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ON ROBUSTNESS OF THE F-TEST FOR
CORRELATED OBSERVATIONS

INTRODUCTION

The analysis of variance is a versatile statistical
tool which enjoys wide usage in many fields of study. One
type of analysis of variance design which is especially appro-
priate for many experimental situations in the medical field
is the repeated measures design [Winer, 1960]. Although there
are many different repeated measures designs, they all have
in common the fact that each experimental unit is used under
all levels of at least one factor. The suitability of this
design is due to the fact that the model accounts for corre-
lation between repeated observations on the same experimental
unit. This situation may arise, for example, in psychologi-
cal testing or in studies of hearing defects, in which each
person is subjected to a battery of tests.

Unfortunately the standard univariate analysis of
variance test for equality of means among correlated treat-

ment groups requires that the within-treatment group variances
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be equal, and that all the pairwise correlations between
treatment groups be equal [Box, 1954b; Danford and Hughes,

18957]. That is, the covariance matrix must have the follow-

ing form:
s —_
rcz pczC Q L] ® L] L] poz
pc? g2 .
pGl‘." ° o a L] L] L] L] 02 °
e o—

A covariance matrix of this form is called a uniform covari-
ance matrix. Undoubtedly the sample covariance matrix ob-
tained in many experimental situations does not meet this
requirement. As is the case with other violated model as-
sumptions for this and other design models, the statistician
must then consider alternative and perhaps more appropriate
methods of analysis. A decision as to whether to use a meth-
od other than ti.z usual analysis of variance would be based
on such considerations as the consequence of using the usual
test when an underlying assumption is violated, relative power
of the available tests, presentability of the results, and

complexity of alternative techniques.

for analyzing experiments with repeated measures, taking into
consideration the fact that the covariance ratrices may not

be uniform.
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In an experiment on growth and wear, Box [1950] dif-
ferenced the data to put it in a form which would give equal
variances and covariances. In that procedure, as the amount

of growth or wear increased with time, the observations were

pointed out that if interaction were present bztween time and
other factors in the experiment, the method would not be com-
pletely successful in yielding a uniform covariance matrix.
The author further stated that the validity of the usual uni-
variate analysis which he used must be checked by testing the
covariance matrix for uniformity. He gave a test statistic
which is approximately distributed as x? that could be used.
This statistic is discussed in Chapter III.

In another paper, Box [1954b] derived the distribu-
tion 6f entries in the univariate analysis otf variance table
. for an n-by-t data set in which the rows and columns repre-
sented fixed effects and the columns were correlated. This
work was based on general theorems given in an earlier paper
[Box, 1954a] which dealt with exact and approximate distribu-
tions of quadratic forms and their ratios. In the second 195
paper, Box showed that the null distribution of the ratio of

the column mean square to the error mean square is approxi-

mately that of F[t-1)6, (t-1)(n-1)6], where
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v is the mean of the diagonal elements of the covariance

ii
matrix, Vi is the mean of the elements in the ith row, and

o

Vv  is the mean of all the elements in the matrix.
Box then used the approximate distribution to study
the effect of special cases of serial correlation on the Type

I error rate tor the usual F-test. A positive bias was shown,

cases Box selected for study yield very low values for the
x2 test statistic, given in his 1950 paper as a measure of
nonuniformity, so his conclusions here are not unexpec:ed.
Geisser and Greenhouse [1958] extended Box's approxi-
mate test for among-column effects to the case where there
was within-cell replication. These authors aliso gave the
lbwer bound of o, 6;, as E—%—I where t is the number of levels
of the correlated factor. They then gave a conservative test
of among-column effects which is the same as Box's approxi-
mate test, but which uses 0r, instead of 6. The authors re-
commended the approximate or the conservative test for situa-
tions in which the covariance matrix is unknown and when a
more appropriate multivériate analysis is unavailable (e.g.,
when the experiment does not provide enough degrees of free-
dom for the error term of a multivariate test). Iowever.
the authors pointed out that the conservative test may be
too conservative.

In a2 1959 paper on the analysis of profile data,
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Greenhouse and Geisser illustrated several methods of analysis
for data of the type described above. Hotelling's generalized
T2 was used to illustrate a multivariate analysis of the data
for two groups. A generalization to g groups using Roy's
largest root criterion was also given. If univariate analysis

is to be used, the authors poinied out thai the effect pro-

%
duced on the approximate F distributions of Box's test by
ng @ from the sample data is unknown. They therefore
recommended the conservative test, which is independent of
the covariance matrix. Scheffé [1956] also criticized use of
the approximate test for this reason, and recommended
Hotelling's TZ2.

Elsewhere in the 1959 paper, Greenhouse and Geisser
recommended the following procedure if it is decided that a
univariate analysis of variance should be used:

First, the usual analysis of variance is performed.

If the computed F-ratio is nonsignificant, all other univar-
iate tests will yield nonsignificant results, and testing
stops. If the usual test is significant, the computed F-ratio
is then compared to the tabulated F value for the conservative
test. If the result is still significant, an exact test
would give significance also, so testing stops. If the result
of the conservative test is not significant, then the approxi-
mate test should be carried out.

Cole and Grizzle [1966] developed another multivariate

procedure which was based on the largest root criterion. The
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authors pointed out that the method has several disadvantages.
These are that a computer would be needed for the calcula-
tions, the tests of hypotheses are not independent, and the
method is not as powerful as the univariate tests.

It is seen that both univariate and multivariate tests

experiments, but both have disadvantages. While multivariate
procedures almost always are appropriate, they have a number
of disadvantages. Not the least among these is the relative
difficulty of computation, since these procedures require in-
version of the sample covariance matrix. Also important is
the fact that the multivariate tests are less powerful than
the univariate tests, when the assumptions for both designs
are met [Danford and Hughes, 1957; Cole and Grizzle, 1966].
Also, multivariate procedures cannot be used unless the sample
size exceeds the number of treatment groups. In addition, for
some repeated measures designs [Danford, Hughes, and McNee,
1960] the usual F-test will be appropriate for a portion of
the analysis.

When the univariate analysis is being considered for
data which have an unknown covariance matrix, two general
approaches are seen to be available. One is always to use
either the approximate or the conservative test. The possible
disadvantages of this procedure were pointed out earlier. The
second approach is to use Box's test for the uniformity of the

covariance matrix and then to select among the usuail,
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approximate, and conservative tests, depending on the outcome
of Box's test.
However, the practice of preliminary testing of assump-

tions is not without pitfalls. Box [1953] and Box and Andersen

Ffa20 < 4 .1 - e Y T e o e e -~ £an AAIa

11855 discussed the case of preliminary tests for equality of
rmam S mm e m el Teoo e — = L. - - = amds Loman mmeso y 4o
ariances wnen the main test is to be a test for eguality of

means. They pointed out that while tests for equality of means
are quite robust for heteroscedasticity and nonnormality, tests
for equality of variances are very sensitive to nonnormality.

. Thus a preliminary test of variances might be highly signifi-
cant when in fact the main test would have been disturbed very
little. It seems reasonabie that the same would be true for
preliminary testing of covariance matrices. Another problem
with preliminary testing is selection of the size of the pre-
liminary test while preserving the size of the main analysis.
In a paper by Bancroft [1964] the recommended size was as high
as 0.8 for some types of preliminary analyses.

It is evident then that selection of a procedure for
the analysis of repeated measures experiments can be difficult,
with no clear-cut criteria for selection. In addition, it 1is
doubtful whether any of these procedures offer a distinct ad-
vantage over the usual F-test.

The purpose of the present study is to exarine the
robustness of t+he usual F-test for a variety of violations of

the assumption of a uniform covariance matrix. Computer sim-
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with three and four correlated treatment groups. In order
that both the Type I error rates and the power of the tests
could be studied, a variety of mean vectors and sample sizes
were used. For some cases, the results of the conservative

F-test were compared to the results of the usnal P-test.



CHAPTER II

METHODOLOGY

The basic underlying model for the one-way repeated

measures design is

i=l'2,¢.o't

Y.. =p + 1. + 7: + €;.,;
b 1 J 1 . .
J J J=l,",-..,n.

The T; are fixed treatment effects, the "j are random person

effects, and the eij are random errors. Assumptions for the

t
model are that I =,
i=) ¢

dently distributed with mean 0 and variance o%, the eij are

normally and independently distributed with mean 0 and vari-

= 0, the “j are normally and indepen-

ance cé, and the T3 and €55 are independent.

In this paper, Yij denotes an observation on the jth
person under the ith treatment, Yi. is the mean of the obser-
vations on n persons under the ith treatment, y.j is the mean
of the observations under t treatments on the jth person,
and Y., is the grand mean. For this model, it can be seen

from the following equétions that the covariance matrix which

is appropriate for a vector of obhservations on a person is



and

Cov(yij, yiz)

Therefore,
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For the repeated measures design analysis of variance

appropriate for the above model, the treatment mean square,

TMS, is
t n
1 T £
+t - 1i=1 =1
and
E(TMS) = __1
t = 1

i, - v, 0%
L (1s -T2+ g2,
i=1 =1+ e
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The error mean square, EMS, is

t
1
= I I ly.s ~y:. -y .+y )2

- - . . - - o e

-1 (£-1) i=1 §=1 1) i J
and

- :___2
E (EMS) of -
If TSS and ESS are respectively the treatment and

error sums of sqguares, it can be shown that

t n
TSS/62 = I (y; -y, )%/02
€ i=13=1 e e
is distributed as
n t' :
x®2(t-1,A), A =332 ¢ (1, -7T)2
: e i=1 1 °
and that
< t n
ESS/oi = z I (Y:s = ¥: =Y + y )2 /02
S i=1 §-L v - *J . e

is distributed as
x2{n-1) (t-1).
Therefore the usual Central F-ratio of TMS/EMS may be used

to test the hypothesis that t1;,= 7, = | = 1¢. The above
distribution for this ratio is derived in Appendix A.
There are other models which give the same distribu-

tion for the Yj's. One alternative model is

and 8. represent fiwxed treatment effects and the e,.
1]
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are random errors. The assumptions for this model are that
n

Z €. =0 I B:. = 0, and tne e.. are distributed normall

j=1 i j:]‘ J ? ' 1) Y

with mean 0 and variance ¢2. Also,

cov (e.., e, .) = pa?, i # k

Anvyr (o o Y =N
-~ L

S 4 0
LOTO N 4 .,v:zl-—v,.}ra’

This model was discussed by Box [1954b].

Both of the above models may be used to describe a
randomized complete-block experiment also. In the first model,
blocks would be represented by the ﬂju In the second model,
blocks would be represented by the Bj, and the errors may be
correlated or uncorrelated [Steel and Torrie, 1960].

The first model described does not allow negative co-
variances for the Yj' Accordingly, the second model, which
does allow negative covariances, was included to extend the
.génerality of the results of this study. In any case, a more
~general covariance matrix is appropriate for a study of viola-
tion of covariance assumptions.

When the covariance matrix of Yj is not like the one

shown above, but takes the form

2
C 0120 - - ° [ .

Q

S
]
-
N
N
6 © o6 ¢ o 0 © pa
ct i

Q
g
ct

Q

|
rf&
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then the covariance matrix is not uniform, and the ratio
TMS/EMS
is not distributed as F [Box, 1954a,b].
To study empirically the robustness of the usual test
for equality of treatment means when the covariance matrix is

—— e T~ - o~ — b B L P P =
4

the following general procedure was used. From
a population of size 16,000 with a specified covariance matrix
and mean vector, 1000 data sets of size nt were drawn. Each
data set was subjected to the usual F-test and the result was
compared to the appropriate criterion value in the central
F-table. The percent of the computed F-ratios which exceeded
the tabulated value was taken as an estimate of the true Type
I error rate or power of the test under the specified condi-
tions. These results were then examined. The details of

the procedure follow.

First a pool of 16,000 random normal deviates was
stored on an IBM 1810 random access disk after construction
in the following manner. 16,000 pseudo~random (hereafter
called random) numbers distributed uniformly on the interval
(0,1) were generated using an IBM 1800 random number generator
and the IBM Subroutine RANDU [Scientific Subroutine Package,
1968]. This generator uses the multiplicative congruential
method of generating random numbers, according to the formula

W = 899W, (mod 215y,

n+l
The period for this generator is 8192 and two different ce-

quences of this length may be obtained through proper



14

selection of the numbers initially supplied to the generator
[Jansson, 1566]1. For convenience, the first 8000 numbers of
each sequence generated were used in this study.

As each pair of numbers was generated, it was used to
construct a pair of normal random deviates according to the

formulas

x, = (-2 logau,)% cos 2mu

2

X

n
&

(-2 log_u,)¥ sin 2mu,

where u;, and u, are the uniformly distributed random variables

and %, and x, are independent normally distributed random

variables with mean 0 and variance 1 [Box and Muller, 1958;
Muller, 1959].

For a single analysis of variance the main computer
program, SMAOV (Appendix B), first constructed the xﬁj’ in
part according to an algorithm given by Scheuer and Stoller
[1962]. The method uses the following theorem:

Let X be distributed N(0,I{) and let Z = CX. Then 2

is distributed N(0,CC'). 1In this case, CC' = V. Now,

— . .™M r~ =
u . lll lylj
+ . i = Y. = .
Z [-] J °
wot Tt [_Ytj .

The same process was carried out for each of the Yj, j = 1,2,
«e.s1y, in the experiment. The usual repeated measures analy-
sis of variance was then performed.

The covariance matrices studied were of order 3 or 4.
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considered. With no loss of generality, the covariance matrix

was taken to be equal to the population correlation matrix

1 plz o o L] L ] - L] p;

p.12 1 .

plt L] L] o o L] * L] 1 ©
e “—J

The statement that the covariances are (a, b, c¢) is taken to

mean that Py, = @

Pys = b, and 'p” = ¢. Similarly, the

statement that the covariances are (a, b, ¢, d, e, f) means

that p,, = @, p;3 = b, p,, T C P

F23 = d, Pza = e, and Pay © £.

All matrices used were positive definite.

For each covariance matrix studied, two types of mean
vectors were used. First the null mean vector was used to
estimate a, the probability of a Type I error. The second
- type was generally of the form (0, 0, m) or (0, 0, 0, m).

The values of m used were 0.5, 1.0, and 2.0. In some cases
only 1 or 2 of these mean vectors were used. The second type
of mean vector was used to study the power of the F-test. 1In
this study power is defined as the probability of rejecting
the null hypothesis (equality of treatment means) when in fact
the null hypothesis is not true.

In all cases analyses were performed with 3, 6, 10,
and 15 observations in each treatment group. The same data

sets were used to estimate the percent significant at a-levels
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of both .01 and .05 for all cases.
It should be noted that, in the case of a uniform
covariance matrix, for a given mean vector, the power of the

test changes as p changes. 1In order to make statements as

vhether the power of the test is altered by nonuniformity

ko)

ct
0

Ta~ Pt D e s belere ~
1Y) — WY CLde Lthdiws 4G

9]
Fh
ct

empirical determination of power was made for a variety of
uniform covariance matrices. The null mean vector together
with the uniform covariance matrices were used to judge the

precision and accuracy of the method in estimating a-levels.



CHAPTER III
RESULTS AND ANALYSIS

Examination of the tables and graphs in this chapter
is more meaningful after consideration of the sampling varia-
tion. In the offset graphs in Figure 1, for the indicated
uniform matrices and the null mean vector, percent significant
is shown at a« = .01l and o« = .05 for each value of n. Since
the off-diagonal elements are all equal in a uniform matrix,

a single covariance value is given to indicate a matrix on the
ordinate. The broken lines represent the expected values,
1.0% or 5.0% for each case. Variances computed according to

éhe formula

Il

62 = (100)%2 © (a3 - @)2/k -1

i=1l

are given in Table 1 for each value of & and n.

TABLE 1

VARIANCES FOR 10 UNIFORM CASES

n=3 n==a n =10 n =15
a = .01 .03951 .0766 .0582 .0622
e = .05 4423 .4227 .3490 .2929

17
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These compare well with expected variances based on the for-
mulia

02 = (100)? pg/1000
which gives 62 = .099 when « = .01 and ¢2 = .475 when o = .05.

In the power studies, 19 analyses yielding power in
the range of .100 to .900 had been duplicated. The differ-
ences between duplicates were pooled over mean vectors, a-
levels, and sample sizes to give a variance of .00016 for the
differences.

To grade the nonuniform matrices as to relative non-
uniformity, the statistic given by Box [1920] and mentioned

in CHAPTER I was used. The statistic is

T = (1-C)M
where

C = t(t+1)? (2t-3)/6(n-1) (t-1) (£2+t-4)
and

M =

--1) s0g, ([, 1/1vD).

Vo, is a matrix in which all the diagonal elements are equal to
the average of the diagonal elements cof V and the off-diagonal
elements are equal to the average of the off-diagonal elements
of V. The degrees of freedom for the statistic are given by
(t2+t-4) /2. The values of the statistic for the matrices

used in this study are given in Appendix C. Note that in-
creased differences among the covariances do not account

entirely for the increased nonuniformity.

In the power studies; a



[ "]
<o

p = (a+b+c)/3
was chosen as the uniform case against which to compare a non-
uniform case with covariances (a, b, ¢). The uniform matrices

when t = 4 were determined analogously. The uniform matrix

de

% used in th

ad ™

o
0
o
o
(8

il is given in

y=te

for each nonuniform matr

[3

Results are presented for covariance matrices of order
3 first. For matrices of orders 3 or 4, power studies are
presented before robustness for the a-levels is shown.

Some results of comparing power for nonuniform cases
to power for the appropriate uniform cases are seen in Tables
2 through 9. In each of the tables a mean vector is speci-
fied and the empirically detefmined power is given for a
group of nonuniform covariances for each sample size and
value of a«. The matrices within each table are tabulated in
order of increasing nonuniformity.

In Tables 2, 3, and 4, the covariances are all of the
form (a, a, a + .25) but with various values of a. 1In Tables
5, 6, and 7, the covariances take the form (a, a, a + .5) and
the range in location is larger. 1In Tables 8 and 9, the dis-
crepancies among the covariances are even greater. While dif-
ferences in power are seen in all the tables, a noticeable
and fairly ccnsistent increase appears in Tables 8 and 9.

For the mean vectors shown, power is in general

greater for the nonuniform cases than for the uniform cases.

However, note that in each case the higher mean value belongs
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TABLE 2
POWER FOR COVARIANCES (a, a, a + .25); » = (0, 0, .5)
NONUNIFORM UNIFORM
n =3
o= .01 o = _05 o = _01 o = _08
(0.0,0.0,.25) .016 .065 .017 .088
(.25,.25,.5) .022 .077 .017 .073 -
(.5,.5,.75) .025 .107 .028 .101
n==e
a = .01 a = .05 a = .01 a = .05
{(6.6,0.0,.25) .028 .133 .032 .109
(.25,.25,.5) .040 .137 .638 .144
(.5,.5,.75) .079 .199 .064 .215
n=10
a = .01 a = .05 a = .01 a = .05
(0.0,0.0,.25) .048 .180 .044 .182
(.25,.25,.5) ;081 .250 .068 .235
(.5..5,.75) .140 .359 .141 .370
n = 15
a = .01 a = .05 a = .01 a = .05
(0.0,0.0,.25) .081 .260 .103 .256
{.25,.25,.5) .1583 .368 .163 .367
(.5,.5,.75) .280 .560 .319 .577




TABLE 3
POWER FOR COVARIANCES (a, a, a + .25); uw = (0, 0, 1)
NONUNIFORM UNIFORM
n =23
= .01 a = .05 c = .01 = .05
(0.0,0.0,-.25) . 027 .126 .027 .111
(0.0,0.0,.25) .029 .132 .033 .140
(.25,.25,.5) .040 .164 .047 .175
(.5,.5,.75) .080 .265 .081 .258
n==s
= .01 a = .05 a = ,01 = .05
(OQOIO.OI“QZS) .110 a307 0093 0281
(0.0,0.0,.25) .120 .330 137 .325
(.25,.25,.5) .182 .458 177 .450
(.5,.5,.75) .361 .703 .348 .668
n =10
= .01 ¢ = .05 a = .01 a = .05
(000'000'-’-25) 0260 0490 .224 0500
(0.0,0.0,.25) .330 .601 .305 .591
(.25,.25,.5) .489 . 766 .469 . 747
(.5,.5,.75) 759 .933 .735 .931
n =15
= .01 a = .05 a = .01 = ,05
(000,0-01-025) 0489 o73l 0461 0713
(0.0,0.0,.25) .550. .788 .599 .834
(.25,.25,.5) .773 .934 .767 .923
(.5,.5,.75) .969 .996 .952 .993
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TABLE 4

POWER FOR COVARIANCES (a. a, a + .25); ¢ = (0, 0, 2)

(0.0,0.0,.25)
(-25,.25,.5)

(05'055-75)

(0.0,0.0,.25)
(.25,.25,.5)
(.5,.5,.75)

(0.0,0.0,.25)
(.25' 325'.5)
(.5,.5,.75)

(0.0,0.0,.25)
(.25,.25,.5)

{(e5,.2,.75)

NONUNIFORM UNIFORM
n=3
a = .01 a = .05 a = .bl a = ,05
.132 .416 .120 .421
.183 542 .208 .537
.360 .769 .324 .745
n==6
a = .01 a = .05 a = ,01 a = .05
.652 .899 .663 .905
.844 .988 .843 .968
.981 .999 .£62 999
n =10
a = .01 a = .05 a = .01 a = .05
.968 .997 .966 .997
.998 .999 996 999
1.000 1.000 1.000 1.000
n =15
a = .01 a=.05 9a=.01 o=.05
1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
1.666 1.000 1.000 1.000

- w w
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TABLE 5

POWER FOR COVARIANCES (a, a, a + .5); uw = (0, 0, .5)

NONUNIFORM UNIFORM

n =3

a .01 a = .05 a = .01 a = .05

(-025,“.255025) 0007 0066 .014 0071
(.25,.25,.75) .030 .099 .023 .098

[+

.01 « = .05 a = .01 a = .05

(-.25,-.25,.25) .020 112 .023 .088
(.25,.25,.75) .052 .153 .040 .155

o .01 ¢ = .05 a = ,01 a = .05

(—025".251025) 0053 0180 e053 0187
(.25,.25,.75) .107 258 .090 .243
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TABLE 6

POWER FOR COVARIANCES (a, a, a + .5); n = (0, 0, 1)

NONUNIFORM UNIFORM
n =3
a = .01 a = .05 @ = .01 & = .05
(-.25,-.25,.25) .033 .127 .027 .111
{(-.25;-.25,-.75) - 029 111 .034 .123
(.25,.25,.75) -065 232 .040 .181
n==6
a = .01 a = .05 a = .01 a = .05
(-.25,-.25,.25) .100 .292 .693 .281
(-.25,-.25,-.75) .072 .220 .068 .218
(.25,.25,.75) 0223 529 .217 537

a = .01 a = .05 a= ,01 a = .05

(_025'-025,.25) 0271 .545 .224 .500

(—025'-025'-975) 9173 0412 . 0186 -429

(.25,.25,.75) 561 .864 «537 .800C
n = 15

Ay AN
c &) s 20V .

(81
-

{(~.25,-.2
(--25’—0 5"‘-75) -346 0584 0355 0638
(.25,.25,.75) - 854 .383 .838 .963
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TABLE 7

POWER FOR COVARIANCES (a, a;, a + .5); » = (0, 0, 2)

(-’.25'—.25’ -25)

(.25,.25,.75)

(-025"—025' -25)
(.25,.25,.75)

(--25"—025' 025)

{.25,.25,.75)

(-a 25'-a25’ -25)

(.25,.25,.75]

NONUNIFORM UNIFORM
n=3
a = .01 a = .05 a = .01 a= .05
.096 .385 .107 377
-263 .621 .240 .603
n==6
a = .01 a = .05 a =,01 a = .05
.585 .867 .548 .831
.900 .995 .411 .908
n =10
a = 01 a = .05 a = ,01 a = .05
.938 .994 .924 .991
1.000 1,000 .298 . 9299
n =15
a = .01 a = .05 a = ,01 a = .05
1.000 1.000 1.000 1.000
1.000 1.0060 1.GG0 1.060




TABLE 8
POWER FOR COVARIANCES (a, a, b); » = (0, 0, .5)
NONUNIFORM UNIFORM
n=3
a = .01 a = .05 a = .01 a = .05
(0.0,0.0,.75) .019 .095 .019 .087
(.05,.05,.9) . 041 .116 .017 .073
n==6
a = .01 a = .05 ¢ = .01 a = .05
(0.0,0.0,.75) .053 .155 032 .130
(.05,.05,.9) .080 .176 .038 .144
n =10
a = .01 a = .05 a = .01l a= .05
(0.0,0.0,.75) .069 .203 .066 .227
(.05,.05,.9) .093 .213 .068 .235
n = 15
a = .01 a = .05 a = .01 a = .05
{6.0,0.0,.75) 125 .328 <135 .321
(.05,.05,.9) .153 .369 -163 .367
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TABLE ¢
POWER FOR COVARIANCES (a, a, b); u = (0, 0, 1)
NONUNIFORM UNIFORM
n=3
= .01 a = .05 a = .01 = ,05
(0.0,0.0,-.75) .038 139 .032 .142
(‘05'_.5'05) -042 0134 0031 Q129
(0.0,0.0 .75) -060 .183 .033 .162
{.05,.05,.9) .086 . 264 .047 175
n=26
= 001 a = 005 a = -Ol =~005
(0.0,0.0,-.75) .092 .271 .075 . 245
(-05'-05g05) -092 .255 0079 0249
(0.0,0.90,.75) 170 . 445 .163 - <431
(.05,.05,.9) 226 .517 .177 «450
n =10
= .01l o = .05 a = .01 = ,05
(0.0,0.0,-.75) .198 .444 .210 .444
(-05"-.5' e5) 0225 0486 .235 .469
(0.0,0.0,.75) .421 .744 .422 .699
{.05,.05,.%) .495 .82¢ -469 .747
n =15
= .01l o = .05 a = .01 = ,05
(¢.0,0.0,-.75) .395 .620 393 .635
(".S,"oS,es) .475 0752 5461 -707
{(6.0,0.0,.75) .713 523 .673 .882
(.05..05,.9) .807 977 .7867 .923
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to a treatment group which has the more extreme covariance
with another treatment group. To study the eirfect of per-
muting the means, two covariance matrices were selected.
One matrix, with covariances (.5, .5, .75), is moderately
“nenuniform and the other matrix, with covariances (2.0, 0.0,

- ~ ~N
LgUsUJ

~~\

re

o
Q

and (2,0,0). In Figures 2 and 3, the result of comparing the
uniform case with both permutations of the two mean vectors
is shown for o = .01 and .05. For the moderately nonuniform
case in Figure 2, it appears that placing the higher mean
with a treatment group that has the lower covariance with the
other groups results in a decrease in power. For the highly

nonuniform case in Figure 3, the same is true for n = 10 and

n = 15, but power continues to be greater when n = 3. For

n = 6, the results are mixed.

Heretofore, only matrices with covariances of the form
(a, a, b) have been shown. The behavior of power for matrices
with covariances of the form (a, b, c¢c) is shown in Figure 4
for a = .01 and in Figure 5 for o = .05. In both figures the
mean vector is (0,0,1). Here a and c¢ are constant, while b
varies. These figures show that in general the nonuniform
case has greater power and that the discrepancy increases as
the nonuniformity of the covariance matrix increases. For
comparison, the case with zero covariances is also included.

Attention is given now to the robustness of a-levels

~

for covariance matrices of order 3. 1In Figures 6, 7, 8, and
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9, for the indicated nonuniform matrices and the null mean
vector, percent significant is shown at a = .01 and o = .05
for each value of n. The expected values shown in each
figure were obtained by averaging the means for the 10 uni-
form cases in Figure 1 over sample size. For several matrices

in each figure, the estimated a-levels are considerably higher

on sample size, the values were averaged over sample size for
each nonuniform matrix. These averages are shown in Figure

- 10, in order of increasing nonuniformity of the covariance
matrices. The average values over all sample sizes for all
the uniform matrices are indicated by broken lines. It is
clear that percent significant tends to increase as nonuni-
formity increases.

Power for cases with nonuniform matrices of order 4
was first examined by varying the range of the covariances
while the average covariance remained constant. The results
are shown in Figure 11. Little difference in power is seen,
except for some increase for the case with the larger range
or covariances, at n = 10 and n = 15. For comparison, power
for the case with zero covariances is also shown in Figure 11.

In Figures 12 and 13; the matrices all have the same
uniform covariance matrix and range, but the extent of non-
uniformity is varied. In general these nonuniform cases show

an increase in power over the uniform. However, the amount of
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change does not consistently increase when nonuniformity in-
creases.
The effect of permuting the means is shown in Figure
14 for the moderately nonuniform matrix (.3, .3, .3, .3, .3,

-

.3} and in Figure 15 for the highly nonuniform matrix {.3,

¢3;, o3, <5; <S; .5). For the larger values of u, the power

reduced by the permutation. For the snaller sample sizes,
power is still increased when compared to the appropriate uni-
form case if a« = .01. When a = .05, power continues to be in-
creased only when n = 3.

To examine robustness of the a-levels, percent signif-
icant is shown in Figure 16 for several cases in order of
increasing nonuniformity. Each point represents the average
over sample size, for ¢ = .01 or .05. The broken lines repre-
sent average estimates of the a-levels obtained. It is appar-
ent that use of the criterion for the usual F-test results in
underestimation of the correct a-level, even for only moderate-
ly nonuniform cases.

The results of using the conservative test given by
Greenhouse and Geisser [1958] are shown in Tables 10 and 11l.
Table 10 shows the reducticn in power from the usual test which
is obtained. Table 1l shows the reduction in average (over
sample size) percent significant obtained for several cases

when the mean is the null vector.
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TABLE 10

COMPARISON OF POWER; COVARIANCES =

(-251 <25, .75); u = (01 0, 1)
n=3 n==a n =10 n =15
a=,01 a=.05 a=.01 a=.05 @a=.01 a=.05 a=.01 a=.05
Usual
Test - 065 .232 .223 .529 .561 .864 .854 .983
Conser-
vative .024 .064 .049 .288 216 .673 .535 .924
Test
TABLE 11
COMPARISON OF PERCENT SIGNIFICANT:
= (01 0, 0) OR (OI 0, O, 0)
(03106'.6’ (.3'-3'.3’
(.25,.25,.75) (.05,.05,.9) e6,.6,.9) e9,.9,.9)
a= 1% = 5% | a= 1% a= 5% | a= 1% a= 5%ja= 1% a= 5%
Usual
Test 1.550 6.325 | 2.625 8.400} 1.800 6.450(4.100 9.500
Conser-
vative 250 2.025 .300 3.400 .000 1.000} .400 2.775

Test




CHAPTER IV
DISCUSSION AND CONCLUSIONS

The results of the power studies presented in Chapter
III show that nonuniformity of the covariance matrices may
increase or decrease the power of the usual F-test. The di-
rection and amount of change seem to depend on the degree of
nonuniformity, the permutation of the means relative to the
covariances, the significance level, and the magnitude of t
and n. In general, the change in pbwer is not large, and if
the usual F-test is used for data in which the assumption of
uniformity is untenable, tables for the Non-central Beta dis-
tribution [Graybill, 19611 could be used in conjunction with
the appropriate uniform case to give a rough approximation of
the power of the test. It should be noted that, except for
small negative correlations, the F-test is more powerful for
correlated data than for uncorrelated data from thi. design.

The case where n = 3 is of particular interest. Here,
there igs no alternative multivariate procedure, since n < t
for t = 3 or 4. The only exceptionable results obtained for
n = 3 occurred when the means were permuted (Figures 2, 3, 1h,
and 15). For the highly nonuniform case when t = 3 and for

both nonuniform cases when t = 4, power continued to be
ug
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increased when the means were permuted. This also occurred
for n = 6 at the lower levels of power.
Before consideration of the effect of nonuniformity
on a-levels, the accuracy of the sampling procedure in esti-
mating these probability levels is demonstrated in Table 12.

Here, the average percent significant obtained with the ten

crease as n increases, and the over-all effect is underesti-

mation of a-.

TABLE 12

AVERAGE PERCENT SIGNIFICANT FOR UNIFORM
MATRICES; » = (0,0,0) OR (0,0,0,0)

n=3 n=6 n=10 n-=15 g

: a = 1% 1.080  .990 .760 .700 .883
& a = 5% 5.170 5.240 4.930 4.380 4.930
a = 1% .933  1.200 .700 .933 .942

= @ = 5% 5.200 5.433 4.533 4.300 4.867

Figures 10 and 16 show the increase in percent signif-
icant as nonuniformity increases. A clear-cut increase is
seen even for relatively nonuniform cases. The results for
n = 2 were esseitially the same as results for higher values
of n. When t = 3, the most nonuniform case, with covariances

{.05, .05, .9), showed 2.625 percent and 8.400 percent
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significant. When t = 4, the most nonuniform case, with co-
variances (.3, .3, .3, .9, .9, .9), showed 4.100 percent and
8.500 percent significant. These values may be acceptable in
many experimental situations.

The results of using the conservative test are shown

in Tablies 10 and 1l. It 1s evident that use of this test can

of the tendency of the sampling method tc underestimate the
a-levels.

It should be noted that the results given in this paper
are applicable only to tests for equality of means when the
observations are correlated among treatments. If observations
are correlated within treatments, Box [1954b] has shown that
severe disturbance in the a-levels may occur, when the under-
lying model is like the second model given in Chapter III.

In conclusion, it is found that the power of the usual
F-test is not significantly affected by nonuniformity of the
covariance matrices. Marked changes do occur in the a-levels,
but the differences are such that use-of the usual F-test may
still be acceptable in many instances. If this test is used,
the a-level may be estimated by one of the cases presented in
this paper. When the usual F~test is used for other cases, it
should be noted that the tabulated oa-level is too low. In any

case, the usual F-test appears to be a desirable alternative

to the conservative test.



CHAPTER V

The repeated measures design analysis of variance is
a statistical technique which has wide applicability in medi-
cal research. The experimental design models for univariate
repeated measures analyses allow for correlation among obser-
vations on the same experimental unit; however, one assumption
_ for most of these models is that all the pairwise correlations
must be equal. This assumption is not met in many experimen-
tal situations, so the standard univariate analyses of vari-
ance may not be appropriate. There are no decisive criteria
for selection of an alternative analysis, and the standard
analyses of variance may be insensitive to violation of this
assumption.

The present study is an investigation of the robust-
ness of the standard F-test for equality of treatment means
when the observations are correlated among treatments. Com-
puter simulation techniques were used to investigate balanced
one-way designs with correlated observations for 2 and L
treatment groups. The number of observations per treatment
_group were 3, 6, 10, and 15. A variety of treatment mean

vectors were used, and both the power of the test and the
© 49
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stability of the a-levels were investigated.

The results showed that the power of the F-test is
altered very little by inequality of the covariances. The
a-levels increase considerably as inequality of the covari-
ances increases. The ﬁighest a-levels found were 0.084 and

3 ~ n -~
it ULV Lcopew

(44}

g.041, when $.0
Tt was concluded that., for a test of equality of

treatment means when the observations among treatments are

correlated, the standard analysis of variance may be used if

it is noted that the tabulated p-value is too low.
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Distribution of the Test Statistic for the Uniform Case
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Distribution of the Test Statistic for the Uniform Case
The foliowing method of proof was suggested by
Dr. R. B. Deal, Jr.
Consider any model for which the vectors Y;, ..., ¥,
are independent and have the same t—dimensioﬁal multivariate

distribution N(M,V). If
Ty .

1=
v

Yy .

2]
Y. = -
. J °

Ve |
then the distribution for the statistic

t n ‘
I L o (y; -¥. )2/ (t-1)
i=l j=l L] e o .
T = t n
z r (Yi: =-Y: =Y
i=1 3=1 ij i.

j + Y..)z/(n-l)(t~l)
is‘found by looking at the numerator and denominator sepa-
rately.

It is convenient to use the Kronecker product B 8 C
pf square matrices, B = (bij) fgr i,3 = l,f..,m and
C = (cij) for i,3 = 1,...,n defined by the mn matrix given in
the following n x n blocks:

[5,,C by, oo b C

ass

® & C

:mIC. o . 3 ® brmn.c-l

Elementary properties are listed in Marcus [1960].
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Two additional facts needed are that the left distributive law
holds and, for the case in which the elements have no divisors
of zero, as pertains here, if B 8 C = Omn’ then B = Om or C =
O,- This type of product is easily generalized to matrices

not necessarily square, and if Jk is the k-dimensional column

.- e - e e | T ¥~ PR T
VECTOT Or atri 4 5, Tnen
1
.
Y : ©
-
n
b mnd

has the distribution N(Jn 8 M, In 8 V).

If
n
v.=23 % v.,
n j:l J
then the quantity
t 1 )
I I (yi.-y .)
1=1 j=1
= Y. - l J' Y. )! .= l t
n( T Jt Tt Y. (Y. F It Jt Y.)
= Y.' . l | |
n (It 5 Jt Jt) Y.
1 b n 1
== I LY (I, -4, dY) Y
Tpy1g=2 ¥ &t t t ¢ s

can be written as
1
Y En 2] AtY

where E_ is the idempotent matrix %VJH J! and A_ 1is the

- - L 43 -

idempotent matrix (I -E.).
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Theorem 4.9 in Graybill [1961] says that if X is dis-
tributed N(M,V) then X'BX is distributed as a non-central chi-
square x“g(k}k) where k is the rank of B and A = % M'BM if and
only if BV is idempotent. Now

(C & D) (UB V) = {(CU) & (DV),
and it is easy to see that if C is idempotent then C 8 D is
idempotent if and only if D is. Thus

(En 8 At) (In 8 V) = En 8 (AtV)
is idempotent if aﬁd only if AtV is. For the repeated measures
model, V is uniform and can be written as

orz(l--p)I,c + o2piE

t
and

ATV

PPS

o n

2177 -
“G~LI Et] [(1-p) It + ptBt]

0%(1-p) (I-Ep) A |

2 -
g%(1-p) At. |
Except for the constant 0?(l-p), this matrix is idempotent.

In the denominator,

(vi5-v;1.-Y.5%y, )°

_Y--Y'- l N =1 e ' ~Le™ l»
1 L 3 T Jt Jt (Yj Y.)1 [Yj Y. z J,. d

1
p.<
"
®
™
"



Now,
(A, 8 At) (i, ev =_An 8 (AtV)
which except for the constant o2?(l-p) is idempotent.

The rank p(B 8 C) = p(B)p(C) so the rank of the numer-

ator is p(E )p{At) = (1) (t-1) = t-1 and the rank of the
n
NA A ALl bl LA/ e ’J\‘T)‘I ’J\ .tl - \Naa e s N - -y

N(M,V) then X'AX and X'BX are independent if and only if
AVB = 0.
Here,

(En e At) (In 8 V) (An 8 At)
= -(BnAn) 8 (A'tV.At) =0 .

Thus, T is distributed

F'[(t-1),(n-1)(t-1)3 A = = M'VMI.
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APPENDIX B

COMPUTER PROGRA

THTS ER0OGRAL IS WRITTEM I RASIC ENRTRAT TV
FOR AN TRN 1800 CNWMPUTER

BEAL MEAMS(IN)

DIMENSTON "lﬁalnl9p(109lﬂ)7Cf1071017{DATA(15710)
NIHEMST( F(7000)9 DRAN(150),PENPL{15) ,TRT-T(10)
DICENMSTON TABREL21},ITABI21) 4 XDATA(LIE,10)
NEEIME FILE 1(16000y3,0, TEND)
MEAMS TS THRE ASSIGMEDN HEAN VF(TﬂR, READ FDﬂn FAQDQ_ R
A IS THE POPUBILATIUM VARIAMUE=CNYARIAMCE IRIx IT 18

REAN FP(1M CARNS
R COMTAINS CC=TSAMSPASE

~

C IS A DIAGOMAL MATRIX SUGH THAT CC—TRANSPNSE EOUALS £
ARD SUCH THAT XDATA-TRANSPOSE EGUALS CH#YNDATA=TRANSPNSE
YNATA COANMTAIMS 2ANDOM MUMRERS DISTRIBUTER (0,71,
RFEAD FRQOM NTSK
XDATA CONTATNS RAMDOM NUHRERS NISTRIRUTEN N (i ,A)
XPATA COMSTITUTES ONME SET OF STHULATEDN EXPERT{EMTAL NATA
F CANTAIMS THE 1000 COMBUTED F VALUES
TOEAD ISTﬁ HORK ARRAY FOR PASSING NUNSERS FROM DISK
n vyYyna
PENDL IS A YORK ARRAY USED IM THE ANALYSTS GF VARIANCE
TRTHT 15 A WORK ARRAY USEN In THE AMALYSIS NF VARIAMCF
TARF CONTAINS VALUES FROH AM F TABLS, READ FRON CARDS
ITAR CANTAINS THE FREOUENCY DISTRIBUTINN OF ‘THE 1000
COMPUTED F VALUES
INITIAL INPUT/OUTPUT
FAD(2,401)
REAN(21402)KSTZE NCELL , TRAND
READ(29403) ((A(I 3J) yJ=1,KSIZE),1=1,KSIZE)
REAN (23404 ) (HEandTyd;0=1,KST7¢])
EAN(2,405) (TABF (1) ,1=1,21)
401 FNREAT(' THIS IS THE USER LABEL. CAM BE UP Tnt,
' RN CARD COLUHMS iy
402 FORIAT(212,15)
403 FNRUAT(7F11.8)
40% FPRUAT(10ER.3)
405 FORFAT(RF10.5)
VRTTE(3,401)
WP ITE (334)
4 FRRUAT(////30H THIS IS THE COVARIANCE HATOIX)
MOTTE(345)((A(I,d),d51,10),1=1,10)
MRITE(2,9) (vEAnST1]31=1,KSI7E)
a FRAEAT/7/1 TRECVECTAR AR HEANS IS 1, /(101 ,10F10.A))
WO TTE(3,10)<STZE
10 FORCATL///Y THE WUEEBER NF TREATHEMT GROUPS TIS1',12)
MRITE(3,21)08CFLL, TRAND
21 FrouaT (1 TuE SAGALE ST7F 151,13,
171 THE STAPTING RANDAL MUKEER 181, 16)
FI*D C SHCH THAT CC-TRAMSPNSE EOUALS A
NN 11 TR=1,KSIZF
11 CLI19,1)=A(TR,11/SORT(A{L,2))
fe 1A 10=2,18T7F
DN 16 JC=2,1R
TFi10-17)14,12,999
12 Sie=0,0

59
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L=1R=1
0N 13 k=),
13 SU =QUMHC (TR, i)
C(TQ,IR)zﬁﬂQT(ﬂ(IP,IQ)—QUJ)
GN TN 16
14 Sii'=p,.n
L=1C-1
nn1s H:I,L
15 S =SURHC (TR 1) G (16, 1)
ClIRLIC)I=(A(IR,TIE)=SII)/0(1C,1C)
1~ CNMT IR
PO 17 121,10
PN 17 J=1,10
17 ALT.1)y=0.0
GHTRA FIMDS THE TRAHSPOSE 0OF C
G'PRND FiNMDS CO-TRAMSPOSE
CALL GUTRA(GC,R,10,10)
CALL GHPBN(C,R;A,10,10,10)
MRTITF(3,6)

5 FNRYMAT(/,10(/" _',10F1146)////)

& FNRUAT(///17H THIS MATRIX IS C)

7 FOREAT (' THIS #ATRIX IS CC—TRAMSPNSE!)
MRITE(3,5)((C(I1,J),J=1,10),1=1,10)
MRITF(3,7)

PRIGIMAL A-MATRIX “AS DESTRNYED BY GMPRD
A ©OW CONTAIMS CC-TRANMSPOSE
MRITF(35) ((A(1,0),3=1,10)51=1,10)
Gh TN 18

99G HWRITF(3,8)
in ChmT i e®)
8 FORMAT(1RHNPROGRAHMMING ERROR)

SAMPLE RANDOM NUMBERS OM DISK
INMEM=KST7E==NCELL
CALl ANDULTRAMD & TX o XHOT )
OvE 1000
’
?

. L
=
Y

U

R
1
9 I M
9 J
(I,
RAN

=t

v;.n_-

o

T
— DR
r-c NI

A

=1
CE
S17
o0
Xy

neo
Hruqde
>

7X“OT)

INNDEXIMG DISK FILE OF
) RAMDOE MUMBERS

AIY+24)/ 2.

|p N4

—1Anno)1nA 1N&,1Nn2

3,103)1Y

2080 DANDAN THMNEX MUMPER 416,124 1S RPRJECTEN)

THSHRE 1LNANR EPAT FILE WP ER 16000 TN FILE HMHITRER NONNT

1na { =
TFL“ 0
ITHAN=NO
nn 120 I=:1Tgﬂp'

120 TARAN{I j=n N
ICAM=TANNT =T NA-TNER
IE{ICAM)INE,11],111

ine (TP abz=1A001~1 1
PEADCLIITNDX)I(TORBAG(T) $1=),1THAD)
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150 CNWTInME
nn 203 1=1,71
202 ITA={I)=0
REGIMNIMG AR 1.NNP TO ORNDER aND TABULATE ThE 532200
CAMPUTED F VALUES
DN 280 HALL=1,5
K=200: (‘ﬁLL 1)+1
VY-?OO ALL
1:1"”»-1 ll-‘rl ’”‘\FTC 2(‘.(‘) F u:!_.spt
PPP"DTf (ETHND === TEST F(I) AGAINST ALL LN“FR VALUFS,
VRN PQDDED PASITION FNR EF(T) I ARRAY IS FAUNDVNVE
ALL HIGHER VALUES P NME STEP IH THE ARRAY ARND PUT
FORMER F(I) IM THFE REMATMING POSITIONM
0 210 1=K,8K
ILTi=1-1
HALN=F{T)
NN 209 J=K,1L1 1
IF(HALD=-F(J))201,209,209
201 MOVE=T+1
MEND=T -]
DN 202 M=1,MEND
MOVE=KOVE-]
202 F(MNVE)=F (“0OVE=-1)
F(J)=HDOLD
GN Tn 210
209 CNOMTINIE
210 COMTINUE
WRITE{3,211)K,KK
URITE(3,212)(F(1),1=K,KK)
2111§2RT?T§///' ORDEREN F VALUES, F(',I3,') TO F(',
"9
212 FORMAT(/(1H ,10F11,.,6))
COMPARE THE AROVE 200 ORDFERED F VALUES WITH THE TABULATED
VALUES AND COUMT THE NUMBER IN EACH INMTERVAL
TARF VALUIES arg RBEAD IM INVERSE ORDFR---
HIGHEST TO LOWEST
TABF({1) IS THF TABULATED F VALUE FOR MWHICH THFE PROBABILITY
OF A SMALLER VALUE IS .9999
TARF(?2) 1S THE SAME FOR ,9995
TABF(3) 1S THF SAME FOR .999
TARF(4) IS THE SAME FOR ,99
TABF(5) IS THE SAME EOR .975
TABRF(6) 1S THE SARME FOR 495
ETC.
1T=21
IF{F(K)=TARF(21))301,301,260
260 DN 2A5 J.1=1,21
IT=1T-1
IF{(F(X)=TABF'IT))301,201,265
265 CNANTIRUE
301 NN 3ng =Y ,%K
31N IE(F(I)-TARF(IT))3099309,30
3N2 ITAR(IT)=ITAB(IT)+I=-200=({NALL-1)~1
IT=1T7T-1
TF(1T)IRE0,2504310
309 CNNTIMUE
IF(IT)250,250,4320
220 DN 321 I1=1,IT
221 I1T2241)=1T~A2(1)+200
250 CRNTI#MIE
WRITF(34311)
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WMRITE(3,312)
fg!i?fg,z}B;(ITAH(I),TAPF(I),I=1921)
LaBN O | _\.»1:‘_‘{‘

311 FORMAT(////' MUMBER OF VALUES LESS THANM 0OR',12X,
TPTARIILATED VALUEY)

212 ENRMAT(Y ENHAL 7O THE TARULATED VALUFR')

213 FORVUAT (/13X 414,22X,F10.5))

34 BORVAT(///Y ENMD OF AMMLYSISY/// /7717 7777777)
CALL EXIT
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Rox's Statistic for Nonuniformity

The computed value of the statistic is tabulated for

each covariance matrix and value of n.

t=3 (4 degrees of freedom)

vovariances n=3 n=6 n=10 n=15
(0.0,0.0,-.25) .021 -1ug - 217 .52q
(0.0,0.0,.25) 022 .156 . 335 .558
(.25,.25,.5) .037 .261 .559 .932
(~.25,-.25,.25) 074 .517 1.108 1.8u46
(.5,.5,.75) .093 .649 1.391 2.318
(-.25,-.25,-.75) .212 1.486 3.185 5.309
(.25,.25,.75) .215 1.501 3.217 5.362
(0.0,0.0,-.75) .290 2.029 4.349 7.2u8
(-.5,-.5,.5) .298 2.086 u4.470 7.450
(0.0,0.0,.75) .328 2.299 14.926 8.210
(0.0,.25,.75) .340 2.383 5.105 8.509
0,0,.5,.75) .601 4.207 9.016 15.027
(.05,.05,.9) .682 4,771 10.225 17.041

t=l4 (8 degrees of freedom)

. covariances n=3 n=6 n=10 n=15
(.375,.375,.375,.375,.375,

.525) .011 .138 .307 .518
(.35,.35,.35,.35,.35,.65) .043 .01 1.338 2.258
(.325,.325,.325,.325,.325,

.775) .128 1.578 3.512 5.928
(.3..6,.6,.6,.6,.9) .240 2.872 6.613 11.166
(.3,.3,.3,.3,.3,.9) .308 3.814 8..488 14.331
(.3,.3,.4,.8,.9,.9) 482 5.957 13.279 22.420

(c3523,:35.9,.9,.9) .517 6.390 14%.221 24.009
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Uniform Matrix for Each Nonuniform Matrix

Nonuniform Uniform
t=3
©.0,0.0,~.%25) -.08333
(0.0,0.0,.25) .08333
{(.25,.25,.5) .33333
(~.25,-.25,.25) -.08333
{.5,.5,.75) .58333
(~.25,-.25,-.75) - 41666
16255.25,.753 .it15060
(0.0,0.0,~.75) -.25000
{~.5,-.5,.5) -.16666
(6.0,0.0,.75) .25000
0.0,.25,.75) +33333
(0.0,.5,.75) 41666
(.05,.05,.9) -.16666
Ct=h

(.375,.375,.375,.375,.375,.525) 4
(.35,.35,.35,.35,.35,.65) 4
(.325,.325,.325,.325,.325,.775) )
(3,.6,.65.6,.6,.9) .6
(.3,.3,.3,.3,.3,.9) b
(.3,.3,.4,.8,.9,.9) .6

(..;3,‘»3,.3,.9,.9,-9) 06



