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PREFACE 

There always has been and probably always will be a need for 

structures capable of supporting a roof over a large column free area. 

There have been developed several general systems by which this can be 

accomplished "'t trusses, arches, shells, domes, and framed domes. ':Che 

object of this th,esis is to investigate a specialized type of framed 

dome - a Pin Jointed Spherical Dome with a Hexagonal Base. 

Special appreciation goes to Professor Lettie O. Bass of the 

School of Architecture at Oklahoma s{ate Universi~y for his basic 

conception of the project and his technical assistance and guidance 

while acting as thesis advisor. 

Appreciation also should be given to Dr. Thomas Scott Dean for 

his editorial critici1ms. 
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CHAPrER I 

INTRODUCTION 

The purpose of this thesis is to establish a method of analysis for 

a pin-Jointed, spherical dome with a hexagonal base. The dome that is 

analyzed herein is formed by intersecting three sets of seven pin-jointed 

arches to form a pattern of equrlateral triangles in a plan projection. 

An illustration of this dome is shown in Figure 1. Of course, the 

designer is not limited to this number of arches. He may use any odd 

number. For a large dome it would be advisable to use more divisions to 

keep the size of individual members and surface facets from being too 

large. Also the more divisions that are used, the closer the overall 

shape approaches to that of a spherical section • . It also follows that 

the more divisions are used, the more difficult becomes the mathematical 

analysis. 

To facilitate the execution of the analysis of some examples, the 

solution was programed for the IBM 1620 electronic computer. The solu-

tion is very well adapted to the computer because of the various 

repetitious types of operations. Possibly the greatest advantage of 

using the computer is in solving the 12 simultaneous equations with 12 

unknowns to obtain value$ for the axial forces in the members and the 
,. 

reactions. This advantage becomes even more apparent if more divisions 

are used. In the example domes with six members across the major 

1 
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arches, ther,e are 12 unknowns; whereas, doubling this 'number would 

result in 35 unknowns. 

3 

The analysis of framed domes with either pinned joints or fixed 

joints is not new. What makes this particular dome unique is the way in 

which the forces and reactions are handled as a result of its geometry. 

In the geodesic dome, which appears very simtlar, a:µ. the hexagons are 

rigid structural units which are fastened together to form the structure. 

ln the lamella dome, which is pin jointed, there is a system of one ,or 

more rings into which the forces terminate. In the fixed jointed frallled 

dome, the membrane analogy governs. There are also secondary bending 

moments and rings in it. In the hexagonally based, pin jointed dome 

ther~ are no rings, no rigid units and no induced secondary moments. 

The forces are handled by the arch action of a series of unstable arches, 

that would collapse as individuals, but acquire stability by their inter

sections with each other. Another difference in this dome and other 

domes is that the hexagonally based dome comes down to the support at 

only six points. This creates a scalloped appearance at the edges. 

1. Analytic Approach 

The analysis of the structure shall be approached by first calcu

lating the geometry of the individual members including: their true 

lengths, their central angles, and their angles of inclination with the 

horizontal. With this information it will be possible to calculate the 

load areas contributing to each member which are to be utilized in 

determining the bending moments and shears as well as the total forces 

delivered to each joint. Since this is a pin-jointed structure, it is 

assumed that there is no joint restraint, allowing the bending moments 
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to be computed as simple moments. 

The second part of the analysis is a series of equations for each 

joint summing the forces in t .he "x", "y" , · and "z" directions. The 

equations are assembled into a matrix, the solution of whic.h yields the 

axial force in each member and the horizontal and vertical reactions at 

the base. 

In this structure there are 90 members, 37 joints, and 12 reactions; 

but due to the cycle-symmetry of the geometry, there are only ten differ

ent members, six different joints, and two different reactions. This 

greatly simplifies the analysis. Refer to ,Figures _2, 3, and 4 for the 

designations and locations of these members and joints. 

2. Assumptions and Conditions 

The analysis and design of this structure is based on the following 

assumptions and/or conditions: 

1. All the joints lie in the surface of a sphere. 

2. All the joints are univers~l and frictionless. 

3. Each member is of a homogeneous material and a constant 

cross section. 

4. The radius of the sphere is large in comparison to the 

depths of the individual members. 

5. The material of the members conforms to Hooke's Law, 

stating that stress is proportional to strain, and that 

all deformation and stress is within the elastic limit. 

6. Effects of temperature change, displacement of supports, 

translation of joints, deformation of members due to 

lateral loads, and change in length of members due to axial 
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loads are all assumed to be· negligible. 

7. All members are straight chords from joint to joint. 
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CHAP!'ER II 

THE ANALYSIS 

l. Geometry of the Structure: 

The structure is a spherical, hexagonally framed dome. Being 

spherical, all the joints lie in the surface of the sphere at a distance 

RM f.rom the center of the sphere. All the members are straight lines. 

The d,ome is formed by three sets of seven hinged arches intersecting 

each other to form all equilateral triangles in a plan projection. The 

horizontal plane through the center of the sphere will be referred to as 

the Base Plane. The lowest points on the structure may or may not extend 

down to the Base Plane • 

. The radius of the sphere, which is also the radius of th~ three (') 

main arcs will be called RM. The centers of the other arcs will lie on 

the Base Plane at distances of .f2 L, .[3 L, and ~ .[3 L from the center of 
2 . 2 

the sphere, where Lis the plan length of the members. The radii of the 

arcs will be called R1, R2, n3 numbering from the center of the dome to 

the outer edges. 

6 
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Figure 2. 

Section Along "Y" Axis 
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Figure 3. 

Section Along "X" Axis 
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Figure 4. 

Designation Numbers for Members and Joints 



Calculation o·f Radii of Archefi!: 

R = RM m 

R. = JR 2 - (3i;.J3 L \ 2 
3 m - ') 

2 

R = ~R 2 - (1 ...f3 1 L"?, i m - ') 
2 

Calculation of Heights of Joints: 

~ 2 2 z. =R - 1(0•L) 
1 m , 

. ~l 2 . 2 
z~ = R - (2~L) .,; m . 

10 

z1 = ~R 2 - [(i - l)L]2 
. m 



Calculation of Height Differential of Member Ends: 

hl = zl - z2 

h2 = z2 - zj 

h; = z; - Z4 

h4 = z2 - z2 

h5 = z2 - z5 

h6 = z5 - z6 

h7 = z5.· Z3 

ha= zj - z6 

h9 = z6 - z6 

h = z6 -10. . Z4 

General Equations for Geometry of Members: 

a. 
l. 

= arc tan hi 
L 

¢ 2 t TLi 
i = arc an --------

2/-R -2 -_ c-=-T=-E:"\L1 ....... -2 
IID -t-J 

11 
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CENTER OF SPHERE 

Figure 5. 

Geometry of Typical Member 
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2. Loads 

b 

Figure 6. 

Typical Joint Load Area 

Dead Load - Wd 

Shown a typical joint with six (6) triangles meeting at that point. We 

shall assume that one-third ot the load on each triangle will be deliv-

ered to the joint. The load is given in pounds per square foot. 

Area of each triangle is: 

Vs(s-a)(s-b)(s-c) 



Live Load - W1 

For live load we consider the loads acting on a horizontal projection. 

In a horizontal projection all the sides of a triangle would be equal 

·to L. 

Load on 6 triangle joint: 

QL = 6 x 1. x t 2.f3·x WL L2.f3 
3' 1i7 2 

For a typical 3 trie.ngle joint: 

.. QL = 3 x l x L 2.f 3 W1 = WL L 2.f; 
3 1i7 Ii'.' 

For a typical 2. triangle .. joint: 
2 2~ 

Q1 = 2 x l x L V3 w1. = W1 L V3 
· 3' 1i7 · b 

Areas of Triangles 

There a.re only .six (6) different triangles i~ the structure. ·These ma.y 

be designated by the names of the sides, such as (1, 2, 3), (4, 7, 10), 

etc. To simplify the designation, they will be .. called simply 

T~ = TR (1, 1, 4) 

TR2 = TR (2, 5, 7) 

TR3 = TR (3, 8, 10) 

TR 4 "' TR (4, 5, 5) 

14 



~5 = ~ ( 6, 7, 8) . 

Ta6 = TR (6, 6, 9). 

ATR1 = VSTRi (S~R~ • T~1 }(S['Rl -· tLl)C,~TRl .. : ~.L4) 

l 
STR2 = .2 ~TL2 . + TL5. + TL7) . 

. ATR2 = v~TR2 (sTR2 - TL2) (sTR2 ~ Tt,)(sTR2 - .T17) 

i . ' 
. STR3 = 2 ··(TL3 + TL8 + TL10) 

.\ 

ATR3 = ../STR3(STR3 - TL3) {STR3 - TLa)(sTR,, - :rtlO) 

l .. .. 
STR4 = 2 (TL4 + TL5 .+ TL5) 

ATR4 = VSTR4(sTR4 - TL4)(STR4 - TL5)(STR4 - TL5) 

1 .. 
STR5 . = 2 (TL6 + TL7 + TL8) 

ATR5 .;: VSTR;(sTR; - TL6f(sTR5 - TL7) {STR; · - TL8) 

l 
STR6 = 2 (TL6 + TL6 + TL9) 

ATR6 = ySTR6(sTR6 - TL6) (sTR6 - TL6) (.8,TR6 -. TL9) 

Joint Lo~ds ··- Dead 

ATR 
= 6(-l)W · 3 D 

15 
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2 = 3 (ATR1 + ATR2 + ATR4) WD 

2 ' ' . 
= 3 (ATR2 + ATR3 + ATR5) WD 

I . 

2 
= 3 (A'J:'R3) WD 

l ... ' 
= 3 (2ATR2 + 2ATR5 + ATR4 + ATR6) WD 

1' ... 
= 3 (4,TR3 + ATR5 + ATR6) WD 

Joint Loads - Live 

QLl = 'J:.2 .[3 WL 
2 

QL2 = !!2 .[3 WL 
2 

QL3 = "J:.2 .[3 WL 
2 

QL4 = L2 .[3 WL 
6 

QL5 = L2 .[3 W 
- L 2 

QL6 = L2 .[3 WL 
q:' ' ' 
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In the preceding discussion, we have considered only two .types of 

loads -- those applied to the actual surface area of the structure . (WD), 

and those applied to a horizontal projection of the structure (WL). Any 

kind of load we might apply to the structure will be one of these two 

types. The loading conditions that might be considered are: 

1. Dead Load 

2. Snow Load 

3. Drift Load 

4. Wind Load 

By various codes these are considered in different combinations. Since 

the computer program ·is written to consider only WD and WL' it will be 

the task of the designer to calculate which combination will deliyer 

the heaviest ~oads and apply them as WD and/or WL. If drift loads and 

wind loads are considered causing one sided or antiAymmetrical load 

conditions, it may be necessary to run the program more than once using 

some negative. load values. This will necessitate adding or subtract

ing th~ moments, shears, and axial forces prior to the design. 
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3. Bending Moments and Shears 

Besides the- axial forc,1:1s in the members caused by the arch action, 

bend±ng'·moment·s·· and· shears due to· the transverse direction of the loads 
" , ., ·•, 1 • I 

must be computed. Consider a typical member bounding a triangle on 

ea.ch side. 

Figure 7. 

Typical·Load.Area for 

Bending Moments and Shears 

From the sketch it can be concluded that·thetotal load on the 

beam will be.one-third of the·load from each triangle. This load is 

increasing -uniformly to approximately.the center of the beam •. Only 

if all·the sides of both triangles.were equal, would the load peak at 

the center; but for the sake of simplification it is assumed that this 

is the case i~ all in~tances. 

If the total load to the beam is: 



19 

TW = !_ (ATR + ATR ) W .. 3 1 2 

the maximum bendingmomentis: 

1 

and maximum shear is: 

v = TW == w (ATRl + ATR) 
2 b 2 

1 

1. Manual of Steel Construction - A.r.s.c. 

Dead Load Moments and Shears 

~l = (WD ~ L)(ATR1 + ATR1) = (WD x L)ATR1 
18 9 

VDl = W x ATR D l 
3 

~2 = (WD x L)ATR2 VI2 = WD x ATR2 
9 3 

~3 == (WD x L)ATR3 VD3 = WD x ATR3 
·9 3 

~4 = (WD X t)(ATR1 + ATR4) VD:4 = WD(ATR1 + ATR4) 

18 b 

~5 = (WD x L)(ATR2 + ATR4) VD:5 == WD(ATR2 + ATR4) 
'18 b 

~6 = (WD x L) (ATR5 + ATRq) VD:6 = WD(ATR5 + ATR6) 
I 18 b 

~ = (WD x. L) (All'R2 + ATR5) . 7 
18 

VD7 = W · (ATR + ATR ) D 2 5 
b 

~8 
;: (WD x L)(ATR3 + ATR5) VD8 = WD(ATR3 + .ATR5) 

18 b 



~9 = (WD x L) (ATR6) 

!8 

~10 = (WD :r L) (ATR3) 
18 

Live Load Moments and Shears 

For live load all the areas are equal. 

ATR = L2 J°3 
4 

TW ·= WL x 1 x 2 L 2 .[3 
3 ri:-

. 2 3 
ML = L x. WL x 1 x 2 L .[3 = WL x L .[3 

6 3 4 '36 

V = W L2 .[3 
L L 12 

This same bending moment and shear will apply to all membe~s but the 

ones in the exterior arch. The bending moments and shears for these 

20 

members will be one half the values for the others due to the fact that .. . .. ' 

they only bound one triangle ea.ch. 

ML9 = ~O = WL x L3 .[3 
.· 72 

. . 2 
VL9 = VLlO = WL x L .[3 . 24° 



4. Joint Equations 

Joint 1 

I:Fz = 0 

Q1 + 6F1 s1na1 = o 

6F1 sina1 == -Q1 

Joint 2 · 

21 

Figur~ 8. 

Joint 1 Free Body 

(Eq. 1.0) 

x 

y 

x 

.Figure 9. 

Joint 2 Fre~ Body 
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~FX = 0 
' 

0 = 0 

~Fy = .o 

F1 cosa1 + 2F4 cosa4 sinf3 - .F2 cosa2 - 2F5 cosa5 sit$= o (Eq. 1.1) 

~Fz = O. 

Q.2 .. F1. s1:na1 + F2. si~2 - 2F4. sin<\ + 2F5. s1nex5 = o 

-F1 s1:na1 + F2 sinex2 • 2F4 s1:na4 + 2F5 sir.a5 ·= -Q.2 

Joint 3 

y 

x 

Figure 10. 

Joint 3 _;Free Body 

F cosa 2 2 

(Eq. 1.2) 



/ 
~Fx = 0 

0 = 0 

~Fy = q 
F2 coscx2 - F3 coscx3 + 2F7 coscx7 sinf3 - 2F8 coscx8 sinf3 = o (Eq. 1.3) 

~.Fz = 0 

Q3 - F2 si:ncx2 + F3 si:ncx3 - 2F7 si:ncx7 + 2F8 sinex8 = 0 
. . . 

•Fe sincx2 + F3 sinex3 - 2F7 sincx7 + 2F8 sina:8 = -Q3 

Joint 4 

Figure 11. 

Joint 4 Free Body 

0 = 0 

µ'Y.= 0 \ 

F; coscx3 + 2F10 coscx10 sinf3 - ~ = o 

I:Fz = 0 

Q4 - F3 sinex3 - 2F10 sina:10 + VR = 0 

-F; sinex3 - 2F10 si:ncx10 + VR = -Q4 

(Eq. 1.4) 

(Eq, 1.5) 

(Eq. 1.6) 
I 
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Joint 5 

x 

x 

Figure 12. 

Joint 5 Free Body 

!:Fx = 0 

F5 cosa5 cos~ - F6 cosa6 cos~+ F7 cosa7 cos~ - F7 cos~~ cos~-= O 

F5 cosa5 cos~ - F6 coso:6 cos~= o (Eq. 1.7) 

I:Fy = 0 

' . F5 cosa5 + F5 cosa5 sinf3 - r6 cosa6 - F6 cosa6 sir$ 

-~ F7 cosa7 sinf3 - F7 cosa7 sinf3 = o 

F5 cosa5 (1 + sinf3) - F6 cosa6 (~ + sinf3) = O (Eq. 1. 71) 
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Q5 - 2F5 s1na5 + 2F6 ~1na6 + 2F7 s1na7 = o 
. . 

Joint 6 

x 

y 

x 

Figure 13. 

Joint 6 Free Body 

l:Fx = 0 

(Eq. 1.9) 

F6 cosa6 + F8 cosa8 sinf3 + F9 coea9 sint3 - F10 cosa10 sint3 = o 

• (Eq. 2 .o) 



EFz = o 

Q6 - F6 sina6 - FS sina8 + F9 sina9 + Flp sipa10 =·0 

-F sina6 - FS sina8 + F9 sina9 + F10 sina10 = -Q6 

26 
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Eg.No Fl F2 F3 

1.0 6sina.1 

1.1 COSCLl I -cosa.2 _ 

1.2 -sina.1 sina.2 

I 
1.3 I cosa.2 

1.4 -sina.2 

1.5 

1.6 

1. 7 

1.8 

1.9 

2.0 

2.1 
' 

0 All 13's equal 30. 

-cosa.3 

sina.3 

I cosa.3 

-sina. 
3 

' 

TABLE I 

SUMMARY OF EQUATIONS 

F4 F5 F6 

2cosa.4 
sinj3 

-2cosa.5 
sinj3 

-2sina.4 2sina.5 
. . 

COsa.5 
cosj3 

-cosa.6 
cosj3 

F7 

2cosa.7 
sinl3 

-2sina.7 

-·----
-2sina.5 2sina.6 2sina.7 

cosa.6 

-sina.6 

F8 F9 FlO ~ 

-2cosa.8 
sinj3 

2sina.8 

2~osa.10 
s1nl3 -1.0 

-2sina.10 

-

COSCL8 
cosj3 

-cosa.9 
cosj3 

cosa.10 
cosj3 

COSCL8 
sinj3 

cosa.9 
sinj3 

-~osa.10 
s1nl3 

-sina.8 sina.9 sina.10 

VR 

1.0 

c 

-Ql 
--· 

I - 0 

I 
I -Q2 

1, 0 
I 

I -Q I 3 
I 
f 

0 I -· 

I -Q4 

I a 
i 
! 
! -Q 
I 5 

0 

l 

! 0 

I 
! 

I -Q6 
I I\) 

--:i 



TABLE II 

EQUATION MATRIX 
-

1.0 6sina.1 0 0 0 0 0 0 0 0 0 0 0 Fl I I -Qi 

1.2 -sina.1 sina.2 0 -2sina.4 2sina.5 0 0 0 0 0 0 0 F2 -~ 
1.4 0 -sina.2 sina.3 0 0 0 -2sina.7 2sina.8 0 0 0 0 F3 -Q3 

1.1 cosa.1 -cosa.2 0 
2cosa.4 
sin.P 

-2cosa.5 
sinf3 0 0 0 0 0 0 0 F4 0 

1. 7 0 0 0 0 cosa.5 -cosa.6 0 0 0 0 0 0 F5 0 
cosf3 cosf3 

1.s Io 0 0 0 -2sina.5 2sina.6 2sina.7 0 0 0 0 0 F6 ~ 

1.3 Io cosa.2 -cosa. 
3 

0 0 0 
2cosa.7 
sinf3 

-2cosa'8 
sinf3 0 0 0 0 F7 0 

1.9 Io 0 0 0 0 0 0 
cosa.8 
cosf3 .. 

-cosa.9 
cosf3 

cosa.10 
cosf3 0 0 Fg I IO 

2.0 0 0 0 0 0 cosa.6 0 
cosa.8 
sinf3 

cosa.9 
sinf3 

-:osa.10 
s1nf3 0 0 F9 I IO 

2.1 0 0 0 0 0 -sina.6 0 -sina.8 sina.9 sina.10 0 0 F1ol 1-Q6 

1.5 0 0 cosa.3 0 0 0 0 0 0 2:osa.10 
s1nf3 -1.0 0 ll~ 1 IO 

1.6 0 0 -sina. 
3 

0 0 0 0 0 0 -2sina.10 0 1.011 VR I 1-Q4 1 
['.\) 
(X) 



Solving this matrix of 12 equations will yield the axial forces 

in the 10 members plus the horizontal and vertical reactions at the 

support .. Joint. Plus values will be tension and minus-values will be 

compression. The load constants, Q, in this matrix are of a general 

nature as shown·~ These will have to be evaluated by the equations 

. derived on previous pages. These load constants will have different 

values for the vario~s load conditions, live load, dead load, etc. 
I· 

These different values of the load constants may simply be inserted 

into the matrix to find a solution for axial forces due to the various 

load conditions, or the load constants may be combined to permit one 

solution of the matrix for the combined loading effects. ·In any case, 

for a particular dome, the body of the matrix will remain unchanged 

for any values assigned 'to the load constants. 

29 



OHAP!'ER III 

DESIGN 

In selecting the members for this dome, the designer will need the 

axial forces in ea.ch member due. to the various loading conditions plus 

the bending moments .and shears for each member due to the same loading 

conditions. It is then merely a matter of selecting the members accord

ing to t.he code for the particular material which has been chosen. 

For detailing purposes the actual lengths of ea.ch member, TL, a.nd 

the angles with which ea.ch member intersects the others, 'Y, were found 

in the solution of the geometry. 

TL 

R 

Figure 14. 

Typical Member 

:;o 



CRAP!'ER IV 

COMPUTER PROGRAM 

The program for the solution of this dome was written in the IBM 

language Fortran Without Format. It is recommended that if other domes 

of this same sort with more members are programmed, one of the computer 

languages with format be used. This would give the programmer more 

possibilities within the program itself as well as having the answers 

come out in a. more organized form with titles. Despite the disadvan

tages of the Fortran Without Format, it did permit the problem to be 

solved and the geometry computed much quicker than- it possibly could be 

done by conventional methods. 

There are twenty-three (23) data cards that must be entered with 

the program to solve the problem. The la.st twenty-two (22) are cards 

which give: l) the combinations of sides with which to figure the areas 

of the triangles, 2) the combinations of triangles common to a. joint for 

figuring joint loads, and 3).the combinations of triangles common to a 

member for figuring bending moments and shears. , These cards will be 

common to all domes of.this sort with the same number of arches. 

Therefore, the first data card is the only unique one. On it is to be 

punched the values for: 1) the diameter of the dome, 2) the rise of 

the dome, 3) the dead load, and 4) the live load. '!'he values must be 

punched in that order with a space between each. 

31 



32 

When the program is executed on the computer, the answers will be 

punched on cards. The fit"st 10 cards will give the geometry of the 

individual members. They will give the member number, the actual length 

from joint center to joint center, the central angl~, and the cut angles 

at the ends, in that order. The second 10 cards will have the member 

number, the total bending moment, and the total shear, and in that order. 

Next will be punched 1.57 cards. These cards will be the coeffi-

cients and constants for solution of the matrix for the axial forces. 

These cards will then be entered as data into a general solution for a 

matrix. The answer cards from this solution will provide the member . 
number along with its axial force. Number ll will be the horizontal 

reaction, and Number 12 will b.e the vertical reaction. 

The actual program is listed below with the pertinent items 

designated by the notes to the right. 



THESIS PINNED JOINTED HEXAGONAL FRAMED DOME 
DIMENSION Rl2lt2161,HllOl,ALFAl10l,TLl101,PHll10l,GAMC10loATRCI) 
DIMENSION Q0(61,BMOClOl,VDClOl,QLl6l,BMLllOl,VLl101 
DIMENSION Bll21,All2,12l 

1 READ, D, Y, WO, WL 
PL= D/6.0 
RM= 1(0*Dl/C8eO*Yll+CY/2eOI 
RMS,. RM*RM 
PLS • PL*PL 
Rill= SQRCRMS-1Cl.73205l*PL*O•Sl**2ll 
2111 = RM 
2121 = SQRtRMS-PLSl 
2131 = SQRtRMS-14eO*PLSll 
2(41 = SQRIRMS-19,0*PLSll 
2(51 = saRt (RC l l*R( 1 I 1-1 t l,5*PL 1**21 l 
2(61 = SQRC CR(ll*Rllll-tl2•5*Pll**2ll 
H 11) = 2 I 11 -2 I 2 I 
H121 = 2121-2(31 
Ht 3 I = Z t 3 l -2 C 41 
11141 = o.o 
H(5l = 2121-2(51 
H 16 l = 2 C 5 I -z (6 I 
HI 7 l = Z t 5 I -z I 31 
HCSI • 2131-2161 
H191 = 0,0 
HllOI • ZC6l-ZC4l 
DO 45 J = 1,10 
ALFACll = ATN(Hlll/PLI 
TLIIl = SQRCIH(ll*HCl»+PLSl 
PHI ti I = 2,0*ATNITL(ll/C2,0*SORIRMS-C0,25*TLIIl*TLllll)ll 
PHilll = PHI1Il*57,29578 
GAMt I l = 90,0-IPHJ I J l/2,0l 
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45 PUNCH, I, TLCII, PHJ(Jl, GAMII) (Geometry Answers - 10 cards) 
47 DO 50 N = 1,6. 

READ t J, K, L 
STR = CTLIJl+TLCKl+TLILll*O•S 

50 ATRCNI = SQRISTR*ISTR-TLIJll*ISTR-TLIKll*ISTR-TLIL!II 
ATRl7l = 0,0 
DO 55 N = 1,6 
READ, I, Jt K, Lt Mt NN 

55 QDINI = WD*IIATR1ll+ATRIJl+ATRIKl+ATRILl+ATRIMl+ATRINNll/3eO~ 
DO 60 N = 1,10 
READ, I, J 
TWO= WD*IATRtll+ATRIJll/3,0 
BMD(Nl = ITWD*TLINll/6,0 

60 VDtNI = TWD*0,5 
QLtll = WL*l,732051*0,S*PLS 
QLl21 = QLtll 
QL t 3 l : QL I l I 
QLC41 = QL111/3,0 
QL I 5 I = QL I 1 I 
QLl61 = OLlll/2,0 
BMLlll = tWL*l,73205l*PLS*PL)/36e0 
DO 65 1 = 2,8 



65 BMLIII • BMLlll 
BMLC9) •BMLCll/2•0 
BMLllOI • BML191 
VLlll • fWL*le73205l*PLSl/12eO 
DO 70 I• 2,8. 

70 VLlll • VL(ll 
VLl91 • VLl11/2e0 
VLllOI • VLC9l 
DO 80 N'" 1,10 
BMTOT = BMDINl+BMLINI 
vror = VDINl+VLINl (Bending Moments and Shears) 

. 80 PUNCH, N, BMTOT, vror1--~~~~~~~~ 10 Cards 
DO 100 I= 1,12 
Bl II = OeO 
DO 100 J = 1,12 

100 AII,Jl = o.o 
SNB,. OeSOOOO 
CSB = 0.86603 
All,11 = 6•0*SINIALFA1111 
Al2tll = -SINIALFACl)I 
Al2t21 = SINIALFAl211 
Al2,41 = -2.0*SIN(ALFA14ll 
Al2,5l = 2e0*SINIALFAl511 
Al3,21 = -SINIALFA1211 
Al3,31 = SIN(ALFA1311 
A!3,71 = -2.0*SIN!ALFA!711 
A!3,81 = 2o0*SINIALFAl811 
A!4,ll = C0SCALFA!lll 
A!4,2l = -COS!ALFA!211 
Al4141 ~ 2eO*COS!ALFA!41l*SNB 
AC4,5l • -2.0*COSIALFAl5ll*SNB 
Al5,Sl = COS!ALFA!5ll*CSB 
A!5,61 = -COS!ALFAC6ll*CSB 
AC6,5l = -2.0*SIN!ALFACSll 
AC6,6l = 2o0*SIN!ALFAl61l 
Al6,7l = 2•0*SINIALFA!71) 
AC7,21 = COSCALFA1211 
A(7,31 = -COS!ALFA!3ll 
Al7,7r = 2•0*COSIALFA17ll*SNB 
A(7,8l = -2.0*COS!ALFA!Sll*SNB 
Al8,81 = COS!ALFAC811*CSB 
ACB,91 • -COSIALFA!91l*CSB 
AIB,lOl = COSIALFAllOll*CSB 
Al9,6l = ~OS!ALFA!61l 
Al9,8l = COSIALFAl8ll*SNB 
Al9,9l = COS!ALFA!91l*SNB 
Al9,101 = -COSIALFAllOll*SNB 
A!l0,6) = -SINIALFA!611 
All0,81 = -SINIALFA18ll 
All0,91 = SINIALFA(9ll 
All0,101 = SINIALFAllOll 
Alll,31 = COSIALFA!311 
Alll,10) = 2•0*COSIALFAl1011*SNB 
Allltlll = -1.0 



110 

120 

A(l2t3) = -SINCALFAl31J 
AC12,101 • -2.0•SINIALFAllOI) 
All2tl2J• leO 
Bill• -IQDllJ+QLllll 
8121 • -CQDl21+QLC211 
8131 c -IQDC3J+QLC31J 
8161 • -CQDC5)+QLl511 
8(101 • -IQDl6)+QLC611 
81121 • -IQDl4)+QLl411 
ic. • 12 
PUNCH t K 1-------1 

DO no I • 1'12 
1)0 110 J • 1,12 
PUNCH, AII,JI 
DO 120 I• 1,12 
PUNCH, B(lJ-----, 
GO TO 1 

Coefficients a.nd Constants) 
i----'----4 for Matrix Solution 

157 Ca.rds 

END 

Date. Ce.rds 

90.00 1s.oo u.oo 30.00 
l l 

E} 2 5 { Side Combinations 
3 8 
4 5 for Triangle .Aree.s 
6 7 
6 6 
1 1 1 1 1 

~~!riangl.e Combin&ticins 1 1 2 2 4 
2 2 3 3 5 5 for Joint Loe.de 
3 3 7 7 7 7 
2 2 4 6 5 5 
3 5 6 7 7 7 . 
l 1 
2 2 
3 3 
1 4 Triangle Combinations 2 4 
5 6 for Moments and Shea.rs 
2 s 
3 5 
6 1 
3 7 
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CHAP.rER V 

SAMPLE PROBLEMS 

Three ( 3) sample problems were run · on- the- computer. All of the 
.. . .. ' 

~o~e_s. ~d a. SJ?e.n of 90 feet, but they differ:ed in __ heigh~s e.t the .. 

center. The values for the rises were ta.ken as 15 feet, 30 feet, and . . .. 

45 feet. The dead loads were ta.ken as 15,· 16, and 17 pounds ·per 

square foot r~spectively.· .. ~. This was to take into ~ccoimt a built-up 

roof, _a wood deck, and a ste~l structure. The live loe.d_used was a 

snow load of 30 pounds per ·square foot. The results of the three 

probl~_ms were as follows: 

Problem >'.No. _ l •.. 

Span.= :90'; Rise= 15'; WD = 15 psf; w1 = 30 psf. . . ... 

True Bending Axte.l 
Member Length FRI GAM Moment Shears Fore~ 

No. (feet) (degr~es) (degrees) (lb.-f't.) (lbs.) (lbs.) 

1 15.076344 11.536958 84.231521 7336.0858 1464.7209 -14573.020 
2 15.7,2928 12.041218 83.979391 7555.0459 1486.0052 -17868.898 

3 17 • .359829 13.291717 83.354142 8137.5913 1538.7193 -51326.954 
4 14.999999 11.478,40 84.260830 7350.1659 1470.0332 -14347.678 

5 15.322768 11.726186 84.136907 7457.8596 1480.6753 -12064 .• 578 
6 16.435118 12.580762 83.709619 7846.4923 1517.3412 -1294o.4qo 

" 

7 15~086969 11.545116 84.2~7442 7510.2286 149~.0034 J15592 .. 743 
8 · 15.842983 12.125764 83~937118 7761.6531 1525.3604 12474.174 

9 14.999999 11.478:;40. 84.260830 3806.7020 761.:;4043 -12287.140 



Problem No. 1, continued. 

Metnber 
. N9. 

10 
11 

12 

· True 
Length - PlIJ'.. 

. ~feet) · (degrees) 

Problem No. 2 .• 

GAM 
(degrees) . . 

Bending 
· Moment 

(lb.-ft.) 
, . . I 

3887.7429 

Shee.rs 
(lbs.) 

37 

Axial 
. Force 

(lbs.) 
'. 

769. 35968 -.a~ 796 • 798 
~68447.340 
-40608.595 

Span = 90'; Rise = 30'; WD = ,·16 psf; W1. = 30 ps,f. 

Member True Ben~ing Axial 
No, Length .1PHI GAM Mol!lent Shea.r Force 

•· I ' 
I 

1 15.185304 l 7:; 9292,J,9 81.039895 .. · 7544.8003. 1502.4354 -964(5.6577 
I 

1.···. . 

2 16.980684 20.05965~ 79.970171 8211.:,..613 1564.3199 -108,5.;1;99 
; 24.74;613 29.40025:8 75.299871 11940.448 1831.42431 -;4~5~.788 
4 14.999999 17.699764 81.150118 1,ss.6;01 1.517.7g60 -8259.9650 ., ' ·,.,' I 

l " 
.5 15,.-854578 18.716967 80~641517 7906.9618 1548.6683 -8667.0563 
6 19.808962 23~444649 78.277676 9608.6804 ·1691.7247 -108281757 

' 

7 15.263505 is.013260 80.993370 8157.0234 1620.0602. -;e14.775; 
8 18.691347 · 21.386666 79.306667 9571.12.59 1753.6124: ~889,.8060 
9 14.999999 17.69976~ 81.,150118 4269.1221 853.82445! -2402.5323 

10 1rr n88462 21.q24501 79.487750 4976.9139 915.71218 ... 1257:; .:;90 
ll .31550.605 
12 .. 44658.570 

Problem No. 3. 

Span= 90 I • Rise= 30'; W = 17 psf; W = 30 psf. , 
D L 

Member True Bending Axial 
No. Length PHI GAM Moment Shear Force 

l l5.219177 19.471218 80.264391 7726.6203 1537.1002 -9089.7841 
., ,, 

2 17.434164 22.339092 78.830454 8613.0456 1618.1269 ·-8470.1680 
3 36.742344 48.189684 65.905158 21594.783 ,2339.7378 -31734.248 



-Problem . No. 3. continue'd. 

Member True Bendirig Axial 
No. Length .P;a;t GAM Moment Shear ;F0rce 

4 14.999999 19.188133 80.405934 7785.0201 1557.0040 -:7148.7620 

5 16.040840 20.533539 79.733231 8203.8176 1597.5174 -9432.0999 
6 21.590605 27.760759 76.1;1.9621 10911.174 183.5021 -12695.392 

7 15.337810 19.624492 80.187'.754 8608.2889 1705.1970 3223.1740 
8 19.415847 24.9l690~ 77.541546 11936.974 2066.0024 11416.621 

9 14.999999 19.188133 80.405934 4586.8431 917:36865 3269.9012 
1,0 25.980760 33.557308 73.221346 8348.3074 -1169.8688 -9613.1908 

'll -18505.633 
12 .. 49347.020 

For the sake of comparison of the size of the members to be used in 

' the three dif~erent domes., a wide flange section is bhosen and checked 

age.inst the beam-column inneraction formula: 

where: 

t f a -b 1 F + r S .. o 
a b 

f = computed axial stress a 

F = allowable axial stress a 

fb = computed compressive bending stress 

Fb = allowable compressive bending stress 

The allowable stresses used are those given in the,Manual of 
·-

Steel Construction, AISC,; Sixth Edition, for A36 steel. Assume the 

members are laterally supported along their entire lengths "by the 

roof deck. The section chosen is an 8 WF17; A= 5.00 in2; S = 14.1 in;3o 
{ 

Member No. 3 is chosen, in each dome, because the values for the moments 
( 

and axial forces are the largest. 



39 

Problem 1 ·Problem 2 Problem 3 

Length 17.36 ft. 

Moment 97.7 kip-in. 143-3 kip-in. 259 kip-in. 

Axial Force 51.33 kip. 34.55 kip. 31. 73 kip. 

fa. = p == 10.28 ksi 6.92 ksi 6.34 ksi 
A 

F = a. 
21.56 ksi 21.56 ksi 21.56 ksi 

f o.477 0.321 0.248 a== 
F 

a. 

f = M = 6.92 ksi ld.17 ksi 18.36 ksi 
b - .,· . 

s 

Fb = 24.00ksi 24.oo ksi 24.oo ski 

. fb = 0.289 o.424 0.765 
F . 

b 

0.766 1.013 



CHAP!'ER VI 

SUMMA.RY AND CONCLUSIONS 

Because of the fact that the structure is statically determinant, 

the analysis has proven to be reasonably simple. It is only cGmplicated 

by the ~ultitude of cumbersome arithmetical calculations, especially the 

matrix solut.ion. The use of the'' electronic computer to do these c~lcu

lations make, this a feasible approach to spanning an area with a column 
' ' 

free structu~e • 

. Nearly any kind of structural member could be used in the fabrica-

tion of this dome - steel rolled sections, aluminum sections, pipe, 

solid timber sections, or glue-laminated sections. Even precast con-

crete could be used, but the connections might prove to be an almost 

insurmountable problem. In the examples a steel section was chosen; 

and it can be noted that for a given span, there Will be very little 

difference in the total stresses in members regardless of the rise. 

This is due to the fact.that as the .rise is increased, the bending 

moments increase and the axial forces decrease. 

A small scaled, wire model was made of a dome of this type. From 

the model, it was learned that there is an unstable condition at the 

edge arches. Rotation could occur in several of the members but without 

effecttng. the stability of the structure as a whole. This is illustra

ted in the Figure 15. To stabilize these members some other members 
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must be applied to the exterior joints to prevent th~ir movement. In s.n 

actual application this could easily and readily be handled with wi~dow 

mullions or framing members for, the exterior walls or the ~alls them

selves. Cables could even be utilized for this purpose. In the 

analysis of the structure it was assumed that these stabilizing members 

were non load b,ea.ring •. Therefore the dome itself will be designed to 

carry the loads within its own frame, but it will need the stabilizing 

members to hold the edge alignment. 

l •. · Recommendations for Further Study. In the writing of this 

thesis several. questions have arisen that might form the basis for some 

future research. The answers to some of these could only be obtaine.d by 

building a large scale model and subjecting it to tests. 

l •. What would be the maximum feasible span and rise for a dome of 

this nature? At what span should the number of divisions be 

increased? 

2. In a .. large scale, accurately. built model, is the instability 

at the edge arches as prevalen~ as in the small model? 

3. One-sided or antisymmetrical loadings, such as those for wind 

and drift, will have what effect upori the structure? 

4. A large s+ngle concentrated load at any joint will have what 

effect upon the structure? 

5. What will be the effect of secondary moments and torsion caused 

by joints not being universal and frictionless as they were 

assumed in the analysis? 



Figure 15. 

Edge Movement 

.p
l\) 
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