AN ANALYSIS OF INCOMES AND PRODUCT SUPPLIES;

LIVESTOCK AND CROP FARMS, EASTERN

OKLAHOMA PRAIRIE SOILS

By
Kenneth Clifford Schneeberger
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma 1962

```
Submitced to the faculty of the Graduate School of
    the Oklaboma State University
    in partial fulfillment of the requixements
    for the degree of
    MASTER OF SCIENCE
        May, 1965
```

AN ANALYSIS OF INCOMES AND PRODUCT SUPPLIES; LIVESTOCK AND CROP FARMS, EASTERN OKLAHOMA PRAIRIE SOILS

Thesis Approved:

PREFACE

The author extends sincere appreciation to Dr. Odell L. Walker, graduate comittee chairman, for his interest and assistance throughout the duration of this study. Thanks are also extended to Dr. James S. Plaxico and Dr. Jack E. McCroskey for their helpiul suggestions.

I am indebted to my typist, Mrs. Beverly Blankinship, for her unending patience and numerous ideas when preparing the preliminary drafts and final copy of this manuscript.

I am graceful to the Department of Agricultural Economics for assistance while completing the required work toward the Master"s degree and to the numerous individuals within the department who have given assistance and encouragement.

Finally, I am especially grateful to my parents, Mr. and Mrs.
C. F. Schneeberger, for their encouragement, assistance and inspiration.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTTON 1
The Study Area 2
Objectives 2
Adjustment Problem 4
Organization of Remaindex of Thesis 6
TI. DATA AND PROCEDURES 8
Method of Analysis 8
Planning Horizons 9
Resource Situation 9
Representative Farm Description 10
Land Use 11
Included Activities 15
Prices 16
Technology and Management Levels 16
Capital 16
Labor 17
Machinery 18
Overhead Costs 18
Tenure 19
ITI. AITERNATIVE WHOLE FARM PLANS 20
Profit Maximization with Various Combinations of Entexpatses 21
All Enterprises 21
A11 Enecrpases Except Cotton 23
A11 Enterprises Except Peanuts 24
Cotton and Peanuts Removed 24
Cotton, Paanuts, and Theat Removed 25
Cotton, Peanuts, Theat, and Soybeans Removed 26
Oats Removed 26
Alfalfa Removed 28
No Cash Crops 29
Effects of Allotment Restrictions on Organizatton and Net Income 30
IV. PROFITABLE FARMING ADJUSTMENTS FOR THE TNTERMEDIATE RUN 33
Cocton Prices Varied, Competing Products Valued at Base 35
Chapter Page
Cotton Prices at 17.6 Cents and 22.0 Cents 36
Cotton Prices at 26.4 Cents and 30.8 Cents 36
Cotton Price Varied, Competing Products Valued at Base Minus 30 Percent 38
Cotton Price at 13.2 Cents and 17.6 Cents 40
Cotton Price at $22.0,26.4$, and 30.8 Cents 40
Cotton Price Varied, Competing Products Valued at Base Plus 30 Percent 40
Cotton Price at $13.2,17.6$ and 22.0 Cents 41
Cotton Price at 26.4 Cents 42
Cotton Price at 30.8 Cents 43
Labor Requirement for Optimum Organizations 45
Operating Capital and Machinery Capital Requirements for Optimum Plans 46
A Comparison of Organization, Resource Requirements and Net Income of Two Farm Sizes 49
Cotton Supply Estimates 49
Supply with Competing Product Prices at
Base Plus 30 Percent 53
Supply with Competing Product Prices at Base 54
Supply with Competing Product Prices at Base Minus 30 Percent 54
ITet Income Effects of Inflexible Organization Strategies 55
Competing Products at Base Prices Plus 30 Percent 56
Competing Products at Base Prices 56
Competing Products at Base Prices Minus 30 Percent 58
V. OPTIMUM LIVESTOCK FARM ORGANIZATIONS AND BEEF SUPPLY POTENTIALS 59
Variable Pricing Approach 60
Livestock Production at Base Prices Minus 30 Percent 61
Livestock Production at Base Prices Minus 20 Percent 63
Livestock Production at Base Prices Minus 10 Percent 63
Livestock Production at Base Prices, Base Prices Plus 10 Percent and Base Prices Plus 20 Percent 64
Livestock Production at Base Prices Plus 30 Percent and Plus 40 Percent 65
Effects of Changing Prices Upon Livestock Production with Cows as the Only Alternative 65
Effects of Changes in Factors Affecting Relative Profitability 67
Extensive Versus Intensive Expansion 72

TABLE OF CONTENTS (Continued)
Chapter Page
YI. SUMMARY AND CONCLUSIONS 75
Refinements and Additional Work 80
SELECTEU हLBLIUGRAPHY 81
APPENDICIES 82

LIST OF TABLES

Table Page
I. Changes in Farm Numbers, Sizes and Value of Selected Assets, 1945-1960 4
II. Definition of Land Productivity Classes 10
III. Total Acreage, Productive Classes, and Allotments for Two Representative Farms, Prairie Soils for Eastcentral and Southcentral Oklahoma 11
IV. Description of Crop Activities 12
V. Description of Cow-Calf Activities 13
VI. Description of Stocker-Steer, Buy-Se11 Activities 14
VII. Operator Labor Available for Farming 17
VIII. Short-Run Organization and Net Income from Nine Alternative Farm Plans for a Representative Eastern Oklahoma Prairie Soils Farm 22
IX. A Comparison of Effects of Representative Allotment Restrictions Upon Organization and Net Income on a Representative Eastern Oklahoma Prairie Soil Farm 32
X. Alternative Plans Derived and Analyzed for Five Cotton Prices and Three Price Levess for Competing Products on a Representative Eastern Oklahoma Prairie Soils Farm. 34
XI. Optimum Organization at Five Cotton Prices, Competing Commodities at Bast Prices, Representative Prairie Soils Resource Situation 37
XII. Optimum Organization at Five Cotton Prices, Competing Commodities at Base Prices Minus 30 Percent, Representative Prairie Soils Resource Situation 39
XIII. Optimum Organization at Five Cotton Prices, Competing Commodities at Base Prices Plus 30 Percent, Representative Prairie Soil Resource Situation 44
Table Page
XIV. Labor lequirements for Optimum Plans at Five Cotton Prices and Three General Price Levels for Competing Products on a Representative Eastern Oklahoma Prairie Soils Farm 45
XV. Per Acre Labor Requirements of Included Cash Crop Activities 46
XVI. Annual Investment Capital and Machinery Capital Requirements for Optimum Plans at Five Cotton Prices and Three Price Levels for Competing Products 47
XVII. Cropland Allocation Percentages and Selected
Non-1 and Item Comparisons for Two Representative Eastern Oklahoma Prairie Farm Sizes When Competing Products are at base Prices 50
XVIII. Cropland Allocation Percentages and Selected Non-land Item Comparisons for Two Representative Eastern Oklahoma Prairie Farm Sizes When Competing Products are at Base Prices Minus 30 Percent 51
XIX. Cropland Allocation Percentages and Selected Non-1and Item Comparisons for Two Representative Eastern Oklahoma Prairie Farm Sizes Jhen Competing Products are at Base Prices Plus 30 Percent 52
XX. Influence of Two Inflexible Strategies Upon Maximum
Attainable Net Income When Cotton Prices are Varied 56
XXI. Assumed Annual Average Price for Three Livestock Classes at Eight Price Levels 60
XXII. Optimum Farm Organizations, All Livestock Activities Included, Eastern Oklahoma Prairie Soils Resource Situation 62
XXIII. Changes in Net Income and Operating Capital for a Given Organization of Stocker Steers on Bermuda as Prices are Varied at Three Levels 65
¿XIV。 Optimum Farm Organizations, Only Cow-Calf Activities Included, Eastern Oklahoma Prairie Soils Resource Situation 67
Table Page
XXV. Pounds of Beef Produced Pex Farm From OptimumOrganizations Allowing 411 Cow-Calf and Buy-Sell Activities and Optimum Organization
Allowing Only Cow-Calf Activities 67
XXVI. Maximum Prices That Could be Paid for an Additional Acre of Rental Land of Three Classes at Eight Beef Price Levels.。. 73
Figure Page

1. Map of Oklahoma Showing Area of Study 3
2. Net Income, Capital Requirements and Labor Requirements for Nine Optimum Short-Run Organizations, Representative Prairie Soil
Resource Situation 27
3. Intermediate Run Cotton Supply Responses at Three Price Levels for Competing Products on a Representative Eastern Oklahoma Prairie Soils Farm 53
4. Income From Three Organizational Strategies,
Competing Products at Base Prices 57
5. Income From Three Organizational Strategies Competing Products at Base Prices Minus 30 Percent 58
6. Net Income and Capital Requirements for Optimum Organizations for all Livestock Activities and Optimum Organizations for Only Cow-Calf Activities, Representative Prairie Soils Resource Situation 68

CHAPTER I

INTRODUCTION

Information concerning the nature and magnitude of farming adjustments and enterprise reorganization necessary to allow attainment of maximum profit is vitally needed by farmers in the prairie soil area of eastern Ok1ahoma. Evidence of this need is provided by recurring questions such as: (1) Is it profitable to switch from crop production to a livestock-bermuda grass pasture system? (2) What farm adjustments will be required as a result of changes in product price relationships and in service and marketing facilities in the area? (3) Can returns be increased by changing the organization of a given farm?

Questions about farm adjustments also are of vital concern to area businessmen and to policymakers. Businessmen seek answers to questions concerning perspective changes in type of inputs demanded, in demand for specific inputs, in needs for marketing facilities and area population. Policymakers are interested in crop supply potentials under alternative programs, area income effects resulting from different price levels, livestock production possibilities and effects of changes in area agricultural orientation on the area's economy.

The Study Area

The prairie soils area includes approximately 668 thousand acres of cropland, 297 thousand acres of pasture and about 1,267 thousand acres of rangeland, woodland and waste in 29 counties (See Figure 1). A sample designed to provide needed data was taken among those farms having at least one of the allotment crops of wheat, cotton, and peanuts and the sample area has a greater percentage of cropland in proportion to total farm acreage than occurs in the total prairie soils area. Thus, the analysis reported herein applies most specially to crop farms, including 214 thousand acres of the better prairie cropland and an associated 142 thousand acres of range.

Climatologically, the area has an average rainfall of 39.0 inches annually. The Muskogee-Okmulgee area has the highest annual rainfall with 42.0 inches. ${ }^{1}$ The area had an average of 225 frostfree days.

> Objectives

The basic purpose of this analysis is to evaluate possible farming adjustment in the prairie soils area of eastern Oklahoma. The specific objectives are:

1. To develop production, costs, and returns estimates for major cash crop and livestock alternatives in the area.
2. To estimate production levels and costs associated with bermuda grass and other pasture crops for a variety of levels and combinations of production practices.
${ }^{1}$ U. S. Department of Commerce, Climatological Data, Oklahoma, Annual Summary 1963, Vol. 71, No. 13, (Washington, 1964) pp. 171.

Figure 1. Map of Oklahoma Showing the Area of Study.
3. To analyze returns from alternative organizations under current price conditions.
4. To determine the potential influence of price level changes upon crop production and the relative profitability among crops in the intermediate run.
5. To determine, for different levels of cattle prices, (a) optimum levels of pasture improvement and (b) the responsiveness of area cattle supply to changes in cattle prices.

Adjustment Problems

Census data on acreage per farm, total farm numbers and per farm capital requirements indicate that eastern Ok1ahoma is experiencing considerable intra-farm and inter-farm adjustment. Examples of changes in representative counties are given in Table I.

TABLE I
CHANGES IN FARM NUMBERS, SIZES, AND VALUE OF SELECTED ASSETS, 1945-1960

Reductions in farm numbers, increases in farm size, additional capital per acre and changes in input use highlight adjustments that are occuring in the two counties. Clearly information to serve as guides to current and future adjustments can pay substantial dividends.

In general, two types of adjustments are avallable. First, given resources are allocated among alternative production activities to maximize the value of returns to these resources. Reorganization or adjustments within the farm fencelines can be made in response to changes in price relationships and the particular farmers decision environment. Secondly, adjustments in the size of operation, particularly in farm acreage, are frequently necessary so that the volume of business is large enough to provide a satisfactory return to operator's labor and management after all costs are paid. Clearly, the two types of adjustments are related since reorganization may increase the size of the business through capital additions. This study emphasizes the reorganization type of adjustment, but also provides information concerning pressures leading to increased size through land acreage adjustment using levels of returns, shadow prices for land, and labor requirements as pressure indicators.

The firm adjustmens problems in farm management research are summarized by the questions of (1) What is to be produced? (2) How much is to be produced?; and (3) How should the products be produced? Available production alternatives, objectives sought and restrictions set by the available resources and the planning environment provide the general framework for analysis. The tools of budgeting and linear programming are designed to solve decision problems in that framework.

Budgeting is a systematic procedure for estimating returns from alternative organizations before resources are committed. Appropriate costs, prices and yield data for included enterprises are analyzed within the framework of obfectives, alternatives and restrictions. Linear programming has the additional advantage of assuring a unique solution and of allowing the inclusion and analysis of many more enterprises with very little additional effort required. As in budgeting, the assumption is made that many processes in farming Involve linear relationships. For example, if net returns from one cow are $\$ 50$, then net returns from 100 cows are $\$ 5,000$ or if one ton of fertilizer costs $\$ 50$, then 1,000 tons of fertilizer costs $\$ 50,000$.

Results from budgeting and linear programming indicate optimum organization and levels of enterprise activities, specify maximum net income from given resources and allow comparisons of net income, capital requirements and labor requirements for various organizations.

Organization of Remainder of Thesis

A brief explanation of organization of chapters to follow is given below.

Chapter II

The method of analysis and appropriate planning horizons are given, the general soil and resource characteristics of the representative farm are explained, and the enterprise alternatives are specified and expl ained.

Chapter III
The returns, capital requirements and labor requirements are examined for alternative whole farm plans suited to the prairie soils
area. The analysis is oriented to the short-run, in the sense that approximate current price levels are used.

Chapter IV

Variable price programming is used to determine optimum intermediaterun organizations. Cotton price is varied over five levels within three general price levels for other commodities. Potential cotton supply response is estimated for each price level. The implications of organizational inflexibility as prices change are also examined. Chapter V

Optimum intermediate-run livestock systems are determined and potential area livestock supply response is examined. The effects of non-optimal organization upon net incomes, capital requirements, organizational practices and labor requirements are discussed. Finally, the effects of different relative stocker calf and stocker-feeder prices upon optimum organization are examined.

Chapter Vi

The major results and contributions of the study are summarized and conclusions and implications discussed.

CHAPTER II

DATA AND PROCEDURES

Data applicable to the area were obtained from agricultural experiment station results, fam surveys and agricultural scientists. Data used are reflected in budgets used as a basis for this study. 1 Price data were selected to fit adjustment periods as described below.

Method of Analysis

The technique of linear programming was used to determine optimum organization presented in later chapters. For a given price or resource situation a pian was determined which (a) may or may not use the entire supply of awailable resources, (b) specifies a unique set of production activity levels and (c) provides an objective function value, "net income," such that no change in enterprise combination, with given restraints, will give a greater net income value Net income is defined as the residual retums to the operator's contribution of land labor, management and certain owerhead capital for which no charge is made in the program。
${ }^{1}$ Heman Workman, Kenneth C. Schneeberger, and Odell L. Walker, Resource Requirements, Costs and Expected Returns: Alternative Crop Enterprises; Major Upland Clay and Sandy Soils of Eastcentral and Southcentral Oklahoma, Oklahoma Agricultural Experiment Station Processed Series P (Stillwater, 1965).

Kennerk C.Schneeberger, Herman Workman and Odell Lo Walker, Resource Requirements, Costs and Expected Returns: Beef Cattle and Improved Pasture Alternatives: Eastcentral and Southcentral Oklahoma, Oklahoma Agricultural Experiment Scation Processed Series P (Stiliwater, 1965).

Planning Horizons
Adjustment period concept used in analysis are defined as follows:

1. The short-run concept is for a planning period in which current prices are used. Land is fixed. Capital is variable and has a six percent charge. Labor may be hired at one dollar per hour. Changes In machinery and buildings are assumed possible in the short-run, in contrast to the usual conditions assumed for the short-run. Thus, the short-run concepts used here emphasizes the current economic conditions rather than inflexibility.

The short-run plaming horizon is used when examining the profitability of alternative whole farm plans under current price conditions. Operationally, results are most useful to farmers with sufficient flexibility to allow year to year organizational changes. However, the short-run analysis also indicates the opportunity cost of non-optional plans.
2. The intermediaterun is defined as that period of cime in which all assers except land are variable. Prices likely to prevail over the long term are used. Capital is unimited at six percent interest and labor may be hired in any quantity for one dollar per hour. Useful information is fumished to farmers considering major farm organization changes or desiring information on the effects of price changes on the relative profitability of various crops or organieations.

Resource Situations

The prairie soils were dirided into four producrivity classes; the criterion for classification including slope, cexture, fertility,
and internal drainage but emphasizing economic difference in soils. Table II gives a description of each classification. The percent of cropland in each productivity class was determined from soil maps and survey information.

TABLE II

DEFINITION OF LAND PRODUCTIVITY CLASSES

Class C_{a}	Deep, nearly level, loamy upland solls. Key series are Choteau, Okemah, and Taloka。
Class C_{b}	Deep, gently sloping, loamy upland soils. Key series are Dennis and Durat.
Class C_{C}	Deep, nearly level claypan soils. Key series is Parsons.

Representative Farm Description
Two different farm situations wexe used to define representative area crop and livestock farms. Farms were chosen to be generally representative and neither farm is meant to be typical of all farms of its parcicular size. Table III lists some characteristics of the representative farms: The small farm contains 210 acres of total land with 140 cropland acres. It typifies those farms using two-plow tractors and complementary machinexy and having only cotton allotments. The large farm contains 520 total acres of which 345 acres are cropland and te allows a four-plow tractor and machinery complement. The two farm sizes furnish indications of economics of size associated with machinery use.

TABLE III
TOTAL ACREAGE, PRODUCTIVITY CLASSES AND ALLOTMENTS FOR TWO REPRESENTATIVE FARMS, PRAIRIE SOILS OF EASTCENTRAL AND SOUTHCENTRAL OKLAHOMA

A set of improvements, including necessary buildings to adequately handle the needs of the respective farms, is assumed for each farm. Land Use

Land is divided among ciropland, pasture, and other land (woods, waste and farmstead) with cropland subdivided inco productivity classes (Tabie III). The use and productivity breakdowns were obtained from soil and farmer surveys. The Soil Conservation Handbook on Use and Treatment Alternatives for Eastern OkIahoma was used to determine the number of successive years a row-crop, can be grown on the same land. Allotment levels for the three major allotment crops (wheat, cotcon, and peanuts) were derived from current allotment estimates based upon $A \cdot S_{0} C \cdot S$. records and farm survey data.

	ActivityNumber	Unit	Yield on Land Classes				Production Practice			
Item Level			Ca	Cb	Cc	Cd				
Bermuda	P1,9,17,25	AUM $^{\text {a }}$	3.3	3.3	2.6	2.5	overseeded	with clover	0-15-0	fertilizer
Bermuda II	P2,10,18,26	AUM	4.5	4.5	3.4	3.3	overseeded	with clover	10-20-10	fertilizer
Bermuda III	P3,11,19,27	AUM	5.2	5.2	3.8	3.7	overseeded	with clover	15-30-15	fertilizer
Bermuda IV	P4,12,20,28	AUM	5.8	5.8	4.4	4.2	overseeded	with clover	30-40-20	fertilizer.
Bermuda V	P5,13,21,29	AUM	6.8	6.8	4.8	4.6	overseeded	with clover	50-50-50	fertilizer
Bermuda VI	P6,14,22,30	AUM	8.5	8.5	6.4	6.2	overseeded	with clover	100-50-50	fertilizer
Bermuda VII	P7,15,23,31	AUM	10.0	10.0	7.5	7.3	overseeded	with clover	200-50-50	fertilizer
Bermuda VIII	P8,16,24,32	AUM	7.1	7.1	5.0	4.8	overseeded	with vetch	0-50-50	fertilizer
Small Grain for Grazing	P33,34	AUM			2.0	2.0			40-40-20	fertilizer
Rye Vetch										
Pasture	P35,36	AUM	4.0	4.0					20-40-20	fertilizer
Cotton	P47,49	Cwt.	3.75	3.50			hand	harvest	50-40-20	fertilizer
Cotton	P48,50	Cwt.	3.75	3.50			custom harvest	custom hoeing	50-40-20	fertilizer
Peanuts	P51,52	Lb.	1250	1150			custom harvest	custom hoeing	10-40-40	fertilizer
Wheat	P53,54,55	Bu.	28.0	26.0	24.0		custom	harvest	50-30-15	fertilizer
Soybeans	P56,57,58	Lb。	1500	1200	960		custom	harvest	10-40-20	fertilizer
Oats	P59,60,61	Bu.	45.0	40.0	38.0		custom	harvest	50-30-15	fertilizer
Grain Sorghum	P62,63,64	Cwt.	25.0	23.5	19.0		custom	harvest	60-20-40	fertilizer
Alfalfa	P65,66	Ton	3.0	2.0			custom	harvest	0-80-60	fertilizer

$a_{\text {An }}$ animal unit month is defined as the amount of grazing required by the average cow for a one month period.

TABLE V
DESCRTPTION OF COW-CALF ACTIVITIES

Activity Number.	$\begin{aligned} & \text { Calving } \\ & \text { Time } \end{aligned}$	Marketing Date	$\begin{gathered} \text { Range } \\ \text { AUM's per Cow } \end{gathered}$	Components Rfinuter Ration
P37	Max. 1	Oct. 10	13.5	Cottonseed Cake, Hay, and Pasture
P38	Max. 1	Oct. 10	10.5	Cottonseed Cake, Hay (substituted for pasture)
P39	Max. 1	Oct. 10	10.4	Cottonseed Cake, Hay, and Pasture with some small grain pasture to substitute for protein and pasture
P40	Nov. 1	Aug. 1	13.5	Cottonseed Cake, Hay, and Pasture
P41	Nov. 1	Aug. 1	10.5	Cotconseed Cake, Hay (substituted for pasture)
P42	Now. 1	May 20	8.7	Small Grain Pasture with cottonseed, hay and pasture in bad weather

TABLE VI
DESCRIPTION OF STOCKER STEER, BUY-EELL ACTIVITIES

Activity Number	Purchase Dace	Sell Date	Purchase Weight	Sell Werght	AUM's per steer		Components of Ration	
					Range	Temporary Pasture	Wincer	Summer
P43	Oct. 10	May 20	450	705	. 25	3.5	Rye-Vetch Temporary Pasture with cotconseed cake, hay and pasture in bad weather	
P44	Oct. 10	Mar。 1	450	630	. 20	2.1	Small Grain Pasture with cottonseed cake, hay, and pasture in bad weather	
P45	Oct. 10	Aug. 10	450	716	6.3		Cottonseed Cake, Hay and Pasture	Pasture
P46	Oce. 10	Aug. 10	450	777	5.8		Cottonseed Cake, Hay and Pasture	Pasture plus 5 lbs. Grain Sorghum per day for 90 days

Enterprises chosen for this analysis were restricted by climate, available markets, degree of area applicability (for example, broomcorn was considered insignificant because acreage in Muskogee, Okmulgee and Bryan counties was only 338 acres in 1959), and other factors listed later in this section.

All major area cash crops and such intermediate products as bermuda grass, rye-vetch temporary pasture, and small grain temporary pasture were included and are insted in Table IV. This analysis places special emphasis on pasture forage activities. For example, bermuda grass, which is the major pasture crop alternative, was analyzed at eight different production practice levels. Thus, this study substantially refines previous studies in which only one practice level was considered. ${ }^{l}$

Only livestock activities that are primarily pasture-forage users are inciuded (Table V and VI). All sheep, hog and beef fattening activities were arbicrarily excluded.
${ }^{1}$ Alfred L. Barr, W. Schultz, James S.Plaxico and Arnold B. Nelson, Beef Cattle Systems and Range Improvement Alternatives: Estimated Production income and Costs, Oklahoma Agricultural Experiment Station Processed Series P-358 (Stillwater, 1960).

Alan W. Reichardt, William Fo Lagrone and Luther Tweeten, Resource Reguirements, Costs and Expected Returns; Alcernative Crop and Livestock Enterprises; Mafor Bottomland Soils of Eastcentral and Southcentral Oklahoma, Oklahoma Agricultural Experiment Station, Processed Series P-476 (Stillwater, 1964).

Prices

Two sets of prices received are used in this study. Short run prices with the exception of wheat price, are average Oklahoma prices over the last five years. The intermediate-run prices are varied from a base representing possible future prices. (See Appendix Table I). Price adjustments are made for market location and transportation differentials.

Resource prices are current prices reported by farmers, agricultural workers and suppliers in the area.

Technology and Management Levels
The level of technology assumed reflects the latest economically feasible innovations and techniques, based upon experiment station recommendations. Above average management is assumed since it is not a common practice in the area to apply fertilization levels or herbicide applications specified in some activities.

Capital

Capital can be borrowed as long as the retum is greater than or equal to the assumed market rate of interest. A six percent rate was charged on boxrowed operating capital.

Capital requirements for each enterprise were divided into total and annual capital. Total capital is the sum of the expenditures and separable investment capital for a given enterprise in a given year. Annual capital is total capital adusted to an annal basis so that Interest can be charged for the length of time the money was tied up on a particular enterprise. Fox example, if a calf was purchased Oct. 1 and sold April 1 , then the capital was in use for only one half year.

If the calf cost $\$ 100$ then the annual capital charge would only be $\$ 50$. The total capital charge would be the complete $\$ 100$. In the programming model, interest is charged on total operating capital to reflect farmer psychology leading to discounting for uncertainty.

Labor

Avallable hours of operator labor are divided into two categories: (1) that available for doing field work and (2) that necessary for carrying on the duties of management. The first labor category was subdivided into work periods of (1) January-April, (2) May-July, (3) AugustSeptember, and (4) October-December as these are major labor use periods (See Table VII) associated with prevalent area livestock and crop enterprises. One and one-half hours per day was assumed necessary for carrying on the duties of management.

TABLE VII
OPERATOR LABOR AVAILABLE FOR FARMING

Period	Hours Available
January-April	667
May-July	605
August-September	418
October-December	516

Labor in addition to that fumished by the operator may be pequired in all or some of the months and can be hired at $\$ 1.00$ per hour.

Machinery
Sets of machinery assumed for the study are those most prevalent in the area and are derived from machinery data obtained from farmer surveys in the area.

As indicated earlier, a two-plow tractor and machinery complement for the small farm and a four-plow tractor and machinery complement for the larger farms were used.

Costs of owning and operating machinery are considered variable for all planning periods and are expressed on a per hour basis. Custom harvesting is assumed for all activities. ${ }^{2}$

Overhead Costs
Most separable and discernable overhead costs such as hay storage, fences, and corrals are included in production costs in the applicable activities. Many expenses such as land tax, telephone, insurance, and car and pickup expenses were not included. ${ }^{3}$ These costs have no influence on decisions relative to combination of activities as they

[^0]are considered to be whole farm costs. As mentioned earlier, they do affect the amount of returns from a combination of activities. Consequently, net return estimates include residual payments to excluded overhead costs.

Tenure

The tenure situation assumed is that of an owner-operator. Although many operators farm both owned and rented land, the assumption is not irregular because the desired information concerns what return can be expected from a set of resources, nat how the resources are acquired or returns shared. A farmer who does not own all the land he farms will subtract his principal and interest payment or rent payment from net income to determine actual net income.

CHAPTER III

ALTERNATIVE WHOLE FARM PLANS

Much uncertainty exists in southcentral and eastcentral Oklahama concerning the profitability of alternative farm organizations, particularly organizations emphasizing bermuda-livestock enterprises. Lack of knowlege, customs, farmer preferences, individual farm characteristics and such local conditions as shortages of labor and marketing facilities may force exclusion of some enterprises. Operator age, capital position, farming experience, work capacity and managerial ability may also influence enterprise choice. Thus, farmers need estimates of costs, returns, and complementary labor and capital information to allow comparison of alternative plans.

Since the planning information furnished by this chapter is basically for the short-run the amount of available land is fixed. Different farming plans for the given farm size and resource mix are presented. The plans and accompanying analyses indicate optimum organizations for given sets of production alternatives. The opportunity costs of plans other than the optimum one in which all production alternatives are considered are indicated by differences in returns. These differences allow farmers to determine costs of factors such as personal preference which dictate a particular set of production
alternatives. The differences in returns between plans also indicate possibilities of expanding net income by reorganizing within present fencelines.

Profit Maximization With Various Combinations of Enterprises

With all crop and livestock activities listed in Tables IV, V, and VI as admissible alternatives, the most profitable set of enterprises was specified. Alternative organizations were derived by successively deleting the most profitable enterprise and determining the most profitable plans after the deletion. This procedure determined a profitability ranking of enterprises. Land use, capital requirements, and labor requirements are supplementary data furnished by this process. The analysis is short-run in that a fixed farm size and approximate current prices (e.g. $\$ 24$ for 450 lb 。stocker steers, $\$.295$ cotton and $\$ 1.65$ wheat) are assumed. Since it is also assumed that capital is unlimited at six percent interest and machinery can be varied, the analysis cannot be strictly classified as short-run.

All Enterprises

With available markets, sufficient capital and land, plus the necessary managerial ability, some farmers can consider all feasible activities as being alternatives open to their consideration. This section includes all activities as possible choices. The linear programing technique determines the most profitable organization (See Plan 1, Table VIII)。

For this short-run analysis, the optimum organization includes 12.42 acres of cotton and 184.23 acres of peanuts to use the Ca and Cb land suitable for row-cropping. Wheat is on Ca and Cb land above

TABLE VIII

SHORT RUN ORGANIZATION AND NET INCOME FROM NINE ALTERNATIVE FARM PLANS FOR A REPRESENTATIVE EASTERN ORIAHOMA PRAIRIE SOILS FARM

the 76 percent row-crop restriction and a11 the Cc land. Bermuda uses the 34.50 acres of $C d$ land. Livestock activities include 30 units of cow-calf P39, 26 units of buy-sell stockers P43 and 39 units of buysell stockers P 44 to utilize the wheat pasture.

The organization is stable with the exception of buy-sell stockers P44. An increase in revenue of $\$ 1.39$ per unit from the P 44 activity would make $P 44$ competitive with cows P39 and result in 59 head of buy-sell stockers P46 entering the basis. The column headed stability ranges in Appendix Table IV indicates the range of values over which cost (or revenue) may vary, assuming no other cost value varies, without. changing organization of the program. However, any change within this range will result in a change in net income.

A11 Enterprises Except Cotton

With the removal of cotton, net income decreases to $\$ 14,148.42$. Wheat and peanuts are the primary cropland users. This organization is attractive because of its simplicity (See Plan 2, Table VIII). With these two cash crops, 69 head of beef stockers P43 and 30 head of beef cows P39, the famer would have his work distributed throughout the year, although there might be competition for labor during the fall.

For this organization, the buy-sell stocker P44 activity is the only one that would be classed as unstable. An increase in returns per animal of $\$ 0.93$ would result in a part of the spring cow-calf p39 activity being replaced by more stockers 444 , thus allowing 59 head of buy-sell stockers P46 to enter the basis. This would require only a ols cent per pound price change in buy-sell stockers P44. Stabillty ranges also indicate

[^1]that a six-tenths of one percent decrease in interest rate would result in buy-sell stockers P46 entering the organization.

All Encerprises Except Peanuts

With peanuts excluded from the list of alternative crops, cotton and wheat become the most profitable crops (See Plan 3, Table VIII). The winter wheat pasture, bermuda pasture and native pasture are used by 30 head of the cow-calf P39 activity. Labor requirements (1779.33 hours) are relatively high because of the importance of cotton in the plan. Capital requirements are only two-thirds that required by the plar in the preceeding section which had peanuts and the supplemental buy-sell steer activity $P 44$ as the major activities. Net income is $\$ 1260$ less than that possible when no activities are excluded.

Stability ranges indicate that substitution of hand harvesting cotton for machine harvesting would reduce net income by $\$ 92.15$. Other activities are very stable。

Cotton and Peanuts Removed

With peanuts and cotron both excluded, wheat becomes the most profitable enterprise and is the sole user of all cropland suited for cash crops. Bemuda is on Cd soil. This organization (Plan 4) is probably quite attractive because of its simplicity and light machinery requirement. The exclusion of peanuts and cotton resulred in a drop in net income co $\$ 8,522.78$. Labor required, when compared to the plan with both wheat and peanuts (Plan 2), is less by 204 hours and total operating capital requirements less by $\$ 8,058.61$. Seventy nine head of stockers 444 are included to utilize the wheat pasture. Thirty cows P39 use the residual small grain and native pascure.

Stability ranges again indicate that an increase in revenue per unit from stockers P 44 or a slight decrease in interest rate would result in a different organization with 59 head of buy-sell stockers P 46 entering the basis and some of the cow activity P39 leaving the basis.

Cotton, Peanuts, Wheat Removed

The elimination of wheat, the third most profitable crop gives a completely new and much more diversified organization (See Plan 5, Table VIII). Soybeans is grown on all cropland suitable for its production. Oats takes all Cc land and the Cb land not suited to rowcrops. Alfalfa is the user of the Ca land not suited for row crops. This organization might be atcractive to certain farmers who do not wish, or are financially unable, to bear che risk of a complete crop failure under an organization such as the all wheat organization in the previous section.

Cow numbers P39 change from 30 to 21 head and stocker steer P46 numbers change from 79 to 18 head from the previous to the present organization. The change from all wheat to this more diversified organization results in a decrease in net income of $\$ 2,863.73$.

A more logical otganimation might be the substiturion of wheat for oats in this organization. Labor, machinery and capital requirements would vary only slightly and net income would increase by $\$ 906.66$.

Stability range figures show that a cost per acre increase of $\$ 0.22$ for oats would result in some soybeans on Cb land being replaced by oats. The instability of the oat sell activity re-enforces the already stated proposition that slight increases in net returns from oats or decreases for soybeans would result in some soybeans being replaced by oats.

Cotton, Peanuts, Wheat, Soybeans Removed
With soybeans removed, a more specialized and simple organization is derived (Table VII, Plan 6). Oats uses 258.75 of the 345 acres, alfalfa uses 51.75 acres and bermuda uses 34.5 acres. The available small grain pasture allows 33 stocker steers P43 and 31 cows P39 to be included in the optimum basis. Labor requirements are less than the previous organization by 87 hours (1039.46 hours) and is the lowest for any of the optimum organizations in this chapter (Figure 2). The net income decreases to $\$ 5,528.83$, which is a drop of only $\$ 160.22$ from the previous organization.

Stability ranges indicate that a decrease in interest rate of sixtenths of one percent would allow buy-sell stockers P46 to become profitable and would result in 60 head of stocker steers 446 entering the program.

Oats Removed

The removal of oats as an available alternative, in addition to those previously removed, results in boch grain sorghum and bermuda becoming relatively more profitable (Table VII, Plan 7). Alfalfa occupies all Ca land and is stable. Grain sorghum uses all Cb land suitable for rowecroppligg. Bermuda uses all Cb land unsuited for row crops and all Ce and Cd land.

With the increase in bermuda acreage, stocker steer P 46 numbers Increase from 33 to 116 head and cow numbers $P 39$ decrease to 11 head. Total capital requirements increases $\$ 8,279.93$ over the previous plan (Figure 2). Net income decreases to \$5,007.06.

Bermuda on Cb land is not stable and an increase in cost per unit of $\$ 0.24$ (from $\$ 8.88$ to $\$ 9.12$) would result in fewer acres of bermuda

being grown. This would also affect the stocker steer P46 enterprise as fewer steers would be carried with the decrease in bermuda grass acreage.

Aithough the buy-sell stocker steer activity 943 does not enter the optimum basis for this plan, it would enter if (1) interest rate dropped from six percent to 5.87 percent, (2) revenue per unit from the cow-calf activity p39 dropped by $\$ 0.30$ or (3) if revenue per unit from buy-sell stockers 446 increased by $\$ 0.15$. Any of the changes would result in some of the 11 head of cows 939 being replaced by buy-sell stockers 443.

Alfalfa Removed
The elimination of alfalfa as an alcernative, along with the other crops which have been previously excluded, returns the optimum organiqation to a more spectalized organization (Table VIIT, Plan 8). Grain sorghum is the only cash crop grown and it occupies all Ca and Cb land suttable for row-crops. The remaining 148.35 acres of the 345 tillable acres are in bermuda. Cowmalf 937 numbers increase to 14 head and stocker steer $P 46$ numbers increase to 120 head.

Net income from present organizarion is $\$ 4,650.39$. Labor required increases by 121.92 howrs over the previous plan to 1322.82 and total capital required increases over the previous organitation by $\$ 1,327.70$ to $\$ 29.455 .65$ (Figure 2)。

The bermuda activities on Ca and Cb land are not stable, however, changes in cost per unit would not cause any new organdzation of enterprises but would result in different levels of production practices for
the bermuda enterprise. There would be some change in net income and livestock numbers. The stability ranges on stocker steers P46 and the cowcalf activity P37 also emphasize that silght price changes would cause some of the bermuda activities currently in the program to be replaced by a different bermuda activity. The narrow range on the six percent Interest rate indicates how littie interest rate would need to change for a more intensive operation to be initiated. If interest rate decreased from six percent to 5.87 percent then heavier production practices would be applied to bermuda and stocker steer numbers would increase.

No Cash Crops
With the removal of grain sorghum as a possible alternative, in addition to the previously excluded activities, bermuda and small grain for grazing are the only remaining activities that use cropland. All the problems of decision-making are not eliminated, however, as eight levels of production practices (Table IV) can be applied to the bermuda. Both input prices and cattle prices influence the determination of the most profitable level of production practices.

With current prices, the most profitable organization (Table VII, Plan 9) is a bermuda grass-stocker steer operation. All cropland can be profitably sprigged to bermuda and with the 277 AUM's of native grazing available the representacive farm can carry 324 units of the buy-sell stocker activity P46.

It is profitable to use production practice level III on bermuda Ca and Cb land but only a maintenance level I on the Cc and Cd land.

Some farmers might not restrict the use of production practice III to Ca and Cb land and apply the practice level III to bermuda on all
land classes. The effect would be to decrease net income by $\$ 301.76$. Using the maintenance level I on all bermuda would decrease net income by only \$31.59.

Stability ranges on production practice III on the bermuda on Ca land indicates that practice levels III and VIII are perfect substitutes. It also indicates that if a farmer had a limited mix of inputs to apply to either Ca or Cb land that he would be indifferent as to which land class received the inputs. The narrow range on buy-sell activity P 46 indicates that a per unit decrease in revenue of $\$ 0.53$ would make production practice III unprofitable on 20.81 acres of bermuda on Ca land. Production practice I would be the new activity. The same results are implied should interest rate rise above 6.34 percent.

The most significant differences in this organization and the ones in the previous sections are: (1) much higher total and annual operating capital requirements (Figure 2), (2) the lowest net income (Figure 2), and (3) the third highest labor requirement. Other implications will be looked at in a later chapter.

EFFECTS OF ALLOTMENT RESTRICTIONS ON ORGANIZATION AND NET INCOME

An early section of this chapter dealt with optimum organization and possible net income with conditions of current prices, no allotment restrictions and all alternative activities. To allow comparison of organization and net income under conditions of "no allotments" and "allotments" this section uses an area representative breakdown of allotment restrictions. Allotments (See Table II) restrict the available land for use of cotton, peanuts and wheat to 210.5 of the 345 acres.

Table IX gives a comparison of organization, capital and labor requirements, and net incomes for the two plans. It is significant that the three allotment crops enter the basis up to the maximum allowed under the allotment restrictions. This is in line with the findings from the deletion process which determined cotton, peanuts and wheat to be the most profitable of the alternative crop enterprises.

The "allotments" plan is much more diversified than the "no allotments" plan. Net income, at $\$ 12,092.85$, is almost $\$ 2,200$ less than the "no allotments" plan. Total operating capital is almost $\$ 6,000$ less than the "no allotments" plan.

Stability ranges given in the appropriate appendix tables indicate the activities in the "allotments" plan are more stable than those in the "no allotments" plan.

When compared to other alternative farm plans in this chapter, the "allotments" plan is only inferior in net income to those plans having a greater acreage of either cotton, peanuts or a combination of the two.

TABLE IX
A COMPARISON OF EFFECTS OF REPRESENTATIVE ALLOTMENT RESTRICTIONS UPON ORGANIZATION AND NET INCOME ON A REPRESENTATIVE EASTERN OKLAHOMA PRAIRIE SOILS FARM

Item	Unit	Allotments	No Allotments
Corton	acre	72.50	12.42
Peanuts	acre	103.50	184.23
Wheat	acre	34.50	113.85
Soybeans	acre	20.65	
Oats	acre	69.00	
Alfalfa	acre	10.35	
Bermuda	acre	34.50	34.50
Beef Cows	head	31.0	30.0
Beef Stockers	head	27.0	65.0
Operator Labor	hours	1729.96	1743.60
Total Capteal	dol.	24900.90	30947.57
Anmual Capital	dol.	18152.90	21283. 39
Return to Land, Labor, Management and Risk	dol.	12092.85	14370.56

CHAPTER IV

PROFITABLE FARMING ADJUSTMENTS FOR THE INTERMEDIATE-RUN

Abstract

This chapter is specifically designed to aid farm managers in planning their farm organizations for possible future product price situations. Supplementary information is furnished to nonfarm businessmen on possible changes in area aggregate output and quantities of inputs demanded with changes in the general price level. This analysis lends itself to use by policy makers who are interested in estimating intermediate term response of cotton production with no allotments to changes in either cotton prices or prices of those crops which compete with cotton. The results may also be used in examining comparative advantages of various producing regions.

Input prices used in this chapter are presented in Appendix Table As I. Cotton price and prices of competing products are varied throughout the analysis. All major livestock and crop activities for the area are included. This may overestimate "real world" conditions as many farmexs may have reservations or preferences against the production of certain of the included activities. The analysis includes budgeting to detemine differences in income for organizations other than the optiman one.

In this intermediate-run analysis all land is held constant. No allotment restrictions are placed upon any of the crop enterprises. However, row crops are limited by their soil depletion effects and are not allowed to be cropped continuously. Labor is assumed to be available at $\$ 1.00$ per hour.

Three major effects are studied in this chapter: (1) cotton prices are varied from the base by plus or minus 20 percent and plus or minus 40 percent while prices of all competing activities are held at base, (2) cotton prices are varied by plus or minus 20 percent and plus or minus 40 percent when the prices of competing commodities are increased to 30 percent above base prices, (3) cotton prices are varied by plus or minus 20 percent and plus or minus 40 percent when the prices of competing products are decreased below base prices by 30 percent (Table X). The rationale for looking at many possible price combinations

TABLE X
ALTERNATIVE PLANS DERIVED AND ANALYZED FOR FIVE COTTON PRICES AND THREE PRICE levELS

Price levels for competing products				Cocton Prices (cents per poind)				
				13.2	17.6	22.0	26.4	30.8
(1)	Base			X	X	X	X	X
(2)	Base	Plus	30\%	X	X	X	X	X
(3)	Base	Minus	30\%	X	X	X	X	X

is to allow observations concerning changes in organizations as the price relationships change. Information is also given on changes that could be expected in profits and the stability of certain crops within a given organization over a range of prices. Implicit in the analysis is information relating to deviation from maximum profits resulting from non-optimal organizations.

Cotton Prices Varied, Competing Products Value at Base

With cattle and all competing crops at base prices, cotton is not competitive at a price of 13.2 cents per pound (base minus 40 percent). Peanuts is the major cash crop and occupies all 196.65 acres of cropland suitable for its production. Wheat uses the next largest acreage 23 percent of available cropland (79.35 acres). Class Cc land is planted to 34.5 acres of grain sorghum and all the Cd land is planted to bermuda. Fifty nine head of stocker P44 utilize wheat pasture and winter cover crops and 30 beef cows P39 are included to utilize native pasture, small grain pasture and extra labor.

With the exceprion of the "neax substitutability" of wheat and grain sorghum on Ce 1 and, the organization for 13.2 cent cotton and other products at base prices is quite stable.

Stability ranges ${ }^{1}$ tell how much cost per unit or revenue per unit could cahnge before a change in organization would occur. For this organization, if prices of grain sorghum decrease by one cent or wheat

[^2]prices increased by more than one cent, a new organization would result. Additional budgeting indicated that growing all wheat on Cc land would decrease the maximum profit by only $\$ 1.04$. Many farmers might prefer to grow all wheat to avoid the planting and harvesting of two quite different crops.

Cotton Price at 17.6 Cents and 22.0 Cents
At 17.6 cents per pound for cotton lint, all competing products at base prices, a slight change in the organization of the crop enterprises is observed. At this price level, 12.81 acres of cotton enter the program. This cotton acreage is only 6.5 percent of the total land suitable for cotton production. The amount of available OctoberNecember labor restricts the amount of cotton grown. This is because (1) the other activities can pay labor a higher return than cotton and (2) cotton returns are not high enough to allow the hiring of more labor。

The stability ranges for cotton and peanuts (the activity with which cotton competes) indicates both activities are quite stable.

At cotton prices of 22 cents per pound and other products at base prices the same organization is optimum as when cotton is 17.6 cents. Net income increases by $\$ 200$. The stability range for cotton indicates that production costs would have to decrease by $\$ 10$ per acre before any labor would be hired.

Cotton Price at 26.4 Cents and 30.8 Cents
An increase in cotton prices to 26.4 cents per pound, 20 percent above the base, gives an important change in farm organization: (Table XI) Cotton completely replaces peanuts on the land suitable for row crops and acreage increases from 12.81 acres to 196.65 acres. With the

TABLE XI
OPTIMUM ORGANIZATION AT FIVE COTTON PRICES, COMPETING COMMODITIES AT BASE PRICES, REPRESENTATIVE PRAIRIE SOILS RESOURCE SITUATION

Enterprise	Unit	Corton Prices (cents per pound)				
		13.2	17.6	22.0	26.4	30.8
Cotton	acre		12.81	12.81	196.65	196.65
Peanuts	acre	196.65	183.84	183.84		
Wheat	acre	79.35	79.35	79.35	107.56	107.56
Soybeans	acre					
Grain Sorghum	acre	34.50	34.50	34.50	6.29	6.29
Oats	acre					
Alfalfa	acre					
Bermuda	acre	34.50	34.50	34. 50	34.50	34.50
Beef Cows	head	30.0	30.0	30.0	31.0	31.0
Beef Stockers	head	59.0	54.0	54.0		
Operator Labor	hour	1374.45	1764.17	1764.17	1783.07	1783.07
Total Capital	dol.	30661.23	29941.56	29941.56	29962.45	29962.45
Annual Capital	dol.	21196.29	20841.21	20841.21	16250.91	16250.91
Returns to Land, Labor, Management and Risk	dol.	7327.73	7376.78	7573.99	9649.20	12723.14

elimination of peanuts the stocker cattle activities P43 and P44 drop out of the program as they were users of grazing from the winter cover crop on the peanut land. Thirty one head of the cow-calf activity P39 is in the basis. Net income increases by more than $\$ 2,000$ over the previous organization.

Some of the cocton activities are rather unstable at the lower limit. The instability is not critical as cotton would still be the crop grown, but hand harvest would substiture for mechanical harvest. Net income would decrease by $\$ 687.48$ if all cotton was hand harvested. Wheat and grain are still quite unstable on the Ce land. A farmer could be practically indifferent conceming which crop is grown. If grain sorghum entered the basis net income would decrease by $\$ 17.71$.

At a cotton price of 30.8 cents per pound, no change in whole farm organization is observed. The cost per unft for mechanical harvested cotton is very close to the value for its upper limit. The change that would result if the cost per unit of mechanical harvest cotton decreased by $\$.48$ would be for hand harvested cotron on Ca land to enter the program. Therefore, no basic change in farm organization would result. Net income increases by $\$ 3,000$ over the previous program. Livestock and bermuda grass activities remain unchanged.

Cotton Price Varied, Competing Products Value at Base Minus 30 Percent
With all compering crops and ifvestock valued at base prices minus 30 percent some cotcon is included in the optimum organizarion at every cotton price (Table XII). However, at prices of 13.2 and 17.6 cents per pound cotton can claim only seven percent of the suitable cropland.

TABLE XII

OPTIMUM ORGANIZATION AT FIVE COTTON PRICES, COMPETING COMMODITIES at base prices minus 30 PERCENT, REPRESENTATIVE

PRAIRIE SOILS RESOURCE SITUATION

Enterprise	Unit	Cotton Prices (cents per pound)				
		13.2	17.6	22.0	26.4	30.8
Cotton	acre	13.46	14.24	196.65	196.65	196.65
Peanuts	acre					
Wheat	acre	80.67	62.10	83.22	83. 22	83.22
Soybeans	acre	41.40	41.40			
Grain Sorghum	acre	141.79	141.01			
Oats	acre					
Alfalfa	acre					
Bermuda	acre	33.18	14.26			
Idle Land	acre	34.5	71.99	65.13	65.13	65.13
Beef Cows	head	33.00	28.00	24.00	24.00	24.00
Beef Stockers	head					
Operator Labor	hour	1561.51	1466.73	1634.61	1634.61	1634.61
Total Capital	dol.	16950.03	14952.69	17880.69	17880.69	17880.69
Annual Capital	dol.	14529.41	12693.25	13452.51	13452.51	13452.51
Return to Land, Labor, Management and Risk	dol.	1732.54	1944.67	4711.60	7785.55	10859.49

Cotton Price at 13.2 and 17.6 Cents

At a cotton price of 13.2 cents per pound, grain sorghum uses 41 percent of the cropland. Wheat, soybeans, bermuda, and cotton occupy 23, 12, 9, and 4 percent of the cropland, respectively. Ten percent of the cropland is idle. Thirty three head of beef cows P39 utilize the native and small grain pasture. Net income is $\$ 1732.54$. The included hand harvested cotton activity is limited by available October-December labor. Excess labor is available in the other three periods.

At the 17.6 cent cotton price, wheat acreage decreases, cotton acreage increases slightly, idle land acreage increases, and net income increases to $\$ 1944.67$.

Cotton Price at $22.0,26.4$, and 30.8 Cents
A major change in organization occurs with a change in lint cotton price at 22 cents per pound (Table XII). Grain sorghum and soybeans are out of the organization and the only crops grown are cotton and wheat. Beef cow, P39, numbers decrease by four to 24 head. Bermuda is replaced by wheat. However, wheat is not stable on Cc land and a small increase in cost of wheat production, a small decrease in cost of bermuda production, or an increase in returns from beef cattle would result in bermuda replacing the wheat on Cc land.

Optimum farm organization does not change with increases in cotton prices to 26.4 and 30.8 cents per pound. Net incomes increase to $\$ 7,785.55$ and $\$ 10,859.49$ with the respective increases in price.

Cotton Prices Varied, Competing Products Valued at Base Plus 30 Percent
When prices of those livestock and crop activities which compete
with cotton for available resources are increased by 30 percent, cotton cannot favorably compete even at prices of 30.8 cents per pound.

Cotton Price at $13.2,17.6$, and 22.0 Cents
Peanuts and wheat occupy three-fourths of the cropland and are the only cash crops grown. Remaining cropland is used by 86.26 acres of bermuda. Bermuda and native pasture provide forage for 116 head of stockers P46 and the small grain pasture can carry 89 head of stockers P43. The total operating capital requirement of $\$ 50,964.95$ is much higher than that required at the base and base minus 30 percent price levels. No labor is hired and 1525.81 hours of the avallable 2204 hours of operator labor are required. Net income is $\$ 16,128.30$.

Wheat is not stable on the Caland and would be replaced by alfalfa should cost of wheat production increase by more than $\$ 0.47$ per acre. The same result would be achieved if wheat prices decreased by more than $\$ 0.02$ per bushel. The stability ranges for most bermuda activities are narrow. However, should a change occur, the new activity would be a bermuda activity with a different production practice level.

No change in optimum organization results from an increase of corton prices to efther 17.6 or 22.0 cents per pound. Net income remains at $\$ 16,128.30$. With a wheat price of $\$ 1.56$ per bushe1, a change of two cents in price or a change in costs of more than three percent will resule in part of the wheat being replaced by alfalfa. If costs increase by as much as five percent, 19.8 acres of grain sorghum will also enter the organization. Although the bermuda activities in the program are not stable, a slight change in prices or costs will only result in bermuda with a different production practice level replacing
the outgoing bermuda. An increase of one percent in interest rates could cause wheat to be unprofitable and result in some alfalfa and/or grain sorghum entering the program.

Cotton Price at 26.4 Cents
At a cotton lint price of 26.4 cents per pound a slight change in organization occurs. Cotton replaces 8.84 acres of peanuts. Net income increases by $\$ 28.85$ to $\$ 16,157.15$ as a result of the change in organization and the increase in cotton prices. The most significant occurance is the change in the degree of stability of the wheat, bermuda and buy-sell livestock activities. Alfalfa becomes even more competitive with wheat on Ca land than at previous price combinations and an increase in cost of production of wheat by $\$.38$ per acre would decrease by only $\$ 3.93$ from this change in organization.

Of the 86.25 acres of bermuda inciuded in this organization, the activities on 80.67 acres are unstable. The unstable activities, however, would be replaced by another bermuda activity using a different level of production practices.

The stability ranges of the two buy-sell activities P43 and P46 indicate that if net returns per animal decreased by more than one percent, some bermuda would drop out of the program and the acreages of wheat and alfalfa would increase.

The stability range around the six percent interest rate is very narrow for all programs with base plus 30 percent prices on competing produces. However, \& change of plus or minus five tenths percent will result in a change in this system.. An increase in interest rate would yield more bermuda in the organization. The closeness in value
of the lower coefficient of the stability range and the $\$ 1.56$ wheat price Indicates that a one cent decrease in wheat price would allow alfalfa to enter the program. Net income would decrease $\$ 2.85$ if alfalfa replaced wheat.

Cotton Price at 30.8 Cents

At a cotton lint price of 30.8 cents per pound, very little change occurs in optimum ofganization (See Table XIII). Cotton acreage increases by 041 acres and alfalfa replaces wheat on 10.35 acres. Stocker P43 numbers decrease by four to 82 head, stocker $P 46$ numbers remain at 116 head. Net income increases by $\$ 139.03$ over the optimum organization at the previous price level. Total capital required decreases by $\$ 700$ to $\$ 49,688.90$.

Stability ranges show alfalfa to be highly unstable. If returns from alfalfa decrease by $\$.28$ per acre more bermuda would be grown. If returns per acres from alfalfa should increase by $\$.08$ then some wheat would be replaced by alfalfa. An increase of $\$.32$ per acre in costs of bermuda grown on Cb land would decrease bermuda and increase wheat.

Stability ranges on buy-sell stockers P43 (winter grazed October to May on small grain pasture) and buy-sell stockers P46 (grazed on bermuda pasture) are narrow. If the returns per animal from stockers P43 grazing on wheat pasture decreased by $\$.29$ then few stockers P43 would be run on wheat pasture. A decrease in per animal returns for stocker $P 46$ would resule in some of the bermuda being replaced by wheat.

Stability range on the interest rate of six percent is very narrow for this optimum organization. A one-renth of one percent decrease in

TABLE XIII

OPTIMUM ORGANIZATION AT FIVE COTTON PRICES, COMPETING COMMODITIES AT BASE PRICES PLUS 30 PERCENT, REPRESENTATIVE PRAIRIE SOILS RESOURCE SITUATION

Enterprise	Cotton Prices (cents per pound)					
	Unit	13.2	17.6	22.0	26.4	30.8
Cotton	acre		\cdots		8.84	9.25
Peanuts	acre	196.65	196.65	196.65	187.81	187.4
Wheat	acre	62.1	62.1	62.1	62.1	51.75
Soybeans	acre					
Grain Sorghum	acre					
Oats	acre					
Alfalfa	acre					10.25
Bermuda	acre	86.25	86.25	86.25	86.25	86.25
Beef Cows	head					
Beef Stockers	head	205.0	205.0	205.0	202.0	198.0
Hired Labor	hour					
Operator Labor	hour	1525.72	1525.72	1525.72	1792.34	1783.00
Total Capital	dol.	50964.95	50964.95	50964.95	50359.91	49688.90
Annual Capital	dol.	37719.99	37719.99	37719.99	37328.20	36724.70
Return to Land, Labor, Management and Risk	dol.	16128.30	16128.30	16128.30	16157.15	16296.18

interest rate would result in more wheat being grown, less bermuda being grown and less stocker cattle being used.

Labor Requirement for Optimum Organizations

A tabular summary of labor requirements of the 15 optimum plans determined earlier in the chapter is presented in this section to allow comparison on the basis of amount of operator labor required. Table XIV gives the number of the available 2204 operator hours that were actually used in the optimum farm organizations.

TABLE XIV
LABOR REQUIREMENTS FOR OPTTMUM PLANS AT FIVE COTTON PRICES AND THREE GENERAL PRICE LEVELS FOR COMPETING PRODUCTS ON A REPRESENTATIVE EASTERN OKLAHOMA PRAIRIE SOILS FARM

Price Level of Competing Products	Cotcon Price (cents per pound)				
	13.2	17.6	22.0	26.4	30.8
Base Minus 30 Percent	1561.51	1466.73	1634.61	1634.61	1634.61
Base	1374.45	1764.17	1764.17	1783.07	1783.07
Base Plus 30 Percent	1525.72	1525.72	1525.72	1792.34	1783.00

The farm plans with the highest labor requirements in Table XIV are ones: that had some units of the hand harvest cotton activity in the basis. Figures from activity budgets (Table XV) indicate: that hand harvested cotton is the most labor intensxwe of the included cash crop activities. The additional generalization can be:made that all row-crops are more intensive labor users than the small grain crops.

It is significant that for the 520 acre representative farm and the many price combinations, in no case was any labor hired and that the hours required annually per plan varies by little more than 400 hours.

TABLE XV
PER ACRE LABOR REQUTREMENTS OF INCLUDED CASH CROP ACTIVITIES

Identification		
Number		
	Activity	
P47	Cotton, hand harvest	
P48	Cotton, machine harvest	35.98
P51	Peanuts	3.52
P53	Wheat	2.92
P56	Soybeans	1.92
P59	Oats	2.66
P61	Grain Sorghum	1.92
P65	Alfalfa	2.65
		.98

Operating Capital and Machinery Capital Requirements for Optimum Plans

The nature of an organization, whether livestock or crop oriented, Influences operating capital requirements of a Eamplan. A livestock oriented plan will have greater operating capital needs than a cash crop plan. An example can be drawn from Table XVI by comparing operating capital requirements for the organizations determined optimum when competing products are at base prices and cotton prices are at 22 and 26.4 cents per pound. The organization at 22 cent cotton is a peanut-stocker steer system and at $26: 4$ cent, cotton is the major crop: Since operating capital requirements for peanats and cotton are quite similar, the major factor causing change in operating capital requirement was steers.

Machinery capital required for farm plans is the reverse of the situation for operating capital. Although machinerg capital requirements
vary no more than $\$ 825$ within any price level for competing products, plans that include livestock as a major enterprise tend to have lower machinery capital requirements and plans with cotton as the major enterprise tend to have higher machinery capital needs... Plans at (1) base prices plus 30 percent for competing products and cotton prices at 22 cents, (2) base prices for competing products and cotton prices at 22 cents, and (3) base prices for competing products and cotton $26: 4$ cents can be used for comparative purposes: Plan 1 which is a buy-sell system requires $\$ 4,015,63$ in machinery capital. Plan 2 , a plan with peanuts as the major enterprise, requires $\$ 4,518.34$. P1an 3 , a p lan with cotton as the major enterprise, requires $\$ 5 ; 095.96$ in machinery capital. This is a variation between Plans 1 and 3 of about $\$ 1,100$.

TABLE XVI
ANNUAL INVESTMENT AND MACHINERY CAPITAL REQUIREMENTS FOR OPTIMUM PLANS AT FIVE COTTON FRICES AND THREE PRICE LEVELS FOR COMPETING PRODUCTS

Price Levels of Competing Products	Cotton Prices				
	13.2	12.6	22×0	26.4	30.8
Minus 30 Percent					
Operating Capital	16950.03	14952.69	17880.69	17880.69	17880.69
Machinery Capital	4172.22	3784.64	4606.78	4606.78	4606.78
Base Prices					
Operating Capital	30661.23	29941.56	29941.56	20962.45	20962.45
Machinery Capital	4472:30	4518.34	4518.34	5095.96	5095.96
Plus 30 Percent					
Operating Capital	50964.95	50964.95	50964.95	50359.91	49688.90
Machinery Capital	4015.63	4015.63	4015.63	4047.54	4017.44

The $\$ 1,100$ figure implies that a farmer who had recently purchased new equipment, especially row-crop equipment, should weigh cost and return figures very carefully before making a decision to switch to an organization such as wheat or livestock pasture in which there is no use for row-crop equipment.

There is a general tendency for machinery capital requirements within each of the three price levels for competing products to increase as cotton prices increased.: This should give machinery dealers indications on possible changes in sales and types of sales as product prices change.

Total cash inputs can be derived by subtracting total machinery capital from total operating capital. The required cash inputs are rather stable for a given price level. With competing product prices at base minus 30 percent, cash inputs range from $\$ 11 ; 200$ to $\$ 12,800$ and at base prices cash inputs range from $\$ 15,000$ to $\$ 26,100$. At prices of base plus 30 percent the range on cash inputs if $\$ 45,100$ to $\$ 47,100$. The higher capital requirement of the latter price level is a result of a large stocker catcle operation This may imply a substancial credit market for some lending agencies should livestock farm numbers increase in the area. There may be some restraint of the part of farmers from entexing a stocker calf systen because of the high operating capital requirement of this type of organization and the degree of uncertainty associated with this enterprise.

A Comparison of Organization, Resource Requirements and Net Incomes of Two Farm Sizes

The description of the small farm given in Chapter II indicated that the representative small farm is 4 the size of the large farm. Soil resource situations and land class percentages are the same for the two farms. The only differences in farm characteristics are in machinery requirements and allotment crop leve1s.

Tables XVII through XIX give comparisons of percentage of cropland on each farm used by the various alternative crops. Because both farms have the same amount of operator labor available, it is conceivable that the small farm could have a more labor intensive combination of enterprises. For example, more hand harvested cotton could be included. This is the case for cotton prices of 13.2 and 17.6 . cents where a greater percentage of cropland is used for cotton production on the small farm than on the large farm.

Tables XVII through XIX indicate the degree of closeness with which the figures on resource requirements; livestock numbers and net incomes approximate the .4 figure on size relationships.

A more complete analysis of organization, net income and implications is included in Appendix Chapter B.

Cotton Supply Estimates

The supply response for cotton on a representative eastern Oklahoma farm is estimated at three general commodity price levels. The cotton supply function in Figure 3 was obtained from the results in which cotton price was varied from 13.2 cents to 30.8 cents per pound within

TABLE XVII
CROPLAND ALLOCATION PERCENTAGES AND SELECTED NON-LAND ITEM COMPARISONS FOR TWO REPRESENTATIVE EASTERN OKLAHOMA PRAIRIE FARM SIZES WHEN COMPETING PRODUCTS ARE AT BASE PRICES

Item	13.2		17.6		22.0		26.4		30.8	
	small	large	small	1 arge	sma11	large	small.	large	smal1	large
Cotton			.12	. 04	. 12	. 04	. 57	. 57	.57	. 57
Peanuts	. 57	$\checkmark 57$. 45	. 53	. 45	. 53				
Wheat	. 33	. 23	. 33	. 23	. 33	. 23	. 33	. 31	. 33	. 31
Soybeans										
Grain Sorghum		.10		. 10		. 10		.02		. 02
Oats										
Alfalfa										
Bermuda	. 10	.10	.10	.10	.10	. 10	. 10	. 10	.10	. 10
Small farm results as a percentage of large farms										
Cattle										
Operator Labor										
Total Capital										
Annual Capital										
Net Income										

TABLE VXIII

CROPLAND ALLOCATION PERCENTAGES AND SELECTED NONーLAND ITEM COMPARISONS FOR TWO REPRESENTATIVE EASTERN OKLAHOMA PRAIRIE FARM SIZES WHEN PRICES FOR COMPETING PRODUCTS ARE AT BASE PRICES MINUS 30 PERCENT

Item	13.2			17.6		22.0		26.4		30.8	
	small		large	small	large	small	large	small	large	small	large
Cotton	. 11		. 04	.11	. 04	. 57	. 57	. 57	. 57	.57	. 57
Peanues											
Wheat	.23		. 23	.18	.18	.18	. 24	. 18	. 24	. 18	. 24
Soybeans			. 12		- 12						
Grain Sorghum	. 46		. 41	. 46	. 42						
Oats											
Alfalia											
Bermuda	- 10		. 10	.05	. 04						
Tdle Land	-10		. 10	. 20	.21	.25	. 19	. 25	. 19	.25	. 19
	Small farm results as a percentage of large farms										
Cattle		. 4667								. 3	
Operator Labor		.7739									
Total Capital		. 4401									
Annual Capital		. 4398									
Net Income		. 3809									

TABLE XIX
CROPLAND ALLOCATION PERCENTAGES AND SELECTED NON-LAND ITEM COMPARISONS FOR TWO REPRESENTATIVE EASTERN OKLAHOMA PRATRIE FARM SIZES WHEN PRICES FOR COMPETING PRODUCTS ARE AT BASE PRTCES PLUS 30 PERCENT

Item	13.2			17.6		22.0		26.4		30.8	
	small		laxge	small	large	small	large	small	large	small	large
Cotton								. 11	.03	.11	. 03
Peanuts	. 57		. 57	. 57	. 57	. 57	. 57	.47	. 54	.47	. 54
Wheat	. 18		-18	. 18	. 18	. 18	. 18	. 18	. 18	. 16	. 15
Soybeans											
Grain Sorghum											
Oats											
Alfalfa										.03	. 03
Bermuda	.25		. 25	- 25	$\therefore 25$. 25	.25	.25	.25	. 24	.25
	Small farm results as a percentage of large farm										
Catele		. 4049									
Operator Labor		. 5893									
Total Capital		. 4184									
Annual Capital		. 4242									
Net Income.		.3963									

each preice level of competing products. A discrete function was obtained as only five cotton prices (13.2, 17.6, 22.0, 26.4 and 30.8 cents) were used. However, stability ranges allow estimation of more points on the discrete function.

Supply With Competing Product Prices at Base Plus 30 Percent
With competing products at base price plus 30 percent, cotton is unable to compete favorabiy for available resources. At the highest cotcon price, 30.8 cents, only 2.7 percent of the cropland is in cotton (See Figure 3).

```
Cotton Price
(cents/pound)
```


Figure 3. Intermediate Run Cotton Supply Response at Three Price Levels for Competing Products on a Representative Eastern Oklahoma Prairie Soils Farm

Supply With Competing Product Prices at Base

Cotton assumes a more competitive position with competing products at base prices. Cotton production is small at prices of $13.2,17.6$ and 22.0 cents. However, between 22.0 and 26.4 cents per pound the supply becomes highly elastic and per farm production jumps from 45 cwt , to 698 cwt (See Figure 3). Stability range limits indicate that much of this increase actually occurs at 23.43 cents. At this price, production increases to 539.02 cwt . Available land per farm limits cotton production to a 698.63 cwt . maximum and, as a result, the supply curve becomes inelastic at all cotton prices greater than 26.4 .

Supply With Competing Product Prices at Base Minus 30 Percent

A decrease in prices for competing products to base prices minus 30 percent results in a downward shift in the cotton supply curve. Alternative crop enterprises become less profitable and cotton becomes relatively more profitable at all cotton prices. Supply is relatively inelastic for the discrete function up to a price of 18.0 cents. At 18.0 cents supply increases to 244.94 cwt. The supply curve is highly elastic between 17.6 cents and 22.0 cents as production increases from 49.85 cwt . to 698.63 cwt. Available land again restricts cotton production per farm to 698.63 cwt . and causes the curve to become inelastic at all prices above 22.0 cents.

The preceeding discussion implies that even though competing product prices might fall to a price level of base prices minus 30 percent (16.40 stocker calves, $\$ 0.84$ wheat) that very little cotton will be produced in the prairie soils area at cotton prices of less than 18.0 cents per pound. This furnishes information for policymakers interested in
comparing inter-regional advantages in cotton production. Supply functions also indicate the level to which cotton prices must fall for cotton to be replaced by other major enterprises. When competing products are at base prices, cotton becomes the major enterprise at 23.43 cents. For competing products at base minus 30 percent, this cotton price is 18.0 cents.

Net Income Effects of Inflexible Organization Strategies

Farmers have many reasons for not adjusting to changing prices and moving to optimum organization. Personal strategies such as specialization of skill and managerial ability in a particular enterprise or the purchase of highly specialized machinery and equipment as a result of anticipated returns may create inflexibility in organization. For example, heavy fixed costs or inability to manage other enterprises can reduce ability to adjust over even a relatively long period.

Two organizations were chosen as possible strategies farmers in eastern Oklahoma might follow. Organizations determined optimum at cotton prices of 22.0 cents and 30.8 cents were selected to represent the future cotton prices anticipated by a pessimistic farmer and an optimistic farmer. To allow study of effects of inflexibility, the organizational strategies were held constant and net income determined for each organization at the five cotton prices. This procedure was followed for the three price levels of competing products. Net incomes from these two organizational strategies were compared. Net incomes were also compared to net income from the optimum organization.

Competing Products at Base Prices Plus 30 Percent

Figures from Table XX indicate that at base plus 30 percent prices for competing products neither of the two organization strategies gives a net income very different from the maximum possible from optimum organization. The strategy (farm plan) for high cotton prices (30.8 cents) suffers the greatest variation in income (\$547.45). That only slight income variation would occur could be predicted as neither organization had more than 9.25 acres of cotton.

TABLE XX
INFLUENCE OF TWO INFLEXIBLE STRATEGIES UPON MAXIMUM ATTAINABLE NET INCOME WHEN COTTON PRICES ARE VARIED

| Price Strategies | 13.2 | 17.6 | 22.0 | 26.4 | 30.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Competing Products at Base Prices

Choice of organizational strategies has a much more pronounced effect when base prices for competing products are used and the two organizational strategies are compared. The farmer planning on 22.0 cent cotton and using that inflexible strategy assuming 22.0 cent cotton would only have income
variation of $\$ 837.08$. However, if cotton prices were expected to stay above 23.5 cents the strategy of assuming 30.8 cent cotton, while having greater income variability, would give much higher returns over time (See Figure 4). If cotton prices were expected to be in the low range, then the organizational strategy for 22 cent cotton would be the best strategy。

Figure 4, Income From Three Organization Strategies, Competing Products at Base Prices

Competing Products at Base Prices Minus 30 Percent
At base minus 30 percent prices for competing products the two inflexible organization strategies have identical effects on net income.

Both organizations are the same as the one determined optimum for all cotton prices greater than 22 cents. The only drastic income effect occurs at the very low cotton price of 13.2 cents where income disparity between possible income from optimum organization and the income from an inflexible organization is $\$ 3,168.84$ (See Figure 5).

Net Returns
(Thous and dollars)

Figure 5. Income from Three Organization Strategies, Competing Product Prices at Base Minus 30 Percent

CHAPTER V

OPTIMUM LIVESTOCK FARM ORGANIZATIONS AND BEEF SUPPLY POTENTIALS

Eastern Oklahoma farmers are enthusiastic about the possibilities of the area as a major beef producing area. Interest in livestockbermuda grass systems is high and chis interest has manifested itself in the form of action on the part of some farmers. Records show that bermuda grass acres sprigged in the past five years averages about 4,000 acres anmually in Muskogee, Okmulgee, and Bryan counties.

To fill information gaps concerning productivity of bermuda and livestock gains on bermuda, the Eastern Oklahoma Pasture Station was established and fertilizer demonstration plots have been initiated. Economic data axe needed to answer questions concerning (1) recovery of the: high establishment cost of bermuda, (2) effects of changes in general livestock prices upon Iivestock farm net incomes and (3) most profitable production pxactices under different economic conditions. Such economic information is indispensible to farmers considering a shift from crop to livestock farming since the change necessitates initial commitment of large sums of money and ties up resources for an undefinite time period: land planted to bermuda cannot be easily removed from production ard returned to cash crops

Only Livestock-pasture systems are examined in this chapter. All cash crop activities are excluded as possible altematives. Eight production practice levels for bermuda, wheat pasture; and rye-vetch
pasture are the "crops" included. Livestock activities used are those listed in Tables V and VI, Pages 13 and 14.

TABLE XXI
ASSUMED ANNUAL AVERAGE PRICE FOR THREE LIVESTOCK CLASSES at eight price levels

Class and Grade	Price Levels							
	(Prices in dollars per cwt.)							
Calves								
Good and Choice	16،91	19.33	21.75	24.17	26.59	29.01	31.43	33.85
Steers, 500 lbs . and less								
Steers:								
Good	15.95	17.09	19.23	21.37	23.51	25.65	27.79	29.93
500-800 lbs.								
Cows:								
Utility	9.77	11.16	12.55	13.94	15.33	16.72	18.11	19.50

Variable Pricing Analysis

The variable pricing approach to livestock pasture production analysis has application when determining livestock supply, optimum pasture production practices for different livestock prices and the profitability of adding more pasture.

The effects of price changes from base prices of plus or minus 10 percent, plus or minus 20 percent, plus or minus 30 percent and plus 40 percent upon profitability and optimum organization are examined for both cow-calf and buy-sell operations. ${ }^{1}$ Livestock prices in this chapter
\qquad
The selected percent price wariation is arbitrary, but in line with relevant ranges of future livestock prices.
assume a $\$ 24.17$ per hundred average annual price for 450 pound goodchoice stocker calves (See Table XXI).

Livestock Production at Base Prices Minus 30 Percent

At very low catcle prices cropland is idle and the 277 AUM's of grazing available from native pasture on the representative farm ys utilized by 18 units of the cowncalf activity P34\% Net income is $\$ 392.15$. Capital requirement is $\$ 4,517.37$ and 208.67 hours of labor are required.

Stability ranges ${ }^{2}$ indicate that an increase of $\$ 0.02$ in beef cows revenue, less tham .001 cents per pound, or a bermuda cost decrease of $\$ 0.004$ per acre would cesult in 55 cows, 33 steers and 310.5 acres of bermuda entering the optimum basis. The bermuda would use production practice level $I_{\text {, }}$ net income would decrease $\$ 1.22$, and operating capital requirements would increase $\$ 26,611.20$. The very small decrease in net income from that decermined under the optimum plan could be interpeced to indicate that farmers who already have bermuda pasture and a cow herd would not change organization at the wery low cattle prices, but would ondy apply the low level of production practices. Fhis also indicates that lizestock peices must fall to approximately base prices minus 30 percent before a farmer who had decided to abandon cash crop faming and go to livestock faxming would have no incentive to at least have a stand of bermuda on the abandoned cropland.

[^3]TABEE XXII
OPTIMUM FARM ORGANIZATIONS, ALL LIVESTOCK ACTIVITIES INCLUDED, EASTERN OKLAHOMA PRAIRIE SOILS RESOURCE SITUATION

ILem	Unit	Price Levels							
		-30	-20	-10	Base	$+10$	$+20$	$+30$	$+40$
Bermude al	acre		51.75	51.75					
Bermude alil	acre				51.75	51.75	51.75		
Bermuda ali	acre							51.75	51.75
Bermuda bl	acre		207.00	207.00					
Bermuda bIII	acre				207.00	207.00	207.00		
Bermuda bVI	acre							207.00	207.00
Bermuda cI	acre		51.75	51.75	51.75	51.75	51.75	51.75	51.75
Bermuda dI	acre			34.50	34.50	34.50	34.50		
Rermuda dIII	acre							34.50	34.50
Beef cows	head	18.0	73.0						
Beef stockers	head		33.0	839.0	324.0	324.0	324.0	478.0	478.0
Total beef produced	lbs.	$8,100.0$	43,641.0	78.153.0	105,948.0	105,948.0	105,948.0	156,306.0	156,306.0
Operator labor	hrse	208.67	1,155.99	$1,214.03$	1.657 .97	1.657 .97	1.657 .97	19917.18	$1,917.18$
Hired labor	nrs.							629.01	629.01
Total capital	dols.	4,517.3\%	$26,611.20$	36.924.95	$53,283.40$	56,695.40	60,107.71	97,478.32	102,530.37
Annual capital	dol.	4,407.0.27	25,221.66	$31,183.51$	$43,441.46$	47,660.66	$50,502.64$	80,771. 16	84,981. 20
Returns to	dol.	392. 15	1.153.00	$2,117.56$	3,653.49	5,321.80	6,990.10	9,056.79	11,541.82
Land, Labor,									
Management and Risk									:

1Refer to Table IV, Page 12 for explanation of bermuda activity symbols.

Livestock Production at Base Prices Minus 20 Percent

At livestock prices of base minus 20 percent, $\mathrm{all} \mathrm{Ca}, \mathrm{Cb}$ and Cc cropland can be planted to bermuda only the lowest level of production practices is profitable. Pasture establishment on the 34.5 acres of Cd cropland is not profitable. Seventy three units of spring calving cows $P 34$ and 33 head of stockers P46 use the pasture Net income is $\$ 1,153.00$, capital requimement is $\$ 26,611.20$ and labor requirements is 1155.99 hours (See Table XXII).

Stability ranges indicate that slight increases in revenue per unit from cows or slight decreases in revenue per unit from steers would give a plan with more cows and fewer steers. In fact, cow numbers could be increases to 86 head and all steers eliminated and net return would decrease by only $\$ 4.93$.

Livestock Production at Base Price Minus 10 Percent

It is profitable to put all cropland to bermuda at cattle prices of base minus 10 percent:. The lower bermuda practice level is the most profitable. The buy-sell steer activity is the only livestock activity included with 239 steers in the basis. No cows are included in this optimm plan. This indicates that the relative differences in costs and returns from steers changes more than it does from cows as prices rise. This is jecause there are more fixed costs associated with cows. The plan requixes 58 more hours of labor (1214.03 hours) than the previous organizationo Net income increases by $\$ 964.56$ to $\$ 3,653.49$ and $\$ 36,624.95$ of capital is required (Table XXII).

The stability range on stocker steers indicates that a drop in revenue per unit of $\$ 1.21$ would allow 66 head of spring calving cows P37
to enter the plan. An increase of $\$.30$ in revenue per unit from stocker steers would make production practice level III on bermuda more profitable than level I and allow nine mare stocker steers to enter the basis.

Livestock Production at Base Prices, Base Prices Plus 10 Percent, and Base Price Plus 20 Percent

An increase in livestock prices to base prices allows use of higher levels of production on the bexmuda and as a result 85 more stockersteers P46 enter the optimum plan (See Table XXII). At this price level, the use of fertilizer and improved technology in bermuda establishment and maintenance become profitable. Production practice levels III and VIII on Ca and Cb land are absolute substitutes for each other at this price level.

No organizational change results as cattle prices are increased above base prices by either 10 or 20 percent. Net income and total operating capital are the only factors affected by the price level changes. Table XXIII gives the changes.

TABLE XXIIT
CHANGES IN NET INCOME AND OPERATYNG CAPTTAL FOR A GIVEN ORGANIZATION OF stocker steers on bermida as pryces are varied at three levels

| Item | | |
| :--- | :---: | :---: | :---: |
| Base Prices | Plus 10 Percent | Plus 20 Percent |

Livestock Production at Base Prices Plus 30 Percent and Plus 40 Percent
Cattle prices at base plus 30 percent gives a new organization. Higher levels of production practices allows the bermuda to carry 154 additional steers P46. A total of 478 steers is in the plan (See Table XXII). Practice level VI is the most profitable bermuda activity on Ca and Cb land. However, on Ca land, practice level. VIII is equally profitable and could be substituted for practice. VI. Net income would be $\$ 9,056.79$ under either organization. Capital requirement is $\$ 97,478.32$. The organization requires 1917.18 hours of 1 abor of which 629.01 hours are hired. This price level is the first level at which it is profitable to hire additional labor.

Another 10 percent rise in prices to base plus 40 (450\# calves at 32.79) has no effect upon organization. Net income increases to $\$ 11,542.82$ and operating capital required to $\$ 102,530.37$. Use of the budgeting technique and stability ranges indicate that this organization will remain constant until steer prices reach base plus 41.4 percent (33.13 cents per cwt. for 75016 . steers).

Effects of Changing Prices Upon Livestock Production With Cows as the Only Alternative

In the previous section, steers proved to be moxe profitable than cows at most price levels. To allow a comparison between buy-sell and cow-calf organizations, optimum plans (See Table XXIV) were determined at all price levels for the representative farm when only cows were allowed to enter the basis. Such a comparison is valuable since beef herds are very popular with eastern Oklahoma farmers currently specializing in livestock farming.

TABLE XXIV

OPTIMMM FARM ORGANIZATION, ONLY COW-CALE ACTIVITYES INCLUDED, EASTERN OKLAHOMA PRAIRIE SOIL RESOURCE SITUATTON

Tten	Price Levels							
	Yext	-30	-20	-10	Base	$+10$	$+20$	± 30
Bermuda a ${ }^{1}$	acte		51.75	51.57	51.75			
Bermuda atit	acre					31.75	51.75	51.75
Bermuda bI	acre		207.0	20\%.0	207.0			
Bermuda bitu	acre					207.0	207.0	207.0
Bemmuda cI	acre		51.75	51.75	51.75	51.75	31.75	51.75
Bermuda dll	acre			34.50	34.50	34.50	34.50	34.50
Beef cows	head	18.0	86.0	92.0	92.0	124.0	124.0	124.0
Total beef produced	lbs.	8,100.0	38,700.0	41,400.0	$41,400.0$	55,800.0	55,800.0	55,800.0
Operator labor	heras.	208.67	1.160 .63	1.247 .34	1,247.34	1.703 .07	1.703 .07	1.703 .07
Total Capital	dol.	4,517.37	25,754.75	27,716.12	27.716 .12	38,132.70	38.132 .70	38,132.70
Anmual Capital	dol.	4,407.27	24.016 .06	26,789.79	$26,789.72$	36,186.54	$36,186.54$	36,186.54
Returns to	dol:	392.15	1.148 .07	$1_{8} 967.33$	2,826.50	3,763.97	4.927 .49	$6,091.01$
Land, Labors								
Management and Rysk								

${ }^{1}$ Refer to Tabie IV, Page 12 for explanation of bermida activity symbols.

Results on total pounds of beef produced per farm are presented in Table XXV. Total beef produced is much less from cow-calf at most price levels and this fact is reflected in net income for example, at prices of base and above the steer plan returns appreciably more net income than the cow-calf system (See Figure 6).

TABLE XXV
POUNDS OF BEEF PRODUCED PER FARM FROM OPTTMUM ORGANIZATIONS ALLOWING ALE COW-CALF AND BUY-SELL ACTIVITIES AND OPTIMUM ORGANIZATIONS ALLOWING ONLY COW-CALF ACTIVITIES

| Activities Allowed
 in Basis | -30 | -20 | -10 | Base | +10 | +20 | +30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Operating capital requirements are much lower for the cowmealf organization at all price levels above base prices minus 10 percent (See Figure 6). This might hold considerable appeal to farmex wanting to avoid heavy capital commitments or to those faxmers unable to get control of the operating capital and buy-sell operation demands. At the base plus 30 percent price level, the cow-calf system requires 214,11 hours less labor per year than the steer system.

Effects of Changes in Factors Affecting Relative Profitability

Although a buy-sell system is wore profitable on prairie soil
farms than a cow-calf system at prices greater than base minus 20 percent, there are questions concerning the degree of income stability

Net
Capital Income
(\$1000) (dollars)

Figure 6: Net Income and Capital Requirements for Optimum Organizations for All Livestock Activities and Optimum Organizations for Only Cow-Calf Activities, Representative Prairfe Soil Resource Situation
expected from a buy-sell organization. These questions arise because the end product (eg. a 750 pound steer) from a buy-sell system is less flexible and prone to greater per pound price fluctuations than that from a cow-calf system. The farm, manager, therefore, needs information on the effects of changes in the relative prices of 450 pound calves (the product of a cow-calf system) and 750 pound stockers (the product of a buy-sell system) upon profitability and selection of optimum organization. For example, how much could 750 pound stocker prices decrease to make the 450 calves (cowncalf system) profitable?

Price per pound of 750 pound stockers was decreased by constant percentages, 450 pound calf prices constant at base prices, until some buy-sell stockers were replaced by cows, thus determining the point where steers were no longer absolutely dominate over cows. At a steer price of base price minus five percent, 66 cows replaced 257 steers. At base prices minus eight percent, buy-sell stockers were replaced by a cow herd (92 head). Prices of 750 pound steers relative to prices of 450 pound calves can change by as much as seven percent and some buy-sell steers proritably can be included in the optimumplan。 However, the current price relationship must change by five percent before cows can be competitive with steers.

To test the importance of the previous statement, historical price relationships between 450 pound calves and 750 pound steers were obtained for the years 1939 to 1963. The average price ratio ($\mathrm{P} 450 / \mathrm{P} 750$) for the 25 year period was 1.109 and the range was 1.036 to 1.212 . A five percent decrease in 750 pound steer prices gives a ratio of 1.168 . Only two of the 25 years had a relative price ratio greater than 1.168. Thus, the programming resuits appear quite stable with respect to possible beef price relationships in different years.

Effects of factors other than price such as, disease, death incidence, poor management, rates of gain, bereditary factors, feed additives and innovations upon relative profitability of steers and cows may be studied by using the relative price change analysis. The use of equation (1) will facilitate the analysis.
(1) $C j=P j Y-p j \bar{Y}-V$
$\mathrm{Cj}=$ net returns above cash costs from buy-sell steer
Pj = sale price per cwt.
$Y=s e l l i n g$ weight of steer (in cwt.)
$p j=$ purchase price per cwt.
$\overline{\mathrm{Y}}=$ purchase weight of steer (in cwt.)
$V=$ variable cash costs
Cj in equation (1) is the return to a unit of steers above cash costs, including the cost of the steer. Clearly, a decrease in Pj or Y , or añ increase in $p j$ or V will decrease $C j$. Earlier in this section $P j$ was changed. Now the effects of the $P j$ changes are interpreted as possible $p j, Y$ or V changes with a constant Pj.

Inserting the appropriate numerical values for selling price, selling weight, purchase price, purchase weight and variable cash costs into the equation (1) gives a figure for returns above cash costs at base prices.

$$
C j=21.27(7.77)-23.42(4.50)-18.44=41.44
$$

This equation contains two of the major variables (price and variable costs) affecting net revenue. The fird, gain, may be obtained by letting $(Y-\bar{Y})=G$ (total gain). This gives the equation

$$
C j=p j C+(p j-p j \bar{Y}) \cdots V
$$

Effects of any one of the variables upon net income may be analyzed by holding all variables, except the variable of concern, constant.

The Cj of $\$ 32.68$ obtained for stocker steers 943 when cow-calf prices were held at base and steer prices decreased by five percent can be explained by changing $P j$ by five percent $\$ 21.35$ to $\$ 20.18$.
$C j=20.18(3.27)+[20.18(4.50)-23.42(4.50)]-18.42=32.68$
To determine the percent decrease in steer gains that would have the same effect on net income as a five percent price decrease, the Pj value is hell at base price. Since the Cj value is known, the only unknown is G. The equation is

$$
\begin{aligned}
32.86 & =21.24 G[21.24(4.50)-23.42(4.50)]-18.64 \\
21.24 G & -32.86=9.81+18.64 \\
G & =2.88
\end{aligned}
$$

Thus, a 12 percent decrease in gain (from 327 pounds down to 288 pounds) can have the same effect upon net returns above cash costs as a five percent price drop. Such a decrease in steer gains might be interpreted as resulting from poor pasture conditions, lower rates of gain than used in the study, or decreased pasture carrying capacity per acre for steers. For example, sceer gains on bermuda conmonly show a substantial drop in July and August. This decrease in gainability could be absorbed by the 12 percent decrease in total gain.

Changes in varlable costs could be analyzed by the procedure used above. If cattle prices and variable costs change together, effects of joint changes may also be estimated.

The assignment of probability values to the possible changes in any variable would allow investigation of the effects of the given variable upon income stability.

Extensive Versus Intensive Tmansion

Earliex in this chapter net incomes from optimum organization at base livestock prices indicated $\$ 3,653.49$ could be earred from buy-sell steers and $\$ 2,326.50$ from a cow-calf operation Many farmers would not be satisfied with these incones and might desire information on possibilities for expanding theix operation to increase net income The altematives available are to ether get more intensive or more extensive. One method of getting more acres would be to rent additional land. A farmer could add cropland, native pasture, or an aggregatel of eropland, pasture and waste. Assuming chat aydilable acres of each of the three types of pasture land are ayailable, one can determine the amount a farmer with a representative 520 acre farm would pay for an additional acre of cropland.

Table XXVI lists the maximum amount a famer adding an additional acre of each of the three pasture types to the already existing 520 acres on the representative farm could afford to pay. For example, at base livestock prices, $\$ 5.93$ could be paid for ars additional acre of cropland. The $\$ 5.93$ price is a break-even price and would add nothing to net income. However, if cropland could be rented for less than $\$ 5.93$ then there would be an opportunity to increase net incone and thus, a pressure to increase farm size.

Data on Table XXVI indicates that as beef prices rise an additional acre of land is more and moce valuable. The amount one could pay for cropland increases relatively fascer chan for pasture because it is influenced by both hígher price levels and the possiblity of ucilizing cropland more intensively, thus producing more dum's of grazing. Pasture

Contains cropland, pasture and waste in representative proportions.

TABLE XXVI

MAXIMUM PRICES THAT COULD BE PAID FOR ADDITIONAL ACRE OF RENTED LAND OF THREE CLASSES AT EIGHT BEEF PRICE LEVELS

Beef Price Levels	Shadow Price for Renting		
	Cropland only	Native Pasture Only	Aggregate ${ }^{1}$
-30	0	1.70	. 61
-20	. 28	1.81	. 80
-10	3.97	3.23	3.31
Base	5.93	3.90	4.51
+10	10.05	4.97	7.23
+20	14.18	6.04	9.85
+30	16.32	6.64	11.23
+40	22.81	7.70	15.14

land value increases at a slower rate because only beef prices affect its shadow price. The relationship between native pasture shadow prices and cropland shadow prices, with increasing beef prices, is as expected, but may be misleading due to possible large differences in price for an acre of each type of pasture. This analysis looks strictly at the demand price for pasture and says nothing about supply or supply prices. Also, even though one could afford to pay more for cropland than for native pasture or the aggregate, the cropland could conceivably be less profitable due to differences in rental rates.

As beef prices increase, the alternative of adding land to increase beef production by the extensive route should be compared with the alternative of increasing beef by intensive use of cropland. The fact that land shadow prices in the programs increase suggests that at some point the supply price for additional land may be less than the marginal value.
product of an additional acre of rental land. As a result, the extensive rather than the intensive expansion route would be followed.

SUMMARY AND CONCLUSIONS

This study is part of a southerm regional study on farm adjustment opportunities. Alternative adjustments for prairie soils farms with at least one of the allotment crops (cotton, peanuts, and wheat) were analyzed in this part of the study. The basic purpose was to evaluate farming adjustments and to analyze the level and combination of livestock and crop enterprises and the resulting net incomes from alternative plans.

Three of the more pressing problems were selected for this study. The first problem required an examination of organizational stability and profitability of alternative short-run farm plans. The second problem was intermediate-run in nature and application and required analyzing the effects of changing relative cotton and competing product prices upon individual farm organization and net income as well as area cotton supply potential. Effects of beef cattle price level changes upon organization (especially production practice levels on bermuda), net incomes, and individual farm beef production (area supply potential implicit) was the third problem considered.

Two farm sizes containing cropland, pasture and waste in representative proportions were specified as the basic units for analysis. The farm sizes used are representative of a farm requiring a four-plow
tractor and machinery complement and one requiring two plow tractor and equipment. Available operator labor, levels of technology and management and prices consistent with each resource situation were specified. Custom harvesting was assumed on all crops except hand harvested cotton and pasture crops. Activity budgets for relevant crop and livestock alternatives were developed with emphasis on pasture crops and pasture using livestock activities.

Linear programming was used to determine optimum organization and net incomes within several price and/or restriction frameworks. Additional budgeting was used in parts of the analysis to allow examination of opportunity costs and other effects of non-optimal organization。

The short-run analysis (using current prices and fixed land acreage) in Chapter III gave organizational requirements and net incomes from alternative farm plans. A deletion process was used to allow examination and comparison of several possible farm plans and to determine a profitability ranking among included activities. With the given price and resource conditions, peanuts was determined the most profitable enterprise. Cotton was second most profitable and whe at third. These three crops were removed one at a time from the list of admissible alternative activities. As each was removed, net income was appreciably reduced. Removal of soybeans, oats, alfalfa and grain sorghum did not affect net income nearly as much, although organization was appreciably affected.

After all cash crops were eliminated through the deletion process, a livestock pasture plan detemined optimum for given conditions was
derived. It was the least profitable of any of the alternative plans examined. In addition, it had one of the highest labor requirements and by far the highest capital requirement.

Among the cash crop plans, those plans that had one or both of the cotton and peanut activities had the heaviest operating capital requirements. Plans including cotton had the highest labor requirements and plans with row-crops had greater machinery capital requirements than those in which small grains predominated.

Stability ranges were used to determine how much price coefficients could change before a given organization would change. In the case of plans containing alfalfa, oats and/or soybeans, a small coefficient change appreciably altered organization. It would be necessary, therefore, for a farmer with a different set of coefficients than those specified to make necessary adjustments.

The variable pricing approach was used in Chapter IV to investigate the relative competitive position of cotton, as its price varies between 13.2 and 30.8 cents per pound and prices of the other crops are set at different levels. Results of this intermediate-run analysis indicate that at base prices minus 30 percent for competing products that cotton is competitive at all cotton prices greater than 18 cents per pound. At base prices for competing products, cotton price must be above 23.43 cents for cotton to remain competitive. With competing products at base prices plus 30 percent, cotton can scarcely compete, even at a cotton price as high as 30.8 cents per pound. With price levels for competing products at base prices minus 30 percent and at base prices, cotton, peanuts and wheat were the most profitable activities. Peanuts is the important crop when cotton price is less
than 18 cents and competing products are base prices minus 30 percent, (23.43 cent cotton at base prices) then cottom becomes the major crop. Wheat was almost always the most profitable non-row-crop. At competing product prices of base plus 30 percent, farm plans emphasizing livestock production were derived. As mentioned, cotton was non-competitive at this price level, however, peanuts and wheat were very important enterprises.

There were several organizational peculiarities in the 15 intermediate-run optimum plans. First, in no case was it profitable to hire labor in addition to that furnished by the operator. Secondly, machinery capital differences for the various programs were not very significant; although, the greater the percentage of cropland in rowcrops, the greater were the machinery capital requirements. Thirdly, the greater the number of units of livestock, especially buy-sell activities, the greater the operating capital requirements.

Results from the examination of effects of inflexible organization indicated that farmers who specialize in cotton production are on pretty safe ground as long as cotton price is above 23.43 cents per pound and prices of competing products are at base prices or lower.

The last part of the study dealt specifically with the organization and net income differences of several alternative livestockpasture plans. The variable pricing approach was used to determine differences in optimum organization as cattle prices ranged from base prices minus 30 percent to base prices plus 40 percent and all livestock activities were allowed to enter the optimum solution. The same procedure was used to determine optimum plans using only cow-calf activities. The resulting information indicated that steers were
relatively more profitable than cows at prices of base minus 10 percent and higher. The stocker steer activity P46 was always the steer activity most profitable. The removal of the steer P 46 activity reduced maximum attainable income by $\$ 500$ to $\$ 1,000$ with the reduction being least at the lower beef prices and increasing as beef prices increased. At prices below base, the activity P 46 is replaced by cows P37. Steers P45 replace P46 at base prices and above. Other results indicate that the higher the livestock price level the more intensive the bermuda production practices that were profitable. Maintenance or very low levels of production practices were the most profitable practices if prices were at base or lower.

A comparison of cow-calf and buy-sell plans showed operating capital requirements much less for cows than for steers. Total pounds of beef produced was less for cows and resulting net returns from cows was about one third less for cows at all price levels above base prices. Effects of changes in the factors that can affect relative profitability of cows and steers were examined. A decrease of five percent in steer prices, cow-calf prices held at base, resulted in a price situation in which cows were more competitive with steers. However, historical price data for the past 25 years indicates that steer prices have varied from the base cow-steer price relationship by greater than five percent in only two years. These statistics lend confidence to the previously stated proposition that steers are generally more profitable per acre.

A twelve percent decrease in gain was determined to have the same effect on profitability as a five percent price decrease. Poor pasture conditions, disease and heavy death losses could also affect profitability.

Refinements and Additional Work

Abstract

It was necessary to eliminate several important area adjustment problems in order to keep this study within managable proportions. The short-run analysis could be made more inclusive by adding more cattle activities and activities for other types of livestock and then examining a greater number of alternative plans. Additional allotment alternatives also might be examined.

Intermediate-run problems needing study are (1) problems of various price-allotment relationships, (2) effects of changing input demand upon rural town economics, (3) a more "in depth" examination of area supply potential for crops other than cotton, and (4) an examination of the areas' competitive position in the production of various livestock and cash crop products. Attention could also be given to interest rate which could change as a result of uncertainty or general changes in the credit market. Interest rate information would be especially useful for the intermediate-run analysis of this study with competing products at base prices plus 30 percent.

The most important long-run problem facing many farmers is the one concerning preservation of an "adequate" standard of living as the margin between costs and returns gets smaller. Since expanding production is one means of increasing income, the effects of intensive versus extensive expansion should be examined in greater detail. A more complete and exhaustive treatment on prices a farmer could afford to pay when either renting or purchasing land would also be valuable.

Connor, Larry J. "Long-Run Adjustment Hypotheses for Farm Operators in a Sparsely Populated, High-Risk Area of the Great Plains." Stillwater: (unpublished Ph.D. thesis, Oklahoma State University), 1964.

Gray, Fenton and H. M. Galloway. Soils of Oklahoma. Stillwater: Oklahoma Agricultural Experiment Station, Miscellaneous Publication MP 56, July, 1959.

Heady, Earl 0., and Wilfred Candler. Linear Programming Methods. Ames: The Iowa State College Press, 1958.

Reichardt, Alan W. "Farm Adjustment Opportunities on Major Bottomland Soils of Southcentral and Eastcentral Oklahoma." Stillwater: (unpublished M.S. thesis, Oklahoma State University), 1964.

Reichardt, Alan W., et al. Resource Requirements, Costs and Expected Returns; Alternative Crop and Livestock Enterprises; Major Bottomland Soils of Eastcentral and Southcentral Oklahoma. Stillwater: Oklahoma Agricultural Experiment Station, Processed Series P-476, 1964.

Schneeberger, Kenneth C., et al. Resource Requirements Costs and Expected Returns; Beef Cattle and Improved Pasture Alternatives; Eastcentral and Southcentral Oklahoma. Stillwater: Oklahoma Agricultural Experiment Station, Processed Series P- \qquad 1965.
U. S. Department of Commerce. Climatological Data, Oklahoma. Vol. 71, No. 13, Washington: United States Government Printing Office, 1963.

Workman, Herman, et al. Resource Requirements, Costs and Expected Returns; Alternative Crop Enterprises; Major Upland Clay and Sandy Soils of Eastcentral and Southcentral Oklahoma. Stillwater: Oklahoma Agricultural Experiment Station, Processed Series P- \qquad 1965.

APPENDICES

APPENDIX A

TABLE A, I

SHORT-RUN AND INTERMEDTATE-RUN PRICES FOR CROPS: PRAIRIE SOIL RESOURCE SITUATION

Item	Unit	Short-Run Prices	Intermediate-Run Prices 2
Alfalfa	ton	20.48^{3}	14.20
Cotton	cwt.	29.50	22.00
Grain Sorghum	cwt.	1.63	1.84
Oats	bu.	.83	.65
Peanuts	pound	0.104	0.08
Soybeans	bu.	1.97	2.00
Wheat	bu.	1.65^{4}	1.20

${ }^{1}{ }_{1958-62}$ average adjusted for area
2S-42 prices adjusted for area
${ }^{3}$ Price in field, Add $\$ 2.40$ per ton to get value in the barn
${ }^{4}$ Approximate 1963-64isupport price

TABLE A, II
ASSUMED PRICES PAID AND RECEIVED BY FARMERS, EAST CENTRAL AND SOUTH CENTRAL OKLAHOMAa

Item	Unit	Price
Prices Paid		
Seed:		
Cotton	1 b .	0.12
Peanuts	1 b .	0.30
Grain Sorghum	1 b .	0.20
Soybeans	1 b .	0.06
Wheat	bu.	2.20
Oats	bu,	1.10
Alfalfa	1 b .	. 50
Broomcorn	1 b .	. 25
Rye	bu.	1.20
Custom rates:		
Mechanical strip cotton	cwt.	1.00
Defoliate cotton	acre	4.00
Haul, gin, wrap cotton	cwt.	1.10
Combine peanuts	1 b .	. 012
Dig-shake peanuts	acre	4.50
Haul and dry peanuts	1 b .	. 008
Combining:		
Wheat, Oats, and Grain Sorghum	acre	4.00
Soybeans	acre	5.00
Hauling:		
Wheat and Oats	bu.	. 07
Grain Sorghum	bu.	. 05
Soybeans	bu.	. 08
Mow, rake, bale alfalfa	bale	0.20
Threshing broomcorn	ton	$10.00+1$ abor
Baling broomcorn	ton	$13.50+1$ abor
Hoeing (custom)	acre	3.00
Broomcorn baling wire	bale	. 30

TABLE A, II (Continued)

Item	Unit	Price
Fertilizer and Chemicals:		
Nitrogen	1 b .	0.12
Phosphorus	1 b .	0.10
Potassium	1 b .	0.05
Lime (custom applied)	ton	5.00
Sulphur Dust (custom applied)	application/acre	5.25
Cotton herbicide	application/acre	2.30
Cotton insecticide	application/acre	1.50
Peanut herbicide	application/acre	2.70
Grain Sorghum herbicide	application/acre	2.10
Soybeans	application/acre	2.70
Alfalfa insecticide	application/acre	1.75
Prices Received ${ }^{\text {b }}$		
Cotton lint	cwt.	29.50
Cotton seed	cwt.	2.50
Grain Sorghum	cwt.	1.63
Wheat	bu.	1.65
Peanuts	1 b .	. 104
Peanut hay	ton	17.60
Oats	bu.	. 63
Alfalfa hay (in field)	ton	20.48
Broomcorn straw	ton	334.00
Soybeans	1 b .	. 003

aThese price assumptions are not to be interpreted as predictions of prospective prices.
$\mathrm{b}_{\text {These }}$ are approximate prices prevailing in the area in 1963.

TABLE A, IV
OPTIMUM SHORT-RUN FARM ORGANIZATIONS, ALL ENTERPRISES IN PROGRAM, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

			Revenue/unit (+)	
Activity	Unit	Level	Stability Range	Cost/unit (-)

Crop:

P53 Wheat	acre	10.35	-28.46	to 10.21	-22.59
P51 Peanuts	acre	41.40	-73.81 to a	-71.47	
P52 Peanuts	acre	142.83	-75.81 to 67.29	-69.47	
P54 Wheat	acre	51.75	-33.16 to 5.11	-22.45	
P49 Cotton (hand)	acre	12.42	-33.50 to 20.30	-31.32	
P55 Wheat	acre	51.75	-31.38 to a	-22.31	
P25 Bermuda	acre	34.50	-4.61 to a	-3.91	

Livestock:

P43 Buy-Se11	head	26.0	21.37 to 29.92	25.06
P44 Buy-Sel1	head	39.0	16.97 to 22.44	21.05
P39 Spring calf	head	30.0	72.18 to 84.06	74.04

Sel1 Activities:

P75 Cotton	cwt.	43.48	24.39 to 31.31	29.50
P76 Wheat	bu.	2877.30	1.44 to 2.71	1.65
P79 Peanuts	cwt.	2160.01	9.85 to 11.95	10.40

Capital Requirements:

Total dol. 30,947.57
Annual do1. 21,283.39
do1. $14,370.56$

Returns to Land, Labor, Management and Risk

```
. }1652\mathrm{ to . 0513
\[
0.06
\]
\[
.0953 \text { to } 0.0
\]
\[
0.0
\]
```

${ }^{\text {a }}$ Limited by land restrictions.

TABLE A, V
OPTIMUM SHORT RUN FARM ORGANIZATION, ALL ENTERPRISES IN PROGRAM EXCEPT COTTON, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Levenue/unit (+)		
or	Stability Range	Cost/unit (-)		

Crop:

P53 Wheat	acre	10.35	-28.82 to 10.00	-22.59
P54 Wheat	acre	51.75	-33.22 to 4.90	-22.45
P55 Wheat	acre	51.75	-31.44 to a	-22.31
P51 Peanuts	acre	41.4	-104.06 to a	-71.47
P52 Peanuts	acre	155.25	-96.82 to a	-69.47
P27 Bermuda	acre	34.5	-4.65 to a	-3.91

Livestock:

P43 Euy-Se11	head	28.0	21.37 to 29.18	25.06
P44 Buy-Sel1	head	41.0	17.64 to 21.96	21.05
P39 Spring calf	head	30.0	72.81 to 84.63	74.04

Sell Activities:

| P75 Wheat | bu. | 2877.30 | 1.42 to 2.70 | 1.65 |
| :--- | :--- | :--- | :--- | ---: | ---: |
| P76 Peanuts | cwt. | 2302.87 | 8.02 to 2762.86 | 10.40 |

Carital Requirements:
Total do1. 31,645.74 -. 1720 to -.0542 - 0.06
Annual do1. 21,622.90 $\quad-.1028$ to 0.0 0.0
Returns to Land do1. 14,148.42
Labor, Management and Risk
${ }^{\text {a }}$ Limited by 1 and restriction.

TABLE A, VI
OPTIMUM SHORT RUN FARM ORGANIZATION, ALL ENTERPRISES IN PROGRAM EXCEPT PEANUTS, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve 1	Stability Range	$\begin{array}{cc} \text { Revenue/unit }(+) \\ \text { or } \\ \text { Cost/unit } & (-) \end{array}$
			(dollars)	(dollars)
Crop:				
P48 Cotton (machine)	acre	41.40	-57.34 to a	-56.83
P53 Wheat	acre	10.35	-28.32 to 1.66	-22.59
P49 Cotton (hand)	acre	14.00	-31.80 to -26.60	-31.32
P50 Cotton (machine)	acre	141.25	-60.29 to -55.09	-55.57
P55 Wheat	acre	51.75	-31.36 to a	-22.31
P25 Bermuda	acre	34.50	-4.60 to a	- 3.91
Livestock:				
P39 Spring calf	head	31.0	71.96 to 83.86	74.04
P44 Buy-Sell	head	2.0	16.77 to 27.61	21.05
Sell Activities:				
P75 Cotton	cwt.	698.62	23.41 to 9102.23	29.50
P76 Wheat	bu.	2877.30	1.445 to 2.469	1.65

Capital Requifements:
Total dol. 21,142.22 -16.50 to -. 0503 - 0.06 Annual dol $16,340.03 \quad-.0939$ to $0.0 \quad 0.0$

Returns to Land, do1. 13,107.85 Labor, Management and Risk
aLimited by 1 and restriction.

TABLE A; VII
OPTIMUM SHORT RUN FARM ORGANIZATION, ALL ENEERPRISES IN PROGRAM EXCEPT COTTON AND PEANUTS, REPRESENTATIVE PRAIRIE SOILS RESOURCE SITUATION

				Revenue/unit (+)
Activity	Unit	Leve1	Stability Range	or
			(dollars)	(dollars)

Crops:

| P53 Wheat | acre | 51.75 | -26.53 to a | -22.59 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| P54 Wheat | acre | 207.00 | -32.73 to a | -22.45 |
| P55 Wheat | acre | 51.75 | -31.44 to a | -22.31 |
| P25 Bermuda | acre | 34.50 | -4.65 to a | -3.91 |

Livestock:

P44 Buy-Se11	head	78.51	17.64 to 21.98	21.05
P39	Spring calf	head	30.0	72.81 to 84.63

| P39 Spring calf \quad head $\quad 30.0$ | 74.04 |
| :--- | :--- | :--- | :--- | :--- |

Sell Activities:

P76 Wheat bu. $8073.00 \quad 1.51$ to $785.52 \quad 1.65$

Capital Requirements:

Total	do1.	$25,390.93$	-.1535 to -.0542	-0.06
Annual	dol.	$18,940.26$	-.1028 to 0.0	0.0

Returns to Land, dol. 8,552.78 Labor, Management and Risk
$\mathrm{a}_{\text {Limited }}$ by 1 and restriction.

TABLEA, VIIT
OPTIMUM SHORT RUN FARM ORGANIZATION, ALL ENTERPRISES IN PROGRAM EXCEPT COTTON, PEANUTS, AND WHEAT, REPRESENTATIVE

PRAIRIE SOILS RESOURCE SITUATION

Activity		Level		- Revenue/unit (+)
	Unit		Stability Range	$\begin{gathered} \text { or } \\ \text { Cost/unit }(-) \end{gathered}$
			(dollars)	(dollars)

Crops:

P56 Soybeans	acre	41.4	22.57 to a	24.86
P57 Soybeans	acre	155.25	15.14 to a	15.36
P60 Oats	acre	51.75	-27.20 to -22.11	-22.33
P61 Oats	acre	51.75	-26.80 to a	-22.19
P25 Bermuda	acre	34.50	-4.74 to a	-3.91
P65 Alfa1fa	acre	10.35	18.73 to 24.65	22.36

Livestock:

P46 Buy-Se11	head	18.0	28.80 to 29.95	29.32
P39 Spring calf	head	21.0	72.81 to 75.08	74.04

Se11 Activities:

P77 Oats bu. 4036.5 . 7086 to .8356 . 8300

Capital Requirements:

Total	dol.	$17,332.30$	-.0732 to -.054	-0.06
Annual	dol.	$14,313.80$	-.0268 to 0.0	0.0

Returns to Land, do1. 5,689.05 Labor, Management and Risk
aLimited by 1 and restriction.

TABLE A, IX
OPTIMUM SHORT RUN FARM ORGANIZATION, ALL ENTERPRISES IN PROGRAM EXCEPT COTTON, PEANUTS, WHEAT AND SOYBEANS, REPRESENTATIVE

PRAIRIE SOIL RESOURCE SITUATION

Crops:

P65 Alfalfa	acre	51.75	18.46 to a	22.36
P60 Oats	acre	207.00	-25.58 to a	-22.33
P61 Oats	acre	51.75	-26.17 to a	-22.19
P25 Bermuda	acre	34.50	-4.65 to a	-3.91

Livestock:

P44 Buy-Se11	head	33.0	19.44 to 21.98	21.05
P39 Spring calf	head	31.0	72.81 to 80.65	74.04

Sell Activities:
P77 Oats bu. 10,246.50 . 75 to . 92 . 83

Capital Requirements:

Total	do1.	$19,848.03$	-.1720 to -.0542	-0.06
Annual	do1.	$15,687.08$	-.1028 to 0.0	0.0

Returns to Land, $5,528.83$ Labor, Management and Risk
${ }^{\text {a }}$ Limited by 1 and restriction.
table A, X
OPTIMUM SHORT RUN FARM ORGANIZATION, ALL ENTERPRISES EXCEPT COTTON, PEANUTS, WHEAT, SOYBEANS AND OATS, representative prairie soil resource situation

Activity	Unit	Leve1	$\frac{\text { Stability Range }}{\text { (do11ars) }}$	$\begin{aligned} & \text { Revenue/unit }(+) \\ & \text { or } \\ & \text { Cost/unit }(\rightarrow) \\ & (\text { dollars }) \end{aligned}$
Crop:				
P65 Alfalfa	acre	51.75	16.83 to a	22.36
P63 Grain Sorghum	acre	155.25	-29.24 to a	-24.77
P11 Bermuda	acre	51.75	- 9.12 to -4.41	-8.88
P17 Bermuda	acre	51.75	- 5.01 to a	- 3.81
P25 Bermada	acre	34.50	- 4.74 to a	- 3.91
Livestack:				
P46 Buy-Sel1	head	116.0	27.63 to 29.47	29.32
P39 Spring calf	head	11.0	13.74 to 90.84	74.04
Sell Activities:				
P78 Grain Sorghum	cwt.	3,648.37	1.439 to 1.693	1.63
Capital Requirements:				
Total	dol.	28,127.95	-. 0777 to -. 0587	- 0.06
Annual	do1.	22,800.84	-. 0205 to 0.0	0.0
Returns to Land, Labor, Management and Risk	dol.	5,007.06		

${ }^{\text {a }}$ Limited by land restrictions.

TABLE A, XI

OPTIMUM SHORT RUN FARM ORGANIZATION, EXCLUDING ALL CASH CROPS ENTERPRISES EXCEPT GRAIN SORGHUM, REPRESENTATIVE

PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve1.	Stability Range	$\begin{aligned} & \text { evenue/unit (+) } \\ & \text { or } \\ & \text { Cost/unit (}- \text {) } \\ & \hline \end{aligned}$
			(dollars)	(dollars)
Crop:				
P3 Bermuda	acre	10.35	-9.12 to -2.11	- 8.88
P62 Grain Sorghum	acre	41.40	-31.69 to a	-24.92
P11 Bermuda	acre	51.75	-9.12 to -4.41	- 8.88
P63 Grain Sorghum	acre	155.25	-29.24 to a	-24.77
P17 Bermuda	acre	51.75	-5.01 to a	- 3.81
P25 Bermuda	acre	34.50	-4.74 to	- 3.91
Livestock:				
P46 Buy-Se11	head	120.00 ,	27.63 to 29.47	29.32
P39 Spring calf	head	14.00	73.74 to 77.73	74.04
Sell Activities:				
P78 Grain Sorghum	cwt.	4,683.38	1.44 to 1.69	1.63
Capital Requirement:				
Total	do1.	29,455.65	-. 0771 ta -. 0587	- 0.06
Annual	dol.	24,265.17	-. 0220 to 0.0	0.0
Returns to Land, Labor, Management and Risk	dol.	4,650.59		

$\mathrm{a}_{\text {Limited }}$ by land restriction.

TABLE A, XII
OPTIMUM SHORT RUN FARM ORGANIZATION, EXCLUDING ALL CASH CROP ENTERPRISES, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

alimited by land restriction.

TABLE A, XIII

OPTIMUM SHORT RUN FARM ORGANIZATION, ALL ENTERPRISES IN PROGRAM WITH COTTON, WHEAT AND PEANUTS RESTRICTED BY
 ALLOTMENTS, REPRESENTATIVE PRAIRIE
 SOIL RESOURCE SITUATION

Livestock:

| P39 Spring Calf | head | 31.0 | 71.96 to 82.10 | 74.04 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P44 Buy-Sel1 | head | 15.0 | 21.37 to 28.76 | 25.06 |
| P43 Buy-Sel1 | head | 12.0 | 19.08 to 22.61 | 21.05 |

Sell Activities:

P75 Cotton	cwt.	253.75	21.06 to 37.20	29.50
P76 Wheat	bu。	897.00	1.23 to 4.13	1.65
P77 Oats	bu.	$2,656.50$.73 to .89	.83
P79 Peanuts	cwt.	$1,211.00$	8.11 to 11.50	10.40

Capital Requirements:
Total do1. 24,900.90-.1650 to -.0503-0.06
Annual dol. $18,152.92-.0939$ to $0.0 \quad 0.0$
Returns to Land, dol. 12,092.85
Labor, Management
and Risk

[^4]TABLE A, XIV

OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE MINUS 40 PERCENT AND COMPETING PRODUCTS AT BASE PRICES, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve 1	Stability Range	$\begin{aligned} & \text { evenue/unit (+) } \\ & \text { or } \\ & \text { Cost/unit } \end{aligned}$
			(dollars)	(dollars)
Crops:				
P53 Wheat	acre	10.35	-24.86 to -7.40	-22.59
P51 Peanuts	acre	41.40	-78.00 to a	-71.47
P52 Peanuts	acre	155.25	-75.27 to a	-69.47
P54 Wheat	acre	51.75	-24.77 to -11.00	-22.45
P55 Wheat	acre	17.25	-24.62 to -22.28	-22.31
P64 Grain Sorghum	acre	34.50	-24.40 to a	-24.37
P25 Bermuda	acre	34.50	-4.65 to a	- 3.91
Livestock:				
P43 Buy-Se 11	head	28.0	21.37 to 27.23	25.06
P44 Buy-Se11	head	31.0	19.95 to 21.15	21.05
P39 Spring calf	head	30.0	72.81 to 78.74	74.04
Sell Activities:				
P76 Wheat	bushel	2,049.30	1.119 to 1.201	1.200
P78 Grain Sorghum	cwt.	655.50	1.838 to 2.09	1.840
P79 Peanuts	cwt.	2,302.87	7.50 to 2,763.42	8.00

Capital Requirements:
Total do1。 30,661.23 -. 1097 to $-.0590-0.06$
Annual do1. 21,196.28 -.0740 to $0.0 \quad 0.0$

Returns to Land, do1. 7,327.73
Labor, Management and Risk

[^5]TABLE A, XV

OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE MINUS 20 PERCENT AND COMPETING PRODUCTS AT BASE PRICES, REPRESENTATIVE PRAIRIE. SOIL RESOURCE SITUATION

Activity	Unit	Leve1	Stability Range	Revenue/unit (+) or \qquad
			(dollars)	(dollars)

Crops:

P53 Wheat	acre	10.35	-24.77	to	-7.35

Livestock:

P43 Buy-Sel1	head	28.0	19.90 to 21.29	21.05	
P44 Buy-Sel1	head	26.0	21.37 to 27.31	25.06	
P39	Spring calf	head	30.0	72.76 to 78.95	74.04

Se11 Activities:

P75 Cotton	cwt.	16.51 to 23.43	17.60
P76 Wheat	bu.	1.122 to 1.202	1.20
P78 Grain Sorghum	cwt.	1.836 to 2.09	1.840
P79 Peanuts	cwt.	7.49 to 8.33	8.00

Capital Requirements:
Total do1. 29,941.56-. 1064 to -. 0575 - 0.06
Annual dol. 20,841.21 -. 0698 to -0.0 0.0

Returns to Land, do1. 7,376.78 Labor, Management and Risk

[^6]TABLE A, XVI
OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE AND COMPETING PRODUCTS AT BASE, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

				Revenue/unit (+)
Activity	Unit	Leve 1	Stability Range	$\begin{aligned} & \text { or } \\ & \text { Cost/unit } \end{aligned}$
			(dollars)	(dollars)

Crops:

P53 Wheat	acre	10.35	-24.41 to -7.17	-22.59	
P51 Peanuts	acre	41.40	-73.38 to a	-71.47	
P52 Peanuts	acre	142.44	-74.45 to -67.69	-69.47	
P49 Catton (hand)	acre	12.81	-33.10 to -21.65	-31.32	
P54 Wheat	acre	51.75	-25.28 to -10.77	-22.46	
P55 Wheat	acre	17.25	-24.54 to -22.09	-22.31	
P64 Grain Sorghum	acre	34.50	-24.61 to	a	-24.37
P25 Bermuda	acre	34.50	-4.61 to	a	-3.91

Livestock:

P43	Buy-Se11	head	28.0	19.71 to 21.87	21.05
P44	Buy-Se11	head	26.0	21.37 to 27.69	25.06
P39	Spring calf	head	30.0	72.14 to 79.77	74.04

Se11 Activities:

P75 Cotton	cwt.	44.82	16.51 to 23.43	22.00
P76 Wheat	bu。	$2,049.30$	1.14 to 1.21	1.20
P78 Grain Sorghum	cwt.	655.50	1.83 to 2.09	1.84
P79 Peanuts	cwt.	$2,155.61$	7.57 to 9.67	8.00

Capital Requirements:

Total	do1.	$29,941.57$	-.0989	to -.0517	-0.06
Annual	do1	$20,841.21$	-.0584	to 0	0.0
urns to Land,	do1.	$7,573.99$			
or, Management Risk					

[^7]TABLE A, XVII

OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE PLUS 20 PERCENT AND COMPETING PRODUCTS
 AT BASE, REPRESENTATIVE PRAIRIE
 SOIL RESOURCE SITUATION

Activity	Unit	Leve1	Stability Range	Revenue/unit (+) Cost/unit (-)
			(dollars)	(dollars)
P53 Wheat	acre	10.35	-24.69 to 2.24	-22.59
P48 Cotton, (mach.)	acre	41.40	-57.34 to a	-56.85
P50 Cotton, (mach.)	acre	141.18	-60.29 to -55.09	-55.57
P49 Cotton, (hand)	acre	14.07	-31.80 to -26.60	-31.32
P54 Wheat	acre	51.75	-26.53 to -20.71	-22.45
P55 Wheat	acre	45.47	-22.47 to -22.01	-22.31
P64 Grain Sorghum	acre	6.29	-24.67 to -24.21	-24.37
P16,25 Bermuda	acre	34.50	-4.70 to 1.98	- 3.91

Livestock:
P39 Spring calf head $31.0 \quad 73.30$ to $83.17 \quad 74.04$

Se11 Activities:

| P75 Cotton | cwt | 698.63 | 24.04 to 9104.09 | 26.40 |
| :--- | :--- | ---: | :--- | :--- | :--- |
| P76 Wheat | bu. | $2,726.29$ | 1.19 to 1.21 | 1.20 |
| P78 Grain Sorghum | cwt. | 119.55 | 1.824 to 1.848 | 1.840 |

Capital Requirements:

Total
Annual

Returns to Land, Labor, Management and Risk
do1. $20,962.45-.0813$ to $-.0513-0.06$
do1. $16,250.91-00203$ to .0827 0.0
dol. 9,649.20
alimited by 1 and restriction。

TABLE A. XVIII

OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE PLUS 40 PERCENT AND COMPETING PRODUCTS AT BASE, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve 1		Revenue/unit (+) or Cost/unit (-)
			(dollars)	(dollars)

Crops:

P53 Wheat,	acre	10.35	-24.69 to 18.74	-22.59	
P48. Cotton, (mach.)	acre	41.40	-57.34 to	a	-56.83
P50 Cotton, (mach.)	acre	141.18	-60.29 to -55.09	-55.57	
P49 Cotton, (hand)	acre	14.07	-31.80 to -26.60	-31.32	
P54 Wheat	acre	51.75	-26.53 to -20.71	-22.45	
P55 Wheat	acre	45.46	-22.47 to -22.01	-22.31	
P64 Grain Sorghum	acre	6.29	-24.68 to -24.21	-24.37	
P16,25 Bermuda	acre	34.50	-4.70 to	a	-3.91

Lives tock:
P39 Spring calf head $31.0 \quad 73.30$ to $83.17 \quad 74.04$

Se11 Activities:

| P75 Cotton | cwt | 698.63 | 24.04 to 9104.09 | 30.80 |
| :--- | :--- | ---: | :--- | ---: | ---: |
| P76 Wheat | bu. | $2,726.29$ | 1.19 to 1.21 | 1.20 |
| P78 Grain Sorghum | cwt. | 119.55 | 1.82 to 1.85 | 1.84 |

Capital Requirements:
Total dol. 20,962.45 -.0813 to -.0513-0.06
Annual dol $16,250.91-0203$ to .0827 0.0
Returns to Land, do1. 12,723.14
Labor, Management
and Risk
aLimited by land restriction.

TABLE A, XIX
OPTIMUM FARM ORGANIZATION WITH COTTON PRICE OF BASE MINUS
40 PERCENT AND COMPETING PRODUCTS AT BASE
MINUS 30 PERCENT, REPRESENTATIVE
PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve1	Stability Range	$\begin{array}{cc} \hline \text { Revenue/unit }(+) \\ \text { or } \\ \text { Cost/unit } & (-) \end{array}$
			(dollars)	(dollars)
Crops:				
P53 Wheat	acre	10.35	-25.67. to -17.42	-22.59
P54 Wheat	acre	51.75	-23.99 to -19.68	: - 22.45
P55 Wheat	acre	18.57	-22.69 to 20.77	-22.31
P56 Soybeans	acre	41.40	9.11 to a	10.31
P57 Grain Sorghum	acre	141.79	-27.39 to -23.66	, -24.77
P49 Cotton, (hand)	acre	13.46	-32.42 to -22.09	' -31.32
P17 Bermuda	acre	33.18	-4.191 to -3.11	- 3.81
Livestock:				
P39 Spring calf	head	33.0	44.60 to 56.25	45.95
Sell Activities:				
P75 Cotton	cwt.	47.115	11.09 to 15.83	13.2
P76 Wheat	bu.	2,080.94	. 8238 to . 964	. 84
P78 Grain Sorghum	cwt.	3,332.028	1.178 to 1.337	1.29

Capital Requirements:

Total	do1.	$16,950.03$	-.0636	to -.0368	-0.06
Annual	do1.	$14,529.41$	-.0039	to 0	0.0

Returns to Land,
do1 1,732.54
Labor, Management and Risk
$a_{\text {Limited }}$ by 1 and restriction.

TABLE A, XX

OPTIMUM FARM ORGANIZATON WITH COTTON PRICE OF BASE MINUS
 20 PERCENT AND COMPETING PRODUCTS AT BASE
 MINUS 30 PERCENT, REPRESENTATIVE
 PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve1	St		Revenue/unit or Cost/unit	
			(do11ar		(dol1ars)	

Crops:

P53 Wheat	acre	10.35	-25.41 to -16.97	-22.59	
P54 Wheat	acre	51.75	-23.73 to -19.44	-22.45	
P56 Soybeans	acre	41.40	8.89 to	a	10.31
P63 Grain Sorghum	acre	141.01	-26.18 to -23.47	-24.77	
P49 Cotton, (hand)	acre	14.24	-32.62 to -25.25	-31.32	
P17 Bermuda	acre	14.26	-4.44 to -3.56	-3.81	

Livestock:

```
P39 Spring calf head
\(28.0 \quad 41.52\) to 46.85
45.95
```

Se11 Activities:

P75 Cotton	cwt.	49.85	15.84 to 18.00	17.60
P76 Wheat	bu.	$1,635.29$.79 to .85	.84
P78 Grain Sorghum	cwt.	$3,313.66$	1.23 to 1.345	1.29

Capital Requirements:

Tota1	do1.	-.0719	to -.0576	-0.06
Annual	do1.	-.0129	to 0	0.0

Returns to Land, do1. 1,944.67 Labor, Management and Risk
${ }^{\text {a }}$ Limited by 1 and restriction。

TABLE A, XXI

OPTIMUM FARM ORGANIZATION WITH COTTON PRICE AT BASE AND COMPETING PRODUCTS AT BASE MINUS 30
 PERCENT, REPRESENTATIVE PRAIRIE
 SOIL RESOURCE SITUATION

Activity	Revenue/unit (+)
or	Level Stability Range Cost/unit (-)

Crops:

P53 Wheat	acre	10.35	-25.67 to -3.176	-22.59	
P54 Wheat	acre	51.75	-23.99 to -5.736	-22.45	
P55 Wheat	acre	21.12	-22.49 to 21.99	-22.31	
P48 Cotton, (mach.)	acre	41.40	-57.34 to	a	-56.83
P50 Cotton, (mech.)	acre	140.01	-60.29 to -55.09	-55.57	
P49 Cotton, (hand)	acre	15.24	-33.80 to -26.60	-31.32	

Livestock:

P39 Spring calf \quad head $24.0 \quad 45.34$ to $47.06 \quad 45.95$

Se11 Activities:

| P75 Cotton | cwt. | 698.63 | 18.25 to $9,106.74$ | 22.00 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| P76 Wheat | bu. | $2,142.15$ | .8327 to .8533 | .84 |

Capital Requirements:

Total	dol.	$17,880.69$	-.0645	to -.0570	-0.06
Annual	dol.	$13,452.51$	-.0055 to 0	0.0	

Returns to Land, do1. 4,711.60 Labor, Management and Risk
${ }^{\text {a }}$ Limited by 1 and restriction.

TABLE A, XXII

OPTIMUM FARM ORGANIZATION WITH COTTON PRICE AT BASE PLUS 20 PERCENT AND COMPETING PRODUCTS AT BASE

MINUS 30 PERCENT, REPRESENTATIVE
PRAIRIE SOIL RESOURCE SITUATION

Livestock:
P39 Spring calf head $23.78 \quad 45.34$ to $47.06 \quad 45.95$

Sell Activities:

P75 Cotton	cwt.	698.63	18.25 to $9,106$.	26.40
P76 Wheat	bu. $2,142.15$.833 to .853	.84	

Capital Requirements:

Total	dol.17,880.70	-.0645 to -.057	-0.06
Annual	dol.13,452.51	-.0055 to 0	0.0

Returns to Land,
dol. 7,785.55
Labor, Management and Risk
alimited by land restriction.

TABLE A, XXIII
OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE PLUS 40 PERCENT AND COMPETING PRODUCTS AT BASE

MINUS 30 PERCENT, REPRESENTATIVE
PRAIRIE SOIL RESOURCE SITUATION

Crops:

P53 Wheat	acre	10.35	-25.67 to 29.82	-22.59	
P54 Wheat	acre	51.75	-23.99 to 25.06	-22.45	
P55 Wheat	acre	21.12	-22.48 to -25.99	-22.31	
P48 Cotton, (mech.)	acre	41.40	-57.34 to	a	-56.83
P50 Cotton, (mech.)	acre	140.01	-60.29 to -55.09	-55.57	
P49 Cotton, (hand)	acre	15.24	-31.79 to -26.60	-31.32	

Livestock:

```
P39 Spring calf head 24.0 45.34 to 47.07 45.95
```

Sell Activities:

P75 Cotton	cwt.	698.62	18.252 to 9106.	30.80
P76 Wheat	bu.	$2,142.15$.8327 to .8533	.84

Capital Requirements:

Total	do1.	$17,880.70$	-.0645 to -.0570	-0.06
Annual	dol. $13,452.51$	-.0055 to 0	0.0	

Returns to Land, dol. 10,859.49 Labor, Management and Risk
${ }^{\text {a }}$ Limited by 1 and restrictions.

TABLE A, XXIV
OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE MINUS 40 PERCENT and competing products at base plus 30 PERCENT REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Crops:

P53	Wheat	acre	10.35	$\mathbf{- 2 3 . 0 6}$ to 12.33	$\mathbf{- 2 2 . 5 9}$
P55	Wheat	acre	51.75	-23.44 to a	$\mathbf{- 2 2 . 3 1}$
P51 Peanuts	acre	41.40	-96.32 to a	-71.47	
P52	Peanuts	acre	155.75	-92.73 to a	-69.47
P16 Bermuda	acre	51.75	-13.36 to 15.52	-13.01	
P27 Bermuda	acre	26.56	-9.28 to -8.16	-9.04	
P32 Bermuda	acre	7.94	-14.12 to -13.00	-13.24	

Livestock:

| P46 Buy-Se11 | head | 116.0 | 45.69 to 47.38 | 46.71 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| P43 Buy-Se11 | head | 89.0 | 38.88 to 42.65 | 40.11 |

Sell Activities:

P76 Wheat	bu.	$1,531.80$	1.54 to 1.60	1.56
P79 Peanuts	cwt.	$2,302.87$	8.41 to 2762.	10.40

Capital Requirements:

Total	do1.	$50,964.95$	-.0675	to -.0571
Annual	dol.	$37,719.99$	-.0082 to 0	-0.06
		0.0		

Returns to Land, .- do1. 16,128.30 Labor, Management and Risk
${ }^{\text {a }}$ Limited by 1 and restriction。

TABLE A, XXV
OPTIMUM FARM ORGANIZATION WITH COTTON PRICE AT BASE MINUS 20 PERCENT AND COMPETING PRODUCTS AT BASE PLUS 30 PERCENT, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Crops:

P53	Wheat	acre	10.35	-23.06 to 12.33
P55 Wheat	acre	51.75	-23.44 to a	-22.59
P51 Peanuts	acre	41.40	-96.32 to	a
P52 Peanuts	acre	155.25	-92.73 to	-71.47
P16 Bermuda	acre	51.75	-13.36 to 15.52	-69.47
P27 Bermuda	acre	26.56	-9.28 to -8.16	-13.01
P37 Bermuda	acre	7.94	-14.12 to -13.00	-13.04

Livestock:

P46	Buy-Se11	head	116.0	45.69 to 47.38
P43	Buy-Se11	head	89.0	38.88 to 42.65

Sell Activities:

P76 Wheat	bu.	$1,531.80$	1.54 to 1.60	1.56
P79 Peanuts	cwt.	$2,302.87$	8.41 to 2762.	10.40

Capital Requirements:

| Total | do1. | $50,964.95$ | -.067 to -.057 | -0.06 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Annual | dol. | $37,719.99$ | -.008 to 0 | 0.0 |

Returns to Land, do1. 16,128.30
Labor, Management, and Risk
$\mathrm{a}_{\text {Limited }}$ by 1 and restriction.

TABLE A, XXVI
OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE AND COMPETING PRODUCTS AT BASE PLUS 30 PERCENT, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Unit	Level	Stability Range	Revenue/unit or Cost/unit	
Activity				(dollars)
(dollars)				

Livestock:

| P43 Buy-Se11 | head | 89.21 | 38.88 to 42.65 | 40.11 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| P46 Buy-Se11 | head | 116.0 | 45.69 to 47.38 | 46.71 |

Sell Activities:

P76 Wheat	bu。	$1,531.8$	1.543 to 1.597	1.56
P79	Pu			

Capital Requirements:

Total	dol.	$50,964.92$	-.0675	to -.0571	-0.06
Annual	dol. $37,719.99$	-.0082 to 0	0.0		

Returns to Land,
dol. $16,128.30$
Labor, Management and Risk
$a_{\text {Limited }}$ by land restriction.

TABLE A, XXVII

OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE PLUS 20 PERCENT AND COMPETING PRODUCTS AT BASE PLUS 30 PERCENT, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve 1	Stability Range	$\begin{array}{cc} \hline \text { Revenue/unft } & (+) \\ \text { or } \\ \text { Cost/unit } \quad(-) \\ \hline \end{array}$
			(dollars)	(dollars)

Crops:

P53 Wheat	acre	10.35	-22.97 to 12.39	-22.59
P55 Wheat	acre	51.75	-23.37 to a	-22.31
P49 Cotton (hand)	acre	8.84	-33.25 to -22.86	-31.32
P52 Peanuts	acre	146.41	-77.93 to -67.54	-69.47
P16 Bermuda	acre	51.75	-13.55 to 15.52	-13.24

Livestock:

P46	Buy-Se11	head	116.0	45.62 to 47.72	46.71
P43 Buy-Se11	head	86.0	39.25	to 42.78	40.11

Sell Activities:

| P75 Cotton | cwt. | 30.95 | 25.47 to 28.82 | 26.40 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| P76 Wheat | bu. | $1,531.80$ | 1.55 to 1.60 | 1.56 |
| P79 Peanuts | cwt. | $2,201.18$ | 9.66 to 10.68 | 10.40 |

Capital Requirements:

| Total | dol. | $50,359.91$ | -.065 to -.0557 | -0.06 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Annual | dol. | $37,328.20$ | -.0058 to 0 | 0.0 |

Returns to Land, do1. 16,157.15
Labor, Management, and Risk
${ }^{a_{\text {Limited }}}$ by land restrictions.

TABLE:A, XXVIII
OPTIMUM FARM ORGANIZATION WITH COTTON PRICES AT BASE PLUS 40 PERCENT AND COMPETING PRODUCTS AT BASE PLUS 30 PERCENT, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Activity			Stability Pange	Revenue/unit (+) or
Activity	Unit	Leve 1	$\frac{\text { Stabllity Range }}{\text { (dollars) }}$	$\frac{\text { Cost/unit }}{\text { (dollars) }}$ (-)

Crops:

P65	Alfalfa		acre	10.35	29.28 to 29.64	29.56
P51	Peanuts		acre	41.40	-73.54 to a	-71.47
P52	Peanuts		acre	146.00	-71.91 to -67.53	-69.47
P49	Cotton,	(hand)	acre	9.25	-33.26 to -28.87	-31.32
P16	Bermuda		acre	51.75	-13.33 to 16.42	-13.01
P27	Bermuda		acre	35.50	-9.55 to a	- 9.04
P55	Wheat		acre	51.75	-23.28 to -4.40	-22.31

Livestock:

P46 Buy-Se11	head	116.0	46.37 to 47.92	46.71
P43 Buy-Se11	head	82.0	39.82 to 40.82	40.11

Sell Activities:

P75 Cotton	cwt.	32.38	28.82 to 35.50	30.80
P76 Wheat	bu.	$1,244.76$	1.556 to 1.57	1.56
P79 Peanuts	cwt	$2,196.45$	10.19 to 11.00	10.40

Capital Requirements:

Total	dol.	$49,688.90$	-.0609	to -.0558
Annual	dol.	$36,724.70$	-.0011 to 0	-0.06
	do	0.0		

Returns to Land, do1. 16,296.18 Labor, Management and Risk
${ }^{\text {a }}$ Limited by 1 and restriction.

TABLE A, XXIX
OPTIMUM LIVESTOCK FARM ORGANIZATION, LIVESTOCK PRICES
AT BASE MINUS 30 PERCENT, REPRESENTATIVE
PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve 1	Stability Range	$\begin{aligned} & \text { Revenue/unit }(+) \\ & \text { or } \\ & \text { Cost/unit } \quad(-) \end{aligned}$
			(dollars)	(dollars)
Livestock:				
P37 Spring calf	head	18.0	30.03 to 36.22	36.20
Capital requirements:				
Total	dol.	4,517.37	-. 1468 to -. 0599	-0.06
Annual	dol.	4,407.27	-.0889 to 0	0.0
Returns to Land, Labor, Management and Risk	dol.	392.15		

${ }^{\text {a }}$ Limited by land restriction.

TABLE A, XXX
OPTIMUM LIVESTOCK FARM ORGANIZATION, LIVESTOCK PRICES
at base minus 20 PERCENT, REPRESENTATIVE
PRAIRIE SOIL RESOURCE SITUATION

				```Revenue/unit (+) or```
Activity	Unit	Leve1	Stability Range	Cost/unit (-)
			(dollars)	(dollars)

Crops:

P1	Bermuda	acre	51.75	-4.12	to	a
P9	Bermuda	acre	207.00	-4.12	to	a
P17	Bermuda	acre	51.75	-4.12 to	a	-3.81
			-3.81			

Livestock:

P37 Spring calf	head	73.0	42.09 to 45.96	45.57
P46 Buy-Se11	head	33.0	17.62 to 18.80	17.77
Capital Requirements:				
Total	do1.	26,611.20	-. 0630 to -. 0477	- 0.06
Annual	do1.	25,221.66	-. 0040 to 0	0.0
Returns to Land, Labor, Management and Risk	dol.	1,153.00	-	

${ }^{\text {a }}$ Limited by land restriction.

TABLE A, XXXI
OPTIMUM LIVESTOCK FARM ORGANIZATION, LIVESTOCK PRICES AT BASE MINUS 10 PERCENT, REPRESENTATIVE

PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Le	Stability Range	Revenue/unit ( + ) or Cost/unit
			(dollars)	(dollars)

Crops:

P1: Bermuda	acre	51.75	-4.21 to a	- 3.81
P9 Bermuda	acre	207.00	-41.21 to	- 3.81
P17 Bermuda	acre	51.75	-7.17 to a	- 3.81
P25 Bermuda	acre	34.50	-5.45 to a	-3.91
Lif vestock:				
P46 Buy-Se11	head	239.0	23.33 to 24.84	23.54
Capital Requirements:				
Total	do1.	36,624.95	-. 0656 to -. 0517	- 0.06
Annual	do1.	31,183.51	-. 0014 to 0.0	0.0
Returns to Land, Labor, Management and Risk	dol.	2,117.56		

$a_{\text {Limited }}$ by 1 and restriction。

TABLE A, XXXII
OPTIMUM LIVESTOCK FARM ORGANIZATION, LIVESTOCK
PRICES AT BASE, REPRESENTATIVE PRAIRIE
SOIL RESOURCE SITUATION

Activity	Unit	Leve1	Stability Range	$\begin{gathered} \text { Revenue/unit }(+) \\ \text { or } \\ \text { Cost/unit ( }- \text { ) } \end{gathered}$
			(dollars)	(dollars)

Crops:

P3	Bermuda	acre	51.75	-8.88 to	a
P11	Bermuda	acre	207.00	-9.07 to -8.88	-8.88
P17 Bermuda	acre	51.75	-7.57 to	-8	-88
P25 Bermuda	acre	34.50	-5.50 to	a	-3.81

Livestock:
P46 Buy-Se11 head $324.0 \quad 28.79$ to 39.93 29.32

Capital Requirements:

Total
Annual

Returns to Land, Labor, Management and Risk
dol. 53,283.10 -. 0634 to -. 0025
$-0.06$
do1. 43,441.4
dol. 3,653.49
alimited by land restriction.

TABLE A, XXXIII
OPTIMUM LIVESTOCK FARM ORGANIZATION LIVESTOCK PRICES AT
BASE PLUS 10 PERCENT, REPRESENTATIVE
PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve 1	Stability Range	$\begin{array}{cc} \hline \text { Revenue/unit } & (+) \\ \text { or } \\ \text { Cost/unit } & (-) \end{array}$
			(dollars)	(dollars)
Crops:				
P3 Bermuda	acre	51.75	-8.88 to a	- 8.88
P11 Bermuda	acre	207.00	-9.87 to -8.88	- 8.88
P17 Bermuda	acre	51.75	-7.48 to a	- 3.81
P25 Bermuda	acre	34.50	-4.79 to a	- 3.91
Livestock:				
P46 Buy-Sell	head	324.00	30.29 to 40.57	35.10
Capital Requirements:				
Total	dol.	56,965.40	-. 0917 to -. 0320	- 0.06
Annual	dol.	47,660.66	-. 0391 to 0	0.0
Returns to Land, Labor, Management and Risk	dol.	5,321.80		

${ }^{\text {a }}$ Limited by land restriction。

TABLE A, XXXIV
OPTIMUM LIVESTOCK FARM ORGANIZATION, LIVESTOCK PRICES AT BASE PLUS 20 PERCENT, REPRESENTATIVE PRAIRIE SOIL RESOURCE SITUATION

Activity	Unit	Leve 1	Stability Range	$\begin{aligned} & \text { Revenue/unit }(+) \\ & \text { or } \\ & \text { Cost/unit ( }- \text { ) } \end{aligned}$
			(dollars)	(dollars)

Crops:

P3	Bermuda	acre	51.75	-8.88 to $a$	-8.88
P11	Bermuda	acre	207.00	-9.19 to 8.87	-8.88
P17 Bermuda	acre	51.75	-7.28 to	a	-3.81
P25 Bermuda	acre	34.50	-3.97 to	a	-3.91

Livestock:

P46 Buy-Se11 head $324.00 \quad 34.52$ to 41.20 40.88

Capital Requirements:

Total do1. 60,107.71 -. 1160 to -.0858 - 0.06
Annual
dol. 50,502.6
-.0583 to 0
0.0

Returns to Land,
dol. 6,990.10
Labor, Management and Risk
${ }^{\text {a }}$ Limited by land restriction.

TABLE A, XXXV
OPTIMUM LIVESTOCK FARM ORGANIZATION, LIVESTOCK PRICES AT BASE PLUS 30 PERCENT, REPRESENTATIVE PRAIRIE SOIL

RESOURCE SITUATION

Activity	Unit	Level	Stability Range	$\begin{gathered} \text { Revenue/unit (+) } \\ \text { or } \\ \text { Cost/unit } \quad(-) \end{gathered}$
			(dollars)	(dollars)
Crops:				
P6 Bermuda	acre	51.75	-24.36 to a	-24.36
P14 Bermuda	acre	207.00	-24.78 to -24.35	-24.36
P17. Bermuda	acre	51.75	-6.93 to	- 3.81
P27 Bermuda	acre	34.50	-9.34 to a	- 9.04
Livestock:				
P46. Buy-Se11	head	478.0	45.98 to 53.71	46.71

Total do1 97,478.32 -. 0633 to -.0304 - 0.06
Annual
Returns to Land,
do1 9,056.79
Labor, Management and Risk

[^8]TABLE A, XXXVI
OPTIMUM LIVESTOCK FARM ORGANIZATION, LIVESTOCK PRICES AT
bASE plus 40 PERCENT, REPRESENTATIVE PRAIRIE
SOIL RESOURCE SITUATION

Activity	Unit	Leve1	Stability Range	$\begin{array}{cc} \hline \text { Revenue/unit } & (+) \\ \text { or } & \\ \text { Cost/unit } \quad(-) \end{array}$
			(dollars)	(dollars)
Crops:				
P6 Bermuda	acre	51.75	-24.36 to a	-24.36
P14 Bermuda	acre	207.00	-27.45 to -24.36	-24.36
P17 Bermuda	acre	51.75	-6.32 to a	- 3.81
P27 Bermuda	acre	34.50	-9.67 to a	- 9.04
Livestock:				
P46 Buy-Sel1	head	478.0	46.11 to 54.34	52.54
Capital Requirements:				
Total	dol.	102,530.37	-. 0855 to -. 0527	- 0.06
Annual	dol.	84,981.20	-. 0316 to 0	0.0
Returns to Land, Labor, Management and Risk	dol.	11,542.82		

alimited by land restriction。

APPENDIX B

## APPENDIX CHAPTER B

PROFITABLE SMALL FARM ADJUSTMENTS FOR THE INTERMEDIATE RUN

In Chapter IV, intermediate-run optimum farm organizations determined by the variable price approach were compared for two representative farm sizes. The analysis showed general organization to be quite similar, although in most cases the hand harvest cotton activity occupied a greater proportion of cropland on the small farm than on the large. In all cases, the per acre operator labor required was much greater for the small farm. Per acre capital requirements were greater for the small farms, but to a much smaller degree than labor. In most cases the slight increase in capital required resulted from greater per acre machinery costs associated with the two-row machinery used on the small farm.

Competing Products at Base Prices, Cotton Prices Varied Three different farm plans (Appendix Table BI) are derived as cotton is varied between 13.2 and 30.8 cents. Peanuts, wheat, bermuda, beef stocker steers and beef cows are the included enterprises when cotton pricet is at 13.2 cents. Total capital requirement for the 13.2 cent cotton plan is the highest of the five plans developed for this price level of competing products. Labor and net income are the lowest of the five plans.

TABLE B, I
OPTIMUM ORGANIZATION, COMPETING PRODUCTS AT BASE PRICES AND COTTON PRICES VARIED, representative small farm prairie soil resource situation

Enterprise	Unit	Cotton Prices (cents per pound)				
		13.2	17.6	22.0	26.4	30.8
Cotton	acre		16.25	16.25	79.8	79.8
Peanuts	acre	79.80	$=63.55$	63.55		
Wheat	acre	46.20	46.20	46.20	46.2	46.2
Soybeans	acre					
Grain Sorghum	acre					
Oats	acre					
Alfalfa	acre					
Bermuda	acre	14.0	14.0	14.0	14.0	14.0
Beef Cows	head	12.0	12.0	12.0	13.0	13.0
Beef Stockers	head	28.0	22.0	22.0		
Operator Labor	hours	847.66	1370.54	1370.54	1426.17	1426.15
Total Capital	dol.	13519.85	12601.31	12601.31	9200.59	9200.59
Annual Capital	dol.	9396.50	8963.11	8963.11	7237.57	7237.57
Returns to Land, Labor, Management and Risk	do1.	2811.46	2871.75	3122.11	4012.25	5259.65 -

At 17.6 and 22.0 cent cotton prices, 16.24 acres of cotton enters the optimum plan (Appendix Table BI). The addition of cotton reduces included acres of peanuts and buy-sell stocker steer numbers. Labor required is 500 hours greater than the previous plan. Operating capital requirements are reduced slightly and net income is $\$ 60$ greater than the previous plan. Net incomes for the 17.6 and 22.0 cent cotton plans are $\$ 2,871.75$ and $\$ 3,122.11$, respectively.

All. cropland suitable for cotton production is most profitably planted to cotton as cotton prices increase to 26.4 and 30.8 cents. Respective net incomes are $\$ 4,012.25$ and $\$ 5,259.65$. Wheat, bermuda, and beef cows are other major enterprises (Appendix Table BI). Peanuts and beef stockers are eliminated by cotton. The change slightly increases labor requirements and appreciably decreases operating capital requirements.

Competing Products at Base Minus 30 Percent, Cotton Prices Varied With a cotton price of 13.2 cents, cotton, wheat, grain sorghum, bermuda and beef cows are the most profitable enterprises (Appendix Table BII). Ten percent of the cropland is left idle with this optimum organization. Net income is $\$ 660.01$.

An increase in cotton price to 17.6 cents slighly increases cotton acreage, decreases wheat and bermuda acreage, slightly reduces capital and labor requirements and increase idle land to almost 20 percent. Net income increases to $\$ 910.41$.

Identical organizations are optimum at the three cotton prices of $22.0,26.4$ and 30.8 cents (Appendix Table BII). Cotton is the major enterprise and uses all cropland suitable for its production. Wheat and

TABLE B, II
OPTIMUM ORGANIZATION, COMPETING PRODUCTS AT BASE PRICES MINUS 30 PERCENT AND COTTON PRICES VARIED, REPRESENTATIVE SMALL FARM PRAIRIE SOIL RESOURCE SITUATION

Enterprise	Unit	Cotton Prices (cents per pound)				
		13.2	17.6	22.0	26.4	30.8
Cotton	acre	14.92	15.18	79.80	79.80	79.80
Peanuts	acre					
Wheat	acre	31.81	25.20	25.20	25.20	25.20
Soybeans	acre					
Grain Sorghum	acre	64.88	64.62			
Oats	acre				-	
Alfalfa	acre					
Idle Land	acre	14.0	27.35	35.00	35.00	35.00
Bermuda	acre	14.39	7.65			
Beef Cows	head	14.00	12.00	9.0	9.0	9.0
Beef Stockers	head					
Operator Labor	hours	1208.41	1167.95	1322.50	1322.50	1322. 50
Total Capital	dal.	7459.59	6737.71	7508.17	7508.17	7508.17
Annual Capital	dol.	6389.59	5730.11	5771.24	5771.24	5771.24
Returns to Land, Labor, Management and Risk	dol.	660.01	910.41	2015.82	3263.23	4510.63

beef cows are the other major enterprises. Capital and labor requirements increase slightly over the previous organization and 20 percent of cropland is unused for any crop production. Net incomes are $\$ 2,015.82, \$ 3,263.23$, and $\$ 4,510.63$ for the respective cotton price levels $22.0,26.4$, and 30.8 cents.

Competing Products at Base Prices Plus 30 Percent, Cotton Price Varied At cotton prices of $13.2,17.6$, and 22.0 cents, cotton cannot compete with other enterprises for available resources. Peanuts, wheat, bermuda, and beef stockers are the major enterprises (Appendix Table BIII). Labor requirements are appreciably lower than the requirements of plans derived when competing products are at base prices or base prices minus 30 percent. Capital requirements are much higher due to the large number of beef stockers included. Net income remains constant at $\$ 6,392.44$ for the three cotton prices as no cotton is in the plan.

At the 26.4 and 30.8 cent cotton price, cotton replaces peanuts on approximately 10 percent of available cropland (Appendix Table BIII). With the inclusion of some cotton steer numbers and capital requirements drop slightly。 Labor requirements jump for 889.15 hours in the previous plan to $1,364.86$ hours in the present plan. Net income increases by little more than $\$ 40$.

TABLE B, III
OPTIMUM ORGANIZATION, COMPETING PRODUCTS AT BASE PRICES PLUS 30 PERCENT AND COTTON PRICES VARIED, REPRESENTATIVE SMALL FARM PRAIRIE SOIL RESOURCE SITUATION

Enterprise	Unit	Cotton Prices (cents per pound)				
		13.2	17.6	22.0	26.4	30.8
Cotton	acre				14.87	15.04
Peanuts	acre	79.8	79.8	79.8	64.93	64.76
Wheat	acre	25.2	25.2	25.2	25.20	22.50
Soybeans	acre					
Grain Sorghum	acre					
Oats	acre					
Alfalfa	acre					
Bermuda	acre	35.0	35.0	35.0	35.0	33.50
Beef Cows	head		Hestit			
Beef Stockers	head	83.0	83.0	83.0	78.0	76.0
Operator Labor	hours	889.15	889.15	889.15	1364.86	1365.80
Total Capital	dol.	21322.21	21322.21	21322.21	20360.50	19890.27
Annual Capital	dol.	16100.71	16100.71	16100.71	15502.09	15091.71
Returns to Land, Labor, Management and Risk	dol.	6392.44	6392.44	6392.44	6438.76	6668.15

## VITA

Kenneth Clifford Schneeberger
Candidate for the Degree of
Master of Science
Thesis: AN ANALYSIS OF INCOMES AND PRODUCT SUPPLIES; LIVESTOCK and CROP FARMS, EASTERN OKLAHOMA PRAIRIE SOILS
Major Field: Agricultural Economics
Biographical:Personal Data: Born in Lawton, Oklahoma, July 30, 1940, the sonof Clifford $\mathrm{F}_{0}$ and Thedora $\mathrm{S}_{\text {。 }}$ Schneeberger.
Education: Attended grade school at Hulen, Ok1ahoma; attendedhigh school at Walters, Oklahoma; graduated from WaltersHigh School in 1958; received the Bachelor of ScienceDegree from Oklahoma State University with a major inAnimal Husbandry in May, 1962; completed requirements forthe Master of Science Degree in May, 1965.Professional Experience: Research Assistant, Ok1ahoma StateUniversity, February 1963 to May, 1964. Instructor,Oklahoma State University, September, 1964 to May, 1965.


[^0]:    ${ }^{2}$ Prices for custom operations are from D. B. Jeffrey, et. a1., Oklahoma Custom Rates, Oklahoma Agricultural Experiment Service, Leaflet L-50, 1960.
    ${ }^{3}$ Estimares of overhead costs can be found in: Larry J. Connor, "Long-Run Adjustment Hypotheses for Farm Operators in a Sparsely Populated, High-Risk Area of the Great Plains." Stiliwater: (unpublished Ph. D. thests, Okiahoma State University, 1964).

    Alan W. Reichardt, "Farm Adjustment Opportunities on Major Bottomiand Soils of Southcentral and Eastcentral Oklahoma." Stillwater: (unpublished M.S. thesis, Oklahoma State University, 1964).

[^1]:    $\mathbb{1}_{\text {Stability }}$ ranges discussed in this chapter are in Appendix Tables AIV and AXil. There is a corresponding table for each alternative plan discussed in this chapter.

[^2]:    ${ }^{1}$ Appendix Tables $A, X I I I$ through $A, X X V I I$ give stability ranges for corresponding optimum plans of this chapter.

[^3]:    ${ }^{2}$ Appendix Tables A XXXX through A XXVI give stability ranges for plams in this chapteri.

[^4]:    aLimited by land restriction.

[^5]:    ${ }^{\text {Limited }}$ by land restriction.

[^6]:    ${ }^{\text {a }}$ Limited by land restriction.

[^7]:    $a_{\text {Limited }}$ by land restriction。

[^8]:    ${ }^{a_{\text {Limited }}}$ by 1 and restriction.

