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PREFACE 

A significant problem in the design of planting equipment is that 

the relationship of planter components to seed bed density is not 

known. To solve this problem, the effects of each component must be 

separately evaluated. Furrow openers of simple shape were chosen as 

the planter components to be studied. 

Before the effect of furrow opener shape on seed bed density could 

be determined it was necessary to devise a method of measuring soil 

density using small samples. A method using gannna radiation decay 

rate, as suggested by Dr. J. F. Stone of the Agronomy Department, 

Oklahoma State University, proved to be satisfactory. The radiation 

method was used to determine the soil density patterns of nine furrow 

opener shapes as they passed through an artificial soil. 

The author is indebted to all the advisory connnittee members at 

Oklahoma State University. These include Professor Jay G. Porterfield, 

Chairman, Dr. J.E. Garton, Pro£essor E.W. Schroeder, Head, Agricul

tural Engineering Department, Dr. Stone and Professor J. V. Parcher, 

Civil Engineering Department. Many people at New Mexico State Uni

versity gave the author considerable help, especially Dr. Marvin Wilson, 

Director, Agricultural Experiment Station. Others include Professor 

E.G. Hanson, Head Agricultural Engineering Department, and Dr. Morris 

Finkner, Department of Experimental Statistics. 
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CHAPTER I 

THE PROBLEM 

Introduction 

Row crop production is widely practiced in American agriculture. 

Planting to obtain a satisfactory stand of plants is essential in row 

crop production culture. Engineers may contribute to successful stand 

establishment by designing equipment that will promote a favorable en

vironment for seed germination and plant emergence. Failure to obtain 

satisfactory stands can, in many cases, be attributed to causes other 

than poor soil physical condition, but the planting equipment should do 

the best job possible under the existing conditions. Experimentation 

with crop planters has generally been of the "cut-and-try" procedure. 

This method has resulted in some improvement, but little information is 

available on the effect of planter components, such as openers and 

presswheels, on the soil physical conditions around the germinating 

seeds. Several investigators have performed research to determine the 

most favorable soil conditions for seed germination and emergence. 

They have considered such fundamental factors as moisture, soil density, 

temperature, aeration, and physical impedence in the seedbed. Intelli

gent application of this information requires quantitative knowledge 

about the effects of planter opener shape and the initial soil condi

tions on the final seedbed density pattern. 

1 
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Scope of Research 

Research under this project was limited to the effect of certain 

angular faced furrow openers on the density pattern of several soil 

medii. The only two variables were opener shape and soil condition. 

Operating speed and tool depth and width were constant throughout the 

experiment. No furrow closing devices or presswheels were used in the 

experiment. 

The evaluation of opener effects on the density patterns of soil 

was on the basis of laboratory experiments. The final test of any 

agricultural machine or mechanism is the effect on the crop. For soil 

· engaging tools this effect can be broken into two separate actions. 

First, the tool has some effect on soil properties. The change in soil 

properties in turn affects the crop. The overall effect of machine on 

crop can only be measured by field experiment. In this study, the only 
I 

consideration was the effect of mechanisms on soil. Certain factors 

such as speed, depth, and soil condition are difficult to control in 

the field. Soil condition was difficult to control even in the labora-

tory, but speed and depth could be controlled; therefore, the labora-

tory method was selected. 

There are certain advantages to working on this type of research 

in the laboratory. Photography can be used since light can be con-

trolled more easily. Forces are easier to measure and record in the 

laboratory unless expensive field equipment is available, and soil 

samples can be handled with more facility. 

The difficulty of controlling or even measuring soil condition 

in natural samples precluded their extensive use in this type of study. 



A large portion of the research was conducted using an artificial mix

ture of sand, clay, and oil. Although the results may not be directly 

comparable to natural soils, the relationships established should be 

useful in narrowing the range of treatments that need to be tested on 

natural soils. 

3 

During the early stages of this research a satisfactory method of 

measuring soil density changes caused by planter openers was not avaii

able. Considerable effort was expended attempting to measure density 

in small volumes by the gravimetric method and by measuring resistance 

to penetration by a small needle. Using small sampling tubes it was 

impossible to consistently obtain samples of equal volume. The pene

tration resistance method was satisfactory in the large homogeneous 

portions of the cross section but near the boundaries failure cracks 

tended to form giving erroneously low readings. The gamma radiation 

technique, as explained in the procedure section, provided the accuracy 

and convenience required for this research. 



CHAPTER II 

REVIEW OF LITERATURE 

In the literature reviewed, no specific reference was located on 

the measurement of soil density changes due to planter opener shape. 

Modified planter openers have been tried by several researchers 

(Abernathy, 1963; Anonymous, 1957; Holekamp, et al., 1962), but these 

experiments evaluated the crop response rather than the changes in soil 

physical properties. This chapter will cover some of the research re

lated to the effect of planter opener shape on seedbed soil density. 

Some of these related areas are: effects of soil conditions on seeds 

and seedlings, soil factors'affecting ~oil working machinery research, 

soil response to tillage machinery, experimental methods for soil 

machinery research, and density measurement techniques. 

Effect of Soil Conditions on Seed Ung Emet',geneec:. 

and Plant Growth 

The mechanics of cotton seedling emergence have been discussed by 

Garner and Bowen (1963). The conditions necessary for organic growth 

are listed as: available water, proper temperature range, adequate 

oxygen; lack of inhibiting compounds such as carbon dioxide; light in 

some cases; and the lack of excessive mechanical impedance. These 

authors made an extensive review of research on the mechanics of seed

ling growth and combine this with their own experimental results to 

4 



describe seed germination and emergence as follows. The growth and 

emergence of cotton seedlings may be described in three phases. In 

the first phase, the root tip protrudes from the seed and grows the 

first forty millimeters mostly by elongation. In the second phase, 

the elongation takes place only at the root tip. The third phase con

sists of elongation at the root tip and in the hypocotyl, being most 

rapid just below the cotyledons. 

Garner and Bowen have also reviewed soil mechanics theory to 

evaluate the forces encountered by seedlings. The work of Bekker 

(1961) was used to evaluate the force necessary for downward penetra

tion. His equation related plate sinkage and pressure to certain soil 

characteristics. 

5 

The maximum force required for emergence of a plant from a homo

genous soil mass was represented by the familiar Mohr theory of rupture 

(Terzaghi and Peck, 1948). Compared to experimental results this cal

culation gave smaller resistances than the measured plant force, but 

more closely controlled experiments were needed to evaluate the dif

ference. 

The effect of soil compaction around seed has been evaluated by 

numerous authors. Triplett and Tesar (1960) planted seed at zero, 

one-fourth, one~half, and one-inch deep. They applied compaction pres

sures of zero, three, six, and twelve psi. All seeds so planted failed 

to germinate at a moisture tension of ten atmospheres when this was the 

total amount of moisture available for germination. In soils with 

higher original moisture contents, the high compaction pressures caused 

increased emergence except at the one-inch depth and twelve psi pres

sure. When the samples were irrigated after compacting the soil, the 



compacted samples emerged better than uncompacted samples except at a 

depth of one-half and one inch. 

Stout (1960) investigated the effects of compactions over seeds 

planted in soil with moisture content of 16 and 12 percent. Those in 

the compacted soil absorbed moisture faster in the first five hours, 

but later the seeds in the loose soil gained moisture at a more rapid 

rate. This would suggest that compact soil may retain moisture but 

that the soil does not readily yield this moisture to the seed when it 

is needed for germination. 

6 

Stout, Buchele, and Snyder (1961); reported that compacting soil 

may control the moisture and air available to seeds and produce mechani

cal resistance to penetration. They applied compaction pressures one

half, five, and ten psi. In the dry state, the lower compaction 

pressure gave better plant emergence than the higher pressures. Under 

abundant moisture conditions, seeds in the highly compacted soils 

emerged somewhat better. Soil compaction at the seed level was more 

effective in increasing emergence than was compaction at the soil sur

face. When surface compaction was used, emergence was improved by com

pacting soil at the seed level. 

Morton and Buchele (1959) evaluated the factors affecting the 

force and energy requirements for emergence of seedlings. Soil sam

ples with moisture contents of 12, 16, and 20 percent were compacted 

with pressures of one-half, one, two, four, eight, and sixteen psi. 

All finished samples were three inches thick. Mechanical plungers 

with diameters of 0.078, 0.106, 0.162, and 0.275 inches were pushed up

ward through the soil samples. Force and displacement were recorded. 

They concluded that emergence energy increased with compaction, high 
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initial moisture content and the amount of surface drying. Methods of 

reducing energy were listed as applying compaction at the seed level 

and maintaining high surface moisture. Small diameter plungers emerged 

with lower energy input than did large plungers. 

The effect of seedbed compaction. on soil drying rate has been 

eva:J,uated by Johnson and Henry (1962). Test soil samples were obtained 

by screening an air-dried soil into various size ranges. Test samples 

were assembled in plastic containers, and in all samples the top three 

inches of soil could be separated for weighing, Corn seeds were placed 

two inches deep in each sample. The top one-half inch of soil in all 

samples was dry. Compaction pressures of zero and five psi were ap

plied in five different patterns. Samples were aged in a controlled 

environment chamber with heat and wind to cause drying. Drying rate 

of the sample seedbeds was only slightly affected by the compaction 

treatments applied to small-sized granules. For larger granule size 

sai;nples, compaction decreased the drying rate. The drying.rate of the 

soil was found to be almost independent of the original moisture con

tent and almost wholly dependent upon the size of aggregate in the 

seed'..bed. Larger aggregate dried at a faster rate than did small aggre

gate. Surface compaction appeared to reduce growth in the small gran

ules. Where the compacted layer over the seed was allowed to dry, the 

seedling·s had difficulty emerging. Where the compacted layer was kept 

at a relatively high moisture content, the soil strength was low and 

the plants were able to emerge adequately. Compacting soil at the seed 

level reduced the over-all drying rate; and, at low soil moist'ures, in

creased growth as compared to the plot without compaction. 
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Gill and Miller (1956) performed an experiment in which seeds were 

placed between a glass bead pack and a rubber diaphragm so that hori

zontal pressure could be applied to the diaphragm. At a confining pres

sure of 10 psi~they found germination and emergence to be related to 

the percent of oxygen available in the air which was supplied to the 

seeds. At confining pressures of 70 psi~ no root growth occurred. 

Bailey (1963) in an experiment with corn seedlings in various media, 

such as glass beads, concluded that the seedling radical must have 

either large pores into which it can penetrate or it must be able to 

displace the soil in a manner similar to a penetrometer. He found that 

seedlings were unable to penetrate a pack of 38 micron glass beads when 

lateral pressures of 0.6 kilograms per square centimeter were applied. 

Taylor and Gardner (1960) evaluated the penetrating ability of 

seven different crops by using waxes with various penetration resist

ances below the seeds. Using a standard penetrometer they conclude 

that at penetration numbers of 15.5 or harder, none of the seven crops 

were able to penetrate to a depth of one millimeter. At penetrations 

of 19.5 and softer, all crops were able to penetrate. Legumes did not 

penetrate the wax better than other crops. The failure of cotton to 

penetrate as well as several crops was attributed to the large diameter 

root tip, since other crops which produce the same large diameter root 

tips were also unable to penetrate. In a field experiment, Taylor and 

Gardner (1963) demonstrated that root penetration was decreased by high 

soil bulk densities and low moisture contents. In their experiment, 

aeration was not a cause of low root penetration because as moisture 

content increased aeration decreased and root penetration increased. 

Phillips and Kirkham (1962) demonstrated that density could cause 



decreased length of corn roots. Aeration was not a problem in this 

case because sand and glass bead :Ill'e.dia at the same penetrometer 

readings also caused reduction in growth. 

Jamison and Weaver (1952) in a study of penetrometers determined 

that on certain soils the penetrometer readings were related to poros

ity when the moisture contents of the two samples were consistent. In 

clay soil, penetrability was almost purely a function of moisture con

tent. Veihmeyer (1948), in an experiment to determine the factors in

volved in the effect of soil compaction on root penetration, observed 

that soil samples settled by flooding resulted in densities of from 

1.0 to 1.6 specific gravity. Roots of ordinary field crops did not 

penetrate soil in which the dry density exceeded 1.8 specific gravity. 

This experiment demonstrated the improbability that flood-irrigated 

soil can have sufficiently high density to cause failure of root pene

tration in the cultivated zone. 

9 

One further justification for soil compaction around the seed has 

been discussed by Matthes and Bowen (1962). They have written a gener

al differential equation involving temperature differences and the dif

fusion coefficient to demonstrate that soil moisture content can be 

changed by vapor movement in the soil. They demonstrated that conden

sation and evaporation can be controlled by compacting certain loca

tions in the soil. When the compacted area is on .the cold side of a 

moist two-temperature system, condensation may occur in the compacted 

soil. This results from a decrease in the diffusion coefficient at the 

col~ side of the system. 

Compaction of soil beneath and around seeds has certain complicat

ing factors. It is difficult to compact moist soil without producing 
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a certain amount of puCidling. Puddling has not been well defined, but 

Beachar (1955) has discussed puddling generally. He concluded that 

puddling is not merely an increase in bulk density, but a combination 

of increased bulk density and a rearrangement of soil particles. 

Buehrar (1943) demonstrated that puddli_ng can be detrimental to soil 

physical condition when it is done at moisture contents near the mois

ture equivalent, that is, field capacity. Tillage operations that 

would normally produce a puddled condition at the moisture equivalent 

were found to produce a friable soil condition when applied at moisture 

contents both higher and lower than field capacity. 

The compaction of soil at various moisture contents has been in

vestigated microscopically by Day and Holmgren (1952). Three different 

soils at numerous moisture contents were compressed and then impreg~ 

nated with a plastic material. Sections were cut and microphotographs 

were taken. They concluded that at low moisture content the compaction 

force was resisted by transmittal of force between soil particles. At 

a moisture content of 29 percent inner-pore spaces tended to be filled 

by plastic deformation. 

In sununary, the effects of soil compaction around seeds has been 

studied by numerous investigators concerned with planting, germination 

and emergence. This review indicates that a firmly compacted base 

helps the plant as it pushes upward to emerge from the soil. A firm 

foundation has been observed to maintain moisture content over a longer 

period of time. There may be some question regarding the availability 

of the conserved moisture ·,to seeds. Excess compaction. below or above 

the seed may cause physical impedance of the growing seedling. Equi

librium of forces on the seedling must also be maintained. Despite 



considerable research, more information is needed concerning optimum 

conditions of the soil below and above germinating seeds. 

Soil Characteristics Affecting 

Tillage Research 

11 

The most active period of agricultural engineering research on the 

soil characteristics affecting tillage was during the late 1920 1 s and 

early 30's by Nichols and several others, at the National Tillage 

Machinery Laboratory in Auburn, Alabama. During this period, much 

effort was expended in attempting to describe soil strength with a 

single-valued index This effort was unsuccessful and to date no 

single-valued constant can be used to describe soil strength. 

In one of several early publications on the effects of soil charac

teristics on tillage, Nichols and Baver (1932) concluded that all of 

the soil factors needed to evaluate soil reaction could be determined 

from the Atterburg consistency limits. This information was useful 

because soil testing equipment was not available to those in the field. 

For most engineering work the soil constants are determined by testing. 

Nichols and Baver found that the soil factors affecting tipage most 

were internal angle of friction, compressive strength, cohesion, ad

hesion and soil to metal friction angle. These soil constants are in 

use today. The results that were obtained by a tillage tool were ex

pressed in terms of fragmentation, arch action, compaction, or shear. 

In an early evaluation of the factors which affected the dynamic prop

erties of soils, Nichols (1931) determined relationships between clay 

content and adhesion, cohesion, compression and shear. Using mixtures 



of Cecil Clay and pure sand, he found that cohesion varied as the 

square of the clay content; adhesion, compression and shear strength 

varied as the first power of the-clay content. 

12 

Wheeting (1936) has made a determination of static friction for 

six soils under different 1 moisture conditions. For each soil, the 

maximum value of friction occurred at the wilting point. In this ex

periment a watch glass was used and at high values of normal force the 

watch glass sank into t~e soil tending to give somewhat misleading data. 

The most comprehensive report on soil to metal friction was by Nichols 

(1931). Using Cecil Clay and sand mixtures for soil he pulled a metal 

object over the surface to determine the-coefficient of friction. He 

divided friction into four phases according to soil moisture content. 

In the first phase, compression occurred. The apparent friction was 

due to·work being done on the soil and this increased as the square of 

the speed. The second phase occurred at a slightly higher moisture 

content and represented true friction. The force varied with the clay 

content in an increasing manner but was independent of speed. The 

third phase was adhesion which occurred above 16 percent moisture con

tent for a non-plastic soil. The adhesive phase gave the highest val

ues of friction. The fourth phase occurred at a very high moisture 

content when the water tended to lubricate the slider and friction de-

creased to the minimum value. 

Soil shear strength was evaluated by Nichols (1932) using a syn

thetic mixture of Cecil Clay and pure sand. He determined shear 

strength by using a three-ring press with a moveable center ring. Dis

placement and force were continuously measured. Nichols concluded that 

shear was proportional to vertical pressure. Increased moisture 
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content up to the lower plastic limit. caused increases in shear 

strength. Further increases in moisture content caused a decrease 

in shear strength. At moisture contents above the plastic limit, 

soils were found to fail in a viscous manner rather than in pure shear. 

Bouyoucos (1932) determined the sticky point of a soil by pulling 

a metal disk away from a moist soil surface. He found that muck soils 

had zero stickyness. It was determined that the addition of sand to 

"sticky" soil samples did not decrease the stickyness, but that the 

addition of a muck soil did. Bouyoucos emphasized the difficulty of 

determining adhesion and metal-to-soil friction because the soil tended 

to stick to the surface of the metal and the evaluation was then a ten-

' sion .effect in the soil, or in the cas:e of a sliding disk, was actual-

ly the soil-to-soil friction rather than soil-to-metal friction. 

Payne (1956) lists, shear strength, soil-to-metal friction and 

bulk density as the constants affecting soil reaction to tillage tools. 

Bailey and Weber (1964) evaluated methods of measuring soil shear 

strength in place. An annular grouser plate was found to give the most 

consistent results when compared to triaxial compression tests on the 

same soil. A similar device was used by Korayem and Reaves (1961). 

They also used a smooth annular plate on the rotating device to meas-

ure soil to metal friction. Shear strength has been shown by Rowe and 

Barnes (1961) to depend on the speed of shear failure. Siemans, Weber, 

and Thorn.burn (1964) report the same effect. 

Hendrick and VandenBerg (196i) found that the tensile strength of 

Lloyd Clay briquettes was independent of load application rate. 

Briquettes loaded at the high rate, failed with less strain energy. 
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In conclusion, the most important soil characteristics affecting 

tillage research would appear to be shear strength as determined by the 

Coulomb constants; that is, cohesion and internal friction angle. Ad

hesion and soil-to-metal friction are important for all phases of soil

machinery research, but are generally difficult to evaluate since 

adhesion may prevent the measurement of soil-to-metal friction. 

Soil Response to Tillage Machinery 

If a planter furrow opener is to be designed to compact soil at 

the bottom of the seed furrow, it is necessary to predict the density 

that will result from a specific shape. Soehne (1958) has shown a re

lationship between soil moisture content, compaction pressure and 

porosity. For a heavy loamy soil he found the critical moisture con

tent to be between 18 and 22 percent. At lower moisture contents the 

dry soil particles resisted compression and at higher moisture contents 

pore water resisted compression. Resistance to the plastic flow of 

soil around a plunger decreased 80 times as soil moisture content in

creased from 10 to 26 percent. 

Soil compaction by planter openers may be comparable to the action 

of a soil penetrometer which has been investigated by Reaves and 

Nichols (1955). They described consolidation of soil in two phases. 

The first phase was the collapse of the random particle arrangement in 

loose soil. The second phase was rearrangement of solids into the 

voids. The later phase was theorized to be controlled by cohesion and 

frictional forces. 

In addition to compaction,a furrow opener must make a slot in the 

soil into which seed of field crops can flow without restriction. For 
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large seeded crops such as cotton and corn,a slot three-quarters of an 

inch wide should be sufficient. Most planters have openers about one 

and one-quarter inches wide. It may be found that soil failure pat

terns around planter openers are predictable from soil mechanics theory 

and from the results of research on soil failures around tillage machin

ery. 

Soil reaction to vertical and horizontal loads has been extensive

ly studied by civil engineers. These studies provide information for 

the design of foundations and retaining walls to carry the expected 

loads with a minimum of construction expense. Analysis methods have 

been summarized in soil mechanics texts (Sowers and Sowers, 1958; 

Terzaghi and Peck, 1948). Failure surfaces in cohesive soils caused by 

the movement of a rough faced retaining wall toward the soil is des

cribed by a log&rithmic spiral. The spiral is positioned with the 

origin in the soil near the back of the wall, with the exact location 

depending on the cohesive properties of the soil. The spiral surface 

extends from the bottom of the wall toward the soil until it becomes 

tangent to the plane (45° - ~/2), where·~ is the soil internal friction 

coefficient. For & smooth wall, the failure surface is described as 

a plane from the bottom of the wall extending upward toward the soil at 

an angle of (45° - f/2). Most research reports (Jumikis, 1956, Kander, 

1963) agree with·this theory, but some consider simple rupture surface 

shapes such as circular arcs (Anderson, 1946) adequate for engineering 

design. 

Several authors whose work is reviewed below have explained fail

ure patterns in front of tillage tools in terms of soil mechanics. 

This procedure may be justified for planter openers, but it is not 



obvious that a direct thrust load duplicates the failure caused by a 

sliding wedge such as a runner opener. 
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The most comprehensive research on tillage tools has been done by 

Payne and Tanner (1959). They experimented with narrow and wide 

chisels with vertical angles from the direction of travel of 20 to 160 

degrees. Chisels at all of these angles were found to cause a circu~ 

lar section of soil to break ahead of the chisel in the horizontal 

plane. A triangular block of soil was formed on the front of all 

chisels. At angles up to 90 degrees, the soil block appeared to move 

up the chisel as the tool was pulled through the field. At angles 

greater than 90 degrees, the soil block was observed to move downward

ly and off the chisel. They have evaluated the shape of-the semi

circular failures around the chisels. Measurements were made on the 

initial block that failed and the results were presented graphically 

in their report. Angles greater than 90 degrees were found to increase 

the draft necessary to operate the chisel. 

Tanner (1960) evaluated chisels two inches wide at vertical angles 

of 20 to 132 degrees from the direction of travel. Using a one-sided 

box with a checkerboard pattern on the soil, he evaluated, through 

photography, the failure angles in the soil. For all of the angles 

included in this experiment, the soil adhered to the chisel and a cone

shaped block was pushed in front of the blade. The shape of the block 

and adhesion to the chisel caused an upward force to be exerted on the 

90 degree angled chisel and at obtuse chisel angles. Compression of 

the one-half inch of soil below the chisel appears to be almost 50 per

cent of the original density of the soil showing that considerable 

compaction can inadvertently be done by tillage implements. 
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Failure planes in front of inclined chisels have been investigated. 

by Siemans, Weber, and Thornton (1~64). By using the principles of 

passive retaining wall failure as outlined by Terzaghi·and.Peck and. 

summarized·previously:in-this report, Siemans, et al., predi¢ted the 

draft :required:to opE;1rate chisels. Spiral centers for the :soil faillJre 

surfaces were assumed· in. their computation _and th_e center. that resulted 

in the minimum. draft: on the tillage tool was .. accepted as the_ tru~ 

spiral center. For tools inclined less than 70 degrees.from.the 

horizontal the foregoing did-not apply. For thes~ angles a:plan~ fail

ure at a"Q. angle of (45° - ct,/2) was assUmf;ld. · In this case, equ,ilib.riull). 

for an individual. block, of soil was assumed and .the resulting draft; was. 

computed by summing the forces ·of .. shear resistan.ce,. frict:ion and weight 

in the horizontal and vertical planes. High-speed movies wer.e cor

related. through. oscillograph readings . to · re],ate. draft and . soil. failure. 

Maximum force .was found-to occur at the same time a failure-plane de

veloped in the.soil. For tool.inclinations.of 15 -to 60.degrees the 

failure was. observe·d .to be a plane at approximately the _predicted angle.

Failure plane·a11gle.was not related_ to tool angle. For tool.angles of: 

70 and 90 degrees, the bottom . surface· was cul;'ved. and th.en becam~ a· plane· 

as had been predicted on the basis of soil mechanics. In all.cases, the 

measured. faiJ:.ure plane was.near the predicted value. 

Speed· did not have a linear effect on forc~s. The author·. demon:

strated that acce_leratio11 forces did not explain the total gain• in 

draft caused by increased. speed. Th~ explanation was given -_that, at · 

higher . speed shear strength is increased. causing a deer.ease> in the 

failure surface angle. In _this research, the.angl~ of the re~ulting 

force .on the, chisel was ·computed, but since no allowal)ces.were made.for 



soil adhering to the face, these data seem ambiguous. Calculated and 

measured values of soil resistance forces did not agree well in this 

experiment seeming to indicate that more research is needed before a 

total account can be made of all the forces acting on plane chisels. 
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Rowe and Barnes (1961) evaluated the effects of speed and shear 

strength on the draft requirements of plane chisels. In soils with 

high clay contents calculated values of draft versus speed did not 

agree with observed results. Inclusion of an acceleration allowance 

did not improve the fit. When the shear strength increase due to speed 

of shearing was included in the calculated curves, agreement with the 

observed curves was good for this type of research. They concluded 

that increased soil shear strength at high speeds accounted for the 

draft increase. 

The action of subsoilers in breaking up soil has been investigated 

by Nichols and Reaves (1958). They found that a soil wedge formed on 

the front of chisels and that the wedge was subject to plastic flow. 

When they designed a metal wedge to replace the accumulated soil, draft 

was reduced by about 25 percent. Soil blocks were observed to form in 

front of the chisel when the resistance to compression at the bottom 

of the soil block ahead of the chisel was greater than the shear value 

of the soil. At high moisture content, the failure tended to be a 

plastic flow rather than a series of shear failures as observed'at 

lower moisture contents. No measurement of the resulting soil proper

ties were made in this experiment. 



Synthetic Soils for Tillage 

Research 

The first reference to the use of synthetic soils for tillage 

research found by this author, was by Nichols (1931). The synthetic 

soils used by Nichols were mixtures of Cecil clay and sand. Using 

these mixtures and various moisture contents, Nichols developed for

mulas for computing the shear strength·of soils with various clay 

contents. Nichols also used the same artificial soil mixtures to 

determine the frictional properties of soil. These formulas are use

ful in explaining the,concept of soil to metal friction. In recent 

tillage research projects, frictional properties have been evaluated 

by sliding the material to be tested over soil samples. 
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Korayem and Reaves (1961) have determined the frictional proper

ties of certain artificial soils and evaluated the use of these 

artificial soils in a study of plane chisels. The mechanical charac

teristics needed for tillage research were assumed to be angle of in

ternal friction, cohesion, soil-to-metal friction angle, and adhesion. 

In that research, the angle of internal friction and cohesion have been 

determined for various artificial soil mixtures. The ingredients in 

the artificial soil mixtures were bentonite and sand. The moistening 

agent used in these soils was ethylene glycol which does not evaporate 

rapidly at room temperatures, but it does diffuse into the air at a low 

rate. At normal room temperature it was satisfactorily stable for the 

period of time·necessary for most tillage research. The constituents 

of soil were mixed by using a single-spindle beater. The mixture.was 

arbitrarily called "saturated" when a glistening appearance of the·soil 
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appeared and the materials felt wet to the touch. With zero clay co11-

tent this occurred when 18 percent, by weight, of ethylene glycol had 

been added to the soil. When the mixture·was 100 percent clay, the 

percent of ethylene glycol needed to cause saturation was 110 percent. 

Throughout this experiment the glycol content was less than 50 percent 

of saturation so that no·ethylene glycol came out of solution. 

The soil characteristics of cohesion and internal friction were 

evaluated on a triaxial test apparatus using standard techniques. 

Samples were prepared by tamping the artificial soil mixture lightly 

into a mold and then preconsolidating at a pressure of one kilogram per 

square centimeter for 15 minu~es. The sample was then removed from the 

mold and placed in the triaxial test machine. 

The conclusion from these triaxial tests was that artificial soils 

can be compounded using moistening agents such as ethylene glycol or 

oil to maintain constant soil strength factors over a considerable 

period of time. Artificial soils can be compounded to have charac

teristics similar to natural soils. 

Selig and Rowe (1960) studied the engineering characteristics of a 

number of artificial soil mixtures to determine the variety of proper

ties that could be obtained. They also commented on the stability of 

the mixtures. The soils were compounded using a variety of clay, silt, 

and sand materials. The moistening agents used were water, light min

eral oi~ and ethylene glycol. Several different mixtures of these in

gredients were subjected to Atterburg limit tests, Harvard miniature 

Compaction tests unconfined compression tests and triaxial compression 

tests. 
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Water and ethylene glycol moistened samples gave comparable 

Atterburg limits. Where oil was used, the limits varied radically as 

compared to the water moistened samples. The maximum density obtained 

by standard test increased for soil samples as average particle size 

increased. Optimum compaction moisture decreased as average particle 

size increased. Of the three moistening agents, water gave the highest 

dry density with the lowest moisture content. Ethylene glycol gave 

about 10 percent lower dry density at a 6 percent higher liquid con

tent. Oil gave the lowest dry density and required the highest moist

ening agent content for optimum compaction. 

The maximum unconfined compression strength was independent of the 

proportion of clay, silt, or sand but depended on moisture content. 

Maximum strength of clay samples occurred at higher moisture contents 

than mixtures of clay and sand or clay and silt. Ethylene glycol and 

oil reduced the unconfined strength compared to water and the points of 

maximum strength occurred at higher moistening agent contents. 

Stability was judged best for the samples prepared with oil as 

the liquid. Such samples were stable for six months. Ethylene glycol 

was found to separate from the soil mixture. 

The authors concluded that artificial soils should be useful and 

satisfactory for many types of research, but it does not appear that 

all soils can be duplicated by an artificial mixture. 

Korayem and Reaves (1961) evaluated the use of artificial soil as 

a medium for model studies of tillage tools. The tools evaluated in 

this case were plane chisels operated in a laboratory soil tank. They 

conclude that artificial soil can be used to perform tillage research. 

It was observed, in the course of their experiment, that although the 
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binding agents had considerably lower cohesive properties than water, 

the familiar rupture planes did develop in the s.oil around the chisel, 

indicating that the action of the tillage tool was near that expected 

in a normal water-moistened soil. 

Bailey and Weber (1964) used artificial soil to evaluate various 

methods of determining the shear strength of soils. The devices tested 

in their experiment were the annular grouser plate, the torsional shear 

head, and the triaxial apparatus. Two known clay soils were used with 

low and high viscosity oils. Their data show the soil with low vis-

cosity oil to have cohesion varying from zero to about one psi for the 

95 percent confidence limits and a friction angle of 37 to 42 degrees. 

For the high viscosity oil sample, the cohesion varied from 0.5 to 1.2 

psi and the internal friction from 31 to 36 degrees. In this experi

ment the annular grouser plate was the only in-place device to yield 

data whose 95 percent confidence interval consistently overlapped or 

fell within the triaxial values. It was concluded from these data that 

the torsional shear head was less desirable as a means of evaluating 

soil shear strength than the annular grouser plate if triaxial tests 

are accepted as the standard. 

Artificial soil has been used in a practical tillage experiment 

by Siemens, Weber, and Thornburn (1964). The soil used by these re

searchers was a known clay soil mixed with low viscosity oil at a 

rate of 10 percent by weight. This artificial soil remained stable 

for a period of six months allowing research to be carried on for a 

considerable period of time with no significant differences in the 

soil characteristics. The soil, as used in this experiment, was simi

lar to a damp, coarse silt. The frictional properties of the soil were 



23 

determined by measuring the force required to slide a metal plate-over 

the soil. The plate was constructed of the same material as the model 

tillage tool. Shear-streng.th properties were measured by the triaxial 

test machine.and by direct shear tests. They found that the results of 

the two shear tests were very similar. The-cohesion intercept was 0.8 

psi and the internal friction angle-was 36.5 degrees for both machines. 

For the soil used in this experiment, the angle of soil-to-metal fric

tion was 24 degrees and the adhesion intercept was negligible. 

Soil prep1::1.ration in this experiment consisted of rototilling the 

soil twice, striking the surface with a blade to take out minor inden· 

:tations and a variable number of roller passes to obtain different 

densities. All tool tests were made after six roller passes. The 

tools-evaluated in this experiment were plane chisels with widths of 

two, three, four, and five inches operated at angles from the horizon

tal in the direction of travel of 15, 30, 50, 70, and 90 degrees. Soil 

failure surfaces were adequately predicted from soil mechanics theory 

showing that artificial soils can·be subjected to standard failure 

analysis. The draft was not accurately predicted in this experiment,' 

indicating that more research is needed to adequately explain the total 

action of tillage tools. 

Mink, Carter, and Mayeux (1964) have used artificial soil to evalu

ate-the effects of an air slide on soil-engaging tools. The soil used 

in this experiment was clay, sand, and low viscosity oil. The soil 

samples, through which-chisels were to be drawn, were prepared by ro

tary tilling, striking level, and rolling with a 90-pound weight until 

the desired density had been obtained. The variations. in draft, caused 
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by differences in soil conditions, were found to vary only 1.49 percent 

over a period of three months during the investigation. 

The use of artificial soil to evaluate earth-moving equipment has 

been reported by Cohron (1961). The soil used by Cohron consisted of 

clay, sand, and low viscosity oil. Different proportions of these 

materials were used to produce a range of soils. The internal friction 

angle was varied by increasing the bulk density of the sample. This 

was also found to increase the cohesion of the soil, but had little ef· 

fect on the friction of steel-on-soil. Cohron reports that the soils 

used in this experiment remained in stable condition for long periods 

of time and several months of research were possible without signifi

cant changes in the engineering properties.of the soil. One of the 

problems raised by Cohron is that the artificial soils cover only a 

narrow range and that a greater variety of artificial soils are needed. 

The results of model studies on scraper-loader time showed that results 

obtained in the soil bin with artificial soil and an electronically

controlled model yielded more consistent data than did field observa

tions of full-scale equipment operating on variable soil conditions. 

The ability of model testing to detect small differences was emphasized. 

Density Measurement by the 

Gamma Radiation Technique 

Certain radio-active elements emit energy in the form of gamma 

rays. Gamma rays are normally visualized as particles called photons 

since they can be counted by c.ertain electranic devices. Photons are 

emitted from their source in all directions. As the photons pass 

through matter they lose energy and experience directian changes by 
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three mechanisms (Glasstone and Sesonske, 1963). These are, first, 

the photoelectric effect where .the photon transfers all.of its energy 

to an orbital electron of an atom.. The displaced electron is normally 

replaced by a higher orbit electron with the.emission of an X-ray 

photon of much less energy than the gamma ray photon. A second effect 

of matter on photons is the Compton interaction. Here the.collision 

between the electron and the photon is elastic in nature and only part 

of the photon energy is transferred to the electron. In the collision, 

the photon changes in both direction and energy level .. As the scatter-

ing angle increases the energy loss by the photon also increases. The 

third effect of matter on·gamma rays is pair production. A photon is 

.absorbed by the nucleus of an atom resulting in the formation of an 

electron - positron pair. This effect is important only at high photon 

energy levels. 

It is seen from the foregoing that as a beam of electron passes 

through matter some of the photons will be absorbed, some will be 

scattered and others will lose energy. This effect is usually referred 

to as attenuation. 

Attenuation is assumed to increase with radiation intensity, I, 

and with matter thickness, dx. Attenuation is defined as the change 

in intensity dI, andµ is the linear attenuation coefficient. 

Then 

dI = -µIdx (2 .1) 

. or 

dI , , 
1 = -µdx. 
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The selution of which is 

log I = - µx + c . (2 .2) 

When 

X = 0 

I = Io 

and 

log Ie = c. 

Therefore log I - log I 0 = - µx. (2.3) 

This equation is valid for a column of parallel gamma rays. 

Davisson and Evans (1952) stated that a point seurce can be considered 

a cellimated beam if the solid angle is not greater than 0.016 ster

adians. They used a set of lead shields to obtain such a beam to 

determine absorption coefficients. Smith and Dixon (1963) used a col

limated beam of the same type to determine the direct abserption 0f 

soil samples. They used absorption da,ta to develop equatiens appli

cable to soil density determination by the back-scatter technique. 

Vomocil (1954) investigated the use of gamma rays to determine 

the density of soils in place. He·pointed out that nearly all the 

elements in soil interact with gamma rays in a similar manner except 

hydrogen. Water is the principle source of hydrogen in the soil. 

Smith and Dixon were unable to detect any differences in readings due 

to water centent changes normally found in soil. We could thus expect 

that a certain mass of soil and water would have a definite attenuat

ing effect that is independent of composition on a gamma ray beam. For 

a known length of soil sampl~ the total attenuatien depends on the soil 

density. 



CHAPTER III 

THEORETICAL CONSIDERATIONS 

The movement of soil engaging tools such as planter openers or 

chisels through soil forces the displacement of particles in the path 

of the tool. Reaction and displacement of soil in the immediate vi

cinity of the tool probably depends on the shape of the tool and the 

physical characteristics of the soil. ,About five different mechanisms 

of soil failure can be visualized. First is elastic defotma:tio'n where 

strain is linearly proportional to stress and the material returns to 

its original size and shape if the stress is removed. Second is com

paction or consolidation where stress and strain may be linearly re

lated but there is little or no recovery of the strain when the stress 

is removed. Third would be plastic failure where the material flows 

without change in volume. Fourth is granular flow where the soil gains 

in total volume during failure due to rearrangement of the particles. 

The fifth type of failure would be fracture. It is probable that soil 

failure around agricultural tools involves all of these; therefore, 

applicable theoretical analysis will be difficult if not impossible 

with presently available theories. 

Despite the difficulty of analyzing failure mechanisms at all 

points in the soil around tools, it may be possible to construct some 

simple models that will approximate the results. Three modes of action 

caused by planter openers passing through soil will be proposed. These 
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include soil compaction beside and below openers, plastic or granular 

flow from beneath· openers and soil fracture beside-openers. 

Soi.l Comp.ac't'.iori 

If the soil beside an angular-faced opener is compacted as the 

opener moves past, we may approximate the action as follows. Figure 1 

is a top view of an angular-faced opener. Let us·consider a vertical 

slice of soil beside the opener such as ABCD. As the opener moves 

forward,some soil in the area adjacent to the opener face will be dis-

placed in a forward direction. However, the final compaction pattern 

will be two dimensional beside the opener; therefore, deflection in the 

direction of travel was not considered in the following development. 

The unit thickness slice of soil from Figure 1 is shown in Figure 2 

in a plane normal to the direction·of travel. Shear stresses on the 

front and rear surfaces of the slice are assumed to be equal aIJ.d op-

posite; therefore, they need not be considered. 

The unit thickness slice of soil appears as DCEF, where D and C 

.refer to the same corners as in Figure 1. As the opener pushes the 

soil to the side, it exerts a maximum unit pressure P against the fur-

row wall .. At some distance x beside the opener the applied pressure is 

balanced by a compressive stress a and a portion of the triangularly 

distributed shear stress with a maximum value of S .. At some distance 

L the stresses were assumed to become insignificant. At the point x, 

by summation of horizontal forces 

(3.1) 
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Figure 1. Top View of the Unit Thickness Slice of Soil Used to 
Derive an Equation for Compaction Beside an Opener 
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Figure 2. Model Used to Derive an Equation for Compaction 
Beside an Opener 
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For the thin layer of soil dx at point x the compressive stress is 

<J = p _ Sx (l- ~) 
d0 2L (3 .2) 

Let compressive unit stress and unit strain be quadratically 

related so that 

2 o = A<J - B<J . (3.3) 

In 3.3, 5 is the unit strain, <J is the unit stress and A and B 

are constants to be evaluated by a soil test similar to a consolida-

tion test. If the compaction of the thin layer dx is d€, then 

-odx . (3.4) 

Bringing in 3.3, 

2 
d€ = - (Acr - B<J )dx . (3.5) 

Substituting 3.2 in 3.5 yields 

(3. 6) 

Which can be solved by direct integration. Thus 

Where C is the constant of integration. At the point x = O, 

€ = €0 thus C = €0 and 
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(3.7) 

In 3.7, € represents the deflection of any vertical section in 

the soil out to the distance L where the deflection Wa$ assumed to 

be negligible. The maximum shear strength may be expressible by the 

well-known equation 

S = c + a tan cj, (3.8) 

where 

c = unit cohesion 

a= normal stress on the failure plane, and 

, = angle of internal friction. 

For the entire soil block DCEF 

or 

(3.9) 

But S cannot exceed the value given by 3.8 so for low sh~ar 

strength soils, P must be small or L must be large. 

Several assumptions were made in the course of this development 

that should be experimentally verified. If the surface of the soil is 

unconfined, it is doubtful that soil near the surface will be compacted 

unle~s the soil has high cohesion. This means that the linearly dis-

tributed compressive stress should be replaced by a more appropriate 

model. If a confining mechanism, such as a flat gauge shoe, were used 
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on the soil surface, the model might be more applicable especially for 

soils of low cohesion . 

. As the point x is moved from· the centerline outward toward the 

point L, the shear stress along .the bottom of the failure block bal-

ances ever greater portions of the force applied to the furrow wall. 

This actiondecreases the compressive force applied to each succeeding 

layer. One might expect that the compressive stress weuld be diminish-

ed mest rapidly near the lower boundary .. Again a .more accurate cem-

pressive stress distribution would have to be determined experimentally. 

This model would predict the maximum cempaction to occur near the 

opener face. Plane layers weuld be compressed te·diminishing densities 

as distance frem the epener increased. No·compactien weuld be expected 

in soil below the bottom of the epener. 

A possible methed ef compacting soil in ~he seed furrow is te 

attach a sliding wedge te the bettom of the opener. Such a wedge would 

force the bettom of the furrow downward as the.opener moved past. A 

simple but approximate solution to this problem may be formulated from 

an approximate bearing capacity method presented by Sowers and Sowers 

(1958). The bearing pressure exerted by a foundation on soil is assum-

ed to be supperted by a prism of soil with side slopes ·of twe verti-

cally to one horizontally. The model appears as Figure 3. If we con-

sider a unit thickness slice .of soil normal to the direction·of travel, 

on which a maximum pressure Pis exerted by the sliding.wedge the pres-

sure, cr, en seme seil layer y distance below the furrow bottom is 

cr(w +y) =Pw 
0 0 

(3.10) 
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. Wo 

Figure 3. Model Used to Derive an Approximate Expression for the 
Compaction Under a Furrow Bottom Wedge 
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We consider an element dy at a depth of y. This layer wiU be 

compacted an amount d€ by the unit st.rain. acting over lep.gth s).y. ' .. 'l'hus 

d€ = -8dy. (3 .11) 

If unit stress and unit strain are quadratically related as pre-

viously assumed in 3.3 

2 
8 = Acr - Bcr • (3 .12) 

Solving for the stress on the thin layer in 3.10 and inserting 

the result in 3.12 and then into 3.11 we have 

dy . 

Which can be solved by direct integration resulting in 

·€ = -APw 
0 

2 2 1 
log(w0 +y) - BP w0 (-(w-+y-. -)) + C 

0 

(3.13) 

where C is the constant of integration. Letting the maximum deflection 

€ occur at the pointy= O, 
0 

C = € + APw 
0 0 

For any layer at depth y below the furrow bottom 

€ = € + APw 
0 0 

(3.14) 

To find the compaction of any finite layer, the deflection on each 

side of the layer can be calculated and the compaction determin~d by 

difference. 
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There are several limitations of the above development. The 

horizontal stress distribution is only approximated by the assumed 

prism of soil. Experimental results may dictate a different side slope 

of the prism .. A more accurate distribution of compressive stresses can 

be calculated by the formulas of Boussinesq and Westargaard (Sowers and 

Sowers, 1958) based on elasticity. Introduction of a nonlinear stress

strain relationship in these equations creates formidable problems. At 

the present state of knowledge about planter openers, the more compli

cated analysis hardly seems justified. We can, however, notice that 

the general shape of an equal pressure line in the elastic analysis is 

bulb like. If bulb shaped-high density zones are found below planter 

openers, applicability of the elastic theory will have been demonstrat

ed. 

In the previous development, no allowance was made for plastic 

flow. Such flow, to be discussed in the next paragraph, would negate 

the·derivation. 

Plastic Flow 

Regardless of the method used to calculate pressure distributions, 

compaction under a sliding wedge is limited by the pressure at which 

soil becomes plastic at the corners of the wedge. This can be evalu

ated as follows. Consider an elemental cube in the soil beneath an 

opener. The stresses acting on the cube are shown in Figure 4. By 

summation of forces on the upper portion of the cube, assuming a longi

tudinal dimension of one, 



Figure 4. Two Dimensional Stresses Acting_ on a Cube of Soil 
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FAIL URI 
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Figure 5. Mohr's Circle of Stresses Showing a Typical 
Failure Envelope for Soil 
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But 

dy = dz sin ex 

dx = dz cos ex 

therefore 

a sin ex - T cos ex = ,a sin ex n · 3 

an .cos o: + T sin ex = a1 cos ex 

Solving 3.16 by determinates 

CJ = n 

Fram which 

0'3 

0'1 

cr 
n 

sin ex - cos ex 

cos ex sin ex 

sin ex - cos ex 

.ces ex sin ex 

. 2 + 2 p.3 sin ex -cr1 cos ex 
= sinZd + cos2 ex 

Using half angle fermulas 

frem·.which 

CJ 
n 

crl - cr3 
+ ( . ) cos 2ex 

2 
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(3.15) 

(3.16) 

(3.17) 
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Finding shear stress from 3.16 ~y determinates 

sin a: 

'7i cos a 
~ = ~~~~~-----------..----

cos a: 

1 

so that 

~ = a1 sin a: cos a: - a3 sin a: cos a: 

·- ~-:.:.1. Using half angl~ formulae 

or 

(3.18) 

Equations 3.17 and 3.18 are parametric equations of the familiar 

Mohr's circle of stress. For soil, the circle is limite<;l in size by 

a maximum shear stress that increases as the principle stress increases. 

The general formula for the limiting shear stress in soil is 

where 

~ = c + a tan ..i. n . 'I' 

c = Cohesion 

a = Normal stress on the shear plane, and 
n 

~ = Friction angle of the soil , 

C3.19) 

The foregoing is shown graphically in Figure 5. By the use of a 

half-angle formula Equation 3.17 can be written in the form, 

(3.20) 



Combining Equations 3.1,8, 3.19, and 3.20 

which simplifies to 

a3 tan cl> + ·c 
(11 = <13 + 2 

sina cosa .. cos a tan cl> 

Failure occurs when the circle becomes tangent to the 

failure envel,ope. At the point .of tangency 

2a = rc/2 + cj, • 

Using this relationship Equation 3.22 reduc~a to 

= 1 + S in ~ + 2 C COS ~ . 
C11 C1 3 ( 1 - sin ~) 1 ..: sin + 

Using the identities 

and 

and letting 

then 

2 
tan (45 +4,/2) 

tan (45+~/2) = CO$~ 

1 9 sin t 

k = tan (45 + ~/2) 

= a3 :k.2 + 2c k (11 
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(3.21) ' 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3. 27) 

(3.28) 
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Horizontal resistance to plastic flow is assumed to be provided 

by the overburden soil pressure. If the opener applies sufficient 

stress in the horizontal plane to overcome the vertical stress due to 

overburden, plastic flow is assumed to· occur. The assumed loading con-

dition is illustrated in Figure 6. The vertical stress on block 1 is 

assumed to be · 

O'III = 'Yd (3.29) 

where 

O'III = Vertical unit stress 

'Y = Unit weight of soil, and 

d = Depth of the furrow. 

In order that failure occurs in the soil beside the opener, the 

horizontal stress O'I must satisfy the passive transfer equation 

a = ydk2 + 2ck. 
I 

Referring to block 2 we see that a3 is the minor principle 

stress resisting plastic expulsion from beneath the opener. It is 

equal to a1 but in the opposite direction. The major principle 

stress is.then 

(3.31) 

Bringing in a1 from Equation 3.30 for a3 

4 3 a1 = ydk + 2c(k + k) • (3.32) 
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Figure 6. Stress Conditions for Plastic Flow Under a Planter 
Opener Using Mohr's Circle of Stresses 
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According to Equation 3.32, the maximum stress that can be applied 

to a furrow bottom compaction wedge depends on the unit weight of the 

soil, the depth of the furrow and the shear strength parameters of the 

soil. 

Fracture of Soil Beside Openers 

For planter openers, the problem of compacting the furrow bottom 

is further complicated because the soil immediately beside the opener 

must be undergoing distortion by either plastic flow or fracture. Thus 

the material at the lower corner of the opener may not have sufficient 

vertically applied stress to resist plastic deformation. The mode of 

action beside the opener may be comparable to the predicted failure of 

soil which is laterally displaced by a retaining wall. Solution to 

this problem has been presented by Terzaghi and Peck (1948). 

In Figure 7, two principle stresses are acting .on each unit cube 

of soil to the right of the wall. These are the hydrostatic pressure 

due to the weight of soil above the cube and the pressure applied by 

the wall. The familiar formula for shear strength of cohesive soils 

is Equation 3.19. 

The failure angle previously found was 

ex = 45 + ~/2 (3.33) 

If the failure angle cx1 is measured from a horizontal plan.e, the fail

ure is seen to rise at an angle of 

a 1 = 45 - M2 (3.34) 
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Figure 7. Loading Condition for the Derivation of the Rankine 
Passive Earth Pressure Formula 
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Figure 8. Failure Block Predicted by the Rankine Theory 
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The simplest solution to the problem of predicting soil failure 

pattern is then that the soil block will fracture at aq angle of 

(45 - t/2) from the bottom of the opener to the soil surface in the 

form of a triangular block as shown in Figure 8. 

44 

The ~econd approximation of failure results from considering the 

wall to be rough. In this case, the net force exerted by the wall on 

the soil face is not horizontal but at an angle resisting movement of 

soil upward along the face. This condition has been analyzed by 

Coulomb and is also giveh by Terzaghi and Peck. The concept is 

graphically shown in Figure 9. If equilibrium is assumed at the moment 

of failure, the three vector forces w, F, and P acting .on the soil 

block ABC must sum to zero. The plane of probable failure can be found 

by successive locations of point C such as C' and C" .. At each point 

the value of P required to close the vector triangle is computed. The 

plane on which a minimum P occurs is the assumed plane of failure. Con

venient graphical means of solution have been devised and are presented 

in the above reference and others. 

When a rough surfaced retaining wall is forced against a vertical 

wall of a cut in cohesive soil,failure has been OQserved to occur in a 

pattern similar to Figure 10. The block of soil ABCD fails as a mass 

along the line BCD. The segment CD rises at an angle of (45 - +12) or 

the Rankine failure line. The line segment BC is usually:~ons:l.dered ~ 

to be a logarithmic spiral with its center at some point E. A series 

of arbitrary slip surfaces are chosen and the surface resulting in the 

smallest force required for slip is taken as the answer. The procedure 

for computing the force P required to cause slip is rigorous but tedi

ous. 
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Figure 9 . Diagram of the Coulomb Theory of Failure Behind a 
Rough Faced Retaining Wall 

ROUGH 
WALL 

Figure 10. Soil Failure Line Resulting from Pushing a Rough 
Faced Retaining Wall Against a Cohesive Soil 
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It does not seem rational that classical retainip.g wall theory 

can be applied to soil openers with face angles from the direction-of 

travel in both the horizontal and vertical directions. In Figure 20 

are shown the horizontal angles used in tqe experiment and in Figure 11 

is a view of the vertical cross ·sections of those openers with vertical 

angles. From these sketches we see that considerable deformation. of 

the soil is necessary before the opener establishes sufficient soil 

contact to cause a classical retaining wall failure. 
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Figure 11, Vertical Cross Sections of Those Openers Having 
Angularity in the Vertical Plane 



CHAPTER IV.· 

METHODS AND PROCEDURES 

Appa-ratus 

To evaluate the effect of planter opener shape on the soil density 

pattern it was first necessary to design labo-ratory equipment to pull 

· e~perimental openers through soil samples .. An apparatus was designed 

specifica11y for this purpose and is shown in Figure 12. It consisted 

of a three-horsepower electric motor pulling.a movable carriage on 

which-the test opener was mounted. The opener was pullec;l through the 

soil sample at a speed of five miles per hour and at a depth of two 

inches. The soil samples were twelve inches wide, eight inches deep, 

and three feet long. Calculations indicated that the three .. horsepower 

motor would accelerate the cart to full speed in a distance of twelve 

to eighteen inches. The cart was stopped by disengaging .the pulling 

cable and engaging a set of flexible rubber pads which absorb·energy 

from the.cart . 

. A transducer for measuring forces acting on the planter openers 

was also designed. It consisted of a pair of parallel cantilever beams 

to measure drag force. These were connected through hinge points to a 

simply supported beam which measured lift force. At the center of the 

simply supported beam was another cantilever beam on which the-opener 

was mounted. A sketch of this transducer is shown in Figure 13. All 
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Figure 12. Apparatus Used to Operate Test Furrow Openers 
Through Soil Samples 

Figure 13. Strain Gage Recorder Used to Determine Forces 
Acting on Furrow Openers 
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of the sensing elements were made of aluminum. The original design of 

this transducer called for rigid, rather than flexible, hinge points 

at the ends of the simply supported beam. This arrangement was not 

satisfactory for a large moment as compared to drag force such as that 

produced by a rearward angled opener. The moment tended to cause de

flection through the rigid corners which produced a negative drag read

ing. The revised design gave reasonable and consistent force records 

and was considered to be satisfactory. 

All sensing elements on the beams were Baldwin, Lima, Hamilton 

electrical strain gauges type S-1 paper-backed, 120 ohm resistance with 

a gauge factor of 2.06 ohms per micro-inch of deflection. All were con

nected as full Wheatstone bridges. Recording was on a four channel 

Sanborn recorder at appropriate amplification factors and at a chart 

speed of 100 millimeters per second. The recorder is shown in Figure 

13. A sample recording appears as Figure 15. Calibration was deter

mined by loading the transducer with a ground-fit hydraulic cylinder, 

pump, and pressure gauge. A picture of the calibration setup U·shown: 

in Figure 16. Both·calibration curves were second degree with zero in

tercept. They are shown in Figures 18 and 19. 

The soil box consisted of a>folLihch>b;r:·_si1Ktl::een:-ihch::.wd.decboa.rd 

with steel angles bolted to the ends for handling. Grooves were cut 

in the board to fit a twelve-inch wide by three-feet long metal shell. 

The shell had open ends to allow entry and exit of the planter opener. 

Plywood fillers were used in the ends during sample preparation .. A 

picture of the sample box is Figure 17. 
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Figure 16. Force Transducer Clamped in Place to Calibrate 
for Drag Force 

Figure 17 . Soi l Box Used to Prepare and Hold Test Specimen 
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Several smaller pieces of apparatus were designed and used in the 

course of the experiment. These will be explained in conjunction with 

the procedure for which they were used. 

Soil Samples 

A supply of clay soil was collected from an area known to be typi

cal of the area. Preparation of natural soil samples consisted of 

screening through one-quarter inch mesh hardware cloth and placing the 

so_il in the sample box overfilling the top to resemble a planting bed. 

The samples were soaked overnight with water near the top of the ridge 

similar to the method of furrow irrigation applied locally. After 

thorough soaking, the samples were removed from the water and air dried 

to a reasonable moisture content for planting. This appeared to be 

about twenty percent moisture on the dry basis. This procedure led to 

difficulties because there was some montmorillonite in the soil. This 

caused expansion during the soaking stage and shrinkage of the soil 

during the drying period. The resulting cracks made these samples 

quite nonhomogenous and led to erratic results. In the latter days of 

the experiment, the soils were prepared to the desired moisture content 

and then placed in the sample containers and compacted to the desired 

density by a baseplate and drop hammer as will be discussed in the pre

paration-of artificial samples. This method was considerably superior 

because the sample container was full and the soil could not yield into 

cracks as it had in the naturally prepared samples. This procedure was 

consistent with other research on clay soils although the results so 

obtained are not directly comparable to naturally prepared samples be

cause remolded samples are considerably weaker. 
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Two artificial soils were chosen for use in this experiment. The 

most useful of these was called the "artificial fine'' soil. The solid 

phase of this soil consisted of twenty percent Ottawa sand and eighty 

percent Wyoming bentonite by weight. The. liquid phase was SAE-120 

transmission oil at the rate of thirty percent on the dry basis. The 

components were mixed in an ordinary cement mixer.. The large aggre

gates that tended to form were broken up by hand forcing the sample 

through ordinary screen wire. Small aggregates remained but the soil 

had the feel of a granulated medium-textured soil. Large aggregates 

did not reform during the use of the soil. According to previous work 

on artificial soil, one would expect this one to have a coefficient .of 

internal friction about 20 degrees and cohesion of less than .five 

pounds per square inch. Apparently, the size of aggregates affected 

the frictional characteristics since test results did not agree with 

these values. By direct shear test the internal friction angle was 

35 degrees and the cohesion was 0.6 psi. The soil-to-metal shear 

s.trength was determined by placing a steel plate in the bottom section 

of the shear box. The soil-to-metal friction angle was 27 degrees and 

there was no measurable adhes.ion. 

The second artificial soil was called "artificial coarse." In 

this mixture the solid phase consisted of -eighty percent Ottawa sand 

and twenty percent Wyoming bentonite. Motor oil of grade SAE-10 was 

then added to give ten percent liquid on the dry weight basis. This 

soil was very easy to handle since the characteristics approximated 

those of a pure sand. The bentonite had very little effect on the mix

ture. Samples tended to be very dense without appreciable compaction. 

Energy applied through baseplate and drop hammer was not effective in 
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raising the density. Shear tests indicated no cohesion or adhesion for 

the soil. The internal friction angle was 39.0 degrees and the soil-to

metal friction angle was 22.0 degrees. The use of this soil was limited 

in the experiment because it was obvious that the mixture was too sandy 

for comparison to agricultural soil. 

Samples of artificial soil were prepared by filling the eight-inch 

deep box with one-inch layers of soil and compacting each layer with a 

baseplate and drop hammer. In the early stages of the experiment, the 

baseplate was a six-inch square. The weight was dropped 52 inches to 

compact the soil to approximately the density that was expected in 

natural soil samples. The application of a six-inch square baseplate 

to a sample 12 inches wide and three feet long resulted in a question

able pattern of density since the center of the sample, where the open

er was to run, was not uniformly compacted due to edge effects of the 

plate. In later experiments, the baseplate was twelve inches square 

and the drop was reduced to 26 inches in an effort to produce a more 

compactable soil. The last layer was overfilled slightly so the sample 

top could be trimmed to size. As each sample was ready for running, it 

was weighed to determine the average density. 

Opener Shapes 

So little information was found about the action of planter open

ers on soil that it was difficult to logically choose a set of test 

shapes. Commercial runner-type openers were constructed of thin metal 

plates welded together to form a "V" in the horizontal plane with the 

point of the "V" oriented in the direction of travel. A single thick

ness of plate extends forward in a variety of shapes. Stub runners 
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usually have a point near the ground surface and curved runners extend 

forward with the lower edge curving upward to a point well above the 

soil surface. 

After inspection of typical runner-type openers it was assumed 

that the thin plate extending forward from the ''V" had a minor effect 
( 

on the action of the opener. Such a blade was not used on experimental 

openers. It appeared that the angle between the plates forming the "V'' 

would have some effect on furrow shape. Horizontal cross sections of 

opener shapes chosen for the experiment are shown in Figure 20. Various 

companies produce openers with different vertical angles along the front 

of the "V" wedge. Vertical angles chosen for the experiment are also 

shown in Figure 20. Vertical cross ·sections have previously appeared 

in Figure 11. Throughout the remainder of this discourse, vertical and 

horizontal opener angles will refer to the angle between the plane nor-

mal to the direction of travel and the soil engaging faces of the open-

ers. The use of three vertical and three horizontal angles resulted in 

nine opener shapes. 

In an attempt to compact soil in the bottom of the furrow, a set 

of compaction wedges was made as shown in Figure 21. These were used 

exclusively on the opener with zero vertical angle and eight-two and 

one-half degrees horizontal angle. 

Sampling 

As the opener was pulled through the soil sample, the force trans-

ducer recorded drag and lift. Slow-motion pictures were taken of the 

opener as it went through the sample. Some of these will be discussed 

in the chapter on results. Photographs were taken at a speed of 64 or 
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48 frames per second, depending on which of two cameras were available 

to take the pictures. Higher speeds would have been desirable, but 

equipment was not available and considering the expense of such equip

ment it was not feasible to obtain it for this experiment. After an 

opener had been pulled through the soil sample, the sample container 

was removed from the opener operating frame and the sheet metal con

tainer around the sample was removed. A sampling guide was placed over 

the test sample and two three-inch long cross sectional subsamples were 

taken using sampling boxes like those shown in Figure 22. After the 

sampling boxes were driven the full depth of the soil, as in Figure 23, 

sheet metal slides were placed under the boxes and the cross sectional 

samples were removed for density evaluation. Samples taken from natural 

soil were wrapped in polyethylene fi_lm to reduce moisture losses since 

density evaluation required considerable time. Wrapping was not neces

sary for oil moistened artificial soils. 

For density evaluation the soil cross ·section in the sampling box 

was placed in a jig where it could be sampled at points of known posi

tion to~·aetermine the density pattern. For test specimens used to 

evaluate opener shape, density measurements were made on one-half inch 

increments. In the vertical direction, measurements were made from 

one-half inch above the original ground surface to four inches below. 

In the horizontal plane,readings were made between points six and one

half inches on each side of the centerline. For furrow compaction 

wedge, sample,·readings were made on one-fourth inch increments. In 

the vertical direction, readings were taken from one and one-half 

inches deep to four inches deep and included points for one and one

half inches on both sides of the centerline. 



Figure 22. Cross Sectional Sampling Box 

Figure 23. Cross Sectional Samples Being Taken from a Soil 
Sample After an Opener has Passed Through 
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Density Measurement 

Density was measured in this· experiment by the gamma radiation 

technique. Gamma photons from a radium 226 source rated at L 95 milli

curies were collimated through a one-fourth inch hole in a lead shield. 

A rigid frame held a shielded Gieger·counting tube in position so the 

photons could only reach the tube through the soil sample and then a 

one-fourth inch hole that was aligned with the beam from the source. 

The arrangement of parts is shown·schenia.tically in Figure 24. The 

rigid frame holding the source and counter tube was supported by mov

able pins for vertical positioning and it could be positioned horizon

tally by sliding. The jig with a sample in place is shown ~n Figure 25. 

In this research, the soil sample was three inches long. Photons were 

counted using.the commercial rate meter shown in Figure 26. 

It was necessary to calibrate the density measuring equipment. 

Small samples three inches long were compacted into a section of four

inch diameter brass pipe in one-inch layers using a modified Procter 

compaction·hammer. These samples were then weighed to determine the 

average density and a series of readings were taken. During.calibra

tion the exact length of soil sample had not been established so the 

data were compiled using~ density factor defined as average bulk den

sity (gms/cc) times the length of sample (cm). Values of density fac

tor were plotted against the decrease in photon count rate due to the 

beam passing through soil. The point of zero count decrease was deter

mined by reading the count rate with·only metal side plates in place. 

This curve is shown as Figure 27. Due to the limited range of count 

values it was possible to use a linear relationship without appreciable 

·error. 



'TO PULSE 
COUNTER 

TUBE 

SAMPLING BOX 

RIGID F'RAME 

SOIL 

~ ~ 

f'l 
~ 

PHOTON 
SOURCE 

LEAD SHIELD 

Figure 24. Schematic Diagram of Equipment Used to Determine Soil Density by the Gamma Radiation 
Technique 

i 



Figure 25. Cross Sectional Sample of Natural Soil in Jig for 
Gamma Radiation Density Measurement 

Figure 26 . Rate Meter and Hand Card Punch Used t o Record 
Radiation Readi ngs 
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Each reading on the rate meter required twenty to thirty seconds. 

For the opener test samples, four hundred sixty readings were required 

for each run. 

Data Processing 

Rate meter readings were punched directly onto computer cards 

using the small, hand data punch shown in Figure 26. Since a large 

volume of data had to be collected in this experiment, almost no other 

method would have been feasible. The raw data were read into the 

computer in the form of a three-dimensional array. Rows and columns 

represented vertical and horizontal placement of points on one cross 

section and the two cross ·sections were referenced by the third dimen

sion. Density was computed at each point using the calibration curve.· 

Lateral and longitudinal symetry were assumed. This gave four density 

values at each point in a one-half cross-section. A sample analysis 

sheet is shown in Figure 28. The left two columns of numbers repre

sent bulk density measurements on the centerline of the sample. Num

bel;'s in these columns:are repeated since there was only one reading 

taken on the centerline. A typical point is enclosed in a box. The 

top two numbers represent two readings the same distance from the cen

terline and at the same height on the first cross ·section, The second 

row of two numbers represent the corresponding two points on the second 

cross section. The third pair of numbers from the top is the mean and 

the five percent confidence interval of the mean in the left and right 

positions respectively. The bottom numbers are a test for significant 

differences between pairs of samples in the longitudinal and lateral 

directions respectively. A zero indicates acceptance of the null 
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hypothesis and a one indicates rejection. With such a small sample, 

the analysis of variance almost never showed a significant difference 

except by random chance when the error was near zero. The test was 
J 

valuable in detecting errors in data punching and so it was retained 

throughout the experiment. 

After the average density was computed at each point, a linear 

interpolation subroutine was used to find contours of equal density. 

These were plotted using a computer plotting routine and several of 

these are included in Appendix A. For the "attific.ial fine" soil it 

was possible to choose a certain density contour to outline a zone of 

decreased density caused by the action of the planter opener. For this 

soil the 0.9 grams per cubic centimeter contour was chosen for two rea-

sons. First, it represented a ten percent reduction in bulk density 

compared to an undisturbed sample. The sampling procedure would be ex-

pected to.do some averaging near the boundary between dense and loose 

mate.rial. Secondly, the 0 .. 9 grams per cubic centimeter contour termin 

nated at the centerline of the cross ·section very near the bottom of 

the opener. 

For natural soil samples, the initial average sample density was 

not as constant as it was for the artificial soils. For this reason, 

a new contour was chosen at ninety percent of the average wet density. 

There was a natural gradient in the moisture content with lower moist-

ures near the surface. The zone of decreased density would then be 

slightly erroneous near the surface; however, the difference in moist-

ure between one•half inch deep and four inches was only about two per-

centage points which is within the experimental error of this research. 
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It is not possible to state that any particular contour represents 

the lines of shear failure, but the use of one density contour will 

permit comparison of furrow shape and size between samples. The shape 

of the contours suggested the use of an exponential curve of the form 

where 

-Dx 
y = A+ Bx + Ce 

y = depth to the decreased density line, 

x = distance from centerline, and 

A, B, C, and D = constants. 

The method of least mean squares was used to fit a curve of 

the form 

z = A + Bx + Cy ·t 

where the transformations 

.,. -Dx 
y = e 

and 

z = y 

gave the final form of Equation 4.1 . 

(4 .1) 

(4 .2) 

. A sample of six curves were fitted using values of D between one 

and ten. For those six the average standard deviation from the curves 

was a minimum using a value of D equal to four. That constant was used 

throughout the remainder of the curve fitting. After curves were fitted 

the depth, width, and area were cemputed using the fitted equation. 

After depth, width, and area had been computed they were related to 



opener face angles by appropriate statistical models as explained in 

the re1ult1 chapter, 

No such convenient method of analysis was found for the research 

on compaction at the bottom of the seed furrow. Wedge sample density 

cross··sections will be discussed in the chapter on results. 

7t 



CHAPTER V 

RESULTS 

The results of this experiment will be discussed in the following 

paragraphs. Cross sectional density patterns will be discussed for the 

various soils used in the experiment, followed by an analysis of the 

effect of furrow opener shape on density of the "artificial fine" soil. 

Results will be compared to theoretical models and slow motion films 

will be discussed. Statistical models were fitted to furrow character

istics and these have been included to allow prediction of results for 

openers within the range of angles tested. Last will be a discussion 

of the compaction wedge trials on three different soil samples. 

Density Patterns for the Various Soils 

Cross sectional density patterns for the various soils and opener 

shapes are presented in Appendix A. Duplicates of some density pattern 

figures have been included in the text of this chapter to simplify read

ing. These plotted patterns include the original soil surface, an ap

proximation of the final soil surface and the boundary of a zone of 

reduced soil density. In these figures the left edge of the graph re

presents the center line of the opener. Distance beside the opener and 

depth were plotted in inches. The curves were plotted using the line 

printer on the computer and the plotted symbols were keyed to the den

sity in grams per cubic centimeter. For instance, 0.8 gm/cc was plotted 

'72 
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using the figure 8 and 1.0 grams was plotted using the 0. Since these 

were plotted on the printer it is possible for the letters to be dis

placed slightly from their true locations since they could be plotted 

only to the nearest print position. In the horizontal direction, the 

maximum plotting.error was 0.05 inches and in the vertical direction 

it was 0.0833 inches. 

Appendices A-I through A-X are the plots of density patterns in 

the "artificial fine" soil caused by the various furrow openers. Each 

of these plots represents the average of two replications. Using the 

compaction method explained in the procedure chapter of this report, 

the average density of the "artificial fine" soil was 1.05 grams per 

cubic centimeter. 

Figure 29 shows the density pattern in an undisturbed sample of 

"artificial fine" soil. In this plot the density decreased near the 

soil surface across the entire sample. Coming downward from the soil 

surface at the opener center line the density increased rapidly reach

ing a value of one gm/cc at about one-half inch deep. This lower den

sity may have been due to some edge effect in the reading instrument, 

but more probably was due to surface irregularities in the soil samples. 

The plastic liner that was used to prevent adherence in the soil sam

ples box made accurate surface trimming difficult. Also, it would be 

expected that the density would decrease near the surface since there 

was no confining pressure to hold it a high density. There is a more 

serious decrease in density down the right side of the sample. This 

was near the side of the box and was attributed to failure of the base

plate to compact soil in this region. Most of the runs in this experi

ment showed a zone of decreased density extending about three inches to 
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the side of the opener. The decreased density at the boundary should 

not have affected the results, but for future research a wider sample 

box would be recommended. 

Figure 30 is a typical density pattern for "artificial fine" soil. 

' 
Final soil surface was poorly correlated to any particular density con-

tour. The surface line was determined by measuring down from the top 

of the cross section box to an estimated final surface. Typically, 

large loose aggregates were present on the surface making the measure-

ment a gross approximation. In granular form the "artificial fine'' soil 

could be loose-filled in a sample container at a density of about 0.6 

gm/cc. The density measuring equipment averaged the density across the 

length of the three-inch long cross section so large individual aggre-

gates on the soil surface were probably not detected by the density 

measuring.equipment. 

The zone of decreased soil density for the "artificial fine" soil 

was taken to be bounded by the 0.9 gm/cc density contour. On the plot-

ted cross sections this contour is seen to intersect the center line of 

the opener (left edge of the figure) and then curve upward into a 

straight line until it intersects the original 0.9 contour. Near this 

intersection a slight rounding or blending of the curves may be seen in 

some samples. This may have been related to the original fracture line 

or caused by soil movement over the area after failure. This minor ef-

feet was ignored in the analysis of the results. In fitting the chosen 

statistical model to the boundary of the zone of decreased density, it 

was necessary to use some judgment in selecting the number of points to 

be included in the calculations. In general, when the points along the 

contour began to deviate badly from a visual straight line, the 
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remainder of the contour points were ignored. Only the width beyond 

which points were ignored was chosen arbitrarily. No points before or 

after the chosen width were selected for inclusion or deletion except 

where linear interpolation had pro~uced two points of essentially the 

same coordinates. 

Some of the other contours may be of interest. The 1.0 gm/cc con

tour (plotted as 0) is seen to wander about in most of the plots. This 

contour was very near the average density of the sample and normal vari

ation of the reading technique and of the soil density causing the den

sity surface to undulate. The 0.8 gm/cc contour generally follows the 

0.9 contour although for some samples it was much nearer the surface. 

Some sample runs on natural soil are presented in Appendices A-XVI 

through A-XXIII. The soaking and drying time was so long that only a 

few samples of the natural soil were run. Also, the lack of homo

geniety of the samples was quite appar1ent and the results were corres

pondingly erratic. In natural soil samples, wet densities of ten 

percent less than the average sample density were considered to define 

the boundary of the area of reduced soil density. This contour was 

plotted with the letter X. 

Average moisture contents of the samples near the bottom of the 

furrow ranged from 14.6 to 22.0 percent on the dry basis. The dryer 

samples caused the most difficulties due to shrinkage. Figure 31 shows 

the density pattern of a sample dried to the point that large soil 

blocks tended to be pushed apart within the sample container. The den

sity pattern reflected this effect. The zone of decreased density was 

quite small and there were some areas of loose soil below the opener 

path. The curves defining the boundary of the decreased soil density 
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zone for other samples had the same form as the boundary curves for the 

'artificial fine" soil. 

Density patterns for certain openers on the "artificial coarse" 

soil appear as Appendices A-XI: tliro·.4gh.'A.;XV'".. An undisturbed sample 

and several test runs have been included. The 1.4 gm/cc contour was 

chosen as the boundary of the decreased density zone. This contour 

consistently intersected the center line near the bottom of the opener. 

The shape of the contour was consistent with that found for the 

"artificial fine" soil. 

Results on "Artificial Fine'' Soil 

After th~ statistical model curve was fitted to the boundary of 

the zone of decreased soil density for each run, width, depth, and area 

of the zone were computed using the fitted equation. The slope of the 

linear portion of the curve was also computed. 

The results of these observations have been grouped into Table I. 

Comparison of factor values between replications shows good agreement 

in most cases. The most variation existed among runs of the 60 degree 

vertical angled openers. Lift and drag force measurements appear in 

Table II. 

The data of Tables I and II were subjected to statistical analyses 

as factorial experiments. Factor one was vertical face angle and fac-: · 

tor two was horizontal face angle. The data have been presented first 

as a set of curves representing individual observations and subsequent

ly as two bar graphs under which the Duncan's Multiple Range Test has 

been indicated with letters. Two bars underscored by the same letters 

are not significantly different at the five percent significance level. 



TABLE I 

SUMMARY OF DECREASED DENSITY ZONE CHARACTERISTICS 
FOR OPENER FACE ANGLES ON 

ARTIFICIAL FINE SOIL 

Vertical Angles, degrees ••••••• O 0 0 45 45 45 
Horizontal Angles, degrees •••• 60 75 82 .. 5 60 75 82.5 

Factor Replication 

Cent.er line Depth 1 2.45 2.30 2.33 2.46 2.37 2.37 
(inches) 2 2.42 2.44 2.34 2.45 2.44 2.36 

Average 2.43 2.37 2.33 2.46 2.40 2.36 

Width 1 6.59 6.38 6.60 8.02 8 .23 6.29 
(inches) 2 6.95 6.63 6.62 8.04 7 .46 7 .25 

Average 6. Tl 6.51 6.61 8.03 7.84 6. 77 

. Area 1 9.17 7.57 8.64 10.13 10.52 8.46 
(square inches) 2. 9.91 8.95 8.44 10.78 10.09 9 .46 

Average 9.54 8.26 8.54 10.45 10.31 8 .96 

Side Slope 1 49.2 53.2 51.0 57.7 57.9 49.8 
(degrees from 2 49.9 50.4 52.0 56.0 53.6 53.8 
vertical) Average 49.6 51.8 51.5 56.8 55.8 51.3 

60 60 
60 75 

2. 72 2.45 
2.53 2.32 

2.63 2.39 

6.14 6.49 
6.44 7.50 

6.29 6.99 

9.93 8.74 
9.33 9.94 

9.63 9.34 

42.6 49.8 
47 .4 54.·2 

45.0 52.0 

60 
82.5 

2.57 
2.44 

2.48 

5.96 
7.38 

6.67 

8.01 
9.15 

8.58 

47 .5 
56.0 

51.8 

oo· 
0 



TABLE II 

DRAG AND LIFT FORCES FOR VARIOUS OPENER FACE 
ANGLES ON ARTIFICIAL FINE SOIL 

Vertical Angles, degrees ....... O 0 0 45 45 
Horizontal Angles, degrees .... 60 75 82.5 60 75 

Factor Replication 

Dr-ag Force 1 35.3 45.4 31.5 48.2 45.4 
(pounds) 2 24 .3 44.4 36.5 69.8 46.6 

Average 29 .8 44.9 34.0 59.0 46.0 

Lift Farce 1 11.6 4.9 7.3 31.6 21. 7 
(pounds) 2 10.7 6.8 4.3 39.5 15.8 

Average 11.1 5.8 5.8 35.5 18.8 

* Estimated Missing Value 

45 60 
82.5 60 

43.0* 63.5 
51.2 84.5 

47 .12 74.0 

17.0 52.9 
12.3 72.2 

14.7 62.5 

60 
75 

40.6 
65.6 

53.1 

27.4 
43.4 

35.4 

60 
82.5 

51.5 
54.8 

53.1 

26.3 
28.7 

27.5 

00 ..... 
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Figure 32 shows the effect of fa~e angle on furrow depth. The 

openers with 60 degree horizontal face angles decreased the density to 

a greater depth than openers with 75 or 82.5 degree horizontal angles 

at all vertical face angles. In the factorial analysis, depth of dis

turbance is seen to increase with vertical face angle although only the 

0 and 60 degree angled openers gave results that were significantly 

different. Horizontal angles of 75 and 82.5 degrees produced disturbed 

zones significantly shallower than those of the 60 degree horizontal 

angled openers. The interaction between horizontal and vertical angles 

was nonsignificant. 

Figure 33 depicts the slope of the linear portion of the boundary 

of the decreased density zone. Angles were measured from the vertical 

so large angles correspond to large areas for equal furrow depths. The 

60 degree horizontal angled openers produced steeper sides than the 

other openers with vertical angles of O and 60 degrees and the least 

steep sides with a 45 degree vertical angle. The same pattern is seen 

in the statistical analysis of vertical angles. Horizontal face angles 

had a non-significant effect on boundary slope. 

Width of the decreased density zone is shown in Figure 34. The 

most dramatic effect seen in the graph of individual values is that 

openers with 60 and 75 degree horizontal angles and 45 degree vertical 

angles produced decreased d~nsity zones wider than all the other open

ers. In the factorial analysis, the 45 degree vertical angled openers 

produced reduced soil density zones that were significantly wider than 

either the O or 60 degree vertical-angled openers. There were no signi

ficant differences in the width of the disturbed soil zone for openers 

with different horizontal face angles. 
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The area of reduced soil density produced by the openers is shown 

in Figure 35. Area includes effects of both depth and width of dis

turbed soil. The curves indicate a more consistent pattern of results 

for area than did either depth or width. Sixty degree horizontal 

angled openers produced larger areas of lowered soil density than 

either 75 or 82.5 degree openers at all vertical face angles. The 82.5 

degree horizontal angled openers disturbed smaller areas than all other 

openers except at O degrees vertical angle where the 75 degree horizon

tal angled opener disturbed less soil. The bar graphs show 45 degrees 

vertical angled openers to produce significantly larger areas of dis

turbed soil than either O or 60 vertical angled openers. The area of 

reduced soil density decreased as horizontal angle increased. Areas of 

disturbed soil from the 82.5 degree horizontal angled openers were sig

nificantly lower than those from the 60 degree horizontal angled openers. 

Drag and lift forces were related to vertical and horizontal face 

angles and the results appear in Figures 36 and 37. Drag force is seen 

to have increased with increasing vertical face angle for all values of 

horizontal face angle. However, there was a reversal in this data. 

For small vertical angles the 75 degree horizontal angled opener showed 

the greatest drag force, but at higher vertical angles the 60 degree 

horizontal opener had the largest drag force. The factorial analysis 

showed drag to increase with increased vertical angle and decrease with 

increased horizontal angle. The effect of vertical angles was signifi

cant between zero and both inclined openers. The effect of horizontal 

angle on drag was not significant. 

For lift force the effect of face angle was quite pronounced. All 

vertical face angles resulted in lift forces that were significantly 
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different than those of the other vertical face angles. Increased 

vertical angles caused increased lift force. Openers with horizontal 

angles of 60 degrees had higher lift forces than openers with other 

horizontal angles. There was no significant difference in lift between 

openers with 75 and 82.5 degree horizontal angles. 

Comparison to Theoretical Models 

No combination of soil and planter opener shape tested in this 

experiment resulted in measurable soil compaction. For this reason, 

the model suggested for soil compaction beside a planter opener was not 

tested. This experiment demonstrated that it does not apply to a granu

lar soil with low cohesion where there is no confinement of the soil. 

The model may have application to cohesive soils where some stress may 

be exerted on the soil mass when the minor principle stress (confining 

pressure) is zero. A confining mechanism, such as a flat plate, might 

aid compaction. It would impose another frictional force on the assumed 

soil element further restricting horizontal movement. This force could 

be included in the derivation. 

Fracture beside planter openers was predicted to occur by any one 

of three modes. The first was the Rankine failure plane. As deter

mined by direct shear test, the angle of internal fraction, ~, of the 

soil was 35 degrees. The Rankine failure plane would then be 45 + ~/2 

or 62.5 degrees measured from the vertical. Failure plane angles mea

sured from the vertical in the plane normal to the direction for the 

various openers appears in the column entitled "Normal Failure Angle" 

in Table III. The average failure angle in the plane normal to travel 

was 51.7 which is quite different than the predicted value. If the 
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Rankine failure occurred in some direction forward of the normal plane, 

as illustrated in Figure 38, there would be some average curve along 

the block such as line AB. Two dimensionalde.nsity sampling would de-

fine such average value. Rankine failure at an angle of f3 would make 

a furrow whose side slopes appeared greater than the failure angle 

when cross-sectioned at right angles to opener travel. The f3 angles 

required to adjust the observed angles in the normal plane to the ex-

pected Rankine failure angle appear in Table III in the column entitled 

"Forward Angle for Rankine Failure." The angle f3 was computed using 

the relationship 

f3 = cos -l(cot(45+ ~/2)) 
. cota: (5 .1) 

where a: was the observed failure angle in the plane normal to travel. 

The average f3 for all openers was 47.0 degrees, but the variation was 
J 

greater among f3 angles than among angles observed in the normal plane. 

The most variation in f3 angles appears among the 60 degree horizontal 

angled openers. There was almost no variation among f3 angles for open-

ers with 82.5 degree horizontal face angles. 

One might expect the f3 angle to be related to the horizontal open-

er face angle and the coefficient of friction between soil and steel. 

For this soil and steel the adhesion was zero and the friction angle, 

{'; was 27 degrees. It seems reasonable that f3 should be directed for

ward of a line normal to the planter opener face by an angle of 4> 1 in 

the horizontal plane. The differences between f3's calculated in this 

manner and those calculated from the observed data are in the column 

entitled "Deviation from Normal Plus Friction Angle" of Table III. 

Reasonable agreement was found for openers with horizontal angles of 
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TABLE III 

COMPARISON OF PREDICTED AND 
OBSERVED FAILURE ANGLES 

Observed 

OPENER FACE ANGLES Failure Forward Angle 
Angle Normal for Rankine 

·. ~Vertical Horizontal to Travel Failure 
(degr(aes) (degrees) (degrees) (degrees) 

0 60 49.6 52.2 

0 75 51.8 48.6 

0 82.5 51.5 49.0 

45 60 56.8 37.9 

45 75 55.8 40.0 

45 82·.5 51.3 49.5 

60 60 45.0 58.6 

60 75 52.0 48.1 

60 82.5 51.8 48.5 
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Deviation 
from 

Normal Plus 
Friction Angle 

(degrees}· 

- 4.8 

6.6 

t4.5 

.:.19 .1 

- 2.0 

15.0 

1.6 

6.1 

14.0 
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60 and 75 degrees except for the 45-60 opener. For it the error was 

19.1 degrees. For 82.5 .degree angled openers the error was consistent~ 

ly near 15 degrees" For 82.5 degree horizontal angled openers the 

Rankine failure surface would appear to be angled 1.5 ~· in front of a 

line normal to the opener face. The existance of a set of factors re

lating Rankine failure direction to the soil friction angle on the open

er face would have to be verified by the u,se of soils with various soil 

to opener friction angles. 

The second failure model considered wall friction and a soil block. 

The Coulomb theory for rough faced retaining walls was evaluated for an 

opener and the "artificial fine" soil using the Culmann technique 

(Jumiki~,1964). The predicted failure angle was 77.5 degrees from the 

vertical which was unreasonable,·compared to observed values. 

The third model proposed was the observed failure shape for cohe

sive soils behind retaining walls presented by Terzaghi and Peck (l.948). 

They state that the exponential portion of the failure surface does not 

exist for cohesionless soils. Since the soil used in this experiment 

had very little cohesion, the exponential portion of the curve should 

be small and it .was for most openers. The curvature could have been 

caused by the distance the soil was moved laterally by the opener 

rather having been a portion of the original failure surface. Since 

the linear portion of the failure surface predicted by this method 

rises at the Rankine angle, all of the comparisons previously made ap

ply to this model. 

None of the modes of action predicted that soil would be disturbed 

below the planter opener. An experiment involving soil pressure distri

bution and flow lines around soil tools would be required to evaluate 
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the reason for this effect. From the data presented here, we can only 

state that openers with large vertical angles from the direction of 
C• 

travel applied a vertical force to the soil mass. A portion of this 

force was apparently transmitted to the soil immediately below the tool 

causing disturbance, perhaps by plastic flow. 

The applicability of soil failure theories from the static analy-

ses of soil mechanics to the failure patterns around planter openers 

appears doubtful. Data from this study cannot be used to determine the 

mechanics of soil flow around openers. Such a study would have to eval-

uate soil pressur~ distributions as the opener passes a point, or u~se 

observation of soil flow patterns, perhaps with flexiglas openers and 

high speed motion picture equipment. Until those data become available, 

studies such as this can provide useful information of an empirical 

nature and perhaps stimulate further work toward a theoretical solution. 

~valuation of Slow Motion Films 

Review of slow motion films made during test runs indicated move-

ment of individual soil particles rather than soil failure in a series 

of blocks. In artificial soils the individual grain$ appear to flow. 

In the natural soil samples which had greater shear strength than the 

artificial soils, fracture beside openers resulted in larger aggregates. 

For all S/;lIIlples, some material was given enough energy to be separated 

from the surface of the soil. This effect was greater for openers with 

small angles from the plane normal to travel. Increased horizontal 

angle appeared to decrease the effect more effectively than did in-

creased vertical angle. 
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The maximum filming rate used in-this experiment was 64 frames pet;' 

second which was not sufficient to stop action in every frame for an 

opener moving at five.miles per ;hour; ;For this reason .particle paths 

could only be observed generally rather than be;i.ng _ trac.ed fr.ame by 

frame. Particles that were separated fro!ll t;he soil surface were ob

served to have velocity components in the lateral, longitudinal, and 

vertical directions, but no quantitat;i.ve relationships to opener :f;ace 

angle were attempted. To do so, one would require two sets of pictures: 

one from directly above the sample surfa~e and the other from the side 

-of the opener . 

. After test runs had been completed, two test samples were pre

pared and openers were pt,1lled through by hand at a very slow rate. 

The two openers used had face angles of O and 60 degrees in the verti

cal plane and both-had 82.5 degree horizontal angles. The zero degree 

ve~tical angled opener pr0duced so;i.l cr;acks at right angles to the 

direction of travel at irregular intervals of one to two inches and for 

a distance of about three inches beside the opener. The cracks began 

to appear about one~half inch behind the leading edge of the opener . 

. There was some rearrangemeµt of the soil particles before the cracks 

appeared. The rearwardly inclined (60 degree vertical angle) opener 

made surface crack in a direction rearward from the opener at an angle 

of about 30 degrees and extending laterally to about three inches. For 

this opener the cracks were irregularly spaced. These cracks could not 

be detected in the full speed test runs. Comparison of slow speed runs 

to the five miles per hour samples indicated that different modes of 

failure may occur at different speeds. The analysis of soil fail~re 
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around tillage tools has often been based on failure patterns for slow 

speed runp. This prQcedure does not seem to be justified. 

Prediction Equations 

The first attempt to form a set of prediction equations for the 

characteristics of the zone of decreased density consiPted of a set of 

statistical models for the three constants in the assumed equation of 

the boundary. The results of this method appears in Figures 39, 40, 

and 41. For factors A and B the prediction is perhaps acceptable, but 

for the C the standard deviation is too high. The variation is prob

ably due to the interaction of the three constants. In the least mean 

squares fitted curves, a low intercept might be canceled by a high ex

ponential term. Generally, the three constants did not show as logical 

a response as did depth, width, boundary slope, and area. Notwith

standing the shortcomings of this method, the A and B terms uniquely 

describe the straight line portiQn of the reduced density zone boundary. 

The straight line portion comprises the larger part of the curve. For 

many of the pamples the straight line portion, extended upward from the 

lower, outer corner of the tool represented a fair approximation of the 

reduced density zone. 

In the equation for the reduced density zone boundary, the constant 

A is the intercept of the straight portion at the center line of the 

opener. The model in Figure 39 shows A to be a minimum for openers 

with large horizontal angles and with vertical angle between 20 and 30 

degrees, Since the minimum occurred some distance away from an c;,bserv

ed point, it should be verified by future research. The maximum value 

of the intercept (increased depth) occurred at 60 degree horizontal and 
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vertical angles. The maximum did occur at an opserved point and with 

high probability represented a maximum for the range of opener shapes 

observed. 

Constant Bis the slope of the stra.ight portion of the reduced 

density zone boundary. In Figure 40, the model shows a large flat area 

for openers with medium vertical and horizontal angles. A maximum 

slope occurred for openers with 60 degree horizontal and vertical 

angles. 

Constant C determined the magnitude of the exponential factor. 

The model in Figure 41 shows that the minimum exponential factor oc-

curred at medium vertical angles and at a maximum horizontal face angle. 

Since the various constants of the fitted equations interact, a 

more consistent relationship may exist between opener angle and the 

gross effects such as width, depth, and area of the reduced density 

zone. A set of statistical models relating opener face angles to depth, 

si,de·slope, width area, drag force, and lift; force were computed, Each 

factor was fitted to a second deg~ee response surface with opener verti-

cal and horizontal face angles being the X - Y values. 

To generalize the results the dimensionswere reduced using some 

characteristics of the openers. Depth values were divided by the aper-

ating depth of the tool, d . The values plotted were then numbers of 
0 

tool depths. Width was divided by the sum of tool width and depth 

since both·contribute to the total furrow width .. Area was divided l>y 

the product .of tool width and depth. l'he boundary slope was left in 

degrees measured from the vertical, Drag and lift forces were con-

verted to unit draft and unit lift by dividing force values by the pro~ 

jected area of the tool in the direction of travel. Thus generalized, 
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the prediction equations sho1,1ld be applicable to tooh of different 

size but similar geometry. Chisels and other tools are usually classi

fied by their width over depth ratio. This ratio was p,37~ for the 

openers included in the study. Prediction equations would not be valid 

for tools with different width to·deptb ratios or different speeds . 

. Figure 42 shows the second degree model for depth of the reduced 

density zone as a function of horizontar and vertical opener face 

angles. ~he maximum furrow depth would be produced by openers with 

small horizontal angles and large vertical angles. 

Figure 43 is the model for side slope of the reduced density zone. 

A maximum·occurred in·the model at medium horizo~tal and vertical open• 

er face angles, but it should be viewed with some skepticism since no 

data was collected in this vicinity. The minimum slope would occur 

using openers with small horizontal angles and large vertical angles, 

To some extent the width model in Figure 44 reflects the effect of 

boundary slope although depth and the value _of the exponential term in 

the boundary equation also affect width. A maximu~ width was predicted 

for openers with medium vertical angles and small horizontal angles. 

The area model of Figure 45 was affected by all the previous fac

tors, The minimum cross sectional area of reduced soil density was 

predicted for openers with large horizontal angles and either large or 

small vertica,l angles .. A maximum was predicted at medium vertical 

angles and small horizontal angles. 

Prediction of the 1,1nit draft acting on an opener is possible usi~g 

the model of Figure 46. The minimum unit draft occurred with openers 

having small vertical and horizontal angles. A clear maximum occurred 

at horizontal and vertical face angles of ~O degrees._ 
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Unit lift force appears as Figure 47, A minimum was predicted fpr 

openeri;; with small vertical angles and. large herizontal angles. A defi

nite maximum occurred at horizontal and vertical angles of 60 d.egr~es. 

The above prediction mode;Ls i;;hould be useful in computing the ex

pected. operating farces and furrow characte~istics that will result 

from a specific opener shape. The Ill().d,els are subject to certain 1:;i.mita

tions. They are based on· only two repl;i.cations which is a relatively 

small sample. The horizontal and vertical angles chosen for the study 

were not uniformly spaced. within data range. Some large gaps resulted 

and the models should be used with caution in these areas. The models 

should be useful in cheesing a reduced range of treatments for future 

research. Models apply for a speed of five miles pe~ nour only. 

Effect of Furrow Compaction Wedges 

Three furrow bottom compaction wedges were made for use with the 

zero degree vertical and 82.5 degree horizontal angled furrow opener. 

These wedgei;; were made with plane surfaces to displace soil downward. 

Displacements of one-eighth, three-sixteenths, and one-fourth inch were 

used; These wedges were run on·three d,ifferel;lt kinds of soil samplei;. 

These patterns were plotted at a scale of 2:1. Pensity readings were 

made on one-fourth·inch spacings. On :patural soil saml?les and on arti

ficial soil samples the density pattern was read twice on each cross 

section box. This resulted in considerable refinement of the density 

readings. 

The effect of compaction wedges qn "artificial fine" sail samples 

m,ay be seen in Figures 48, 49, and 50. These samples were prepared to 

the same average density as those utilized in determining the effect of 
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:r 
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Standard Deviation (Absolute)= 2.116 
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Figure 47. Effect of Opener Face Angle on Lift Force 
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opener face angle. The soil densit:y p,;1.tterns were similar to those in 

the face a,;1.gle test. The 0.9 gm/cc ccmtour intersected the opener 

center line well below the compaction wedge. As an analysis of these 

samples, a curve of the same form used in the face angle test was fit

ted to the 0.9 gm/cc contour. The results are shown in Table IV. The 

column representing ?ero inches displacement was taken from the previous 

test, so the results ,;1.re not directly comparable since density was mea

sured on a different pattern in the face angle test. Depth of the re

duced density zone is seen to increase with wedge displacement mere 

than the actual downward displacement of the wedge. At one-eighth inch 

wedge displacement the decreased density zone was 0.40 inches below the 

wedge bottom,and for the one-fourth inch comp,;1.ction wedge it was 0.55 

inches below the wedge. Slope of the boundary also increased with in

creased wedge displacement. Width·of the zone increased with increased 

displacement, discounting the zero displacement sample. Since all of 

the above factors increased, area of disturbed soil also increased with 

greater downward displacements. Drag force showed only a stight re

sponse to increased wedge displacement. Lift force increased four fold 

between zero and one-fo~rth inch wedge displacement. There·was no evi

dence that soil was in fact compacted using plane £aped wedges in the 

bottom of the seed furrow. Density patterns would indicate that the 

soil was disturbed below the compaction wedge, perhaps by granular flow. 

The maximum pressure that could be exerted in a furrow bottom with

out causing plastic flow of the ''artificial fine" soil was computed 

using Equation 3.32. These values are shown in the last colunm of 

Table V. The maximum pressure was computed for the lowest point of 

each compaction wedge. Opener lift forces appear in the second column. 



Fact er 

Depth (Inches) 

Slope (Y/X) 

Width (Inches) 

Area 2 (Inches) 

Drag 

Lift 

TABLE I.V 

EFFECT OF WEDGE DISE'LACEMENT 
ON FURROW CHA~CTERISTICS 

Wedge Displa.o~men't: 
(inches) 

O* 1/8 3/16 

2.33 2.52 2.62 

0.895 0,940 .975 

6.61 6.22 6.34 

8.54 8.89 9.56 

34.0 · 35.3 34.1 

5.82 1~.1 22.0 

* Taken from the Face Angl~ Test. 
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1/4 

2.80 

1.034 

6.64 

11.08 

46.1 

23.9 



Soil 

Artificial 
11':lne 

TABLE V 

COMPARISON OF OBSERVED AND CALCULATED 
MAXIMUM PRESSURES UNDER.FURROW 

COMPACTIOW WEDGES 

Ma.ximum 
Pressure Pressure 

for for 
Wedge Observeq* Unj.form Triangular 

Displace- Lift Distri- Distri-
ment Fo:i:-ce but ion but ion 

(inches) (pounds) (pd) (psi) 

1/8 7.3 4.87 9.74 

3/16 16.4 10.80 21.60 

1/4 18.1 12.07 24.14 
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Calculated 
Pressure 

for 
P:)..astic 

Flow 
(psi) 

10.83 

11.96 

11.99 

1c' Obsel.'ved lift force mim,1s the lift force on the· op~ner without a 
compaction wedge attached. 
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These have been corrected by subtracting the lift fotce that was exert .. 

ed on the opener when there was no compaction wedge attached. The next 

column shows the veJ;"tical pressures that would be exerted by the wedges 

if the lift forces were uniformly distributed over the vertically pro

jected wedge al;'eas. Jror the three-sixteenth iand one-fourth inch wedges, 

excellent agreement was obtained between calculated maximum values and 

the observed valµes. In the fourth column of Table V the lift torces 

have been assumed to result in triangular pressure distributions under 

the wedges. The maximum pressure would be assumed to.· occur at the 

point of maximu~ displacement. The one .. eighth inch wedge gave the only 

maximum pressure that agreed with the calculated maximums. 

Since the three-sixteenth and one~fourth inch wedges had nearly 

equal ebserved l,ift forces and the pressures calculated frqm these 

forces agreed with calculated maximum pressures, we can conclude that 

plastic flew occurred. Such flow would cause all c;listurbed material 

to undergo a decrease in c;lensity due to the c;lilatant nature of the 

artificial soil. Plastic flow would also be consistent with the in~ 

crease in boundary side slope. Opener face angles had already caused 

disturbance of the.material beside the opener. Plastic flow from under

neath the wedge would prebably not cause extensive side slope failures 

but it would disturb soil near the bottom ot the furrow producing a 

deep disturbed zone·with steep side slopes. 

The effect of cempaction wedges on natural soil s,;1mples appear 

as Figures 51, 52, and 53. Densities were plotted on the wet basis. 

The same difficulties that were experienced in the face angle test 

were founq in this test. Ne consistent density contour intersected 

the opener center lines near the bottom of the compaction wedge. 
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Eigher densities were found at the bottom of the one-eighth and one

fourth inc;h wedges than at the bottom of the three-sixteenth inch 

wedge. 
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To overcome the shrinkage problem of natural soil samples, a set 

of runs were made using remolded natural soil. lt was difficult to 

moisten the soil to the desired moisture content without producing 

aggregates. Large aggregates were broken by screening through hard

ware cloth·but considerable aggregation remained. The moisture content 

of the one-eighth and one-fourth inch displacement samples was about 

twenty percent. The three-sixteenth displacement sample had abQut six

teen percent moisture. All samples were initially compacted with the 

baseplate and drop hammer to an average density of 1.28 gm/cc. The wet 

density plots of these samples were plotted as Figures 54, 55, and 56, 

ln no case were densities found to be significantly higher than 

the sample average. ln all samples a bulb of soil greater than 1.3 

gm/cc appeared under the compaction wedge, but there was no logical 

pattern. The 1.1 gm/cc contour passed immediately beneath the com

paction wedge for all samples. The 1.2 gm/cc contour stays close to 

the 1.1 contour except for the one-fourth inch compaction wedge in 

which case it is well below it. This was interpreted to indicate some 

plastic flow of the material under the one-fourth inch wedge. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The original purpose of this research was to determine the effect 

of planter furrow opener shape on seed bed soil density. In retrospect, 

this was a rather ambitious goal since a recognized method of measur-

ing density in seed bed cross sections was not available. Considerable 

time was spent in the beginning of the project trying various methods 

of density measurement. An apparatus was designed to use gamma ray 

decay rate for this purpose. The·method proved quite satisfactory and 

has been described in detail in Chapter IV. Essentially, it consisted 

of a gannna ray beam passing through a sample soil cross section to a 

counting device. The amount of decrease in count rate due to the pre-

sence of soil was found to be proportional to the soil density for 

equal sample lengths. 

The gannna radiation technique was used to measure the·effect of 

opener shape on seed bed soil density using an artificial soil. On 

the granular artificial material, no opener shape tested produced 

measurable soil compaction. Considerable disruption of the soil in the 

immediate vicinity of the opener could be observed during the test runs 

and on the slow motion films of the runs. This disruption caused a 

large area of soil beside the opener to have lower density than the 

1 

initial density of the sample. The zone of reduced soil density was 

found to have a shape similar to that expected behind a retaining wall, 
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but the depth and the angle of the side slopes were both functions of 

opener face angle. Drag and lift forces acting on the planter opener 

were also found to vary with horizontal and vertical face angles, but 

they were not well correlated with the area of disturbed soil. 
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Nine furrow openers with horizontal angles of 60 to 82.5 degrees 

and vertical angles from Oto 60 degrees were tested in the face angle 

test. Statistical models were fitted to the test data to obtain a set 

of equations to predict furrow depth, side slope, width, and area for 

openers with face angles within the range of the data and of similar 

geometry. Lift and drag forces were also fitted to statistical models. 

A possible criteria for planter openers is that they disturb the least 

amount of soil. If the area of the reduced soil density zone is used 

as a basis of comparison, openers with large horizontal angles were 

superior to other openers tested in this experiment. For that set of 

openers, the .fitted model shows those with vertical angles of zero 

and 60 degrees to be better than the one with a 45 degree vertical 

angle. Drag and lift forces were a minimum for openers with large 

horizontal face angles and zero degrees vertical face angle. Among 

the opener shapes tested, the zero degree vertical and 82.5 degree 

horizontal angled opener seems a logical best. 

The action of the tested openers on soil may be comparable to 

chisels. Chisels are expected to loosen the largest possible amount 

of soil. The largest disturbed soil zones were.made by openers with 

45 degree vertical and 60 or 75 degree horizontal angles. They had 

medium values for lift and drag forces as compared to other openers 

in the test. 
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Density evaluations in natural soil showed the same type of den

sity pattern that was observed with the artificial soil. The diffi

culty of obtaining homogeneous natural soil samples in the laboratory 

convinces one that meaningful research on natural soil can only be con

ducted in the field despite the other advantages of laboratory research. 

A large number of cross sectional samples could be collected to obtain 

the average density pattern although excessive density reading time 

would be a serious limitation. Another problem for field evaluation 

would be placement of the cross sectional sampling box so the exact 

location of the opener path could be determined. The extension of the 

methods used in this experiment to field evaluation of density patterns 

would comprise a whole new experiment. 

Compacting soil in the furrow bottom using a plane surfaced slid

ing wedge does not appear to be easily accomplished. For the granular 

materials tested, "artificial fine" soil, density was not increased by 

a sliding wedge. In the artificial soil, larger wedge displacements 

caused reduced density to a deeper depth of soil than did the opener 

without a wedge. This was shown to be caused by plastic flow from be

neath the wedge. It is possible that soils with·high cohesion could be 

compacted using sliding wedges. Since planter openers operate near the 

surface, internal soil friction contributes little to the resistance of 

soil to plastic flow. The weight of soil above the point of pressure 

application is very small. Soils with high cohesion should be tested 

by the procedure used here for a granular material. The artificial 

soil used in this experiment could possibly be compacted by the combin

ation·of a planter opener, compaction wedge, and a flat surface shoe 

which would resist plastic expulsion of material beside the opener. 
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The conclusions of this research can be summarized as follows: 

1. Cross sectional density patterns can be accurately evaluated 

using the gamma radiation technique. 

2. Soils with little cohesion cannot be compacted by sliding 

wedge-type furrow openers without some method of confining 

the soil. 

3. For soils with little cohesion, the passive pressure equation 

accurately predicted the maximum vertical pressure that 

could be applied to the furrow bottom. 

4. The shape of the furrows made by angular-faced openers re

sembled the failure surface of a passive retaining wall 

failure, but the side slope·was steeper. 

5. Furrow side slope was least for openers with medium vertical 

and horizontal angles. The greatest furrow side slope was 

for the opener with smallest horizontal angle and the larg

·est vertical angle. 

6. Planter openers reduced soil density to a depth greater than 

the depth of the opener. 

7. Furrow depth was greater for openers with large vertical and 

small horizontal face angles. 

8. The area of decreased soil density tended to be least for 

openers with small vertical angles and large horizontal 

angles. The largest areas of decreased density occurred 

for openers with medium vertical angles and small horizon

tal angles. 
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9. The lift and drag forces acting on furrow openers increased 

with increasing vertical face angle and decreased with in-

creasing horizontal face angle. 

Suggestions for Future Work 

The gamma radiation technique, as used in this experiment, was a 

highly successful method of measuring seed bed soil density patterns. 

The procedure would be recommended for use in future research·of this 

nature. The density measuring apparatus was calibrated at the begin~ 

ning of the research using known density soil samples. For future use 

of the technique, a set of at least three permanent calibration samples 

that cover the range of expected soil densities should be constructed. 

Intermittent checking with these permanent standards would insure that 

instrument responses, at various times during the research period, will 

be comparable. 

Failure of furrow openers and compaction wedges to compact uncon-

fined soil suggests that a set of test runs should be made on granular 

soil using some confining devices. The most convenient device would be 

flat, sliding gauge shoes on the soil surface. For compaction of the 

furrow bottom, a wider compaction wedge might have increased the com-

pactive effect. The distance that abU::had:· to flow would be increased 

and friction along the bottom of the opener would resist lateral move-

ment. Compaction devices, such as wheels with various surface shapes, 
I 

!;lhould be included in future research. Perhaps a vertically.vibrating 

wedge would be more effective in compacting soil in the furrow. 

Additional research is needed on the effect of planter openers 

and compaction devices on soils with high cohesion. Such soils are 
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difficult to handle and a suitable artificial material does not seem 

to be available. Finer granulation of the mixture used in this experi

ment might result in slightly higher cohesion but not as high as water

moistened clay soils. 

From the data collected in this experiment, it was not possible to 

define the mechanics of soil failure and flow around planter openers. 

Several approaches to the problem are available. Soil pressure distri

butions could be measured with recording equipment and correlated with 

opener position. If pressure distributions were accurately known, per

haps the failure pattern could be predicted. Another approach to the 

problem is quantitative observation of particle movements. Surface 

particles could be photographed with high speed movies. A framing rate 

of at least 500 frames per second appears t.o be required. Particles 

whose original position were on the center line of the opener could be 

observed in their movement over the opener surface by using a trans

parent one-half opener running against one side of a transparent soil 

box. 

Several projects have been recommended for future research. One 

of the important contributions of the experiment herein reported was 

to narrow the range of treatments needed for future study. All openers 

with 60 degree horizontal angles and those with 60 degree vertical 

angles should be eliminated. These openers had large lift and drag 

forces so they would be expected to wear rapidly in the field. They 

did not make more desirable furrows than other openers. Openers with 

vertical angles forward of the plane, normal to travel, should be 

tested. Curved surfaces for both horizontal and vertical faces offer 

an endless variety of shapes for testing. 
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APPENDIX A 

Appendix A includes all density distribution plots for the various 

runs made during this research. The left edge of each plot represents 

the center line of the opener and the point of zero depth was the 

original soil surface. Depth and width were measured in inches and 

were plotted at a scale of 1:1 except compaction wedge samples wh~ch 

were plotted at a scale of 2:1. Points on the contour lines were keyed 

to the soil density according to the following list where the first 

number is the observed density in grams per cubic centimeter and the 

second number is the plotted symbol. 

0.6 = 6 1.1 = 1 
0.7 = 7 1.2 = 2 
0.8 8 1.3 = 3 
0.9 = 9 1.4 = 4 
1.0 0 1.5 = 5 

The cross hatched·area is the region that was swept out by the 

planter opener. Other lines on the plots are: 

Original ground surface 

................ Final ground s·urface 

- - - Boundary of the reduced density zone 
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