THE MOSQUTTOES OF ORLAHOMA

By
RAY EDWARD PARSONS
Bachelor of Science
University of Florida
Gainesvijle, Florida

1961

Subnitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillmeni of the requixements for the degree of

MASTER OR SCDENTR
August 196 3

THE MOSQUITOES OF OKLAHOMA

Thesis Approved:

is
532626

PREFACE

The writer has endeavored to list the mosquito species in Oklahoma together with species that have been found near the Oklahoma border. Other pertinent information included concerns the identification, bionomics, distribution and synonymy of each species.

The distribution of the species listed in this work is based on the results of the writer's study plus all previous records that could be found.

I wish to thank my major adviser, Dr. D. E. Howe11, without whose help this work would not have been possible. I also wish to thank Dr. R. R. Walton and Dr. J. E. Webster for their guidance in the preparation of this work.

Appreciation is given to Lieutenant Colonel Robert Altman and the many other persons in the Army Surgeon General's Office for making this study possible.

I would also like to thank the following persons for the use of their records and specimens: Dr. W. A. Drew, Associate Professor, Oklahoma State University; Dr. C. Hopla, Chairman, Zoology Department, University of Oklahoma; W. T. Nailon, Entomologist, Army Corps of Engineers, Tulsa; Leroy Rachels, Entomologist, State Health Department, Oklahoma City; Captain Robert Browning and associates, Fourth U. S.

Army Medical Laboratory, San Antonio, Texas; Don Arnold, State Survey Entomologist; and the following students at Oklahoma State University: Lieutenant John Reinert, Dayton Steelman, and Kurt Schaefer,

I also give special thanks to parl Sterling for his helpful advice, and sincere thanks to my wife Jo An for the preparation of most of the drawings in this work, and her encouragement throughout the stady.
TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. METHODS 3
III. DISCUSSION AND RESULTS 8
IV. KEYS 13

1. Keys to the Genera 13
2. Keys to the Species 15
V. DISTRIBUTION 34
VI. LITERATURE CITED 42
VII. APPENDIXES 45
3. Appendix A 45
4. Appendix B 54

LIST OF TABLES

I. Bionomics of the Mosquitoes of Oklahoma 46

INTRODUCTION

Mosquitoes constitute one of the most important groups of insects in the world today. In addition to their potentiality as disease carriers they plague man and beast alike with their pestiferous biting.

The literature published on mosquitoes is very extensive and no atw tempt was made to review material unless it was pertinent to distribution records, identification, synonymy and bionomics of the mosquitoes included in this work.

Rozeboom (1942) made an excellent study of 0 kl ahoma mosquitoes and reported 40 species in the state. Roth (1945) added one additional state record. Griffith (1952) in a statewide survey found 11 new state records which brought the total to 52. Hill, et al. (1958) recorded 55 Oklahoma species.

This work records three new state records and numerous new county records. Culex pipiens and C. quinquefasciatus are considered as a complex in this work and are recorded as one species; therefore, the total Oklahoma species is 58 at this time.

Most of the keys and illustrations in this work have been adapted from Carpenter and LaCasse (1955). No descriptions other than those in the keys are given here as most species have been redescribed numerous times by other authors. Excellent descriptions of all American species north of Mexico are contained in the former publication,

The bionomics tables were adapted in part from Carpenter and LaCasse (1955) and Public Health Publication 772 (1963).

Synonymy utilized here followed that of Stone, Knight, and Starke (1959), and Stone (1961).

METHOD S

Field Collections

Larvae. Mosquito larvae of all species are found in aquatic habitats. Some live in permanent waters such as ponds, marshes, or lake margins while others breed only in temporary floodwaters such as ditches, rain pools, overflows, etc.; and still others breed only in treeholes or artificial containers. Mosquitoes breed in almost every type aquatic situation except large areas of open water such as lakes or seas.

Many of the specimens seen in this study were collected at earlier dates and the collector's methods are not known. In collecting larvae in habitats other than treeholes a white enamel dipper with an extension handle was used. In some cases a sampling device (Earle 1956) was utilized to facilitate collecting when large numbers of larvae were present. Treeholes were sampled by using a siphon hose or a large syringe with a bulb attached.

After the larvae were collected they were labelled and transferred to a 95 percent alcohol (ethanol), cellosolve (ethylene glycol monoethyl ether), or kept alive and brought into the laboratory for rearing to adults.

Adults. The adults used in this study were collected by light traps, resting stations, bait traps, while biting, or reared from larvae.

Light traps. Collecting adult mosquitoes in light traps is one of the most common methods utilized today. Its main advantage is the fact that specimens can be collected without the collector being present. It is a very useful method and is used a great deal by persons studying large areas for mosquito abundance and distribution. Some definite disadvantages to light traps include: variability of attractiveness to different species; ease of damaging the specimens by the fans in the traps; and the initial cost.

Biting records. A study of the biting records of mosquitoes is important in determining their medical importance. Unless the important species that bite man are known, the link between the disease and its mosquito vectors may not be recognized, or in the case of pest mosquitoes information needed for control purposes may be lacking. Biting collections give information concerning: species involved, biting time, biting habits, and effect of bite on host.

The biting collections in this study were made by allowing the mosquito to land, settle, begin to feed and then placing a chloroform killing tube over the specimen. A period of 10 to 15 seconds was usually sufficient to kill the mosquito. The specimen was then placed in a pill box and labelled with date, location, time and collector.

Resting stations. This was another method used to collect mosquitoes in this study, Resting stations indicate where the mosquito rests when not flying or feeding, and provides a method of collecting specimens for taxonomic study with little damage to the mosquito. The
procedures used for collecting specimens on resting stations were the same as for biting collections.

For the individual initiating a study without previous experience, Communicable Disease Center Public Health Publication 772 (1963) is high1y recommended.

Preparation of Specimens for Study

General. Many methods have been utilized for preparing mosquito larvae and adults for further study. The methods described were found suitable by the writer, although they were not the only methods available.

Adult Females. To prepare adult females for further study the following techniques were used.

1. Insect pins were provided with card points.
2. The tip of the card point was dipped in clear fingernail polish (Revlon, 0108, 非61 clear).
3. The mosquito was touched on the side of the thorax with the tip of the card point. This attached the specimen to the card point.
4. Labels with date of collection, location and collector were placed on the pins.
5. The specimens were then ready for study or storage.

Larvae. Permanent mounts.

1. The specimens were preserved in 70 to 90 percent alcohol until ready for processing.
2. The specimens were placed in cellosolve for 1 to 24 hours depending upon the size of larvae and personal workload. There did not seem to be a critical period for removal.
3. A small amount of Canada balsam was placed on a slide.
4. The abdomen was partially severed between the seventh and eighth abdominal segments. This allowed the anal segments to lie flat,
5. The specimen was transferred to the balsam and manipulated to a suitable position.
6. Sufficient balsam to fill the area under the cover glass was added.
7. The cover glass was added.
8. The slide was labelled with date of collection, location, and collector.
9. Specimens were then ready to be identified or placed in an oven for drying.

Temporary mounts.

1. Specimens were preserved in 50 to 70 percent alcohol until ready for use.
2. A small amount of mounting medium was placed on the slide. (Medium used contained 2.5 g . type $71-24$ polyvinyl alcohol, 15 ml . distilled water and 30 ml . of lacto-phenol solution.)
3. Specimen was transferred to slide and manipulated to a proper position.
4. Abdomen of specimen was partially severed between seventh and eight segments so anal segments would lie flat.
5. Sufficient medium was added to fill the area under the cover glass.
6. The cover glass was added.
7. Slide was labelled with date of collection, location and collector.
8. Slides were made semipermanent by ringing cover glass with clear fingernail polish or other ringing fluid.
9. Specimens were then ready to be identified or placed in an oven for drying.

DISCUSSION AND RESULTS

General

Due to the geographical location of Oklahoma and to its variety of topographic regions, an overlapping of mosquito distribution occurs in many areas of the state. In fact, a shifting of mosquito distribution may be occurring in Oklahoma. Rozeboom (1942) recorded Anopheles quadrimaculatus only as far west as central Oklahoma. Today it has been recorded throughout the state except for the Panhandle. Rozeboom mentioned the possibility of water impoundments such as, farm ponds, lakes, or reservoirs, aiding this species to move farther west, and records seem to indicate this has been the case. Other species may be affected by these improvements, but studies to prove this are lacking.

Bionomics

A brief summary of the bionomics and medical importance of Oklahoma mosquitoes is given in Table I. Certain species considered most important or that have unusual habits are discussed in more detail.

Treehole Breeding Mosquitoes

Aedes triseriatus is probably the most widely distributed of the treehole breeding mosquitoes in Oklahoma. It has been recorded throughout the state except in the Panhandle. Normally a treehole breeder, this species will also breed in artificial containers. A. zoosophus is
another common treehole breeder. It is usually associated with A. triseriatus in the woody areas of the state. A. hendersoni, recorded for the first time in Oklahoma during this study, was found breeding in two treeholes in Stillwater, Oklahoma. It was associated with \underline{A}. triseratus and Orthopodomyia signifera in these holes. A. hendersoni has probably always been present in Oklahoma but until Breland (1960) restored its species status it would have been classified as \underline{A}. triseriatus. Other Oklahoma species that normally breed in treeholes are: Anopheles barberi, Orthopodomyia alba, and Toxorhynchites rutilis septentrionalis.

Temporary Pool Breeders

This is probably the most important group of mosquitoes in the state as far as pest mosquitoes are concerned. Two of the most abundant species are Aedes vexans and Psorophora confinnis. Heavy rains that flood ditches, overflow ponds, lakes, etc., create ideal breeding sites for these and the other temporary pool breeders. The eggs of this group are laid on moist soil and may remain there a number of years. When flooding occurs they hatch and usually develop in 7 to 20 days. This group is generally at its peak in the spring and fall. Dry weather during the summer usually restricts their abundance.

Rock-Hole Mosquitoes

Aedes atropalpus normally breeds in rock crevices along the margins of streams. It has also been found breeding in 50-gallon drums at Fort Sill, Oklahoma.

Anopheles quadrimaculatus, A. punctipennis,

A. pseudopunctipennis pseudopunctipennis

These are the most important species of anophelines in Oklahoma. A. quadrimaculatus is usually found breeding in large, clean areas of permanent water with considerable aquatic vegetation. The increasing numbers of manmade reservoirs has considerably increased the distribution of this species. A. punctipennis may be found associated with A. quadrimaculatus or may breed in swamps, pools, rain barrels or a wide variety of habitats. They are usually the first anophelines to appear in the spring, A. pseudopunctipennis pseudopunctipennis typically breed in shallow pools or streams, and they are frequently associated with thick growths of green algae.

Culex Group

This genus has a large variety of breeding habitats, ranging from artificial containers to fringes of large lakes. The most important ones in Oklahoma are probably the Culex pipiens-quinquefasciatus complex, $\underline{\mathbf{C}}$. tarsalis, $\underline{\text { C. salinarius, and } \underline{C} \text {. restuans. }}$

Mansonia perturbens

This is the only species of the genus in Oklahoma. The larvae and pupae of this species attach to the underwater portions of aquatic plants and obtain air from the plant. The adults are vicious biters and may become troublesome pests if sufficient numbers are present.

Culiseta inornata

This is the most common species of this genus in Oklahoma. It is usually found during the late fall and early spring. This could be
considered the cold weather species of Oklahoma for it may be found associated with ice. C. inornata may occur in large numbers but normally does not bite man.

Status

The mosquito fauna in Oklahoma today consists of 58 species. Three new state records are listed in the distribution section of this work. The three species and their recorders are: Aedes spencerii, by Rachels; A. hendersoni, by Parsons; and Uranotaenia lowii, by the Fourth U. S. Army Medical Laboratory.

Numerous new county records have been listed. Earlier workers have collected in the areas where these county records were taken, but they usually listed the species by major area type, rather than by specific county.

The author did not collect all the mosquitoes recorded in this work. Most collections were taken from previously-mentioned sources. The following species were collected by the author. The species, stage, habitat, county, and date collected are given.

Aedes atropalpus - larvae - artificial containers and rock
holes - Comanche - June 1963. A. hendersoni - larvae and adults treeholes - Payne - June 1965. A. sollicitans - larvae and adults biting collections and roadside ditches - Payne - May and June 1965. A. thelcter - light trap - Comanche - June 1963. A. triseriatus treeholes - Larvae and adults - Payne - April, May and June 1965. A. Vexans - biting collections - Payne - August 1964 and May 1965. Anopheles punctipennis - larvae and adults - streams and ponds - Payne April and May 1965. A. quadrimaculatus - larvae - streambeds - margin
of pond = Payne - May 1965. Culex apicalis - larvae - streambedPayne - May 1965. C. pipiens-quinquefasciatus complex - larvae andadults - ditches, ponds and resting stations - Payne - August andSeptember 1964, July 1965. C. territans - larvae - streambeds,- Payne -May 1965. Culiseta inornata adults and larvae o ditches and restingstations - Payne - February and April 1965. Orthopodonyia signifera -larvae - treeholes - Payne - June 1965. Psorophora ciliata - adultsand larvae ~ roadside ditch, resting stations and biting collections -Payne - June and July 1965. P. confinnis - larvae and adul'ts - roadsideditches, resting stations, and biting collections - Payne - May and June
1965. P. ferox - adults - biting collections - Payne - May 1965. \underline{P}.
signipennis - adults - biting collections - Payne - June 1965.
It is hoped that the county distribution records in this work will
aid future workers in mosquito studies in Oklahoma.

The following keys include the adult females and fourth instar larvae of Oklahoma and borderline species. See Carpenter and LaCasse (1955) for identification of adult males.

Keys to the Genera

Larvae

1. Abdomen with palmate hairs (Fig. 1L); siphon absent . Anopheles
Abdomen with palmate hairs; siphon present 2
2.(1) Siphon reduced; sawlike teeth present on distal half of
siphon (Fig. 2L) Mansonia
Siphon not reduced; without such teeth 3
3.(2) Siphon with pecten (Fig. 8L) 4

Siphon without pecten (Fig. 4L) 8
4.(3) Siphon with a basal pair of hair tufts (Fig. 5L) . . Culiseta

Siphon without a basal pair of hair tufts. 5
5.(4) Siphon with several pairs of hair tufts or single hairs
(Fig. 3L). .Culex
Siphon with a single pair of tufts, single hair, or without hair . 6
6.(5) Eighth abdominal segment with a sclerotized plate (Fig. 6L); head with four enlarged hairs on some species. . .Uranotaenia

Eighth abdominal segment lacking a sclerotized plate; head hairs not greatly enlarged 7
7.(6) Tufts of ventral brush on anal segment arising from within ventral part of anal saddle (Fig. 7L). Psorophora

Tufts of ventral brush on anal segment arising outside of ventral saddle (Fig. 8L)Aedes
8.(3) Comb scales present on eighth abdominal segment (Fig. 4L) . Orthopodomyia

Comb scales absent on eight abdominal segment; normal or enlarged hairs may be present (Fig. 9L). . . . Toxorhynchites

Adults

1. Palpi as long, or nearly as long, as proboscis (Fig. 1A) .Anopheles

Palpi distinctly shorter than proboscis (Fiğ. 2A). 2
2.(1) Proboscis rigid, and curved ventrally at distal tip (Fig. 3A) ; a large species Toxorhynchites

Proboscis not rigid ox curved at distal tip. 3
3.(2) Second marginal cell of wing short, less than half as long as its petiole (Fig. 4A); a small bluessaled species . Uranotaenia

Second marginal cell of wing as long or nearly as long as its petiole (Fig. 5A). 4
4.(3) Spiracular bristles present (Fig. 6A). 5

Spiracular bristles absent 6
5.(4) Tip of abdomen pointed Psorophora

Tip of abdomen blunt Culiseta
6.(4) Wing scales very broad; tip of abdomen blunt 7

Wing scales narrow, or if moderately broad, tip of abdomen
pointed. 8
7.(6) Longitudinal lines of white scales on scutum (Fig. 7A) .Orthopodomyia

No longitudinal lines of white scales on scutum, light scales may be present. Mansonia
8.(6) Tip of abdomen pointed; postspiracular bristles present
(Fig. 3A). .Aedes
Tip of abdomen blunt; postspiracular bristles absent . . . Culex

Keys to the Species

Aedes

Larvae

1. Anal segment completely ringed by the saddle (Fig. 8L) 2

Anal segment not completely ringed by the saddle (Fig. lod)
2.(1) Pecten with distal teeth detached (Fig. 8L). 3 Pecten with distal teeth nearly evenly spaced (Fig. 11A) . . . 5
3.(2) Siphonal tuft inserted beyond the pecten (Fig. 8L)
. nigromaculis
Siphonal tuft inserted within the pecten , 4
4.(3)
Twenty-five or more comb scales arranged in a patch; lowerhead hair 6, double or triple (Fig, 12L) . . . fulvus-pallens
Fifteen to twenty comb scales arranged in an irregular doublerow; lower head hair 6, single (Fig. 13L). thelcter
5.(2) Siphonal tuft inserted within the pecten (Fig. 14L)
-tormentor
Siphonal tuft inserted beyond the pecten (Fig. 111). 6
6.(5) Preantennal head hair 7, double or triple; anal gills eight
times as long as the saddle (Fig. 15L) dupreei
Preantennal head hair 7 with four to twelve branches; analgills much less than eight times as long as the saddle . . . 7
7.(6) Eighth abdominal segment with four to nine comb scalesarranged in a single row (Fig. 11L). atlanticus
Eighth abdominal segment with usually more than nine comb
scales in an irregular row or patch 8
8.(7) Spinules of comb scales thornlike, or if rounded, median longer than submedian spinules 9
Spinules of comb scales rounded apically; median spinuleno longer than submedian spinules (Figs. 16L and 17L)
taeniorhynchus
9.(8) Dorsal apical spine of siphon as long as the apical pecten tooth (Fig. 18L) 10
Dorsal apical spine of siphon shorter than apical pecten tooth11
10.(9) Siphon about three times as long as wide (Fig. 18L)
. mitchellae
Siphon about two times as long as wide (Fig. 19L)
. .sollicitans
11.(9) Median spinule of comb scales at least two times as long as submedian spinules (Fig. 20L) infirmatus

Median spinule of comb scales only slightly longer than submedian spinules (Fig. 21L).trivittatus
12.(1) Pecten with at least one of the distal teeth detached
(Fig. 10L) . 13
Pecten with all of the teeth nearly evenly spaced (Fig. 23L)
13.(12) Siphonal tuft inserted within the pecten (Fig. 10L)
. atropalpus
Siphonal tuft inserted beyond the pecten (Fig. 23L). 14
14.(13) Upper head hair 5 with three or more branches. 15

Upper head hair 5, single or double (Fig. 25L)spencerii
15.(14) Upper head hair 5, lower head hair 6 and preantennal head hair 7 inserted in a straight line; comb scales with submedian spinules extending over halfway to the tip (Fig. 24L) . cinereus

Upper head hair 5, lower head hair 6 and preantennal head hair 7 not inserted in a straight line; comb scales with submedian spinules extending about halfway to tip (Fig. 26L). vexans
16.(12) Antenna mooth; antennal tuft represented by a single hair (Fig. 27L) 17
Antenna spiculate; antennal tuft double or multiple. 20
17.(16) Preantennal head har 7, single (Eig. 27L) aegypti
Preantenal head hair 7 , multiple 18
18.(17) hateral hair of anal segment inserted near the center of the postexiox border of the saddle, a depression of lighter color is on either side near the ventral margin of the sadde (Fig, 22L). zoosophus
Lateral haix of anal segment inserted near the lowerposterior lateral border of the saddle; light-coloreddepression absent (Fig. 23L)19
19.(18) Acus attached to sclerotized part of siphon; anal gillsshont, iswally less than length of anal segment; larvaeappear dark colored when alive (Fig. 23L).triseriatus
Acus detached fxom sclerotized part of siphon; anal gillslong, usually much longer than the siphon; larvae appearLight colored wen alive (Fig. 28L) hendersoni
20. (16) Conb scales inth a strong median spine and weakly de-veloped subredian spinules that are less than half aslong as the median spine (Fig. 29L). stiticusComb scales romded with some subnedian spinules atleast twomthirds as long as the median spine (Fig. 30L). . 21
21.(20) Upper head hait 5 with four or more branches; lower head hair 6 with three or more branches 22
toper head hair 5, single to triple; lower head hair 6,single or double (Fig. 31) 23
22.(21) Comb scales with spinules narrow (Fig. 30L)
.canadensis canadensis
Comb scales with spinules wide (Fig. 32L).thibaulti
23.(21) Median spiaule of comb scale noticeably longer than the submedian spinules 24

Median spinule of comb scales not noticeably longer than che submedian spinules (Fig. 33L). dorsalis
24.(23) Upper head hair 5, single or double (Fig. 31L) . . . stimulans Upper head hair 5, triple (Fig. 34L) grossbecki

Adults

1. Proboscis with a white band of scales near the middle
(Fig. 10A) . 2
Proboscis without a white band near the middle 5
2.(1) Wing scales mostly dark scaled 3

Wing scales with mixed light and dark scales 4
3.(2) Dorsal aspect of abdominal segments with median areas of white or yeliow scales on all segments (Fig. 9A)

mitchellae

Dorsal aspect of abiominal segments without median areas of whice or yellow scales, terminal segments may have lateral white or yellow scales (Fig. 11A). . . taeniorhynchus
4.(2) Last segments of hind tarsi mostly light scaled (Fig. 12A) .sollicitans

Last segments of hind tarsi mostly dark scaled (Fig. 13A).

nigromaculis

5.(1) Tarsal segments with distinct white bands, at least on the hind legs (Fig. 14A) 6

Tarsal segments without distinct white bands 13
6.(5) Tarsal segnents with bands of white scales on both sides of the joint (Fig. 15A). 7

Tarsal segments with bands of white scales only on the basal part of the joint (Fig. 14A) 9
7.(6) Dorsal aspect of the abdomen with a median line of white scales, or may appear entirely white (Fig. 16A). . . dorsalis

Dorsal aspect of abdomen without a median line of white scales . 8
8.(7) Costa at base of wing with a small patch of white scales (Fig. 17A) atropalpus

Costa at base of wing with dark scales

canadensis canadensis

9.(6) Scutum with white scales forming a lyre-shaped marking (Fig. 18A) aegypti

Scuturn withont such a marking. 10
10.(9) Hind femora with basal half entirely white scaled (Fig. 14A)
\qquad
Hind femora with mized white or dark scales or nearly all white. 11
11. (10) Bands of white scales on dorsal aspect of abdomen forming a median inverted V-shaped design (Fig. 19A) vexans

Bands of scales on dorsal aspect of abdonen not forming an inverted Vmshaped design. 12
12.(11) Wing scales moderately broad and mixed white and dark; scutum with scales forming a median dark brown stripe grossbecki

Wing scales narrow, may be mixed white and dark or all daxk; scutum nearly evenly colored with light brown to golden scales Stimulans
13.(5) Scutum with two postlateral dark brown or black spots (Fig. 20A) fulvus-pallens

Scutum without such spots. 14
14.(13) Distinct bands (may be triangular in shape) or white or yeilow scales on abdomen. 15

Bands of white or yellow scales on abdomen absent or indistinct . 18
15.(14) Wings with mixed light and dark scales; abdomen with a median line of wifte scales or appearing nearly all white. .spencerii

Wings mostly dark acaled though some white scales may be present; abdomen without a median line of white scales.......................... 16
16.(15) Abdominal bands of white scales forming a Voshaped design (Fig. 21A) thelcter

Abdominal bends of white scales not forming a V-shaped design.......................... 17
17. (16) Dorsal aspect of first abdominal segment with a median patch of white scales; white abdominal bands of scales rounded outwardly (Fig. 22A) cinereus

Dorsal aspect of first abdominal segment with a patch of brown scales; abdominal bands of white scales rounded invardly (fig. 23A) stiticus
18.(14) Median or lateral longitudinal stripe or patch of silvermwhite scales on scutur 19

Scutum not maxked with silver-white scales though similar areas of white or yellow scales may be present 23
19.(18) Scutum with prelateral stripes of silver-white scales

Scutum without prelateral stripes of silver-white scales . . 21
20.(19) Scutum with more dark scales than white or silver (Fig.

24A)triseriatus
Scutun with more white or silver scales than dark (Fig.

21.(19) Median broad stripe of white or yellow scales from front to just beyond midde of scutum (Fig. 26A) infirmatus

Median stripe of silvermwite scales extending full length of scutum. . . . * . 22
22.(21) Scutum with median stripe jess than half the width of the dorsal aspect of scutum (Fig. 27A)
. . . . atlanticus and tormentor (inseparable as adults)
Scutum with median seripe about half the width of the dorsal aspect of scutum; a small species. dupreei
23. (18) Median dark stripe of scales becoming broader beyond the middle of the scutum (Fig. 28A).thibaulti

Scutum with two broad white stripes of scales separated by a brown median stripe (Fig. 29A). trivittatus

Anopheles

Larvae

1. Head hairs 5 to 7 simple, not plumose (Fig . 35L) . . barberi Head haixs 5 to 7 large and plumose (Fig. 36L) 2
2.(1) Outer clypeal hair 3, simple * * . . 3 Outer clypeal haix 3, feathered or branched (Fig. 36L). . . 4
3.(2) Gaudal maxgin of spitacular plate with a pair of tail-like elongations (Fig. 37L)

- pseudopunctipennis pseudopunctipennis

Caudal margin of spiracular plate rounded, tail-like elongations absent (Fig. 38L)

- pseudopunctipennis franciscanus
4.(2) Inner clypeal hair 2 with minute feathering near the tip (Fig, 39L) -walkeri

Inner clypeal haix 2 simple, no feathering present 5
5.(4) Inner cilypeal hairs separated by more than the diameter of the basal tubercale, measure at the tubercule base (Fig. 36L)
quadrimaculatus
Inner clypeal haixg separated by less than the diameter of the bsal tubercule 6
6.(5) Haixs 0 and 2 on abaminal segments 4 and 5 well developed with four to nine branches (Fig. IL) crucians

Hairs 0 and 2 on abdominal segments 4 and 5 simple usually with one to three branches (ig. 40L). punctipennis
ddults

1. All wing scales dark (Fig, 30A). 2 Some wing scales forming white or yellow areas (Fig. 3 (AA). . . 4
2.(1) Wings uniformly dark scaled: a small species (Fig. 30A)
. barberi
Wings with distinct areas of darker scales 3
3.(2) Median area and vertex of occiput with few pale scales; palpi may or may not have white apical rings on segments

Median area and vertex of occiput with many pale scales; palpi entirely dark scaled (Fig. 33A).quadrimaculatus
4.(1) Costa of wing with a white or yellow axea only at the outer tip (Fig. 31.A) crucians

Costa of wing with white or yellow areas on outer third and at outer tip........................ 5
5.(4) Palpi unbanded (Fig. 1A); wing veins 3 and 5 entirely dark scaled. punctipennís

Palpi banded (Fig. 340): wing veins 3 and 5 with white or yellow scales...................... 6
6.(5) Texminal segmencs of palpi dark scaled (Fig. 34A): wing vein 4 mostly dark scaled. . . .pseudopunctipennis franciscanus

Terminal segments of palpi white or yellow scaled (Fig. 35A); wing vein 4 mostly white scaled
.pseudopunctipernis pseudopunctipennis

Culex

Larvae

1. Jower head hair 6, single or double (Fig. 41L) 2

Lower head hair 6 with three or more branches (Fig. 42L) . . 5
2.(1) Siphon with two or three pairs of small subdorsal tufts in addition to the normal tufts (Fig. 43L)........... 3

Siphon without two or three pairs of subdorsal tuits; normal tufts or hairs present. 4
3.(2) Comb scales thornoshaped (Fig. 44L): arranged in a single or double row.

Comb scales rounded apically, fringed with subequal
spinules (Fig. 45L); axranged in a patch peccator
4.(2) Upper head haix 5, single or rarely double (Fig. 41L); basal diameter of siphon twice the apical diameter
.............................. . territans

Upper head hair 5, double or criple (Fig. 46L): basal
diameter of siphon less than twice the apical diameter
. apicalis
5.(1) Antenna nearly uniform in shape chroughout, antennal
tuft inserted near the middle (Fig. 42L) restuans
Antenna constricted at the outex third, antennal tuft
inserted near the outer third. 6
6.(5) Siphon with several single oz possibly double, irregularly spaced hairs (Fig. 47L)................thriambus

Siphon with multiple pairs of haix tufts (Fig. 48J). 7
7. (6) Pairs of tufts on siphon in a straight line or nearly so
(Fig. 3L). tarsalis
Eairs of tufts on siphon not in a straight line (Fig. 48L) . . 8
8.(7) Lower head hair 6 usually with five or more branches . . . 9

Lower head haix 6 wich three or four branches. 10
9.(8) Dorsal microsetae on posterior margin of saddle much larger than those at dorsal middie (Fig. 49L)
................ peus (formerly stigmatosoma)
Dorsal microsetae on dorsal posterior margin of sadde not much larger than those at dorsal middle (Fig.

48L) pipiens-quinquefasciatus complex
10.(8) Thorax deeply spiculate (Fig. 50L)nigripalpus Thorax not deeply spiculate (Fig. 51L) salinarius

Adults

1. Tarsal segments with distinct white bands (Fig. 36A) 2 Tarsal segments without such bands 4
2.(1) Proboscis with a distinct white band near the middle (Fig. 2A)............................. 3

Proboscis without a distinct white band near the middle, an indistinct band may be present.thriambus
3.(2) Femora and tibiae with narrow longitudinal lines or spots of white scales on outer sides (Fig, 36L). . . tarsalis

Fenora and tibiae without narrow longitudinal lines or spots of white scales on outer sides

```
peus (formerly stigmatosoma)
```

4.(1) Doxsal aspect of abdominal segments with apical bands of white or yellow scales (rig. 37L) , apicalis or territans (It is difficult to separate these in the adult female stage.)

Dorsal aspect of abdominal segments with basal bands of white or yellow scales or all dark scales (Fig. 37A) 5
5.(4) Dorsal aspect of abdominal segments with white or yellow scales forming outwardly rounded bands (Fig. 38A)
*. pipiens ${ }^{\text {quinquefasciatus complex }}$
Dorsal aspect of abdominal segments with white or yellow scales forming nearly straight bands, or bands absent. . . . 6
6.(5) Abdominal scales yellow to white, or dark. 7

Abdominal scales an orangemyellow color, last segment of abdomen nearly all covered with these scales (Fig. 39A) Salinarius
7.(6) Wing scales slightly broader on vein 2 (Fig. 40A); small dark species. exraticus and peccator (inseparable as adult Eemales)

8.(7) Dorsal aspect of abdomen with broad, white basal bands

Doreal aspect of abdomen without broad, white basal bands, lateral patches may be present (Fig. 42A).... .nigripalpus

Culiseta

Larvae

1. Pecten followed by a row of small tufts (Fig. 52L); antenna long, tuft inserted at distal third or fourth of shaft . melanura

Pecten not followed by a row of small tufts; antenna short, tuft inserted about in the riddle 2
2.(1) Lateral hair of anal segment as long as or longer than the saddle (Fig. 5L) inornata

Lateral hair of anal segment shorter than the saddle (Fig. 53L) . incidens

Adults

1. Hind tarsi with narrow pale bands of scales (Fig. 43A)
. incidens
Hind tarsi entirely dark scaled. 2
2.(1) Costa of wing with mixed white and dark scales (Fig. 44A)
. inornata
Costa of wing entirely dark scaled melanura

Mansonia

Larvae

Anal segment with about four hair tufts piercing the saddle (Fig. 54L).titillans

Anal saddle with zero, one or two hair tufts piercing the saddle (Fig. 2L) perturbens

Adults
Segment 1 of hind tarsi with a median ring of pale white scales (Fig. 45A).................... perturbens

Segment l of hind tarsi without a median pale ring of scales, a ring may occur at basal part of segment, and there may be light scales over most of the segment .titillans

Orthopodomyia

Larvae

Eighth abdominal segment with a sclerotized plate; siphonal cuft large, greater than width of the siphon at point of insertion. .signifera

Eighth abdominal segment without a sclerotized plate; siphonal tuft small, less than the width of the siphon at the point of insertion. alba

Adults
The two species recorded in Oklahoma are inseparable as adults (see genera key). alba and signifera

Psorophora

Larvae

1. Pecten with numerous teeth, usually twenty or more
(Fjg 7L) . 2
Pecten with few teeth, usually less than ten 3
2.(1) Lateral hair of anal segment single, may be forked beyond middle (Fig, 55L) howardii

Lateral hair of anal segment with three or four branches (Fig. 7L). .
3.(1) Siphonal tuft about as long as the siphon (Fig. 56L)
discolor
Siphonal tuft small or absent. 4
4.(3) Upper head hair 5 and lower head hair 6 multiple, usually with five or six branches (Fig. 57L)confinnis Upper head hair 5 and lower head hair 6 single or double (Fig. 58L) . 5
5.(4) Upper head hair 5 and lower head hair 6 single (Fig. 58L) . . . 6 Upper head hair 5 double, lower head hair 6 double or triple . 7
6.(5) Antennal tuft with two to four branches (Fig. 58L) - . cyanescens

Antennal tuft with eight to fifteen branchessignipennis
7.(5) Antenna much longer than median length of head 8 Antenna not as long, or slightly longer than median
length of head . 9
8.(7) Comb scales with submedian spinules curved (Fig. 59L). . .ferox Comb scales with submedian spinules straight (Fig. 60L)

- 1ongipalpus
9.(7) Siphon strongly inflated (Fig. 61L)horrida Siphon only slightly inflated.varipes

Adults

1. Wing scales mixed dark and light (Fig. 46A) 2 Wing scales mostly dark, a few light scales may be present . . 4
2.(1) Outer third of hind femur with a narrow band of white scales (Fig. 47L). confinnis

Outer third of hind femur without a narrow band of white scales . 3
3.(2) Fringe of wing with alternating light and dark areas; distal portion of wing vein 6 white scaled (Fig. 46A) . .signipennis

Fringe of wing all dark; distal portion of wing vein 6 dark scaled. discolor
4. (1) Hind legs with very long, shaggy scales; very large species (Fig. 48A) 5

Hind legs without very long scales, they may be somewhat shaggy . 6
5.(4) Scutum with a median longitudinal stripe of golden scales (Fig. 49A). ciliata

Scutum without a median longitudinal stripe of golden
scales . howardii
6.(4) Hind tarsi entirely dark scaled (Fig. 50A); a number of scales on legs with a metallic purple appearance
cyanescens
Hind tarsi with white scales on apical segments. 7
7.(6) Last segment of hind tarsi dark scaled (Fig. 51A). . . varipes

Last segment on hind tarsi white scaled. 8
8.(7) Scutum with a broad median stripe of dark scales 9
Scutum without a broad median stripe of dark scales. . . .ferox
$9 .(8)$ Palpi about one-third as long as proboscis (Fig. 52A)
.longipalpus
Palpi less than one-third as long as proboscishorrida
Uranotaenia
Larvae
Upper head hair 5 and lower head hair 6, stout andspinose. 2Upper head hair 5 and lower head hair 6, course but notdirectly stout anhydor syntheta
2.(1) Prothoracic hair 3 with four to eight branches, barbed, andmore than half as long as hairs 1 and 2 (Fig. 62L) . . . 1 owii
Prothoracic hair 3 with eight to ten branches, smooth andmuch less than half as long as 1 and 2 (Fig. 63L)
sapphirina
Adults

1. Terminal segments of hind tarsi white scaled (Fig. 53A). . Iowii
Terminal segments of hind tarsi entirely dark scaled 2
2.(1) Dorsal aspect of scutum with a median line of metallic bluescales (Fig. 54A). sapphirina
Dorsal aspect of scutum without a median line of metallicblue scales; a distinct lateral outline of these scalesis present (Fig. 55A). anhydor syntheta

Toxormynchites

```
Refer to the genera key; there is only one species of this
genus recorded in Oklahoma . . . . . . .rutilis septentrionalis
```


DISTRIBUTION

Abstract

New records (NR) have been taken from the following sources: Oklahoma State University Museum; University of Oklahoma Museum; State Health Department, Oklahoma City; Army Corps of Engineers, Tulsa; Fourth U. S. Army Medical Laboratory, San Antonio, Texas; collections by the State Survey Entomologist; student and personal collections.

Oklahoma Mosquitoes

Aedes aegypti (Linnaeus)
Comanche, Love (NR), McCurtain, McIntosh, Payne.
A. atlanticus Dyar and Knab

Comanche, McCurtain, Oklahoma, Payne.
A. atropalpus (Coquillett)

Caddo, Cherokee (NR), Coal (NR), Comanche, Creek (NR),
Johnston (NR), Marshal1, McIntosh (NR), Murray (NR), Muskogee (NR),
Oklahoma, Rogers (NR), Wagoner (NR), Woodward.
A. canadensis canadensis (Theobald)

Alfalfa (NR), Atoka, Choctaw, Coal (NR), Comanche, McCurtain, Murray (NR), Rogers (NR), Woodward (NR).
A. cinereus Meigen

Craig, Johnston, McCurtain, McIntosh, Sequoyah.
A. dorsalis (Meigen)

Alfalfa, Beaver (NR), Beckham (NR), Blaine (NR), Cimarron (NR), Comanche (NR), Cotion (NR), Creek (NR), Dewey (NR), Ellis (NR), Grant (NR), Greer (NR), Harmon (NR), Harper (NR), Jackson (NR), Roger Mills (NR), Texas (NR), Tillman (NR), Woodward (NR),
A. dupreei (Coquillett)

Beckham, Blaine, Canadian, Craig (NR), Johnston (NR), McCurtain, McIntosh, Murray, Oklahoma, Sequoyah.
A. fulvus-pallens Ross

Cleveland (NR), Oklahoma, Pottawatomie.
A. hendersoni Cockerell

Payne (NR), state record.
A. mitchellae (Dyar)

Jackson, Muskogee, Oklahoma.
A. nigromaculis (Ludlow)

Throughout the state.
A. sollicitans (Walker)

Alfalfa, Blaine (NR), Cleveland, Comanche, Cotton, (NR), Dewey (NR), Greer (NR), Harmon (NR), Jackson (NR), Kiowa (NR), Lincoln (NR), Nowata (NR), Oklahoma, Okmulgee (NR), Osage (NR),

Payne (NR), Pontotoc (NR), Roger Mills (NR), Texas (NR), Tillman (NR), Woodward (NR).
A. spencerii (Theobald)

Pontotoc (NR), state record.
A. stiticus (Meigen)

Alfalfa (NR), Acoka (NR), Caddo (NR), Comanche (NR), Johnston
(NR), Kay (NR), LeFlore (NR), McCurtain (NR), McIntosh (NR), Nowata (NR), Oklahoma, Pushmataha (NR), Rogers (NR).
A. taeniorhynchus (Wiedemann)

Comanche, Oklahoma.
A. thelcter Dyar

Caddo, Canadian, Comanche (NR), Cotton, Custer, Harmon, Logan.
A. tormentor Dyar and Knab

Murray
A. triseriatus (Say)

Throughout the state except Panhandle.
A. trivittatus (Coquillett)

Throughout the state except Panhandle.
A. vexans (Meigen)

Throughout the state.
A. zoosophus Dyar and Knab

Throughout the state except the Panhandle.

Anopheles barberi Coquillett
Blaine (NR), Bryan (NR), Comanche, Johnston (NR), Logan (NR),
Mayes, McCurtain, McIntosh, Murray, Nowata, Oklahoma, Payne.
A. crucians Wiedemann

Alfalfa (NR), Bryan, Cherokee, Coal, Comanche, Craig (NR), Craek (NR), Dewey (NR), Johnston (NR), Latimer, LeFlore, McCurain, Murray (NR), Oklahoma, Payne, Pushrnataha, Sequoyah (NR), Wagoner.
A. pseudopunctipennis franciscanus McCrackenBeaver, Beckman, Blaine, Comanche, Dewey, Ellis, Greer, Harmon,Harper, Kiowa, Roger Mills, Texas, Woodward (NR).
A. pseudopunctipennis pseudopunctipennis Theobald
Throughout the state.
A. punctipennis (Say)
Throughout the state.
A. quadrimaculatus Say
Throughout the state, no record from Panhandle.
Culex apicalis Adams
Throughout the state.
C. erraticus (Dyar and Knab)
Throughout the state.
C. nigripalpus Theobald
Comanche, Okfuskee (NR).
C. peccator Dyar and Knab
Bryan, Caddo (NR), Comanche (NR), Cotton (NR), McCurtain,
Sequoyah (NR).
C. pipiens-quinquefasciatus complex Linnaeus
These two species are considered a complex in this work.
Throughout the state.
C. restuans Theobald
Throughout the state.
C. peus (formerly stigmatosoma) Speiser
Beckham, Blaine, Canadian, Ellis, Harper, Oklahoma.

```
C. salinarius Coquillett
        Throughout the state.
C. tarsalis Coquillett
        Thwoughout the state.
C. territans Walker
    Alfalfa, Blaine, Cherokee (NR), Comanche, Delaware (NR),
    Marsha11, Muskogee, Oklahoma, Payne (NR).
C. thxigmbus Dyar
    Comanche, Marshall
```

Culiseta incidens (Thompson)
Cimarron, Texas.
C. inornata (Williston)
Throughout the state.
C. melenura (Coquillett)

```McCurtain, Payne, Tulsa.
```

Mansonia perturbens (Walker)
Alfalfa, Coal (NR), Comanche (NR), Cotton (NR), Garvin (NR),
Johnston (NR), Kiowa (NR), McIntosh (NR), Payne, Pushmataha (NR),
Stephens (NR).
Orthopodomyia alba Baker
Comanche, Payne.
Q. Signifera (Coquillett)
Throughout the state except Panhandle.

Psorophora ciliata (Fabricius)

Throughout the state,
P. Confinnis (Lynch Arribalzaga)

Throughout the state.
P. cyanescens (Coquillett)

Throughout the state.
P. discolor (Coquillett)

Throughout the state.
P. ferox (Humboldt)

Atoka (NR), Cherokee (NR), Cleveland (NR), Coal (NR), Comanche,
Craig (NR), Custer (NR), Delaware (NR), Dewey (NR), Johnston,
Kiowa (NR), LeFlore, Marshall, McCurtain (NR), Murray (NR),
Noble (NR), Oklahoma, Okmulgee (NR), Osage (NR), Pontotac (NR),
Pushmataha (NR), Sequoyah (NR), Wagoner (NR).
P. horrida (Dyar and Knab)

Bryan, Cleveland (NR), Choctow, Delaware, Johnston (NR),
LeFlore, Marshall, McGurtain, McIntosh, Okfuskee, Okmulgee (NR),
Payne, Pottawatomie, Sequoyah (NR), Tulsa, Woods.
P. howaxdii Coquillett

Bryan, Choctaw, Coal, Cotton (NR), Payne, Pottawatomie. P. 1ongipalpus Roth

Comanche, Johnston, Okmulgee (NR).
P. Signipennis (Coquillett)

Throughout the state.
P. Varipes (Coquillett)

Toxorhynchites rutilis septentrionalis (Dyar and Rnab)
Choctaw (NR), Comanche (NR), LeFlore (NR), McCurtain (NR),
Oklahoma, Payne, Pushmataha (NR).

Uranotaenia 1owii Theobald
Comanche (NR), state record.
U. sapphirina (Osten Sacken)

Throughout the state except Panhandle.
U. anhydor Syntheta Dyar and Shannon

Beaver, Beckham, Blaine, Coal, Comanche, Cotton, Dewey, Ellis,
Garfield, Harmon, Harper, Jackson, Johnston, Logan, Murray,
Pontotoc, Pottawatomie, Woods.

Borderline Species

Aedes grossbecki Dyar and Knab
Recorded in Red River County, Texas.
A. infirmatus Dyar and Knab

Recorded along the Texas and Arkansas borders.
A. stimulans (Walker)

Recorded in Kansas and Missouri.
A. thibaulti Dyar and Knab

Recorded on the Texas border and in central Arkansas.

Anopheles walkeri Theobald
 Recorded in northern Louisiana and central Arkansas.

Mansonia titillans (Walker)

Recorded on the Texas border and in Arkansas.

LITERATURE CITED

Adams, C. F. and Wm. M, Gordon. 1943. Notes on the Mosquitoes of Missouri (Diptera: Culicidae), Entomol. News. 54:232-235.

Belkin, J. N. 1950. A Revised Nomenclature for the Chaetotaxy of the Mosquito Larvae (Diptera: Culicidae). Amer. Midland Natur. 44:678-698.

Bradley, G. H., R. F. Fritz and L. E. Perry. 1944. Additional Mosquito Records for the Southeastern States. J. Econ. Entomol. 37:109.

Breland, O. P. 1960. Restoration of the Name, Aedes hendersoni Cockerell, and Its Elevation to Full Specific Rank (Diptera: Culicidae). Ann. Entomol. Soc. Amer. 53:600-606.
1948. Some Bicolored Mosquito Larvae. J. Kansas Entomol. Soc, 21:120-121.

Carpenter, S. J. 1942. Mosquitoes in Military Establishments in the Seventh Corps Area during 1941. J. Econ. Entomol. 35:558.

Carpenter, S. J. and W. J. LaCasse. 1955. Mosquitoes of North America (North of Mexico). Univ, of California Press. Berkeley, California. 360 p. 127 pls.

Cockerell, T. D. A. 1918. The Mosquitoes of Colorado. J. Econ. Entomol. 11:195-200.

Dyar, H. G. 1922. The Mosquitoes of the United States. Proc. U. S. Nat. Mus. 62:1-119.
1924. The Mosquitoes of Colorado (Diptera: Culicidae). Insecutor Inscitiae Menstruus 12:39-46.

Eads, R. B., G. C. Menzies, and L. J. Ogden. 1951. Distribution Records of West Texas Mosquitoes. Mosquito News. 11:41-47.

Earle, H. H., Jr. 1956. Automatic Device for the Collection of Aquatic Specimens. J. Econ. Entomol. 49:261-262.

Fellton, H. L. 1944, The Breeding of the Salt-Marsh Mosquito in Midwestern States. J. Econ. Entomol. 37:245-247.

Ferguson, F. F. and T. E. McNeel. 1954. The Mosquitoes of New Mexico. Mosquito News. 14:30-31.

Fourth U. S. Army Medical Laboratory. 1962. Distribution and Abundance of Mosquitoes in the Fourth U. S. Army Area. Misc. Pub. 19 p.
1963. Distribution and Abundance of Mosquitoes in the Fourth U. S. Army Area. Misc. Pub. 25 p.
1964. Distribution and Abundance of Mosquitoes in the Fourth U. S. Army Area. Misc. Pub. 35 p.
1965. Medical Entomology: Meth63 p .

Griffith, M. E. 1952. Additional Species of Mosquitoes in Oklahoma. Mosquito News. 12:10-14.

Hayes, G. R. and M. E. Tinker. 1958. The 1956-1957 Status of Aedes aegypti in the United States. Mosquito News. 18:253-257.

Hill, S. O., B. J. Smittle, and F. M. Philips. 1958. Distribution of Mosquitoes Fourth U. S. Army Area. Fourth U. S. Army Medical Laboratory Misc. Pub. 155 p.

Horsfall, W. R. 1955. Mosquitoes--Their Bionomics and Relation to Disease. Ronald Press. New York. 723 p.

Hinman, E. J. 1950, A Preliminary Study of Mosquitoes at Lake Texoma, Oklahoma. Proc. Oklahoma Acad. Sci. 31:51-52.

James, M. T. 1942. A Two-Season Light Trap Study of Mosquitoes in Colorado. J. Econ. Entonol. 35:945.

Johnson, W. E., Jr. 1961. The Occurrence of Orthopodomyia alba Baker in Oklahoma (Diptera: Culicidae). Mosquito News. 21:55.
1961. The Natural History of the Mosquitoes of the Wichita Mountains Wildiife Refuge. Ph. D. dissertation, University of Oklahoma.

Kajihiro, E. S. 1962. A Survey of the Mosquito Larvae of Marshall County, Oklahoma. Proc. Oklahoma Acad. Sci. 43:51-52.

Knight, K. L. 1953. Hybridization Experiments with Gulex pipiens and C. quinquefasciatus (Diptera: Culicidae). Mosquito News. 13:110-115.

Matheson, Robert. 1944. A Handbook of the Mosquitoes of North America. Ithaca, New York. Comstock Pub. Ass. 314 p.

Mattingly, P. F. L. E. Rozeboom, K, L. Knight, H. Laven, F. H. Drummond, S. R. Christophers, and P. G. Shute, 1951. The Culex pipiens Complex. Trans. Roy. Entomol. Soc. Lon. 102:331-342.

McGregor, T. and R. B. Eads, 1943. Mosquitoes of Texas. J. Econ. Entomol. 36:938-940.

McNeel, T. E., and F. F. Fexguson. 1952. Psorophora cyanescens (Coquillett) New to the Mosquito Fauna of New Mexico. Mosquito News. 12:241.
O^{\prime} Neill, K. L., L. J. Ogden, and D. E. Eyles. 1944. Additional Species of Mosquitoes Found in Texas. J. Econ. Entomol. 37:555.

Portman, R. W. 1943. New Mosqquito Records for Colorado. J. Kansas Entomol. Soc. 16:155.

Pratt, Harry D. 1956. A Checkalist of the Mosquitoes (Culicidae) of North America (Diptera: Culicidae). Mosquito News, 16:4-10.

Rozeboom, L. E. 1942. The Mosquitoes of Oklahoma, Okla. Agr. Exp. Sta. Tech. Bull. T-16:1m56.
1951. The Culex pipiens Complex in North America. Trans. Roy. Entomol. Soc. Lon. 102:343-353.

Roth, L. M. 1945. The Male and Larva of Psorophora (Janthinosoma) horrida (Dyar and Knab) and a New Species of Psorophora from the United States (Diptera: Culicidae). Proc. Entomol. Soc. Washington. 47:1-23.

Ruger, M. E. and S. Druce. 1950. New Mosquito Distribution Records for Texas. Mosquito News 10:60-63.

Wiseman, J. S. 1965: A Jist of Mosquito Species Reported from Texas. Mosquito News. 25:58.59.

APPENDIX A

Table I. Bionomics of Mosquitoes Recorded in Oklahoma.

Species	Medical Importance	Preferred Larval Habitat	Most Common Biting Tjme	Plught Range
Aedes aegypti	Vector of yellow fever and dengue; vicious biter.	Artificial contain* ers (tin cans, old tires, etc.).	Morning and late after noon	1 block to索mile.
A. atlanticus	Vicious biter.	Temporary pools.	Daylight in shaded areas.	Unknown.
A. atropalpus	Vicious bitez.	Temporary pools in rockholes.	Mornings and evenings.	Unknown
$\text { A. } \frac{\text { canadensis }}{\text { canadensis }}$	Vicious biter.	Temporary pools.	Daylight in shaded areas.	Probably less than 1 mile.
A. cineress	Vicious biter.	Temporary pools primarily in or near wooded areas.	Unknown.	Unknown.
A. doxsalis	```Possible vector of Western encephalites; vicious biter.```	Temporary pools; sometimes brackish waters.	Day ox night, worst in even. ings.	10-20 miles.
A. dupreei	None known.	Temporary pools, primarily in wooded areas.	Not particularly attracted to man.	Unknowne
A. fulvus-pallens	Vicious biter.	Not definitely known, but has been found in temporary pools.	Day or night.	Unknown

Table I (cont, Bionomics of Mosquitoes Recorded in Oklahoma.

Species	Medical Importance	Preferred Laxval Habitat	Mose Common Bitimg Time	Flight Range
A. grossbecki	Vicious biter.	Temporary pools early in the spring.	Day or night.	Unknown
A. hendersoni	Vicious biter.	Flooded treeholes.	Unknown.	Unknown.
A. infirmatus	Vicious biter.	Temporary pools.	Daylight in shaded areas and at night.	Unknown.
A. mitchellae	Wicious bitar when numerous.	Temporary pools.	Unkaown.	Unknown.
A. nigromacut	Vicious bitex.	Temporary pools.	Day of night, worst in eveno ings.	205 miles.
A. sollicitans	Vicious bitere	Temporary pools, usually brackish with sulfates.	Day or night.	$5-20$ miles.
A. spencerit	Vicious biter.	Temporary pools.	Day or night.	Unknown.
A. stimulans	Vicious biter.	Temporary pools in early spring.	Daylight in shaded areas. and at night.	2 miles plus.
A. stiticus	Vicious biter.	Temporary pools.	Day ox night.	$\begin{aligned} & 25-30 \\ & \text { miles. } \end{aligned}$

Table I (cont.) Bionomics of Mosquitoes Recorded in Oklahoma.

Species	Medical Importance	Preferred Larval Habitat	Most Common Biting Time	Fight Range
A. taeniorhynchus	Vicious biter.	Temporary pools, usually brackish.	Day or night.	10-20 miles.
A. thelcter	Unknown.	Teraporaxy pools.	Unknown。	Unknown.
A. Ehibaulei	Vicious biter,	Flooded bases af trees, primarily sweet and tupelo gum.	Day ox night.	Probably less than 1 mile.
A. tormencor	Vichous biter.	Temporary pools.	Unknown.	Unknown.
A. txiseriatus	Vicious biter.	Flooded treeholes; occasionally arti= ficial containers.	Morning or evening in wooded areas.	\%omile.
A* tajuttcatus	Vicious biter.	Temporary pools.	Daylight or evening.	Probably less than 1 mile.
A. versans	Vicious biter.	Temporary pools.	Day or night.	$5-20$ miles.
A. zoosophus	Vicious biter.	Flooded treeholes; occasionally artificial containers.	Usually morning or evening in wooded areas.	Unknown,
Anopheles barberi	None known.	Flooded treeholes and stumps.	Evening	Unknown.

Table I (cont.) Bionomics of Mosquitoes Recorded in Oklahoma.

Species	Medical Importance	Preferred Laxval Habitat	Most Common Biting Time	Etight Remge
A. crucians	Possible vector of malaxia.	Swamps, road ruts, lake or pond mar. gins.	Nights or cloudy days.	1 mile
A. pseudopunctipennis Iranciscanus	None known.	Shallow pools with vegetation, particum larly green algae.	Usually night.	1 mile
A. pseudopunctipennis pseudopunctipennis	None in Jnited States; vector of malaria in Merica. Central and South meriga.	$\begin{aligned} & \text { Same as A. E. Exam } \\ & \text { ciscanus. } \end{aligned}$	Usually night,	1 mile.
A. punctiventis	A potentigl but not thought to be an imo portant vector of mal.aとja.	Fresh water pools, streams, and lake margins, prefers cool water.	Daylight in shaded areas and evenings.	1. mile
A. quadrimaculatus	Primary vector of malaria in United States.	Clean, partially shaded fresh water. with vegetation.	Usually in the evening.	1 mine。
A. Walkeri	Potential vectox of malaria.	Fresh water marshes, ponds, and lakes with vegetation.	Day or night.	l-2 miles.
Culer apicalis	None known.	Woodland pools and streams.	Not known to feed on man.	Unknown.

Table I (cont.) Bionomies of Mosquitoes Recoried fin Oklahoma.

Species	Medicel Tmportance	Preferred Larval Habitst	Most Common Biting Time	PLight Range
C. exreticus	None known.	Permanent water with vegetation,	Night.	Tuknown。
C. nigripalpus	Petentigl vector of St. Louls encephatitis.	Flooded fresh water fields. ditches, pools.	Evenings,	Unknown.
C. peecator	None know.	Fresh water pools and marshy areas.	Unknown.	Unknown.
C. gipiens-quinquefasciatus complex	A known vacter of St. Louis and westaxn encaphalitis mad Wuchexeria bancrofti: a troubleaome pest.	Permanent water with or without pollution: artio ficial containexs.	Nights usually in houses.	1 mile or more.
C. restuans	Possible encephalitis vector.	Fresh wates pools, ditches, etc. arti= ficial containers.	Unknown.	Unknown.
C. Salinatius	None known.	Grassy pools, bays, ditches of fresh or brackish water.	Usually at night.	Whknown.
C. peus (formerly stigmatosoma)	Possible encephalitis vector.	Permanent or temm porary, clear or polluted fresh water.	Rarely Eeeds on man.	Unknown:

Table I (cont.) Bionomics of Mosquitoes Recorded in Oklahoma.

Species	Medical Importance	Preferred Larval Habitat	Most Common Bitimg Time	Pljght Range
C. tarsalis	A known vector of St. Louis and western encephalitis: a troublem some pest.	Wide Fange of clean or polluted fresh waters.	Evening and night.	$2-5$ miles.
E. Lerritans	None known.	Ponds and maxshes with vegetation.	Not known to feed on man.	Unknow,
C. thriambus	None known.	Marshes. rock pools and variety of fresh water habitats.	Not known to feed on man.	Unknown.
Culiseta incidens	Potential vector of St, Louts and Japanese B encephalitis.	Wide range of temm porary or permanent waters; arifificial containers.	Unknown.	Unknown.
C. inernata	Potential vector of Westarn or Japanese B encephalitis.	Wide range of habi* tats; temporary or pexmanent water; artificial containm ers.	Does not uso ually bite man.	Probably less than 1 wile.
C. melanura	Potential vector of encephalitis.	Nomally in small, permanent bodies of water in swampy areas.	Does not use ually bite man.	$\begin{aligned} & 100-1000 \\ & \text { yards. } \end{aligned}$

Species	Medical Impoxtance	Preferred Larval Habitac	Most Common Bitimg Time	Flight Range
Mansonia perturbens	Potential vector of en cephalitis; vicious biter.	Ponds with vegetam tion; larvae attach to underwater portion of plants.	Evening and night.	Several miles.
M. titillans	Potential vecter of encephalitis; vicious biter.	Same as M. perture bens.	Evening and night.	Severs 1 miles.
Orthopodomyia alba	None known.	Flooded treeholes and stumps; possio bly artificial containers.	Not known to bite man.	Unknown, probably short.
9. signiferg	None known.	Flooded treeholes and stumps.	Not known to bite man.	Unknown, probably short.
Psorophora ciliata	Vicious biter.	Temporary pools.	Day or night.	$\begin{aligned} & 5 \text { miles } \\ & \text { or more. } \end{aligned}$
P. confinnis	Vicious biter.	Temporary pools, ricefields.	Day or night.	5 miles or more.
E. cyanescens	Vicious biter.	Temporary pools.	Day or night.	5 miles or more.
P. discolor	Vicjous biter.	Temporary pools.	Day or night.	Unknown.

Table I (cont.) Bionomics of Mosquitoes Recorded in Oklahoma.

Species	Medical Importance	Preferred Larval Habitat	Most Common Biting Time	ELight Range
P. ferox	Vicious biter.	Temporary pools.	Day or night.	Unknown.
P. horrida	Vicious biter.	Tenporaxy pools.	Day or night.	Unknown.
P. howardii	Vicious bicer.	Temporsxy pools.	Day ox night.	Unknown.
P. longipalpus	Unknown but probably vicious biter.	Temporary pools.	Unknown.	Unknown.
P. signipennis	Bites man but is not considered as much a pest as other Psorophora.	Temporary pools.	Day or night.	Unknown.
P. varipes	Vicious biter.	Temporary pools.	Day or night.	Unknown.
Toxorhynchites rutilis septentejonglis	Larvae are predaceous on other mosquito larvae.	Flooded treeholes and artificial containers.	Not known to bite man.	Unknown.
Uranotaenia Lowii	None known.	Margins of grassy, shallow ponds and lakes.	Not known to bite man.	Unknown:
U. sapphicisa	None known.	Permanent ponds and lakes with vegetation.	Not known to bite man.	Unknown.
U. anhydor syntheta	None known.	Grassy ditches: streams, ponds, lakes with vegétation.	Not known to bite man.	Unknown。

APPENDIX B

PLATE I

The following figures illustrate the important diagnostic characters utilized in the keys of this work. Figures are not drawn to scale.

Fig. 1. Adult female, head.
Fig. 2. Adult male, head.
Fig. 3. Adult female, head, thorax and abdomen.
Fig. 4. Adult female, head and thorax.
Fig. 5. Adult female, wing.

RLATE II

The following figures illustrate the important diagnostic charw acters utilized in the keys of this work. Figures are not drawn to scale.

Fig. 1. Larva, head and thorax.
Fig. 2. Larva, abdominal segments.
Fig. 3. Larva, anal segments.
Fig, 4. Larva, comb scale.
Fig, 5. Larva, pecten tooth.

1

PLATE III

The figures in Plates III~NIV correspond with the keys in the text. Arrows indicate diagnostic characters of the species concerned. Figures are not drawn to scale.
Fig. 1L. Anopheles crucians Wiedemann.
Fig. 2L. Mansonia perturbens (Walker).
Fig. 3L. Culex Eaxsalis Coquillett.
Fig. 4L. Orthopodomyia alba Baker.
Fig. 5L. Culiseta inornata (Williston).

PLATE IV

Fig. 6L. Uranotaenia spp.
Fig. 7L, Psorophora ciliata (Fabricius).
Fig. 8L, Aedes nigronaculis (Ludlow).
Fig. 9L. Toxorhynchites rutilis septentrionalis (Dyar and Knab).
Fig. 10L. Aedes atropalpus (Coquillett).

PLATE V

Fig. 11L. Aedes atlanticus Dyar and Knab.
Fig. 12L. A. fulvus-paliens Ross.
Fig. 13t: A, thelcter Dyar.
Fig. 14L. A. tormentor Dyar and knab.
Fig. 15L. A. dupreei (Coquillett).
Fig. 16L. A. taeniorhynchus (Wiedemann).
Fig. 17L. A. taeniorhynchus (Wiedemann).
Fjg. 18L. A. mitchellae (Dyar).
Fig. 19L, A. sollicitans (Walker).
Fig. 20L. A. infirmatus Dyar and Knab.
Fig. 21L, A. Erivittatus (Coquillett).

Fig. 22L. Aedes zoosophus Dyar and Knab.
Fig. 23L. A. triseriatus (Say).
Fig. 24L. A. cinereus Meigen.
Fig. 25 L . A. spencerii (Theobald).
Fig, 26L. A. verans (Meigen).
Fig. 27L. A. aegypti (Linnaeus).
Fig. 28I. A. hendersoni Cockerell.
Fig. 29I. A. stiticus (Meigen).
Fig. 30I. A. canadensis canadensis (Theobald).
Fig. 31L, A. stimulans (Walker).
Fig. 32L: A. thibaulti Dyar and Knab.
Fig. 33L. A. dorsalis (Meigen).

+

PLATE VII

Fig. 34L. Aedes grossbecki Dyar and Knab.
Fig. 35E. Anopheles barberi Coquillett.
Fig. 36L. A. quadrimaculatus Say.
Fig, 37L. A. pseudopunctipennis pseudopunctipernis Theobald.
Fig. 38L. A. pseudopunctipennis franciscanus McCracken.
Fig. 39L. A. Walkeri Theobald.
Fig. 40L. A, punctipennis (Say).
Fig. 4lL. Culex territans Walker.
Fig. 42 L . C. restuans Theobald.
Fig. 43L. C. erraticus (Dyar and Knab).
Fig. 44L. C. erraticus (Dyar and Knab).
Fig. 45L. C. peccator Dyar and Knab.

PLATE VIII

Fig. 46L. Culex apicalis Adams.
Fig. 47L. C. thriambus Dyar.
Fig. 48L. C. pipiens-quinguefasciatus Linnaeus.
Fig. 49L, C. peus Speiser.
Fig. 50L. C. nigripalpus Theobald.
Fig. 5lL. C. salinarius (Coquillett).
Fig. 52L. Culiseta melanura (Coquillett).
Fig. 53L. C. incidens (Thompson).

RLATE IX

Fig. 54t. Mansonia titillans (Walker).

Fig. 55L. Esorophora howardii Coquillett.

Fig. 56L. P. discolor (Coquillett).
Fig. 57L. P. confinnis (Lynch Axribalaaga).
Fig. 58L. P. cyanescens (Coquillett).
Fig. 59L. P. ferox (Humboldt).
Fig. 60L. P. longipalpus Roth.
Fig. 61L. P. horrida (Dyar and Knab).
Fig. 62J. Uranotaenia lowii Theobald.

Fig. 63L. U. Sapphirina (Osten Sacken).

plate X

Fig. iA. Anopheles punctipennis (Say).
Fig. 2A. Culex tarsalis Coquillett.
Fig. 3A. Toxorhynchites rutilis septentrionalis (Dyar and Knab).
Fig, 4A. Uranotaenia spp.
Fig. 5A. Culex spp.
Fig. 6A. Adult female.
Fig, 7A. Orthopodomyia spp.
Fig. 8A. Adule famale.
Fig. 9A. Aedes mirchellae (Dyar).
Fig. 10A. A. taeniorhynchus (Wiedemann).
Fig. 11A. A. taeniorhynchus (Wiedemann).

PLATE XI

Fig. 12A. Aedes sollicitans (Walker).
Fig. 13A. A. nigromaculis (Ludlow).
Fig. 14A. A. zoosophus Dyax and Knab.
Fig. 15A, A. dorsalis (Meigen).
Fig. 16A. A. dorsalis (Meigen).
Fig. 17A. A. atropalpus (Coquillett).
Fig. 18A. A. aegypti (Linnaeus).

Fig. 19A. A. vexans (Meigen).

Fig. 20A. A. fulvus-pallens Ross.

Fig. 21A. A. thelcter Dyar.
Fig. 22A. A. cinereus Meigen.

Fig, 23A. A. stiticus (Meigen).
Fig. 24A. A. triseriatus (Say).
Fig. 25A. A. hendersoni Cockerell.
Fig. 26A. A. infirmatus Dyar and Knab.
Fig. 27A. A. atlanticus Dyar and Knab.
Fig. 28A. A. thibaulti Dyar and Knab.
Fig. 29A. A. trivittatus (Coquillett).
Fig. 30A. Anopheles barberi Coquillett.
Fig. 31A. A.crucians Wiedemann.
Fig. 32A. A. Walkeri Theobald.
Fig. 33A. A. quadrimaculatus Say.
Fig. 34A. A. pseudopunctipennis pseudopunctipennis Theobald.
Fig. 35A. A. pseudopunctipennis franciscanus McCracken.

$-\rightarrow$ man

40

44

37

39.

41

42

PLATE XIII

Fig. $36 A^{\text {Culex }}$ tarsalis Coquillett.
Fig. 37A. C. territans Walker.
Fig, 38A. C. pipiens quinquefasciatus Linnaeus.
Fig. 39A. C. salinarius Coquillett.
Fig. 40A. C. erraticus (Dyar and Knab).
Fig. 41A. C. restuans Theobald.
Fig. 42A. C. nigripalpus Theobald.
Fig. 43A. Culiseta incidens (Thompson).
Fig. 44A. C inornata (Williston).
Fig. 45A. Mansonia perturbens (Walker).
Fig. 46A. Psorophora signipennis (Coquillett).

49

pLate XIV

Fig. 47A. Psorophora confinnis (Lynch Arribalzaga).
Fig. 48A. P. ciliata (Fabricius).
Fig. 49A. P. ciliata (Fabricius).
Fig. 50A. P. cyanescens (Coquillett).
Fig. 51A P. varipes (Coquillett).
Fig. 52A. E. longipalpus Roth.
Fig. 53A, Uranotaenia lowii Theobald.
Fig. 54A. U. sapphirina (Osten Sacken).
Fig. 55A. U. anhydor syntheta Dyar and Shannon.

VITA

RAY EDWARD PARSONS

Candidate for the Degree of Master of Science

Thesis: THE MOSQUITOES IN OKLAHOMA

Major Field: Entomology
Biographical:
Personal Data: Born in Orlando, Florida, November 14, 1936, the son of Charles N. and Annie M. Parsons.

Education: Attended elementary school in Orlando, Florida, and Knoxboro, New York; graduated from W. R. Boone High School, Orlando, Florida, in 1954; received the Bachelor of Science from the University of Florida, with a major in Entomology, in August 1961; completed requirements for the Master of Science degree in August 1965.

Experiences: Teletype repairman and operator, U. S. Navy, 19541957; Playground Director, Orlando, Florida Recreation Department, 1959-1960; technician, U. S. Department of Agriculture's, Insects Affecting Man Laboratory, Orlando Florida, 1962; Entomologist, U. S. Army from 1962 to present.

Organizations: Phi Sigma, Entomological Society of America, American Mosquito Control Association, Sanborn Entomology Club.

