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PREFACE 

A generalized expression for vapor-liquid equilibrium K-values 

which would cover a wide range of temperatures and pressures had not 

been adequately developed at the time this work was undertaken. 

Correlations using convergence pressure had been developed, but the 

use of convergence pressure itself precluded generalization, so some 

other means was necessary. One of the most promising lines of develop­

ment was thought to be through the use of the imperfection pressure 

correction term as applied to Ra.oult's Law, and to evaluate this cor­

rection term from expressions involving only generalized values. 

Evaluation of the imperfection pressure correction term could be made 

by either a density integral method, or a pressure integral method. 

The real problem here was to obtain the virial coefficients necessary 

for the evaluation of both forms before the relative merits of the 

two could be compared. 

Appreciation is given to Professor W. C. Edmister for his guidance 

in pursuing the thesis subject, and Professor R. N. Maddox for the 

opportunity to participate in the YJ&ster's program. 

The assistance of Dr. J. H. Erbar in developing some of the com­

puter applications, and the invaluable assistance of Mr. A. N. Stuckey, 

Jr. are all appreciated. 

My appreciation also to my parents for their encouragement and 

assistance, and to my wife for her understanding during the difficult 

times. 
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CHAPTER I 

INTRODUCTION 

The vapor-liquid equilibrium ratio for a component in a fluid 

mixture is defined as the ratio of the mole fraction of the component 

in the vapor phase to the mole fraction of the component in the liquid 

phase with which the vapor phase is in equilibrium. This is a rela-

tionship of importance to chemical engineering design, particularly 

in distillation and absorption calculations. The equilibrium ratio 

for a component in a mixture is defined as: 

(I-1) 

Where: Yi is the mole fraction of the component "i" in the vapor 
phase. and 

Xj_ is the mole fraction of the component "i" in the liquid 
phase. in equilibrium with the vapor phase, the subscript 
"i" will be used to indicate that a value is for a 
particular component 

This equilibrium ratio is generally referred to as the "K-value". 

The K-value is a function of pressure, temperature, volume and 

composition, and may be expressed as 

(I-2) 

Where: Kr is the ideal K-value for component "i", for purposes of 

1 
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simplicity the "i" subscript will not be used with this term 

vLi O is the component liquid activity coefficient 

ix is the component vapor activity coefficient 

The ideal K-value can be evaluated using the relationship 

Where: 

(I-3) 

0 Pi is the component vapor pressure 

P is the system pressure 

01 is the component imperfection pressure correction term, which 
corrects for the component's deviation from Raoult's Law 

Stuckey (4) evaluated the imperfection pressure correction term using 

the Berlin form of the equation for this term. Stuckey used Pitzer's 

equation (3) for the second virial coefficient, and developed an equation 

for the third virial coefficient, which was used in the Berlin form of 

the imperfection pressure correction equation. The third virial coef-

ficient equation was developed using convergence pressure, and through 

it a relationship was developed which allowed reliable K-value evalua­

tion up to a reduced pressure of 6,29, One intention of this thesis 

originally was to continue the work done by Stuckey and to extend the 

pressure range of the imperfection pressure correction term using con­

vergence pressure to obtain other virial coefficient equations. The 

convergence pressure concept was discarded, however, after it was de-

cided that it would be more advantageous to have a strictly general 

expression. 

A generalized evaluation of the imperfection pressure correction 

term requires the use of generalized virial coefficients. Pitzer's 
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equation could possibly be used for the second virial, and equations 

for additional virial coefficients as functions of reduced temperature 

and acentric factor (3) could be obtained from correlations of genera-

lized data. Compressibility data as a function of reduced temperature , 

reduced pressure and acentric factor are available (3), The compressi-

bility factor can be expressed as a virial equation in either a pressure 

or density series. This would allow the virial coefficients to be 

obtained from a power series correlation of compressibility with either 

pressure or density, The imperfection pressure correction term can be 

evaluated by integrating to either pressure or density, using the 

appropriate virial coefficients. This would allow a comparison of ideal 

K-values calculated by the two different methods, 

The ideal K-value can also be expressed1 in the form (4) 

Where: 

(I-4) 

0 Kr is the ideal K-value the component would have at the system 
temperature and pressure if it were a simple fluid 

Kr is the correction for the deviation of the behavior of the 
component from that of simple fluid, also at the temperature 

nd pressure of the system 

c.,J is the centric factor of the component (3) 

I 
K~ and Kr are functions of reduced pressure and reduced temperature, 

only. The &centric factor is a value unique to the particular component 

being aon1id rd, and for impl fluid component it is zero. The 

r1lation1hi~ 1hown in Equ tion (I 4) is convenient one, and it gives 

ltater work nrior to publication of this thesis has disproved the 
validity of this mathematic 1 model. 
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a continuity of form with other Pitzer-type (3) thermodynamic 

relationships. Taking logarithms of both sides of Equation (r-4) 

' ln Kr = ln tj + w ln Kr (r-5) 

which can be rearranged to give the expression 

' 0 1n Kr = (1n Kr - 1n Kr)/ w (r-6) 

I 

Kr at a certain pressure and temperature can be determined from Equation 
0 (r-6) if Kr and KI are first evaluated from Equation (r-3) using an 

a centric factor of c...> for the former and an acentric factor of O for 

the latter. 

The ratio of the activity coefficients shown in Equation (r-2) can 

be obtained by dividing the experimental K-value by the ideal K-value. 

The liquid activity coefficient can be evaluated by the Scatchard­

Hildebrand (7) equation, allowing the vapor activity coefficient to be 

determined from the activity coefficient ratio. 

Purpose of This Work 

The purpose of this work is to obtain generalized virial coefficients 

for use in evaluating the Berlin and Leiden forms of the equation for 

the imperfection pressure correction term: to make a comparison of the 

ideal K-values obtained using each form, then to use the improved ideal 

K·value correlation to obtain vapor phase activity coefficients from 

fluid mixture experimental data, 



CHAPTER II 

IMPERFECTION PRESSURE CORRECTION TERM EQUATIONS 

AND VIftIAL COEFFICIENT RELATIONSHIPS 

The liquid and vapor phases of a fluid mixture are in equilibrium 

if their temperatures and pressures are equal, and if 

t. ti 
1 1 (II-1) 

Where: ~ ~s the liquid phase fugacity of component 11i" in the fluid 
mDcture at the system temperature and pressure 

tf_ ~s the vapor phase .fugacity of component 11 i" in the fluid 
mixture at the system temperature and pressure 

Combining Equations (I-1) and (II-1) will give 

K • i 

?'/x 
i i 

rV;y 
i i 

Equation (II-2) can be written in an equivalent form 

K ,. 
i 

Where, by definition: 

L 
~ 1 • 

5 

t i 

(II-2) 

(II-3) 

(II-4,a.) 



and 

~~ • 

91 • 

\aoult 

K • 
I 

Equation (II-3) can now be written 

t1 
i 

v 
fiyi 

rv/P 
i 

ttlp~ 

KRaoult 
E\ 

6 

(Il-4b) 

( II-4c) 

(II-4d) 

(II-5) 

(II-6) 

Taking lo~arithms of Equation (11-4c) at constant system pressure 

gives 

ln 91 • ln (..:l.\ - ln (4\ p )P pi /p 
(II-7) 

The remainder ot this chapter will be devoted to the evaluation ot 

Equation (II-7). 

Free energy is defined as 

F • H - TS (II-8) 

Where: 

Fie the tree energy or the system under consideration 



His the enthalpy of the system 

S is the entropy of the system 

·r ie the temperature ot the system 

Oift'erentiating Equation (II-8) gives 

dF • dH - TdS - SdT 

Enthalpy is defined as 

Where: 

H • E + PV 

E 11 the energr or the eystem 

Pis the pressure of the 911tem 

Vii the volume or the 91etem 

01.tferentiating Equation (I!·lOJ givee 

dH • dE + PdV + VdP 

Combinin1 Equations (II-9) and (II-ll) give, 

dF • -SdT + VdP 

tor an iaothermal proo111 Equation (II-12) become, 

dF • VdP 

Int1patin1 between the limit• ot the oampon,nt T&por pre11ur1 

and th, 171tem pr111ur1 gives 

7 

(II-9) 

(II-10) 

(II-11) 

(II-12) 

(II-13) 



Where: 

F is the tree energy of the system at the system 
p 

temperature and pressure 

Fp~ is the free energy of the system at the system 

temperature and the component vapor pressure 

for an ideal gas 

v • RT 
---r-

Combining Equations (II-14) and (II-15) gives 

F - F O p pi 

p • J :T dP 
po 

i 

At constant system temperature Equation (II-16) becomes 

8 

(II-14) 

(II-15) 

(II-16) 

(lI-17) 

For the case of a real gas, pressures would be replaced by fugacities 

and Equation (H-17) would become 



Where: 
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(II-18) 

tp is the tugacity of the system at the system temperature 

and system pressure 

to is the tugacity of the system at the system temperature 
Pi 

and the vapor pressure of component 11111 

Combining Equations (II-14) and (II-18) gives 

fp 
p 

H.T ln • JO VdP (II-19) 
tp~ 

1 pi 

Equation (II-19) is an expression for a fluid mixture system, the 

vapor and liquid phases ot this system will have the following 

corresponding expressions for component "i" 

(rY)p 
p 

RT ln · J v1 dP (rI) o pO 
Pi i 

(II-20) 

and 

(~)p 
p 

RT ln -J ~dP (r~) pO po 
1 i 

( II-21) 



Where: 

V. is the component vapor phase molar volume 
1 

vr is the component liquid phase molar volume 

10 

'l'he dift'erence between the volumes of a real and an ideal gas is known 

as the residual gas volume. Symbolically this is 

C( • ..1i!... - v 
i p i 

Combining Equations (II-iO) and (II-22) gives 

HT 1n 
p 

=RTln-­o 
P1 

! PO(. dP 
O l. 

pi 

Rearranging Equation (II-23) gives 

HT ln (lj + ln (.:]__) P p o po 
Pi i 

p ·-J d, dP O i 
pi 

(II-22) 

(II-23) 

(II-24) 

By allowing the vapor pressure to approach zero, the second left hand 

side term disappears and Equation (II-24) becomes 

(II-25) 

Combining Equations (II-22) and (II-25) gives 
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(II-26) 

which is seen to be the first term on the right hand side or Equation 

(II-7), the imperfection pressure correction equation. 

At equilibritun, the f'ugacities of' pure component "i" in the 

liquid and vapor phases at the system temperature and the vapor 

pressure are equal, or 

(II-27) 

Combining Equations (II-il) and (II-27) gives 

liT ln 

p . J vi:, dP 
O i 

pi 

(II-28) 

Since a pure component is being considered, the vapor pressure is the 

same as the system pressure, or 

Dividing the n\Dllerator of the le!t hand term of' Equation (II-28) by 

p0 , and the denominator by P will not alter the term's value. The 
i 

equation will become 
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ln ( ~ )p - ln ( :~ t 
i 

+ ..!_I p ..; dP 
RT i 

Po 
i 

(II-29) 

which is seen to be the second term on the right hand side of Equation 

(II-7). The last term in Equation (II-29) is known as the 11 Poynting 

Effect", which corrects the liquid fugacity from the vapor pressure to 

the systsn pressure. By analogy to Equation (II-26) the first right 

hand side term of Equation (II-29) may be written 

(II-.30) 

Upon combining Equations (II-7), (II-26), (II-29) and (II-.30) there 

results 

p 

1n 9 • ....L_j (v - ...!.._) dP -
i RT i RT 

po 
i 

(II-31) 

The Berlin solution (so called because it is based on the Berlin form 

of the virial equation or state) or Equation (II-31) can be ro\D'ld by 

utilizing the pressure series equation or state for a component 

PV • RT+ B'P + c'?2 + • • • 
i 1 1 (II-32) 
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Where: 

R is the universal gas constant 

' Bi is the component second Berlin virial coefficient 

' Ci is the component third Berlin virial coefficient 

From Equation (II-.32) the component molar vapor volume can be expreased. 

( II-.3.3) 

Combining Equations (II-.31) and (II-3.3) will give a differential 

equation. If vt is assumed constant between the limits p~ and P, the 

equation can be integrated to give 

1n 9 • ...!.._ 
i RT 

Dividing Equation (II-32) by RT will give 

B1 P c'P2 
z • 

i 
i i 

l+-+-........ -+••• RT RT 

Using the following definitions: 

B
1
P ) i c 

RT c 

+ ••• (II-.34) 

(II-.35) 

(II-.36&) 



Where: 
II 

B1 is the component generalized second Berlin viri&l 
coef'f'icient 

II 
Ci is the component generalized third Berlin viri&l 
coefficient 

Tr is the reduced system temperature 

Tc is the component critical temperature 

Pr is the reduced system pressure 

P is the component critical pressure 
c 

and, in addition 

p0 is the component reduced vapor pressure 
r 

14 

(II-36b) 

'nle relationships between the above mentioned reduced and critical 

properties are: 
p 

p • ,,-
r c 

0 
P1 . -p 

c 

'f • 
r 

Equation (II-35) can now be written 

(II-37) 



and Equation (II-J.4) can now be written 

ln Q • 
1 

where: 

15 

+ • • • (II-38) 

* kr c is the component reduced liquid phase molar volume, as 
c 

de1.ined in Appendix B 

~quation (II-JS) is the generalized Berlin fonn or the imperfection 

pressure correction term equation which will be used in the calcula-

tions in Chapter rv. Equation (II-38) will be referred to as the 

"pressure integral" method in the following chapters. The generalized 

Berlin virial coefficients take into consideration the vapor volume 

only. 

Another solution to Equation (II-31) can be obtained, the Leiden 

Solution, so called because it is based on the Leiden form or the 

virial equation or state. 'l'he first term on the right hand side of 

Equation (II-31) can be evaluated in the following manner: 

(II-39) 



p 
Ii'f dVi 

p 
"']:f"" dVi 

zi 
-v dV. 

i l. 

'fhe density series equation of state is 

Where: 

z • 
i • • • 

z1 is the component vapor phase compressibility factor 

Bi is the component second Leiden virial coefficient 

c1 is the component third Leiden virial coefficient 

Combining Equations (II-42) and (II-43) gives 

16 

(II-40) 

(II-41) 

(II-42) 

(II-43) 



p 
RTdVi 

and, upon integration 

17 

+ • • • ) dVi (II-44) 

(II-45) 

Combining Equations (II-40), (II-41) and (Il-45) gives 

Utilizing the relationship 

p -J dlnP • 
Po 

i 

• • ) Vi (II-4b) 

V· 
1(p~) 

(II-47) 
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along with Equations (II-46) and (II-39) gives 

( RT ) [ Bi vi - T"" dP • zi - ln PV1 + -v;:-

p 

Ci J + -----...- + ••• 
2V 2 

1 Po 
i 

(II-48) 

When the vapor pressure is zero, the following occur•: 

(II-49&) 

ln p~ vi • ln HT 
(p~) 

(II-49b) 

By combining Equations (II-43) and (II-48), and utilizing Equations 

(II-49&) and (II-49b), there can be obtained (allowing the T&por 

pressure to go to zero) 

p 

- 1.RT JO ( R'r ) vi - T"" dP -
JCi 

+ -----
2V 2 

\P) 

(II-50) 
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An equation similar to Equation (II-50) can be obtained between the 

limits of p~ and O, which can be combined with Equation (II-50) to 

give 

dP • 

+ • • • - ln (II-51) 

The second term in Equation (II-31) can be obtained by direct 

integration 

p 

~ J ~ dP 
p~ 

• 3- (p - pO) 
ttT i 

Equation ( II-52) can be expressed in an equivalent form as 

p 

~ J ~ dP 
po 
1 

b 
• 1 ( i c ) (P po) 
~ RTC r - r 

Where the reduced liquid volume term is evaluated in Appendix B, 

(II-52) 

( II-53) 
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as mentioned before. 

Combining Equations (II-31), (II-51) and (Il-53) will give 

l ) v2 
i(pC?) 

l. 

(II-54) 

Equation (II-54) is a Leiden form of the equation for the imperfection 

pressure correction term. This equation may be generalized by making 

use of the relationships 

Bi . ( ~:· )( z\) (II-55a) 
~ 

Ci ( c.p2) ( p r 
~ • R~T! z1;r (II-55b) 

Equation (II-43) may now be written 

(II-56) 
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'lbe following relationships will be defined: 

bi • 
Blc 

(II-57a) HT c 

cpl 

Ci • i c (II-57b) 
R2~ 

c 

Pr • 
Pr 

(II-5'1c) v 
ZiTr 

Where: 

bi is the component second generalized. Leiden virial coefficient 

ci is the component third generalized Leiden virial coefficient 

p is the component reduced density 
r 

Equation (II-56) may now be written in a generalized form 

Z • 1 + b f> + Ci P 2+ • • • i 1 r r (II-58) 

Equation (II-54) can also be written in a generalized form 

+ • • • (II-59) 
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Equation (II-59) is the generalized Leiden form of the imperfection. 

pressure correction term, and will be used in the calculations in 

Chapter 1-V. The Leiden generalized virial coefficients take into 

consideration only the vapor phase volume, as did the Berlin 

coefficients. In the following chapters Equation (II-59) will be 

referred to as the "density integral" method. 



CHAPTER III 

EVALUATION OF VIRIAL COEFFICIENTS 

II 

The generalized second Berlin virial coefficient, Bi, can be 

evaluated by combining Equation (II-35a), B~ = 1/Tr (B~P0 /RTc), with 

an equation developed by Pitzer (3) 

I 

BiPc -- - (0.1145 + o.073w) - (0.330 - 0.46w)Tr 
RTC 

- (0.1.385 + 0.50w)Tr2 - (0.01212 + 0.097w)Tr3 

8 
- 0. 007.3 w /Tr {III-1) 

The generalized third Berlin virial coefficient, C~. can be evaluated 

using Equation (II-.37), Zi = 1 + B1Pr+ C1Pr2 + • · ~ Equation (II-37) 

can be rearranged into the form 

II 

_zi_-_1_-_B_i_P_r = Cin + D '!p + 
2 1 r 

Pr 

. . . (III-2) 

" from which Ci can be determined as the intercept of the plot 

(Zi - l - B1Pr)/pr2 vs Pr• The slope of the curve at the intercept will 
II 

be Di• A method similar to Equation (III-2) can be extended to obtain 

the higher generalized Berlin virial coefficients. In Equation (III-2), 

" . Bi can be calculated as mentioned above. The value of Zi can be obtained 

using Pitzer's (3) generalized compressibility factor data. This data is 

listed as a function of Tr and Pr, and is in two parts: (1) The simple 

fluid compressibility factor, zt: and (2) The deviation of the compressi-

23 
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I 
bility factor from the simple fluid, Zi• The component compressibility 

factor is calculated from this data using the relationship (3) 

(III-3) 

The generalized second Leiden virial coefficient can be obtained 

using the relationship 

(III-4) 

II 

In Equation (III-4), Bi can be calculated as previously mentioned, and 
L 

Vi P0/RT0 is the component reduced liquid phase molar volume introduced 

in Equation (II-37), This term can be evaluated by means of Equation 

(B-1) in Appendix B. 

The generalized third Leiden virial coefficient can be obtained 

using the relationship 

(III-5) 

Equations (III-4) and (III-5) allow generalized Leiden virial 

coefficients to be evaluated from generalized Berlin virial coefficients. 

However, the generalized Leiden virial coefficients can be evaluated 

independently. The relationship between the second Leiden virial 

coefficient and the second Berlin virial coefficient is 

(III-6) 

I . 

Substituting Bi for Bi in Equation (III-1) and combining with Equation 

(II-S7a), bi• (B1Pc/RTc), will provide a means for calculating b1. In 

other words b1 is equal to the right hand side of Equation (III-1). The 

generalize~ third Leiden virial coefficient can be evaluated using 
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Equation (II-57), Zi = 1 + bifr + cifr + · · · Equation (II-57) can 

be rearranged into the form 

Zi - 1 - bi f2r o ---------------- = Ci + di Ir + • • • 
Pr2 

(III-7) 

from which ci can be evaluated as the intercept of the plot 

(Zi - 1 - bi fr,)/ ff.2 vs fr. The slope of the curve at the intercept 

will be di· The method used to obtain Equation (III-7) can be extended 

to obt·ain the higher generalized Leiden virial coefficients. 

The generalized second and third Berlin virial coefficients can be 

obtained from the generalized Leiden virial coefficients using 

(III-8) 

and 

(III-9) 

The preceding discussion has covered the methods which can be used 

to obtain virial coefficients. The remainder of this chapter will be 

devoted to a discussion of actual results obtained when these methods 

were applied. 

Pressure Series Evaluation Via Curve Fitting 

The first attempt to obtain virial coefficients were made using 

the previously mentioned Pitzer's compressibility data, Pitzer's equation 

for B1, and the relationship given in Equation (III-2). The conditions 

chosen were for an acentric factor of O and a reduced temperature of 1.0. 

II 2 
Values of (Z1 - 1 - BiPr)/Pr were calculated for various Pr's and 



26 

plotted as shown in Figure 1. The intercept of this plot at zero 

pressure should be C1, and the slope of the curve at the intercept 
II 

should be Di• The points shown in Figure 1 were too irregular to 

allow a reliable determination of Ci and Di• 
In order to check the feasibilHy of determining Di from an inter­

cept, values of (z1 - 1 - BiPr - c~pr2)/pr3 were calculated for various 

Pr•s and plotted as shown in Figure 2. Comparing Figures 1 and 2 shows 

the situation now to be even worse than before, and there is no chance 
II 

of getting reliable determination of Di as a curve intercept. The 

greater irre~larity or Figure 2 is probably due to the fact that the 

" value of Ci used in the calculations was estimated from the intercept 

of Figure 1. 

So far, no curve fit of the data had been attempted. The points 

obtained using a reduced pressure basis were of an irregular nature, 

and not likely to permit a good curve fit determination or the virial 

coefficients. At this point, it was noted that the density series 

equation of state would be somewhat more convenient with which to work. 

This, plus the hope that points obtained using generalized density would· 

minimize the irregularity previously observed, led to the next step.· 

Density Series Evaluation Via Curve Fitting 

The next. phase of the investigation involved using the density 

aeries equation of state, as given in Equation (II-57). The rearrange­

ment of this equation given in Equation (III-7) allows a plot to be 

made of (Zi - 1 - bi Pr)/ f>r2 vs ~' which will give ci as the intercept 

and di as the slope at the intercept. Values of this were calculated 

for various reduced densities, at an acentric factor of O and a reduced 

temperature of 1.0. These values are tabulated in Table 1, and plotted 
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Table 1 

Data for ci Determination by Least Squares Curve Fit. 

0.2146 
0.4711 
0.7937 
1.2539 
3.4364 
5.1948 
5.6000 
5.7554 
5.9211 
6.0790 
6.1798 
6.2992 
6.3882 
6.4665 
6.5502 
6.1157 
6.6797 
6.7416 
6.822.3 
6.8729 
7,009.3 
7.1225 
7 • .3260 
7,5107 
7,6.3.36 
7,7187 

Tr= 1.0, w = 0 

zi - 1 - bi fr 
Pr2 

0.08957 
0.03312 
0.03611 
0.03780 
0.03777 
0.03620 
0.03610 
0.03660 
0.0.3691 
0.03713 
0.03752 
0.03776 
0.03808 
0.0.3842 
0.0.3868 
0.03903 
0.03931 
0.03960 
0.0.3974 
0.04005 
0.04066 
0.04131 
0.04251 
0.04354 
0.04485 
0.0463.3 
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in Figure 3. In Figure 3 the data points are plotted, and the fourth 

degree least squares curve fit to these data drawn in. The intercept 

of the fitted curve is ci, in this case 0.08145, but the value is ur1-

reliable because or the irregular nature of the plot. The lowe~t de.n-

sity data point in Figure 3 is very much out of line with the other 

data points. This is due to the fact that an error in the value of Zi 

will be greatly magnified in the ordinate term. In the case mentioned 

he:re, a one pe:r cent e:r:ro:r in z1 will give~ seventy per cent error in 

the value of (Z1 - l - bi f':r)/ ~ 2• 

The preceding attempt to evaluate c1 was plagued by the irregular 

· nature ot the compre11ibility data, as had been the pressure series 

evaluation, attempted previously. How then, would a value of bi deter­

mined from a curve fit of Pitzer'• compressibility compare to bi 

calculated from Pitzer'• equation for the second virial coefficient? 

In order to 'make this comparison values of (Zi - 1)/ fJr 'were calculated 

tor various f>r'• at an acentric factor of o, and a reduced temperature 

of 1,0, These values are listed in Table 2, and plotted in Figure 4. 

The fourth degree least squares curve fit is shown as a line in this 

figure. The intercept of this curve is bi, in this case -0.3246. This 

does not compare too well with Pitzer's calculated value of -0.3361. 

The attempt to evaluate bi, described in the preceding paragraph, 

was not successful, but the plot in that case was smoother than the plot 

previously obtained in attempting to evaluate ci• This was encouraging 

enough to warrant carrying the investigation one step further in this 

direction, That is, to curve fit a plot or zi. vs f'r for Tr= 1.0, 

and c.J = 0, . Thia plot ahould give a value of 1 as the intercept, and 

bi should be the slope at the intercept. These values are listed in 



Ta.ble 2 

Data for bi Determination by Lea.st Squares Curve Fit. 

0.2146 
0,4711 
0,7937 
l,2539 
3,4364 
5,1948 
5,6000 
5,7554 
5,9211 
6,0790 
6,1798 
6,2992 
6,3882 
6,4665 
6,5502 
6.1157 
6.6797 
6,7416 
6.8223 
6,8729 
7,009.3 
7,1225 
7,3260 
7,5107 
7,6.336 
7,7187 

Tr = 1.0,w= O 

z. - 1 
1 

Pr 

-0 • .3169 
-0 • .3205 
-0 • .3074 
-0.2887 
-0.206.3 
-0.1480 
-0.1.3.39 
-0.1254 
-0.1175 
-0.1104 
-0.1042 
-0.098.3 
-0.0928 
-0.0877 
-0,0827 
-0.0780 
-0.07.35 
-0.0691 
-0.0649 
-0.0608 
-0.0511 
-0.0418 
-0.0247 
-0.0091 
0.0063 
0.0215 
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Table 3 

Data for Plotting Compressibility vs Reduced Density 

Tr = l,O, w = 0 

t'z, 
0,2146 
0,4711 
0,7937 
1,2539 
3,4364 
5,1948 
5,6000 
5,7554 
5,9211 
6,0790 
6.1798 
6.2992 
6,3882 
6.4665 
6,5502 
6.1157 
6.6797 
6,7416 
6.S.223 
6,8729 
7,0093 
7,1225 
7,3260 
7,5107 
7,6336 
7,7187 

zi 

0,9320 
0.8490 
0.7560 
o.6.3ao 
0,2910 
0.2310 
0.2500 
0.2780 
0 • .'.3040 
0 • .'.3290 
0 • .3560 
0 • .3810 
0.4070 
0,4.300 
0,4580 
0,4840 
0.5090 
0.5.340 
0.5570 
.o. 5820 
0.6420 
o. 7020 
o.s190 
0.9.320 
l.0480 
1.1660 
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Table 3, and plotted in Figure 5. The plot in Figure 5 was smoother 

than the two previous density series curve fits, shown in Figures 3 and 

4, but it was not quite good enough. The intercept was 1.0103, not 

1.0000 as it should have been. The slope at the intercept was -0.4017, 

this does not compare favorably with Pitzer's calculated value of 

-0.3361. There seems to be some disagreement between Pitzer 1s second 

virial equation and his compressibility data, as well as some errors 

in his data. 

The results so far were somewhat discouraging, but there were 

still some unexplored avenues available. One of these was the use of 

(Zi - l - bi Pr) and fr as a correlation basis. This is similar to 

the first density series evaluation attempted, that for c1• There is 

a difference though, in this case the ordinate term is not divided by 

f'r2, which was responsible for compounding the error in the previous 

case. Values of (Zi - 1 - bi Pr) were calculated for various Pr's at 

a reduced temperature of 1.0, and an acentric factor of o. These are 

listed in Table 4, and plotted in Figure 6. The plot of these values 

is smooth; much better than any of the previous plots. The calculations 

were repeated, this time using, acentric .. f1:1.ctor ~lues of 0.1, o. 2, o. 3, 

0.4 and 0,5. The plots or these values were also smooth. The plots 

tor the other acentric factors' were omitted from the figure for the 

sake of clarit:y. The plots would have been practically on top of each 

other. The curve, incidentally, is an arbitrary, not a fitted curve. 

It also exhibits the expected approach to zero at zero density, indicat­

ing that the compressibility is approaching unity. The promising 

appearance of this method encouraged a more ambitious undertaking. 

The values listed in Table 4, and those for the higher a.centric 



Table 4 

Data for Matrix Inversion Correlation 

fr 
0.2146 
0.4711 
0.7937 
1.2539 
3.4364 
5.1948 
5.6000 
5.7554 
5.9211 
6.0790 
6.1798 
6.2992 
6.3882 
6.4665 
6.5502 
6.1157 
6.6797 
6.7416 
6.8223 
6.8729 
7,0093 
7.1225 
7,3260 
7,5107 
7,6JJ6 
7,7187 

Tr = 1.0, w = 0 

z. - l - b· ('! J. J. r 

.00412 

.00735 

.02274 

.05944 

.44598 

.97697 
1.13216 
1.21239 
1.29407 
1.37216 
1.43302 
1.49817 
1. 55408 
1.60639 
1. 65953 
1. 70615 
1. 75407 
1.79984 
1.84996 
1.89197 
1.99784 
2.09587 
2.28127 
2.45636 
2.61365 
2.76025 
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factor, were processed through a matrix inversion program on the IBM 

650 computer. The program gave values for the generalized Leiden 

virial coefficients ci, di, ei, fi and gi, at Tr= 1.0 and acentric 

factors of O, 0.1, 0.2, 0.3, 0.4 and 0.5. These values are listed 

in Table 5, along with the values for Pitzer's bi, and plotted in 

Figures 7, B, 9, 10, 11 and 12, as functions of acentric factor. 

Pitzer's second virial plots in a straight line, as would be expected 

since it was calculated from an equation linear in I..J. This is shown 

in Figure 7. The coefficients obtained from the matrix inversion 

program did not appear to have a definite straight-line dependency 

upon &centric factor. Although linearity is indicated from the gen­

eral appearance of the plots, the results were too irregular to allow 

reliable relationships to be obtained. The 0.4 acentric factor point 

was omitted in the plots because some malfunction in the calculations 

gave completely unreasonable results. The other points gave sufficient 

evidence to justify elimination of this method as a means of obtaining 

virial coefficient relationships. Even though the plots are irregular, 

it can be observed that virial coefficients alternately increase, or de-

crease with &centric factor. The b1, di and fi values increase with 

increasing &centric factor, while the ci, ei and gi values decrease 

with increasing &centric factor. The plot for ci is the most irreg­

ular of the group, and the gi plot is the least irregular. This demon­

strates the lessening of the effect of data error in the higher order 

terms of the equation of state. By this time it was apparent that 

there was no possible way to obtain good results from Pitzer's data 

through curve fitting methods, The data was too irregular to re-

1pond to the gentle treatment given it heretofore, 10 the time had 



Table 5 

Coefficients from Zi - 1 - bi Pr vs 

Tr= 1.0 

bi* Ci d· l. 

o.o -0.3361 0.03990 -0.0006116 

0.1 -0.3432 0.04568 -0.0004155 

0.2 -0.3504 0.04443 0.0047865 

o • .3 -0.3575 0.04915 0.0054618 

0.4 -0.3646 0.2044 -0.1057218 

0.5 -0.3718 0.03563 0.0199074 

*bi calculated from Pitzer 1 s equation 

Pr Correlation 

ei fi 

0.0001826 -0.0001171 

-0.0005608 0.0000305 

-0.0025211 0.0002991 

-0.0032050 0.0004103 

0.0251918 0.0026838 

-0.0070847 0.0008204 

gi 

0.00001510 

0.00000567 

-0.00000776 

-0.0000139 

0.0001078 

-0.00003017 

~ 
0 
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come to apply force. This led to the final step of this investigation. 

Density Series Evaluation Via Ddta Smoothing 

Being faced with the prospect of using fair, but not quite good, 

generali~ed compressibility data, dnd a fair. but questionable, second 

viridl coefficient equation required a reevaluation of the situation. 

How couid redsonable results be obtained from this information? The 

method used in Figure 4, i.e., plotting (Zi - 1)/ fr vs f;;., seemed to 

offer the best possibility. This time, however, Pitzer•s value for bi 

was to be used dS the intercept. Instead of a curve fit, the curve 

was to be drawn in the smoothest manner to fit the data, and to inter­

cept dt Pitzer's value of bi. The slope of this curve would be ci. 

Values of fr dnd (Zi - 1)//;. were calculated for all of Pitzer's 

compressibility data at, and above the critical temperature. These were 

calculated for acentric factor values of O, 0.1, 0.2, 0.3 and 0.4. The 

plot for the acentric factor of O is shown in Figure 13. This is typ­

ical of the plots obtained for the other acentric factors, although 

they did become more irregular at the higher acentric factor values. 

This method, as such, was not applicable for temper~tures below the 

critical, so this thesis does not show any values in this region. 

Pitzer's second virial seemed to give reasonable intercept values for 

Tr values through 2.0, but above this Pitzer 1s values were ignored 

because they were too high and would not have given the desired para­

metric shape to the isotherms in this region. The points corresponding 

to Pr= 1.0 are shown on the isotherms, the portion of the curve up to 

this point can probably be adequately expressed by a quadratic expres­

sion involving the second and third coefficients only. An expression 
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applicable over the entire pressure range would require the use of 

more virials •. 

The ci values obtained from the slopes were then plotted vs 

1/Tr and smoothed curves were drawn for each acentric factor, as 

illustrated in Figure 14. a smoothed plot of Pitzer's second virial 

over the same temperature range is shown in Figure 15. 

Table 6 shows values of b. as determined from Pitzer 1s equation, 
1 

and bi as determined from the intercept in Figure 13, also it shows 

the value of ci as read from the smoothed curves in Figure 14. These 

are all for an acentric factor of zero. Table 7 gives the same list-

ing for an acentric factor of 0.40. Figure 14 shows ci to apparently 

be a linea.r function ofw, so that a correlation for ci can be made 

by curve-fitting ci as a function of Tr and Pr at acentric factors of 

O and 0.4, then determining the final correlation from these two 

functions. The result would be similca.r to the equation developed by 

Pitzer. 

Using Tables 6 and 7 to correlate ci in the manner described dbove 

gave the following relationship for the Leiden generalized third virial 

coefficient. 

Ci= -(0.0043 + 0.0588(..)) + (0.0516 + 0.2J9"4.l)/Tr 

-(0.0315 + 0.440w)/T/t. + (0.0~25 + o.~688w)/Tr3 (III-10) 

The unsatisfdctory behavior of Pitzer's second virial at the higher 

reduced temperatures prompted a reeV'dluation of this equation. It 

was made using the bi values in Tables 6 and 7. The new equation i'or 

the Leiden generGlized second virial coefficient obtained was 
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Table 6 

Generalized Leiden Virial Coefficients for w = 0 

Tr Pitzer's bi Intercept bi Figure 14 ci 

1.00 -.3361 -.3361 .0381 
1.05 -.3058 -.3058 . 0357 
1.10 -.2790 -.2790 .0337 
1.15 -.2551 -.2551 .0316 
1.20 -.2336 -.2336 .0298 
1.25 -.2143 -.2143 .0282 
1.30 -.1968 -.1968 .0268 
1.40 -.1662 -.1662 .0245 
1.50 -.1406 -.1406 .0227 
1.60 -.1188 -.1188 .0212 
1.70 -.1000 -.1000 .0198 
1.80 -.0836 -. 0836 .0185 
1.90 -.0693 -.0693 .0174 
2.00 -.0566 -.0566 .0164 
2.50 -.0104 -.0104 .0127 
3.00 .0186 .0170 .0102 
3.50 .0386 .0350 .0083 
4.00 .0531 .0466 .0070 
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Table 7 

Generalized Leiden Virial Coefficients for v..) = 0.4 

Tr Pitzer's b1 Interce-pt bi Figure 14 ci 

1.00 -.3646 -.3646 .0347 
1.05 -.3183 -.3183 .0341 
1.10 -.2783 -.2783 .0307 
1.15 -.2436 -.2436 .0282 
1.20 -. 2131 -.2131 .0261 
1.25 -.1826 -.1826 .0241 
1.30 -.1624 -.1624 .0225 
1.40 -.1220 -.1220 .0196 
1.50 -.0892 -.0892 .0172 
1.60 -.0622 -.0622 .0152 
1.70 -.0397 -.0397 .0146 
1.80 -.0206 -.0206 .0121 
1.90 -.0043 -.0043 .0107 
2.00 .0097 .0097 .0096 
2.50 .0578 .0567 .0053 
3.00 .0855 .0801 .0026 
3.50 .1031 .0971 .0004 
4.00 .1152 .1091 -.0012 
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bi= (0.1206 + 0.077CA:>) - (0.229 - O.J96c:.J)/Tr 

-(0.2946 + 0.3443~)/Tr2 + (0.0603 - 0.201<..,.))/Tr3 (III-11) 

Equations (III-10) and (III-11) were used in evaluating both the 

Berlin and Leiden equations for the imperfection pressure correction 

term in Chapter IV. The Berlin coefficients were calculated using 

equations (III-8) and (III-9) with eq11ations (III-11) and (III-10). 



CHAPTER IV 

COMPARISON OF DENSITY INTEGRAL AND PRESSURE INTEGRAL EVALUATIONS 

The imperfection pressure correction term was evaluated by the 

Pressure Integral and Density Integral methods (Equations (II-38) and 

(II-59). Both of these evaluations made use of the two virial 

coefficient equations developed in Chapter III. The range of the 

reduced temperatures used in the evaluation was from 1.0 to 4.0, and 

the reduced pressures from 0.1 to 10.0. The imperfection pressure 

correction term was evaluated at an acentric factor of zero to deter-

mine the simple fluid value, and at an acentric factor of 0.4 to allow 

the determination of deviation from the simple fluid value. The 

simple fluid value, 1n a~, the value at an acentric factor of c..J, ln e1 
are related through1 

(IV-1) 

Values for 1n ei and ln e1 were calculated, then the deviation value 

was determined using 

1n e~ = (ln ei - 1n e~)/ w (IV-2) 

Knowing 1n e1 and ln e1 allowed calculation of~ and Kr by using 

1Later work prior to the publication of this thesis has disproved 
the validity of this mathematical model. 

55 



56 

Equations (I"""3), ( I-5) and ( I-6). 

The Pressure Integral method, as can be seen from Equation (II-39), 

is a straightforward calculation. The reduced liquid volume was 

evaluated by the method mentioned in Appendix B, and the reduced vapor 

pressure, p~, was evaluated as a function of reduced temperature, also 

given in Appendix B. The virial coe~ficients were evaluated by using 

Equations (III-li) and (III-8) for B~, and Equations (III-10) and 
ti 

(III-9) for Ci• The evaluation was ma.de on the IBM 1620 computer 

with a program designed to accept acentric factor, reduced temperature, 

and reduced pressure as data values. 

The Density Integral method, requires a trial-and-error solution 

of Equation (II-57) to determine the values of the compressibility 

factor, zi, and the reduced density, Pr, at the system and vapor 

pressures. The virial coefficient was evaluated from Equations (III-10) 

and (III-11) and the reduced vapor pressure by the method given in 

appendix B. The iterative procedure used in the trial-and-error solu-

tion was that of interval halving; Newton's method was attempted but 

it gave erroneous results, particularly at the higher pressures. The 

tolerance used in the evaluations was 0.00001, applied to zi. 
The results of the Density Int·egral method ev-c.luation using the 

second and third viria.l coefficients are shown in Figures 16, 17, 18 

and 19. at the critical temperature (Tr= l.O)the calculations were 

terminated at Pr= 8.0, an attempt to obtain convergence at Pr= 9.0 

was unsuccessful after thirty minutes of iteration. Another conver-

gence method, or perhaps a faster ma.chine will be necessary to obtain 

values at the critic~l temperdture for extremely high pressure. 
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Figure 16 illustrates the constant temperature effect of pressure 

upon the simple fluid imperfection pressure correction term. The 

isotherms on the semi-log plot show the correction term to increase 

i.,ith temperature. and to decrease with pressure. The rate of decrease 

with pressure is less constant at the lower te~peratures. 

Figure 17 illustrates the deviation from a simple fluid of the 

imperfection pressure correction term. The isotherms on the se;;d-log 

plot show the deviation to increase slightly with pressure. this effect 

becomes more pronounced at the higher temperatures. The deviation 

value is also much greater at the higher temperatures. In other words, 

the deviation of the imperfection pressure correction term for a com­

ponent from that of a simple fluid increases rapidly with temperature, 

and to a lesser degree with pressure. 

Figure 18 illustrates the constant temperature effect of pressure 

on the ideal K-values. The effect of increasing pressure becomes more 

noticeable at the lower temperatures. An increase of K-value with 

temperature ia observed up to a reduced temperature of 3.0 1 then a 

retrogre11ion occurs., the Tr = 4.0 isotherm dropping below the Tr = 2.0 

isotherm. Isotherm retrogression at the extremely high temperatures 

has been previously observed (4) and should perhaps be expected in this 

evaluation. At higher temperatures the isotherm lines tend to become 

straighter, this illustrates the approach to ideality of behavior. In 

the calculations it was observed that it finer increments of tempera­

ture had been used the plots of adjacent isotherms would cross. This 

indicates a need £or additional virial coefficients to obtain proper 

evaluations, particularly at the higher pressures. 

Figure 19 illustrates the constant temperature effect of pressure 
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upon the deviation or the ideal K-value from that of a simple fluid. 

The isotherms show the deviation to decrease with both pressure and 

temperature, and the decrease to become more pronounced at the higher 

pressUl'es, until a Tr or 1.5 is reached, then the deviation begins to 

decrease with increasin~ temperat~e. At the higher temperatures the 

deviation becomes very small, as is indicated by the fact that the 

Tr~ 4.0 isotherm was too low to appear on the graph. This further 

illustrates the approach to ideal behavior at the higher temperatures. 

A comparison of Figures 18 and 20 gives an indication of the 

relative reliability of the Density Integral and Pressure Integral 

methods of evaluatin~ ideal K-values. In both cases the critical iso­

therm ahows the same behavior up to the critical pressure, but above 

this the Pressure Integral plot drops to a mini.mum value then increases 

rapidly to an ideal K-value beyond the scope of the graph. The 

Tr 111111.5 isotherm. is located lower in the Pressure Integral evaluation 

than in the Density Integral and exhibits a more irregular behavior 

by recurving and crossing the isotherms. The isotherms for the high 

temperatures are fairly straight for both the Density Integral and 

· Pressure. Integral evaluations, but dii'f erences are observed in the 

Kf values, the isotherm spacings, and the amount or .retrogression 

observed in the two cases. The retrogression of the Tr= 4.0 isotherm 

is observed 1n·the Pressure Integral plot as it was in the Density 

Integral but it was not as extreme in the former case. Judging solely 

on the basis ot the behavior of the lower isotherms it could be said 

that the Density Integral evaluation is better than the Pressure 

Integral evaluation. Accepting this, it could be concluded that the 

Density Integral method does a better job in general in ideal K-value 
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eval~tion. The Pressure Integral evaluation-high pressure behavior 

a~ the lower temperature could possibly be improved by using addi­

tional virials, but this would merely point out the better economics 

of the Leiden evaluation, i.e., getting the best evaluation using the 

least number of terms, The higher temperature behavior of the Berlin 

evaluation would still be que,tionable, even with additional virials. 



CHAPTER V 

VAPOR PHASE ACTIVITY COEFFICIENT EVALUATION 

An expression for the vapor phase activity coefficient of a 

fluid mixture component can be obtained by rearranging Equation (I-2) 

oI = xr ~ 
K. 

1 

(V-1) 

The ideal K-value, KI' can be calculated using the Leiden method 

developed in Chapter IV and the actual K value, K., can be calculated 
J. 

from experimental data. The remaining term, t t, can be calculated 

from the Scatchard.-Hildebrand (?) equation for the liquid activity 

coefficient. This equation is given in Appendix B. 

Experimental data from two ternary mixtures was chosen for vapor 

phase activity coefficient evaluation. The first (5) was a methane, 

ethane, n-pentane mixture at 100°F and pressures from 500 to 2,000 

psia. The second (6) was a methane, propane, n-pentane mixture at 

220°F and pressures from 500 to 1,500 psia. The data a,re located in 

v 
Tables 8 and 9. The Y i values calculated from the data are listed 

in Tables 10 through 13 and plotted in Figures 21 through 24 in the 

form of isobaric plots of the liquid activity coefficient vs. mol 

fraction for the two lighter components. The ternary mixtures chosen 

were such that vapor-liquid equilibrium for the lighter components 

could be obtained under conditions not pos•ible tor binary mixtures 
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Table 8 

Ternary Data for a Methane, Ethane, n-Pentane Mixture (5) 

Temperature= l00°F. 

Pressure. Methane Ethane n-Pentane 
Psi Gas Liquid Gas Liquid Gas Liquid 

0.904 o._154 0.0377 0.0284 0.0583 0.818 
0.652 0.115 0.297 0.223 0.0519 0.662 

500 0.517 0.0947 0.431 0.327 0.0511 0.578 
0.275 0.0550 0.681 o. 514 0.0440 0.4.31 
0.000 0.0000 0.965 0,736 0,0349 0.264 

0.762 0.26.3 0.188 0.211 0,0499 0.526 
o.674 0.246 0.282 0.314 0.0454 0.440 

1000 o. 596 0.237 0 • .360 0,.396 0.0443 0.368 
0.598 0.224 0.405 0.444 0.0468 0 • .331 
0.48.3 0.214 0,473 0.515 0.04.38 0.271 
0 • .394 0.198 0.562 0.602 0.0441 0.200 

b0.196 0.196 0.758 0.759 0.0450 0.0451 

0.814 0.420 0.125 0.152 0.0608 0.428 
o.689 0.412 0.244 0.291 0.0670 0.297 

1500 0.588 0.41.3 0 • .3.34 0 • .378 0.0779 0.209 
b0.461 0.462 0.443 0.44.3 0.095.3 0.0948 

o. 899 o. 580 0.017.3 0.0217 o. 08.3.3 0 . .399 
2000 0.801 0,587 0.0981 0.116 0.101 0.297 

0.763 0.599 0.121 0.140 0.116 0.261 

b--single phase present 
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Table 9 

Ternary Data :for a Methane, Propane. n-Pentane ¥.d.xt.ure (6) 

Temperature= 220°F 

Pressure Methane Propane n-Pentane 
Psi Gas Liquid Gas Liquid Gas Liquid 

0.571 0.091 0.190 0.160 0.2.39 0.749 
0.345 0.062 0.451 0,.377 0.204 0.561 

500 0 • .329 0.061 0.472 0 • .389 0.199 0.550 
0.170 0.04.3 o.666 0.570 0.164 0.387 
0.059 0.010 0.809 0.697 0.1.32 0.293 

0.714 0.228 0.106 0.1.38 0.180 0.6.34 
0.669 0.22.3 0.155 0.192 0.176 o. 585 

1000 0.566 0.214 0.264 0 • .306 0.170 0.480 
o. 521 0.208 0 . .318 0 • .370 0.161 0.421 
0 • .397 0.197 0.46.3 0.516 0.140 0.287 

0.689 0 • .390 0.108 0.1.3.3 0.20.3 0.477 
1500 0.598 0 • .388 0.194 0.228 0.208 0 • .384 

o. 542 0,422 0.2.39 0.262 0.219 0 • .316 
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of the two. Each mixture contained methane as the lightest component 

and normal pentane as the heaviest. In each case methane was consider­

ably above its critical temperature, while the next lighter component 

was very near to its critical }emperature. 

Figures 21 and 22 were obtained from the methane, ethane, n-pen­

tane data. Figure 21 shows the vapor phase activity coefficient of 

methane in this mixture as a function of the mole fraction of methane 

in the vapor phase. The system temperature of 100°F corresponds to 

a reduced temperature of 1.630 and the pressures of 500, 1000, 1500 

and 2000 psia correspond to reduced pressures of 0.743, 1.486, 2.229 

and 2.971. The plots should converge to a iX value of 1.0 for the 

pure component; they do not do this, in fact they do not converge at 

all. This indicates that a flaw exists somewhere in the calculations, 

liquid volume evaluation, or the reduced vapor pressure evaluation. 

Possibly an additional virial would help. In Figure 22 the same plots 

are made for ethane in the same mixture. In this case the system tem­

perature corresponds to a reduced temperature of 1.018, and the pressures 

correspond to reduced pressures of 0.697, 1.394, 2.092 and 2.789, These 

plots show even less tendency to converge, and are farther from a pure 

component value of 1.0. Also, a retrogression occurs at the higher 

pressures. An explanation for the worse behavior would be the lower 

reduced temperature which, incidentally, is near critical. 

Figures 23 and 24 were obtained from the methane, propane, n-pen­

tane data. Figure 23, for methane, is for a system temperature of 220°F, 

or a reduced temperature of 1.980. The.system pressures of 500, 1000, 

and 1500 psia correspond to reduced pressures of 0.743, 1.486, and 

2.229. The rlots appear to converge to a value of 1.249 instead of 1.0 
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Table 10 

Data for Figure 21, oX vs Mol Friction Methane 
in a Methane, Ethane, n-Pentane Mixture 

Temperature= 100°F, Tr= 1.630 

Pressure Reduced Methane Vapor-Phase Methane Vapor-Phase 
Psi Pressure Mol Fraction Activity Coefficient 

500 0.743 0.000 l.002 
0.275 0.885 
0.517 0.811 
0.652 0.782 
0.904 0.755 

1000 1.486 0.196 2.598 
0.394 l.307 
0.483 1.152 
0.548 1.064 
o. 596 1.035 
0.674 0.950 
0.762 0.899 

1500 2,229 0.461 2.018 
0.588 1.415 
o.689 1.205 
0.814 1.041 

2000 2,971 0,763 1.354 
0.801 1.264 
0.899 1.114 
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Table 11 

Data for Figure 22,-rX vs Mol Fraction Ethane 
in a Methane, Ethane, n-Pentane Mixture 

Temperature= 100°F, Tr= 1.018 

Reduced 
Pressure 

o.697 

1.394 

2.092 

2,789 

Ethane Vapor-Phase 
Mol Fraction 

0.038 
0.297 
0.431 
0.681 
0.965 

0.188 
0.282 
0.360 
0.405 
0.473 
0.562 
0.758 

0.125 
0.244 
0.344 
0.443 

0.017 
0.098 
0.121 

Ethane Vapor-Phase 
Activity Coefficient 

0.326 
0.324 
0.328 
0.326 
0.329 

1.025 
1.017 
1.004 
1.001 
0.994 
0.978 
0.914 

0.831 
0.815 
0.773 
o.683 

0.681 
0.641 
0.627 
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Data for Figure 23, 'O' r, vs Mol Fraction Methane 
in a Methane, Propane, n-Pentane Mixture 

Temperature= 220°F, Tr= 1.980 
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Reduced Methane Vapor-Phase Methane Vapor-Phase 
Pressure Mol Fraction Activity Coefficient 

0.743 •. 0.059 1.363 
0.170 2.034 
0.329 1.492 
0.345 1.446 
0.571 1.284 

1.486 0.397 2.195 
o. 521 1.767 
0.566 1.674 
0.669 1.476 
0.714 1.414 

2.229 0.542 2.509 
0.598 2.091 
o.689 1.825 



74 

10.0 r-----,:-,~~~~,~~,~~~..--,~~~~---.,~~~~~~,~~~~--.. 

5.0 1-

1.0 .... 

o. 5 .... 

0.1 
o.o 

0 

\ \ 
\ \ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

I 

0.2 

\ 
\_ 

\ 
\ 
\ 

\ 

Tr = 1.980 

Mol Fraction Methane 

I I 

o.4 o.6 
Figure 23 

I 

0.8 

Vapor Phase Activity Coefficient of Methane 
in a Methane, Propane, Norma.1-Pentane Mixture 

-

-

1.0 



Pressure 
Psi 

500 

1000 

1500 

75 

Table 13 

Data for Figure 24, ~ X vs Mol Fraction Propane 
in a Methane, Propane, n-Pentane Mixture 

Temperature= 220°F, Tr= 1.021 

Reduced 
Pressure 

0,791 

1,582 

2,374 

Propane Vapor-Phase 
Mol Fraction 

0.190 
0,451 
0,472 
o.666 
0.809 

0.106 
0.155 
0.264 
0.318 
0,463 

0.108 
0.194 
0.239 

Methane Vapor-Phase 
Activity Coefficient 

0.366 
0.363 
0.358 
0.371 
0.373 

1.093 
1.040 
0.972 
0.976 
0.935 

0.758 
0.723 
o.675 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The Density Integral method of evaluating the imperfection 

pressure correction term as applied to the ideal K-value is superior 

to the Pressure Integral method. This is demonstrated particularly 

in the high pressure region, where for the same number of virial coef­

ficients the Density Integral method gives a nmch better evaluation. 

In the Density Integral method the second and third virials are 

probably adequate for all subcritical pressure ideal K-value evalua­

tions at, and above, the critical temperature. ~dditiona.l virial 

coefficients will be necessary for ev~luations ~t the higher pressures, 

particula.rly ~t the critical temperature where a convergence problem 

is encountered. 

In the Pressure Integral method the second virial is adequate 

for critical temperature ideal K-value evaluations in the subcritical 

pressure region, but ~bove this pressure, and for higher temperatures, 

even the addition of the third virial is not adequate. 

The Leiden equation or state expressing compressibility ~s ~ 

function of generalized density seems to be a good basis for deriving 

virial coefficients, the only drawback being the inaccuracy of the 

generalized data available. It is definitely 6 more convenient form 
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as would be expected. This represents an improvement .over the plot 

shown in Figure 22 where no convergence was obtained. The improve­

ment would apP(3.rently be due to the higher reduced temperature. The 

same errors mentioned in the discussion of Figure 21 would apply, 

but due to the higher temperature they are not quite so drastic. 

Figure 24 represents values for propane in the mixture. The reduced 

temperature in this case was 1.021 and the reduced pressures were 

0.791. 1.582 and 2.374. The values obtained corresponded to those 

in Figure 22 for ethane. in that no tendency to converge was obtained. 

This case also was for a near-critical temperature. 
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than a reduced pressure expression. 

The second virial coefficient as derived by Pitzer is acceptable 

in the temperature range from Tr= 1.0 to Tr= 2.0, but above this 

it gives values that are too high. Subcritical temperatures were not 

investigated in this work. 

The behavior of ideal K-values at the higher temperatures shows 

a tendency for a maximum ideal K-value to be reached around Tr= 3.0 

than for a retrogression to occur. 

In the Density Integral method an iterative procedure of interval 

halving required the most time but gave good results. Newton's method, 

although faster, gave erroneous results, particularly in the higher 

pressure region. 

Vapor phase activity coefficients can be affected by inaccuracies 

in ideal K-value evaluation, the reduced vapor pressure evaluation, 

and the molar liquid volume evaluation. Any one or all of these could 

be a source of error in the evaluations made. The ideal K-value eval­

uation could be in error as discussed in the preceding paragraphs. The 

reduced vapor pressure and molar liquid volume equations could be in 

need of either a reevaluation of their coefficients, or of more terms. 

Reconunendations 

The Density Integral method is recommended over the Pressure 

Integral method for use in evaluating the imperfection pressure correc­

tion term as applied to ideal K-values. 

Values of the generalized Leiden third virial coefficient below 

the critical temperature should be obtained and a correlation over 

the entire temperature range (Tr= O.S to Tr= 4.0) be developed as 



a function of reduced temperature and acentric factor. 

The fourth virial coefficient, at least, should ~e obtained in 

order to allow more accurate high pressure evaluation of the L~per­

fection pressure correction term. 

Interval halving as an iterative method is recommended for use, 

Newton's method is definitely not recommended. 

Further investigation into the reduced vapor pressure and molal 

liquid volume evaluations should be considered if the ideal K-value 

evaluations are revised with_no improvement in vapor phase activity 

coefficient. 
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APPENDIX A 

NOMENCLATURE 

b - generalized Leiden second virial coefficient 

B - Leiden second virial coefficient 

B' - Berlin second virial coefficient 

B" - generalized Berlin second virial coefficient 

c - generalized Leiden third virial coefficient 

C - Leiden third virial coefficient 

C' - Berlin third virial coefficient 

C" - generalized Berlin third virial coefficient 

fL - liquid phase fugacity 

fv - vapor phase fugacity 

K - vapor-liquid equilibrium constant 

Kr - ideal vapor-liquid equilibrium constant 

K~ - simple fluid ideal vapor-liquid equilibrium constant 

f Kr - deviation from simple fluid ideal vapor-liquid equilibrium 
constant 

p0 - vapor pressure 

P - system pressure 

Pc - critical pressure 

Pr - reduced pressure 

R - universal gas constant 

T - temperature 
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Tc - critical temperature 

Tr - reduced temperature 

v1 - molar liquid volume 

V - molar vapor volume 

x - mole fraction in the liquid phase 

f>r - reduced density 

y - mole fraction in the vapor phase 

Z compressibility factor 

z0 - simple fluid compressibility factor 

z, - deviation from simple fluid compressibility factor 

ZPr- compressibility at reduced system pressure 

z compressibility at reduced vapor pressure 
0 

Pr 

tL - liquid phase activity coefficient 

iv - vapor phase activity coefficient 

6 - imperfection pressure correction term 

w - acentric factor 

/5 - solubility parameter 

i subscript indicates value is for a particular component 



APPENDIX B 

EQUATIONS 

The equation for reduced liquid volume is (4) 

V:'P 
...!...£ = 
RT 

(0.03161 - o.00436w)(5. 7 + 3Tr) (B-1) 
c 

The equation for reduced vapor pressure is (4) 

p~ = 5.1788022 - 5.1331403 - 0.0456619 (B-2) 
Tr T~ 

The Scatchard-Hildebrand liquid phase activity coefficient is obtained 

from the equation (7) 

L 
v 

in 011. = i 
RT 

Where: V~ is obtained from Equation (B-1) 

.51 is the component solubility parameter 

E = Ixvi E1 

v~. 
~- = J. J. 

1 Iv~~ 
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(B-3) 

(B-4a) 

(B-4b) 
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