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ON ROBUSTNESS OF THE F-TEST FOR 
CORRELATED OBSERVATIONS

INTRODUCTION

The analysis of variance is a versatile statistical 
tool which enjoys wide usage in many fields of study. One 
type of analysis of variance design which is especially appro­
priate for many experimental situations in the medical field 
is the repeated measures design [Winer, I960]. Although there 
are many different repeated measures designs, they all have 
in common the fact that each experimental unit is used under 
all levels of at least one factor. The suitability of this 
design is due to the fact that the model accounts for corre­
lation between repeated observations on the same experimental 
unit. This situation may arise, for example, in psychologi­
cal testing or in studies of hearing defects, in which each 
person is subjected to a battery of tests.

Unfortunately the standard univariate analysis of 
variance test for equality of means among correlated treat­
ment groups requires that the within-treatment group variances



be equal, and that all the pairwise correlations between 
treatment groups be equal [Box, 1954b; Danford and Hughes, 
1957]c That is, the covariance matrix must have the follow­
ing form:

0 pa c o

pa^ a^
pa-

pa* . . . a*

A covariance matrix of this form is called a uniform covari­
ance matrix. Undoubtedly the sample covariance matrix ob­
tained in many experimental situations does not meet this 
requirement. As is the case with other violated model as­
sumptions for this and other design models, the statistician 
must then consider alternative and perhaps more appropriate 
methods of analysis. A decision as to whether to use a meth­
od other than tLs usual analysis of variance would be based 
on such considerations as the consequence of using the usual 
test when an underlying assumption is violated, relative power 
of the available tests, presentability of the results, and 
complexity of alternative techniques.

Several authors have proposed a variety of procedures 
for analyzing experiments with repeated measures, taking into 
consideration the fact that the covariance matrices may not 
be uniform.



In an experiment on growth and wear. Box [1950] dif­
ferenced the data to put it in a form which would give equal 
variances and covariances. In that procedure, as the amount 
of growth or wear increased with time, the observations were 
taken to be the amount of change within successive time peri­
ods rather than the accumulated growth or wear= However, Box 
pointed out that if interaction were present between time and 
other factors in the experiment, the method would not be com­
pletely successful in yielding a uniform covariance matrix.
The author further stated that the validity of the usual uni­
variate analysis which he used must be checked by testing the 
covariance matrix for uniformity. He gave a test statistic 
which is approximately distributed as that could be used. 
This statistic is discussed in Chapter III.

In another paper. Box [1954b] derived the distribu­
tion of entries in the univariate analysis of variance table 
for an n-by-t data set in which the rows and columns repre­
sented fixed effects and the columns were correlated. This 
work was based on general theorems given in an earlier paper 
[Box, 1954a] which dealt with exact and approximate distribu­
tions of quadratic forms and their ratios. In the second 1954 
paper. Box showed that the null distribution of the ratio of 
the column mean square to the error mean square is approxi­
mately that of F[ft-1)0, (t-1) (n-1) 8], where

o - (y )^/(t—1)
i=l j=l

V ?  .
1 = 1



'̂ ii t:he mean of the diagonal elements of the covariance 
matrix, is the mean of the elements in the i^^ row, and
V is the mean of all the elements in the matrix.

Box then used the approximate distribution to study 
the effect of special cases of serial correlation on the Type 
I error rate for the usual F-test. A positive bias was shown, 
but he concluded that moderate correlation has little effect 
on probability levels. However, it should be noted that the 
cases Box selected for study yield very low values for the 

test statistic, given in his 1950 paper as a measure of 
nonuniformity, so his conclusions here are not unexpected.

Geisser and Greenhouse [1958] extended Box's approxi­
mate test for among-column effects to the case where there
was within-cell replication. These authors also gave the

1lower bound of 0, 0^, as j where t is the number of levels 
of the correlated factor. They then gave a conservative test 
of among-column effects which is the same as Box's approxi­
mate test, but which uses 0ĵ  instead of 6. The authors re­
commended the approximate or the conservative test for situa­
tions in which the covariance matrix is unknown and when a 
more appropriate multivariate analysis is unavailable (e.g., 
when the experiment does not provide enough degrees of free­
dom for the error term of a multivariate test). However, 
the authors pointed out that the conservative test may be 
too conservative.

In a 1959 paper on the analysis of profile data.



5
Greenhouse and Geisser illustrated several methods of analysis 
for data of the type described above. Hotelling's generalized 

was used to illustrate a multivariate analysis of the data 
for two groups”. A generalization to g groups using Roy's 
largest root criterion was also given. If univariate analysis 
is to be used, the authors pointed uuL üiàL the effect pro­
duced on the approximate F distributions of Box's test by 
estimating 0 from the sample data is unknown. They therefore 
recommended the conservative test, which is independent of 
the covariance matrix. Scheffe [1955] also criticized use of 
the approximate test for this reason, and recommended 
Hotelling's .

Elsewhere in the 1959 paper. Greenhouse and Geisser 
recommended the following procedure if it is decided that a 
univariate analysis of variance should be used:

First, the usual analysis of variance is performed.
If the computed F-ratio is nonsignificant, all other univar­
iate tests will yield nonsignificant results, and testing 
stops. If the usual test is significant, the computed F-ratio 
is then compared to the tabulated F value for the conservative 
test. If the result is still significant, an exact test 
would give significance also, so testing stops. If the result 
of the conservative test is not significant, then the approxi­
mate test should be carried out.

Cole and Grizzle [1966] developed another multivariate 
nrocedure which was based on the largest root criterion. The



6
authors pointed out that the method has several disadvantages. 
These are that a computer would be needed for the calcula­
tions, the tests of hypotheses are not independent, and the 
method is not as powerful as the univariate tests.

It is seen that both univariate and multivariate tests
in aiy •♦•V* a  f  /I a +- a  <-»W* W V- SA VA 4<>_ WAA ASAal. -L. V» J. VASA V SA A A A \w> W. U W SA SA k) SAX S» W
experiments, but both have disadvantages. While multivariate 
procedures almost always are appropriate, they have a number 
of disadvantages. Not the least among these is the relative 
difficulty of computation, since these procedures require in­
version of the sample covariance matrix. Also important is 
the fact that the multivariate tests are less powerful than 
the univariate tests, when the assumptions for both designs 
are met [Danford and Hughes, 1957; Cole and Grizzle, 1966]. 
Also, multivariate procedures cannot be used unless the sample 
size exceeds the number of treatment groups. In addition, for 
some repeated measures designs [Danford, Hughes, and McNee, 
1960] the usual F-test will be appropriate for a portion of 
tiie analysis.

When the univariate analysis is being considered for 
data which have an unknown covariance matrix, two general 
approaches are seen to be available. One is always to use 
either the approximate or the conservative test. The possible 
disadvantages of this procedure were pointed out earlier. The 
second approach is to use Box's test for the uniformity of the 
covariance matrix and then to select among the usual.



approximate, and conservative tests, depending on the outcome 
of Box's test.

However, the practice of preliminary testing of assump­
tions is not without pitfalls. Box [195 3] and Box and Andersen 
[1955] discussed the case of preliminary tests for equality of 
variances when the main test is to he a test for equality of 
means. They pointed out that while tests for equality of means 
are quite robust for heteroscedasticity and nonnormality, tests 
for equality of variances are very sensitive to nonnormality. 
Thus a preliminary test of variances might be highly signifi­
cant when in fact the main test would have been disturbed very 
little. It seems reasonable that the same would be true for 
preliminary testing of covariance matrices. Another problem 
with preliminary testing is selection of the size of the pre­
liminary test while preserving the size of the main analysis.
In a paper by Bancroft [1964] the recommended size was as high 
as 0.8 for some types of preliminary analyses.

It is evident then that selection of a procedure for 
the analysis of repeated measures experiments can be difficult, 
with no clear-cut criteria for selection. In addition, it is 
doubtful whether any of these procedures offer a distinct ad­
vantage over the usual F-test.

The purpose of the present study is to examine the 
robustness of +he usual F-test for a variety of violations of 
the assumption of a uniform covariance matrix. Computer sim­
ulation methods were used to examine balanced, one-way designs
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with three and four correlated treatment groups. In order 
that both the Type I error rates and the power of the tests 
could be studied, a variety of mean vectors and sample sizes 
were used. For some cases, the results of the conservative 
F-test were compared to the results of the usual F-test.



CHAPTER II

NiETHOnOLOCY

The basic underlying model for the one-way repeated 
measures design is

i=l,2,...,t
^ ^ ' n r  .....

The are fixed treatment effects, the are random person
effects, and the e^j are random errors. Assumptions for the
model are that Z t- = 0, the u. are normally and indepen- i=l ]
dently distributed with mean 0 and variance a^, the e^j are 
normally and independently distributed with mean 0 and vari­
ance o^, and the Hj and e^j are independent.

;thIn this paper, y^^ denotes an observation on the j 
person under the i^^ treatment, y^ is the mean of the obser­
vations on n persons under the i^^ treatment, y . is the mean• ]
of the observations under t treatments on the person, 
and y is the grand mean. For this model, it can be seen 
from the following equations that the covariance matrix which 
is appropriate for a vector of observations on a person is 
uniform.

Now,



£(>13)
Var(y..)

10
= M + Î£
= var ( TT. + e . . )

] 1 3

= var (tt . ) + var (e. . ) 3 1 3

= "Î *

Cov(y.., y ^ J  ; E (w. + e..) ( " 3  *
= aTT

and
= pa^, i / k.

CovCy^j, = 0, j ^

Therefore,
-  — I

= Y. ~ N 3

y + Tj
y + Tg

y + T .

po^ 
pb^ b^

pb^

per'

pa-

For the repeated measures design analysis of variance 
appropriate for the above model, the treatment mean square, 
TMS, is

t n
3 =

and
T t nE(TMS) =  L _  2 2 (T; - T ): + b=.t - 1 i=l i=i 1 e

1 ^ n— —  2 2 Cy^ - yt - 1 i=i i=i )



11
The error mean square, EMS, is

(b- isi— )■ = (rii - - y.j + y..)'

and
E(EMS) = aj .
If TSS and ESS are respectively the treatment and 

error sums of squares, it can be shown Lhat
t n

TSS/o2 =  z Z (y. - y )2/(j2
® i=l j=l e

is distributed as
n t

x'2 (t-l,X), A = Z (x. - T  )2
e i=l 1

and that
-, t n

ess/o2 = z E (y,4 ^ y< “ Y ^  + y ) ^ / ° i
i=l j~± “* '] *• ®

is distributed as
x2(n-l) (t-1).

Therefore the usual Central F-ratio of TMS/EMS may be used 
to test the hypothesis that Xj= Xg = = x^. The above
distribution for this ratio is derived in Appendix A.

There are other models which give the same distribu­
tion for the Yj's. One alternative model is

yij = y + Xi + gj +

The X a n d  g  ̂ represent fixed treatment effects and the e^^
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are random errors. The assumptions for this model are that 
t nZ T. = 0, Z 3. = 0 5 and tae e ., are distributed normallyi=l " j=l ]

with mean 0 and variance Also,
cov (e.., e. .) = p0^, i X k

and

1] 'it'
n A -f5 J ^

This model was discussed by Box [1954b].
Both of the above models may be used to describe a 

randomized complete-block experiment also. In the first model, 
blocks would be represented by the ir j . In the second model, 
blocks would be represented by the 3j » and the errors may be 
correlated or uncorrelated [Steel and Torrie, I960].

The first model described does not allow negative co- 
variances for the Yj . Accordingly, the second model, which 
does allow negative covariances, was included to extend the 
generality of the results of this study. In any case, a more 
general covariance matrix is appropriate for a study of viola­
tion of covariance assumptions.

When the covariance matrix of Y. is not like the one]
shown above, but takes the form

V =

o 12 

“ 1 2  «I

. . a It

_ 2
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then the covariance matrix is not uniform, and the ratio 

TMS/EMS
is not distributed as F [Box, 1954a,b].

To study empirically the robustness of the usual test 
for equality of treatment means when the covariance matrix is
Aiw u uAA4.a.WJ.XU; uiAc: J.XCIWy^iicjLcix wad udcsia* rxtjiu
a population of size 16,000 with a specified covariance matrix 
and mean vector, 1000 data sets of size nt were drawn. Each 
data set was subjected to the usual F-test and the result was 
compared to the appropriate criterion value in the central 
F-table. The percent of the computed F-ratios which exceeded 
the tabulated value was taken as an estimate of the true Type 
I error rate or power of the test under the specified condi­
tions. These results were then examined. The details of 
the procedure follow.

First a pool of 16,000 random normal deviates was 
stored on an IBM 1810 random access disk after construction 
in the following manner. 16,000 pseudo-random (hereafter 
called random) numbers distributed uniformly on the interval 
(0,1) were generated using an IBM 1800 random number generator 
and the IBM Subroutine RANDU [Scientific Subroutine Package, 
1968]. This generator uses the multiplicative congruential 
method of generating random numbers, according to the formula 

= 899Wn (mod 2l5).
The period for this generator is 8192 and two different se­
quences of this length may be obtained through proper



1%
selection of the numbers initially supplied to the generator
[Jansson, 1966]. For convenience, the first 8000 numbers of
each sequence generated were used in this study.

As each pair of numbers was generated, it was used to 
construct a pair of normal random deviates according to the 
formulas

Xj = (-2 log^u,y? cos 2iru,
X = (-2 log^u.)* sin 2iru2 “e Î 2

where u^ and u^ are the uniformly distributed random variables 
and Xj and x^ are independent normally distributed random 
variables with mean 0 and variance 1 [Box and Muller, 1958; 
Muller, 1959].

For a single analysis of variance the main computer 
program, SMAOV (Appendix B), first constructed the js in 
part according to an algorithm given by Scheuer and Stoller 
[1962]. The method uses the following theorem:

Let X be distributed N(0,I^) and let Z = CX. Then Z 
is distributed N(0,CC). In this case, C C  = V. Now,

+ = Y. =]
y + T.j.

The same process was carried out for each of the Y j , j = 1,2, 
...,n, in the experiment. The usual repeated measures analy­
sis of variance was then performed.

The covariance matrices studied were of order 3 or 4.
Only populations with equal within-treatment variances were



15
considered. With no loss of generality, the covariance matrix 
was taken to be equal to the population correlation matrix

1 Pj2 ” ”
p . i

It

'it

The statement that the covariances are (a, b, c) is taken to
mean that = a,  ̂= b, and p^^ = c. Similarly, the
statement that the covariances are (a, b, c, d, e, f) means 
that Pj^ = a, Pj 3 = b, p^^ = c, p^^ = d, p^^ = e, and p^^ = f. 
All matrices used were positive definite.

For each covariance matrix studied, two types of mean 
vectors were used. First the null mean vector was used to 
estimate a, the probability of a Type I error. The second 
type was generally of the form (0, 0, m) or (0, 0, 0, m).
Tiie values of m used were 0.5, 1.0, and 2.0. In some cases 
only 1 or 2 of these mean vectors were used. The second type 
of mean vector was used to study the power of the F-test. In 
this study power is defined as the probability of rejecting 
the null hypothesis (equality of treatment means) when in fact
the null hypothesis is not true.

In all cases analyses were performed with 3, 6, 10, 
and 15 observations in each treatment group. The same data 
sets were used to estimate the percent significant at a-levels
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of both .01 and .05 for all cases.

It should be noted that, in the case of a uniform 
covariance matrix, for a given mean vector, the power of the 
test changes as p changes. In order to make statements as 
to whether the power of the test is altered by nonuniformity
WO. U1J.C WW V O.C4AAW W iliU W WW WÛkPWf
empirical determination of power was made for a variety of 
uniform covariance matrices. The null mean vector together 
with the uniform covariance matrices were used to judge the 
precision and accuracy of the method in estimating a-levels.



CHAPTER III

RESULTS AND ANALYSIS

Examination of the tables and graphs in this chapter 
is more meaningful after consideration of the sampling varia­
tion. In the offset graphs in Figure 1, for the indicated 
uniform matrices and the null mean vector, percent significant 
is shown at o = .01 and a = .05 for each value of n. Since 
the off-diagonal elements are all equal in a uniform matrix, 
a single covariance value is given to indicate a matrix on the 
ordinate. The broken lines represent the expected values,
1.0% or 5.0% for each case. Variances computed according to 
the formula

k
0^ = (100)2 Z (a- - a)2/k - 1

i=l
are given in Table 1 for each value of a and n.

TABLE 1
VARIANCES FOR 10 UNIFORM CASES

n = 3 n = 6 n = 10 n = 15

a = o 01 .0951 .0766 .0582 .0622
a = . 05 .4423 .4227 .3490 .2928

17
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FIGURE 1. VARIATION IN PERCENT SIGNIFICANT FOR UNIFORM MATRICES OF ORDER 3



These compare well with expected variances based on the for­
mula

= (100)2 pq/iooo 
which gives = .099 when a = .01 and := .475 when a = .05.

In the power studies, 19 analyses yielding power in 
the range of .100 to .900 had been duplicated. The differ­
ences between duplicates were pooled over mean vectors, a- 
levels, and sample sizes to give a variance of .00016 for the 
differences.

To grade the nonuniform matrices as to relative non­
uniformity, the statistic given by Box [1950] and mentioned 
in CHAFTFR I was used. The statistic is

T = (l-C)M
where

C = t(t+l)2 (2t-3)/6(n-l)(t-1)(tZ+t-4)
and

M = -(n-1) £og^ (|V^l/|v|).
Vq is a matrix in which all the diagonal elements are equal to 
the average of the diagonal elements of V and the off-diagonal 
elements are equal to the average of the off-diagonal elements 
of V. The degrees of freedom for the statistic are given by 
(t2+t-4)/2. The values of the statistic for the matrices 
used in this study are given in Appendix C. Note that in­
creased differences among the covariances do not account 
entirely for the increased nonuniformity.

Tn -HVic» a ma-t-yiv whaye
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p = (a+b+c)/3
was chosen as the uniform case against which to compare a non- 
uniform case with covariances (a, b, c). The uniform matrices 
when t = 4 were determined analogously. The uniform matrix 
for each nonuniform matrix used in the study is given in 

{ I).
Results are presented for covariance matrices of order 

3 first. For matrices of orders 3 or 4, power studies are 
presented before robustness for the a-levels is shown.

Some results of comparing power for nonuniform cases 
to power for the appropriate uniform cases are seen in Tables
2 through 9. In each of the tables a mean vector is speci­
fied and the empirically determined power is given for a 
group of nonuniform covariances for each sample size and 
value of a. The matrices within each table are tabulated in 
order of increasing nonuniformity.

In Tables 2, 3, and 4, the covariances are all of the 
form (a, a, a + .25) but with various values of a. In Tables 
5, 6, and 7, the covariances take the form (a, a, a + .5) and
the range in location is larger. In Tables 8 and 9, the dis­
crepancies among the covariances are even greater. While dif­
ferences in power are seen in all the tables, a noticeable 
and fairly consistent increase appears in Tables 8 and 9.

For the mean vectors shown, power is in general 
greater for the nonuniform cases than for the uniform cases. 
However, note that in each c a s e  the higher mean value belongs
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TABLE 2

POWER FOR COVARIANCES (a, a, a + ,25); u = (0, 0, .5)

NONUNIFORM UNIFORM
il = 3

r# =  m  =  n  =  m  n » = s  A  R

(0.0,0.0,.25) .016 .065 .017 .088
(.25,.25,.5) .022 .077 .017 .073 '
(.5,.5,.75) .025 .107 .028 .101

n = 6
g = .01 g = .05 g = .01 g = .05

(0.0,0.0,.25) .028 .133 .032 .109
(.25,.25,.5) .040 .137 .038 .144
(.5,.5,.75) .079 .199 .064 .215

n = 10
g = .01 g = .05 g = .01 g = .05

(0.0,0.0,.25) .048 .180 .044 .182
(.25,.25,.5) .081 .250 .068 .235
(.5,.5,.75) .140 .359 .141 .370

n = 15
g = .01 g = .05 g = .01 g = .05

(0.0,0.0,.25) .081 .260 .103 .256
(.25,.25,.5) .153 .368 ,163 .367
(.5,.5,.75) .280 .560 .319 .577
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TABLE 3
POWER FOR COVARIANCES (a. a, a + .25) ; u = (0, 0, 1)

NONUNIFORM UNIFORM

n = 3
a = .01 a = .05 c£ = .01 a = - 05

(0,0,0.0,-.25) .027 .126 .027 .111
(0.0,0.0,.25) .029 .132 .033 .140
(.25,.25,.5) .040 .164 .047 .175
(.5,.5,,75) .080 .265 .081 .258

n = 6
a = . 01 a = .05 a = .01 o = .05

(0.0,0.0,-.25) .110 .307 .093 .281
(0.0,0.0,.25) .120 .330 .137 .325
(.25,.25,.5) .182 .458 .177 .450
(.5,.5,.75) .361 .703 .348 .668

n = 10
a = .01 a = .05 a = .01 a = . 05

(0.0,0.0,-.25) .260 .490 .224 .500
(0.0,0.0,.25) .330 .601 .305 .591
(.25,.25,.5) .489 .766 .469 .747
(.5,.5,.75) .759 .933 .735 .931

n = 15
a = . 01 a = .05 a — . 01 ex = .05

(0.0,0.0,-.25) .489 .731 .461 .713
(0.0,0.0,.25) .550 .788 .599 .834
(.25,.25,.5) .773 .934 .767 .923
(.5,.5,,75) .969 .996 .952 .993



TABLE 4
POWER FOR COVARIANCES ( a ,  a ,  a  % . 2 5 ) ?  u = ( 0 ,  0 ,  2)

NONUNIFORM UNIFORM

n = 3

a = . 01 a = . 0 5 a = . 0 1 a = . 05

( 0 . 0 , 0 . 0 , . 2 5 ) . 1 3 2 . 4 1 6 . 1 2 0 . 4 2 1

( . 2 5 , . 2 5 , . 5 ) . 1 8 3 , 5 4 2 . 2 0 8 . 5 3 7

( . 5 , . 5 , . 7 5 ) . 3 6 0 . 7 6 9 . 3 2 4 . 7 4 5

n = 6

o = . 01 a = . 0 5 a = . 0 1 a = . 05

( 0 . 0 , 0 . 0 , , 2 5 ) . 6 5 2 . 8 9 9 . 6 6 3 . 9 0 5

( . 2 5 , . 2 5 , . 5 ) . 8 4 4 . 9 8 8 . 8 4 3 . 9 6 8

( . 5 , . 5 , . 7 5 ) , 9 8 1 . 9 9 9 . £ 6 2 . 9 9 9

n = 10

et — . 01 a = . 0 5 a = . 0 1 a = . 05

( 0 . 0 , 0 . 0 , . 2 5 ) . 9 6 8 . 9 9 7 . 9 6 6 . 9 9 7

( . 2 5 , . 2 5 , . 5 ) . 9 9 8 . 9 9 9 . 9 9 6 . 9 9 9

( . 5 , . 5 , . 7 5 ) 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

n = 15

a  = . 0 1 a = . 05 et = . 01 o = . 05

( 0 . 0 , 0 . 0 , . 2 5 ) 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

( . 2 5 , . 2 5 , . 5 ) 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0



TABLE 5
POWER FOR COVARIANCES (a, a, a ± „5); y = (0, 0, .5)

NONUNIFORM UNIFORM

Il = 3

a = . 0 1 a = . 05 a — . 01 a = . 0 5

( - . 2 5 , - . 2 5 , . 2 5 ) . 0 0 7 . 0 6 6 . 0 1 4 . 0 7 1

( . 2 5 , . 2 5 , . 7 5 ) . 0 3 0 . 0 9 9 . 0 2 3 . 0 9 8

n  = 6

a = . 0 1 u = . 0 5 a = . 0 1 a = . 0 5

( - . 2 5 , - . 2 5 , . 2 5 ) . 0 2 0 . 1 1 2 . 0 2 3 . 0 8 8

( . 2 5 , . 2 5 , . 7 5 ) . 0 5 2 . 1 5 3 . 0 4 0 . 1 5 5

n  - 10

a = . 0 1 G = . 05 a = . 0 1 a = . 0 5

( - . 2 5 , - . 2 5 , . 2 5 ) . 0 5 3 . 1 8 0 . 0 5 3 . 1 8 7

( . 2 5 , . 2 5 , . 7 5 ) . 1 0 7 . 2 5 8 . 0 9 0 . 2 4 3

n  = 15

a = . 01 a = . 0 5 a = . 0 1 a = . 05

( - . 2 5 , - . 2 5 , . 2 5 ) . 070 . 2 3 1 . 093 . 2 6 7

( . 2 5 , . 2 5 , . 7 5 ) . 1 6 2 . 3 8 5 . 1 9 4 . 4 1 6
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TABLE 6
POWER FOR COVARIANCES (a, a, a ± .5); \x = (0, 0, 1)

NONUNIFORM UNIFORM

II
a = , u j. —  ne

(-=25;-,25.,25) .033 .127 .027 .111
(-.25,--.25;-.75) =029 .111 -034 .123
(.25;.25;.75) =065 .232 .040 .181

n = 6
g = .01 g = .05 g = .01 g = .05

(-.25,-.25;.25) .100 .292 .093 .281
(-.25;-.25;-.75) .072 .220 .068 .218
(.25;.25;.75) .223 .529 .217 .537

n = 10
g = .01 g = .05 g = .01 g = .05

(-.25.-.25;.25) ,271 .545 .224 .500
(-.25,-.25;-.75) ,173 .412 .186 .429
(=25;.25;.75) ,561 .864 .537 .800

r. = 15
g = .01 g = .05 g = .01 g = .05

(-.25;-.25;.25) ,460 .745 .461 .713
(-.25,-.25;-.75) .346 .584 .355 .638
(.25;.25;.75) ,854 .983 .838 .963
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TABLE 7
POWER FOR COVARIANCES (a, a, a + .5); u = (0, 0, 2)

NONUNIFORM UNIFORM
n = 3

g = .01 g = .05 g = .01 g = .05
(-.25,-.25,.25) .096 .385 .107 .377
(.25,.25,.75) .263 .621 .240 .603

n = 6
g = .01 g = .05 g = .01 g = .05

(-.25,-.25,.25) .585 .867 .548 .831
(.25,.25,.75) .900 .995 .411 .908

n = 10
g = .01 g = .05 g = .01 g = .05

(-.25,-.25,.25) .938 .994 .924 .991
(.25,.25,.75) 1.000 1.000 .998 .999

n = 15
g = c 01 g = .05 g = .01 g = .05

(-.25,-.25,.25) 1.000 1.000 1.000 1.000
(.25,.25,.75) 1.000 1.000 1.000 1.000
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TABLE 8
POWER FOR COVARIANCES (a, a, b) ; u == (0, 0, .5)

NONUNIFORM UNIFORM
n = 3

g = « 01 g = .05 g = .01 g = .05

(0.0,0.0,.75) .019 .095 .019 .087
(.05,.05,.9) .041 .116 .017 .073

n = 6
g = «01 g = .05 g = .01 g = .05

(0.0,0.0,.75) .053 .155 .032 .130
(.05,.05,.9) .080 .176 .038 .144

n = 10
g = .01 g = .05 g = .01 g - .05

(0.0,0.0,.75) .069 .203 .066 .227
(.05,.05,.9) .093 .213 .068 .235

n 15
g = .01 g = .05 g = .01 g = .05

(G.0,0.0,.75) .125 .328 .135 .321
(.05,.05,.9) .153 .369 .163 .367
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TABLE 9
POWER FOR COVARIANCES (a, a, b)i n = (0, 0, 1)

NONUN IFORM UNIFORM
n = 3

ot =• .01 a = . 05 a = .01 a = .05
(0.0,0.0,-.75) .038 .139 .032 .142
("o5,“ .5,.5) .042 .134 .031 .129
(0.0,0,0 ,75) .060 .183 .033 .162
(.05,.05,.9) .086 .264 .047 .175

n = 6
a = .01 a = .05 a = .01 a_ = .05

(0.0,0.0,-.75) .092 .271 .075 .245
(-.5,-.5,.5) .092 .255 .079 .249
(0,0,0.0,.75) .170 .445 .163 .431
(.05,.05,,9) .226 .517 .177 .450

n = 10
a = .01 a = .05 a = .01 a = .05

(0.0,0.0,-.75) .198 .444 .210 .444
(-.5,-.5,.5) ,225 .486 .235 .469
(0.0,0.0,.75) .421 .744 .422 .699
(.05,.05,.9) .495 .826 ,469 .747

n = 15
o = .01 a = . 05 a = .01 a = .05

(0.0,0.0,-.75) .395 .620 .393 .635
(-.5,-.5,.5) .475 .752 .461 .707
(0.0,0.0,.75) .713 .923 .673 .882
(.05,.05,.9) .807 .977 .767 .923
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to a treatment group which has the more extreme covariance 
with another treatment group. To study the effect of per­
muting the means, two covariance matrices were selected.
One matrix, with covariances (.5, .5, .75), is moderately 
nonuniform emd the other matrix, with covariances (0.0, 0.0, 
,75), is highly nonuniform. The new mean vectors are (1,0,0) 
and (2,0,0). In Figures 2 and 3, the result of comparing the 
uniform case with both permutations of the two mean vectors 
is shown for a = .01 and .05. For the moderately nonuniform 
case in Figure 2, it appears that placing the higher mean 
with a treatment group that has the lower covariance with the 
other groups results in a decrease in power. For the highly 
nonuniform case in Figure 3, the same is true for n = 10 and 
n = 15, but power continues to be greater when n = 3. For 
n = 6, the results are mixed.

Heretofore, only matrices with covariances of the form 
(a, a, b) have been shown. The behavior of power for matrices 
with covariances of the form (a, b, c) is shown in Figure 4 
for a = .01 and in Figure 5 for a = .05. In both figures the 
mean vector is (0,0,1). Here a and c are constant, while b 
varies. These figures show that in general the nonuniform 
case has greater power and that the discrepancy increases as 
the nonuniformity of the covariance matrix increases. For 
comparison, the case with zero covariances is also included.

Attention is given now to the robustness of a-levels 
foi’ covariance matrices of order 3. In Figures 5, 7, 8, and
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FIGURE C. POW ER CURVES FOR MATRICES OF THE 
FORM ( a . b . c  ) ; ^ 3 ( 0 , 0 , 1 )  ; Q c = .0 1 .
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9 s for the indicated nonuniform matrices and the null mean 
vector, percent significant is shown at a = .01 and a = .05 
for each value of n. The expected values shown in each 
figure were obtained by averaging the means for the 10 uni­
form cases in Figure 1 over sample size. For several matrices 
in each figure. The estimaxed a-levels are considerably higher 
than the levels obtained for the uniform matrices.

Since the estimated a-levels should not be dependent 
on sample size, the values were averaged over sample size for 
each nonuniform matrix. These averages are shown in Figure 
10, in order of increasing nonuniformity of the covariance 
matrices. The average values over all sample sizes for all 
the uniform matrices are indicated by broken lines. It is 
clear that percent significant tends to increase as nonuni­
formity increases.

Power for cases with nonuniform matrices of order 4 
was first examined by varying the range of the covariances 
while the average covariance remained constant. The results 
are shown in Figure 11. Little difference in power is seen, 
except for some increase for the case with the larger range 
or covariances, at n = 10 and n = 15. For comparison, power 
for the case with zero covariances is also shown in Figure 11.

In Figures 12 and 13, the matrices all have the same 
uniform covariance matrix and range, but the extent of non­
uniformity is varied. In general these nonuniform cases show 
an increase in power over the uniform. However, the amount of
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change does not consistently increase when nonuniformity in­
creases.

The effect of permuting the means is shown in Figure 
14 for the moderately nonuniform matrix (.3, .3, .3, .3, .3,
.9) and in Figure 15 for the highly nonuniform matrix (.3, 
c 3 f c9f c3f o3)= For the larger values Or n,- the power
is reduced by the permutation. For the smaller sample sizes, 
power is still increased when compared to the appropriate uni­
form case if o = .01. When a = .05, power continues to be in­
creased only when n = 3.

To examine robustness of the a-levels, percent signif­
icant is shown in Figure 16 for several cases in order of 
increasing nonuniformity. Each point represents the average 
over sample size, for o = .01 or .05. The broken lines repre­
sent average estimates of the a-levels obtained. It is appar­
ent that use of the criterion for the usual F-test results in 
underestimation of the correct a-level, even for only moderate­
ly nonuniform cases.

The results of using the conservative test given by 
Greenhouse and Geisser [1958] are shown in Tables 10 and 11. 
Table 10 shows the reduction in power from the usual test which 
is obtained. Table 11 shows the reduction in average (over 
sample size) percent significant obtained for several cases 
when the mean is the null vector.
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TABLE 10
COMPARISON OF POWER; COVARIANCES =
(.25, .25, .75); u = (0, 0, 1)

n = 3  n = 6  n = 1 0  n = 1 5
a=.01 a=.05 a=.01 a=.05 a=.Oi a=.Û5 ct=.01 a=.05

Usual
Test .065 .232 .223 .529 .561 .864 .854 .983
Conser­
vative .004 .064 .049 .288 .216 .673 .535 .924
Test

TABLE 11
COMPARISON OF PERCENT SIGNIFICANT;

y — (0, 0, 0) OR (0, 0, 0, 0)

(.25,. 25,.75) (.05,. 05,.9)
(.3,.6,.6, 
.6,.6,.9)

(«3,.3,.3, 
.9,.9,.9)

a= 1% a= 5% 0£= 1% a= 5% a= 1% a= 5% o= 1% a= 5%

Usual
Test 1.550 6.325 2.625 8.400 1.800 6,450 4.100 9.500
Conser­
vative
Test

.250 2.025 .300 3.400 .000 1.000 .400 2.775



CHAPTER IV 

DISCUSSION AND CONCLUSIONS

Tlie results of the power studies presented in Chapter 
III show that nonuniformity of the covariance matrices may 
increase or decrease the power of the usual F-test. The di­
rection and amount of change seem to depend on the degree of 
nonuniformity, the permutation of the means relative to the 
covariances, the significance level, and the magnitude of t 
and n. In general, the change in power is not large, and if 
the usual F-test is used for data in which the assumption of 
nniformity is untenable, tables for the Non-central Beta dis­
tribution [Graybill, 1961] could be used in conjunction with 
the appropriate uniform case to give a rough approximation of 
the power of the test. It should be noted that, except for 
small negative correlations, the F-test is more powerful for 
correlated data than for uncorrelated data from thi^ design.

The case where n = 3 is of particular interest. Here,
there is no alternative multivariate procedure, since n £  t
for t = 3 or 4. The only exceptionable results obtained for
n = 3 occurred when the means were permuted (Figures 2, 3, 14,
and 15). For the highly nonuniform case when t = 3 and for
both nonuniform cases when t = 4, power continued to be
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increased when the means were permuted. This also occurred 
for n = 6 at the lower levels of power.

Before consideration of the effect of nonuniformity 
on a-levels, the accuracy of the sampling procedure in esti­
mating these probability levels is demonstrated in Table 12. 
Here, the average percent significant obtained with the ten 
uniform matrices of order 3 and with the three uniform metric 
of order 4 is shown. It is seen that these values tend to de 
crease as n increases, and the over-all effect is underesti­
mation of a.

TABLE 12
AVERAGE PERCENT SIGNIFICANT FOR UNIFORM 

MATRICES; y = (0,0,0) OR (0,0,0,0)

n = 3 n = 6 n = 10 n = 15 X

a = 1% 1.080 .990 .760 .700 .883
t=3

a = 5% 5.170 5.240 4.930 4.380 4.930
a = 1% .933 1.200 .700 .933 .942

t=4
a = 5% 5.200 5.433 4.533 4.300 4.867

Figures 10 and 16 show the increase in percent signif
icant as nonuniformity increases. A clear-cut increase is 
seen even for relatively nonuniform cases. The results for 
n = 3 were essentially the same as results for higher values 
of n. When t = 3, the most nonuniform case, with covariances 
(.05, .05, .9), showed 2.625 percent and 8.400 percent



significant. When t = 4, the most nonuniform case, with co- 
variances (.3, .3, o3, .9, .9, .9), showed 4.1Ü0 percent and 
9.500 percent significant. These values may be acceptable in 
many experimental situations.

The results of using the conservative test are shown 
in Tables 10 and 11. It is evident that use of this test can 
seriously reduce power and c-levels, even after consideration 
of the tendency of the sampling method to underestimate the 
o-levels.

It should be noted that the results given in this paper 
are applicable only to tests for equality of means when the 
observations are correlated among treatments. If observations 
are correlated within treatments, Box [1954b] has shown that 
severe disturbance in the a-levels may occur, when the under­
lying model is like the second model given in Chapter III.

In conclusion, it is found that the power of the usual 
F-test is not significantly affected by nonuniformity of the 
covariance matrices. Marked changes do occur in the a-levels, 
but the differences are such that use of the usual F-test may 
still be acceptable in many instances. If this test is used, 
the a-level may be estimated by one of the cases presented in 
this paper. When the usual F-test is used for other cases, it 
should be noted that the tabulated «-level is too low. In any 
case ; the usual F-test appears to be a desirable alternative 
to the conservative test.



CHAPTER V

The repeated measures design analysis of variance is 
a statistical technique which has wide applicability in medi­
cal research. The experimental design models for univariate 
repeated measures analyses allow for correlation among obser­
vations on the same experimental unit; however, one assumption 
for most of these models is that all the pairwise correlations 
must be equal. This assumption is not met in many experimen­
tal situations, so the standard univariate analyses of vari­
ance may not be appropriate. There are no decisive criteria 
for selection of an alternative analysis, and the standard 
analyses of variance may be insensitive to violation of this 
assumption.

The present study is an investigation of the robust­
ness of the standard F-test for equality of treatment means 
when the observations are correlated among treatments. Com­
puter simulation techniques were used to investigate balanced 
one-way designs with correlated observations for 3 and 4 
treatment groups. The number of observations per treatment 
group were 3, 6, 10, and 15. A variety of treatment mean
vectors were used, and both the power of the test and the
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stability of the a-levels were investigated.

The results showed that the power of the F-test is 
altered very little by inequality of the covariances. The 
a-levels increase considerably as inequality of the covari­
ances increases. The highest a-levels found were 0.081} and 
O.OhI, w h e n  0.05 arid 0,01 respectively were expected.

It was concluded that, for a test of equality of 
treatment means when the observations among treatments are 
correlated, the standard analysis of variance may be used if 
it is noted that the tabulated p-value is too low.
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Distribution of the Test Statistic for the Uniform Case 
The following method of proof was suggested by 

Dr. Ro B. Deal, Jr.
Consider any model for which the vectors Yj, 

are independent and have the same t-dimensional multivariate 
distribution N(M,V). If

\r
21

then the distribution for the statistic 
t n
Z Z (y, - y )2/(t-l)

T = i=l i=l 1.
t n
z z - y< - y  ̂+ y )Z/(n-l) (t~l)

i=l j=l

is found by looking at the numerator and denominator sepa­
rately.

It is convenient to use the Kronecker product B B C  

of square matrices, B = (b^^) for i,j = l,...,m and 
C = (Cjj) for i,j = l,...,n defined by the mn matrix given in 
the following n x n blocks;

bjiC b^gC ... b^^c]; I
‘’■“ J

Elementary properties are listed in Marcus [I960]
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Two additional facts needed are that the left distributive law
holds and, for the case in which the elements have no divisors
of zero, as pertains here, if B 0 C = 0 , then 3 = 0  or C =mn m
0^. This type of product is easily generalized to matrices
not necessarily square, and if is the k-dimensional column
VCL: LWi.' O.L C3.XX X 05 Llidl

Y =

Y.X

n

has the distribution N(J^ 0 M, 0 V).

If
_ 1 nY» = i I Y. , n j = i j

then the quantity 
t n
S Z (y. -y 

i=l j=l
= n(Y. - 1 J J» Y.)' (Y.T X T I Jt q  Y.)

= nY.* (I •- 1 J J») Y. t t t t
n n

= è  Z Z Y_ (I_ - 1 J') Y

can be written as

Y'E_ 0 A^Y"n ■ ■ t

where is the idempotent matrix i and A^ is the
idempotent matrix



Theorem H.9 in Graybill [1961] says that if X is dis­
tributed N(M.V) then X*BX is distributed as a non-central chi- 
square x ”'(k,X) where k is the rank of B and X = ^ M ’BM if and 
only if BV is idempotent. Now

(C 0 D) (U 0 V) = (CU) 0 (DV), 
and it is easy to see that if C is idempotent then C 0 D is 
idempotent if and only if D is. Thus

(E_ 0 A. ) (I 0 V) = E 0 (A.V) n L n n t
is idempotent if and only if A^V is. For the repeated measures 
model, V is uniform and can be written as 

a*(l-p)I^ +
and

A^V = C ( l - p )  + p tE ^ ]

'■= a ^ C l - p )  ( I t - E ^ )

= o ^ ( l - p )  A^.

ETCcept for the constant a^(l-p), this matrix is idempotent.
In the denominator, 
t n
2 z (Yii-yi -y.i+yi=i 3=1 "

= 2 [Y.-Y.- 1 J J> (Y.-Y.)]' [Y.-Y.- 1 J. J* (Y.-Y.)]j=l J t t t ] ] T T t ]
n

-■ Z (Y.-Y.)' A (Y.-Y,)
j = l  3 t ]

= J l  J l  j l  ^  («qr- i>

- Y'A S A^ Y. n t
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Now,
(A^ 0 A^) (I^ e V) = A^ 0 (A^V) 

which except for the constant a^(l-p) is idempotent.
The rank p(B 0 C) = p(B)pCC) so the rank of the numer­

ator is p(Ej^)pCA^) = (1) (t-1) = t-1 and the rank of the
^  ■? ^  / A \ f A \ —  —VL̂AAWili.X.4X<.̂ V \#/j. p V < *

Theorem 4.22 in Graybill says that if X is distributed 
N(M,V) then X'AX and X'BX are independent if and only if 
AVB = 0 .
Here,

<En « At) " n  8 V) (A* 8 A^)

= CEjjAjj) 9 CA^VA^) = 0 .

Thus, T is distributed
-  1F ‘C(t-l),(n-l)(t-l); X = i  M'VM]
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COMPUTER PROGRAM

T H I S  FRO^RAK IS URITTE>'  l U  BASIC EORTR' '  ' i  \/
FOR AM IBM 1 8 0 0  COMPUTER

RPAL !' EA' \ 'S( 1 0 !
n iMFMSIC'N A ( i n , 1 0 ) , R ( i n , 1 0 ) , C ( 1 0 , 1 0 ) , Y O A T " ( 1 5 , 1 0 )
HIM EOS i n ; '  E ( 1000 ) , T O P A n ( 1 5 0 )  , P ^ O P K I E )  , T R T ' T  ( 10 ) 
nTOEos I OM T A B F ( P I Î , I T A B { 2 1 ) , XOAT A ( 1 5 , 1 0 )
OFFIOE F I L -  1 ( 1 6 0 0 0 , 3 , 0 , IFOO)

C
C MFAMS TS t h e  ASSIGNED MEAN VECTOR,  READ EPOM CARDS_
C A IS T'-fP pnpOLA I lUO VARIAA'Cfc-COVAKl  Ai ' C t  ATR f X . I I I S 
C RE AO F POM CAROS
C R CO! ' T A INS CC-TRAMSPOSE
C C IS A DTAGOMAI. MATRIX SUCH THAT CC-TRAMSPOSF EOIJALS A
C AND SUCH THAT XDATA-TRAMSPOSE EOIJALS C=:=YDATA-TRAl 'S POS E
C YDATA CONTA I MS RAMDOM NUMBERS D I S T R I BU T E D  M ( 0 , I ) ,
C READ FROM DISK
C XDATA CONTAINS RANDOM NUMBERS D I S T R I B U T E D  M ( M , A )
C XDATA CONSTITUTES ONE SET OF SIMULATED EXPERIMENTAL DATA 
C F CONTAINS THE 1 0 0 0  COMMUTED F VALUES 
C TOBAD IS A WORK ARRAY FOR PASSING NUMBERS FROM DI SK  
C TO YDATA
C PFOPL I S  A ' 'ORK ARRAY USED I N  THE ANALYSTS op VARIANCE
C TRTMT I S  A WORK ARRAY USED IN THE ANALYSI S  OF VARIAT'CE
C TABF CONTAINS VALUES FROM AN F TA B L E ,  READ FROM CARDS 
C ITAB CONTAINS THE FREQUENCY D I S T R I B U T I O N  OF THE 1 0 0 0  
C COMPUTED F VALUES 
C 
C
C I N I T I A L  I NPUT/ OUTPUT 
C

R F A D ( 2 , 4 0 1 )
R E A D ( 2 , 4 0 2 ) K S I Z E , N C E L L , I R A N D  
R E A 0 ( 2 , 4 0 3 ) ( ( A ( I , J ) , J = 1 , K S I Z E ) , I = 1 , K S I Z E )
READ( 2 , 4 0 4 ) ( M E A N S ! j ) , J  = 1 , K S I Z F )
R E A D ! 2 , 4 0 5 ) ( T A B F ( I ) , I = 1 , 2 1 )

401 FORMAT! '  T H I S  IS THE USER LABEL .  CAN BR UP T O ' ,  
1 '  BO CARD COLUMNS ' )

402  F O R - - A T ( P I 2 , I 5 )
4 0 3  E 0 R M A T ( 7 F 1 1 . 8 )
An/, FORMAT ( l O F B . 3 )

F O R M A T ( 8 F 1 0 . 5)
W R I T E ! 3 , 4 0 1 )
" R I T E  ( 3 , 6 0

6 FORMAT( / / / / 3 0 H  T H I S  I S  THE COVARIANCE MATRI X)
N ^ I T ^ ( 3 , 5 ) ( ( A ! I , J ) , J = l , 1 0 ) , 1 = 1 , 1 0 )  " R I T F ( 3 , 9 ) ( " E A N $ ( I ) , I = 1 , K S I Z E )

Q FORÇAT!  / / / '  THE VECtOR OF .MFA.OS IS » , /  ( ' 0 ' ,1 O F l n  .A ) ) 
' " ■ ^ I T F ( 3 ,  1 0 ) ' < S I Z E  

10 FOR' A T ! / / / :  THE NUMBER OF TREATMENT GROUPS I S ' , 1 3 )  
O R I T F ( 3 , 2 1 ) ' C F L L , I R A N n  

21 FORMAT!  ' T'-!F SAMPLE S I Z E  I S ' , 13 ,
1 / '  THE STARTING RANDOM NUMBER I S ' , 16)

C
C F ' f ' D  C SUCH THAT CC-TRANSPOSE EOIJALS A

404405

r DO 11 I R = 1 , K S I Z E
11 C ( I R , 1 )  = A ( T R , 1 ) / SORT ! A ! 1 , 1 ) )  

DO 1 A TR = 2,KS I Z E
DO 16 I C = 2 , I RIF! IC-I R ) 1. 6, i 2 , 99912 SO-'=0,0

59



fin
L = I R - 1  lin 1 ? ' cl , L 

13 Sl i ' '  = ?U' i+C ( TP , P ) * * 2
r. f TR . I R ) = s n p T (  A ( IR , IR ) - S U M)  
nn To 16 

1 4 SI'.' - 0 . 0  
L = î C - l  
no i f i  m c i . l  

1 4 Sl l ' :  = SI!i : + C I I R , I-. ) - G  ( I C , )
G ( IR , I C )  = ( M  ÎR r Î G ) - S i i ' ' )  /G ( I G,  TG )

16 GO'^'T Tnl iF
nn  17 1 = 1 , 1 0  
on 17 j = i , i o

17 A( T , . l ) = 0 . 0
c
c OMTRA F I  MIS T'-^F TRAi 'SPOSF OF G 
G G'" PRO F i V D S  GG-TRAMSPOSF 
G

GALL C - ' - T R A ( G , « , 1 0 , 1 0 )GALL G''PR0(G,B,A,10,lo,lo)
W R T T F { 3 , 6  )

5 f o r m a t ( / , 1 0 ( / '  • , l O F l l . 6 ) / / / / )
6 FORGiAT ( / / / 1 7 H  T H I S  MATRIX IS G)
7 FORMAT! '  T H I S  MATRIX I S  GG-TRAMSPOSE ' )

' i R I T F  ( 3 , 5 ) ( ( G ( I , J ) , J = 1 , 1 0 ) , I = 1 , 1 0 )
' • ' R I T F ( 3 , 7 )

G ORI G I N AL  A - MA T R I X  WAS DESTROYED BY GMPRD 
G A NOM CONTAINS GG-TRAMSPOSE 
C

W R I T F ( 3 , 5 ) ( ( A ( I , J ) , J = 1 , 1 0 ) , I = 1 , 1 0 )
GO TO 18 

999 h r i t F(3,8)
18 GONTTNOE

8 FORMAT( 18H0PR0GRAMMING ERROR)
C
C SAMPLE RANDOM NUMBERS ON DI SK 
C

I 0 M F N = K S I 7 E * N C E L L
GAI.I RANOO ( TRAND. TX .XNOT )
00 150 I0VER=1,1000 
DO 119 I=1,n g ELL
on 119 J = 1 , K S I 7 . E

119  XOATA( I , J ) = O . Q
101 g a l l  R A N D 0 ( I X , I Y , X N 0 T )

IX = IY
C
G IS l Y  SUI TABLE FOR I NDEXI NG DISK F I L E  OF 
C N ( o , I )  RANDOM NUMBERS 
G

X I Y = T Y
FTN0X=(XIY+2.)/2.
i r ’DX = F TNOv
I F ( I N D X - 1 6 0 0 D ) 1 0 4 , 1 0 4 , 1 0 2

102 ' ' R I T ! = ( 3 , 1 0 3 ) I Y
103 FOROf iT(?OH RAN n o n  INOFX NllMiB ER , I 6 , 1  2H IS p FJECTFO)  

GH TO 101
G
G î f ' S l i RF I n o p  F'^n:  FTU= iN'MP FR 1 6 0 0 0  TO F I L E  MDOBFR 0 0 0 0 ]
G

104  L=0 
TCAN=o 
TTBAn=0
ÔO 170 1=1, TOi E:-'120 TOBAO(T )cn,n1 c A f' '=14 0 01 - T ■:< ! n X -1 o : : F1 'IP(T GAN)105,111,111

i I l  f' I'.fic 1 f i nn i -  I ’ i) X
READ I 1 ' I M O X ) ( T O B A D ! I  ) , I = 1 , I T h A 0)



{ • d * v T d *  I = d i  ‘ XUÏ  ‘  d * £ l d l  
= d'dVduSb i‘5*6d‘i = yVdX i*ai‘i = AIVj i ‘ Ç, I) iV/!'d Jd Vbl 

{ bdAu J ) d * dd 'dSi ‘ Ui j V ob ‘ A I ‘ ddAÜl { 9d I ‘ v: ) 3 i I dm
d d Ü S i / ± a i b) i - { d d / dJ i ) d 

( ( * C-dZ ISX )=:= ( * 1-113 0.-') ) /SddS9 = ddùSi 
I *I-3ZIS'>i)/i'oiSS = i'dibi

0Sd'd^li'oS IVdy; Ui jid 0
Jir)ibS-ÜddSS-iUiSS = bdabS J. di S S' 1 13 0 i j= 1 d 1S S 

ÜddSS*dZIS%=UdaSS 2:;o;:( r)i;Jiyi-i-iciiSS = idiSS bST 
iido.-i/ (r )i';-.idi=(r)ir:idi

d Z i s x ' i = r  Sdt Ü U 
2 ( I ) 1dÜ3d+üdci SS = ü d o  SS v bï
dXiS>;/( I ) 1 d u d d  = ( i ) I d u d d  

1130i-.'‘ l=I 7̂dl ÜÜ 
(r * I ) V 1 V Ù X + (r )i w i d i = (r )i n l a i  e s i 
( r* I) \/lVuX+( I) 1 d U d d =  { I ) I d u d d  

32isx*i=r e s T  U Ü 
1 1 3 0 M * T = I  Ebl UÜ

e=;=̂ ;=(r‘I)viVQx+iuiss=iüiss esi
0SB'dvnus du swns ii? uuid o
0ü N v y o - { r ‘ I)v i v u x = ( p ‘ I )vivux

dZIS>i‘l = r Z9l UQ 
1130N'l=I ZSÏ UO 

N3nUI/l9iüi=UNVdO
(r*I)vivax+iviui=iviui isi dZis>:n=r 1ST UQ 1 1 3 0 W ‘I=I 1ST ÜÜ

0
SK‘ûiiv/\y3saü 11V wuyd wvdij owvao iovaians uijv uuid o

0
U*U=iülSS 
ü ' U = i ü i S S  
U*0=ü3dSS 
ü*0=lViÜl 

Û * U = ( D  l u i b l  
3ZISX*î=r 971 ÜG

U'U=(I)1dUdd S VI 
liaOm'^ 1=1 SvT üG

0
aONViaVA dû SISAIViNiV 3H1 0

0
ani-jIii\u0 VII ( n ) su Vd ■••'+ ( r * I ) VI vü x= ( I) V ivux

d Z I S X ‘T =r vll U G
11dOi,‘ï = I 7ÏI ÜU

3(r,'ii!iuO e n  
{ x ‘ I ) v i v G A * ( % * r i 0 + 1 r * I ) v i v G X = ( r * 1 ) v i v u x

I'* 1 = /, e u  dû
d Z i s > i U = r  eu uu
MdJi';'L=l blL UU  Cil

0
( > i ‘ I ) A : ; : ( X ‘ r ) 0  du r  ü i  I  v.udd 0 

X i-:u U IS =  ( r  u  ) X S I IV'O I iV l- id ü d S :- :V 'd l  3H1 dud V l i l . U u d  d :d l  0 
( V ̂ d ) w u i  ( I ‘ u) l \ '  UUüd S dd &;•!( I:-! : ; a Ud Sm V'd i  0

0
(dzis>i ‘ i = i ' ‘ ( i i d o . u i  = u  ( r ‘ n v i v u A )  ) (xu. i i  • \ luvdo n i

d l L u i  U'J 
(1 ) G V H Ü i =  ( r u  ) vI v'üA V ül 

I+11dOu=:--( I - r ) = 1  
3 Z I S > l U  = r 9 u l  U U 
11dO:-:‘ ï = I 9Ul uu 

(iU ; : G I ‘u  Vaii = I ‘ ( D U V O u l  ) ( I • I luVa'd
T+UVbiI=uvaiI

19
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i s n  Cn-iTTiMIIF

nn 203  r = i , 2 1  
2 03 T T A - ( I ) = 0

C
C O F O r ^ ' i n r ,  np  i . nnp  TO OROEP a MO TABULATE ThO 5 * 2 0 0  
C COMPIITEO E ' /ALUES 
C

on 2 5 0  i ' M . L  = l , 5  
'( = 2 o n o ( ; : A L L - - l  )-Hl 
KT. = 2 0 0 : : 0 A L L

C
C nr .n =  n a m p  n p f j p  2 0 0  E VA LOFS
C nROCDj t . i r ,  i M F T o n n  TEST F ( I )  AGAINST ALL LO'-'PR VALUFS.
C '"OEM PPQDEP P n S I T I O l '  FOR E ( I )  IM ARRAY I S  E n i i M O / ' n \ / F
C ALL  HIGHER VALUES HP OHE STEP F '  THE ARRAY A HO PUT
C f o r m e r  F ( I )  IN THE REMAI NI NG P OSI T I ON 
C

nn 2 1 0  l - i < , : ; K  
I L T N = I - 1HOLOrzE ( I )
nn 2 0 9  J = K , I  L I N  
I E I H O L D - F I J ) 1 2 0 1 , 2 0 9 , 2  09 

201  N n v E = i + l  
M F N n = i - j  
no  2 0 2  M=1,MEND 
M n v E = ( i n v E " i  

2 02 F ( M n \ / E ) = F ( N n V E - l  )
F(  J ) = H 0 L D  
on  TO 2 1 0

2 0 9  CONTINUE
2 1 0  CONTINUE 

W R I T E ( 3 , 2 1 1 ) K , K K
W R I T E ( 3 , 2 1 2 ) ( F ( I  ) , I = K , K K )

211  f o r m a t  ( / / / '  ORDERED F VALUES,  F ( ' , I 3 , M  TO F ( ' ,  
1 1 4 , ' ) ' )

2 1 2  F O R M A T ( / ( I H  , 1 0 E 1 1 . 6 ) )

C COMPARE THE AROVE 2 0 0  ORDERED F VALUES WITH THE TABULATED 
C F VALUES AND COUNT THE NUMBER IN EACH INTERVAL 
C
C TARE VALUES a RE READ I N  INVERSE ORDER------
C HIGHEST TO LOWEST
C T A B F d )  I S  THF TABULATED F VALUE FOR WHICH THE P R O B A B I L I T Y  
C OF A SMALLER VALUE I S  . 9 9 9 9  
C T A R E ( 2 )  I S  THE SAME FOR . 9 9 9 5  
C T A B F ( 3 )  I S  THE SAME FOR . 9 9 9
C T A B F ( 4 )  I S  THE SAME FOR . 9 9
C T A B F ( 5 )  I S  THE SAME FOR . 9  75
C T A B F ( 6 )  I S  THE SAME FOR . 9 5
C ETC.
C

I T  = 21
I E ( E ( K ) - T A B E ( 2 1 ) ) 3 0 1 , 3 0 1 , 2 6 0  

2 6 0  DO 2 65 J . 1 = 1 , 2 1  
I T = I T - 1
I F ( E ( K ) - T A B E ! I T ) ) 3 0 1 , 3 0 1 , 2 6 5  

2 6 5  CONTINUE
301 un 309 T=K,KK
3 1 0  T F { F ( I ) - T A R E ( I T ) ) 3 0 9 , 3 0 9 , 3 0 2
3 0 2  I T A B ( I T ) = T T ' ^ 3 (  I T)  + I - 2 D 0 * (  N A L L - 1  ) - l  

I T = I T - 1
I F ( I T ) 2 5 0 , 2 5 0 , 3 1 0  

3 0 9  CONTINUE
I F ( I T > 2 5 0 , 2 5 0 , 3 2 0  

32 0 nn  321  1 = 1 , I T  
32 1 I T A % ( I ) = I T A B ( I ) + 2 0 0
2 5 0  cnMTTNUF

C
W R I T E (3,311)
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^ ' P î T F ( 3 , ? l ? )
' • ' P T T = ( 3 , 3 1 ? )  ( I T A R (  I ) , T A n F ( I ) , I = 1,  1 )"F îiF ( 3, 31. A)

311 Pnp ' A T ( / / / / '  MUMBF3 HF VALUES LESS THAM 0 R ' , 1 2 X  
1 ' T A f . H L A T F n  l ' A L D E '  )

31 2 Fnr' , ‘. - A j ( i  P-^i iAL TH THE TARl i LATED VA LU F ' )
3 1 3  Fnn A T ( / ( 1 3 X , I 4 , 2 2 X , F i n . 3 ) )
31 /. priRi  AT { / / / «  FHI) r iF A N A L Y S I S ' / / / / / / / / / / / / / / / )  

CALL  EX I T  Ef-'O
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Box's Statistic for Nonuniformity 

The computed value of the statistic is tabulated for 
each covariance matrix and value of n.

t=3 (4 degrees of freedom)
covariances n=3 n=6 n=10 n=15

(0 = 0jQ.0,--.25) .021 = 148 = 31? = 529
(0.0,0.0,.25) .022 .156 .335 .558
(.25,.25,.5) .037 .261 .559 .932
(-.25,-.25,.25) .074 .517 1.108 1.846
(o5,.<j,.75) .093 .649 1.391 2.318
(”.25,-.25 ,-.75) .212 1.486 3.185 5.309
(.25,.25,.75) .215 1.501 3.217 5.362
(0.0,0.0,-.75) .290 2.029 4.349 7.248
(—.5,— .5,.5) .298 2.086 4.470 7.450
(0.0,0.0,.75) .328 2.299 4.926 8.210
(0,0,.25,.75) .340 2.383 5.105 8.509
(0.0,«5,.75) .601 4.207 9.016 15.027
(.05,.05,.9) .682 4.771 10.225 17.041

t=4 (8 degrees of freedom)
covariances n=3 n=6 n=10 n=15

(.375,.375,.375,.375, .375,
.525) .011 .138 .307 .519

(.35,.35,.35,.35,.35, .65) .049 .601 1.338 2.258
(.325,.325,.325,.325, .325,
.775) .128 1.578 3.512 5.929

(.3,.6,.6,.6,.6,.9) .240 2.972 6.613 11.166
(.3,.3,.3,.3,.3,.9) .30 8 3.814 8.488 14.331
(.3,.3,,4,.8,.9,.9) .482 5.957 13.279 22.420
(.3,.3,.3,.9,.9,.9) .517 6.390 14.221 24.009
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Uniform Matrix for Each Nonuniform Matrix 
Nonuniform Uniform

t=3
(OcOsO.O ,-.25) -.08333
(0.0,0.0 ,.25 ) .08333
(.25,.25 ,.5 ) .33333
(-.25,-.25,.25) -.08333
(.5 ,.5 ,.75 ) .58333
(—.25,— .25,— .75) — .416 6 6/nr  ̂ ^

. H J . D D O

(0.0,0.0,-.75 ) -.25000
(— .5,-.5,.5) -.16686
(0.0,0.0,.75 ) .25000
(0.0,.25,.75 ) .33333
(0.0,.5,.75) .41666
(.05,.05,.9 ) -.16666

.4

.4

.4

.6

.4

.6

. 6


