model figure 4-16 the following relations 

can be obtained as 

thus, 

And 

1 
T 

Q(T=T) = B = S - Q (Tc) n2 
c· 

C 

S = Q + B 

n2 
= Q + B - Q n +l 

2 

TC = [Q + B) - Q 2-J C · + £ C ~ n 2+1 h Q p 

ch 
Which is the equation of a straight line with slope M = ~~. and the 

n 2+1 
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intercept on the y-axis is BCh, and a rectangular hyperbola with parameter 

B = DC .• By applying the results of the similar mathematical model, the 
p 

following results are obtained by substitution 



1 TVC = TC - BC = 2DChCp • o o h n 2+1 

and the sensitivity expression is 

where 

jTVCof 

,;/+1 
2w 

= the absolute value of the total variable 
cost to be consistent with the directions 
of the original axes. 

And the decision range is 

2DC (n2+1) 
p 
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The buffering stock units do not affect the location of the optimum 

lot size Q but it does affect the location of the optimum total cost, 
0 

that is it shifts the curve of total cost up by the value BCh. 

Example: Solve the example given at the end of the similar purchasing 

model with uniform demand for n2 = 3.00 and B = 50 units. 

By substitution one can obtain 



2xl000xl00x4 = 400 units. 5 

2Dchcp 
n2+1 

2x 1000x5x 100 500 dollars/year = 4 

TC = 500 + BCh 
0 

= 500 + 50 x 5 ·= 750 dollars/year. 

And the decision range for .10 per cent increase in the total variable 

cost above~its optimum is 

0.6837736Q <:::,Q <::1.3162279Q 
0 W · 0 - -

To find the net increase in the total cost follow as 

TVC 
w 

TVC 
0 

• 1.10 

l.lOTC - 275 = TC - 500 
0 W 

TC w 
TC 

0 

= 1.10 25 
- TC9 

= 

= 

1.10 X 750 - 25 
750 

825 - 25 
750 = l.067. 

135 



136 

This last calculation shows the net increase in the total cost 

function (including the cost of the buffering stocks) is only 6.7 

per cent corresponding to 10 per cent increase in the total variable 

cost above their optima. 

The same results can be obtained for the model with shortage.and 

procurement cost elements - power demand patterns. The only difference 

is to substitute C instead of Ch. 
s 

Model Involving Holding, Shortage and Procurement Costs 

The same assumptions as in the similar model with uniform demand. 

This model is represented in the following diagram Figure (17). 

\ 
\ 

\ 

-.-.-~ 

\ 
\ \ s 

\ 

Power index of de.mand curve n2 <1.00 

Power index of demand curve ni>l.00 

Q 

Figure (17). Power Demand, Purchasing, and Holding Shortage and 
Procurement Cost Elements Model 
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The average values of the holding and the shortage units derived 

in the previous model are used for this model. Thus the total cost 

function is 

TC= HC +SC+ RC 

n 
s ( §.) 2 

= Q 
n 2 + 1 - s C + ~ C 

s Q p 

D 
- SC + -Q C • s p = 

The total cost function is a function of two variables Sand Q but these 

two variables are related in a linear relationship as it will be shown 

later. 

Differentiate partially with respect to Sand Q, equate each of 

the.partial derivative to zero to obtain the optimum values S and Q, 
0 0 

and again substitute with these two optimum values in TC equation to 

obtain the optimum total cost TC as 
0 

n 2+1 S 
n2 

n 2+1 Qh2 

Q = constant 

C 
S., 

G +IC: . 
h, S; 

<-.. )·.· •·c)Q f;C,Tcj·· n2;,· 

L . 
, n...+1 (t n2 (n2+l) 

(C .. L,l'! )· (Q .. )' -~~.. . S ) --: 
n+il 

'2. .. 
- ':'""' .. , .·... 1".' <c : : o s·_ ~. L.+u 

cf' s 



n 
o = - -·2-:c 

n 2+1 , s 

Q = 
0 

- C Q 
S 0 

n C D 
+ C Q . ___,L + ....l?... 

+1 . Q s o n 2 0 
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= Q C 
0 s 

1 -

1 1 . ch:~. 

cs 
C +C. 

h s 

C + C 
h s 

D2c 2 n C ~ -] p 2 sl2: 
c .] 

cb+~s. 

1 

[1-J.f;J 

A~sume that errors w1 and w2 .have been associated with Q0 and 80 

respectively in such a way that 
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and 

w1, w2 are zeros or positive values, 

By the same method as in .the previous models the sensitivity 

expression is 

where 

· and 

= the absolute value of the optimum total variable 
cost to be consistent with the directions of the 
axes. 

The decision ranges are 

0.6837736Q <Q <1.3162279Q _o _w o . - 1- . 

0.6837736S <s <l.3162279S 
0 W 0 - 2_ 

C · C 
s ,,,,-, < s 0.6837736Q0 c""+c"'-..__sw~ l.3162279Q0 "c"+c"". 

. s h..,..- ;t- . . s h 
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If n2 = 1.00, that is the model has a uniform demand 

j 2DCP~· ch+cs 
C · C 

h s 

TC 
0 

ch+c -c s s 
( C +C ) 

h s 

-CJ· . C :~ J ,uvh": . S h 

The same results obtained in the previous purchasing model with uni-

form demand. 

and 

Thus, 

The relation between the two errors are 

= w s . 2 0 
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Example: Solve the previous example at the end of the similar 
. . . 

· model w:i.th uniform demand for n2 = 3. 

By substitution in the results of the above model one can 

obtain 

n2Cs 1 ~~s - C +C 
h s 

4xl0,000x40 

3x16 iJ_!! 
20 

100, 000 = r:;:;;;:-_ 16 
3 X .072 J ·-----

= 686 units 

s • 
0 

~ 1162 dollars per ye~r. 
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And the decision range is 

(0.6837736)686<Q <:1. 3162279(686) w - -

and 

43s<s <s4o . 
- J,z--"-
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E 

O' 
Q) 
N 
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.1,,1 

.s 

Uniform Demand - Manufacturing or 
Finite Replenishment Models 

·-- -- ' . -- ---- -- -- --

--·.·~ 

T 
C 

Time T 

Figure (18). Uniform Demand - Manufacturing or Finite 
Replinishment Model 
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Let 

and 
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This mode 1 can be represented in the following diagram, Figure (18) • 

R = the rate of the"m~nufact~rin~ during the manufacturing 
periods T1 and T2 

D = the rate of the demand and it is less than R 

R -D = the rate of the accumulation during the manufacturing 
periods T1 + T2 

T1 = the manufacturing time periods while the shortage units 
are occurred that is the inventory level is less than or 
equal to zero units. 

T 
C 

= the manufacturing time periods while the holding units 
are occurred that is the inventory level is greater than 

· zero units 

= the manufacturing time periods 

= the remaining time periods of the cycle"' when the replenish
ment rate is zero 

= the time periods of one cycle 

Q = the lot size 

S = the maximum inventory level and it occurs at the end 
of the last manufacturing.period 

E = the maximum amount replenished and it occurs at the end 
of the last manufacturing period 

E - S = the maximum positive shortage level and it occurs at 
the beginning of manufacturing period. 

From the symmetry of the triangles in Figure 4-18 the following 

relations can be obtained 

R = 

R - D = 
E 

Tl+T2 
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Thus 

TI+ T2 = .JL = ..,!_ 
R R-D 

And 

E 
R-D = Q-

R 

Q (1 D ) = - R 

Tl 
E-S =--R-D 

T3 
s = -D 

and 

T4 
E-S . --

D 

Models Inyolving Holding and Shortage Costs 

Assume 
DC 

is ---2. 

that this model involves a procuremE,mt cost as a constant, 

that 
Q 

is constant which consequently implies that Q and T 
C 

are constants. Thus, the total cost function is 

TC = HC + SC + PC. 

The holding cost HC can be obtained by using the preceeding relations 

discussed at the beginning of the manufacturing models as 
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HC = (average holding amount)(holding cost factor) 

s2 1 
= 'z'"' Q(l-D!R) Ch 

The shortage cost HC can also be obtained by using the preceeding re-

lations discussed at the beginning of the manufacturing models as 

SC= (average shortage amoqnt)(shortage cost 
factor) 

T +T 
E-S ( ~ )(C) = 2 T s 

C 

E-S ( E-S + E-S )( ~ )(C) 
= ~ R-D D Q s 

(E-S) 2 1 
= 2 Q(l-D/R) Cs 

2 
(E-S) = - 2E- Cs. 



.Therefore, the total cost equation is 

S2 (E-S)2 C +QC• 
TC= 2E Ch+ 2E s Q p 

According to the assumption, this TC function is a fun~tion of Sonly. 

Thus, expand the function a,nd inspect its right hand side and apply 

the results of the similar mat~ematical model in Chapter III as 

This is similar to the parabola versus the straight line model. Thus, 

S • E 
0 0 

TC 
0 

C 
s 

E C 2 
0 S TVC 

0 
= - 2 -( c __ h_+_c_s~) 

For an error w--:;::;,O associates with S, the sensitivity expression is 
. 0 

where 

jTVCol 

TVC 
w 

I TVCol = 

= the absolute value of the optimum total variable 
cost to be consistent with the directions of the 
original axes. 

And the decision range is 

C , C 

0.6837736E0 (Cs+~h) <sw<l.3162278E0 (C/~h) 
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If this model has a procurement cost element which is not under the con-

tol of. the decision maker, that is Q and T are not constants, results 
C 



) 
\-

/ 
I· 

r' 
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let 

and 

T ~·.manufacturing periods in time units m . 

T • the remaining periods of the cycle in time units 
0 

T + T = the cycle periods in time uni~s. 
.. • 0 

Thus, the total cost equation can be obtained by using the preceeding 

relations at the beginnlns of manufacturing models as 

TC •·He+ PC 

... !c +.!!c 
2 h Q p 

This is similar to the mathematical model .. the straight line versus 

the rectangular hyperbola in Chapter 111. One can find that 

for an error w 

where 

__e. . . l ·:t::c~·-···· 
. Q~ • . Ch · . · (1-D/R) 

TC0 o nc0 R(l -DIR) 

0 associates with q· the sensitivity expression is 
01 

. TVC . w 

. ITVCol 

= the ·absolute value of the optimum total 
variable cost. 

i[: 

/ 



Assume an error has been associated with E in such a way that 
0 

E = w E 
WJ 3 0 

where 

w3 = zero or a positive value. 

The corresponding value in TC due to this error is TC as 
w 

= 

= 

The sensitivity expression is 

where 

(1-D/R) 

2DC ChC · 
P s I ) (C +C) (1-D R 
h s 

D(l-D/R)C 
p 
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and the decision range is 

0.6837736Q <::Q :<::1.3162279Q 
o_ w-:._ o 

Models Involving Shortage and Procurement Costs 

Results similar to the preceeding model can be obtained with 

the only difference Cs is to be substituted instead of Ch. 

Models Involving Holding, Shortage, and Procurement Costs 

The diagram of this model is similar to the Figure 4-18. The 

total cost equation is 

TC = HC + SC + PC 

s2 (E-s) 2 D 
= 2E Ch + -2E - Cs + Q C p 

= s2 C. + (E-S) 2 C + D(l-D/R) C 
2E h 2E s E p 

D(l-D/R) 
E Cp. 

This TC equation is a function of S and E. Thus, differentiate partially 

the TC equation with respect to each Sand E, equate each partial derivative 

to zero, solve for the optimum value S ~nd E, and finally substitute 
0 ,i 0 

with these two optimum values S and E in TC to obtain the optimum 
0 0, 

total cost TC0 as 



thus, 

·oTC 
( ?)S = -C + ~ (C + C. ) = 0 

s 2E h s 

E = constant 

C S =· E __ s __ _ 

o o cs + ch 

S = constant 

C S 2 

__ 2s • 2Eo2 (Ch + C ) + 2 D C • 
· o . s E0 (1-D/R) p 

Substitute with the value of S0 in the last equation. Thus 

thus 

C 2 C 2 
s E s (C +C ) + D( 1-D/R) C 

"'°J:- = 2E2 (C +C )2 h s . E ··. p 
s h 

2D(l,;.D/R) C c 2 + chc - c 2 
s' s s = (Cs+ Ch) 

E 2 
0 

p 

CC · 
h s 

= cs+ch 

1S2 



Thus, 

C 2 
s 

C 
+ _! E 

2 0 

C 2 
____ s_ E + D(l-D/R) C 
(C +C ) o E p 

= E 
0 

h s 

C 2 
s 

[ D(l-D/R)CJ 

2 2 2 Ches' 
+ D (1-D/R) cp 2DC (C +c )(1-D/R) 

p h s 

= r::::.c-FI ... '. cs~ r:;;:. :;=he:) vc:; 
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TVC = TC 

the absolute value of the optimum 
total variable cost. 

· And the decision range is 

2DC (Ch+C )(1-D/R) p s 
o.6a37736 

154 

This model is a general model for all models with a uniform replenish-

ment and a uniform demand patterns excluding the models involved holding 

and shortage costs as variable elements in the total cost function. It 

is easily to generate all other models from this gene.ral model as 

follows: 

For the general model the optimum value.s are 

or 

Q - g ch+cs • ..,......_l..,....,,.. o] c---:j · ch (1-D/R.) 

,And 

or 
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• 

The last square roots in these two relations are due to the effect of 

manufacturing or finite replenishment models over the infinite replenish-. 

mentor purchasing models. If R approaches , the last square roots 

will equal 1.00 and th.e optimum values are for the purchasing models •. 

If the model does not allow shortage units or holding units then 

each median square root will equal 1.00 in the first two relations or 

in the second two relations respectively. If the model has an infinite 

replenishment and it does not allow shortage units or holding units 

then the last square root is equal to 1.00 and each of the median 

square roots in the first two relations or the second two relations 

is equal to 1.00. By applying these different combinations one can 

easily come to the same results derived before. 

Factors Introducing Errors 

If one assumes that there are errors occuring in estimating or 

calculating the variable,~ he would desire to know the parameters which 

introduce these errors. Let us assume that there are errors w1, w2, and 

w3 which have been associated with the optimum lot size Q.0 , the optimum 

inventory level at the beginning of the cycle period S0 , and the maximum 

amount replenished during the cycle E respectively. Thus for the 
0 

general model 

D. c' ch cs ch'+cs• n (l-D'/R1 ) 

DCC' cl° C +c (1-D/R) 
p h ,S h S 



C I 
s 

C s 

(1-D/R). 
(1-D' fR 1 ) 

Where the parameter with prime indicates the over estimated or 
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the under estimated value while the parameter without prime indicates 

exact estimated value. 

By inspecting these ratios under the square roots one can conclude 

that the parameters introduce these errors are the demand, the procure-

ment cost factor, the holding cost factor, the shortage cost factor, 

the sum of the holding and shortage cost factors, and the ratio of the rate 

of the demand over the rate of manufacturing subtracted from 1.00. Fa~-

tunately these ratios are tending to balance each other if the estimator 

is consistent with his estimates that is the estimator is overestimating 

for all parameters or underestimating for all parameters. Sometimes 

if these ratios are well balanced the final calculation yields to the 

optimum lot size Q0 and the optimum total cost TC0 regardless of the errors 

in estimating the parameters inside the i~ventory system. That is to 

say there are errors inside the inventory system but due to the con

sistency in the estimating of the ratios of the parameters are well 

balanced and yields to an output optimum policy. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

In the summary, sensitivity analysis of decision 'models, repre-

sented in continuous mathematical equations, are obtained through the 

using of the mathematical techniques, differentiation, or partial 

derivative, and transformation. The differentiation or the partial 

derivative is used for providing the optimum solution if.it exists, 

The transformation is used to eliminate the constant term or terms from 

the original equation due to the fact that the curvature of the curve 

or the shape of the surface is only affected by the variable parts in 

the equation, General sensitivy expression for any decision model can 

now be obtained by eliminating this constant term or terms by dividing 

and the transformed function by the absolute transformed optimum value 

y I 
0 or TC I 

0 or TP0 ' , The absolute value is used as a deviser to 

be consistent with the original directions of the axes. 

Chapter III discussed groups of mathematical models or decision 

models, Each model in the first group can be represented as a one 

standard curve. In the second group each model can be represented as 

a summation of two different standard curves, the first curve is an 

.increasing function while the second is a decreasing one, 

In the last group, each model can be represented as a summation 

of three different standard curves; one of them is an increasing 

function and the others are decreasing ones and vice versa, The 
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assumption of one increasing function and the other(s) is (are) 

decreasing one(s) and vice versa is important for providing the 

optimality. The management is not only interested in the optimum 

values but they are also interested in the sensitivity of these models 

around these optimum values, Tables I, _II, III, IV, are the summary 

of the mathematical models and their sensitivity expressions. They 

show that general sensivity expressions are achieved; three for the 

one standard curve models, nine for summation of two standard curves 

models, five for summation of two standard curves models, and three for 

summation of three standard durves models. The third table is referred 

to maximization while the others are referred to minimization. 

Chapter IV seeks the application of the Chapter III models in 

decision making process areas. Although the application is devoted 

to the inventory models but it can also be applied in other areas such 

as the replacement and the retirement models, the queuing models and 

so on.· 

One can itemize the decision models into the following conclu

sions: 

a. Most,of the ordinary decision models have the characteristics 

that the upper ranges of the decision models are flatter than 

in the lower ranges. 

b. Quadratic functions' ·decision models have equal decision range 

limits from the optimum values, 

c. Decision models, containing one of their summation curves as 

a third degree equation or more have the characteristic that 

the lower.ranges are flatter than in the upper ranges, and 

sometimes the sensitivity in the upper ranges is very high, 
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The flatness is reduced if the other curve(s) in the models 

is (are) rectangular hyperbolas or reciprocal of quadratic 

functionso 

d~ Although the decision range is v.aried from one model to 

anoth~r, all of them are very satisfactory for the same pre

determined allowance increase or decreas~ above or under the 

optimum. 

e. Care and caution have. to be exercised in handlin.g the holding 

and shortage cost elements models in the inventory system. 

The sensitivity expression is a special one and very sensi

tive especially when the ratio of the holding cost factor 

over the shortage cost factor is high~ 

f, Appendices A and B provide complete evaluations and decision 

ranges for± 10 per cent above or under the optimum of the 

variable parts in the decision model, 

The following recommendations are suggested for further studies 

and.investigations: 

a. Sensitivity tmalysis for discrete decision models. 

b, Sensitivity analysis for more than one independent.decision 

variable. 

c. Application of the sensitivity analysis upon the replacement 

and the retire~ent modelso 

d.. Application of the sensitivity analysis upon the queuing 

models. 

e. Application of the sensitivity analysis upon the linear 

programming modelso 

Finally, the sensitivity analysis emphasizes that there is a wide 
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range for making decision around the optimum value while the net yield 

in the objective function is insignificant. This fact fortunately 

meets the management's dynamic needs and liquidates the enormous 

problems facing the management in searching the exact parameters and 

consequently the mathematical optimum point as it was mentioned in 

Chapter I. 
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APPENDIX A 
COMPLETE EVALUATION OF MINIMIZATION 

OR COST FUNCTIONS AND THE LIMITS 
OF DECISION RANGES FOR 10% INCREASE 
IN THE TOTAL VARIABLE COST ELEMENTS 

ABOVE ITS OPTIMUM VALUE 
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APPENDIX A 

CO:MPUTER PROGRAMS 
FOR 

MINIMIZATION OR COST FUNCTIONS 

In Chapter III - models as a sununation of two different standard 

curves - nine minimization or cost functions had been derived and it 

was shown that these functions after transformation (if needed) are 

functions of the error w which was associated with the optimum value 

of independent variable X0 • · The transformation was used only when the 

function contained a constant term. The representations of a constant 

term in the decision models are the buffering stock cost in the 

inventory models, the first period maintenance or operating cost in 

the gradient maintenance or operating cost throughout the asset life 

for the retirement or replacement models, the unit variable cost of the 

linear relationship in the marginal or incremental production models 

and so on. 

These nine minimization or cost functions are evaluated on the 

digital computer (Computer Program I) for an error w varying from 0.05 

to 3.95 with an incremental error w = 0,05. At w = 1.0 which is cor-

responding to the mathematical optimum point (minimum point) (X0 , Y0 ), 

the value of.the transformed dependent variable (total variable cost 

elements) is the optimum one (Y0 ' or TVC0 ') its absolute optimum value 

(Y0 ' or TVC0 ') and this is equal to± 1.00. The value of +.1.00 refers 

to a positive optimum.transformed value (Y0 ') or a positive optimum of 

the total variable profit elements (TVP0 '), otherwise the value is -

1.00. 

The limits of the minimization or the cost functions' decision 

ranges were obtained for a predetermined allowance of 10% increase in 
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the total variable elements of the cost function above its optimum 

(Y0 ' or TVC0 ') through the Computer Program II and by using a sub

routine program, 

The complete evaluations of these cost functions are given in 

Tables V to XIII. The limits of cost functions' decision ranges are 

given in Table XIV. 

The graphs of these minimization or cost functions are drawn in 

Figure 19 through 27. 

165 



I. COMPUTER PROGRAM FOR EVALUATING 
MINIMIZATION OR COST FUNCTIONS 

Abouel-Nour 

C EVALUATION OF 9 FORMULAE FROM .05 to .4. IN INCREMENTS OF .005 
C C-ARRAY IS LOWER STRADDLE OF ROOT, D-ARRAY IS UPPER STRADDLE 
C SLIM= STARTING VALUE FOR EVALUATION 
C ADD = INCREMENT FOR EVALUATION 
C NIT= No. EVALUATIONS TO BE MADE 
C NF= NO. FORMULAE 

101 

2 
102 

31 

32 
33 

C 

5 

6 

7 

8 

9 

10 

11 

12 

13 
4 

C 
14 

DIMENSION C(2, 10) ,D(2, 10) ,W(99), Y(99) 
. READ (1, lOl)SLIM,ADD,NI.T·,NF 
WRITE(3,101),SLIM,ADD,NIT,NF 
FORMAT(2FlQ.5,215) 

' DO 2 J=l, 9... , 
READ(l,102) (C{I,J),P(I,J),I=l,2). 
WRITE t\3,102) (C{l,J)\D(l,J),I=l,2) 
FORMA~(4F5.3) 
DO 3 J=l,NF 
IF(l-1-)31, 31, 32 
W(l);;:0.05 
GO ·To 33 
W(l)=W{I-l)+ADD 
WW=W(I) 
SRTW=SQRT {WW) 
EVALUATE THE FUNCTIONS·, PRINT OUTPUT, FIND ROOT 
GO T0(5,6, 7,8,9, 10, ll, 12, 13),J 
Y(I)=WW -2,*SRTW 
GO TO 4. 
Y(I)= ((WW*WW)+l)/(2.0* WW) 
GO TO 4 
Y(I) = WW *WW -2, * WW 
GO TO 4 
Y(I)={WW -t, WW)/3.0,..( 4.0/3.0)* SRTW 
GO TO 4 
Y(I)= (WW*WW)/3,0 + 2./(3*WW) 
GO TO 4 
Y(I)= .5* WW**3 - l.5*WW 
GO TO 4. 
Y (I)= -1. 2*SRTW + (WW**3) / 5. 
GO TO 4 
Y(I)= WW**3/4 + 3.0/(4.0*WW) 
GO TO 4 
Y(I)= (2,0/3.0)*WW + 1.0/(3.0*WW*WW) 
CONTINUE · 
GO T0(14,15,16,17,18,19,20,21,i2),J 

.WRITE HEADINGS AND OUTPUT 
WRITE(3, 114) 
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114 FORMAT('l SENSITIVITY ANALYSIS OF STRAIGHT LINE VS, PARABOLA MODEL 
1'//20X, 1 FUNCTION •• , Y= W-2*SQRT(W) 1 .. lOX,'ERROR W1 ,10X 1TOTAL 
2VALUE 1 ) . 



23 WRITE(3,30)(W(K),Y(K),K=l,NIT) 
30 FORMAT(5X,Fl0.5,12X,Fl2.6) 

GO TO.~ 
15 WRITE(3,115) 
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115 FORMAT( 1 1 SENSITIVITY ANALYSIS OF STRAIGHT LINE VS. RECTANGULAR HY 
lPERBOLA MODEL' //20X, 'FUNCTION ••• Y=(W*W+l)/2W 1 //lOX, 'ERROR 
2w 1 , lox,' TOTAL VALUE') 

GO TO 23 
16 WRITE(3,116) 

116 FORMAT ( 1 1 SENSITIVITY ANALYSIS OF PARABOLA VS. STRAIGHT LINE MODE 
1L',//20X,'FUNCTION ••• Y=W*W - 2W' //lOX, 1 ERROR W1 ,10X, 1TOTA 
lL VALUE 1 ) 

GO TO 23 
17 WRITE (3,117) 

117 FORMAT('l SENSITIVITY ANALYSIS OF PARABOLA VS. PARABOLA MODEL 0 ,// 

120X, 1 FUNCTION ••• Y =(W*W)/3-(4/3)*SQRT(W)'//10X'ERROR W',lOX'TOTAL 
2VALUE ') 

GO TO 23 
18 WRITE(3,118) 

118 FORMAT('l SENSITIVITY ANALYSIS OF PARABOLA VS. RECTANGULAR HYPERBO 
lLA MODEL' //20X 1 FUNCTION ••• Y = (W*W)/3 + 2/3W 1 , //lOX, 1 ERROR W', 10 
2X,' TOTAL VALUE') 

GO TO 23 
19 WRITE (3,119) 

119 FORMAT( 1 1 SENSITIVITY ANALYSIS OF CUBICAL PARABOLA VS. STRAIGHT LI 
lNE '/ / 20X' FUNCTION ••• Y= • 5W**3 - 1. SW '/ / lOX' ERROR W', lOX 'TOT 
2AL VALUE') 

GO TO 23 
20 WRITE(3,120) 

120 FORMAT (' 1 SENSITIVITY ANALYSIS OF CUBICAL PARABOLA VS. PARABOLA'// 
120X,' FUNCTION ••• Y= -l.2*SQRT(W)+ W**3/5.'// 10X, 1ERROR W',lOX 'T 
20TAL VALUE 1 ) 

GO TO 23 
21 WRITE(3,121) 

121 FORMAT( 1 1 SENSITIVITY ANALYSIS OF CUBICAL PARABOLA VS. RECTANGULAR 
1 HYPER BOLA' // 20X, 1FUNCTION ••• Y+ W**3/4 + 3/4W' // 10X, 1ERROR W 
.2', lOX 'TOTAL VALUE 1 ) 

GO TO 23 
22 WRITE(3,122) 

122 FORMAT( 1 1 STRAIGHT LINE VS. RECIPROCAL OF QUADRATIC FUNCTION'//20X 
l,'FUNCTION ••• 2/3 W + l/3W*W'// lOX'ERROR W1 ,10X, 1TOTAL VALUE') 

GO TO 23 
3 CONTINUE 

STOP 



II. COMPUTER PROGRAM li:OR OBTAINING LIMITS OF .MINIMIZATION 
OR COST FUNCTIONS' DECISION RANGES FOR A PREDETERMINED 
ALLOWANCE 10% INCREASE ABOVE ITS OPTIMUM 

Abouel-Nour 

. FUNCTION F (X, JFW) 
GO TO (1,2,3,4,5,6,7,8,9),JFW 

1 F=X-2.*SQRT(X)+l.10 
GO TO 10 

2 F=X*X-2.2*X+l.O 
GO TO 10 

3 F=X*X-2.*X+.9 
GO TO 10 

4 F=X*X-4.*SQRT(X)+2.7 
GO TO 10 

5 F=X**3 - 3.3*X +2 
GO TO 10 

6 F= X**3-3*X+l.8 
GO TO 10 

7 F=X**3-6.*SQRT(X) + 4.5 
GO TO 10 

8 F=X**4 - 4.4*X + 3.0 
GO TO 10 

9 F=2.*X**3 - 3.3*X*X + 1.0 
10 . RETURN 

END 

BEGIN COMPIIATION 
DIMENSION C(2,10),D(2,10) 
DO 2 J=l,9 
READ(l,102) (C(I,J),D(I,J),I=l,2) 

2 WRITE (3,102) (C(I,J),D(I,J),I=l,2) 
102 FORMAT(4F5.3) 

DO 3 J=l. 9 
24 DO 26 I=l, 2 

A=C(I,J) 
B=D(I,J) 
Nl=S 
N2=50 
El=.0005 
E2=.0005 
JX=J 
CALL RTFIND(A, B,X, Y ,El,E2, Nl, N2,N, JX) 

26 WRITE(3,25) X,Y,N,J 

168 

25 FORMAT(//' LIMIT = 1 ,ElS.8, 1 Y= 1 ,E15.8,' N=',Il0, 1FORMUIA NO.', 
115) 

3 CONTINUE 
STOP 
END 



BEGIN COMPIIATION 
SUBROUTINE RTFIND(A,B,X,Y,El,E2,Nl,N2,N,JFW) 
JFW=JFW 
N=o'. 
F l=F (A, JFW) 
F2=F(B,JFW) 
IF(Fl*F2)1,11,20 

1 IF(Fl)2,3,3 
2 FM=Fl 

XM=A 
FP=F2 

. XP=B 
GO TO 4 

3 FM=F2 
XM=B 

.FP=F 1 
XP=A 

4 N=N+l 
IF(N-Nl)5,5,21 

5 C=FP* ( XP-XM) / (FP-FM) 
X=XP-C 
Y=F(X,JFW) 
IF(ABS(C)-E1)6,6,8 

6 IF(ABS(Y)-E2)7, 7,8 
7 RETURN 
8 IF(Y)9,10,10 
9 FM=Y 

XM=X. 
10 FP=Y 

XP=X 
11 IF(F1)12,13,12 
12 X=B 

Y=F2 
GO TO 7 

13 X=A 
Y=Pl 
GO TO 7 

20 WRITE(3,300) 
300 FORMAT ( 1 NO STRADDLE 1 ) 

Xl=A 
X2=B 
GO TO 24 

21 IF(FM-Y)22,23,22 
22 F2=FM 

X2=XM 
GO TO 24 

23 F2=FP 
x2;..xp 

24 N=O 
Fl=Y 
Xl=X 

25 N=N+l 
IF(N-N2)26,26,30 
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26 C=((Xl-X2)/(Pl-F2))*Fl 
X=Xl-C 
Y=F(X,JFW) 
IF(ABS(C)-El)27,27,28 

27 · IF (ABS (Y)-E2)7, 7, 28 
28 F2=Fl 

X2=Xl 
Fl=Y 
Xl=X 
GO TO 25 

30 WRITE(3,30l)Y,X,N 
301 FORMAT(' CONVERGENCE INCOMPLETE. !AST F(X)= 1Fl0.6, 8AT X= 1Fl0.4,' 

1 FOR 1 15, 1 ITERATIONS') 
GO TO 7 
END 

LIMIT= 0.46755546E 00 y = -0.49471855E-05 N = lFORMUIA NO. 

LIMIT= 0.17324524E 01 y = O. 35762787E-06 N= lFORMUIA NO. 

LIMIT= 0.64174318E 00 y = o.o N = lFORMUIA NO. 

LIMIT= 0.15582561E 01 y = -0.95367432E-06 N = lFORMUIA NO. 

LIMIT= 0.68377364E 00 y = -0.71525574E-06 N= lFORMUIA NO. 

LIMIT= 0.13162279E 01 y = -0.59604645E-06 N.;, lFORMUIA No. 

LIMIT= 0.57330710E 00 y = -0.95367432E-06 N = lFORMUIA NO. 

LIMIT = 0.14612770E 01 y = -0.95367432E-06 N = lFORMULA NO. 

LIMIT= 0.71867669E 00 y = -0.43773651E-03 N = lFORMUIA NO. 

LIMIT= 0.13473911E 01 y = -0. 25 l 77002E-03 N = lFORMUIA NO. 

LIMIT= 0.72930038E 00 y = -0.95367432E-06 N = lFORMUIA NO. 

LIMIT = 0.12479858E 01 y = -0.26035309E-03 N = lFORMUIA NO. 

LIMIT= 0.62527692E 00 y = -0.95367432E-06 N = lFORMUIA NO. 

LIMIT = 0.13537807E 01 y = -0.21934509E-04 N = lFORMUIA NO. 

LIMIT= 0.75613230E 00 y = -0. 99182129E-04 N = .lFORMUIA NO. 

LIMIT= 0.12664232E 01 y = 0.95367432E-06 . N = 3FORMUIA NO. 

LIMIT= Q.74211115E 00 y = o.o N = 5FORMUIA NO. 

LIMIT= 0.13919315E 01 y = o.o N = 5FORMUIA NO. 

1 

l 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

7 

8 

8 

9 

9 
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TABLE V 
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

PARABOLA VERSUS STRAIGHT LINE MODEL 
y ' 

1y: 'I =-2Jw + w 

Error Value Error Value 
w y ' w y V 

w w 

I~ Iyo vf 

0.05 -0.397214 2.10 -0.798280 
0.10 -0.532455 2.15 -0.782580 
0.15 -0.624597 2.20 -0.766484 
0.20 -0.694427 2.25 -0.750007 
0.25 -0.750000 2.30 -0.733157 
0.30 -0.795445 2.35 -0.715949 
0.35 -0.833215 2'.40 -0.698394 
0.40 -0.864910 2.45 -0.680503 
0.45 -0.891640 2.50- -0.662286 
0.50 -0. 914213 2.55 -0.643752 
0.55 -0.933240 2.60 -0.624911 
0.60 -0.949193 2.65 -0.605773 
0.65 -0.972451 2~70 -0.586345 
0.70 -0.973319 2.75 -0.566634 
0.75 -0.982051 2.80 -0.546651 
0.80 -0.988854 2.85 -0.526399 
0.85 -0.993908 2.90 -0.505889 
0.90 -0.997366 2.95 -0.485126 
0.95 -0.99359 3.00 -0.464114 
1.00 -1~00000 3.05 -0.442863 
1.05 -0.999389 3.10 -0.421376 
1.10 -0.997617 3.15 -0. 399661 
1.15 -0.994760 3.20 -0.377723 
1.20 -0.990890 3.25 -0.355567 
1.25 -0.986068 3.30 -0.333196 
1.30 -0.980351 3.35 -0.310616 
1.35 -0.973790 3.40 -0~287833 
1.40 -0.966432 3.45 -0~264852 
1.45 -0,958320 3.50 -0.241675 
1.50 -0.949491 3.55 -0.218307 
1.55 -0.949981 3.60 -0.194751 
1.60 -0.929824 3.65 -0. l] 1014 
1.65 -0.919047 3.70 -0.147096 
1.70 -0.907683 3.75 -0.123004 
1. 75 -0.895753 3.80 -0.098739 
1.80 -0.883285 3.85 -0.074304 
1.85 -0 .. 870297 3.90 -0.049705 
1.90 -0.856812 3.95 -0.024943 
1.95 -0.842851 
2.00 -0.828431 
2.05 -0.813569 
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TABLE VI 
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

STRAIGHT LINE VERSUS RECTANGULAR HYPERBOLA MODEL 
y ' 2 

w w +l 

l~I =--2w 

Error Value Error Value 
w y u w y V 

w w ,~, lyo 0I 

0.05 10.024999 2.10 1.288088 
0.10 5.049997 2.15 1.307550 
0.15 3.408332 2.20 1.327265 
0.20 2.599998 2.25 1.347214 
0~25 2.124999 2~30 1. 367382 
Q.30 1.816667 2.35 1.387756 
0.35 1.603572 ·2.40 1.408323 
0.40 1.449999 2.45 1.429071 
0.45 1. 3.36111 2.50 1.449989 
o.so 1.250000 2 .• 55 1.471067 
0.55 1.184091 2.60 1.492296 
0.60 1.13333.3 2.65 1..513667 
0.65 1.094231 2.70 1.535173 
0.70 1.064285 2.75 1.556806 
0.75 1.041666 2.80 1.578558 
0.80 1.025000 2.85 1.600426 
0.85 1.013235 2.90 1. 622400 
0.90 1.005555 2.95 1.644477 
0.95 1.001316 3.00 1.666652 
1..00 1.000000 3.05 1.688920 
1.05 1.001190 3.10 1.711275 
1.10 1.004544 3.15 1.733714 
1.15 1.009781 3.20 1. 756234 
1.20 1. 016665 3.25 1. 778830 
1.25 1.024999 3.30 1.801498 
1.30 1.034614 3.35 1.824237 
1.35 1.045368 3.40 1.847041 
1.40 1.057140 3.45 1.869909 
1.45 1.069825 3.50 1.892838 
1.50 1.083330 3.55 1.915826 
1.55 1.097577 3.60 1.938869 
1.60 1.112496 3.65 1. 961967 
1.65 1.128026 3.70 1. 985115 
1.70 1.144114 3.75 2.008313 
1. 75 1.160709 3.80 2.031558 
1.80 1.177773 3.85 2.054849 
1.85 1.195265 3.90 2.078182 
1.90 1.213152 3.95 2.101559 
1.95 1. 231404 
2.00 1. 249993 
2.05 1.268895 



TABLE VII 
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

PARABOLA. VERSUS STRAIGHT LINE MODEL 
y ' 

'W 2 
lyo'I = w -2w 

Error Value Error Value 
w y ' w y ' w w 

IYo 'I IYo'I 

0.05 -0.097500 2.10 0.209961'. 
0.10 -0.190000 2.15 0.:32245L 
0.15 -0.277500 2.20 o.439953 
0.20 -0.360000 2.25 0.562449 
0.25 -0.437500 2.30 0.689945 
0.30 -0.510000 2.35'. 0.822441 
0.35 -0.577500 2 .• 40 0.959937 
0.40 -0.640000 2.45 1.102432 
0.45 -0.697500 2.50 1. 249928 
0.50 -0.750000 2.55 1.402423 
0.55 -0.797499 2.60 1. 5599.18 
0.60 -0.839999 2.65 1. 722413 
0.65 -0,877499 2.70 1.889908 
0.70 -0. 910000 2.75 2.062403 
0.75 -0.937499 2.80 2.239897 
0.80 -0.960000 2.85 2.422392 
0.85 -0.977499 2.90 2.609886 
0.90 -0.990000 '2. 95 2.802380 
0.95 -0.997499 3.00 2.999874 
1.00 -1.000000 3.05 3.202368 
1.05 -0.997500 3.10 3.409861 
1.10 -0.990001 • 3.15 3.622355 
1.15 -0. 977502 3.20 3.839848 
1.20 -0.960002 3.25 4.062341 
L25 -0.937503 3.30 4.289834 
1.30 -0. 910004 3.35 4.522326 
1.35 -0.877505 3.40 4.759819 
1.40 -0.840006 3.45 5.002312 
1.45 -0. 797507 · 3.50 5.249804 
1.50 .,,0.750009 3.55 5.502296 
1.55 -0.697511 3.60 5.759789 
1.60 -0.640013 3.65 6.022280 
1.65 -0.577515 3.70 6.289772 
1..70 -0.510016 3.75 6.562263 
1.75 -0.437519 3.80 6.839755 
1.80 -0.360022 3.85 7.1;22246 
1.85 -0.277524 3.90 7.409738 
1:.90 -0.190027 3,95 7.702229 
t.95 -0.097529 
2.00 ... 0.000032 
2 •. 05 0.102464 
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TABLE VIII 
SENSlTIV';[TY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

PARABOLA VERSUS PARABOLA MODEL 
y u 2 

w w 4 r lyo'I =3-3..JW 

Error Value Error Value 
w y ' w y' 

w w 

l~I l~I 
o.os -'-0. 297309 2.10 -0.462199 
0.10 -0.418303 2.15 -0.414233 
0.15 -0.508897 2.20 -0.364338 
0.20 -0.~ 582951 2.25 -0.312521 
0.25 -0.645833 2.30 -0.258789 
0.30 -0.700296 2.35 -0.203152 
0.35 -0.747977 2.40 -0.145617 
0.40 -0.789940 2 .• 45 -0.086190 
0.45 -0.826927 2.50 -0.024880 
a.so -0.859475 2.55 0.038307 
0.55 -0.887993 2.60 · 0.103366 

.Q.60 -0.912794 2.65 0.170290 
0.65 -0.934133 2.70 0.239073 

.. / o. 70 -0.952212 2.75 '.0.309712 
0.75 -0.967200 2.80 ,0.382198 
0.80 -0.979236 2.85 t0.456.532 
0.85 -0.988438 2.90 0.532103 
0.90 -0.994910 2~95 00.610710 
0.95 -0.998738 3.00 0.690550 
1.00 -0.999999 3.05 0.772215 
1.os -0.998758 3.10 0.855703 
1.10 -0.995077 3.15 o. 941011 
1.15 -0. 989006 3.20 1.028135 
1.20 -0.980593 3.25 1.117070 
1.25 -0.969878 3.30 1.207814 
1.30 -0.956901 3.35 1.300364 
1~35 -0.941695 3.40 1.394718 
L40 -0.924289 3.45 1.490870 
1.45 -0.904715 3..50 1.588819 
1.50 -0.882996 3.55 1.688562 
1.55 -0.859156 3.60 1. 790096 
1.60 -0 .. 833219 3.65 1.893418 
1.65 -0.805202· 3~70 1.998528 
1.70 -0. 775127 3.75 2.105419 
1. 75 -0.743008 3.80 2.214093 
1.80 -0.708863 3~85 2.324547 
1.85 -0.672706 3.90 2.436777 
l.90 -0.634550 3.95 2.550781 
L95 .:.o.594409 
2.00 -0. 55229.8 
2~05 -O.iQi224 
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TABLE IX 
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

PARABOIA VERSUS RECTANGULAR HYPERBOIA MODEL 

Error 
w 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
o.45 
0.50 
0.55 
0.60 
o.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 
1.1.5 
1..20 
1.25 
1.30 
1.35 
L40 
1.45 
L50 
1.55 
1.60 
1.65 
1.70 
1.75 
1.80 
1.85 
1.90 
1.95 
2.00 
2.05 

y a 2 
w =~+...1. ly o ul 3 3w 

Value 
y u 

w 

Iyo 'I 

13.334167 
6.670002 
4.451946 
3.346667 
2.687501 
i.252223 
1.945597 
1.720000 
1. 548982 
1.416668 
1.312955 
1.231111 
1..166474 
1.1.15715 
1.076389 
1.046666 
1.025146 
1.010740 
1.002587 
1.000000 
1.002419 
1.009393 
1.020542 
1.035554 
1.054164 
1.076151 
1.101323 
1.129519 
1.160598 
L 194438 
1.230933 
1.269991 
1.311.530 
1.355479 
1.401773 
1.450356 
1.501179 
1.554193 
1. 609363 
1.666647 
1. 726015 

Error 
w 

2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 
2.60 
2.65 
2.70 
2.75 
2.80 
2.85 
2.90 
2.95 
3.00 
3.05 
3.10 
3.15 
3.20 
3.25 
3.30 
3.35 
3p40 
3.45 
3.50 
3.55 
3.60 
3.65 
3.70 
3.75 
3.80 
3.85 
3.90 
3.95 

Value 
y g 

w 

I~ 
1. 787437 
1.850886 
1. 916337 
1. 983768 
2.053158 
2.124490 
2.197743 
2.272906 
2.'349961 
2.428898 
2 .• 509702 
2.592361 
2.676867 
2.763208 
2.851377 
2.941364 
3.033162 
3.126762 
3. 2.22161 
3.319348 
3.418320 
3.519071 
3.621594 
3.725886 
3.831942 
3.939757 
4.049328 
4.160649 
4.273719 
4.388534 
4.505089 
4.623382 
4. 743410 
4.865171 
4.988662 
5.113880 
5.240824 
5.369490 
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TABLE X · 
SENSITIVITY ANALYSlS OF MINIMIZATION OR COST FUNCTIONS 

CUBICAL PARABOLA VERSUS STRAIGHT LINE MODEL 

Error 
w 

0.05 
0.10 
o.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0:75 
0.80 
0.85 
0.90 
0.95 
1.00 
1..05 
1. .10 
1. 1.5 
1,20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1.70 
1. 75 
1.80 
1.85 
1.90 
1..95 
2.00 
2.05 

y V 3 
w w 3 

;;-T, =- --w lyo \ 2 2 

Value 
y ~ 

w 

\Ya 01 

-0.074937 
-0.149500 
-0.223312 
-0.296000 
-0.3671.87 
-0.436500 
-0.503562 
-0 •. 568000 
-0.629437 
-0.687500 
-0.741812 
-0.792000 
-0.837687 
-0.878499 
-0.914061 
-0.944000 
-0.967937 
-0.985500 
-0.996312 
-0.999999 
-0 0 996188 
-0.984501. 
-0.964564 
-0.936003 
-0.898442 
-0.851506 
-0. 794821 
-0.728010 
-0.650701 
-0.562516 
-0.463082 
-0.352024 
-0.228966 
-0.093534 

0.054648 
0.215956 
0.390761 
0.579442 
o. 782372 
0.999928 
1..232480 

Error 
w 

2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 
2.60 
2.65 
2 .• 70 
2.75 
2.80 
2.85 
2.90 
2.95 
3.00 
3.05 
3~10 
3.15 
3.20 
3.25 
3.30 
3.35 
3.40 
3.45 
3.50 
3.55 
3.60 
3.65 
3.70 
3.75 
3.80 
3.85 
3.90 
3.95 

Value 
y 0 

w 

I Yo 01 

1.480410 
1. 744087 
2.023888 
2. 320189 
2.633366 
2. 963791 
3.311840 
3.677888 
4.062312 
4.465481 
4.8871774 
5.329575 

. 5.7912.43 
6.273159 

, (>'. 775705 
7.299248 
7.844160 
8.410831 
8.999620 
9.610909 

10.245070 
10 0 902485 
11.583521 
12.288551 
13.017965 
13. 772114 
14.551394 
15. 356171 
16 .186813 
17.043732 
17.927261 
18.837784 
19.775681 
20.741333 
21. 735107 
22.757385 
23.808517 
24. 888916 
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TABLE XI: 
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

CUBICAL PARABOLA VERSUS PARABOLA. MODEL 
y i 3 

-!F w w 

I~ 
=-

5 

Error Value Error Value 
w y ' w y ' w w 

I~ Iyo al 

0.05 -0. 268303 2.10 0.113196 
0.10 .:.0.379273 2~15 0.228086 
0.15 -0.464083 2.20 0 .. 349665 
o.'20 -0.535056 2 .. 25 o.478072 
0.25 -0.596875 2.30 0.613452 
0.30 -.0.651867 2.35 0.755947 
0,35 -Oa701354 2.40 0.905700 
0.40 -0.746146 2 .. 45 1.062854 
o.45 -0.786759 2.50 1.,,227554 
0.50 -0.823528 2.55 1.399941 
0.55 -0.856668 2.60 1.580163 
0.60 -0.886316 2.65 1.768366 
o.65 -0.912546 2.70 1. 964690 
0.70 -0.935391 2.75 2.169283 
0.75 -0.954855 2.80 2.382292 
0.80 -0. 970912 2.85 2.603860 
0.85 -0.983520 2.90 2.834131 
0.90 -0.992620 2.95 3.073257 
0.95 -0.998139 3_.00 3.321380 
1.00 -0.999999 3.05 3.578646 
1.05 -0. 998108 3.10 3.845202 
1.10 -0.992370 3.15 4.121197 
1.15 -0.982681 3. 20 4..406775 
1.20 -0.968934 3.25 4. 702080 
1.25 -0. 951016 3.30 5.007269 
1.30 -0. 928813 3.35 5.322478 
1.35 -0.902202 3.40 5.647861 
1.40 -0.871063 3.45 5.983561 
1.45 -0.835271 3.50 6 .• 329729 . 
1.50 -0.794700 3.55 6.686513 
1.55 -0.749221 3.60 7.054058 
1.60 -0.698703 3.65 7.432508 
1.65 ..;0.643014 3.70 7 .822021 
1.70 -0.582022 3.75 8.222735 
1. 75 -0.515592 3 •. 80 8.634804 
1.80 -0.443588 3.85 9.058372 
1.85 -0.365874 3.90 9 .• 493589 
1.90· -0. 282310 3.95 9.940605 
1.95 -0.192760 
2.00 -0.091088 
2.05 Q .. 004851 
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TABLE XII 
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

CUBICAL PARABOLA VERSUS RECTANGULAR HYPERBOLA MODEL 

Error 
w 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
a.so 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 
1.1.5 
1.20 
1.25 
1.30 
1. 35, 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1. 70 
1. 75 
1.80 
1.85 
1.90 
1.95 

. 2.00 
2.05 

y i 3 
w =!!...+-1 Iyo 'I 4 4w 

Value 
y u 

w 

I~ 
15.000031 
7.500252 
5.000845 
3.752002 
3.003907 
2.506751 
2.153577 
L891001 
1.689448 
L,531250 
1.405231 
1.304000 
1. 222503 
1.157179 
1.105469 
1.065500 
1.035884 
l.015.583 
1.,003818 
1.000000 
1.003691 
1.014566 
1.032391 
1.056997 
1.088217 
1.126168 
1.170642 
1 r 221105 
1. 279387 
1. 343738 
l.414825 
1.492733 
1.577557 
1.669403 
1. 768388 
1.874637 
1. 988277 
2.109448 
2. 2382.9.2 
2~374954 
2.519583 

Error 
w 

2.10 
2.15 
2.20 
2.2.5 
2.30 
2.35 
2.40 
2.45 
2.50 
2 • .55 
2.60 
2.65 
2.70 
2.75 
2.80 
2.8.5 
2.90 
2.9.5 
3.00 
3.05 
3.10 
3.15 
3.20 
3. 25 
3.30 
3.35 
.3 .40 
3.45 
3 • .50 
3.55 
3.60 
3.65 
3~70 
.3.75 
3.80 
3.8.5 
3.90 
3.95 

Value 
y u 

w 

Iyo 'I 

2.672337 
2.833369 
3.002841 
3.180915 
3.,367757' 
3.563530 
3.7'68406 
3.982.551 
4. 206140 
4.439342 
4.682331 
4.9.35288 
5.198381 
5.471788 
5.7.55691 
6.050261 
6.355680 
6 .• 612132 
6. 999788 
7.338834 
7.689447 
8.051814 
8 .426111 
8.812520 
9. 211230 
9.622416 

10.04,6263 
10.482953 
10. 93267 5 
11.395611 
11.871940 
12.361846 
12.865520 
13.383142 
13. 914896 
14.460966 
15.021541 
15 • .596805 
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TABLE .XfII 
SENSITIVITY ANALYSIS OF MINIMIZATION OR COST FUNCTIONS 

STRAIGHT LINE VERSUS RECIPROCAL OF QUADRATIC FUNCTION MODEL 
y u 

2 1 w 

Iyo 'f =·-w+-
3 3w2 

Error Value Error Value 
w y u w y' 

w w 

r71 · ,~ 
0.05 133.366714 2o 10 L475574 
0.10 33.400024 2.15 1.505432 
0.15 14.914841 2.20 1.535524 
0.20 8.,466679 2.25 1.565830 
o. 25 5.500008 2.·30 L596332 
0.30 3.903709 2.35 1.627011 
0.35 2.954428 2.40 1.657855 
o.4o 2.350003 2.45 1.688850 
0.45 1. 946093 2.50 1.119984 
0.50 1.666669 2.55 1. 751245 
0.55 L468596 2.60 1. 782625 
0.60 1.325927 2.65 1.814116 
0.65 L 222289 2.70 1.845706 
0.70 1.146939 2.75 1.877392 
0.75 1.092593 2.80 1.909164 
o..,80 Lq541.67 2 .• 85 1. 941Cll18 
0.85 1.028028 2 .• 90 1.972948 
0.90 1.011522 2.95 2.004949 
0.95 1~002678 3.00 2.037015 
1.00 1.000000 3.05 2.069144 
1.05 1.002342 3.10 2.101330 
1.10 1.008815 3.15 2.133571 
1.15 1.018713 3.20 2.165862 
1.20 1.031480 3.25 2.198200 
1.,25 1.046664 3.30 2.230584 
1.30 1.063903 3.35 2.263010 
1.35 L.082896 3.40 2.295476 
1.40 1.103398 3.45 2.327979 
1.45 1.12·5204 3.50 2.360518 
1 • .50 1 .. 148144 3.55 2.393089 
1.55 1.172071 3.60 2.4.25693 
1.60 1.196869 3.65 2.458325 
1.65 1.222429 3.70 2.490987 
1.70 1.248666 3.75 2.523674 
1.75 1.275502 3.80 2.556387 
1.80 1.302872 3.85 2.589125 
1.85 1.330719 3.90 2.621884 
1.90 1.3'58993 3.95 2.654666 
1.95 1. 387651 
2.00 1.416656 
2.05 1.445973 



No. 

1. 

2. 

3.-

4. 

5. 

6. 

TABLE XIV 
LIMITS OF MINIMIZATION OR COST FUNCTIONS' DECISION RANGES 

FOR 
10% INCREASE IN THE TOTAL VARIABLE COST ELEMENTS ABOVE ITS OPTIMUM (Y 1 ) 

0 

Type of 
the Model 

Optimum Values 
X ' y 

Decision Range 
for 10% Increase 

Straight line vs. 
parabola 

Y = MX - B(X) 1/ 2 + C 

Straight line vs. 
rectangular hyperbola 

Y=MX+!+c 
X 

Parabola·vs. straight 
line 

2 
Y=AX -MX+C 

Parabola vs. parabola 

Y ~ AX2 - B(X) 1/ 2 + C 

Parabola vs. Rect. 
hyperbola 

Y = AX2 + ! + C 
X 

Cubical parabola vs. 
· straight line 
s 3 .. 

Y=AX -MX+C 

0. 0 

( A2 2 • C 
4M 

( 
B l/2 

(-) 
M ' 

( ~' C 

A2 
- 4M 

C - 2(MB) 

M2 
- 4A 

) 
1/2) 

) 
( 

B 2/3 
(4A) , C 

3 B4 1/3). 
- 4<7+A) 

( 2A) ' C ( 
B 1/3 1/3 

- 1. 889 (AB2) ) 

( 
1/2 2 3 1/2) 

(~A) ' C - 3(~A) 

Lower 

0.467555X 
0 

0.641743X 
0 

0.683774X 
0 

0.573307X 
0 

0. 718677X 
0 

0.729300X 
0 

. Upper 

1. 732452X 
0 

1. 558256X 
0 

1. 316228X 
0 

1.461277X 
0 

1. 347391X 
0 

1. 247986X 
0 ~ 

I-' 



No. Type of 
the Model 

7. Cubical parabola vs. 
parabola 

Y = AX3 - B(X)l/Z + C 

8. Cubical parabola vs. 
Rect. hyperbola 

Y=AX3 +!+c X 

9 •. Straight line vs. 
B 
x2 

B Y=MX+ 2 +c 
X 

TABLE XIV (CONTINUED) 

Optimum Values 
X ' y 

0 0 

( B 2/5 S BO 1/5 
(6A) ' C - 6 (6A) ) 

f B 1/4 3 1/4) 
\ ( 3A) , C + 1. 7 4 (AB ) 

( 1/3 1/3 ) 
<!B) ' C + 1 (2BM2) 

Decision Range 
for 10% Increase 

Lower Upper 

0.625277X l.353781X 
0 

0. 7 56132X l.26642X 
0 0 

O. 74211X l.391932X 
0 

0 

0 

I-' 
00 
N 



y I 

w 

y 

Iyo'! 

A= Lower limit 
B = Upper limit 

0.467555 X0 

1. 732452 X0 

t-~~~'k--~~~~~~~~~~c__~~~~~~~- y 

2.0 

I~ 

w 

Error (w) 

Decision Range for an 
Allowance +10% 

y I 

183 

,y:•1 = -0.9 

Figure (19). Cost (Minimization) Functions Straight Line vs 
Parabola Model 



y ' w 

y 

I~ 

1.10 
1.00 

A= Lower limit - 0 641743 X 
B Upper limit - 1:558256 X~ 

X 2X 
0 0 

.o .o 

Decision Range for an 
Allowance +10% 

0 

y I 

1~= 1.10 0 , 1.0 ,v= Decision Variable 

Error w 

Figure (20). Cost (Minimization) Function Straight Line vs R. 
Hyperbola Model 

/ 

/ 
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(X) 



y ' w 

I~ 

y 

~0,9 

-1.0 

A 
B 

Lower limit.= 0.573307 X0 

Upper limit 1.461277 X0 

Decision Range for an 
Allowance +10% 

185 

3X0 Decision Variable (X) 

y t 

o l.O 
~= -

3,0 Error (w) 

y I 

w 
yT = - 0.90 

0 

Figure (21). Cost .. (Minimization) Function-Parabola vs Straight 
Line Model 



y 0 

w 

I~ 

y 

A= Lower limit 
B = Upper limit 

= 0.573307 X0 
1.461277 X0 

y 
w 

t-----+.,-~::::::,,~~.-._::::~~1---~------~y 
0 

Deciston Range for an 
Allowance + 10% 

186 

2X 
0 

Decision Variable (X) 

2.0 

y I 

0 

/Y' 
0 

-. 9:f.\.t+----""olcr~~~~,----".....-~~-----.,+--------'-
-1.0 1)_14 _ __, ____ ....;:::::, .... -=:::;.----------AL---...:.-. 

Error (w) 

y I 

,fr= - 0.90 
0 

Figure _(22). Cost (Minimization) Function-Parabola vs Parabola 
Model 



y ' w 

I~ 

1.0· 

y 
A= .Lower limit= 0.7186767 X0 

B =.Upper limit= 1~3473911 X0 

1,0 

Decision Range for an 
Allowance +10% 

y' 
w = l.Q 

l~I 

Error (w) 

Figure (23). Cost. (Minimization) Function-Parabola vs 
Recta~gular Hyperbola 
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y 

A = Lower .. limit 
B = Upper, limit 

= 0.7293004 X0 

1. 24 7 98~8 X0 

Decision Range for an 
Allowance +10% 

y I 

0 
yT 

0 

3,0 Error {w) 

y I. 

.fr" "' -0.90 
0 

Figure (24). Cost (Minimizat:ion) FunctioI).-Cubical,Parabola. 
vs Straigl:tt Line 
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y I 
w 

I~ 

y 
A= Lower limit= _0.6252769 X0 

B =Upper-limit= .1.3537807 X0 

18·9 

3X 
0 Decision Variable (X) 

3. 
Error (w) 

Figure (25), Cost (MinimizatioI).) Functi<;>n - Cubical Parabola·. 
vs . Parabola, Model_ 



y • 

"' lyo1 

y 

A Lower limit 
B = Upper.limit 

= 0. 7561323 X0 . 

1. 2664232 X0 

i::::::;:::========~~::;:~~=========================-:y~~~~~-Yw 
0 

~ Decision Range for an 
~I Allowance +10% 

y I 

190 

Y' ,Y7j=l,10 
I~= 1.0 

2X 
0 

3X0 Decision Variable (X) 

Figure (26)' •. Cost (Minimization) Functio-q.;.. Cubical Parabola vs 
Recta~gular Hyperbola 



y • 
w 

I~ 

y A Lower limit 
B = Upper limit 

0.7421112 X0 
1.3919315 X0 

B 

~ Decision Range for an 
LI Allowance -10% 

y I 

~= 1.0 y 
0 

191 

X 
0 

2X 
0 

3X 
0 

Decision Variable (X) 

rror w 

Figure (27). Co$t (Minimization) Function -Straight.Line vs 
Reciprocal of Q, Function 



APPENDIX B 
COMPLETE EVALUATION OF MAXIMIZATION 
OR PROFIT FUNCTIONS AND THE LIMITS 
OF DECISION RANGES FOR 10% DECREASE 

IN THE TOTAL VARIABLE PROFIT ELE:MENI'S 
UNDER ITS OPTIMUM VALUE 
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APPENDIX B 

COMPUTER PROGRAMS 
FOR 

MAXIMIZATION OR PROFIT FUNCTIONS 

In Chapter III - models as a summation of two different standard 

curves - minimization models can be transferred to maximization models 

if one can multiply the cost function by -1 provided that each standard 

curve in the cost function can be represented as an increasing or a 

decreasing function, Thus, the models contain rectangular hyperbola 

or the inverse of the quadratic function which are always decreasing 

functions are excluded from this idea. Therefore, there are five 

models out.of the nine studied models that can be applied to this idea, 

The Computer Program III evaluated these five maximization functions 

for w = 0.05 till w = 3.95 with an increment w = 0.05. At w = 1.00, 

which is corresponding to.the mathematical optimum point (maximum point) 

(X0 , Y0 ), the value of the tr~nsformed dependent variable (total vari-

able profit elements) is the optimum one (Y0 ' of TPC0 ') over its abso

lute optimum value (Y0 ' or TPC0 ') and this is equal to± 1.00. The 

value of+ 1~00 refers to a positive optimum transformed value (Y0 ') or 

a positive optimum total variable profit element (TVP0 ') otherwise the 

value if -1.00. 

The limits of the maximization or profit functions' decision 

ranges were obtained for a predetermined allowance of 10% decrease in 

the total variable profit elements.of the profit or maximization 

function under its optimum (Y' or TVP •) through the Computer Program 
0 0 

IV and by using a subrouting program. 

The complete evaluation of.these profit functions is given in 

Tables XV to XIX. The limits of the profit fu~ctions' decision ranges 
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are given in Table XX. The graphs of these maximization or profit 

functions are drawn in Figures 28 through 32. 
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III. COMPUTER PROGRAM FOR EVALUATING 
MAXIMIZATION OR PROFIT FUNCTIONS 

Abouel-Nour 

C C-ARRAY IS LOWER STRADDLE OF ROOT, D-ARRAY IS UPPER STRADDLE 
C SLIM= STARTING VALUE FOR EVALUATION 
C ADD = INCREMENT FOR EVALUATION 
C NIT= NO. EVALUATIONS TO BE MADE 
C NF= NO. FORMULAE 

C 

c. 

DIMENSION C (2,10},D(2,10),W(99),Y(99} 
READ (1, lOl}SUM, ADD, NIT, NF 
WRITE(3,10l}SUM, ADD, NIT, NF 

101 FORMAT(2Fl0.5,215) 

31 

32 
33 

5 

6 

7 

8 

9 
. 10 
11 
12 
13 
4 

14 

DO 3 J=l,NF 
DO 4 I=l,NIT 
IF(I-1)31,31,32 
W(I)=0.05 
GO TO 33 
W(I)=W(I-l)+ADD 

· WW=W(I) 
SRTW=SQRT (WW) 
EVALUATE THE FUNCTIONS, PRINT OUTPUT, FIND ROOT 
GO T0(5,6,7,8,9,10,ll,12,13},J 
Y(I)=;_WW+ 2.*SRTW 
GO TO 4 
Y(I) = -WW *WW + 2. * WW 
GO TO 4 
Y(I)=(-WW*WW)/3.o+( 4.0/3.0}*SRTW 
GO TO 4 
Y(I}=-.5* WW**3 + l.5*WW 
GO TO 4 

. Y(I)= =l.2*SRTW-(WW**3)/5. 
GO .TO 4 
GO TO 4 
GO TO 4 
GO TO 4 
CONTINUE 
GO TO(l4,15,16,17,18,19,20,21,22),J 

. WRITE HEADINGS AND OUTPUT 
WRITE (3, 114) 

195 

114 FORMAT('l MAXIMIZATION OR PROFIT FUNCTIONS 1,//// 1 PARABOLA VERSUS 

115 
116 
117 

118 

23 
30 

1 STRAIGHT UNE Y= -w+2*SQRT(W} 1 ) 

FORMAT('l STRAIGHT UNE VERSUS PARABOLA Y=-W*w+2W 1 } 

FORMAT( 1 1 PARABOLA VERSUS PARABOLA Y=-W*W/3+4/3*SQRT(W) 1 ) 

FORMAT( 1 1 STRAIGHT UNE VERSUS;CUBICAL PARABOLA Y=-(W**3)/2+1 
1 .5W 1 ) .. 

FORMAT ( 1 1 PARABOLA. VERSUS CUBICAL PARABOLA Y= 1. 2*SQRT (W)-W**3 
1/5 1 ) . 

WRITE (3, 30) (W(K), Y(K) ,K=l,NIT) 
FORMAT(5X,Fl0.5,12X,Fl2.6) 
GO TO 3 



15 

16 

17 

18 

19 
20 
21 
22 
3 

WRITE (3,115) 
GO TO 23 
WRITE (3,116) 
GO TO 23 
WRITE (3,117) 
GO TO 23 
WRITE (3,118) 

. GO TO 23 
GO TO 23 
GO TO 23 · 
GO TO 23 
GO TO 23 
CONTINUE 
STOP 
END 

IV. COMP11rER PROGRAM FOR OBTAINING LIMITS OF 
MAXIMIZATION OR PROFIT FUNCTIONS' DECISION 
RANGES FOR A PREDETERMINED ALLOWANCE 10% 
DECREASE UNDER ITS OPTIMUM 

Abouel-Nour 

BEGIN COMPIIATION 
DIMENSION C(2, 10),D(2, 10) 
DO 2 J=l, 5. 
READ(l,102) (C(I,J),D(I,J),I=l,2) 

2 WRITE (3,102) (C(I,J),D(I,J),I=l,2) 
102 FORMAT(4F5.3) 

DO 3 J=l,5 
24 DO 26 I=l,2 

A=C(I,J) 
B=D(I,j') 
Nl=5 
N2=50 
El=.0005 
E2=.0005 
JX=J 

196 

CALL RTFIND(A,B,X,Y,El,E2,Nl,N2,N,JX) 
26 WRITE(3,25) X,Y,N,J 
25 FORMAT(//' LIMIT =1 ,ElS.8, 1 y=',El5.8,' N=',110,'FORMULA NO.', 

115) 
3 CONTINUE 

STOP 
END 

BEGIN COMPIIATION 
FUNCTION F(X,JFW) 
GO TO (1,2,3,4,5),JFW 

1 F=X-2.*SQRT(X)+.9 
GO TO 10 

2 F=X*X-2.*X+.9 
GO TO 10 



2 F=X*X-2.*X+.9 
GO TO 10 

3 F= (X*X-4. *SQRT (X)) /3 .+. 9 
GO TO 10 

4 · F=(X**3-3.*X)/2.+.9 . 
GO TO 10 

5 F=(X**3-6.*SQRT(X))/S.+.9 
10 RETURN 

END 

BEGIN COMPILATION 
SUBROUTINE RTFIND(A,B,X,Y,El,E2,Nl,N2,N,JFW) 
JFW=JFW 
N=O 
F l=F (A, JFW) 
F 2=F (B, JFW) 
lF (F l*F2) 1, 11, 20 

1 1F(Fl)2,3,3 
2 FM=Fl 

XM=A 
FP=F2 
XP=B 
GO TO 4 

3 FM=F2 
XM=B 
FP=Fl 
XP=A 

4 N=N+l 
lF(N-Nl)S, 5, 21 

5 C=FP* (XP-XM) /(FP-FM) 
X=XP-C 
Y=F(X,JFW) 
IF(ABS{C)-El)6,6,8 

6 IF(ABS(Y)-E2)7,7,8 
7 RETURN 
8 IF(Y)9,10,10 
9 FM=Y 

XM=X 
GO TO 4 

.10 FP=Y 
XP=X 
GO TO 4 

11 IF(Fl)l2,13,12 
12 X=B 

Y=F2 
GO TO 7 

13 X=A 
Y=Fl 
GO TO 7 

20 WRITE(3,300) 
300 FORMAT (' NO STRADDLE O) 

Xl=A 
X2=B 
GO TO 24 

197 



21 IF(FM-Y)22,23,22 
22 F2=FM 

X2=XM 
GO TO 24 

23 F2=FP 
X2=XP 

24 N=O 
Fl=Y 
Xl=X 

25 N=N+l 
IF(N-N2)26,26,30 

26 C=((Xl-X2)/(fl-F2))*Fl 
X=Xl-C 
Y=f(X,JFW) 
1F(ABS(C)-El)27,27,28 

27 IF(ABS(Y)-E2)7,7,28 
28 F2=Fl 

X2=Xl 
Fl=Y 
Xl=X 
GO TO 25 

30 WRITE(3,30l)Y,X,N 

198 

301 FORMAT(' CONVERGENCE INCOMPLETE. LAST F(X)= 1 Fl0.6, 1 AT X= 1 Fl0.4, 1 

1 FOR ;15, 1 ITERATIONS') 
GO TO 7 
END 

LIMIT= 0.46754456E 00 Y = 0.35762787E-06 N = !FORMULA NO. 1 

LIMIT= 0.17324514E 01 Y =-0.59604645E-06 N = !FORMULA NO. 1 

LIMIT= 0.68381584E 00 Y =-0.26941299E-04 N = lFORMULA NO. 2 

LIMIT= 0.13161860E 01 Y =-0.27298927E-04 N = !FORMULA NO. 2 

LIMIT= 0.57341456E 00 Y =-0.53346157E-04 N = lFORMULA NO. 3 

LIMIT= 0.14612637E 01 Y =-0.56624413E-05 N = lFORMULA NO. 3 

LIMIT= 0.72938055E 00 Y =-0.56385994E-04 N = !FORMULA NO. 4 

LIMIT= 0.12481413E 01 Y = 0.35762787E-06 N = 3FORMULA NO. 4 

LIMIT= 0.62532508E 00 Y =-0.25570393E-04 N = !FORMULA NO. 5 

LIMIT= 0.13536224E 01 Y =-0.95963478E-04 N = !FORMULA NO. 5 
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MAXIMIZATION OR PROFIT FUNCTIONS 

199 

. I 



200 

TABLE xv;: ' 
SENSITIVITY ANALYSIS OF MAXIMIZATION OR PROFIT FUNCTIONS 

PARABOLA VERSUS STRAIGHT LINE MODEL 
y ' w = 2jw- w ,~ 

Error Valt}e Error Value 
w y f w y ' w w 

l~I ,~, 
0$05 0.397214 2.10 o. 798280 
o. 10 0.532455 2.15 0.782580 
0.15 0.624597 2.20 0.766484 
0.20 0.694427 2.25 0.750007 
0.25 Ou750000 2.30 0.733157 
0'Cll30 0.795445 2.35 0.715949 
0~35 0.833215 2.40 0.698394 
0.40 0.864910 2 .• 45 0.680503 
0 .. 45 0.891640 2 .• 50 0.662286 
o.50 0.914213 2.55 , 0.643752 
0.55 0@933240 2.60 0.624911 
0.60 0.949193 2.,65 0.605773 
0.65 o .. 962451 2.70 0.586345 
0.70 0.973319 2.75 0.566634 
0~75 o. 982051 2.80 0.546651 
0.80 0.988854 2 .• 85 0.526399 
0.85 0.993908 2.90 0,.505889 
0.90 0.997366 2.95 0.485126 
0.95 0.999359 3.oo 0.464114 
1.00 1.000000 1.05 0'.4428Q3 
1.05 0.999389 3.10 0-.421376 
1.10 o. 997617 3.15 0.399661 . 
1.15 0.994760 3~20 0.377723 
1.20 0.990890 3.25 o.355567 
1.25 0.986068 3.30 0.333196 
1.30 0.980351 3.35 0.310616 
1.35 0.973790 3.40 0.287833 
1.40 0.966432 3.45 0.264852 
1.45 0~958320 . 3.50 o. 241675 
1.50 0.949491 3.55 0.218307 
1.55 0.939981 3.60 0.194751 
1.60 o.929824 3.65 0.171014 
1.65 0.919047 3.70 0.147096 
1.10 0.907683 3.75 o. 123004 
1.75 0.895753 3.80 0.098739 
1.80 0.883285 3.85 0.074304 
1.85 0.870297 3.90 Ou049705 
1.90 0.856812 3.95 0.024943 
1.95 0.842851 
2.00 0.828431 
2.05 0.813569 
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TABIE 1:111 
SENSITIVITY ANALYSIS OF MAXIMIZATION OR PROFIT FUNCTIONS 

STRAIGIIT LINE VERSUS PARABOIA MODEL 
y ' 2 w = 2w - w ,~, 

Error Value Error Value 
w y I w y ' w w 

l~I I~ 
0.,05 0.097500 2.10 -0.209961 
0.10 0.190000 2.15 -0.322457 
0.15 0 •. 211500 2.20 -0.439953 
0 .. 20 o.360000 2.25 ;.o.562449 
0.25 o.437500 . 2.30 -01-''"689945 
0.30 0.510000 2.35 ..... 9.822441 
0.35 0.577500 2.40 -0.959937 
0.40 o.640000 2.45 -1.102432 
0.45 0.697500 2.50 -1.249928 
0.50 011750000 2.55 -1.402423 
0.55 00797499 2.60 -1.559918 
0.60 0.839999 2.65 -1. 722413 
o.65 0.877499 2.70 -1.889908 
o. 70. o. 910000 2.75 -2.062403 
0.75 0.937499 2.80 -2.239897 
0.80 0.960000 2.85 - 2.. 4-2.2.39 2 
0.85 0.977499 2.90 ·-2~609886 
0.90 0.,990000 2.95 -2.802380 
0.95 0.997499 3.00 -2. 999874 
1.00 1.000000 3.05 -3.202368 
1.05 0.997500 3. 10 -3.409861 
1.10 0.990001 3.15 -3.622355 
1.15 0.977502 3.20 -3.839848 
1.20 0.960002 3.25 -4.062341 
1~25 0.937503 3.3o· -4. 289834 
1.30 0.910004 3.35 04.522326 
1.35 0.877505 3.40 -4. 759819 
1..40 0.840006 3.45 -5.002312 
1.45 0.797507 3 .• 50 -5. 249804 . 
1.50 0.750009 3.55 '"'.5.502296 
1.55 0 .. 697511 3.60 -5. 759-7&9 
1.60 0.640013 3.65 -6.02-a~BO · .. 
1.65 0.577515 3.70 -6.289772 
1.70 00510016 3~75 -6.562263 
1.75 o.437519 3.80 -6.839755 
1.80 0.360022 3,.85 -7.122246 
1.85 o. 277524 3.90 -7:409738 
1.90 0.190027 3.95 -7.702229 
1.95 0.097529 
2 .. 00 0.000032 
2.05 -0.102464 
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TABLE XVH 
SENSITIVITY ANALYSIS 0~ MAXIMIZATION OR PROFIT FUNCTIONS 

PARABOIA VERSUS PARABOLA MODEL 
y R 

4 2 
w w 

l~I 
·= - w -·-3 3 

Error Value Error Value 
w y. V w Y. . V . 

w VI .. ,~ IY'o a f 
0.,05 0.297309 2.10 o.462199 
0.10 0.418303 2!.15 0.414233 
0.15 0.508897 2 .. 20 0.364338 
0.20 0.582951 2 .. 25 0.312521 
0;.25 0~645833 2.30 0.258789 
0,.30 011700296 2.35 0.203152 
0.,35 0.747977 2.40 o. 145617 
0.;40 0.789940 2.45 0.086190 
0~45 0.826927 2.50 0.024880 
a.so o .• 859415 2.55 -0.038307 
0.55 0.887993 2.60 -0.103366 
0.60 0.912794 2.65 -0. 170290 
0.65 0.934133 2.70 -0.239073 
0.70 0.952212 2_.75 :"'0.309712 
0 .. 75 0.967200 2.;80 -0.382198 
0.80 0.979236 2.85 -0.456432 
0.85~ 0.988438 2.90 -0.532703 
0~90· o. 994910' . 2 .. 95 -0.610710 
0~95 0.998738 3.00 -0.690550 
1.00 0.999999 3.05 -0. 772215. 
1.05 0.998758 3. 10 ! ... Q.855703 
1.10 0.995077 3.15 -0. 941011 
1.15 0.989006 3.20 -1.028135 
1"20 0.980593 3.25 -1.117070 
1.25 0.969878 3.30 · -1.207814 
1.30 0.956901 3.35 -1.300364 
1.35 o •. 941695 3.40 -1. 394718 
1.40 0.924289 3.45 -1.490870 
1.45, 0.904715 3~50 -1.588819 
1.50 0.882996 3.55 -1.688562 
1.55 0.859156 .3.60 -1. 790096 
1.60 0.833219 3.65 -lo893418 
1.65 0.805202 3.70 -1.998528 
1.70 o. 775127 3.75 -2.105419 
1"75 0.743008 3.80 -2. 214093 
1Q80 0 .. 708863 3 .. 85 .:,.2.324547 
l.85 0.672706 3.90 -2.436777 
1.90 0,.634550 3.95 -2.550781 
1.95 0.594409 
2.00 0.552298 
2.05 o .. 508224 



TABIE XVIII 
SENSITIVITY ANALYSIS OF MAXIMIZATION OR· PROFIT FUNCTIONS 

STRAIGHT LINE VERSUS CUBICAL PARABOLA MODEL 

Error 
w 

0.05 
o. 10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
o.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
q.95 
1.00 
1.05 
1.10 
1.15 
1. 20 
l.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1,.70 
1. 75 
1.80 
l.85 
1.90 
1.95 
2.00 
2.05 

y 11 3 
w 3 w ::--r.=-w--(Y0 I 2 2 

Value 
y d 

w 

I~ 
0.074937 
0.149500 
0.223312 
0.296000 
0.367187 
0.436500 
0.503562 
0.56800 
0.629437 
0.687500 
0.741812 
0.792000 
0.837687 
0.878499 
0.914061 
0.944000 
0.967937 
0.985500 
0.; 996312 
0.999999 
Q. 9.9pl88 
0.984501 
0.964564 
0.936003 
0.898442 
0.851506 
0.794821 
o. 728010 
0.650701 
0.562516 
0~463082 
o. 352024 
0.228966 
0.093534' 

-0.054648 
-0.215956 
-0. 390761 · 
-0.579442 
-0.782372 
-0.999928 
-1. 232480 

Error 
w 

2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 
2.60 
2.65 
2.70 
2.75 
2.80 
2.85 
2.90 
2.95 
3.00 
3.05 
3.10 
3.15 
3.20 
3.25 
3.30 
3.35 
3.40 
3.45 
3.50 
3.55 
3.60 
3.65 
3.70 
3. 75 
3.80 
3.85 
3.90 
3.95 

Value 
y 11 

w 

I~ 
-1.480410 
-1. 744087 
-2.023888 
-2.320189 
-2.633366 
-2. 963791 
-3. 311840 
-3. 677888 
-4.062312 
-4.465481 
-4.88.7774 
-5.329575 
-5.791243 
:-6. 223159 
-6 0 77 5705 
-7.299248 
-7.844160 
-8.410831 
-8 a 999620 
-9.610909 

-10. 245070 
-10.902485 
-11.58.3521 
-12.288551 
-13.017965 
-13. 772114 
-14.551394 
-15. 356171 
-16.186813 
-17.043732 
-17. 927261 
-18.837784 
-19. 775681 
-20. 741333 
-21. 735107 
-22.757385 
-23.808517 
-24.888916 
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TABIE XIX 
SENSITIVITY ANALYSIS OF MAXIMIZATION OR PROFIT FUNCTIONS 

PARABOLA VERSUS CUBICAL PARABOLA MODEL 

Error 
w 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
o.4o 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1. 25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1. 70 
1. 75 1 

1.80, 
1.85 
1.90 
1.95 
2.00 
·2.05 

y V 3 
w 6 C w Iyo vi = 5-../w - 5 

Value 
y V 

w 

l~I 
0.268303 
o. 379273 
0.464083 
0.535056 
0.596875 
o.651867 
0.701354 
0.746146 
0.786759 
0.823528 
0.856668 
0.886316 
0.912546 
0.935391 
0.954855 
0.970912 
0.983520 
0.992620 
0.998139 
0.999999 
o. 998108 
0~992370. 
o. 982681 
0.968934 
o. 951016 
0.928813 
0.902202 
0.871063 
0.83:5271 
0.794700 
0.749221 
0.698703 
0.643014 
0.582022 
0.515$92 
0.443588 
0.365874 
o. 282310 
0.192760 
0.097088 

-0.004851 

Error 
w 

2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 
2.60 
2.65 
2.70 
2.75 
2.80 
2.85 
2.90 
2.95 
3.00 
~.05 
3.10 
3.15 
3.20 
3. 25 
3.30 
3.35 
3.40. 
3.45 , 
3.50 
3. 55 . 
3.60 
3.65 
3.70 
3.75 
3.80 
3.85 
3.90 
3.95 

Value 
y V 

w 

l~I 
-0.113196 
-0.228086 
-0.349665 
-0.478.072 
-0.613452 
-0.755947 

. -0. 905-700 
-1.062854 
-1. 227554 
-1.399941 
-1. 580163 
-1. 768.366 
-1.964690 
-2.169283 
-2.382292 
-2.603860 
-2.834131 
-3.073257 
-3.321380 
-3.578646 
-3.845202 
-4. 121197 
-4.406775 
-4.702080 
-5.007269 
-5.322478 
-5.647861 
-5.983561 
-6.329729 
-6.686513 
-7.054058 
-7.432508 
-7.822021 
-8.222735 
-8.634804 
-9.058372 
-9.493589 
-9.940605 
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No. 

1. 

2. 

3. 

4. 

5. 

TABLE XX 
LIMITS OF MAXI~ITZATION OR PROFIT FUNCTIONSa DECISION RANCES 

FOR 
10% DECREASE IN THE TOTAL VARIABLE PROFIT ELEMENTS UNDER ITS OPTIMUM (Y ') 

0 

Type of Optimum Values Decision Range 
the Model X , y for 10% Decrease 

0 0 

Lower Upper 

Parabola vs. straight I A2 . A2 
line \-2 ' C + 4M 0.467547X l.732422X 

Y = B(X)l/ 2 - MX + C 4M 0 

Straight line vs. 
( M M2 

parabola 0.683816X 1. 316189X 
.. 2 \ 2A ' C + 4A 0 

Y=MX-AX +C 

Parabola vs. parabola ( B 2/3 3 B4 1/31 
Y = B(X) 1/ 2 - AX 2 + C (4A) ' C + 4 ( 4A ) I 0.573415X l.461205X 

0 

Straight line vs. / M 1/ 2 2 M3 1 / 2 \ 
cubical parabola I (JA) ' C + 3 ( 3A) I 0.729380X 1. 248141X 

3 \ . I 0 

Y = MX - AX + C 

Parabola vs. cubical ' 2/5 5 .6 1/5) 0.625325X 1. 353622X parabola \ <!A) ' C + 6 ( 6A ) 0 

1/2 3 
Y = B(X) - AX + C 

0 

0 

0 

0 

0 

N 
0 
V, 



y • 
·w 

lv:i 

y 
A= Lower limit= 0.4675446 X0 
B = Upper limit= 1.7324514 X0 

A 

X 
0 

1.0 

1 · 

I 

2X 
0 

2.0 

Decision Range for an 
Allowance -10% 

y I 

· 1~: = 1.0 
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Decision Variable (X) 

3,0 Error (w) 

Figure (28). Prof~t (Maximization) Functio!\ - Parabola vs Straight 
Line Model 



y I 

w 

IY"i ". 

y 
A 
B 

Lower limit 
Upper limit 1.3161860 X 

0 

y 
w 

Decision Range for an 
Allowance - 10% 
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3X 
0 

Decision Variable (X) 

1.0 2.0 3,0 Error (w) 

Figure (29). Profit (Maximization) Functiorl -Straight Line vs 
Parabola Model 



y ' 
w 

1Y7j 

y 
A= Lower limit 
B Upper limit 

0.5734146 X 
1.4612637 XO 

0· 

,~~~~~--::;;:;;a;a-'""."'-.;a.:;;;:::--~~~~~-~~~~~~~-Yo 
~~~~~~~~~- y 

w 

H-,------1,' ~~-~ .... ,<"'""='-·~' ·;,__--====a.==-v-.---y ' 
w lyT.oo I ; 1.0 
I~~ o.9 

i;::-1 Decision Range for an 
l..:::::J Allowance -10% 
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X 
0 

2X 
0 

Decision Variable (X) 

1,0 2,0 3,0 Error (w) 

Figure (30), Profit (Maximization) Function - Parabola vs 
Parabola Model 



y • 
w 

IYo'I 

y 

A= Lower limit 
B = Upper limit 

1.0 

= 0.7293806 X0 
= 1.2481413 X 

0 

2X 
0 

2.0 

lSJ 

y. 
w 

y I ,~= 1,0 

Decision Range for an 
Allowance -10% 
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3X 
0 

Decisiop Variable (X) 

3,0 Error w 

Figure (31). Profit (Ma:dmization) Function. - Straight. Line vs 
Cubical Parabola Model · 



1f' .w 

y 

1\71 

A= Lower lim~t = 0.6253251 X 
B =·Uppet l:j.mit.= l.353p224 x0 

0 

y I 

1+--....,;.-~~=----~~1---~------::y:-.1 -....,.--,~ = 1.0 

1~= 0.9. 

n Decision Range for an 
~I Allowance -10% .· .. 
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3X 
0 

Decision Variable (X) . 

.1.0 2.0 3.0 Error (w) 

F:Lgure (32):• Profi.t (Maximization) Function -:Parabola vs Cubical 
Parabola·Model 
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