A GENERALIZED VIRIAL EQUATION OF STATE

 \mathbf{E}_{1}

JAMES 1. SNYDER $_{n}$

Bachelor of Science University of Illinois Urbana, Illinois February, 1958

Submitted to the faculty of the Graduate School of the Oklahoma State University of Agriculture and Applied Sciences in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1965

				A	OK STATE L	OKLAHOMA STATE UNIVERSITY LIBRARY		
	3				MAY	31	1965	
A	GENERALIZED	VIRIAL	EQUATION	OF	STATE	\$1.55 Page		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Thesis Approved Edmister Thesis Adviser 2 h Dean of the Graduate School

PREFACE

Methods of deriving virial coefficients are reviewed. Multiple linear regression is used in an attempt to derive a generalized virial equation of state from Pitzer's compressibility factor tabulations. The virial coefficient correlations are derived as functions of reduced temperature and the acentric factor. The virial equation of state is used to calculate various thermodynamic properties, which are compared with tabulated values.

I wish to thank Professor Wayne C. Edmister for his advice and guidance during the course of this project. I appreciate sincerely the help received from the faculty of the School of Chemical Engineering and the Computing Center at Oklahoma State University. Appreciation is expressed to the National Science Foundation for the research assistantship and Oklahoma State University for the institutional support received during the 1962-64 school years.

The author is especially indebted to his family in Illinois for their undying faith and inspiration.

iii

TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION	1
II. DERIVATION OF VIRIAL COEFFICIENTS	3
Derivation of Generalized Virial Equation of State Graphical Methods for Deriving Virial	3
Coefficients	4
Compressibility Factors	6
Multiple Linear Regression	12
riessure Residual Concept	14
III. CORRELATION CALCULATIONS	16
Tabulations Used in Calculations	16
Selection of a Regression Model Correlation and Analysis of Generalized	17
Quantities	21
IV. CALCULATION OF THERMODYNAMIC PROPERTIES	66
V. CONCLUSIONS AND RECOMMENDATIONS	72
BIBLIOGRAPHY	74
APPENDIX A-NOMENCLATURE	76
APPENDIX B-PITZER'S COMPRESSIBILITY FACTOR	
TABULATIONS	78
APPENDIX C-GENERALIZED QUANTITIES USED FOR CORRELATION	85
APPENDIX D-MATHEMATICS OF MULTIPLE LINEAR REGRESSION	121
APPENDIX E-DERIVATION OF FREE ENERGY EQUATION	124
APPENDIX F-CONVERSION OF REDLICH-KWONG EQUATION OF STATE INTO GENERALIZED TERMS	126
APPENDIX G-DERIVATION OF GENERALIZED FUGACITY COEFFICIENT EQUATION	128

Chapter

m			
$\mathbf{\nu}$	9	œ	Ω
	а	<u>~</u>	c

APPENDIX	H-DERIVATION	OF	GENERALIZED	ENTHALPY	
EQUATI	[ON				131

LIST OF TABLES

Table		Page
B-I.	Simple Fluid Compressibility Factor, $Z^{(o)}$	79
B-II.	Deviation from Simple Fluid Behavior, $Z^{(1)}$	82
C-I.	Generalized Quantities $(Z-1)/\rho_r$ and ρ_r at $\omega = 0.0$	86
C-II.	Generalized Quantities $(Z-1)/\rho_r$ and ρ_r at $\omega = 0.1$	93
C-III.	Generalized Quantities $(Z-1)/\rho$ and ρ at $\omega = 0.2$	100
C-IV.	Generalized Quantities $(Z-1)/\rho$ and ρ at $\omega = 0.3$	107
c-v.	Generalized Quantities $(Z-1)/\rho_r$ and ρ_r at $\omega = 0.4$	114

LIST OF FIGURES

Figure		Page
1.	Typical P-V Diagram for a Single Component System	7
2.	Graphical Representation of van der Waals Equation	8
3.	Compressibility Factor Representation Below the Critical Isotherm	10
4.	Representation of the Generalized Quantity (Z-1)/P Below the Critical Isotherm	11
5.	Comparison of Regression Models at $T_r = 1.00$ and $\omega = 0.0$	19
6.	Comparison of Regression Models at $T_r = 1.00$ and $\omega = 0.4$	20
7.	Regression of Pitzer's Values at $\omega = 0.0$	23
8.	Regression of Pitzer's Values at $\omega = 0.0$	24
9.	Second Virial Coefficient at $\omega = 0.0$	26
10.	Second Virial Coefficient at 🛏 = 0.1	27
11.	Second Virial Coefficient at $\boldsymbol{\omega}$ = 0.2	28
12.	Second Virial Coefficient at $\boldsymbol{\omega}$ = 0.3	29
13.	Second Virial Coefficient at $\omega = 0.4$	30
14.	Third Virial Coefficient at $\omega = 0.0$	31
15.	Third Virial Coefficient at $\boldsymbol{\omega}$ = 0.1	32
16.	Third Virial Coefficient at $\omega = 0.2$	33
17.	Third Virial Coefficient at $\omega = 0.3$	34
18.	Third Virial Coefficient at $\boldsymbol{\omega}$ = 0.4	35

		0
19.	Fourth Virial Coefficient at $\omega = 0.0$	36
20.	Fourth Virial Coefficient at $\omega = 0.1$	37
21.	Fourth Virial Coefficient at $\omega = 0.2$	38
22.	Fourth Virial Coefficient at $\omega = 0.3$	39
23.	Fourth Virial Coefficient at $\boldsymbol{\omega}$ = 0.4	40
24.	Fifth Virial Coefficient at $\omega = 0.0$	41
25.	Fifth Virial Coefficient at $\omega = 0.1$	42
26.	Fifth Virial Coefficient at ω = 0.2	43
27.	Fifth Virial Coefficient at $\omega = 0.3$	44
28.	Fifth Virial Coefficient at $\omega = 0.4$	45
29.	Sixth Virial Coefficient at $\omega = 0.0$	46
30.	Sixth Virial Coefficient at $\omega = 0.1$	47
31.	Sixth Virial Coefficient at $\omega = 0.2$	48
32.	Sixth Virial Coefficient at $\omega = 0.3$	49
33.	Sixth Virial Coefficient at ω = 0.4	50
34.	Effect of Acentric Factor on Second Virial Coefficient	52
35.	Effect of Acentric Factor on Third Virial Coefficient	53
36.	Effect of Acentric Factor on Fourth Virial Coefficient	54
37.	Effect of Acentric Factor on Fifth Virial Coefficient	55
38.	Effect of Acentric Factor on Sixth Virial Coefficient	56
39.	Comparison of Correlated b and Pitzer's b at ω = 0.0	58
40.	Comparison of Correlated b and Pitzer's b at ω = 0.4	59

Page

•

Figure

41. Comparison of Correlated b and Observed b 60 at ω = 0.0..... Comparison of Correlated b and Observed b 42. 61 at $\omega = 0.4....$ Comparison of Correlated c and Observed c 43. 62 at $\omega = 0.0....$ Comparison of Correlated d and Observed d 44. at $\omega = 0.0....$ 63 45. Comparison of Correlated e and Observed e at $\omega = 0.0....$ 64 46. Comparison of Correlated f and Observed f at $\omega = 0.0....$ 65 47. Comparison of Calculated Compressibility Factors and Pitzer's Values at $T_r = 1.00$ and $\omega = 0.0.\dots$ 67 Comparison of Calculated Fugacity Coefficients 48. and Pitzer's Values at $T_r = 1.00$ and $\omega = 0.0....$ 68 49. Comparison of Calculated Enthalpies and Pitzer's Values at $T_r = 1.00$ and $\omega = 0.0....$ 69

Page

CHAPTER I

INTRODUCTION

The engineering fields have long utilized equations of state for predicting fluid behavior and calculating thermodynamic properties for design purposes. A reliable equation of state will eliminate costly and expensive laboratory investigations that would normally be required to obtain the necessary data. The desirable characteristics of an equation of state include simplicity, accuracy and a wide range of application.

One of the earliest equations of state was that of van der Waals, a two-constant equation which attempted to account for the action of intermolecular forces (21). Although the van der Waals equation of state has served many useful purposes, results obtained with it, such as those shown by Opfell, Pings and Sage (16), indicate that it is only an approximation to actual gas behavior. Since the work of van der Waals, over a hundred equations of state have been developed which are applicable for various systems and ranges of operating conditions (5). These equations of state represent some degree of compromise between accuracy and complexity and are based upon an empirical correlation with experimental results. The Beattie-Bridgeman equation of state (1) is a five-constant equation that has been widely used. The reduced form of this equation is valid up to about the critical density (24). More

recent developments include the Benedict-Webb-Rubin (2), the Redlich-Kwong (20) and the Martin-Hou (13) equations of state. Edmister (7) reviews these and many other equations of state and discusses their limitations.

In some instances, an equation of state can be expressed as a power series expansion, referred to as a virial equation of state. This form of equation arose from the study of the mechanical behavior of systems of particles by Claussius (14). The virial equation in terms of pressure is sometimes called the Berlin form while the density (reciprocal volume) series expansion is referred to as the Leiden form. Virial coefficients have been postulated to be functions of temperature only (10).

In this work, an attempt was made to derive a generalized virial equation of state in terms of reduced parameters. Pitzer's generalized compressibility factors were selected for study as these values include a third correlating parameter, the acentric factor, to characterize PVT values (12, 17, 18, 19). Objectives were twofold, first to derive generalzied virial coefficients and their correlations, and secondly, to investigate different methods of deriving virial coefficients. Multiple linear regression (22) was used to derive these generalized correlations for the second through the sixth virial coefficients. Generalized values of compressibility factor, fugacity coefficient, and enthalpy were calculated with the virial equation of state and compared with the generalized tabulations of Pitzer (12, 18).

CHAPTER II

DERIVATION OF VIRIAL COEFFICIENTS

Before discussing the correlation of Pitzer's generalized tabulations, previous attempts to derive virial coefficients are reviewed. Included are the alternate procedures considered in this work and the methods followed by other workers in the field. The derivation of a generalized virial equation of state is also given.

Derivation of Generalized Virial Equation of State

The Leiden form of the virial equation of state is given as follows:

$$Z = 1 + \frac{B}{V} + \frac{C}{v^2} + \frac{D}{v^3} + \dots$$
(1)

The compressibility factor Z can be expressed as a function of the ideal reduced density ρ_r , defined as ρ/ρ_{ci} where ρ_{ci} is the pseudo-ideal critical density. See Appendix A for nomenclature. The conversion of equation (1) into generalized terms is described below.

The volume (density) term in equation (1) is transformed into a generalized term by the definitions of the compressibility factor, reduced temperature, and reduced pressure:

$$\frac{1}{\mathbf{V}} = \frac{\mathbf{P}}{\mathbf{Z}\mathbf{R}\mathbf{T}} = \left(\frac{\mathbf{P}_{\mathbf{c}}}{\mathbf{R}\mathbf{T}_{\mathbf{c}}}\right) \left(\frac{\mathbf{P}_{\mathbf{r}}}{\mathbf{Z}\mathbf{T}_{\mathbf{r}}}\right)$$
(2)

Substituting equation (2) into equation (1):

$$Z = 1 + \left(\frac{BP_{c}}{RT_{c}}\right) \left(\frac{P_{r}}{ZT_{r}}\right) + \left(\frac{CP_{c}^{2}}{R^{2}T_{c}^{2}}\right) \left(\frac{P_{r}}{ZT_{r}}\right)^{2} + \left(\frac{DP_{c}^{3}}{R^{3}T_{c}^{3}}\right) \left(\frac{P_{r}}{ZT_{r}}\right)^{3} + \dots \quad (3)$$

The generalized term $\begin{pmatrix} r \\ \overline{ZT}_r \end{pmatrix}$ is the ideal reduced density ρ_r . The coefficients in equation (3) are generalized virial coefficients, which, for convenience, are designated as follows:

$$b = \frac{BP_c}{RT_c}$$
(4)

$$c = \frac{\frac{CP_c^2}{R^2 T_c^2}}{R^2 T_c^2}$$
(5)

$$d = \frac{DP_c^3}{R^3 T_c^3}$$
(6)

Substituting equations (4), (5), and (6) into equation (3) and ρ_r for the quantity $\left(\frac{P_r}{ZT_r}\right)$ yields the generalized virial equation of state:

$$Z = 1 + b\rho_{r} + c\rho_{r}^{2} + d\rho_{r}^{3} + \dots$$
 (7)

Graphical Methods for Deriving Virial Coefficients

A common technique for deriving virial coefficients is to rearrange the virial equation of state, plot the data according to the rearranged form of the virial equation, and obtain the virial coefficients as slopes or intercepts at infinite attenuation (zero pressure).

If equation (7) is rearranged as follows:

$$Z-1 = b\rho_{r} + c\rho_{r}^{2} + d\rho_{r}^{3} + \dots$$
 (8)

the limit of this equation at zero density should yield the second virial coefficient b as a slope.

Stuckey (23) has utilized the following rearrangement of equation (7):

$$Z - 1 - b\rho_{r} = c\rho_{r}^{2} + d\rho_{r}^{3} + \dots$$
(9)

to derive values for the generalized third virial coefficient c. Pitzer's generalized compressibility factors were used from both the vapor phase and the two-phase region below the critical isotherm $T_r = 1.00$ (12, 18). The quantity on the left-hand side of equation (9) was calculated using Pitzer's correlation to calculate the second virial coefficient b as a function of the reduced temperature T_r and the acentric factor ω (12, 19). This quantity was plotted against ρ_r^2 , and values of the third virial coefficient c were obtained as slopes at zero density. The values for the third virial coefficient were then correlated as a linear function of the acentric factor and as a polynomial function of reduced temperature according to a cubic equation in inverse reduced temperature. The derived correlation yields values of c which agree well with third virial coefficients derived from other PVT data.

Another rearrangement of equation (7) is shown as follows:

$$\frac{Z - 1}{\rho_{r}} = b + c\rho_{r} + d\rho_{r}^{2} + \dots$$
(10)

The limit of equation (10) yields the second virial coefficient b as an intercept as ρ_r approaches zero. Douslin has used this approach to derive virial coefficients for methane and tetrafluoromethane (6).

Virial Coefficients from Two-Phase Compressibility Factors

To expand the temperature range for which virial coefficients could be obtained, the derivation of virial coefficients below the critical isotherm $T_r = 1.00$ was investigated. The problem involved is that PVT data below the critical isotherm can not be represented by a continuous function. A line of constant temperature on a P-V plot is discontinuous as it passes from the liquid phase into the two-phase region and from this phase into the vapor phase. A typical P-V diagram for a single component system is shown in Figure 1. The discontinuities in the isotherm are readily apparent.

An approach which yields a continuous function across the two-phase region can be illustrated by use of van der Waals equation of state. A graphical representation of van der Waals equation is shown in Figure 2. van der Waals equation does not describe actual behavior in the two-phase region, but predicts a hypothetical or metastable region. However, the change in free energy across the two-phase region is zero in either case as indicated by the equality of the integral of the quantity VdP along either path from the saturated liquid to the saturated vapor. This zero change in free energy across the two-phase region forms the basis for deriving virial coefficients below the critical isotherm.

Pitzer's generalized values for saturated liquid and saturated vapor compressibility factors below the critical isotherm were used in this phase of the study (12, 18). Pitzer has tabulated compressibility factors for 25 reduced isotherms

Volume

Figure 1

Typical P-V Diagram For a Single Component System

•.

Figure 2

Graphical Representation of van der Waals Equation

.

between 0.56 and 0.99.

In addition, Pitzer has also tabulated values of compressibility factor in the pure vapor and pure liquid phases for reduced temperatures of 0.80, 0.85, 0.90, and 0.95 (12, 18). However, only the saturated liquid and saturated vapor compressibility factors are available for the remaining isotherms below unity reduced temperature.

Plots of the compressibility factor Z and the quantity $\frac{Z-1}{\rho_r}$ as functions of ρ_r at a reduced temperature below unity are illustrated in Figures 3 and 4, respectively. The curve across the two-phase region in Figure 3 was obtained by weighting the saturated liquid and saturated vapor compressibility factors. The compressibility factors from this two-phase curve were then used to determine the isotherm in the two-phase region in Figure 4.

In terms of the dimensions used in Figure 1, the change in free energy can be expressed in differential form as:

$$dF = VdP \tag{11}$$

Also, the change in free energy across the two-phase region for any isotherm, expressed as $\int_{BP}^{DP} VdP$, is zero. Therefore, BP conversion of equation (11) into the generalized terms used in Figure 4 and integration across the two-phase region yields the following expression:

$$\frac{1}{RT} \int_{1}^{2} V dP = \int_{1}^{2} \left(\frac{Z - 1}{\rho_{r}} \right) d\rho_{r} + \ln \left(\frac{\rho_{r}}{\rho_{r}} \right) + (Z_{2} - Z_{1}) = 0 \quad (12)$$

The derivation of equation (12) is shown in Appendix E. The pos-

 $P_{\mathbf{r}}$ = reduced density

Figure 3

Compressibility Factor Representation Below the Critical Isotherm

$P_{\mathbf{r}}$ = reduced density

Representation of the Generalized Quantity Below the Critical Isotherm

11

 $\frac{Z-1}{\rho}$ r

ulate was made that a smooth function can be drawn across the two-phase region on Figure 4 if the $\int_{1}^{2} \left(\frac{Z-1}{\rho_{r}}\right) d\rho_{r}$ is held constant. Using this technique, a smooth function between $\frac{Z-1}{\rho_{r}}$ and ρ_{r} can be obtained, and the second virial coefficient b can be derived as an intercept at zero density.

Although this approach appears theoretically sound, practical application was unsuccessful. For those isotherms for which only the saturated liquid and saturated vapor compressibility factors were available, several curves satisfying equation (12) could be constructed, thereby rendering the derivation of the second virial coefficient b somewhat arbitrary. In addition, a study of the saturated phase compressibility factors led to the belief that the saturated liquid values were somewhat questionable. This approach for deriving virial coefficients was abandoned.

Multiple Linear Regression

Multiple linear regression or least-mean-square regression has been used widely to represent data according to a variety of equation models and is the technique used in this work. A discussion of the mathematics involved in multiple linear regression is given in Appendix D.

Edmister previously proposed a method for deriving virial coefficient using multiple linear regression (8). Basically, the technique involved a surface-fit of Pitzer's generalized tabulations of compressibility factors. The equations involved in the surfacefit are described below. The compressibility factors were to be fitted to the following equation:

$$Z - 1 - b\rho_{r} = c\rho_{r}^{2} + d\rho_{r}^{3} + e\rho_{r}^{4} + f\rho_{r}^{5} + g\rho_{r}^{6}$$
(13)

Equation (13) is identical to equation (9) with the exception of the additional terms in the power series. The size of equation (13) was arbitrarily established. Pitzer's second virial coefficient correlation was to be used to calculate b as discussed previously. The generated virial coefficients would then be correlated as linear functions of the acentric factor. The resulting coefficients would in turn be correlated as a polynominal function of reduced temperature according to a cubic equation in inverse reduced temperature. The size of the polynomial in reduced temperature was arbitrarily established. The entire surface-fit would generate a total of forty coefficients describing correlations for the third through the seventh virial coefficients. This approach could not be accomplished due to limitations on existing computer facilities.

Multiple linear regression was used in this work to derive virial coefficients using equation (10) for the regression model. Other regression models were tested, and equation (10) was selected based on the accuracy with which the derived virial coefficients could reproduce compressibility factors when used in the virial equation of state. The derived virial coefficients were then cross-correlated with reduced temperature and the acentric factor. Model selection, correlation details and analysis of results are discussed later.

Pressure Residual Concept

Edmister is currently developing a pressure residual concept aimed at deriving virial coefficients (9). This approach requires an equation of state. The equation selection is the Redlich-Kwong equation of state, a two-constant equation based only on the critical temperature and critical pressure. Basically, the quantity defined as a pressure residual is a correction to the pressure as calculated via the Redlich-Kwong equation to account for the effect of the acentric factor.

The Redlich-Kwong equation of state is normally written as a pressure-explicit equation as shown below:

$$P = \frac{RT}{V-b} - \frac{a}{T^{0.5}V(V+b)}$$
(14)

The constants a and b are defined as follows:

$$a = 0.4278 \quad \frac{R^2 T_c^{2.5}}{P_c} \tag{15}$$

$$b = 0.0867 \frac{RT_c}{P_c}$$
 (16)

Conversion of equation (14) into generalized terms with subsequent use of equations (15) and (16) yields the following equation:

$$P_{r} = \left(\frac{T_{r}}{V_{ri} - 0.0867}\right) - \left(\frac{0.4278}{T_{r} 0.5} V_{riri}(V_{riri} + 0.0867)\right)$$
(17)

The derivation of equation (17) is given in Appendix F. The term V_{ri} is the ideal reduced volume and is equal to the inverse of ρ_r . The pressure residual is calculated as follows:

$$R_{p} = (P_{r})_{RK} - (P_{r})_{Pitzer}$$
(18)

where $(P_r)_{RK}$ is the reduced pressure calculated via equation (17) and $(P_r)_{Pitzer}$ is the corresponding value of reduced pressure in Pitzer's compressibility factor tabulations for which $(P_r)_{RK}$ was calculated. For a given reduced pressure and reduced temperature in Pitzer's tabulations, the ideal reduced volume V_r is calculated, $(P_r)_{RK}$ is calculated and the pressure residual is calculated via equation (18).

The pressure residual term was calculated for all reduced temperatures in Pitzer's tabulations in the vapor phase, each tabulated reduced pressure for which deviation compressibility factor values are tabulated and values for the acentric factor of 0.0, 0.1, 0.2, 0.3 and 0.4. This phase of the pressure residual approach has been completed. Efforts are currently being made to express the pressure residual in virial form and thereby derive virial coefficients. An examination of one isotherm indicates this pressure residual can not be correlated with density and reduced temperature in a convenient manner.

CHAPTER III

CORRELATION CALCULATIONS

Tabulations Used in Calculations

Pitzer developed a tabulation of generalized compressibility factors which includes a third correlating parameter, the acentric factor $\boldsymbol{\omega}$, in addition to the reduced temperature T_r and reduced pressure P_r to characterize PVT values (12, 17, 18, 19). The acentric factor is defined in terms of the reduced vapor pressure at $T_r = 0.7$ as shown in equation (19):

$$\omega = - (\log P_r^{\bullet} + 1.00)_{T_r} = 0.7$$
(19)

The acentric factor is used as a measure of the deviation of a coumpound from simple fluid behavior. Pitzer developed the generalized compressibility factors using data for sixteen compounds: argon, krypton, xenon, methane, nitrogen, hydrogen sulfide, ethane, propane, neopentane, n-butane, benzene, carbon dioxide, n-pentane, n-heptane and two polar compounds, water and ammonia. These compounds cover an acentric factor range of -0.02 to 0.352. Pitzer then expressed the compressibility factor as the sum of two terms, a term for simple fluid behavior and a deviation term. This correlation is a linear function of ω as shown below:

$$Z = Z^{(o)} + \boldsymbol{\omega} Z^{(\prime)}$$
(20)

Pitzer's tabulations cover a reduced pressure range of 0.2-9.0

and a reduced temperature range of 0.80-4.00. These values include 18 isotherms between the reduced temperature limits of 1.00 and 4.00. Values of acentric factor used for correlation are 0.0, 0.1, 0.2, 0.3, and 0.4 and were selected to cover the range over which the compressibility factor tabulations were developed. Pitzer's values of $Z^{(0)}$ and $Z^{(')}$ are tabulated in Appendix B.

Selection of a Regression Model

Equations (8) and (10) were tested for their applicability for deriving virial coefficients. In addition, the following equation was also investigated:

 $(\ln f/P + \ln Z) = 2b\rho_r + 3/2c\rho_r^2 + 4/3d\rho_r^3 + ...$ (21) Pitzer developed a tabulation of generalized fugacity coefficients which were used in generating the necessary values for testing the above model (12). The fugacity coefficients were developed as functions of the acentric factor and are tabulated as a simple fluid term and a deviation term. The derivation of equation (21) is given in Appendix C.

Using multiple linear regression, coefficients were generated for each model at a reduced temperature of 1.00 and acentric factors of 0.0 and 0.4. The reduced temperature of 1.00 was selected due to the shape of the compressibility factor curve at this temperature. This isotherm shows a greater inflection near the critical pressure as compared to the higher isotherms. This inflection becomes less pronounced with increasing reduced temperature. If a regression model can generate coefficients for the critical isotherm which, when substituted into the virial equation of state, can predict compressibility factors accurately, then the model should be acceptable for the higher isotherms. The acentric factors of 0.0 and 0.4 were selected as these values are the limits of the acentric factor range being used for correlation. The standard error of estimate was used to determine the order of the polynomial required to represent the generalized quantities accurately. A discussion of the standard error of estimate is included with the discussion on multiple linear regression in Appendix D. The computer program used for multiple linear regression was developed by Bush and Short (3).

An analysis of the polynomial size indicated a fourthorder polynomial for equation (10) and a fifth-order polynomial for equations (8) and (21) were the best equations based on the standard error of estimate. These specified equations yield the second through the sixth virial coefficients. The generated coefficients were substituted into the virial equation of state and compressibility factors calculated. These results are compared with Pitzer's values at acentric factors of 0.0 and 0.4 in Figure 5 and 6, respectively. Both compressibility factor curves are reproduced with a high degree of accuracy by the coefficients of all three models except at the critical point. The model selection appears quite arbitrary and could be based only upon the critical point, which indicated equation (10) to be the best model.

Before making a final selection among the models, a modified "slope-intercept" technqiue was tested. The values generated for

Comparison of Regression Models at $T_r = 0.0$ and $\omega = 0.0$

the second virial coefficient b from equation (10) were used to test the following model:

$$\frac{Z - 1 - b\rho_{\mathbf{r}}}{\frac{\rho_{\mathbf{r}}^2}{\rho_{\mathbf{r}}}} = \mathbf{c} + d\rho_{\mathbf{r}} + \dots$$
(22)

The generalized quantities for equation (22) were regressed at the reduced isotherm 1.00 and acentric factors of 0.0 and 0.4. The coefficients generated with this model, the third through the sixth virial coefficients, together with the values for b from equation (10) were used in the virial equation of state to calculate compressibility factors. These results are also shown in Figures 5 and 6. Again the compressibility factor curves were reproduced accurately except at the critical point. However, based on the results at the critical point, equation (10) remains the best model. This model was chosen to derive virial coefficients.

Correlation and Analysis of Generalized Quantities

Pitzer's compressibility factor values were regressed over the reduced temperature range 1.00-4.00 and the acentric factor range 0.0-0.4 using equation (10) truncated as a fourth-order polynomial as shown below:

$$\frac{Z-1}{\rho_{\mathbf{r}}} = \mathbf{b} + \mathbf{c}\rho_{\mathbf{r}} + d\rho_{\mathbf{r}}^2 + \mathbf{e}\rho_{\mathbf{r}}^3 + \mathbf{f}\rho_{\mathbf{r}}^4$$
(23)

A tabulation of the generalized quantity $(Z-1)/\rho_r$ for each value of reduced pressure, reduced temperature and acentric factor used in the correlation is shown in Appendix C.

The generalized quantity $(Z-1)/\rho_r$ was recalculated for each

isotherm and each value of the acentric factor using the virial coefficients derived for each specific isotherm. A comparison of the regression curve and the generalized values used in regression is shown for a few selected isotherms at an acentric factor of 0.0 in Figures 7 and 8. These figures show that the regression curves reproduce the generalized values used in regression with a high degree of accuracy. Even at the lower reduced temperatures where a large gap exists between the generalized values around the critical pressure $P_r = 1.00$, a good regression curve was obtained.

The next step was to correlate the virial coefficients with temperature. A polynomial function in terms of inverse reduced temperature was selected as a regression model. Again the standard error of estimate was used to determine the size of the polynomial for each virial coefficient. This testing of the polynomial size indicated a fourth-order polynomial for the second and third virial coefficients and a cubic equation for the fourth, fifth and sixth virial coefficients were the best regression models. As 18 isotherms were regressed according to equation (23) for each value of the acentric factor, 18 observed values for each virial coefficient were available for correlation with temperature for each acentric factor. The virial coefficients were regressed with temperature according to the selected polynomial functions. This step involved a total of 25 regressions to encompass the correlation of five virial coefficients at the five values of acentric factor. The virial coefficients were recalculated using the coefficients derived from these regres-

)

Regression of Pitzer's Values at $\omega = 0.0$

Figure 8

Regression of Pitzer's Values at $\omega = 0.0$

sions. A comparison of the regression curve and the observed virial coefficients is shown for the second virial coefficient b at acentric factors of 0.0, 0.1, 0.2, 0.3, and 0.4 in Figures 9 to 13, the third virial coefficient c in Figures 14 to 18, the fourth virial coefficient d in Figures 19 to 23, the fifth virial coefficient e in Figures 24 to 28, and the sixth virial coefficient f in Figures 29 to 33. Figures 9 to 13 indicate a good correlation of the second virial coefficient b with temperature over the entire acentric factor range. In contrast, Figures 14 to 18 show that the temperature correlations for the third virial coefficient c do not reproduce the observed values of c used in regression at any value of the acentric factor. This poor correlation of c with temperature can not be attributed to the regression, but to the scatter of the observed values of c with temperature, even though these observed values were regression coefficients of equation (23) which could reproduce accurately the generalized quantities used in their derivation. The figures describing the temperature correlations of d, e, and f indicate a fair correlation of these coefficients only at low values of acentric factor and up to a reduced temperature of 2.00. At higher values of the acentric factor and above a reduced temperature of 2.00, the correlations again fail to reproduce the observed values for the virial coefficients due to the scatter of these values. However, the observed values for d, e, and f, as with those observed values for c, were successfully used to recalculate the generalized quantity $(Z-1)/\rho_{r}$ used in their derivation.

Figure 9

Second Virial Coefficient at $\omega = 0.0$

Figure 10

Second Virial Coefficient at $\omega = 0.1$

Figure 11

Second Virial Coefficient at $\omega = 0.2$

Figure 12

Second Virial Coefficient at ω = 0.3

Second Virial Coefficient at $\omega = 0.4$

Figure 14

Third Virial Coefficient at $\omega = 0.0$

Third Virial Coefficient at $\omega = 0.1$

Figure 16

Third Virial Coefficient at $\omega = 0.2$

)

Third Virial Coefficient at ω = 0.3

Third Virial Coefficient at $\omega = 0.4$

Figure 19

Fourth Virial Coefficient at $\omega = 0.0$

Fourth Virial Coefficient at $\omega = 0.1$

Figure 21

Fourth Virial Coefficient at $\omega = 0.2$

Figure 22

Fourth Virial Coefficient at $\omega = 0.3$

Figure 23

Fourth Virial Coefficient at $\omega = 0.4$

Fifth Virial Coefficient at $\omega = 0.0$

Fifth Virial Coefficient at $\omega = 0.1$

Fifth Virial Coefficient at $\omega = 0.2$

)

Figure 27

Fifth Virial Coefficient at $\omega = 0.3$

Figure 28

Fifth Virial Coefficient at $\omega = 0.4$

Figure 29

Sixth Virial Coefficient at $\omega = 0.0$

Figure 30

Sixth Virial Coefficient at $\omega = 0.1$

Figure 31

Sixth Virial Coefficient at $\omega = 0.2$

Figure 32

Sixth Virial Coefficient at $\omega = 0.3$

Figure 33

Sixth Virial Coefficient at $\omega = 0.4$

The final step in the derivation of the virial coefficient correlations was to correlate the temperature coefficients of each virial coefficient as a linear function of the acentric factor. The observed values for the virial coefficients were plotted against the acentric factor for a few selected isotherms in Figures 34 to 38 to evaluate the applicability of a linear function in $\boldsymbol{\omega}$. These figures indicate that a linear function in $\boldsymbol{\omega}$ is a satisfactory model. This step included a total of 17 regressions for the correlation of 4 temperature coefficients each for the second and third virial coefficients and 3 temperature coefficients each for the fourth, fifth and sixth virial coefficients. The regression of the temperature coefficients completed the derivation of the virial coefficient correlations. The final equations are shown below:

$$b = (0.0059 + 1.3626\omega) + (0.7985 + 9.2397\omega)T_{r}^{-1} + (-3.350 + 24.7426\omega)T_{r}^{-2} + (3.7590-27.6009\omega)T_{r}^{-3} + (-1.5531 + 10.6970\omega)T_{r}^{-4}$$

$$(24)$$

$$c = (0.1775 - 6.1627\omega) + (-1.8513 + 45.6754\omega)T_{r}^{-1}$$

$$+ (5.9075 - 117.0395\omega)T_{r}^{-2} + (-7.2556 + 124.7859\omega)T_{r}^{-3}$$

$$+ (3.0321 - 47.2971\omega)T_{r}^{-4} \qquad (25)$$

$$d = (0.1851 + 2.2206\omega) + (-0.7741 - 11.6781\omega)T_{r}^{-1}$$

$$+ (1.0403 + 18.6123\omega)T_{r}^{-2} + (-0.4292 - 9.2858\omega)T_{r}^{-3} (26)$$

$$e = (-0.0934 - 1.5872\omega) + (0.3872 + 8.1722\omega)T_{r}^{-1}$$

$$+ (-0.5186 - 12.8771\omega)T_{r}^{-2} + (0.2202 + 6.3621\omega)T_{r}^{-3} (27)$$

Effect of Acentric Factor on Second Virial Coefficient

Effect of Acentric Factor on Third Virial Coefficient

Effect of Acentric Factor on Fourth Virial Coefficient

Effect of Acentric Factor on Fifth Virial Coefficient

Effect of Acentric Factor on Sixth Virial Coefficient

$$f = (0.0172 + 0.073 \omega) + (-0.0718 - 0.0198 \omega)T_{r}^{-1}$$

+
$$(0.0973 + 3.0921 \omega) T_r^{-2}$$
 + $(-0.0425 - 1.5149 \omega) T_r^{-3}$ (28)

These equations were used to recalculate virial coefficients and are also shown in Figures 9 to 33. These results agree well with the values calculated with the temperature derived coefficients, which supports the selection of the linear model for correlation with the acentric factor.

A comparison of the second virial coefficient b as calculated from the derived correlation and Pitzer's second virial coefficient is shown for acentric factors of 0.0 and 0.4 in Figures 39 and 40, respectively. These figures indicate a good agreement between the derived second virial coefficient correlation and Pitzer's correlation.

A comparison of virial coefficients calculated from the derived correlations and the observed values derived from the regression of equation (23) can be illustrated in another manner by plotting the calculated values versus the observed values as shown in Figures 41 to 46. Comparisons are shown for the second virial coefficient b at acentric factors of 0.0 and 0.4 and for the remaining virial coefficients at an acentric factor of 0.0.

Comparison of Correlated b and Pitzer's b at $\omega = 0.0$

Comparison of Correlated b and Pitzer's b at $\omega = 0.4$

)

59

 $\{ e_{ij} \}$

Comparison of Correlated b and Observed b at $\omega = 0.0$

Comparison of Correlated b and Observed b at ω = 0.4

Comparison of Correlated c and Observed c at ω = 0.0

Comparison of Correlated d and Observed d at $\omega = 0.0$

Figure 45

Comparison of Correlated e and Observed e at $\omega = 0.0$

Comparison of Correlated f and Observed f at $\omega = 0.0$

CHAPTER IV

CALCULATION OF THERMODYNAMIC PROPERTIES

The virial coefficient correlations were tested by calculating generalized compressibility factors with the generalized virial equation of state, equation (7), generalized fugacity coefficients with equation (21) and generalized enthalpies with the following equation:

$$\frac{\mathrm{H}^{\bullet}-\mathrm{H}}{\mathrm{R}\mathrm{T}_{c}} = -\mathrm{T}_{r} \left[\rho_{r} \left(\mathrm{b}-\mathrm{T}_{r} \frac{\partial \mathrm{b}}{\partial \mathrm{T}_{r}} \right) + \rho_{r}^{2} \left(\mathrm{c} - \frac{\mathrm{T}_{r}}{2} \frac{\partial \mathrm{c}}{\partial \mathrm{T}_{r}} \right) + \rho_{r}^{3} \left(\mathrm{d} - \frac{\mathrm{T}_{r}}{3} \frac{\partial \mathrm{d}}{\partial \mathrm{T}_{r}} \right) + \cdots \right]$$
(29)

The derivation of equation (29) is shown in Appendix H.

The calculation of these thermodynamic properties was made at a reduced temperature of 1.00 and an acentric factor of 0.0. In addition to the generalized compressibility factor and fugacity coefficient tabulations, Pitzer developed a tabulation of generalized enthalpies (12). These enthalpy values were also developed as functions of the acentric factor and are tabulated as a simple fluid term and a deviation term. The compressibility factors, fugacity coefficients, and enthalpies calculated with the derived virial coefficient correlations are compared with Pitzer's values in Figures 47, 48, and 49, respectively.

Figure 47 indicates the virial equation of state is valid at low pressures, but yields compressibility factors which differ

Comparison of Calculated Compressibility Factors and Pitzer's Values at $T_r = 1.00$ and $\omega = 0.0$

Comparison of Calculated Fugacity Coefficients and Pitzer's Values at $T_r = 1.00$ and $\omega = 0.0$

68

.

greatly from Pitzer's values at the critical point and higher pressures. This difference increases with pressure, with the calculated compressibility factor 47% in error at a reduced pressure of 9.0.

Figure 48 also indicates the virial coefficient correlations can be used to calculate fugacity coefficients at low pressures. However, fugacity coefficients calculated at pressures above the critical pressure differ greatly from Pitzer's values. The deviations from Pitzer's values follow the trends in the compressiblity factor results. This result is not surprising since the compressibility factor is used in the calculation of fugacity coefficients.

Generalized enthalpies calculated with equation (29) require a good cross-correlation of virial coefficients with temperature as first temperature derivatives of virial coefficients are used in this calculation. Calculated enthalpies agree with Pitzer's values up to the critical point as shown in Figure 49. However, Pitzer's values can not be reproduced above the critical pressure. These results point up the poor temperature dependency of the third through the sixth generalized virial coefficients.

At low pressures, the virial equation of state can be truncated after the term containing the second virial coefficient b as higher ordered terms tend to zero. As shown previously in Figures 9 to 13, a good correlation was derived for the second virial coefficient. This satisfactory correlation for b substantiates the accurate calculation of thermodynamic properties at low pressures. At the higher pressures, the remaining virial

70

coefficients have a significant effect on the calculation of thermodynamic properties, and, as seen previously, the temperature dependency of the third through the sixth virial coefficients could not be represented satisfactorily with a polynomial function.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Using multiple linear regression of the generalized quantity $(Z-1)/\rho_r$ as a function of ρ_r , the second through the sixth generalized virial coefficients can be derived. The values of the virial coefficients for each individual isotherm can predict accurately the generalized quantity $(Z-1)/\rho_r$ used in their derivation. However, only the generalized second virial coefficient can be correlated satisfactorily with reduced temperature and the acentric factor. Even though the remaining virial coefficient in their derivation, they are not continuous functions of temperature and can not be represented satisfactorily as a polynomial function of reduced temperature.

In addition, the derived virial coefficient correlations can not be used to calculate thermodynamic properties except in regions of low pressure. But in these areas, the second virial coefficient alone is sufficient to predict PVT behavior accurately. A good cross-correlation of virial coefficients with temperature is particularly important in the calculation of enthalpy differences as first temperature derivatives of virial coefficients are used in these calculations.

Some inaccuracy is inherent in transforming specific PVT

72

data into the generalized values. Pitzer states that the data used in the development of the generalized compressibility factors were sparse above $P_r = 3.0$ and $T_r = 2.00$ (18). However, any inaccuracy in the generalized values was not reflected in the correlation as the observed virial coefficients derived from the original regressions were satisfactory as stated above.

The possibility exists that virial coefficients can not be utilized in practical engineering problems and must be restricted to theoretical considerations. The unsatisfactory results obtained with the generalized virial equation of state are in line with the concepts of other workers in the field. Obert and Hirschfelder, et al., state that the virial equation of state is restricted to gases at low to moderate densities (11, 15). Butcher and Dadson indicate that coefficients obtained by regression of PVT data are not necessarily identical with true virial coefficients (4).

The conclusion is made that generalized virial coefficient correlations based on Pitzer's generalized vapor phase compressibility factor tabulations can not be obtained by multiple linear regression. None of the results generated in this work indicates that a surface-fit of these tabulations would be advantageous. Future efforts should be concentrated on the "slope-intercept" or graphical method of deriving virial coefficients. Based on Stuckey's success in developing a correlation for the generalized third virial coefficient c, this correlation and Pitzer's second virial coefficient correlation should be used to investigate additional virial coefficients via the "slope-intercept" technique.

73

BIBLIOGRAPHY

- Beattie, J.A. and O. C. Bridgeman, "A New Equation of State for Fluids," Proc. Am. Acad. Arts Sci. 63, 229 (1928).
- Benedict, M., G. B. Webb, and L. C. Rubin, "An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtues. Constants for Twelve Hydrocarbons," Chem. Eng. Progr. 47, 419 (1951).
- Bush, D. E. and T. E. Short, Private communication, March, 1963.
- Butcher, E. G. and R. S. Dadson, "The Virial Coefficients of the Carbon Dioxide-Ethylene System. I. Pure Gases," Proc. Roy. Soc. 277, 448 (1964).
- 5. Dodge, B. F., <u>Chemical Engineering Thermodynamics</u>, McGraw-Hill Book Co., Inc., New York (1944), p. 178.
- 6. Douslin, D. R., "Pressure-Volume-Temperature Relations and Intermolecular Potentials for Methane and Tetrafluoromethane," <u>Progress in International Research on</u> <u>Thermodynamics and Transport Properties</u>, ASME, New York (1962), p. 153.
- Edmister, W. C., <u>Applied</u> <u>Hydrocarbon</u> <u>Thermodynamics</u>, Gulf Publishing Company, Houston, Texas (1961), p. 10.
- Edmister, W. C., "Instructions for Derivation of Generalized Virial Equation of State from Pitzer's Tabulations of Z and Z." Interoffice Memorandum of the School of Chemical Engineering, Oklahoma State University, Stillwater, (1963).
- 9. Edmister, W. C., "Difference between RK and Pitzer's Reduced Pressued." Interoffice Memorandum of the School of Chemical Engineering, Oklahoma State University, Stillwater (1964).
- 10. Hirschfelder, J. O., C. F. Curtiss and R. B. Bird, <u>Molecular</u> <u>Theory of Gases and Liquids</u>, John Wiley & Sons, Inc., <u>New York</u> (1954), p.2
- 11. Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird, <u>Molecular</u> <u>Theory of Gases and Liquids</u>, John Wiley & Sons, Inc. <u>New York</u> (1954), p. 132

- Lewis, G. N. and M. Randall, <u>Thermodynamics</u>, McGraw-Hill Book Co., Inc., New York (1961), p. 605.
- Martin, J. J. and C. Y. Hou, "Development of an Equation of State for Gases," <u>A.I.Ch.E. Journal</u> 1, 142 (1955).
- 14. Milne, E. A., "An Extension of the Theorem of the Virial," <u>Phil. Mag. Ser. 6</u> 50, 409 (1925).
- 15. Obert, E. F., <u>Concepts of Thermodynamics</u>, McGraw-Hill Book Co., Inc., New York (1960), p. 225.
- 16. Opfell, J. B., C. J. Pings, and B. H. Sage, <u>Equation of State</u> <u>for Hydrocarbons</u>, Monograph on API Research Project 37, <u>API New York (1959)</u>, p. 38.
- Pitzer, K. S., "The Volumetric and Thermodynamic Properties of Fluids. I. Theoretical Basis and Virial Coefficients," J. Am. Chem. Soc. 77, 3427 (1955).
- Pitzer, K. S., et al., "The Volumetric and Thermodynamic Properties of Fluids, II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization," J. Am. Chem. Soc. 77, 3433 (1955).
- Pitzer, K. S. and R. F. Curl, Jr., "The Volumetric and Thermodynamic Properties of Fluids. III. Empirical Equation for the Second Virial Coefficient," J. Am. Chem. Soc. 79, 2369 (1957).
- Redlich, O. and J. N. S. Kwong, "On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions," Chem. Revs. 44, 233 (1949).
- 21. Smith, J. M. and H.G. Van Ness, <u>Introduction to Chemical</u> <u>Engineering Thermodynamics</u>, <u>McGraw-Hill Book Co.</u>, Inc., <u>New York (1959)</u>, p. 90.
- 22. Steel, R. D. G. and J. H. Torrie, <u>Principles</u> and <u>Procedures</u> of <u>Statistics</u>, McGraw-Hill Book Co., Inc., New York (1960), p. 277.
- 23. Stuckey, A. N., Jr., "On the Development of an Ideal K-Value Correlation for Hydrocarbons and Associated Gases," M.S. Thesis, Oklahoma State University, Stillwater, (1963).
- Su, G.-J. and C.-H. Chang, "Generalized Beattie-Bridgeman Equation of State for Real Gases," J. Am. Chem. Soc. 68, 1080 (1946).

APPENDIX A

NOMENCLATURE

а	=	constant in Redlich-Kwong equation of state
b	=	generalized second virial coefficient; constant in Redlich- Kwong equation of state
в	=	second virial coefficient in Leiden virial equation of state
с	=	generalized third virial coefficient
С	=	third virial coefficient in Leiden virial equation of state
d	=	generalized fourth virial coefficient
D	=	fourth virial coefficient in Leiden virial equation of state
е	=	generalized fifth virial coefficient
f	=	generalized sixth virial coefficient; fugacity coefficient
g	=	generalized seventh virial coefficient
н	=	enthalpy
Р	=	pressure
R	=	ideal gas law constant; residual or difference
т	=	temperature
v	=	volume
z	×	compressibility factor
ρ	=	density
ω	=	acentric factor
		Superscripts

o = pure component value; ideal gas state value

76

- (o) = universal function of reduced temperature and pressure at = 0
- (') = universal function of reduced temperature and pressure that is dependent on the acentric factor

Subscripts

- c = critical values
- ci = critical ideal values
- P = refers to pressure residual
- r = reduced values
- RK = reduced pressures calculated via Redlich-Kwong equation of
 state
- ri = ideal reduced

APPENDIX B

PITZER'S COMPRESSIBILITY FACTOR TABULATIONS

Pitzer's compressibility factor tabulations for the 18 vapor phase isotherms covering values used in the derivation of the generalized virial coefficients are tabulated here for reference. Table B-I is a tabulation of the simple fluid compressibility factors for an acentric factor of zero. Table B-II is a tabulation of the corrections for deviation from simple fluid behavior.

TT I TT TT	
TANS	R-T

SIMPLE FLUID COMPRESSIBILITY FACTOR, Z^(o)

				Pr			
T _r	0.2	0.4	0.6	0.8	1.0	1.2	1.4
1.00	0.932	0.849	0.756	0.638	0.291	0.231	0.250
1.05	0.942	0.874	0.800	0.714	0,609	0.470	0.341
1.10	0.950	0,893	0.833	0.767	0.691	0.607	0.512
1.15	0.958	0,908	0.858	0.805	0.746	0.684	0.620
1.20	0.963	0.921	0.879	0.835	0.788	0.737	0.690
1.25	0.968	0.930	0.896	0.858	0.820	0.778	0.740
1.30	0.971	0.940	0.909	0.878	0.846	0.811	0.780
1.40	0.977	0,952	0.929	0.908	0.883	0.859	0.838
1.50	0.982	0.963	0.945	0.927	0.909	0.892	0.875
1.60	0,935	0.971	0.957	0.944	0.930	0.917	0.904
1.70	0.988	0.977	0,966	0.956	0.946	0,936	0,926
1.80	0.991	0.982	0.974	0.966	0.958	0,950	0.944
1.90	0.993	0.986	0,980	0.974	0.968	0,962	0.958
2,00	0,995	0,989	0,984	0.979	0.975	0.971	0.968
2,50	1.000	0,999	0.999	0,998	0,998	0.998	0.998
3.00	1.001	1.002	1.003	1.004	1.005	1.007	1.008
3,50	1.002	1.004	1.006	1.008	1.011	1.013	1.015
4.00	1.003	1.005	1.008	1.010	1.013	1.015	1.017

SIMPLE FLUID COMPRESSIBILITY FACTOR, Z^(o)

	1 o			Pr			-
T _r	1.0	1.8	2.0	2.2	2.4	2.6	2.8
1.00	0.278	0.304	0.329	0.356	0.381	0.407	0.433
1.05	0,320	0.332	0.350	0.372	0.393	0.417	0.441
1.10	0.442	0.403	0.402	0.405	0.420	0.440	0.462
1,15	0.562	0.514	0.484	0.477	0.478	0.435	0.498
1.20	0.640	0,598	0.568	0.553	0.545	0,544	0.548
1.25	0.702	0.664	0.636	0.618	0.606	0,599	0.597
1.30	0.749	0.718	0.691	0.671	0.657	0.649	0.644
1.40	0.817	0.795	0.777	0 .7 59	0.745	0.734	0.725
1.50	0.059	0.844	0.831	0.819	0.808	0.800	0.794
1.60	0.893	0.882	0.872	0.863	0.855	0.848	0.843
1.70	0.919	0.911	0,903	0.896	0,889	0.803	0.879
1.80	0.937	0.931	0.926	0.921	0.916	0.913	0.910
1.90	0.952	0.948	0.944	0,940	0.936	0.933	0.931
2.00	0.964	0.961	0.959	0,956	0.954	0,953	0.953
2,50	0.997	0,999	1.000	1.001	1.001	1.002	1.004
3.00	1.010	1.012	1.014	1.016	1.019	1.022	1.025
3.50	1.012	1.020	1.022	1.024	1.027	1.030	1.033
4.00	1.020	1.022	1.024	1.026	1.029	1.032	1.035

TABLE B-I (contid)

SIMPLE FLUID COMPRESSIBILITY FACTOR, Z^(o)

	-			P.r.			6
T _r	3.0	4.0	5.0	6.0	7.0	8.0	9.0
1.00	0.458	0.582	0.702	0.819	0.932	1.048	1.166
1.05	0.466	0.530	0.700	0.814	0.923	1.052	1.147
1.10	0.484	0,539	0.699	0.810	0.916	1.019	1.129
1.15	0,513	0.600	0.705	0.809	0.911	1.003	1.113
1.20	0.554	0.618	0.714	0.810	0.907	1.000	1.100
1.25	0.598	0.643	0.726	0.816	0.907	0.994	1.038
1.30	0.642	0.668	0.740	0.824	0.910	0.992	1.073
1.40	0.720	0.734	0.731	0.844	0.921	0.994	1.071
1.50	0.790	0.790	0.826	0.877	0.934	1.000	1.070
1.60	0.840	0.835	0.860	0.904	0,953	1.010	1.075
1.70	0.875	0.874	0.895	0.930	0.972	1.023	1.082
1.80	0.908	0.908	0.925	0.955	0.993	1.039	1.091
1.90	0.930	0.934	0.950	0.976	1.010	1.051	1.097
2.00	0.952	0,956	0.972	0,996	1.027	1.064	1.106
2.50	1.006	1.013	1.035	1.055	1.079	1.105	1.136
3.00	1.028	1.041	1.058	1.077	1.100	1.124	1.150
3.50	1.036	1.051	1.067	1.086	1.105	1.126	1.143
4.00	1.038	1.053	1.068	1.086	1.104	1.124	1.143

TABLE B-II

DEVIATION FROM SIMPLE FLUID BEHAVIOR, Z^(')

		*		P_r			* *
<u> </u>	0.2	0.4	0.6	0.8	1.0	1.2	1.4
1.00	-0.012	-0.016	-0.020	-0.050	-0.080	-0.090	-0.099
1.05	0.000	0.001	0.005	0.015	0.020	0.010	-0.010
1.10	0.002	0.003	0.016	0.030	0.055	0.082	0.110
1.15	0.004	0.012	0.012	0.040	0.064	0.093	0.120
1.20	0.009	0.018	0.028	0.044	0.069	0.100	0.130
1.25	0.011	0.023	0.036	0.050	0.069	0.100	0.130
1.30	0.013	0.027	0.041	0.055	0.072	0.100	0.130
1.40	0.016	0.032	0.049	0.065	0.082	0.100	0.130
1.50	0.017	0.035	0.052	0.070	0.083	0.100	0.130
1.60	0.018	0.036	0.054	0.070	0.080	0.100	0.120
1.70	0.018	0.036	0.054	0.070	0.090	0.100	0.110
1.80	0.018	0.036	0.054	0.070	0,090	0.100	0.110
1.90	0.018	0.035	0.050	0.070	0.090	0.100	0.110
2.00	0.016	0.031	0.050	0.070	0.080	0.100	0.110
2.50	0.010	0.020	0.040	0.050	0.070	0.000	0.100
3.00	0.010	0.020	0.030	0.050	0.060	0.070	0.080
3.50	0.010	0.020	0.030	0.040	0,050	0.060	0.070
4.00	0.010	0.020	0.020	0.030	0.040	0.050	0.060

DEVIATION FROM SIMPLE FLUID BEHAVIOR, Z(')

				P_{2}			
<u> </u>	16	1.8	2.0	2.2	2.4	2.6	2.3
1.00	-0.108	-0.115	-0.123	-0.130	-0.130	-0.140	-0.140
1.05	-0.040	-0.060	-0.070	-0.080	-0.090	-0.100	-0.100
1.10	0.082	0.035	0.000	-0.020	-0.030	-0.050	-0.060
1.15	0.140	0.136	0.100	0.070	0.040	0.020	0.000
1.20	0.160	0.170	0.170	0.160	0.140	0.120	0.090
1.25	0.160	0.180	0.190	0.190	0.130	0.160	0.140
1.30	0.160	0.180	0.200	0.200	0.200	0.200	0.190
1.40	0.160	0.180	0.190	0.200	0.210	0.210	0.210
1.50	0.150	0.170	0.180	0.200	0.200	0.210	0.210
1.60	0.140	0.160	0.170	0.180	0.190	0.200	0.200
1.70	0.130	0.150	0.160	0.170	0.180	0.190	0.200
1.80	0.130	0.150	0.160	0.170	0.180	0.190	0.200
1.90	0.130	0.150	0.160	0.170	0.180	0.190	0.200
2.00	0.130	0.140	0.150	0.160	0.170	0.190	0.200
2.50	0.110	0.120	0.130	0.150	0.160	0.120	0.190
3.00	0,090	0.100	0.110	0.130	0.140	.0,150	0.160
3,50	0.080	0.030	0.090	0.100	0,110	0.120	0.130
4.00	0.060	0.070	0.080	0.090	0.100	0.100	0.110

TABLE B-II (contid)

DEVIATION FROM SIMPLE FLUID BEHAVIOR, Z(')

8				Pr			
T _r	3.0	4.0	5.0	6.0	7.0	8.0	9.0
1.00	-0.150	-0.170	-0.200	-0.230	-0.260	-0.300	-0.330
1.05	-0.110	-0.140	-0.170	-0.200	-0.240	-0.280	-0.310
1.10	-0.070	-0.100	-0,130	-0.160	-0.210	-0.250	-0,200
1.15	-0.010	-0.040	-0.080	-0.120	-0.160	-0.200	-0.240
1.20	0.070	0.000	-0.040	-0.080	-0.120	-0.160	-0.190
1.25	0.120	0.050	0.000	-0.030	-0.070	-0.110	-0.130
1.30	0.180	0.100	0.040	0.000	-0.040	-0.070	-0.090
1.40	0.200	0.150	0.110	0.070	0.040	0.010	-0.010
1.50	0.210	0.200	0.170	0.140	0.110	0.090	0.070
1.60	0.210	0.220	0.210	0.190	0.170	0.150	0.140
1.70	0.210	0.240	0.250	0.260	0.250	0.240	0.220
1.80	0.210	0.260	0.290	0.310	0.320	0.320	0.300
1.90	0.210	0,260	0,300	0,350	0.380	0.400	0.400
2.00	0.210	0.260	0.300	0.350	0.400	0.430	0.450
2,50	0.200	0.250	0.300	0.350	0.400	0.450	0.500
3.00	0.170	0.230	0.280	0.340	0.380	0.450	0.500
3,50	0.140	0.190	0.240	0.200	0.330	0.380	0.420
4.00	0.120	0.160	0.200	0.230	0.270	0.310	0.350

APPENDIX C

GENERALIZED QUANTITIES USED FOR CORRELATION

Values of the generalized quantities $(Z-1)/\rho_r$ and ρ_r used for correlation are tabulated for the 18 vapor phase isotherms. These tabulations are shown in Tables C-I, C-II, C-III, C-IV, and C-V for acentric factors of 0.0, 0.1, 0.2, 0.3, and 0.4, respectively.

TABLE C-1

			Ľ	1		
	0.	2	0.	4	0.6	
T _r 1.00	$\frac{\rho_{r}}{0.2146}$	Z-1 P -•3169	ρ _r 0.4711	$\frac{\frac{Z-1}{P_r}}{3205}$	ρ _r 0.7937	$\frac{\frac{Z-1}{p}}{3074}$
1.05	0.2022	2863	0.4359	2891	0.7143	2800
1.10	0.1914	2613	0.4072	2628	0.6548	-,2550
1.15	0.1815	2314	0.3831	2402	0.6081	2335
1.20	0.1731	-,2138	0.3619	2183	0.5688	2127
1.25	0,1653	1936	0.3441	2034	0.5357	1941
1.30	0.1584	1830	0.3273	1833	0.5077	1792
1.40	0.1462	1573	0.3001	1599	0.4613	1539
1.50	0,1358	1326	0.2769	1336	0.4233	1299
1.60	0.1269	1182	0.2575	1126	0.3918	1097
1.70	0.1191	1008	0.2408	0955	0.3654	0931
1.80	0.1121	0803	0.2263	0795	0.3422	0760
1.90	0.1060	0660	0.2135	0656	0.3222	0621
2.00	0.1005	0493	0.2022	0544	0.3049	0525
2,50	0.0800	.0000	0.1602	0062	0.2402	0042
3.00	0.0666	.0150	0.1331	.0150	0.1994	.0150
3.50	0.0570	.0351	0.1138	.0351	0.1704	.0352
4.00	0.0499	.0602	0.0995	.0502	0.1483	,0538

			P	r		
	0.	88	1.	0	1.2	
T _r	ρ _r	$\frac{Z-1}{\rho}$	۰°	$\frac{Z-1}{\rho_r}$	ρ _r	$\frac{Z-1}{\rho}$
1.00	1.2539	2887	3.4364	2063	5.1948	1480
1.05	1.0671	,2680	1.5638	2500	2.4316	2180
1.10	1.0186	2808	1.3156	2349	1.7972	2187
1.15	0.8642	2257	1.1656	2179	1.5256	2071
1.20	0.7984	2067	1.0575	2005	1.3569	1938
1.25	0.7459	1904	0.9756	1345	1.2339	1799
1.30	0.7009	1741	0.9093	1694	1.1382	1661
1.40	0.6293	1462	0.8039	1446	0.9978	1413
1.50	0.5753	1269	0.7334	1241	0.8969	1204
1.60	0.5297	1057	0.6720	1042	0.8179	1015
1.70	0.4922	0894	0.6218	0868	0.7541	0849
1.80	0.4601	0739	0.5799	0724	0.7018	0712
1.90	0,4323	0601	0.5437	0589	0.6565	0579
2.00	0.4086	0514	0.5128	0488	0.6179	0469
2,50	0.3206	0062	0.4008	0050	0.4810	0042
3.00	0.2656	0151	0.3317	0151	0.3972	0176
3,50	0.2268	0353	0.2826	0389	0.3385	0384
4.00	0.1980	0505	0.2468	0527	0.2956	0508

	Bridger State Bridger State	and substanting a	تل	r		
	1.	4	1.	б	1,8	
Tr	٩ _r	$\frac{Z-1}{\rho_{r}}$	ρ _r	<u>Z-1</u>	٩ _r .	<u>Z-1</u>
1.00	5.6000	1339	5.7554	1254	5.9211	1175
1.05	3.9101	1685	4.7619	1428	5.1635	1294
1.10	2.4853	1963	3.2908	1696	4.0107	1476
1.15	1.9635	1935	2.4756	1769	3.0452	1596
1.20	1.6903	1833	2.0833	1728	2.5804	1603
1.25	1.5135	1718	1.8234	1634	2.1687	1549
1.30	1.3807	1593	1.6432	1527	1.9284	1462
1.40	1.1933	1358	1.3988	1308	1.6173	1268
1.50	1.0667	1172	1.2418	1135	1.4218	1097
1.60	0.9679	0992	1.1198	0956	1.2755	0925
1.70	0.8893	0832	1.0241	0791	1.1623	0766
1.80	0.8239	0680	0.9487	0664	1.0741	0642
1.90	0.7691	0546	0.8846	0543	0.9993	0520
2.00	0.7231	0443	0.8299	0434	0.9365	0416
2.50	0.5611	0036	0.6419	0047	0.7207	0014
3.00	0.4630	0173	0,5281	0189	0.5929	0202
3.50	0.3941	0381	0.4491	0401	0.5042	0397
4.00	0.3441	0494	0.3922	0510	0.4403	0500

			P	2			
	2.	0	2.	2	2.	4	
Tr	۴r	$\frac{Z-1}{\rho_r}$	٩r	$\frac{Z-1}{\rho_r}$	ρ _r	$\frac{Z-1}{\rho_r}$	
1.00	6.0790	1104	6.1798	1042	6.2992	0983	
1.05	5.4422	1194	5,6324;	1.115	5.8161	1044	
1.10	4.5228	1322	4.9383	1205	5.1948	1116	
1,15	3,5932	1436	4.0106	1304	4.3660	1196	
1.20	2.9343	1472	3,3153	1343	3.6697.	1240	
1.25	2.5157	1447	2.8479	-,1341	3.1683	1244	
1.30	2.2264	1388	2.5221	1304	2.8100	1221	
1.40	1.8386	1213	2.0704	1164	2,3011	1103	
1.50	1.6045	1053	1.7908	1011	1,9802	0970	
1.60	1.4335	0893	1,5933	0860	1.7544	0827	
1.70	1.3208	0745	1.4443	0720	1.5800	0699	
1.80	1.1999	0617	1.3271	0595	1.4556	0577	
1.90	1.1151	0502	1,2318	0487	1,3495	0474	
2.00	1.0428	-,0393	1.1506	0382	1.2579	0365	
2,50	0.8000	.0000	0.8791	.0011	0.9590	.0010	
3.00	0.6575	.0213	0.7218	.0222	0.7051	.0242	
3.50	0.5591	.0393	0.6138	.0391	0.6677	•0404	
4.00	0.4833	.0492	·0 . 5361	.0485	0,5831	.0497	

2	-		<u> </u>	Pr			
	2.6		2.	8	3.0		
Tr	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ r	$\frac{Z-1}{\rho}$	
1.00	6.3882	0928	6.4665	0377	6.5502	0327	
1.05	5.9331	0982	6.0469	0924	6.1312	0871	
1.10	5.3719	1042	5.5096	0976	5.6349	0916	
1.15	4.6616	1105	4.8891	1027	5.0852	-,0958	
1.20	3.9828	1145	4.2579	1062	4.5126	0988	
1.25	3.4725	1155	3.7521	1074	4.0134	1002	
1.30	3.0817	1139	3.3445	1064	3,5945	0996	
1.40	2.5302	1051	2,7586	0997	2,9762	0941	
1,50	2.1667	0923	2,3510	0876	2.5316	0830	
1.60	1.9163	0793	2.0759	0756	2.2321	0717	
1.70	1.7321	0675	1.8738	0646	2.0168	0620	
1.80	1.5821	0550	1.7094	0526	1.8355	0501	
1.90	1.4667	0457	1.5829	0436	1.6978	0412	
2.00	1.3641	0345	1.4690	-,0320	1.5756	0305	
2.50	1.0379	.0019	1.1155	.0036	1.1928	.0050	
3.00	0.8480	.0259	0.9106	.0275	0.9728	.0288	
3.50	0.7212	.0416	0.7744	.0426	0.8274	.0435	
4.00	0,6298	.0508	0.6763	•05 1 8	0.7225	• 05 26	
		k je i					

			F	$\mathbb{P}_{\mathbb{P}}$			
	4.	0	5.	0	б.	0	
T _r	, Pr	$\frac{Z-1}{\rho}$	٩ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	6.8729	0608	7.1225	0418	7.3260	0247	
1.05	6.5681	0639	6.3027	0441	7.0200	0265	
1.10	6.1733	0666	6.5028	0463	6.7340	0282	
1.15	5.7971	0690	6.1671	0473	6,4492	0296	
1.20	5.3937	0708	5.8357	0490.	6.1723	0308	
1.25	4.9767	0717	5.5096	0497	5.8824	~.0313	
1.30	4.6062	0721	5.1975	0500	5.6012	0314	
1.40	3.8926	0683	4.5729	0479	5.0779	0307	
1.50	3.3755	0622	4.0355	0431	4.5610	0270	
1.60	2,9940	0551	3.6337	0385	4.1482	0231	
1.70	2.6922	04:68	3.2862	0320	3,7951	0184	
1.80	2.4474	0376	3.0030	0250	3.4904	0129	
1.90	2.2540	0293	2.7701	0180	3,2355	0074	
2.00	2.0921	0210	2.5720	0109	3.0120	0013	
2,50	1.5717	.0115	1.9324	.0181	2.2749	.0242	
3.00	1.2808	.0320	1.5753	.0368	1.8570	.0415	
3.50	1.0874	. 0469	1.3389	.0500	1,5785	.0545	
4.00	0.9497	.0558	1.1704	.0581	1.3812	.0623	

	-		ند	Fr				
	7.0		8.	8.0)		
T _r	ρ _{r}	$\frac{Z-1}{\rho_r}$. ^ρ r	$\frac{Z-1}{P_r}$	°r.	$\frac{Z-1}{p}$		
1.00	7.5107	0091	7.6336	.0063	7.7187	.041.5		
1.05	7.2228	0107	7.3828	.0043	7.4729	.0197		
1.10	6.9472	0121	7.1371	.0027	7.2470	.0178		
1.15	6.6816	0133	6.9013	.0012	7.0315	.0161		
1.20	6.4315	0145	6.6667	.0000	6.3182	.0147		
1.25	5.1742	0151	6,4386	0009	6.6176	.0133		
1.30	5.9172	0152	6.2035	0013	6.4221	.0121		
1.40	5.4289	0146	5.7488	0010	6.0024	.0118		
1.50	4.9964	0132	5.3333	.0000	5.6075	.0125		
1.60	4.5908	0102	4.9505	.0020	5.2326	.0143		
1.70	4.2363	0066	4.6001	.0050	4.8929	.0168		
1.30	3.9163	0018	4.2776	.0091	4.5830	.0199		
1.90	3.6477	.0027	4.0062	.0127	4.3180	.0225		
2.00	3.4080	.0079	3.7594	.0170	4.0687	.0261		
2,50	2,5950	.0304	2.3959	.0363	3.1690	.0429		
3.00	2.1212	.0471	2.3725	.0523	2.6087	.0575		
3.50	1.8100	.0580	2.0299	.0621	2.2399	.0661		
4.00	1.5851	0656	1.7794	.0697	1.9685	.0726		
	5	02						

	-		P	Pr			
	0.		2 0.4			6	
^T r	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ. r	$\frac{Z-1}{\rho}$	
1.00	0.2149	-,3221	0.4720	3233	0.7958	3091	
1.05	0.2022	-,2868	0.4358	2889	0.7138	2795	
1.10	0.1913	2603	0.4068	2610	0.6536	2531	
1.15	0.1815	2292	0.3826	 23 7 3	0.6072	2319	
1.20	0.1729	-,2088	0.3612	2137	0.5670	2085	
1.25	0.1651	1872	0.3432	1972	0.5336	1882	
1.30	0.1582	1751	0.3264	1756	0.5055	1719	
1.40	0.1460	1466	0.2991	1498	0.4589	1440	
1.50	0.1355	1203	0.2759	1214	0.4210	1183	
1.60	0.1267	1042	0.2565	0990	0.3897	0965	
1.70	0.1189	0858	0.2399	0809	0,3633	7872	
1.80	0.1119	0643	0.2255	0639	0.3403	0605	
1.90	0.1058	0491	0.2123	04:94	0.3206	0468	
2.00	0.1003	0339	0.2016	0392	0.3033	0363	
2.50	0.0799	.0125	0.1598	.0063	0.2393	.0125	
3.00	0.0665	.0301	0.1328	.0301	0,1988	.0302 -	
3,50	0.0570	.0527	0.1136	.0528	0.1699	.0530	
4.00	0.0498	.0803	0.0993	.0705	0.1485	.0673	

TABLE C-II

¥

73	
10	

	380	$\mathbb{P}_{\mathcal{P}}$							
		0.8		<u> </u>	0	1.2			
	T _r	ρ r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$		
	1.00	1.2638	2904	3.5336	2029	5.4054	1439		
	1.05	1.0649	2672	1,5587	- 2496	2.4264	2180		
a.	1.10	1.0143	2790	1.3052	2325	1.7733	2170		
	1.15	0.3599	2221	1,1557	2142	1.5051	2038		
	1.20	0.7942	2022	1.0483	1956	1.3387	1890		
	1.25	0.7416	1847	0.9675	1789	1.2183	1740		
	1.30	0.6965	1673	0.9016	1628	1.1243	1592		
	1.40	0.6249	1368	0.2015	1357	0.9864	1328		
	1.50	0.5710	1156	0.7264	1132	0.8269	1105		
	1.60	0,5258	0932	0.6663	0930	0.8091	0902		
s,	1.70	0.4887	0757	0.6160	0731	0.7462	0724		
	1.80	0.4568	0591	0.5745	0574	0.6944	0576		
	1.90	0.4292	0443	0.5387	0427	0.6498	0431		
	2.00	0.4057	0345	0,5086	0334	0.6116	0311		
	2.50	0.3190	.0094	0.3980	.0126	0.4771	.0126		
	3.00	0.2643	.0341	0,3297	.0334	0.3945	. 0355		
	3.50	0.2259	. 0531	0.2812	.0569	0.3365	. 0565		
	4.00	0.1974	.0658	0.2458	.0692	0.2941	.0680		

		Pr		terre de la construction de managemente de la part	
l.	4;	1.	6	1.	8
ρ _r	$\frac{Z-1}{\rho}$	۴r	$\frac{Z-1}{\rho}$	٩ _r	$\frac{Z-1}{p}$
5.8309	1303	5.9880	1224	6.1538	1150
3,9126	1683	4.8222	1418	5.2585	1282
2.4335	1960	3,2309	1702	3.9766	1480
1.9263	1910	2.4155	1755	2.9667	1592
1.6596	1790	2.0325	1692	2,4390	-,1.578
1.4815	1.647	1.7827	1582	2.1114	1506
1.3580	1524	1.6088	1461	1.8813	1403
1.1751	1268	1.3720	1217	1.5814	-,1182
1.0511	1066	1.2204	1032	1.3937	0997
0.9552	0879	1.1025	0844	1.2528	0814
0.8789	0717	1.0098	0673	1.1434	0647
0.8144	0553	0.9357	0534	1.0571	0511
0.7604	0408	0.8726	0401	0.9838	0376
0.7150	0294	0.0188	0281	0.9231	0271
0.5556	.0144	0.6349	.0126	0.7122	.0154
0.4593	.0348	0.5234	.0363	0.5871	.0375.
0.3914	.0562	0.4456	.0584	0,5003	.0560
0.3421	.0672	0.3899	.0667	0.4373	.0663
	<u></u>	$\begin{array}{c c c c c } \hline 1.4 \\ \hline P_r & \frac{Z-1}{P_r} \\ \hline 5.8309 &1303 \\ \hline 3.9126 &1683 \\ \hline 2.4335 &1960 \\ \hline 1.9263 &1910 \\ \hline 1.6596 &1790 \\ \hline 1.4815 &1647 \\ \hline 1.3580 &1524 \\ \hline 1.1751 &1268 \\ \hline 1.0511 &1066 \\ \hline 0.9552 &0879 \\ \hline 0.3789 &0717 \\ \hline 0.8144 &0553 \\ \hline 0.7604 &0294 \\ \hline 0.5556 & .0144 \\ \hline 0.4593 & .0348 \\ \hline 0.3914 & .0562 \\ \hline 0.3421 & .0672 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

			L'r		2.4	
2.		0	2.	2		
Tr	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$
1.00	6.3151	1082	6.4140	1024	6.5217	0969
1.05	5,5532	1183	5.7561	1105	5.9524	1035
1.10	4,5228	1322	4.9628	1203	5.2322	1114
1.15	3,5205	1437	3.9526	1305	4.3298	-,1196
1.20	2.8490	1457	3.2220	1338	3,5778	1233
1.25	2.4427	1412	2.7630	1314	3.0769	1222
1.30	2.1638	1336	2.4491	1262	2.7270	1184
1.40	1.7947	1137	2.0172	1096	2.2380	1046
1.50	1.5705	0961	1.7481	0921	1.9324	0390
1.60	1.4061	0739	1.5607	0762	1.7162	0734
1.70	1.2802	0533	1.4174	0614	1.5565	0597
1.80	1.1795	0492	1.3030	0476	1.4276	0462
1.90	1.0965	0365	1.2099	0355	1.3241	0347
2,00	1.0267	0253	1.1317	0247	1.2358	0235
2.50	0.7897	.0165	0,8661	.0185	0.9440	.0180
3.00	0.6504	.0384	0.71.27	.0407	0.7744	.0426
3.50	0.5542	.0559	0.6079	.0559	0.6606	.0575
4.00	0,4845	.0660	0.5314	.0659	0.5775	.0675

GENERALIZED QUANTITIES $(Z-1)/\rho_r$ AND ρ_r AT $\omega = 0.1$

	Pr						
	2.6		2.	.8	3.0		
Tr	ρ _r	$\frac{Z-1}{P}$	۴r	$\frac{Z-1}{p}$	ρ _r	. <u>Z-1</u> p	
1.00	6.6158	0918	6.6826	0869	6.7720	0823	
1.05	6.0840	0975	6.1872	-,0920	6.2794	0368	
1.10	5.4336	1040	5.5821	0975	5.7176	0915	
1.15	4.6424	1105	4.8891	1027	5.0951	0958	
1.20	3.8969	1139	4.1891	1058	4.4563	0985	
1.25	3.3821	1138	3.6661	1061	3.9344	0 991	
1.30	2.7270	1184	2.9895	-1107	3.2486	1037	
1.40	2.4598	0996	2,6810	0947	2.8958	0898	
1.50	2.1112	0848	2.2904	0808	2.4661	0766	
1.60	1.8721	0705	2.0278	0676	2.1777	0638	
1.70	1.6956	0573	1.8321	0551	1.9695	0528	
1.20	1.5498	0439	1.6726	0419	1.794:0	0396	
1.90	1.4374	0334	1.5496	0316	1.6603	0295	
2.00	1.3374	0209	1.4388	0188	1.5416	0175	
2,50	1.0196	.0196	1.0948	.0210	1.1696	.0222	
3.00	0.8357	.0443	0.8966	.0457	0,9569	.0470	
3,50	0.7129	.0589	0.7648	.0601	0.2163	.0612	
4.00	0.6238	.0673	0.6692	•068 7	0.7143	.070 0	

.

			E	'n		
	4.0		5.	5.0		0
T _r	ρ _r	$\frac{Z-1}{\rho_n}$	· ρ _r	$\frac{Z-1}{\rho_r}$	ρ _r	$\frac{Z-1}{\rho}$
1.00	7.0796	0614	7.3314	0434	7.5377	0271
1.05	6.7306	0645	6.9720	0455	7.1968	0286
1.10	6.2804	0670	6.6260	0474	6.8697	0300
1.15	5.8360	0692	6.2379	0486	6.5463	0310
1.20	5.3937	0708	5.8605	04:94	6.2344	0313
1.25	4.9383	0713	5.5096	0497	5.9041	0317
1.30	4.5382	0710	5.1696	0495	5.6012	0314
1.40	3.2146	0658	4.5094	0461	5.0361	0296
1.50	3.2922	0577	3.9541	0397	4.4893	0243
1.60	2.9172	0490	3.5471	0335	4.0628	0190
1 . 70	2.6202	0589	3.1969	0250	3.6919	0119
1.30	2.3793	0277	2.9117	0158	3.3807	0041
1.90	2.1930	0182	2.6853	0074	3.1235	.0035
2.00	2.0367	0088	2.4950	.0003	2.9098	.0107
2,50	1.5340	.0280	1.8779	.0346	2.2018	.0409
3.00	1.2531	.0511	1.5347	.0560	1.8002	.0617
3.50	1.0681	.0655	1.3094	.0695	1.5389	.0741
4.00	0.9355	.0738	1.1489	•0 76 6	1.3526	.0806

TADLE C-II (contid)

GENERALIZED QUAITIVIES (2-1)/ $\rho_{\mathbf{r}}$ and $\rho_{\mathbf{r}}$ at $\omega = 0.1$

	22								
	7	0	8.	0	9.0				
T _r	۴ŗ	$\frac{Z-1}{\rho}$	۴r	$\frac{Z-1}{\rho_r}$	°r	$\frac{Z-1}{\rho}$ r			
1.00	7.7263	0122	7.8585	0023	7.9435	.0167			
1.05	7.4156	0136	7.5887	.0005	7.6805	.0151			
1.10	7.1102	0148	7.3166	0008	7.4313	.0136			
1.15	6.8011	0154	7.0410	0017	7.1365	.0124			
1.20	6.5177	0161	6.7751	0024	6.9380	.0117			
1.25	6.2222	0161	6.5107	0026	6.6977	.0112			
1.30	5.9433	0158	6.2476	0024	6.4762	.0107			
1.40	5.4054	0139	5.7430	0009	6.0080	.0117			
1.50	4.9383	0111	5,2858	.0017	5 .571 0	.0138			
1.60	4.5103	0067	4.8780	.0051	5.1653	.0172			
1.70	4.1300	0007	4.4946	.0105	4.7954	.0217			
1.80	3.7940	.0066	4.1498	.0171	4.4603	.0271			
1.90	3.5155	.0137	3.8593	.0236	4.1661	.0329			
2.00	3.2802	.0204	3.6134	.0296	3,9096	.0386			
2,50	2.5022	.0476	2.7826	.0539	3.0354	.0613			
3.00	2.0504	.0673	2.2812	0741	2,5000	.0800			
3.50	1 .757 5	.0785	1.9637	.0835	2.1609	.0879			
4.00	1.5473	.0847	1.7316	.0895	1.9100	.0932			
			P	- r	-				
----------------	----------------	--------------------	--------	--------------------	--------	--------------------	--	--	
	0.	2	0.	•4		0.6			
T _r	ρ _r	$\frac{Z-1}{\rho}$	°۲	$\frac{Z-1}{\rho}$	ρ r	$\frac{Z-1}{\rho}$			
1.00	0.2151	3272	0.4729	3261	0.7979	3108			
1.05	0.2022	2868	0.4358	2887	0.7134	2789			
1.10	0.1913	2593	0.4065	2593	0.6523	2511			
1.15	0.1814	2271	0.3821	2345	0.6064	2302			
1.20	0.1727	2038	0.3605	2091	0.5652	2042			
1.25	0.1649	1807	0.3424	1910	0.5314	1821			
1.30	0.1580	1671	0.3255	1678	0.5032	1645			
1.40	0.1457	1.359	0.2981	1395	0.4565	1341			
1.50	0.1353	1079	0.2749	1091	0.4137	1065			
1.60	0.1264	0902	0.2556	0253	0.3875	0831			
1.70	0.1126	0708	0.2391	0661	0.3613	0642			
1.30	0.1117	0483	0.2246	0481	0.3585	0449			
1.90	0.1056	0322	0.2120	0330	0.3190	0314			
2.00	0.1002	0180	0.2010	0239	0.3018	0199			
2,50	0.0798	.0250	0.1595	.0188	0.2383	.0294			
3.00	0.0665	.04.51	0.1325	.0453	0.1982	.0455			
3.50	0.0569	.0703	0.1134	.0706	0.1694	.0708			
4.00	0.0498	.1005	0.0991	.0908	0.1482	.0810			

TABLE CHIII

GENERALIZED QUANTITIES $(2-1)/\rho_{r}$ AND ρ_{r} AT $\omega = 0.2$

GENERALIZED QUANFITIES (2-1)/ ρ_r And ρ_r At $\omega = 0.2$

		the second second	تل	2			
	0.8		l.	1.0		1.2	
T _r	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	1.2739	2920	3.6364	1994	5.6338	1397	
1.05	1.0626	2663	1.5536	2491	2.4213	2181	
1.10	1.0101	2772	1.2950	2301	1.7499	2152	
1.15	0.8557	-,21.85	1.1460	2105	1.4852	2002	
1.20	0.7901	1977	1.0393	1907	1,3210	1840	
1.25	0.7373	1790	0.9595	1732	1.2030	1679	
1.30	0.6922	1604	0.8940	1561	1.1108	1521	
1.40	0.6204	1273	0.7942	1267	0.9751	1241	
1.50	0.5668	1041	0.7195	1020	0.8772	1003	
1.60	0,5219	0805	0.660 7	0817	0.2004	0707	
1.70	0.4851	0618	0.6102	0590	0.7384	0596	
1.80	0.4535	0441	0.5692	0422	0.6873	0436	
1.90	0.4262	0282	0,5338	0262	0.6432	0280	
2.00	0.4028	0174	0.5045	0178	0.6054	0149	
2.50	0.3175	.0252	0.3953	.3036	0.4734	.0296	
3.00	0.2630	.0532	0.3278	.0519	0.3918	.0536	
3,50	0.2250	.0711	0.2798	.0750	0.3345	.0747	
4.00	0.1969	.0813	0,2449	.0858	0.2927	.0854	

GENERALIZED QUANTITIES (Z-1)/ ρ_r AND ρ_r AT $\omega = 0.2$

	-		P					
	1.	4	1.	6	1.8			
T _r	ρ _r	$\frac{Z-1}{\rho}$ r	ρ _r	$\frac{Z-1}{\rho}$ r	ρ _r	$\frac{Z-1}{\rho}r$		
1.00	6.0817	1266	6.2402	1192	6.4057	1122		
1.05	3.9331	1681	4.8840	1409	5.3571	1269		
1.10	2.3834	1955	3.1731	1707	3.9430	1484		
1.15	1.8904	1883	2.3581	1739	2.8921	1586		
1.20	1.6294	1743	1.9841	1653	2.3734	1551		
1.25	1.4508	1572	1.7439	1525	2.0571	1458		
1.30	1.3361	1452	1.5759	1390	1.8364	1340		
1.40	1.1574	1175	1.3461	1122	1.5472	1092		
1.50	1.0359	0956	1.1993	0925	1.3667	0893		
1,60	0.9429	0764	1.0858	0728	1.2309	0699		
1.70	0.8687	0599	0.9960	0552	1.1252	0524		
1.80	0.8052	0422	0.9230	0401	1.0406	0375		
1.90	0.7519	0266	0.8610	0256	0.9687	0227		
2.00	0.7071	0141	0.8001	0124	0.9100	0121		
2.50	0.5501	.0327	0.6281	.0303	0.7038	.0727		
3.00	0.4557	.0527	0,5188	.0540	0.5314	.0550		
3.50	0.3887	.0746	0.4421	.0769	0.4964	.0725		
4.00	0.3401	.0853	0.3876	.0,826	0.4344	.0829		

GENERALIZED QUANTITIES $(Z-1)/\rho_r$ AND ρ_r AT $\omega = 0.2$

	Pr						
	2.0		2.	2.2		2.4	
Tr	٩ _r	$\frac{Z-1}{P}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	6.5703	1059	6.6667	1005	6.7606	0954	
1.05	5.6689	1171	5.8855	1094	6.0952	1025	
1.10	4.5228	1322	4.9875	1201	5.2701	1112	
1.15	3.4507	1437	3.2962	1306	4.2941	1197	
1.20	2.7685	1438	3.1339	1324	3.4904	1223	
1.25	2.3739	1373	2.6829	1282	2.9907	1197	
1.30	2.1046	1278	2.3802	1214	2,6487	1144	
1.40	1.7528	1055	1.9667	1022	2.1783	0978	
1.50	1.5379	0865	1.7074	0826	1.8868	0806	
1.60	1.3797	0681	1.5295	0660	1.6797	0637	
1.70	1.2583	0517	1.3915	0503	1.5262	0491	
1.30	1.1598	0362	1.2798	→ •0352	1.4006	0343	
1.90	1.0785	0223	1.1888	0219	1.2995	0215	
2.00	1.0111	0109	1.1134	0108	1.2146	0099	
2.50	0.7797	.0333	0.8535	.0363	0.9293	.0355	
3.00	0.6435	.0559	0.7038	.0596	0.7641	.0615	
3.50	0.5495	.0728	0.6021	.0731	0.6537	.0750	
4.00	0.4808	.0832	0.5263	.0835	0.5720	.0257	

GENERALIZED QUANTITIES (Z-1)/ P_r AND P_r AT $\omega = 0.2$

8	2.0	5	2.	8	3.0		
T _r	ρ _r	<u>Z-1</u>	ρ r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	6.8602	0905	6.9136	0861	7.0093	0816	
1.05	6.2373	0967	6.3341	0916	6.4350	0364	
1.10	5.4968	1037	5.6566	0972	5.8027	0913	
1.15	4.6235	1105	4.3891	1027	5.1051	0958	
1.20	3.8146	1133	4.1225	1053	4.4014	0982	
1.25	3.2964	1119	3.5840	1046	3.2535	0980	
1.30	2.9028	1071	3.1581	1007	3.4037	0946	
1.40	2.3932	0936	2.6076	0894	2.8195	0851	
1.50	2.0586	0768	2.2329	0734	2.4038	0699	
1.60	1.8300	0612	1.9819	0590	2.1259	0555	
1.70	1.6606	0476	1.7922	0452	1.9244	0431	
1.20	1.5189	0323	1.6374	0305	1.7544	0285	
1.90	1.4093	0206	1.5177	0191	1.6244	0172	
2.00	1.3113	0069	1.4099	0050	1.5091	0040	
2,50	1.0019	.0379	1.0749	.0391	1.1472	.0401	
3.00	0.8238	.0631	0.8830	.064:6	0.9416	.0658	
3,50	0.7048	.0767	0.7554	.0781	0.8056	.0794	
4.00	0.61.79	.0842	0.6623	.0861	0.7062	.0878	

TABLI G-III (cont'd)

GENERALIZED QUANTIFIES $(Z-1)/\rho_r$ AND $\rho_r \stackrel{\text{AT}}{\longrightarrow} \omega = 0.2$

	-	Er.					
×	4.	0	5.	0	6.0		
T _r	ρ _r	$\frac{Z-1}{\rho}$	۴	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	7.2993	0619	7.5529	0448	7.7620	0292	
1.05	6.9013	0649	7.1500	0467	7.3828	0306	
1.10	6.3908	0674	6.7540	0484	7.0110	0317	
1.15	5.8754	0694	6.3103	0493	6.6464	0323	
1.20	5.3937	0708	5.9013	0498	6.2972	0327	
1.25	4.9005	0708	.5.5096	0497	5.9259	0321	
1.30	4.4723	0698	5.1419	0490	5.6012	0314	
1.40	3.7397	0631	4.4.76	0443	4.9950	0284	
1.50	3.2129	052.9	3.8760	0361	4.4200	0215	
1.60	2.8441	04:25	3.4645	0283	3.9009	0146	
1.70	2.5520	0306	3.1124	0177	3.5941	0050	
1.80	2.3148	0173	2.8258	0060	3.2776	.0052	
1.90	2.1352	0066	2.6055	.0038	3.0190	.0152	
2.00	1.9841	.0040	2.4225	.0132	2.8143	.0235	
2,50	1.4981	•0454	1.8265	.0520	2.1333	.0586	
3.00	1.2266	.0709	1,4961	.0762	1.7467	.0830	
3,50	1.0495	.0848	1,2812	.0898	1.5011	.0946	
4.00	0.9217	.0922	1,1282	.C957	1.3251	.0996	

.

GENERALIZED QUANTITIES $(Z-1)/\rho_r$ AND ρ_r AT $\omega = 0.2$

			1	r			
	7.	.0	8.	.0	9.0		
T _r	ρ _r	$\frac{Z-1}{p}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$ r	
1.00	7.9545	0151	8.0972	0015	8.1018	.0122	
1.05	7.6190	0164	7.8064	0031	7.8999	.0108	
1.10	7.2810	0173	7.5054	0041	7.6252	.0096	
1.15	6.9249	0175	7.1865	0045	7.3484	.0088	
1.20	6.6063	0177	6.8871	0046	7.0621	.0088	
1.25	6.2710	0171	6.5844	0043	6.7797	.0091	
1.30	5.9696	0164	6.2923	0035	6.5312	.0092	
1.40	5.3821	0132	5.7372	0007	6.0136	.0115	
1.50	4.8815	0090	5.2390	。 0034	5.5351	.0152	
1.60	4.4326	0029	4.8077	.0083	5.0997	.0202	
1.70	4.0290	.0055	4.3939	.0162	4.7017	.0268	
1.30	3.6792	.0155	4.0294	02.56	4.3440	.0348	
1.90	3.3925	.0254	3.7228	0352	4.0245	.0440	
2.00	3.1617	.0338	3.4783	.0431	3.7625	.0521	
2.50	2.4159	.0658	2.6778	.0728	2,9126	.0810	
3.00	1.9841	.0887	2.1966	.0974	2.4000	.1042	
3.50	1.7079	.1001	1.9016	.1062	2.0272	.1119	
4.00	1.5112	.1046	1.6863	.1103	1.8549	.1148	

11	N	C I.	-T T	~
	۰.	` J'	- <i>T</i> A	1

GENERALIZED QUANTITIES $(2-1)/\rho_r$ AND ρ_r AT $\omega = 0.3$

		and instruction does not set					
	0.	2	. 0.	0.4		0.6	
Tr	ρ _r	$\frac{Z-1}{\rho}$	۴r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	.0.2154	3324	0.4738	-,3288	0.8000	-,5125	
1.05	0.2022	2868	0.4357	2885	0.71.29	-,2784	
1.10	0.1913	2583	0.4061	2576	0.6511	2491	
1,15	0.1813	2250	0.3816	2317	0.6055	2286	
1.20	0.1726	1987	0.3598	2045	0.5634	1998	
1.25	0.1647	1742	0.3416	1847	0.5293	1761	
1.30	0.1578	1590	0.3245	1599	0.5010	1571	
1.40	0.1455	1251	0.2971	1292	0.4541	1240	
1.50	0.1351	0955	0.2739	0967	0.4164	094:6	
1.60	0.1262	0761	0.2546	0714	0.3853	0696	
1.70	0.1184	0557	0.2382	0512	0.3593	0495	
1.80	0.1115	0323	0.2238	0322	0.3366	0292	
1.90	0.1054	0152	0.2113	0166	0.3174	0158	
2.00	0.1000	0020	0.2003	0085	0.3003	0033	
2.50	0 .079 8	.0376	0,1592	.0314	0.2374	.0463	
3.00	0.0364	.0602	0.1323	.0605	0.1976	.0607	
3.50	0,0569	.0879	0.1132	.0884	0.1689	.0888	
4.00	0.0497	.1207	0.0989	.1.112	0,1479	.0946	

GENERALIZED QUARTITIES (2-1)/ ρ_r AND ρ_r AT $\omega = 0.3$

			1	r		$\frac{Z-1}{p_{r}}$ 13532181213319661787		
	0.8		1.	0	1.	2		
$T_{\mathbf{r}}$	ρ r	$\frac{Z-1}{\rho}$	ρ _r	<u>Z-1</u> ρ	ρ _r	$\frac{Z-1}{\rho}$		
1.00	1.2491	2936	3.7453	1957	5.8824	1353		
1.05	1.0604	2655	1.5486	2486	2.4162	2191		
1.10	1.0059	2754	1.2849	2276	1.7272	2133		
1.15	0.8515	2149	1.1364	2066	1.4658	1966		
1.20	0.7860	1931	1.0305	1856	1.3038	1787		
1.25	0.7331	1732	0.9516	1674	1.1381	1616		
1.30	0.6880	1534	0.8866	1493	1.0976	1449		
1.40	0.6161	1177	0.7370	1174	0,9642	1151		
1.50	0.5626	9243	0.7127	0906	0.8677	0899		
1. 60	0.5181	0676	0.6551	0702	0.7920	0670		
1.70	0.4817	-:0478	0.6046	0447	0,7307	0465		
1.80	0.4503	0289	0.5640	0266	0.6803	0294		
1.90	0,4232	0118	0.5290	0095	0.6367	0126		
2.00	0.4000	.0000	0.5005	0020	0.5994	.0017		
2.50	0.3159	.0412	0.3925	.0484	0.4697	.0463		
3.00	0.2617	.0726	0.3258	.0705	0.3891	.0720		
3.50	0.2241	.0893	0.2785	.0934	0.3325	.0932		
4.00	0.1963	.0968	0.2439	.1025	0.2913	.1030		

GENERALIZED QUANTITIES $(2-1)/\rho_r$ AND ρ_r AT $\omega = 0.3$

			I	r			
	1.	4	1.	6	1.8		
Tr	۴r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$ r	ρ _r	$\frac{Z-1}{\rho}r$	
1.00	6.3550	-,1227	6.5147	1158	6.6790	1094	
1.05	3.9448	1673	4.94.74	1399	5.4595	1257	
1.10	2.3353	1948	3.1173	1711	3.9101	1487	
1.15	1.8558	-,1854	2,3035	1719	2.8212	1578	
1.20	1.6004	1693	1.9380	1610	2.3112	1519	
1.25	1.4213	1492	1.7067	1465	2.0056	1406	
1.30	1.3149	1377	1.5443	1315	1.7935	1271	
1.40	1.1403	1079	1.3212	1022	1.5144	0998	
1.50	1.0212	0842	1.1799	0814	1.3408	0783	
1.60	0.9309	0645	1.0695	0608	1.2097	0579	
1.70	0.8587	04:77	0.9824	0423	1.1076	0397	
1.80	0.7961	0289	0.9107	0264	1.0246	0234	
1.90	0.7435	0121	0.8498	01.06	0.9540	0073	
2.00	0.6993	.0014	0.7976	.0038	0.8973	.0033	
2,50	0.5447	.0514	0.6214	.0483	0.6957	.0503	
3.00	0.4522	.0708	0,5143	.0719	0,5758	.0729	
3.50	0.3861	.0932	0.4387	.0957	0.4926	.0893	
4.00	0.3382	.1035	0.3854	.0986	0.4314	.0997	

TABLE C-IV (cont,'d)

GENERALIZED QUANTITIES $(2-1)/\rho_r$ AND ρ_r AT $\omega = 0.3$

			<u>تا</u>	12			
	2.0		2.2		2.4		
T _r	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	6.8470	1034	6.9401	0984	7.0175	0938	
1.05	5.7895	1159	6.0208	1083	6.2451	1015	
1.10	4.5228	1322	5.0125	1199	5,3026	1110	
1.15	3,3835	1436	3.8415	1307	4.2591	1197	
1.20	2.6925	1415	3.0505	1308	3.4072	1212	
1,25	2.3088	1330	2.6074	1246	2.9091	1169	
1.30	2.0486	1215	2.3151	1162	2.5748	1099	
1.40	1.7129	0969	1,9107	0943	2.1216	0905	
1.50	1,5066	0763	1.6686	0725	1.8433	0716	
1.50	1.3543	0569	1.4995	- 0554	1.6447	0535	
1.70	1.2371	0396	1.3665	0388	1.4971	0381	
1.80	1.1408	0228	1.2574	0223	1.3746	0218	
1.90	1.0611	0075	1.1604	0077	1.2759	0078	
2.00	0.9960	.0040	1.0956	.0037	1.1940	.0042	
2.50	0.7700	.0507	0.8413	.0547	0.9152	.0535	
3.00	0.6367	.0738	0.6951	.0791	0.7540	.0809	
3,50	0.5447	.0900	0,5964	.0905	0.6469	.0928	
4.00	0.4771	.1006	0,5223	.1015	0,5666	.1041	
			02				

TABLE G-IV (contid)

CENERALIZED QUARTITLES (Z-1)/ ρ_r AND ρ_r AT $\omega = 0.5$

84 C			P			
	2.	2.6		8	3.	Ö
Tr	Pr	$\frac{Z-1}{\rho}$	ρ _r	<u>Z-1</u> ρ	ρ _r	<u>Z-1</u> ρ
1.00	7.1233	0891	7.1611	0350	7.2639	0303
1.05	6.3984	0958	6.4482	0909	6.5985	0859
1.10	5.5615	1034	5.7330	0970	5.8904	0912
1.15	4.6046	1105	4.8891	1027	5.1151	0958
1.20	3.7356	1124	4.0580	1047	4.3478	0978
1.25	3.2148	1098	3,5055	1.030	3.7855	0967
1.30	2.8209	1032	3.0725	0973	3.3156	0917
1.40	2.3302	0871	2.5381	0835	2.7473	0801
1.50	2.0085	0682	2.1761	0656	2.3447	0627
1.60	1.7896	0514	1.9380	0501	2.0764	0467
1.70	1.6270	0369	1.7541	0548	1.8813	0330
1.80	1.4891	0201	1.6037	0187	1.7164	0169
1.90	1.3822	0072	1.4871	0061	1.5901	0044
2.00	1.2871	0078	1.3820	.0094	1.4778	.0102
2,50	0.9848	.0569	1.0556	.0578	1.1257	.0506
3.00	0.8122	.0825	0.8698	.0839	0.9263	.0852
3,50	0.6969	.0947	0.7463	.0965	0.7951	.0981
4.00	0.6121	.1013	0.6554	.1.037	0.6983	.1060

GENERALIZED QUANTITIES (Z-1)/ ρ_r AND $\rho_r \ll \omega = 0.3$

	4.0		412		-	
			5.	0	G.0	
T _r	°۲	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$ r	ρ _r	$\frac{Z-1}{\rho}$
1.00%	.7.5330	0623	7.7882	0460	8.0000	0312
1.05	7.0809	0652	7.3373	0478	7.5786	0325
1.10	6.5051	0678	6.8871	04.94	7.1582	0332
1.15	5.9154	0696	6.3845	0500	6.74.95	0336
1.20	5.3937	0703	5.9354	0502	6.3613	0336
1.25	4.2632	0703	5.5096	0497	5.9480	0324
1.30	4.4082	0685	5.1146	0485	5.6012	0314
1.40	3.6677	0603	4.3875	0424	4.9546	0272
1.50	3.1373	0478	3.8008	0323	4.3526	0186
1.60	2.7747	0357	3,3857	0227	3.9022	0100
1.70	2.4873	0.217	3.0321	0099	3.5014	0023
1.80	2,2538	0062	2.7443	.0044	3.1807	0151
1.90	2.0803	.0058	2,5304	.0158	2.9213	.0277
2.00	1.9342	.0176	2.3540	.02.63	2.7248	.0371
2.50	1.4639	0635	1.7773	.0703	2.0690	.0773
3.00	1.2012	.0916	1.4594	.0973	1.6964	.1055
3.50	1.0315	.1047	1,2542	.1108	1.4652	.1160
4.00	0.9083	.1112	1,1082	.1155	1.2987	.1194

TABLE G-IV (cont'd)

GENERALIZED QUARTITIES $(Z-1)/\rho_r$ and ρ_r at $\omega = 0.5$

	Martin and and and and a start of the		نذ	22			
	7.	0	3.	0	9.0		
Tr	۴r	$\frac{Z-1}{\rho}$	۴r	$\frac{Z-1}{\rho}$	۴r	<u>Z-1</u> ρ	
1.00	8.1967	0178	8,3507	0050	8.4349	.0079	
1.05	7.2339	0190	8.0370	0065	8.1323	.0066	
1.10	7.4603	0197	7.7042	0073	7.8295	.0057	
1.15	7.0533	0194	7.3381	0071	7.5179	.0055	
1.20	6.6973	0193	7.0028	0069	7.1908	.0060	
1.25	6.3205	0180	6.6597	0059	6.8637	.0071	
1.30	5.9962	0170	6.3376	0046	6.5871	.0077	
1.40	5.3591	0125	5.7315	0005	6.0193	.0113	
1.50	4.8259	0058	5.1931	.0052	5.4995	.0165	
1.60	4.3576	.0009	4.7393	.0116	5.0358	.0232	
1.70	3.9328	.0120	4.2976	.0221	4.6116	.0321	
1.30	3,5711	.0249	3.9153	.0345	4.2337	.0428	
1.90	3.2778	.0378	3.5957	.0475	3.8922	.0558	
2.00	3.0514	.0482	3.3529	.0576	3.6261	.0665	
2,50	2.3353	.0052	2,5306	.0930	2.7994	.1022	
3.00	1.9220	.1113	2.1181	.1223	2.3077	.1300	
3.50	1.6611	,1228	1.0433	,1302	2.0184	.1358	
4.00	1.4768	.1253	1.6434	.1320	1.8029	.1376	

CENERALIZED QUARTITIES (Z-1)/ ρ_r AND ρ_r AT $\omega = 0.4$								
	Pm							
	0.	2	0.	0.4		6		
T _r	ρ r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ r	$\frac{Z-1}{\rho}$		
100	0.2157	3375	0.4747	3316	0,8021	3142		
1.05	0.2022	2862	0.4357	2883	0.7125	2779		
1.10	0.1912	2573	0.4058	2558	0.6498	2471		
1.15	0.1812	2229	0.3811	2288	0.6047	2269		
1.20	0.1724-		0.3591	1999	0.5617	1955		
1.25	0.1645	1677	0.3407	1784	0,5272	1699		
1.30	0.1576	1510	0,3236	1520	0.4987	14.96		
1.40	0.1453	1143	0,2961	1139	0.4518	1138		
1.50	0.1348	0831	0.2729	0843	0.4142	ə.0826		
1.60	0.1260	0619	0.2537	0575	0.3832	0558		
1.70	0,1182	0405	0.2373	0362	0.3574	0347		
1.80	0.1113	0162	0,0230	0161	0,3348	0131		
1.90	0.1052	.0019	0.2105	.0000	0.31.58	.0000		
2.00	0.0999	.0140	0.1997	.0070	0.2988	0134		
2.50	0.0797	.0502	0.1589	.0441	0.2365	.0634		
3.00	0.0663	.0754	0.1320	.0758	0.1970	.0761		
3.50	0.0568	.1056	0,1129	.1063	0.1.684	.1.069		
4.00	0.0497	.1410	0.0987	.1317	0.1479	.1004		
			1. Contract (1. Co					

TADLE C-V

TABLE C-V (contid)

ing and it is an			10 (0-1) 1	r r	'r 22 00	- 0	
	с.	8	1.	.0	1.	1.2	
T _r	ρ _r	$\frac{Z-1}{\rho}$	ρ r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	1.2945	2951	3.061.0	1919	6.1538	1308	
1.05	1.0582	2646	1.5436	2481	2.4111	2182	
1.10	1.0018	2735	1.2750	-,2251	1.7051	2113	
1.15	0.8473	2113	1,1270	2027	1.4469	1927	
1.20	0.7819	1885	1.0217	1805	1.2870	1733	
1.25	0.7289	1674	0.9438	1615	1.1736	-,1551	
1.30	0.6838	1462	0.8793	1424	1.0847	1.374	
1.40	0.6118	1079	0.7800	1030	0.9534	1.059	
1.50	0.5585	- 0806	0.7061	0790	0.8584	0792	
1.60	0.5144	0544	0.6497	0585	0.7837	0549	
1.70	0.4782	0335	0,5990	0300	0.7332	0332	
1.30	0.4471	0134	0.5589	0107	0.6734	0143	
1.90	0.4202	.0043	0.5242	.0076	0.6303	.0032	
2.00	0.3972	.0176	0.4965	.0141	0.5935	.0105	
2.50	0.3143	.0573	0.3399	.0567	0.4660	.0644	
3.00	0.2604	.0922	0,3239	.0896	0.3865	.0906	
3.50	0.2232	.1075	0.2771	<u>.</u> 1119	0.3306	,1119	
4.00	0.1957	.1124	0.2430	,1194	0.2399	, 1208	

GENERALIZED QUALTITIES $(2-1)/\rho_{n}$ AND ρ_{n} AT $\omega = 0.4$

TABLE C-V (contid)

GENERALIZED QUARTITIES $(z-1)/\rho_r$ AND ρ_r AT $\omega = 0.4$

	Manufacture Constructions		£			
	1.	4	1.	6	1.8	
Tr	° r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$
1.00	6.6540	1.1.87	6.8143	1123	6.9767	-1064
1.05	3.9565	1676	5.0125	1389	5,5659	1243
1.10	2.2891	1940	3.0635	1714	3.8776	1491
1.15	1.8224	1822	2.2513	1697	2.7537	- 1567
1.20	1.5723	1641	1.8939	1.563	2.2523	1483
1.25	1.3930	1407	1.6710	1400	1.9565	1349
1.30	1.2944	1298	1.5139	1235	1.7527	1193
1.40	1.1236	0979	1.2972	0917	1.4829	0397
1.50	1.0068	0725	1.1607	0692	1.3158	0669
1.60	0.9191	0522	1.0537	0484	1.1892	0454
1.70	0.8490	0353	0.9693	0299	1.0904	0266
1.80	0.7872	0152	0.2988	0122	1.0091	0089
1.90	0.7354	.0027	0.8388	.0048	0.9398	.0085
2.00	0.6917	.0173	0.7874	.0203	0.8850	.0192
2,50	0.5395	.0704	0.6148	.0667	0.6877	.0683
3.00	0.4487	.0391	0.5099	.0902	0.5703	.0912
3.50	0.3835	.1121	0.4354	.]]]48	0.4889	.1064
4.00	0.3362	.1219	0.3831	.1148	0.4286	.1167

TABLE C-V (cont'd)

GENERALIZED QUANTITIES (2-1)/ ρ_r AND ρ_r AT $\omega = 0.4$

			-7				
	2.	0	2.	2.2		2.4	
T _r	۴	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$	
1.00	7.1480	1008	7.2368	0962	7.2948	0920	
1.05	5.9154	1146	6.1625	1071	6.4026	1004	
1.10	4.5228	1322	5.0378	1197	5.3476	1107	
1.15	3.31.90	1434	3.7882	1307	4.2246	1193	
1.20	2.6205	1389	2.9714	1289	3.3278	1199	
1.25	2.2472	1282	2.5360	1207	2.8319	1137	
1.30	1.9954	1148	2.2534	1105	2.5050	1050	
1.40	1.6748	0878	1.8730	0860	2.0679	0827	
1.50	1.3158	0669	1.4766	0657	1.6314	0619	
1.60	1.3298	0451	1.4706	0442	1.6112	0428	
1.70	1.2166	0271	1.3424	0268	1.4691	0265	
1.80	1.1223	0089	1.2358	0089	1.3495	0089	
1.90	1.0443	.0077	1.1487	.0070	1.2531	.0064	
2.00	0.9814	.0194	1.0784	.0185	1.1742	.0187	
2.50	0.7605	.0684	0.8294	.0735	0.9014	.0721	
3,00	0.6301	.0920	0.6866	.0990	0.7442	.1008	
3.50	0.5401	.1074	0.5908	.1083	0.6403	.1109	
4.00	0.4735	.1183	0.5179	.1197	0,5613	.1229	

TABLE C-V (cont'd)

GENERALIZED QUANTITIES (2-1)/ ρ_r AND ρ_r AT $\omega = 0.4$

			· Pr			
	2.	G	2.	2.8		0
Tr	۴r	$\frac{Z-1}{\rho}$	۴r	$\frac{Z-1}{\rho}$	۴r	$\frac{Z-1}{\rho}$
1.00	7.4074	0876	7.4271	0839	7.5377	0799
1.05	6.5681	0949	.6.6.500	0901	6.7705	0354
1.10	5.6277	1031	5.0115	0967	5.9809	0910
1.15	4,5859	1106	4.8891	1027	5.1251	0958
1.20	3.6599	111.5	3.9954	1041	4.2955	0973
1.25	3.1373	1074	3.4303	1012	3,7152	0953
1.30	2.7435	0982	2.9915	0936	3.2321	0885
1.40	2.2703	0802	2.4722	0773	2.6786	0747
1.50	1,9608	0592	2.1260	0574	2,2883	0551
1.60	1.7511	0411	1.8960	0406	2.0292	0375
1.70	1.5948	0257	1.7175	0239	1.8402	0223
1.80	1.4605	0075	1.5713	0064	1.6301	-,0048
1.90	1.3562	0066	1.4576	0075	1.5571	0090
2.00	1.2634	.0230	1.3553	.0243	1.4479	.0249
2.50	0.9683	.0764	1.0370	.0771	1.1050	.0778
3,00	0.8010	.1024	0.8571	.1033	0.9124	.1052
3,50	0.6891	.1132	0.7373	.11.53	0.7849	.11.72
4.00	0.6063	.1187	0.6437	.1218	0.6906	1245

TABLE C-V (cont'd)

GENERALIZED QUALTITIES $(Z-1)/\rho_r$ and ρ_r at $\omega = 0.4$

			1	r		
	4.	0	5.	0.	6.0	
T _r	ρ _r	$\frac{Z-1}{0}$	°۲	$\frac{Z-1}{\rho}$	ρ _r	$\frac{Z-1}{\rho}$
1.00	7.7821	0625	8.0386	04:70	8.2531	0331
1.05	7.2701	0655	7.5347	0483	7.7851	0342
1.10	6.6236	0681	7.0254	0502	7.3117	0347
1.15	5.9559	0698	6.4604	0506	6.8560	0349
1,.20	5.3937	0708	5.9694	0506	6.4267	0345
1.25	4.8265	0698	5.5096	0497	5.9701	0328
1.30	4.3459	0672	5.0875	0480	5.6012	0314
1.40	3.5984	0572	4.3290	0404	4.9148	0260
1.50	3.0651	04:24	3.7286	0284	4.2872	0156
1.60	2.7086	0284	5.3104	0169	3.8265	0052
1.70	2.4257	0124	2,9560	0017	3.4134	.0100
1.20	2.1959	.0055	2.6684	.0154	3.0893	.0256
1.90	2.0282	.0187	2.4594	.0285	2.8297	.0410
2.00	1.8868	.0318	2.2894	.0402	2.6408	.051.5
2.50	1.4311	.0825	1.7316	.0895	2.0034	.0971
3.00	1.1768	.1130	1.4245	.1193	1.6488	.1292
3,50	1.0141	.1252	1.2284	.1327	1.4310	.1384
4.00	0.8953	.1307	1.0889	.1359	1.2733	.1398

TADLE C-V (contid)

GENERALIZED QUARTITIES (Z-1)/ $\rho_{\mathbf{r}}$ AND $\rho_{\mathbf{r}}$ AT $\boldsymbol{\omega} = 0.4^{\circ}$

			Pr			
	7.	0	. 8	0	9.0	
Tr	ρ _r	$\frac{Z-1}{\rho}$	ρ _r	<u>Z-1</u>	٩ _r .	<u>Z-1</u>
1.00	8.4541	0203	8.6207	0084	8.7041	.0039
1.05	8.0613	0215	8.2016	0097	8.3787	.0027
1.10	7.6486	0220	7.9137	0102	8.0451	.0021
1.15	7,1865	0213	7.4963	0096	7.6953	.0022
1.20	6.7908	0208	7.1225	0090	7.3242	.0033
1.25	6.3709	0190	6.7368	0074	6.9498	•0052
1.30	6.0231	0176	6.3837	0056	6.6440	.0063
1.40	5.3362	0118	5.7257	0003	6.0249	.0111
1.50	4.7716	0046	5.1480	.0070	5,4645	.C179
1.60	4.2850	.0049	4.6729	.0150	4.9735	.0263
1.70	5.8411	.0187	4.2054	.0283	4.5249	.0376
1.80	3.4691	.0349	3.8084	.0439	4.1208	0511
1.90	3.1706	.0511	3.4769	_0 607	3.7684	.0682
2.00	2,9486	.0634	3.2362	.0729	3.4992	.0317
2.50	2.2599	.1058	2.4903	.1144	2.6946	1247
3.00	1.8637	.1352	2.0450	.1487	2.2222	,1575
3,50	1.6163	. 1466	1.7885	.1554	1.9540	.1617
4.00	1.4439	.1468	1.6026	.1548	1.7537	.1614
8						

APPENDIX D

MATHEMATICS OF MULTIPLE LINEAR REGRESSION

Multiple linear regression or least-mean-square regression is used in this work to generate virial coefficient and to correlate these coefficients with other variables. A description of multiple linear regression and the associated mathematics is given below.

When using multiple linear regression, a regression model is selected first. The model is some equation which is postulated to describe the behavior between a dependent variable and one or more independent variables. Regression coefficients for this model are then derived using a specific set of known values for the variables under consideration. These regression coefficients, when used in the regression model, define a regession equation. A graphical representation of the regression equation is referred to as a regression curve. These regression coefficients are derived such that the sum of the squares of the deviations of the known values of the dependent variable from those values of the dependent variable as generated by the regression equation is a minimum. Stated in another way, any equation other than the regression equation will yield a greater sum of squares of deviations than that sum obtained using the regression equation.

121

Consider some dependent variable Y_i related to an independent variable X_i . The relationship between X_i and Y_i can be expressed in terms of a linear function. For example, if the relationship between X_i and Y_i is a polynomial function:

$$Y_i = b_0 + b_1 X_i + b_2 X_i^2 + \dots + b_k X_i^k$$
 (D-1)

this relationship can be written as a linear function:

$$Y_{i} = b_{0} + b_{1}X_{1i} + b_{2}X_{2i} + \dots + b_{k}X_{ki}$$
 (D-2)

where:

Note the first subscript on the term X in equation (D-2) refers to a specific linear variable, and the second subscript refers to a specific value for the independent variable X_i .

For n pairs of values of X_i and Y_i , a set of equations referred to as the normal equations are written as follows:

$$b_{0}n + b_{1}\sum_{i}x_{1i} + b_{2}\sum_{i}x_{2i} + \dots + b_{k}\sum_{ki}x_{ki} = \sum_{i}Y_{i}$$

$$b_{0}\sum_{i}x_{1i} + b_{2}\sum_{i}x_{1i}^{2} + b_{2}\sum_{i}x_{1i}x_{2i} + \dots + b_{k}\sum_{i}x_{1i}x_{ki} = \sum_{i}x_{1i}Y_{i}$$

$$b_{0}\sum_{i}x_{2i} + b_{1}\sum_{i}x_{1i}x_{2i} + b_{2}\sum_{i}x_{2i}^{2} + \dots + b_{k}\sum_{i}x_{2i}x_{ki} = \sum_{i}x_{2i}Y_{i}$$

$$(D-6)$$

$$b_{0}\sum_{ki}x_{ki} + b_{1}\sum_{i}x_{1i}x_{ki} + b_{2}\sum_{i}x_{2i}x_{ki} + \dots + b_{k}\sum_{i}x_{ki}^{2} = \sum_{ki}x_{ki}Y_{i}$$

The normal equations are solved simultaneously for the regression

coefficients b_0 , b_1 , b_2 , ..., b_k . The computer program of Bush and Short solves the normal equations via Cholesky's method for matrix solution.

The standard error of estimate is used as a test for selection of regression models. The standard error of estimate is an estimate of the deviation of the actual value of Y₁ from that value calculated with the regression equation. Letting d represent this deviation, the standard error of estimate is calculated as follows:

standard error of estimate = $\sqrt{\frac{d^2}{n-2}}$ (D-7)

Again, n is the number of pairs of values of X_i and Y_i used in the regression.

APPENDIX E

DERIVATION OF GENERALIZED FREE ENERGY EQUATION

The change in free energy can be expressed in differential form as:

$$dF = VdP \tag{E-1}$$

The volume V can be expressed as follows:

$$V = \frac{ZRT}{P}$$
(E-2)

From the definitions of reudced quantities, equation (E-2) can be written as follows:

$$V = \frac{ZRT_{c}T_{r}}{P_{c}P_{r}} = \frac{RT_{c}}{P_{c}} \left(\frac{1}{P_{r}/ZT_{r}}\right) = \frac{RT_{c}}{P_{c}} \left(\frac{1}{\rho_{r}}\right) \qquad (E-3)$$

The pressure P can be written as follows:

$$P = P_c P_r = P_c \rho_r ZT_r$$
 (E-4)

Taking the total differential of equation (E-4) at constant temperature

$$dP = P_{c}T_{d}\left[Zd\rho_{r} + \rho_{r}dZ\right]$$
(E-5)

Using equations (E-3) and (E-5), the differential change in free energy can be expressed as follows:

$$VdP = \left[\frac{RT_{c}}{P_{c}} \left(\frac{1}{P_{r}}\right)\right] \left[P_{c}T_{r}(ZdP_{r} + P_{r}dZ)\right]$$
(E-6)

Rearrangement of equation (E-6) yields:

$$\frac{1}{RT_{c}T_{r}} Vdp = \frac{1}{RT} VdP = \frac{Z}{\rho_{r}} d\rho_{r} + dZ \qquad (E-7)$$

The term Z/ρ_r can be written as follows:

$$\frac{Z}{\rho_{\mathbf{r}}} = \frac{Z-1}{\rho_{\mathbf{r}}} + \frac{1}{\rho_{\mathbf{r}}}$$
(E-8)

Substituting equation (E-8) into equation (E-7):

$$\frac{1}{RT} V dP = \frac{Z-1}{\rho_r} d\rho_r + \frac{d\rho_r}{\rho_r} + dZ \qquad (E-9)$$

Integration of equation (E-9) across the two-phase region, where the change in free energy is zero, yields the following expression:

$$\frac{1}{RT} \int_{1}^{2} V dP = \int_{1}^{2} \left(\frac{Z-1}{\rho_{r}} \right) d\rho_{r} + \ln \left(\frac{\rho_{r2}}{\rho_{r1}} \right) + (Z_{2}-Z_{1}) = 0$$
(E-10)

Equation (E-10) forms the basis for postulating a continuous, hypothetical isotherm across the two-phase region.

APPENDIX F

CONVERSION OF REDLICH-KWONG EQUATION OF STATE INTO GENERALIZED TERMS

The Redlich-Kwong equation of state can be written as follows:

$$P = \frac{RT}{V-b} - \frac{a}{T^{0.5}V(V+b)}$$
(F-1)

The constants a and b are defined as follows:

a = 0.4278
$$\frac{R^2 T_c^{2.5}}{P_c}$$
 (F-2)
b = 0.0867 $\frac{RT_c}{P_c}$ (F-3)

From the definitions of reduced quantities, the following expressions can be written:

$$P = P_{c}P_{r}$$
(F-4)

$$T = T_{c}T_{r}$$
 (F-5)

$$V = V_{ci}V_{ri} = \left(\frac{R_{i}c}{P_{c}}\right)V_{ri}$$
 (F-6)

Substituting equations (F-2), (F-3), (F-4), (F-5), and (F-6) into equation (F-1) yields: $R^2 T^{2.5}$

$$P_{c}P_{r} = \frac{RT_{c}T_{r}}{\frac{RT_{c}}{P_{c}}V_{ri} - 0.0867 \frac{RT_{c}}{P_{c}}} - \frac{0.4278}{T_{c}^{0.5}T_{r}^{0.5}\frac{RT_{c}}{P_{c}}} V_{ri} \left(\frac{RT_{c}}{P_{c}}V_{ri} + 0.0867 \frac{R}{T_{c}}\right)$$

$$= \frac{RT_{c}T_{r}}{\frac{RT_{c}}{P_{c}}(V_{ri} - 0.0867)} - \frac{0.4278}{T_{c}^{2.5}T_{r}^{0.5}\frac{R^{2}}{P_{c}}} V_{ri}(V_{ri} + 0.0867)$$
(Equation continued)

$$= \frac{P_{c}T_{r}}{V_{ri} - 0.0867} - \frac{0.4278 P_{c}}{T_{r}^{0.5}V_{ri}(V_{ri} + 0.0867)}$$
(F-7)

Solving equation (F-7) for P_r :

$$P_{r} = \frac{T_{r}}{V_{ri} - 0.0867} - \frac{0.4278}{T_{r}^{0.5} V_{ri}(V_{ri} + 0.0867)}$$
(F-8)

Equation (F-8) is the Redlich-Kwong equation of state in generalized terms.

APPENDIX G

DERIVATION OF GENERALIZED FUGACITY COEFFICIENT EQUATION

The calculation of fugacity coefficients can be made through the use of virial coefficients. Comparison with Pitzer's generalized tabulations of fugacity coefficients provides one test of the virial coefficient correlations. Recalling the definition of the fugacity coefficient:

$$\ln \left(\frac{f}{P}\right) = \frac{1}{RT} \int_{0}^{P} \left(V - \frac{RT}{P}\right) dP = \frac{1}{RT} \int_{0}^{P} V dP - \int_{0}^{P} d(\ln P)$$
(G-1)

The differential of the product PV is given as:

$$d(\mathbf{PV}) = \mathbf{V}d\mathbf{P} + \mathbf{P}d\mathbf{V} \tag{G-2}$$

Rearranging equation (G-2):

$$VdP = d(PV) - PdV$$
(G-3)

Substituting equation (G-3) into the first integral on the righthand side of equation (G-1):

$$\frac{1}{RT} \int_{0}^{P} V dP = \frac{1}{RT} \int_{0}^{P} d(PV) - \frac{1}{RT} \int_{\infty}^{V} P dV \qquad (G-4)$$

Integrating the first integral on the right-hand side of equation (G-4) yields the following for equation (G-4):

$$\frac{1}{RT} \int_{0}^{P} V dP = \left[PV \right]_{0}^{P} - \frac{1}{RT} \int_{\infty}^{V} P dV = \frac{1}{RT} \left[PV - RT \right] - \frac{1}{RT} \int_{\infty}^{V} P dV$$
$$= \frac{PV}{RT} - 1 + \frac{1}{RT} \int_{V}^{\infty} P dV \qquad (G-5)$$

Recalling the Leiden form of the virial equation of state:

$$Z = \frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots$$
 (G-6)

Solving equation (G-6) explicitly in terms of pressure:

$$P = \frac{RT}{V} + \frac{BRT}{V^2} + \frac{CRT}{V^3} + \frac{DRT}{V^4} + \dots \qquad (G-7)$$

Substituting equation (G-7) into the integral on the right-hand side of equation (G-5):

$$\frac{1}{RT} \int_{0}^{P} V dP = \frac{PV}{RT} - 1 + \int_{V}^{\infty} (\frac{1}{V} + \frac{B}{V^{2}} + \frac{C}{V^{3}} + \frac{D}{V^{4}} \dots) dV$$
(G-8)

Integrating the integral in equation (G-8):

$$\frac{1}{RT} \int_{0}^{P} V dP = \frac{PV}{RT} - 1 + \left[\ln V - \frac{B}{V} - \frac{C}{2V^{2}} - \frac{D}{3V^{3}} - \dots \right]_{V}^{\infty}$$
$$= \frac{PV}{RT} - 1 + \ln V^{\infty} - \ln V + \frac{B}{V} + \frac{C}{2V^{2}} + \frac{D}{3V^{3}} + \dots \quad (G-9)$$

Integrating the second integral on the right-hand side of equation (G-1):

$$-\int_{0}^{F} d(\ln P) = -\left[\ln P\right]_{0}^{P} = \ln P^{\circ} - \ln P \qquad (G-10)$$

Adding equations (G-9) and (G-10):

$$\ln \left(\frac{f}{P}\right) = \frac{PV}{RT} - 1 + \ln \left(P^{\circ}V^{\circ}\right) - \ln(PV) + \frac{B}{V} + \frac{C}{2V^{2}} + \frac{D}{3V^{3}} + \dots$$
(G-11)

Rearranging equation (G-6):

$$\frac{PV}{RT} - 1 = \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots \qquad (G-12)$$

Also:

$$\ln(P^{\circ}V^{\circ}) = \ln(RT)$$
 (G-13)

Substituting equations (G-12) and G-13) into equation (G-11):

$$\ln \left(\frac{f}{P}\right) = \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots + \ln(RT) - \ln(PV) + \frac{B}{V} + \frac{C}{2V^2} + \frac{D}{3V^3} + \dots$$
(G-14)

Collecting terms:

$$\ln \left(\frac{f}{P}\right) = \frac{2B}{V} + \frac{3C}{2V^2} + \frac{4D}{3V^3} + \dots - \ln Z \qquad (G-15)$$

Recalling the derivation of the generalized virial equation of state:

$$\frac{B}{V} = b\rho_r \qquad (C-16)$$

$$\frac{C}{v^2} = c \rho_r^2 \tag{G-17}$$

$$\frac{D}{v^3} = d\rho_r^3 \tag{G-18}$$

Substituting these terms into equation (G-15):

$$\ln \left(\frac{f}{P}\right) = 2b\rho_r + \frac{3}{2}d\rho_r^2 + \frac{4}{3}d\rho_r^3 + \dots - \ln Z \qquad (C-19)$$

Equation (G-19) is used to calculate fugacity coefficients via
the generalized virial coefficient correlations. A rearrangement
of equation (G-19) is tested as a regression model for generating

virial coefficients

APPENDIX H

DERIVATION OF GENERALIZED ENTHALPY EQUATION

The calculation of enthalpies can be made through the use of virial coefficients. Comparison with Pitzer's generalized tabulations provides one test of the virial coefficient correlations. (If enthalpy is defined as a function of temperature and pressure, a differential change in enthalpy is given as follows:

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P} dT + \left(\frac{\partial H}{\partial P}\right)_{T} dP \qquad (H-1)$$

Edmister and many others show that this differential change in enthalpy can be evaluated with the following relation:

$$dH = C_{p}dT + VdP - T \left(\frac{\partial V}{\partial T}\right)_{p} dP \qquad (H-2)$$

Assuming constant temperature, C_ndT is zero and:

$$dH = VdP - T \left(\frac{\partial V}{\partial T}\right)_{P} dP \qquad (H-3)$$

Recalling the rearranged form of the differential (PV):

$$VdP = d (PV) - PdV$$
(H-4)

At constant temperature, the following relation can be obtained from the definitions of entropy:

$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{T}}\right)_{\mathbf{P}} \mathbf{dP} = - \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{\mathbf{V}} \mathbf{dV}$$
(H-5)

Substituting equations (H-4) and (H-5) into equation (H-3):

$$dH = -PdV + d(PV) + T \left(\frac{\partial P}{\partial T}\right)_{V} dV = \left[T \left(\frac{\partial P}{\partial T}\right)_{V} -P\right] dV + d(PV)$$
(H-6)

Recalling the pressure-explicit form of the Leiden virial equation of state:

$$P = \frac{RT}{v} + \frac{BRT}{v^2} + \frac{CRT}{v^3} + \frac{DRT}{v^4} + \dots$$
(H-7)

Differentiating equation (H-7) with respect to temperature at constant volume:

$$\begin{pmatrix} \frac{\partial P}{\partial T} \end{pmatrix}_{V} = \frac{R}{V} + \frac{R}{V^{2}} \begin{bmatrix} B + T \left(\frac{\partial B}{\partial T} \right) \end{bmatrix} + \frac{R}{V^{3}} \begin{bmatrix} C + T \left(\frac{\partial C}{\partial T} \right) \end{bmatrix}$$

$$+ \frac{R}{V^{4}} \begin{bmatrix} D + T \left(\frac{\partial D}{\partial T} \right) \end{bmatrix} + \dots$$
(H-8)

Substituting equation (H-8) into the first term of equation (H-6):

$$\begin{bmatrix} T \left(\frac{\partial P}{\partial T}\right)_{V} - P \end{bmatrix} = \frac{RT}{V} + \frac{BRT}{V^{2}} + \frac{RT^{2}}{V^{2}} \left(\frac{\partial B}{\partial T}\right) + \frac{CRT}{V^{3}} + \frac{RT^{2}}{V^{3}} \left(\frac{\partial C}{\partial T}\right) + \frac{DRT}{V^{4}} + \frac{RT^{2}}{V^{4}} \left(\frac{\partial D}{\partial T}\right) + \dots - \frac{RT}{V} - \frac{BRT}{V^{2}} - \frac{CRT}{V^{3}} - \frac{DRT}{V^{4}} - \dots \\ = \frac{RT^{2}}{V^{2}} \left(\frac{\partial B}{\partial T}\right) + \frac{RT^{2}}{V^{3}} \left(\frac{\partial C}{\partial T}\right) + \frac{RT^{2}}{V^{4}} \left(\frac{\partial D}{\partial T}\right) + \dots \quad (H-9)$$

Integrating equation (H-9) between infinite volume (zero pressure) and a finite volume V:

$$\int_{\infty}^{V} \left[T \left(\frac{\partial P}{\partial T} \right)_{V} - P \right] dV = \left[-\frac{RT^{2}}{V} \left(\frac{\partial B}{\partial T} \right) - \frac{RT^{2}}{2V^{2}} \left(\frac{\partial C}{\partial T} \right) - \frac{RT^{2}}{3V^{3}} \left(\frac{\partial D}{\partial T} \right) - \cdots \right]_{\infty}^{V} = -\frac{RT^{2}}{V} \left(\frac{\partial B}{\partial T} \right) - \frac{RT^{2}}{2V^{2}} \left(\frac{\partial C}{\partial T} \right) - \frac{RT^{2}}{3V^{3}} \left(\frac{\partial D}{\partial T} \right) - \cdots$$

(H-10)

Integrating the d(PV) term in equation (H-6):

$$\Delta(PV) = PV - RT = \frac{B}{V}RT + \frac{C}{V^2}RT + \frac{D}{V^3}RT + \dots$$
 (H-11)

Adding equations (H-10) and (H-11):

$$H - H^{\circ} = RT \left[\frac{1}{V} \left(B - T \frac{\partial B}{\partial T} \right) + \frac{1}{V^2} \left(C - \frac{T}{2} \frac{\partial C}{\partial T} \right) \right. \\ \left. + \frac{1}{V^3} \left(D - \frac{T}{3} \frac{\partial D}{\partial T} \right) + \dots \right]$$
(H-12)

$$\frac{\mathbf{H}-\mathbf{H}^{\bullet}}{\mathbf{R}\mathbf{T}} = \frac{1}{\mathbf{V}} (\mathbf{B}-\mathbf{T} \ \frac{\partial \mathbf{B}}{\partial \mathbf{T}}) + \frac{1}{\mathbf{V}^2} (\mathbf{C} - \frac{\mathbf{T}}{2} \ \frac{\partial \mathbf{C}}{\partial \mathbf{T}}) + \frac{1}{\mathbf{V}^3} (\mathbf{D}- \frac{\mathbf{T}}{3} \ \frac{\partial \mathbf{D}}{\partial \mathbf{T}}) + \dots$$
(H-13)

Transforming equation (H-13) into generalized terms:

$$\frac{\mathbf{H}-\mathbf{H}^{\bullet}}{\mathbf{R}\mathbf{T}_{c}} = \mathbf{T}_{\mathbf{r}} \left[\left(\frac{\mathbf{P}_{c}}{\mathbf{R}\mathbf{T}_{c}} \right) \left(\frac{\mathbf{P}_{\mathbf{r}}}{\mathbf{Z}\mathbf{T}_{\mathbf{r}}} \right) (\mathbf{B} - \mathbf{T}_{\mathbf{r}} \frac{\partial \mathbf{B}}{\partial \mathbf{T}_{\mathbf{r}}}) + \left(\frac{\mathbf{P}_{c}}{\mathbf{R}\mathbf{T}_{c}} \right)^{2} \left(\frac{\mathbf{P}_{\mathbf{r}}}{\mathbf{Z}\mathbf{T}_{\mathbf{r}}} \right)^{2} (\mathbf{C} - \frac{\mathbf{T}_{\mathbf{r}}}{2} \frac{\partial \mathbf{C}}{\partial \mathbf{T}_{\mathbf{r}}}) + \left(\frac{\mathbf{P}_{c}}{\mathbf{R}\mathbf{T}_{c}} \right)^{2} \left(\frac{\mathbf{P}_{\mathbf{r}}}{\mathbf{Z}\mathbf{T}_{\mathbf{r}}} \right)^{2} (\mathbf{C} - \frac{\mathbf{T}_{\mathbf{r}}}{2} \frac{\partial \mathbf{C}}{\partial \mathbf{T}_{\mathbf{r}}}) + \left(\frac{\mathbf{P}_{c}}{\mathbf{R}\mathbf{T}_{c}} \right)^{2} \left(\frac{\mathbf{P}_{\mathbf{r}}}{\mathbf{Z}\mathbf{T}_{\mathbf{r}}} \right)^{2} (\mathbf{C} - \frac{\mathbf{T}_{\mathbf{r}}}{2} \frac{\partial \mathbf{C}}{\partial \mathbf{T}_{\mathbf{r}}}) + \left(\frac{\mathbf{P}_{c}}{\mathbf{R}\mathbf{T}_{c}} \right)^{2} \left(\frac{\mathbf{P}_{\mathbf{r}}}{\mathbf{R}\mathbf{T}_{\mathbf{r}}} \right)^{2} (\mathbf{R} - \frac{\mathbf{T}_{\mathbf{r}}}{2} \frac{\partial \mathbf{D}}{\partial \mathbf{T}_{\mathbf{r}}}) + \dots \right]$$
(H-14)

$$\frac{\mathrm{H}-\mathrm{H}^{\circ}}{\mathrm{R}\mathrm{T}_{c}} = \mathrm{T}_{r} \left[\rho_{r} (\mathrm{b}-\mathrm{T}_{r} \ \frac{\mathrm{\partial}\mathrm{b}}{\mathrm{\partial}\mathrm{T}_{r}}) + \rho_{r}^{2} (\mathrm{c}-\frac{\mathrm{T}_{r}}{2} \ \frac{\mathrm{\partial}\mathrm{c}}{\mathrm{\partial}\mathrm{T}_{r}}) + \rho_{r}^{3} (\mathrm{d}-\frac{\mathrm{T}_{r}}{3} \ \frac{\mathrm{\partial}\mathrm{d}}{\mathrm{\partial}\mathrm{T}_{r}}) + \ldots \right]$$
(H-15)

$$\frac{\mathbf{H}-\mathbf{H}^{\bullet}}{\mathbf{R}\mathbf{T}_{c}} = -\mathbf{T}_{r} \left[\rho_{r} \left(\mathbf{b}-\mathbf{T}_{r} \frac{\partial \mathbf{b}}{\partial \mathbf{T}_{r}} \right) + \rho_{r}^{2} \left(\mathbf{c} - \frac{\mathbf{T}_{r}}{2} - \frac{\partial \mathbf{c}}{\partial \mathbf{T}_{r}} \right) \right]$$
$$+ \rho_{r}^{3} \left(\mathbf{d} - \frac{\mathbf{T}_{r}}{3} - \frac{\partial \mathbf{d}}{\partial \mathbf{T}_{r}} \right) + \cdots \right]$$
(H-16)

Equation (H-16) is used to calculate generalized enthalpies via the generalized virial coefficient correlations.

VITA

James LeRoy Snyder

Master of Science

Thesis: A GENERALIZED VIRIAL EQUATION OF STATE

Major Field: Chemical Engineering

Biographical:

- Personal Data: Born in Centralia, Illinois, February 9, 1937, the son of Arthur L. and Blanche M. Snyder.
- Education: Attended grade school in Centralia, Illinois; attended high school in Centralia, Illinois; graduated from high school in May, 1953; attended University of Illinois, Urbana, Illinois, 1953 to 1958; received the degree of Bachelor of Science in Chemical Engineering, February, 1958; completed the requirements for the Master of Science degree in May, 1965.
- Professional Experience: Employed as a process engineer for three months with Shell Oil Company, 1957. Served six months in the U.S. Army, 1958. Employed for four years in the Experimental Laboratory, Catalytic Cracking Department, and Technological Department of Shell Oil Company, 1958 to 1962.