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ABSTRACT

Initial values of wind, temperature, pressure, and moisture are
objectively determined for use in a boundary layer forecast model. The
ohiestive analvais is accomplisﬁed by using Sasaki's (1969) numerical
variational method. This technique incorporates the governing thermo~
hydrodynamical equations, as vell as observations, into the initializa-
tion process. The solution to four coupled elliptic differential equa-
tions with associated boundary conditions completely determines the ini-
tial map. Richardson's relaxation method is used to solve the elliptic
- system,

The analysis and prediction is apﬁiied to severe weather occur-
ance in the Midwest on Jume 10, 1968. A 2 km thick layer bounded by the
earth's surface and encompassing a horizontal area of approximately 2000x
2000 km? is used. The horizontal grid spacing is 190 km and the vertical
interval is 200 m. Data from the radiosonde network and the NMC analysis
are used in conjunction with the governing equations to generate the ini-
tial fields. " The 3 and 6 hr forecasts of a severe storm index, wa, are
discusged. The areal distribution of this index, the product of vertical
velocity and specific humidity, is compared with the surface observation

of severe weather.
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NUMERICAL VARIATIONAL OBJECTIVE ANALYSIS
OF THE

PLANETARY BOUNDARY LAYER
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INTRODUCTION

In order to integrate the governing equations for atmospheric flow,
initial (t =0) conditions for all meteorological variables in the model
must be specified. Observations are the obvious source of information for

these initial fields. The observations, however, contain information re-

‘lated to all possible scales of atmospheric motion detectable by the instru-

mentation. Since the atmospheric model is designed for a particular space

and time scale, use of unmodified observations generally admits "noise"

into the meteorological fields. That is, scales of motion appearing in the

observations but unaccountable in the model contribute to the initial map.

This contribution is termed noise and can eventually lead to forecast errors.
Hinkelmann (1951) investigated theoretically the problem of initiali-

zation wnen forecasting with the "primitive equations" (the Eulerian hydro-

dynamical equations modified by the assumption of hydrostatic balance).

He showed that the amplitude of the high frequency gravity-inertia waves

can be made smaller (by a factor of 10 in his model) than that of the desired
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low frequency motion by using geostrophic values for the initial wind field.

The Joint Numerical Prediction Unit (JNWP; the forerunner of NMC),
however, experienced difficulty with both the barotropic and baroclinic
forecast models when the geostrophic approximation was used to calculate
initial wind (Cressman and Hubert, 1957). Although these models are based
on quasi-geosivophic and thermal wind asssumptions, thig initial wind field
contains information which is inconsistent with the governing equations, ie.,
the field contains noise. This was first pointed out by Shuman (1957).
The importance of consistency between the initial map and the equations
was further emphasized by Sasaki (1958). Especially significant in the
latter investigation was the simultaneous calculation of wind, geopotential,
and temperature fields satisfying geostrophic and thermal wind conditions.

Improvement in JNWP forecasts resulted when initial winds were ob-
tained from the "balance equation." Since this equation is a generaliza-
tion of the geostrophic relation, knowledge of the geopotential field is
sufficient to determine the wind. Charney (1955) derived tﬁis equation
by taking the divergence of the horizontal equation of motion in the primi-
tive set. The development assumes that the horizontal divergence and its
tendency vanish. The unwanted high frequency gravity-inertia waves are
characterized by relatively large divergence. Consequently, it is_con-
ceivable that the initial field determined from the balance equation
eliminates the noise and passes the meteorologicali§véignificaht infor-
mation,

However, both Sasaki (1958) and Phillips (1960) showed that the

balance condition can admit unwanted noise and filter important low fre-
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quency information. When the balance equation is solved by using either a
subjectively analyzed geopotential or a geopotential field obtained by a
geosﬁrophic analysis, the balanced wind is not noise-free. Sasaki's
(1958) variational objective analysis modifies both the wind and geo-

potential in such a way that the balance condition is satisfied.
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to suppress the gravity-inertia waves when forecasting with the primitive
equations., The amount of divergence is that implied by the quasi-geo-
strophic system of forecasting. In principle, the balance condition sup-
presses some necessary low frequency information along with the unwanted
high frequency noise. Accordingly, a plan is underway at NMC to incor-
porate divergence into the initial wind map (Stackpole, 1968). This is
accomplished by using the 12 hr forecast from previous initial conditioms.
The divergent p#rt of this forecasted wind field is extracted and added
to the non~divergent wind obtained from the balance equation.

Until recently, objective analysis of initial fields has been
based on diagnostic relations such as the geostrophic relation and
balance equation. Within the past year, two investigations (Miyakoda
and Moyer, 1968; Sasaki, 1969) have directly incorporated the governing
prognostic equations into the initialization process. Thus, consistency
between the initial map and the time dependent governing equations is
accomplished,

Miyakoda and Moyer (1968) have essentially developed a new tech-
nique to solve the balance equation. With their method, the physical

processes of friction or heating can be handled whereas this is impossible
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with the conventional solution to the balance equation.

Sasaki's (1969) approach is an extension of his previous study
(1958) based upon the variational principle. Whereas the earlier develop-
ment was limited to diagnostic constraints such as hydrostatic and geostro-
phic balance, the present method includes the effects of time varietions
appearing in the prognostic equations, A primary advantage cof this tech-
nique ig ite ahility to produce dynamically consistent initial fields for
all the variables in the atmospheric model, not just wind. Additionally,
there is the capability of producing dynamically sound initial values
in the areas or layers of lacking observation.

Sasaki's method is capable of handling the small space and time
scales required in the planetary boundary layer model. This model is
designed to account forvthe physical processes within the lowest several
kilometers of so-called local weather systems which are characterized by
horizontal dimensions of 102 - 103 km and a life span the order of 10 hr.
Since the time scale associated with these events is relatively short
compared to the quasi-geostrophic motions, the initial fields play an in-
creasingly important role in the prediction process. Also, the initial
distribution of moisture, temperature, and pressure must be given the same
degree of attention that the wind field has previously received.

In view of these facts, the method of Sasaki is used for this
investigation. A set of analysis equations is derived which incorporates
observations, governing thermo-hydrodynamic equations, and diagnostic
dynamical constraints. To demonstrate the technique of initialization,

a case study characterizing severe weather development is undertaken.



CHAPTER II

METHOD OF OBJECTIVE ANALYSIS
The method of the dynamical objective analysis described in this
chapter is based on Sasaki's recent unpublished note* on the objective
analysis of the planetary boundary layer. The variational form is given

as the following:
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where § represents the variational operator. The indices i, j, and k are
integers assigned to each grid point of the three dimensfonal lattice used,
and £ represents the total sum of the quantities over the entire set of
1atti§e points. The meteorological variables are symbolized according to

the convention adopted in Appendix A. Each variable represents a non=-

dimensional perturbation upon the basic state as explained in this same

Appendix.

*Personal communiceation
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Expression (1) cont#ins information on each meteorological vari-
able at two time levels, initial and forecast. Observations of the vari-
ables at initial time are designated by ?f , Wwhere § represents an arbi-
trary variable which is a function of i, j, and k. The forecasted values
are denoted by §1, and the "true" value at analysis time by QO' Weights
dl,'az etc., (>0), again functions of i, j, and k, are arvitrarily chosen
under the condition that &~ =0 at a particular grid point if 8; and/or 8,
are missing at this point. Simila-:ly,':-o if”e" and/or eo are missing.
The above argument holds for the remaining weights.

The time increment between the forecast and initial time is
inherently related to the time scale incorporated into the governing dyna-
mical equations, (A - 48) through (A - 55). The governing set of equations
is designed to describe the propagation of low frequency internal waves
whose scale is the order of 10 hours. The time increment should also be
consistent with the difference scheme used to make an extended forecast.
That is, the time step is limited by computational stability and truncation
error requirements contained in the finite difference analog used to fore-
cast. In view of the above considerations, the forecasted time level
depicted in (1) is 15 minutes after initial time.

The last two terms in (1) are called diagnostic dynamical con-
straints. For this investigation, the constraints used are horizontal
non-divergence and hydrostatic balance. The use of the word constraint
does not imply that the initial fields are to be in hydrostatic balance

and non-divergent. Instead, the adjusted fields satisfy these constraints




in accord with the relative weight on the multipliers ¢ and 7.

A myriad collection of possible initial fields can be obtained by
varying the relative magnitudes of the set of multipliers. However, fac-
tors such as reliability of observations and density of observations gen-
erally control the choices. For example, in data sparse regions, weighting
muet favor the governing dynamic equations. Consequently, the ratios a,/&i
yllﬁf etc., should be large for regions where observations are suspect or
infinite in regions of no data. Similarly, if pressure observations are
"better" than wind observations, the ratio V/4y should be greater than 1.

A necessary condition for obtaining a stationary value for a func-
tional is the vanishing of its first variation. This is precisely the
condition expressed by (l). To find an extremum generally requires fur-
ther conditions on the second variation. WNevertheless, investigation of
the second variation for this problem is superfluous. That is, the functional
to be minimized is composed of purely positive terms; consequently, the solu-
tion obtained by the requirement of stationarity automatically yields a solu-
tion which minimizes the integral (see Lanczos, 1966).

Before performing the manipulations associated with variational
calculus, several rules are reviewed:

i. Variation and differentiation are permutable processes,
thus -
avxcp = Vxétp
ii. Variation and integration are permutable processes, thus

8 T (H)=1% 8 ()
ijk ijk



Another property that results from the special choice of spatial difference
r

scheme is
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where the coperators Vy and VU could also be used.

where

Operating on (1) with the use of the foregoing properties, we get
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Q = (6)
+x1Athu0(q1 = qo) +X1Atvyvo (ql - qo)

It is necessary to use the governing thermo-hydrodynamic equations, (A - 62)

through (A - 67), to obtain the form shown. Also, the eddy coefficients of

fL

heat and momentum have been assumed constant and equal to their scale values,

*

The variations of P and w, do not appear in (2) because they are not

o

independent of uys Vo 90, and 9p- These latter four variables form the
basis of the function space. The variation of each member of the basic set

is arbitrary at each grid point and consequently,

U(uo, Vor eee ?ﬁ ?z ceed Qs Yy eve) =0 7)
V(uo, Vgs e tﬂ Qf, seed Qs Yoo eee) =0 (8)
@(uo, Vo ...;TY ?ﬂ ceed @y Ypo eve) =0 (9
Q(uo, Vs o3 s ARC S ¥ys ¥y vea) =0 (10)

The relations (7) - (10) hold at each mesh point interior to the bounding
region., The equation set (7) - (10) is referred to classically as the
Euler-Lagrange equations. However, these equations will be called the

analysis equations in accord with the nomenclature of Sasaki (1968b).

Boundary Conditions

There is more than one set of boundary conditions which will satisfy

(1). A full scale study of the so-called natural boundary conditions con-
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sistent with (1) should be undertaken (see Lanzcos, 1966). However to obtain
some immediate practical results, the detailed investigation: is omitted. The
simplest type boundary conditions are formulated at the lateral boundaries and
the top, viz., Dirichlet conditions. These conditions allow no variation in
the dependent variables, i.e., a fixed condition. At the top of the planetary
boundary layer, the wind, moisture, and temperature fields are given by the
large scale flow features as obtained from the NMC objective analysis (Cress-
man, 1959)., In a similar fashion, the fields on the lateral boundaries are
fixed by taking information from the nearest radiosonde station.

Boundary conditions at the lower boundary are formulated to account
for heat and momentum transfer. The development follows Kasahara and Washing-

ton (1967), i.e.,

gt = A Cp ‘VH uy (11)
cho = A CD |VH vy (12)
V.80 = B Cp IVH 8 (13)
where
Yo%o 4

=
]
]

—

o
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T : surface stress

= -1y | -2
¢y T Pg |VHl (drag coefficient)

The drag coefficients calculated at NMC (Cressman, 1960) are used for this

investigation. The numerical values of the coefficients essentially discri-

Qe

minate between the drag over fiat land or over ccean and the form drag of the

large scale relief of the earth's surface. Contours of C, are shown in Fig. 2.
v

Numerical Method of Solution

The solution of the system of analysis equations (7) - (10) with the
accompanying boundary conditions is obtained through use of the Richardson
method (Richardson, 1911). This relaxation method is designed for applica-
tion to the difference form of elliptic partial differential equations and
the associated boundary conditions, The analysis equations are fourth order,
and formal proof of their elliptic nature is a formidable problem, Sasaki
(1969) has demonstrated the applicability of relaxation methods to analysis
equations consisting of advection and diffusion constraints.

The Richardson n:thod is iterative and involves successively applied
(1) (1)

0 > vo 2

be a first (guessed) approximation to the initiczl fields at

local corrections to improve an approximate solution. Let u

(1) (1)
o

a particular grid point interior to the specified domain. Now each of the

(2 (2) (2) (2)

succeeding approximations, Uy s Vg s 8 s Gy s etc., is calculated on

, and 9

the basis of its immediate predecessor. In order to develop the iteration
procedure, the analysis equations are written in terms of the approximatc

solution at the pth stage:
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U(uo(p), vo(p), WY s vy oee) = Ru(p) (16)
V(uO(P), VO(P), . ,Tﬁ ?a PRHE PR ced) = Rv(p) (15)
@(UO(P), VO(P), ’ ?1/’ ';7’, ceey al, Yl’ _'.) = Re(P) (16)

Q(uO‘P’, Vo s o3 W Ve ags vy ee) =R (17)

(») R ®) R ®) and R ()

where Ru s R0, represent the residueg at the pth itera-

tion. The corrections at the (p+ l)st stage are calculated so as to minimize

g ® g ® g ® ,qr ®

s ’ . Reduction of the residue 18 achieved by the
u v -}

following iteration formulas:

LPHD @

0 = uo +au(P) RU(P) (18)
V0(p+ 1 "o<p)+°'v(p) RV(p) 19)
e+1) _ () ® , @
99 =8  “tag Re (20)
e+1) _ () ) , ® (21)
qO qO +Q’q Rq
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T+ —2 4 2y ( ZAts 2 o(p)]2+[§?0(")]2)
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and As, Ao, and At are the horizontal space, vertical space, and time incre-

0(p) and VO(p)

and ;6(9). The fields of ¢, and w, are determined at each stage

ments, respectively. The local average values of u

(r)

are denoted
by u
through the gas law and mass conservation, respectively. Examination of the

convergence of the iterative scheme is discussed in Appendix B.



CHAPTER III

APPLICATION TO A CASE OF SQUALL LINE FORMATION

The method of analysis is applied to severe weather occurrences in

w

the Midwest during the time period 00 GMT June 10, 1968, to 06 GMT June 10,
1968. A horizontal mesh size of 190 km and a vertical grid length of 200 m
are used. The horizontal grid length is chosen exactly half the NMC grid
length and the lattice of points overlaps the operational NMC grid. The ver-
tical spacing is displayed in Fig. 3. The three-dimensional lattice covers
an area whose dimensions are approximately 2000 km x 2000 km x 2 km.

Two essentially different sources of meteorological data are used
for the analysis., First, wind and moisture information are collected from
the radiosonde stations located within the network (see Fig. 4). Pressure
and temperature information are obtained from the NMC objective analysis.

! The pressure and temperature data could be extracted from the radiosonde
records for a somewhat more consistent set of data. However, the hybrid
collection of information helps to reveal the versatility of the variational
method. The degree of confidence in each data set is controlled by appro-
priate choice of magnitudes of the weights,

The boundary conditions discussed in Chapter II require the
specification of the meteorological fields on the bounding surfaces., At

all boundaries, the pressure and temperature fields are found by inter-

polation from the NMC objective analysis, Since this analysis is

15
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only available at the standard levels (1000 mb, 850 mb, 700 mb were used in
this study) and at the NMC grid points, both vertical and horizontal
interpolations are necessary.

First, the hydrostatic assumption is used to obtain pressure and
temperature on the bounding g-surfaces. The perturbation fields rre then
extracted according to the formulas in Appendix A. Perturbations of temper-
ature and pressure at tne grid points intermediate to the NMC points are
then found by simple averaging.

Wind and moisture fields aﬁ the lower and lateral boundaries are
determined from the radiosonde observations. The wind and specific humidity
profiles at the nearest radiosonde site are assumed valid at the particular
boundary point. Since there are only 35 sites within the model network, there
is certainly error in this specification. Ideally, information from the
dense network of stations reporting meteorological variables at the surface
(WBAN reports) should be used to formulate the lower boundary condition.
However, in an effort to immediately demonstrate the feasibility of this
variational technique, the lower boundary condition was formulated iﬁ terms
of the processed data from the radiosonde network.

The wind fieid at the upper boundary is designed to reflect the large-
scale flow features in the free atmosphere. Consequently, the wind field
at this level was derived from the 850 mb and 700 mb objective wind analyses
produced by. NMC.

Points interior to the bounding planes are classified into two cate-
gories: (1) points which possess wind and moisture observations, (2) points

which do not possess wind and moisture observations. OJbservations of wind
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and specific humidity at a given radiosonde station are assumed valid at the
nearest interior grid point. Consequently, approximately 20% of the i;terior
grid points have wind and specific humidity observations. All points have
temperature and pressure information. These data come from the NMC analysis.
Although this does not constitute a source of raw data, a certain weight can
be attached to this information source through appropriate specification of

the weights.

Weights

A decision must now be made to determine the relative weights of the
Lagrange multipliers. From the discussion in the previous section, there
should be two distinct sets of multipliers, i.e., one for each category
of interior points. The two sets of multipliers are designated as follows:
(1) set A, interior points with wind and moisture observations, (2) set B,

interior points with no wind and moisture observations,

e = 1.0 x 10°

~ : -l a1
X =5.0x 10 Xy = 5.0x 10
~ -1 _ -1
y=5.0x10 Y, = 5.0 x 10

set A:

& =1.0x 10"t @, = 1.0 10°
YV-1.0x10" v, = 1.0x 10°
q=1.0x 10>
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¢ = 1.0 x 10°
~s -1
% =0 X, = 5.0 x 10
V=0 Y. = 5.0 x 10"}
set B: -~ 1 1 0
¥ =1.0x 10 a; = 1.0 x 10
~ 1 0
v=10x10 vl = 1.0 x 10
M=1.0x 10

The only difference between the two sets is the weight on?(' and";‘, the multi-
pliers related to observed specific humidity and wind, respectively.

To a certain extent, these multipliers are chosen in a purely arbitrary
manner. However, some consideration is given to the mathematical restrictions
inherent in the iterative method of solution. The formal treatment of this
aspect of the problem is discussed in Appendix B. As suggested in that Appen-
dix, the myriad possibilities for sets of multipliers requires an exhaustive
study. The present investigation only attempts to find a satisfactory set
which produces initial fields suitable for dynamic forecasting in the boundary
layer.*

A brief outline of the method used for determining set A will be given.
Assuming all multipliers zero except s vl, Yy the eigenvalues of the ampli-

fication matrix are computed. The QR-method of Francis (196la; 1961b) is used

*Sasaki's objective analysis method used in this study is sensitive to
the convergence of iterative solution. After the first method, Sasaki developed
a second method which is not sensitive to the convergence and has used it in
mesometeorcological analyses. (Personal communication)
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to find the eigenvalues of this matrix. The results indicated that the itera-
tive scheme is convergent when the ratios Yl/a1 and Yl/v1 are less than 1. At
this point, the weights on1¥ and'c'are chosen arbitrarily as 1/10 and, in con-
formity with the above results, Ylhxl and 'Yl/v1 are chosen to be 5/10. The
multipliers on the diagnostic dynamical constraints, ¢ and T, are then exa-
mined. A ratio of ¢/1 the order of 103 gave the smallest spectral radius when
used in conjunction with the other fixed multiplisrs. A range of poseible'zl
values is then examined and a plot of the spectral radius as a function ofﬂr
is shown in Fig. 5. Based on this graph, the weight onqv is chosen as 5/10
implying equal weight on observation and forecast, 1.e.,‘?l= Y, = 5/10.
Weighting for the specific humidity is chosen in conformity with the weighting

for the winds.

The Initial Fields

The iterative solution for initial fields of u, v, w*, ¢, q, and g are
found by use of Richardson's method. The rate of convergence is measured by a
cumulative residual over the interior points. Standard deviations for the four

basic fields are defined as follows:

D -

“ (22)
b, = (23)
D= |5 rZ

e ijk ® (24)




(25)

where N is the number of interior points and the summation is taken over the
interior points. Graphs of the convergence rates are displayed in Fig. 6.

The fields show a rapid rate of convergence between 1 and 5 iterations.
However, there is an obvious increase in the standard deviation which appears
first in the g-field at the 6th iteration. No reference to this type of insta-
bility has been found in applied mathematical or physical science literature.
This instability may have stemmed from the linear development of the iteration
formulae., That is, the iteration schemes (18) ~ (21) were derived by lineari-
zing the analysis equations. These same iteration schemes were then applied
to the non-linear form of analysis equatioms.

The adjustment of the meteorological fields after eight iterations is
used to represent the initial state. The standard deviations for the wind com-
ponents were reduced from an initial value of ].0"2 to 1.1 x 10-3 within eight

4 to 1074, Although the g-field

iterations. The q-field fell from 8 x 10~
showed only a slight reduction, the initial adjustment was strong as evidenced
by the peak at the second iteration. At this stage of the iterative process
the u, v, and q-fields have just started to diverge and the g-field is yet
unaffected. Until the nature of this iterative instability is clarified, a
subjective decision is necessary to choose the iterative stage that best repre-
sents the adjusted meteorological fields.

In addition to providing the necessary information for integrating the

governing thermo-hydrodynamical equations, the initial fields have value as a
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diagnostic tool. This is demonstrated by calculating wq, the product of the
vertical velocity (not w*) and the specific humidity, at t = 0, Sasaki et al.
(1967) introduced this objective severe storm index and illustrated its useful-
ness for delineating areas of severe weather occurrence. The distribution of
this parameter at level 5 and at 00 GMT June 10, 1968, is displayed in Fig. 7a.
The surface observations of meteorological activity at this time are shown
beside the distribution of wq. This index is designed to depict areas where
there is a large vertical flux of moisture out of the boundary layer. Also,
since q > 0, upward and downward transport of moisture is immediately evident
from the sign of the index. The thunderstorm activity and convective motion
essentially occur in the region of positive wq at 00 GMT June 10. It must be
mentioned that verification in Nebraska, northern Iowa, and southern Wisconsin,
was not possible because of inaccessible teletype reports. This unrepresented

area, however, accounts for less than 107 of the grid considered.

Short Range Forecast

Using 00 GMT June 10, 1968, as the initial (t = 0) iime, a 6 hr fore-
cast is made using the model described in Appendix A. The initial fields are
derived by the techniques developed in the previous section. In order to
extend the forecast, coupling with a mid-tropospheric model would be necessary.
The interaction between the planetary boundary layer and the free atmosphere
could tken be handled through the upper level bohndary condition. The present
investigation, however, assumes that the fields are fixed at this tap level

for the duration of the forecast.
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Equations (A - 62) through (A - 67) are used for the first four time
steps with At = 7.5 min. Following this initial integration, a centered time
step is used with At = 15 min. This latter time step is chosen in accord with
the von Neumann condition for computational stability (Richtmyer, 1963). The
boundary conditions are consistent with those used for initialization as dis-
cussed in Chapter I1.

Attention is centered on the forecast of objective indices for pre-
dicting severe storm occurrences. There are many empirical rules and indices
that have been used operationally (see Miller, 1967). Notable success has
been achieved by Reap and Alaka (1969). They have introduced an index which
incorporates the vertical profiles of equivalent potential temperature and net
6 hr vertical displacements of parcels. The index wq, mentioned earlier, is
especially easy to calculate from the output of the boundary layer mcdel. Con-
sequently, this index is used to demonstrate the forecasting capabilities of
the model. In addition, an examination of the humidity field and its associ-
ated gradient is made.

ESSA-5 satellite photos depicting the meteorological conditions in the
Midwest on June 9 and June 10 are shown in Fig. 13 and Fig. 14, respectively.
The time of each photograph is late afternoon on each of the two days.
Although the photos cannot be used to verify the initialization and forecast,
some general large scale flow featufes in the free atmosphere along with
imbedded mesoscale activity are evident.

The initial and forecast fields of wq and q, at the mid-level of the

medel, are contoured in Figs. 7 - 12. The intensification of the index is
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evident over the 6 hr forecast period. Especially satisfying is th
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Q

of the maximum on the 6 hr forecast in relation to the severe weather obser-
vations from the surface recording stations. The spread of thunderstorm

activity toward the southeast between t = 3 hr and t = 6 hr is also indicated

by the wq distributions. The moisture forecast indicates an increase in the

specific humidity gradient along the so-called dry front which is oriented
from southwest to. northeast and extends from eastern New Mexico into Nebraska.
The forecast of this gradient appears to be related to the observed severe
weather, However, the areal resolution of wq is noticeably better. Reap and
Alaka (1969) found a similar relation between the 1000 mb dew point gradient
and their index which incorporated vertical velocity and equivalent potential

temperature.



CHAPTER IV

CONCLUSIONS AND REMARKS

The method of dynamic objective analysis using the variational prin-
éiple is applied to atmospheric systems of horizontal space sgcale 10 - 10
km and time scale the order of 10 hr. This technique incorporates the govern-
ing thermo-hydrodynamical equations, as well as the observations, into the
initialization process. Incorporation of the governing equations does not
imply a marching process in time; instead, an iterative process is developed
which is centered around t = 0, initial time. The analysis equations used in
the iterative process are a system of elliptic difference equations which
are solved using the Richardson relaxation method.

Dynamically sound initial values can be obtained in areas or layers
where observations are missing. This is accomplished by permitting the
governing dynamics to generate the initial values. The relative weight on
dynamics and observations is controlled through the specification of the
Lagrange multipliers. These multipliers are arbitrarily chosen within the
framework of the analytic theory. However, the numerical method of solution
does impose some constraints on the relative magnitudes of the multipliers.
Thesé restrictions are necessary to obtain iteratively convergent solutions

to the analysis equations.
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The technique is demonstrated by application to a case of severe
weather development in the Midwest. Data from the radiosonde network aund
the NMC objective analysis are used to generate the initial fields. The
8 layer forecast model encompasses a volume of approximately 2000 km x
2000 km x 2 km and incorporates a horizontal grid interval of 190 km and
vertical spacing of 200 m.

The usefulness of the index wq in delineating areas of severe storm
activity is demonstrated. Also, the ability of the model to predict intensi-
fication of storm activity is shown in the 3 and 6 hr forecasts. Although
the forecast position of the dry front appears closely related to the
occurrence of severe weather, the areal resolution is incomplete.

Since the governing analysis equations are elliptic, i.e., deter-
mined by boundary values, the objective analysis for a smaller grid interval
seems plausible in theory. Also, the use of surface reports (hourly
observationa) will give a more reliable lower boundary condition.

The coupling of the boundary layer model with a model for the mid-
troposphere is necessary to extend the forecast period. The model must
eventually include the diabatic effects of radiation and latent heat. The
inclusion of these processes, however, has lower priority than the problem

of coordinating the forecasts of the boundary layer and free atmosphere.
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Appendix A

Governing Hydrodynamical Equations

A set of equations is derived appropriate for flow in the planetary
boundary layer and extending over horizontal distances the order of 103 km.
The time scale of interest is that characterized by low frequency internal
waves, the order of 10 hours. The model is designed to include the effects
of rotation, moisture advection, eddy transport, and orography. The effects
of latent heat release and radiation, however, are not included. The equa-
tions are developed in terms of coordinates on the polar stereographic pro-
jection to facilitate the handling of meteorological data. The equations

take the following form:

Qu _ ey nl8R 3 (g QU N
ac - v -m p Ox oz 52 @ -1

T -fu-ng SR, §D & -2
P @ - 5



and

The symbols used are:

X,y : horizontal cartesian coordinates on polar stereographic

m = 1 4+ sin 60°
1+ sin §

e

- 3. a_ o
‘a:*“‘(uax*"ay)”’

projection
z : geometric height above the projection
t : time
m : map scale factor
u : x = component of velocity
v : ¥y - component of velocity
w : 2 - component of velocity
P pressure
P density
T absolute temperature
[ potential temperature

(A

(A

(a

(A

(A

6)

7)

8)

9)

10)
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specific humidity
eddy coefficient of viscosity

eddy coefficient of heat conductivity

xm;:z;: .

R/c,, ratio of gas constant for dry air to specific heat of
air at constant pressure

g acceleration of gravity

P0 reference pressure ( = 1000 mb)
® :  latitude

f : Coriolis parameter

The dependent variables are decomposed into & basic state denoted by

() and a perturbation upon the basic state denoted by ( )'.

p=p(z)+p u=u'
p=p(z)+p vey
T=T ¢ (z) + T w =y -1
=906 (z) +8' qQ=4q'

The basic state chosen for this model is the distribution depicted by
the U.S. Standard Atmosphere. The essential properties of this state are:
(1) 1linear decrease of temperature with altitude at rate of 6.5°%C km-l,

(2) atmosphere is dry and obeys the perfect gas law, (3) atmosphere is at
rest and in hydrostatic equilibrium. The basic state satisfies the governing

equations except for (A - 5). When the basic state variables are substituted

into (A -~ 3), one finds
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2, 28 - 0. @ - 12)

From the definition of the U.S. Standard Atmosphere, the vertical distribution
of 6 is found to be

y °C km (A - 13)

41

= 3.26( 2000

4
when -1; is expressed in millibars. Consequently, (A - 12) is not valid except
for some special distribution of KH However, if one uses typical values of
KH ('VIO4 cm2 sec-l), appropriate to the lower atmosphere, then the order of
magnitude of the term in (A - 12) is 10-4 % h:r:-1 and can be justifiably

neglected in the governing equationms.

The governing equations in terms of the perturbations are

du_ o oL 3p' )

at fv = m — > v +az (l(M ) + 010~ m sec ) (A - 14)
2‘1=-fu-m1 2 (x. &¥ + 0(10™*m sec”?) (4 - 15)
at 5 az KMB

%:-é%g-g—%+0(101msec_2) (A - 16)

P P

ldp'_ _wdp _ ,du,dv 3w -7 -1 _

E at E Sz m( =— 3% + ay) 32 + 0(10 "sec ) (A - 17)
di’: - a— §_— i &/ -1 -

at w 3% + 3z (Kﬂ ) + 0(10 C hr ) (A 18)
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dq _

It 0 A -19
' i 1 -

B2y 8 07 (A - 20)

Yp p e

where ¥y = cp/cv, the ratio of the specific heat of air at constant pressure to
the specific heat at constant volume. The magnitude of the highest order terms
neglected in each equation is denoted by 0( ), translated as 'order of." Since
the perturbations of the velocity components and specific humidity represent
the complete description of these variables, the primes are dropped without con-
fusion in notation.

The quotient (p'/E) appears naturally in the three momentum equations

and a new variable is introduced in place of pressure,

¢ =p'/p (A - 21)

It is a simple matter to incorporate this variable into (A - 14) and (A - 15).
Some manipulation is necessary, however, for incorporation into (A ~ 16) and
(A - 20). The following identity can be established by use of (A - 21) and

the rule for quotient differentiation:

2 Oz (A - 22)

Equation (A - 16) then takes the form

dw _ 3 __,p'_ @3
dt 3z g-p— FRE (A - 23)

Equation (A - 20) can be expressed as
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L e,
2 —
¢ p

an‘o

(A - 24)

where c2 = YKT, the speed of sound squared. Substitution of (A - 24) into

(A -~ 23) gives

dw _ 2% g, .8 _ 92
at az 2 - - Az (A - 25)
® P
Using the definitions of the U.S. Standard Atmosphere, one finds
8- rum)
p T
(A - 26)
_ 2
= «1.135 g/c

where 1.135 is the numerical value of

8 3T, (B
E+ 7 E -1

rd (= g/cp) denoting the dry adiabatic lapse rate. Thus (A - 16) finally can

be written as

~le
1
13

' - - *
+ gé} + 0(10 In sec 2) (A - 27)
]

At this point, it is convenient to introduce a coordinate transforma-
tion which assists in handling the orographic features. An "orographic coor-
dinate," first used by Sasaki et al. (1967), takes the place of z and is

defined as follows:
c =z - H(x,y) (A - 28)
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where H(x,y) represents terrain elevation above mean sea level. In order to

examine the dependent variables in x, y, 0, t coordinates, we transform the

governing equations by use of the following identities:

a—- ) = a—- ) - a_H a_.
0x ‘2z & ‘0 3¥x a0
§__ ) = é—— ) - .a—H a—-
dy “z 3dy ‘c 3y ac (A
-a— - a
8z c
The perturbation equations in the x, y, ¢, t system are:
= fy - m X 3H 3 8 ou
u = fv “‘ax+maxac+ac (KMBO') A
o= - fu - m o2 [-): - - av.
v fu may+mayac+ao‘(KMao) (A
W = = & ~+ g -.e._' (A
90 ]
1 gk L8 _ _du  3v, dwk
Y pl = - wk 3 -1} m(ax + oy Yo (A
Vo283 28
0 w¥ 8o + 3o (KH Lo (A

29)

30)

31)

32)

33)

34)

35)
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L-e 4 ¥ (A - 36)
c p 6
- ot Fe): -

wk = w - m(u 3% +v ay) (A - 37)
where all partial derivatives are in the x, y, o, t system, i.e., %% implies
the change of ¢ with respect to x when y, ¢, and t are held constant and

y = & o 2. - -
() ={ s + mu = + mv 3y + wk 3 10O (A - 38)

The "vertical velocity" in the x, vy, g, t system is denoted by w*. This
measures the change of a fluid parcel's ¢ coordinate with time, i.e., it
represents the substantial or material derivative of g. The vertical veloc-
ity, w, approaches w* when the mountain slopes are small and/or the hori-
zontal wind speed is small. The maximum slopes of the terrain used in this
study are the order of 10-3. A map of the orographic features is shown in
Fig. 1.

Equations (A - 30) through (A -~ 38) are now non-dimensionalized.
Each variable, both dependent and independent, is set equal to the product of
a scale quantity (dimensional constant) and a non-diménsional quantity. The
scale quantity is chosen in such a way that the non-dimensional variable is
the order of magnitude 1. A superscript ",ﬂ\" is used to designate the non-

dimensional variable. A list of the variables is as follows:
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Vv
0'0A _ A _
R Pl K = %u0%n
w¥ = WOQ* X = Lolx\
= A =T, N
94 = 949 y o’
- N _ A _ o N
® fOVOLOq; = QP c zoc
L
' = O = .—0 A - A
' = 906 t Vo t tot
A
! E 4
p PoP
where
L0 = 106m: horizontal length scale V0 = 10m sec-]': horizontal velocity
Zo = 103m: boundary layer depth 8y = 10°C: perturbation temperature
Hy = 10°n: mountain height above M.S.L. p, = 10-1kg n3: perturbation density
KM0= 1m2sec-1: eddy coefficient of momentum Vo= 10'2m sec-lz vertical velocity
KHO = lm2 sec-l: eddy coefficient of heat 9 = 10 o/oo : specific humidity
£ = 10~Asec-1: Coriolis parameter t, = 105 gec ; time

0

When the scaled representaticn of the variables is substituted into

0

the governing equations, the equations take the following form:

° A ALA A 6
RoQ={. 2. 2020, 2 & - 39
93X 8% 00 o) o
® A A A
Ro'\}=-{1\-§%+a—%§%+l\w%(£ﬂ§%) (A - 40)
9y 3y 8C B Tae
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e A
Ro/N_ .99 , 8 -
0. .2, 8 (A = 41)

90
» A
A A= - IPARET)
e = -wkg_ + A, — ( ) (A - 42)
o "M n Tup
0 ° A A A A
(2B =g - (R 5O -4
) 9x dy d&c
. .
A (A - 44)
A
$ = k? + 88 (A - 43)
‘Q_A Aaﬁ Aaﬁ
TVCUATYA
a% 3y (A - 46)
where
( )={é,-\+{}3—+(>§-+$3—}<> (A - 47)

ot a:’é 39 39

and the map scale factor has been incorporated into the horizontal space deriva-
tives for convenience of notation, i.e., there is an implied multiplication by
"m" whenever a horizontal space derivative appears. The non-dimensional numbers

appearing in equations (A - 39) through (A - 46) are defined as follows:

v

Z —
Ro=—0-=10-1 (Rossby number) 8 -G, 3-5X10-1
fL c 8, 80
oG ¢]

8, 82 - - Z5a7 -
u=Ro‘—O—ofs3.3x101 p =22 zlol
.e.vz g = 90
o P
_KMO - -2 2 6.
AM‘fzz‘m B =t — 3.3
070 00 0
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AH—K“(Z)O =107t A e =10
Z0 V0 000 p

2
Lo) = 108
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Equations (A - 39) through (A - 4é) with the accompanying nou-dimen-
sional numbers provide immediate insight into the relative magnitude of each
term. Since the variables have been scaled in a way such that the non-dimen-
sional variables are of order 1, the scalar constants completely determine the
magnitude of a given term. Consequently, the facter (Ro/r) in Eq. (A - 4l), of

order 10-7

, implies that the vertical acceleration is approximately seven
orders of magnitude smaller than the terms on the right hand side of (A - 41).
This result is well known for atmospheric flow in which the horizontal scale
of motion is much larger than the vertical scale (Ogura, 1963). Equivalently
stated,.the hydrostatic balance is a good approximation for this flow and Eq.
(A - 41) 1is sensitive to error when used prognostically. Similarly, Eq.

(A - 43) provides justification for the assumption of incompressibility.

As a consequence of the scale analysis and the arguments above, the

set of governing equations assume the following form:

AR - -1 du .
Ro - u=v -5y +u5x® 55 Ko (A~ 48)
R - ¢ oh 9 ov -

Ro * v u 5y + - 8+ AM 3o (KM 30) (A - 49)
o=-22 (A - 50)

3 M ®
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8 =-v 85+ 35 Ky 30 (4 - 31

*

_du v, 2w
0=3%*t3y '3 (A - 52)
q=0 (A - 53)
g ~Ap + 88 (A - 54)
% 3k 2h 5
") SW-UE'Vs—y' (A - 55)

where, for convenience in future reference, the "A" has been dropped and all
variables will be assumed non-dimensional unless otherwise specified. Also,
the hydrostatic relation, (A - 50) has been used to simplify (A - 48) and

(A - 49).

These equations admit low frequency internal gravity waves. To verify
this point, a frequency analysis similar to that developed by Monin and Qbukhov
(1958) is used. The governing equations are linearized and the static stabil-
ity » -e-a’ is assumed constant. Also the flow is considered two dimensional,
i.e., all variations in the y-direction vanish. This last assumption does not

limit the value of the frequency analysis. The perturbations of the meteorol-

ogical variables are expressed in Fourier representation, viz.,

u A(k,-e,w) exp{i(kx+lz-wt)}

v = B(k,{,w) exp{i(kx+<{z-wt)} (A -~ 56)
etc,
where A and B are emplitudes of the waves in the u_and v spectrum, respectively.

In general, each field will possess more than one characteristic wave, but
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since this analysis is linear, the operation on a particular wave serves to

demonstrate the general technique. In the representation above,

2nL 2nZ 2t
0, -l_—_ 0’ W = — A - 57)

L L

X k4

k =

Substitution of (A - 56) into (A - 48) through (A - 55) gives the frequency

equation;
w=k +Ro \/1+peo-no-(36)i;~ (A - 58)

Internal gravity wave motion with periods the order of 10 hr are contained in
this spectrum. Also, the acoustic waves and external gravity waves are ex-
cluded.

A finite difference analog of the governing set is formulated for use

in the initialization process. The space operations are defined as follows:

v o) L Bdi+1” @oioa
13k " (A - 59)
@), - @, .
_ 073+l 07j-1
v, 8.1, = (A - 60)
y 0°ijk 2s
¢ 8] . = odk+1” Cgli -1
o 0°ijk
280 (A - 61)

where i, j, and k are the grid indices along the x, y, and ¢ axes, respective-
iy. The grid spacing in the horizontal and vertical are represented by 4s and
Ac. Subscripting of variables is designed to reduce cluttered notation. For

derivative evaluation at i, j, or k, only those subscripts different from i, j,
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or k are identified.
When a forward time step is used in conjunction with the above space

differencing, Equations (A - 48) through (A - 54) assume the following form:

~
ROy, -u) = RO (ug¥, g + VT VG Vou)
At 17 Y0 $ (A - 62)
. _—._{_.vh.n'_‘ ‘;’{.,,'.1\
Vo T Vo TR 8ty Vo Fete’
r
59.(\, -v)) = -Ro(qu+VVV+W*VV)
at 17V ) 0"x0" '0'y' 0" "0 ‘g0
(A - 63)
L-uo - vy(p0+u,vyh . 90+A'MVG(KMVUV)
+ +w. v
8; - 9 - (359,80 Vo'y% T Yo o®o’
bt N . (A - 64)
- Vg B, Ay Yy (Kuvceo)
0=9vu +9v,+9u (A - 65
= V%% T YyYo T Yo' ' )
ql-q(’:-(uvq +v v q, + v ¥ q0) (& - 6%)
At 0'x'0 0O'y'0 "0 ¢70
9, = Aey + B, (A - 67)

This finite difference scheme has definite limitations when used to

forecast for more than several time steps. The forward time and centered
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space formulation suffers from computational instability (Richtmyer, 1967),
i.e., an initial field will tend to amplify unrealistically as time proceeds.
However, when used to forecast over only a few time steps this amplification
is not prohibitive.

This scheme possesses a feature that warrants its use for the initiali-
zation problem. Namely, there is no wavelength discriminaiion. Some of the
sopnisticated schemes such as Lax-Wendroff (see Richtmyer, 1963) can be ren-
dered computationally stable{ but they often damp certain wavelengths and, in
general, possess artificial diffusion. Sasaki (1969) has shown that the diffu-
sive character of the Lax-Wendroff scheme is injurious to the objective analy-

sis.



APPENDIX B

CONVERGENCE OF ITERATION SCHEME

The convergence properties of the iterative method proposed in
Chapter II are examined. The examination follows the pattern proposed by
Frankel (1950) and requires the linearization of the difference equations.
This investigation of convergernce does not include the specific humidity field.
Since the moisture equation describes only the advection of specific humidity,
the convergence of U, and Yo will most likely imply the convergence of 9p-

We adopt the following notation:

Auo(p) - uo(p) -y, G - 1)
AvO(P) = VO(P) - VO @ - 2)
AeO(p) = e0(1:) - 8, 3 - 3)

(®

where Auo is used to denote the error in the u-field at grid point (i,
j,k) for the pth iteration and similarly for the other meteorological

variabtles. The iterative scheme is convergent if

1lim { Auo(p)s Avo(p)s Aeo(p)} -0

p—e®

Since the analysis equations are coupled, all three variables must either

converge or all three must diverge.

bé
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Equations (7) - (9) and (14) - (16) are expressed as explicit functiens

(») ® ()
0’ o Vo

plished by substitution from (4 - 62) through (A - 67). The equation set

of Uy v., and 60 and u , and 90 , respectively. This is accom-

(7) - (9) is then subtracted from (14) - (16) to get alternate forms of

the residue equations, namely,

6] (®) P _, () -
VT WA L Y R 3 - 4)

(p) (p) ® ., @ -
Ayp Bug T+ Ay, AV T+ 4,5 88 R, @ -5)

® , () ® _, ® -
A4, Y Agy 8Vy T + Ay5 88 Ry & -6

where the operators Aij are given in Table 1. The right hand sides of

(®) (p) ,

(B ~ 4) through (B - 6) can be expressed as functions of Auo , Avo

Aeo(p), Auo(p+1), etc., by using (18) - (20). The system can then be written

(p ) {r) (pt+l) -

(1 + a - 11) Au + @ A12 Av + o A13Aeo Auo @® -7
® () (® _ (pt+1) -
(» () (p) _ (p+1) _

UGA31 Aug + deA32 AVO + (1 + o A33) Aeo = AGO (B 9)

Using matrix notation, we write
a TED -y O (8 - 10)

vhere



)

Auo

AVO(p) ’

®
0

A;;(p) -

bs

—

The matrix equation (B -

error at the

oth stage,

we assume that the guess
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Jpe—y o

(I+ah)) o b, @h5
M= laa (1+a A,.) o A
a1 vt ¥Ao3 G - 11)
.aeA3l aeA32 (1-+aeA33)

To examine the convergence of the iterative scheme,

fields (first approximation) have the following errors,

(1) =r(D) o my ng
Auo (x,y,0) B{,m,n exp{ 2ri[ N bx + N Ay + N Ao 13
X y o
AV (1) (%x,¥,9) e o {2mi[ Lx 2 2Ty (3 - 12)
) 1Y £,m,n *P Nax " NAy ' NAC
X y
se. P (x,y.0) =p{t)  explamil ;ﬁ‘x + N“‘Z + N“go 1
% x5 d,m,n x v o

where B, C, and D are Fourier

amplitudes and

x=rAx r=20,1,2,... ’Nx (Nx= 12 for case study)
y = sy s = 0,1,2,,..,I<1'y (Ny= 12 for case study)
o=tho t = 0’1’2""’Nc (No= 8 for case study)
Letting
211"().



k = ﬂ
N -
y y (B - 13)
2n
k =
o Nc
we get
AuC(l) = gé};’n exp{er + kys + kct]
v (1) | olv explk.Tr + k 8 + k_t} (b - i4)
0 {,m,n x y 4
(1) _ (1) -
88, q{,m,n exp{kx- + kys + kat]

The error at the pth stage can be found by repeated use of the matrix equation

(B - 10). The iterative method is convergent (in general) only if

| (C,m,n)l <1 (B - 15)

is satisfied for 811'(,m,n, where I A Irepresents the absolute value of the
largest eigenvalue of M, i.e., the spectral radius.

It was found that initial errors with maximum wavelength, i.e., e=m=n=1,
yielded the largest spectral radius. Consequently, in the testing procedure,
these wavelengths were used. The relative magnitudes of the Lagrange multi-
pliers must be determined such that the spectral radius is less than 1. Since
there are effectively eight multipliers for this limited investigation, viz.,
al’?;’ Vo DA Vl”wz €, and 1, the myriad possibilities prevents an exhaustive
investigation. One method of procedure is developed by taking two multipliers
non-zerc and determining their ratio such that convergence results. Ir a step-

wise manner, it is then possible to add the other multipliers, one at a time,
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and determine a satisfactory set. Of course, the task is simplified somewhat
by the fact that density of observation and reliability of data dictate the
range on some multipliers. This method of attack is discussed in Chapter

III when applied to the case study.
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TABLE 1
OPERATORS IN AMPLIFICATION MATRIX

~ 2 At (2, 2 4
Y-N9  +y (35 B v, +1D)

w2
il Yy

at (2 2 _ - 2
Y1( Ro ) (va + u'vxhva "‘vyh BAvavo )

2
-'nvxy
~ 2 At (2 2 4

Y-V, (e ) By v+ D)

At (2 - ‘ 2 - 2
Y, ( Ro )7 ( BY, *+ gvyh Vg * u.Vxh aAHvyvc)

Bt (2 2
Y (Re )" (B9, +uv,b] v .° - BY - uo.h)

t 2 2
Y, ( %—5 )7 (A [va + u,vyh] Vg TRV, + v, h)

2 2.4 ~ w~2
(a1+v15)(AtAH) Vq+a + VB

_ At (2 ) 2 2
+y, (g5 ) P @v, v+ p.Vthy) Bl v, + \7y i)

3%

o (p,Vxh[p.Vxh - evx] + u,vyh [p,Vyh - evy])

+‘Y1

) (u2 - BZ VGZ)
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Fig. 1. Topographic features over the grid network in terms of
non-dimensional height, ‘h.
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of the drag coefficient over

Fig. 2. Contours
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Fig. 3. Orographic coordinate surfaces.
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Fig. 5. Spectral radius of amplification matrix as a function of
? , the weight on observed wind.
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Fig. 6. Standard deviation as a function of fteration step for:
a) x-component of wind; b) y-component of wind; c) temperature;
d) specific humidity.
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Fig. 10. 00 GMT, June 10, t=0: mid-level distribution of non-
dimensional specific humidity, q.



Fig. 11, 03 GMT, June 10, t=3 hr: mid-level distribution of
non-dimensional specific humidity, q.
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Fig. 12, 06 GMT, June 10, t=6 hr: mid-level distribution of
non=dimensional specific humidity, q.
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Fig. 14. ESSA-5 satellite photographs taken at: a) 2205 GMT, June

. nr; b) 2201 GMT, June 10, t =22 hr.

t=22




