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CHAPTER I 

INTRODUCTION 

The formulation of efficient waste treatment processes, design of 

waste treatment facilities and development of waste treatment methods, 

requires comprehensive knowledge of the waste composition. Within recent 

times the amounts and varieties of organic waste, both municipal and ~n­

dustrial, have increased. To a large extent, this increase has followed 

the increase in population and continued expansion of industrial develop­

ment. The problems of waste disposal and water pollution control have 

stimulated interest in the revision of established analytical methods 

used in sanitary chemistry and fostered the development of new methods. 

Presently, three basic analytical tests, chemical oxygen demand, 

COD, biochemical oxygen demand, BOD, and thermogravimetric solids are 

the principle sanitary engineering tests used to measure the nature of 

organic wastes. The first two tests, COD and BOD, provide a "yardstick" 

measure of the amount and nature of the carbonaceous material in a waste 

stream by measuring the amount of oxygen required to react with the or­

ganic material. The thermogravimetric tests are used to determine water 

content and amount of carbonaceous material by weight loss during heating. 

Experience and study have shown that these tests provide a reliable index 

to the organic loading and nature of the organic matter in waste materi­

als; however, this index is empirical and has been established by 

experience and correlation rather than by strict application of 

1 
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stoichometric chemical relationships. In a general sensei all of these 

tests are based on mass balance hypothesis. Obviously, a complete anal­

ysis of the waste material coupled with quantitative knowledge of the 

chern:i,cal, physical, and biological reactions would be of great value in 

designing and operating waste treatment facilities. The large variation 

in organic waste composition, as well as the continued increased diver­

sity of these materials, does not permit such an analysis. The above 

features, together with the significant influence of small quantities of 

some orga.nic materials on waste treatment processes require the develop­

ment of rapid and accurate analytical methods. 

Recent developments in analytical chemistry instrumental methods 

have shown that physical methods are often applicable for "on stream" or 

continuous monitoring and in many cases are able to measure materials 

beyond the sensitivity limit of wet chemistry methods. Instrumental 

analytical methods have demonstrated that often a chemical species or 

material may be determined qualitatively and/or quantitatively by re­

lating the specific energy absorption or emission to the material. This 

relationship suggests a possible basis for determining the nature and 

amount of carbonaceous material in organic waste materials. 

Organic chemistry has esta.blished that carbon is most unique; it is 

capable of reacting with itself and practically all other chemical ele­

ments to form a large variety of compounds. The chemical characteristics 

of carbon compounds are very dissimilia:,.~ and make for a difficult problem 

in analysis. One common feature of p:r.actically all carbon compounds is 

their ability to react with oxygen under proper conditions and produce 

heat. The reacting rate and th.:cesh.old temperature, as well as the amounts 

of heat produced by specific reactions are well established for many pure 
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organic compounds and show considerable va:cie.t:1.on. I:n consideration of 

the proposed analytical technique~ using heat of combustion to indicate 

quantity and nature of the organic material in organic waste samples; 

thermal measuring methods~ techniques~ and apparatus employed in metal­

lurgy, agriculture~ and clay mineralogy were examined and re-viewed. The 

basic thermal measuring method in these disciplines is calorimetry; how~ 

ever, there ha.s been incree.sed :i.nte:cest and de··11elopment work in differ­

ential thermal analysis, DTA. 

The features of DTA analytical method which are desirable for sani­

tary engineering application are: (a) proyides a rapid method for 

measuring the natur·e and quantity of car·bonaceous materials in organi.c 

waste samples, (b) provides a method for measuring thermal energy changes 

in organic waste treatment systems, and (c) suggests a basis for develop­

ment of a semiautomatic analytical system. 

Statement of the Problem 

The purpose of this study was to dete:rnrine the feasibility of using 

differential thermal a11alysis techniques to me,9.sure the degradation of 

organic materials in a laboratory ed.mulated organ:! .. ,~ waste treatme.r;:t 

process. 



CHAPTER II 

SUMMARY OF THE LITERATURE 

The basic concept of differential thermal analysis as well as the 

basic requirements were detailed by Le Chatelier (4) in his early work. 

Differential thermal analysis, DTA, differs from conventional methods of 

thermal analysis in that temperature changes accompanying thermal energy 

reactions are measured rather than changes in dimens:i.on. or mass. 

In general, two types of thermal reactions, exothermic and endo­

thermic, occur during heating of a material. Differential thermal anal­

ysis functions by measuring the differential temperature generated by a 

sample and a standard material exposed to a high temperature 

environment. 

Generally, the standard and the sample are heated at the same rate 

or exposed to the same temperature environment o D11:-r·:l.ng the heating 

process the sample material may u."l.de:rgo a series or sequence of thermal 

reactions such as melting, boiling~ combustion, or isothermal phase 

changes. In each of these reactions~ energy is either absorbed or 

evobred by the sample. The thermal energy change accompanying each re­

action is reflected in the diffe1"entia1 tempe:ratur.e g,anerated by the 

sample and the standard. 

The qifferential temperature plotted against the temperature of the 

standard material con.sti tut.es a thermal energy profiJ..e or thermogram of 

the sample materiaL Excursions OY.' peaks to one side of the base line 

4 
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represent exothermic reactions, whereas similar peaks on the other side 

of the base line represent endothermic reactions. The base line is the 

line of zero differential or some other experimentally established ref­

erence point. The location of peak temperatures are characteristic for 

each material or reaction and some function of the thermal curve (usually 

area) is proportional to the amount of reactant material. Thus, the DTA 

is, in general terms, a thermal spectrometer. 

The three basic or elemental components of the DTA system are a 

controlled heat source, sample holder, and a differential temperature 

measuring device. The type and construction of each of these units and 

the integration of the units is variable. Moreover, the development of 

DTA has often been carried out for specific industrial applications, thus 

making many modifications of the original equipment. A typical basic DTA 

component system is shown in Fig. 1. 

Other investigators have stated the general requirements of the heat 

source and have described this portion of the apparatus as being the most 

important (5). The heating rate available for conventional DTA furnaces 

is limited by the power supply and materials of construction. With rare 

exception, electric resistance heaters are used for heating the furnace. 

The attractive features of electric powered heating systems are their 

ease of control, measurement of input power, low maintenance requirements 

and economy of manufacture. The less attractive features of electrical 

powered furn~ces are their non-linear heating rates and interference 

sometimes produced by the large electrical currents induced on the tem­

perature measuring systems. 

Design of the DTA heat source or furnace is usually determined by 

the application. In the case of ceramic , mineralogical, or metallurgical 
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applications, the furnace is usually designed to have small dimensions, 

low heat loss characteristics, and large power requirements (5). This 

design is based on using a very small sample together with a large rate 

of heating to facilitate measuring small ~nergy changes. Aside from the 

specific application features of the DTA heat source, there is unanimous 

agreement among investigators on the necessity of heating rate control, 

durability, and reproducibility of heating rate (5, 12, 13). The high 

temperature requirements - often as high as 1200°0 - as well as the 

rapid he~ting rate - 5 to 20°C per minute - require high quality specii:ll 

materials. Ceramic materials are often used and are highly recommended 

for the furnace body. High quality platinum, nickel, and nickel­

chromiurn, nichrome, wire are recommended for the electric resistance 

heating elements (5). 

Control of the heating rate of a DTA furnance requires careful con­

sideration of the thermal system and the control mechanism. With respect 

to electrical resistance heaters, simple variable resistance or rheostat 

control has been used. This control is sufficient for vernier or second­

ary control but is insufficient for large electrical current 

requirements. 

The power requirements of electrical heating elements usually demand 

a high amperage,.low voltage power source. A variable voltage transformer 

with adequate current rating can be used to generate a smooth reproduci­

ble heating rate. The high efficiency and predictable characteristics of 

transformer control makes possible linear operation of the furnace by 

means of automatic program control or by fully floating program control 

(5). Regardless of what method is used to control heating rate, the 

heating rate must be reproducible, since the shape of the DTA curve and 
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the peak temperature are affected by the heating rate (11). 

The base line and peak area of the DTA thermogram are influenced by 

the sample holder and block; location and type of temperature measuring 

device; size, geometry, and location of sample; and the thermal charac­

teristics of the sample and standard. The material chosen for the sample 

holder, block, thermocouples, and standard must be inert and stable with 

regard to the sample and reaction products (5). The sample holder, 

block, and standard are generally selected on the basis of their thermal 

properties. 

The ideal geometry for the sample holder and sample is one which 

has a minimum surface area to volume ratio together with minimum dimen­

sions; hence, a small sphere. These geometric characteristics make for 

maximum response per unit of differential temperature. These ideal con­

ditions, though hypothetical with regard to direct application, do sug­

gest a design basis. A right cylinder with a diameter to depth ratio of 

one and with dimensions of less than one centimeter are a close approxi­

mation of the ideal conditions for geometry and size. Most apparatuses 

use sample holders that will contain a 0.2 to 0.5 gram sample (5). 

The temperature measuring and recording device is dependent upon 

the temperature range involved. With low temperaturesj a thermistor may 

be feasible or a mercury thermometer could be usedo A mercury thermome­

ter could not be used efficiently with minute samples because of the 

heat loss that would be involved. A pyrometer could be used but in most 

cases it would not be sensitive enough. Thermocouples connected to a 

galvanometer circuit have been used effectively to measure temperature 

and temperature difference~ The electromotive force, eomofo~ produced 

when two dissimilar metals are heated or cooled is indicative of the 

temperature. 
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Selection of the thermocouple materials is based upon the operating 

temperature range, amplification factor of the recording device, and the 

sample material~ The thermocouples must be capable of producing a meas­

urable e .. rn.f .. for a sma.ll temperature change. Rare-metal thermocouples 

a.re expensive and produce a small e.mofo but they are generally more 

durable than base-metal the:rmocr.mplea.. For maximum sensi ti vi ty, base= 

metal thermocouplesareused. The less attractive features of base-metal 

thermocouples, shorter life and limited temperature range, are offset by 

the more attractive featur·es; easily constructed, inexpensive, and a 

large e$m.f,. is generated. Base=metal thermoct:mples produce a large 

e.m.f .. and in some applications the differential e~m.f. is sufficient 

to drive a sensitive recordero The temperature of the reference mate­

rial and the differential temperature a.re usually measured by placing 

thermocouples in or near the sample and reference materials~ 

Recent literature shows that differential thermal analysis is used 

extensively in ceramics, geology, chemistry, mineralogy, and metallurgy. 

One of the major interests in these fields is measuring small energy 

changes which accompany structural changes. 

Differential thermal analysis has been used to ni fingerprint II pure 

orga.i.'1ics by Morita ai.1.d Rice (7). They showed that the the:rmogram of 

specific organic molecules was unique and could be used to identify the 

organic species~ In another study Rice (8) used DTA to characterize 

starcheso 

The application of DTA to problems in organic waste analysis is not 

revealed in the literature. Probably the closest approach to this appli­

cation was the study and correlation of DTA thermograms together with 

gas-liquid chromotography of copolymers by Bomba.ugh, Cook, and Clampitt 

(1). 



CHAPTE:R III 

METHODS AND MATERIALS 

The development of an analytical method and associated apparatus 

requires evaluation of all contributing factors and rational compromises 

in the design of the apparatus. The central problem in this study was 

development of a functional experimental apparatus compatible with the 

aims and objectives of the study. In order to accomplish this objective, 

the findings of other investigators together with knowledge of the ther­

mal and chemical nature of organ:i,c wasi;;e materials were used to desigri. a 

preliminary experimental study. 

The first phase of the preliminary e~perimental study involved 

selecting materials and components for construction of the apparatus. 

Several furnace designs were considered and an adiabatic type furnace 

using two heaters was constructed. This design used an external cylin­

drical heater as a heat barrier and an internal cylindrical heater for 

the primary heat source. This design, although capable of rapid heating 

and negligible heat loss, presented a complicated heat rate control 

problem and was not compatible with the sample holders developed later 

in the investigation. 

Experience gained in the first furnace design study showed that a 

strict utilitarian design was necessary; hence a simple cylindrical 

furnace geometry was selected with prmrision for easy access to the 

sample holdero The major features of this furnace, which was used with 

10 
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minor modification for the duration of the study, are shown in Fig. 2 

and 3. The electric heating elements used in the furnace were half 

cylinders, six inches in diameter and twelve inches long. Ea.ch half 

cylinder consisted of a coiled length of nichrome wire embedded in a 

three-fourths inch thick ceramic matrix. The body or supporting struc­

ture of the furnace was constructed of utransite. 91 

The experimental furnace was assembled by locating the cylindrical 

heaters in the center of the end blocks, then fastening the compression 

bolts to the end blocks. Following assembly of the heater and end 

blocks, the outer metal shell was positioned about the heater and the 

entire assembly aligned and locked into position. The annular space 

between the heater and outer metal shell was packed with magnesia 

insulation. 

The electric power supply and control for the furnace was con­

structed using a 0-130 volt, 20 amp variable voltage transformer. A 

schematic diagram of the power supply and control circuit are shown in 

Fig. 4. In practice, the furnace power level was established by cal­

culating the voltage and amperage required to produce a desired wattage. 

Preliminary study of the power supply system which included measurement 

of the electrical resistance of the heater at room temperature and ad­

vanced temperatures showed that the calculation method was adequate for 

predicting power levels. An a.c. voltmeter attached to the secondary of 

the variable voltage transformer, monitored the output vol·tage, and a 

second a.c. voltmeter attached to the furnace windings monitored the 

voltage applied to the heaters. 

The relationship between heating rate and power input to the fur­

nace was developed by measuring the temperature produced at various 
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power settings. Replicate determinations were used to establish the 

reproducibility of the system. The heating rates developed for several 

power levels are shown diagramatically in Fig. 5 • . It is interesting to 

note that the temperature increase per unit time is linear over a large 

portion of the curve. In fact, the heat loss, evidenced by a decrease 

in heating rate, is generally not apparent until about 500°c. 

In order to facilitate measurement of the furnace temperature, a 

microammeter iron-constantan thermocouple indicator was constructed. 

This temperature measuring apparatus was calibrated by comparing the 

microammeter deflections with measured temperatures. A schematic dia­

gram of this device is shown in Fig. 6. The response of this device to 

temperature changes permitted use of a linear conversion factor. This 

factor, slope of the calibration curve in Fig. 7, was 56°C per microamp. 

The measurement and recording of differential temperatures between 

standard and sample requires evaluation of; thermal reactions, applica­

ble detectors, resolution, sensitivitY, and stability. There are numer­

ous temperature sensitive detectors which might find application to DTA 

systems; however, thermocouples and thermistors are generally used. The 

popularity of these devices and their increasing use is due to the de­

velopment of high sensitivity, integral amplifier-recorder devices. 

Consideration of construction methods and designs reported by 

others showed that thermocouples are most often used for differential 

thermal measurements (5, 9). The availability and dependability of high 

quality thermocouple material probably accounts in large measure for the 

popularity of these devices. Basically, the thermocouple, junction of 

two dissimilar metals, develops an electrical potential difference which 

is proportional to the temperature. The amount of potential difference, 
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voltage, developed per degree temperature depends on the composition of 

the thermocouple. Noble metal thermocouples, such as platinum-platinum 

rhodium, have very stable characteristics and are reserved for reference. 

In many applications, other materials~ principally alloys, such as iron­

constan.tan, copper-constantan, and chromel-alumel are used. These latter 

materials~ not as reliable or well standardized as platinum~platinum 

rhodium materials~ produce more voltage per degree temperature and are 

less expensive. A list of alloy type thermocouples, together with the 

e.m9f., produced by each thermocouple are presented in Table I. 

The application ofatherrnocouple temperature measurement system 

requires a voltage measurement device. The constant measurement or 

monitoring of temperature is most conveniently handled by combining the 

thermocouple with a self balancing potentiometer or strip chart re­

corder. The range of voltage generated by the thermocouple is small, 

usually in the order of millivolts, and thus requires a very sensitive 

meter for measurement. In many applications, it is necessary to use a 

linear amplifier in conjunction with the thermocouple to discern small 

temperature changes. The sensitivity and resolution limit of the thermo­

couple is dependent on the resolution and sensitivity of the measurement 

meter. 

Recently, there have been developed small resistance thermal ele­

ments, thermistors, which are excellent temperature measuring devices. 

The detection system in these devices consists of a metal or semiconduc­

tor material in which the conductivity or resistance changes in an 

established pattern with temperature. Two groups of thermistors are 

available which have positive temperature coefficients and negative 

temperature coefficientso The positive group increase in resistance 



Temperature Above Cold 
Junction Temperature 

75 = 600°C 

No. Material 

1 Brass 
2 Copper 
3 Stainless Steel 
4 Stainless Steel 

TABLE I 

RELATIONSHIP OF THERMOCOUPLE MATERIAL TO E.M.F. PRODUCED 

Inside 
Diameter 
(inches) 

0.360 
0.375 
0.360 
0.390 

Iron-Constantan 
Millivolts 

4.4 to 33.7 

TABLE II 

SAMPLE HOLDERS 

Wall 
-Thickness Depth 
(inches) (inches) 

Q_,.010 0.604 
0.010 0.604 
0.010 0.604 

Variable 0.604 

Chromel-Alumel 
Millivolts 

3.3 to 25.3 

Bottom 
Thickness 

(inches) 

0-.020 
0.010 
0.010 
0.010 

Platinum 
10% Rhodium 
Millivolts 

0.5 to 5.2 

Thermal Conductivity 
BTU/hr./sq.ft./°F/ft. 

58 
222 

9.4 
9.4 
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with increase in temperature and the negative group decrease in resist­

ance with temperature increase. The nature of the thermistor element, 

which permits temperature measurement by means of resistance, constitutes 

a more sensitive measuring element than the thermocouple; moreover, the 

measurement of resistance can be achieved without high-gain linear 

amplification. These features, sensitivity and direct measurement are 

advantageous in DTA and were considered in the initial conceptual design. 

The only limiting feature of the thermistor is the inherent instability 

of the element above 300°C. 

The differential temperature measuring system which was used 

throughout the study consisted of iron-constantan thermocouples coupled 

to an integral amplifier strip chart recorder. Iron-constantan thermo­

couple material was selected on the basis of its high voltage output per 

degree centigrade (6). In order to maximize response and minimize the 

influence of the measuring system on the measurements, small gage 

thermocouple wire, Band S No. 30, was employed. 

Direct measurement of differential temperature was provided by con­

necting the thermocouples in series opposition, as shown in Fig. 6. 

The recording instrument used in this study was a Brown Electronik 

machine modified to accomodate direct recording of temperature. A scale 

from -l00°C to +100°C was attached to the instrument to facilitate cali­

bration. The sensitivity of this instrument after modification was 

0.059 inches deflection per degree centigrade differential temperature. 

Chart speed of the instrument was regulated to o.66 inches per minute 

which corresponded to a furnace temperature increase (in the linear 

heating rate region) of 11°C per minute. 

Sample holders were positioned in t.he center of the furnace floor 
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in a machined blocko The block used for the major portion of the study 

was machined from mild steel stock to fit the curvature of the furnace 

floor. Preliminary study and experimentation showed that this apparatus 

provided rigid support for the sample holders and afforded ample heat 

transfer areao 

The sample holders, due to small size and close location to thermo­

couples and sample, are capable of influencing the DTA response patterns 

to a high degreeo In order to determine the effect of various materials 

on the DTA response patterns and optimize response three materials, 

brassj copper, and stainless stee~were selected for study as sample 

holder materials. Three Rairs of sample holders, small cylinders, were 

machined from bar stock. The dimensions of the sample holders are 

listed in Table II. In addition to the above sample holders, an addi­

tional "distorted'', variable thickness sidewall stainless steel cylinder 

was also studied. 

Washed and acid leached Ottawa testing sand was selected for the 

standard reference materialo A stock of this material was prepared for 

use by seiving and drying at 103° for 12 hours. During the latter por­

tion of the study, another material, calcined ash, was investigated for 

application as a standard material. The preparation procedure for the 

calcined ash consisted of heating the dairy waste to 700°C, cooling the 

residue and grinding it to a fine powder consistency. 

Following construction of the components and preliminary evaluation 

of the system, a standard furnace operation program was developed. The 

standard program consisted of adjusting the power supply to 55 volts 

until the furnace temperature reached 65°C~ then increasing the voltage 

to 88 volts for the duration of the heating cycle. This program 
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provided a reproducible aYerage heating rate of 11°C per minute. 

Calibration of the experimental apparatus was developed using pure 

organic reference materials. Benzoic acid was selected as the basic 

primary reference material since the: t.hermal properties of this material 

a.re well established. Cali'br·ation of DTA instruments was achieved by 

correlating the DTA response area corresponding to the melting point 

pattern of 'benzoic acido When pure benzoic acid is exposed to an in­

creasing temperature, a series of response patterns are drawn. The 

first segment of the response pattern is a straight line which is fol­

lowed by a sharp angular excursion to the left. This latter excursion 

continues for a short time, then describes a sharp peak and returns to 

the base line. This pattern of response is shown in Figc 8 and is a,. 

differential temperature reflection of the heat of fusion of benzoic 

acid. Additional peaks are produced during the heating cycle which rep­

resent boiling and combustion. The distinctive feature of the heat of 

fusion peak is its iso-thermal nature and conservation of all material 

in the sample holder. 

Realistic organic waste materials a:vailable for study were numerous; 

however, the study of a new analytical method by means of a recently 

constructed instrument requires a supply of consistent. samples. Several 

organic waste sources and samples were considered prior to selection of 

dairy waste. The major feature of this material~ which was the basis 

for selection~ was its mode of productiono The dairy waste was col­

lected from a controlled dairy herd which was fed a. specific diet. 

Preparation of the dairy waste samples was accomplished by laboratory 

scale aeration., Small samples of the aerated sludge were removed from 

the aerater at frequent intervals and reserved for studyo Prior to DTA 
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Change in Temperature 

Fig. 8. Typical Endothermic Reaction Curve 
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thermal study the sludge samples were d:r.ied in 103°C oven. 

Major characteristics of the organic dairy waste material are listed 

in Table III. 

Analysis of DTA Therrrmgrams 

The response of the DTA apparatus was pro,rided by means of the 

strip-chart recorder described abmre. In order to establish a basis of 

reference and comparison for the calibration and experimental study, it 

was necessary to formulate an analysis procedure and method for the DTA 

thermogramso Three methods of area determinations, total area, right 

triangle area, and product area were applied to the thermogram record­

ings. These methods were seleGted to represent two extremes, total pat­

tern area and proportional areas. It was assumed that the total area 

values would be the most distinctive and realistic reflections of the 

sample materials; whereas, the proportional area methods~ approximations, 

might form the basis for rapid routine analysis procedures. Total area 

of the DTA thermograms were determined by plaimetero Triangle area was 

determined in accordance with the procedure described by Dean (2). 

Product area was determined by multiplying the height of the response 

curve times the base. The latter method we.a reserved for application to 

the organic waste thermograms. 

In the experimental study, it was noted that the base line was dis­

placed to the right during the combustion of the organic waste samples. 

This displacement was determined to be t;y-pical of the instrument design 

and nature of the sample. Additional study showed that this displace­

ment did not alter the precision or operational nature of the apparatus. 



TABLE III 

CHARACTERISTJCS ·. OF WASTE MATERIAL 

Sample Strength Volatile Solids Total Solids 
Number mg c:on/ g;.n % % 

1 827 61.4 2.3 

2 874 62.2 3.6 

3 949 70,0 7,5 

4 951 70,0 7,5 

5 1080 65,5 .13,7 

6 1140 74,4 14.1 



27 

The chemical oxygen demand, COD, of the organic waste samples was 

determined in accordance with the procedures listed in Standard Methods 

!£!:·~Examination Slf ~~~Water, 10th edition (14). 



CHAPrER IV 

RESULTS AND CONCLUSIONS 

Results 

The apparatus described in the method and materials section proved 

to be fwictional and durable. Following standardization of the furnace 

design and fabrication, a total of 101 experimental runs, including 60 

calibration experiments and 41 organic waste sample DTA determinations, 

were completed. 

Response of the instrument system in terms of calories per sq~are 

inch showed the influence of sample holder, fabrication precision~ and 

materials. It is interesting to note that each sample holder material 

produced a characteristiq response pattern and that stainless steel 

favored the largest response followed by brass and copper. The order 

of increased response was in in-c.rerse order of the thermal conductivity 

of the sample holders. In addition~ the distorte~ stainless steel sample 

holder (ncn-uniform side ws.11 thickness) produced highly variable re­

sponses. These studies showed that reliable reproducible response is a 

function of the sample holder material and fabrication precision. The 

sample size~ mass and preparation also influenced the response pattern 

and precision. 

Early in the investigation~ it was n.oted that small samples of 

benzoic acid, less than 250 mg, produced atypical response pattern. 

28 
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with high variability. A sample of the response values produced by the 

small samples are listed in Table IV. 

The influence on the response patterns of the DTA standard refer­

ence materials, sand and calcined waste, showed small differences. 

Calcined ash assisted Jn producing slightly larger response, and per­

mitted recovery of the instrument to the initial base line. 

Sample preparation studies showed that a consistent preparation 

procedure is required. The bulk density of the sample influenced the 

response to a high degree. Sample packing by means described in the 

methods and materials section made consistent; response and aided 

sensitivityo Preliminary study and experimentation indicated that sam­

ple stratification, non-uniform settlement of sample, during the heating 

cycle produced extreme variation and random response of the instrument. 

In addition to the operation and design factors incorporated in the 

apparatus, a method was developed for evaluating the system for spurious 

deflections or noise. This evaluation procedure consisted of recording 

the response of the instrument when both sample and standard were loaded 

with sand during a heating cycleo This procedure permitted separate 

evaluation of instrument noise, electrical line supply noise, and er1"atic 

behavior of the strip chart recordero This method proved very valuable 

in locating small difficulties and improper al:ignment of the apparatus. 

Analysis of the benzoic acid response curves by three methods 9 

total area, right triangle area, and product area showed that the right 

triangle and product area methods are both sufficient for rapid determi­

nation of vesponse area. In addition, both the right triangle and 

product area values provide a more consistent evaluation of the response 

area. The right triangle and product area methods were also used to 



TABLE IV 

COMPARISON OF RESPONSES USING'BENZOIC ACID, BRASS 
. SAMPLE. HOLDERS, AND ASH . CONTROL 

·Sa.niple Heat ef 
Weight Fusion 

Total Area 

mg) -(cal) 
, 197 
197 6.-6.8 
236 ,8,00 

·254 
·_ .. 258 

2'58 
26.8 

$.61 
8,75 
8,75 
9,09 

in.2 
-o:TS3 
0.210 
0,455 

0.410 
0.400 
0.411 
0.-350 

Average·based on·~ll samples 
over·250 mg·standard Oeviation 

Response 
-callin_. 2 

36.5 
31.8 
17,,6 

21.0 
21.9 
21.3 
26.0 

22,,6 
5,3 

:ij.ight Triangle 
Response 

in.2 ___ (cal/.in.2 
. 0.125 - -53;4 
.0.180 37,1 
0.359 :22,3 

0.320 26 .. 9 
-0.290 J0.2 
0.318 27,5 
0.292 31.1 

· 28 .• 9 
. 2.0 

:Product Area 
Respoi::i.se 

. in.2 (cal..Lln.2. 

0.95 9.1 
0.81 10.8 
0,73 ,12.0 

.63 , 14.3 

-11.6 
2.2 

~ 
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analyze the organic waste material responses. Inspection of the values 

in Tables IV, V, and VI shows that there is only sli~ht differences in 

the right triangle and product area values, whereas, the total area 

values show larger deviations. It is also interesting to note that the 

variation between standard runs decreased as experience in operation 

increased. 

The response pattern produced by benzoic acid was similar for all 

DTA determinations. The changes in amptitude reflect changes in sample 

size, sample preparation or sample holder l;Uld are described in the 

previous section. 

The instrument response pattern provided by digested and undigested 

samples of dairy waste was very similar. Typical DTA response patterns 

for the digested sludge and undigested sludge are shown in Fig. 9 and 

10. Inspection of the DTA thermograms in Fig. 9 and 10 shows that the 

response pattern for both samples follow the same general e:hape. The 

raw dairy waste samples produced excursion to the right and a broad 

crested peak pattern. Dige$ted sample materials prqduced a deviation 

from the base line at a higher temperature and a smaller differential 

temperature per unit mass of sample material. 

An additional feature of these thermograms was noted. Samples of 

undigested and digested waste material selected on the basis of detention 

time to insure that the same material was sampled provided more consist­

ent response patterns. These samples are listed in Table VI. 

Using the right triangle area method and the average value from 

organic waste material number one (Table I and IIl) 5 a relationship of 

COD to calories was found to be 0.34 mg COD per ,calorie~ This :result 

compares to a value for activated sludge ,stated by Goldstein and Lokatz 
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TABLE v 

INSTRUMENT RESPONSE USING BENZOIC ACID, COPPER SAMPLE: HOLDERS, 
STAINLESS STEEL SAMPLE HOLDERS, .ASH CONTROL, AND SAND CONTROL 

Sample Heat of Right Triangle 
Condition Weight Fusion ·Response 

(mg) ( ca.J , ) (in.2) (cal/in. 2) 

Copper Holder 
Ash 257 8.71 0.230 37.9 
Ash 319 10.8 0.287 37.7 

Sand 294 9,97 0.260 38.3 
Sand 295 10.0 0.250 40.0 

Steel Holder 
Ash 231 7 .83 0.440 17.8 
Ash 233 7,90 0.360 21.9 
Ash 227 7.70 o. 530 14,5 
Ash 243 8.24 0,430 19.2 

Sand 240 8.14 0.340 23. 9 
. Sand 274 9,28 0,430 21.6 
Sand 262 8.87 0.370 24.0 
Sand 258 8,57 . 0.300 29.2 
Sand 285 9,65 0.390 24.7 

. Sand 262 8,90 0.360 24,7 

Steel Holder 
Variable Wall 
Thickness 

Ash 293 9,93 0.180 55,2 
Ash 322 ·10.9 0.220 49,6 
Ash 282 9,56 0.690 13,9 
Ash 246 8,34 0.200 41.7 

Sand 293 9,93 0,540 18.4 
Sand 274 9.29 0.120 77.4 
Sand 276 9,36 0.100 93,6 
Sand 315 10.7 . 0.325 32.9 

. Sand 256 8.68 0.130 66.8 
Sand 262 8.88 0.060 148.0 
Sand 255 8.64 0.204 42.4 
Sand 269 9.12 0.450 20.3 



TABLE· VI 

·RESPONSE USING.ORGANIC WASTE MATERIAL, BRASS SAMPLE HOLDERS, 
AND ASH CONTROL 

Sample Right Triangle Product.Area 
, Stre~Jth Weight . COD . Restonse Resfonse 
(mg COD gm) . . .· (mg) : (mg) (in.?) · .. ·. mg· COD/in.2) (in.2) . mg COD/il!_.2) 

874 417 J64 26.0 14~0 4'j_. 2 .7;/40 
_874 430 376 27.6 13.6 46.9 8.02 
874 410 358 28.1 12.7 51.0 7.02 

··1680 362 391 32.1 12.2 56.8 6.88 
1080 36.5 39-4 23.6 16.7 42.9 9 .• 19 
1()80 329 355 30.9 ,11.5 55.2 6.44 

949 362 344 23.2 14.8 42,.5 8.08 
949 381 ·362 22.8 ·15.9 40.9 8.84 
949 412 391 23.7 . 16. 5 45,4 8.61 

827 396 327 J4.2 9, 56 56~0 5.85 
-827 .. ··429 355 36.2 9.80 63,9 . 5,55 
.827 433 358 35,2 ·10.2 60.9 5,88 

951 424 402 25.7. ,'15,7 47.6 8.47 
951 405 385 27 •. 2 ·14.2 29.9 7,72 
951 323 307 28.7 ·10.7 . 52.9 5.81 

_1140 352 .401 33.1 .li.-1 65.9 6.09 

Average ·.·13.1 7.24 
Star:idard I)eviation 2.48 .1.37 vi 

vi 
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Figo 10. Typical Undigested Material Response 



TABLE. VII 

RESPONSE USING ORGANIC WASTE MATERIAL, COPPER SAMPLE HOLDERS, 
STAINLESS STEEL SAMPLE HOLDERS, AND SAND CONTROL 

Sample Right Triangle Product Area 
Strength Weight COD . . . , .. Response . . . . . Response 

(mg CODJgm) · (mg) (mg) (in. 2) (mg COD/in. 2) ( in. 2) (mg COD/in~ 2) 
Copper 

827 457 378 37.2 .10.2 62.6 6.04 
827 440 364 36,5 9.97 62.7 5.81 
827 388 321 33.7 9,52 52.6 7.38 

1140 387 441 35,3 12.5 63.2 6.98 
11,40 314 358 29.2 12.3 48.7 . 7 .35 

Stainless Steel 
827 362 300 25.1 11.9 38.2 7.84 
827 416 345 27,4 12.6 43.0 8.00 
827 372 308 27.8 11.1 42.2 7.28 

~ 
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(3) of 500 BTU per gallon for every 10 grams per liter of COD, which 

reduces to 0.30 mg COD per calorie. 

A definite relation between COD an~ area is shown in Fig. 11. A 

linear relationship between area and COD does exist ~d shows the re­

lation between extent of degradation and instrument response. 

Conclusions 

The purpose of this study, to determine if differential thermal 

analysis techniques could be used to measure the degradation of organiq 

materials in a laboratory simulated organic waste treatment process, was 

realized. 

The method of DTA thermogram analysis that proved to be the best is 

the right triangle method, but the product area method is adequate for a 

quick method of analysis. 

Equally reproducible results can be obtained by using brass, copper, 

or stainless steel sample holders that have uniform dimensions but the 

short life of the brass and copper holders makes the stainless steel 

holders more desirable. The sand and ash control standards gave about 

equal results .. 

The findings of this study show that a relationship between the 

extent of degradation and response of the apparatus does exist; there­

fore, differential thermal analysis techniques can be used to measure 

the degradation of a..'l organj,c waste material and indicates that this 

method can be applied to waste treatment plant operation as a supplement 

to the thermogravimetric and COD tests methods presently employed in 

waste treatment analysis. 
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