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PREFACE 

This thesis is a brief investigation of some aspects of 

isomorphism in linear graphs. The desi~e to initiate this 

study began while I was enrolled in a graduate course concern

ing linear graph theory •and its applications to electrical 

networks.· In particular, it was a question posed by the 

instructor that aroused this interest~ The question was 

stated, ~'Is there a method or cilgori.tbm which will establish 

whether two graphs are isomorphic?'' This thesis answers that 

question affirmatively and outlines a suitcible-method for 

establishing isomorphism. 

The concept of isomorphis~has long been clearly and 

concisely defined. There is, however, only a minimum of 

material on particular cases of isomorphism, and no mono

graphs specifically on testing for isomorphism which could 

be used as a basis for this study. Irving M. Copi's 

INTRODUCTION TO LOGIC was used extensively for logical 

symbolism and theorems. 

Indebtedness is acknowledged to Dr. R. L. Cummins for 

his incisive criticisms and helpful suggestions. Dr. Cummins 

first suggested the topic of testing for isomorphism. Special 

gratitude goes to the Computer Center of Oklahoma State Univer

sity for providing the computer time necessary to complete the 
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program. The library staff of Oklahoma State University has 

been a great help by procuring materials for me. 
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CHAPTER I 

INTRODUCTION 

It was .common in the· 18th Century for a new·area of 

mathematics . to evolve·· from a need for techniques• with which 

to solve the favorite puzzles of the time. It was in this way 

that· Leonard-Euler created· graph ·theory· in the y·ear 1736. [l] 

Eulercreated.(a better·wordmight be formal:ized)·graph theory 

as an aid.to. solving the famous Konigsbergerbridge problem. 

An inte·re.sti-ng .description of· the inception· of" graph theory 

is given in Linear Graphs and'Electrical Netwo-rks by Seshu 

and Reedi . For.those not familiar with graph' theory; the first 

three•.·chapters. of this· book would be an excellent packground 

for the material presented· in°t~is thesis. 

After Euler's isolated contribution, investigation in the 

area•of graph theory lay dormant· for almost·one-hundred years. 

· It was .not .. until· the middle• of·· the 19th Century-- tha·t· a revival 

· of interest. in the study of graphs occurred.· ·This· revival was 

stimulated .. by an:increasing application·of·graph·theory to pop

ular puzzle. problems·;,·· the most· celebrated of whi-ch · is the Four 

Color·Map Co:njecture·which DeMorgan posed around·l850. This 

probtem,, because·· of· its continued· interest to· mathematicians, 

has been responsible formany·contributions to·graph theory. 

1 
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In the early 1930's, Americans became interested in graph 

theory, as witnessed by the numerous papers written in this 

period. The most productive of these writers were Whitney and 

Tuttle. It was around-this time that a German mathematician 

named Denes Konig wrote his pioneer book on graphs; Unfortun

ately, K~nig's book has yet to be translated; in the last five 

or ten years, however, many·books on the subject have been 

published in English. 

Today, graph theory is a·flourishing field. ·rt·is usually 

considered a branch of topology, although it overlaps large 

areas of.set theory, comtiinafion~lanalysis, geometry, matrix 

theory,_logic and many other fields. In graph theory, as in 

:inany·other.areas ·of mathematics, computers· and new methods of 

programming have opened the door to more systematic and 

thorough investigations. 

Definitions of Terms 

In brief, a graph is·a· collection of points and lines 

which connect these points: Two names often used·synonymous-

1y·with a point of a graph are node and vertex~ The lines 

which connect the vertices of a graph·are called elements 

or edges. For identification purposes, the vertices and 

edges· of a graph·are· labeled with numbers. Figure 1 shows a 

·graph which has four vertices and five edges. 

Each edge of a graph has two end-:-points. An edge may 

be attached to a vertex only at an end point. 



FIGURE 1 

Graph with Four- Vertices and Five Edges 

An edge of a graph is said to be incident·at a vertex 

if an·· endpoint of the edge is a:ttache.d .tb: the vertex. Having 

· only two endpoints, a:n edge can thus. be incident at only two 

·vertices· of the graph. · In Figure 1, eµge 2 of the graph is 

incident·at vertices 2 and 4. 

· The degree of a· vertex is the ·number· of· the eqges 

inc·ident at that vertex~ For the graph in Figure 1, the 

degree of vertex 3 is twowh±le·the degree of·vertex 4 is 

three. 

Two vertices are said to·be·connected when there exists 

an edge which is incident to ·both of them·; Vertices 1 and 

4 of Figure 1 are connected by edge·· number· three. Vertices 

which are connected are· spoken of· as neighbors; ·· For example: 

The neighbors of vertex 4 in· Figure 1·are'the vertices 1, 2, 

and 3. 

Two or more edges which are incident· at··· the·· same vertex 

·pair· are called parallel···. edges·; ·An e.dge which·. is incident 

twice at the same vertex is called a self-loop~· Examples of 

par~llel edges and a self~loop are ·shown in. Figure 2. 

A homogeneous graph is a·graph in which all ·the vertices 

are of the same degree. 
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Graph with Parallel Edges 

FIGURE 2 
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Graph with a Self-Loop 

Illustration of Parallel Edges and a Self-Loop 



CHAPTER II 

STATEMENT OF THE PROBLEM 

A linear graph, or topological graph, will be isomorphic 

to another linear graph only if certain conditions exist. An 

algorithm for establishing isomorphism must contain a sufficient . . 

set of these conditions. It seems quite apropos that a concise 

and concrete definition of isomorphism be given at the beginning. 

Definition of Isomorphism 

Two graphs, Gland G2, are isomorphic (or congrue~t)[2] 

if there is a one-to-one correspondence between the vertices 

of Gland G2, and a one-to-one correspondence between the 

edges of Gland G2 which preserves the incidence relationship.[l] 

To prove that two graphs are isomorphic, we must define 

a unique one-to-one correspondence between vertices and edges 

and show that incidence relationships are preserved under this 

co~respondence. If the one-to-one correspondence is found by 

using the fact that all incidence relationships must hold, 

that correspondence would be sufficient to show isomorphism. 

If no correspondence exists such that incidence relations are 

preserved the two graphs are not isomorphic. This Thesis 

gives a method of finding this correspondence if one exists. 

5 
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It was felt that in the first investigation of isomorphism, 

only II reduced" graphs, that is graphs which have no parallel 

edges and no self-loops, should be considered~ 

Preliminary Theorem 

Under the restriction that graphs have no parallel edges, 

Seshu and Reed's definition of isomorphism may be shortened to: 

Two graphs, Gland G2, neither of which 
have parallel ~dges, are isomo~phic if 
there is a one-to-one correspond~nce. 
between the vertices of Gland G2 which 
preserves the incidence relationship. 

Why is this possible? Assume a one-to-one correspondence 

between vertices of Gland G2 exists whi6h preserves the 

incidence relationship, and that neither Gl nor G2 has 

parallel edges. Select any edge in Gl~ call it ed&e k. Since 

k is a single edge, it is the only edge between its end verti-

ces. Let k's end vertices be i and j. Because of the one~to-

one correspondence between vertices, there are two vertices 

of G2, i' and j', which correspond to i and j. All incidence 

, , I , I 
relations hold and thus there must be an edge between 1 and J, 

Since there are no parallel edges in G2, there is one and only 

one edge connecting i' and j'. Call this edge k'. There is 

only one possible correspondence for edge k of Gland that is 

edge k' of G2. By associating each edge of Gl with its two 

incident vertices, locating the corresponding vertices of G2 

and thus the edge connecting them, a one-to-one correspondence 

can be obtained between the edges of Gland the edges of G2. 

Thus, there is a one-to-one correspondence between vertices 
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of Gland G2, and a one-to-one correspondence betwe~n the edges 

of Gland G2 which preserves the incidence rel~tionship. 

Then, according to the original definition, graphs Gland G2 

are isomorphic. This conclusion is supported by the fact 

that the vertex incidence matrix completely defines a graph 

·when the graph has single edges.[3] Since vertex-inciqence 

matrices fully describe graphs with no parallel edges, they 

will be used henceforth as the only definition for graphs. 

Vertex-Incidence Matrix as the Definition of a Graph 

A vertex-incidence matrix is a square matrix of order Nv, 

where Nv is the number of vertices in the graph. Each element 

of the matrix is defined by the following rules: 

A .. = l; if vertex 1 is connected to vertex J• 1,J 
A .. = O; if vertex i is not connected to vertex j. 1,J 
An example of a graph and its associated vertex-incidence 

matrix are shown below. 

FIGURE.3 

011001 
·101100 
110010 
010011 
001101 
100110 

Example of a Graph and its Vertex-Incidence Matrix 
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With graphs which contain only single.edges, the problem 

degenerates to proving the existence or non-existence of a one

to-one correspondence between vertices which preserves 

incidence relationships. Some examples ~ill illustrate the 

concept of isomorphism and clarify later arguments. To 

simplify expressions, the symbol, e, will be used in place 

of the phrase "corresponds to." 

It should be obvious that two identical graphs are iso

morphic. Figure 4 shows two identical graphs and one possible 

correspondence between their vertices. 

Gl 

Vertex 

of Gl 

1 

2 

3 

4 

e 

e 

e 

e 

FIGURE .4 

Vertex 

of G2 

1 

2 

3 

4 

G2 

Two Isomorphic Graphs and Their Vertex Correspondence 

This is, of course, the simplest ccirrespondence. There are 



three other possible correspondences, two of which are shown 

below: 

3 1 e 1 

2 e 3 

3 e 2 

2 4 e 4 

G2 

2 
1 e 4 

2 e 2 

3 e 3. 

3 
4 e 1 

G2 

FIGURE 5 

Other Vertex Correspondences of Gl and G2 

As has been shown, two graphs which are isomorphic may have 

many possible correspondences, although there need be only 

one. 

The isomorphic graphs above are special cases because 

their edges have the same dimensions. Isomorphism deals 

9 

only with the topological properties of graphs. Thus, edges 

have no special length or direction and can be imagined as 

being made of elastic, which may be lengthened or shortened 

and moved as we please. Likewise, vertices may be moved as 

desired. This change in edges and vertices does not disturb 

the connectivity of the graph. Some examples of this property 

on isomorphic graphs are shown in Figure 6. 
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FIGURE 6 

Example of Three Isomorphic Graphs 

In the graphs above, the vertex correspondence between any two 

graphs is: 

1 e 1 

2 e 2 

3 e 3 

4 e 4 

s e s 

6 e 6 

This correspondence can more easily be represented in the 

matrix form; 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

000001 

Row i of this correspondence matrix is associated with vertex 

i in Gl, Column j of the matrix is associated with vertex J 

of G2. If vertex i of Gl corresponds to vertex j of G2, a 1 

is placed in the i, j position. An example is given in Figure 7. 



0 0 l 0 1 e 3 

1 0 0 0 2 e 1 
represents the correspondence 

0 1 0 0 3 e 2 

0 0 0 1 4 e 4 

FIGURE 7 

Illustration of a Vertex-Correspondence Matrix 

The two graphs in Figure 8 are isomorphic. They are shown 

with their respective vertex-incidence matrices, and a 

correspondence matrix which represents a possible isomor

phic correspondence between the vertices of the two graphs. 

If in writing the vertex-incidence matrix for G2, 

column 1 and row 1 were associated with vertex 2, column 2 

and row 2 with vertex 4, column 3 and row 3 with vertex 1, 

and column 4 and row 4 with vertex 3, as the correspondence 

matrix suggests, the result would be a vertex-incidence 

matrix which is identical to the vertex-incidence matrix 

for Gl. In matrix theory this changing of row and columns 

11 

is called permutation. Permutation can also be accomplished 

by multiplication of the matrix of the same form as the 

correspondence matrix. Pre-multiplication of the vertex 

incidence matrix of Gl by CM permutes the rows of VIGl in 

the manner desired. Since the order of indices is reversed 

when post-multiplying, the transpose of CM is used to obtain 

the desired permutation of columns. 



Gl G2 

Two Isomorphic Graphs 

- 10 :-1 0 l l l l l 

l 0 0 l l 0 l 

VIGl ;:: VIG2 ;:: 

l 0 0 l l l 0 l 

l l l 0 0 l l 0 

Vertex--Incidence Matrices 

0 1 0 0 

0 0 0 1 

CM ;:: 

1 0 0 0 

0 0 1 0 

Correspondence Matrix 

FIGURE 8 

Some Matrices of Isomorphic Graphs 

Thus 

[VIGl] ;:: [CM] [VIG2] [CM]T 

The matrix CM is the unknown in this equation. It would be 

possible, using a computer, to check this equation with 

possible CM matrices until an isomorphism is found. In order 
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to find every isomorphism, every possible CM matrix would have 

to be tested. For a graph with 6 vertices, this would require 

6! or 720 tests. By using set theory and the connection 

properties of graphs, a significant reduction of the number 

of necessary tests can be made. 



CHAPTER III 

PROOF OF.THE ALGORITHM 

We will begin by using set theory and proposition~l 

calculus to derive logical expression~ which will be reduced 

by computer techniques. In the following discussion, graph 1 

will be referred to as Gl, and likewise, graph 2 will be 

referred to as G2, 

The symbol P1 , 1 will be equivalent to the statement: 

Vertex 1 of Gl corresponds to Vertex 1 6f G2. In general, 

P .. will be equivalent to the statement: Vertex 1 of Gl 
1,J 

corresponds to Vertex j of G2. Note that the order of the 

subscripts on P is important. The statement:. Vertex i of 

Gl does not correspond to vertex of G2, will by symbolized 

p. . • 
l,J 

Similarly, the symbols C, R, and I are defined to 

represent the following statements: 

C: There exists a one-to-one correspondence between· 

vertices of Gland vertices of G2. 

R: All incidence relationships hold. 

I: Gland G2 are isomorphic. 

Recall the definition of isomorphism: Two graphs Gland 

G2 are isomorphic if there is a one-to-one correspondence 

14 
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between the vertices of Gland G2 ~nd a one-to-one correspondence 

between the edges of Gl Snd G2 which preserves the incidence 

relationships.[5] We have shown that for connected graphs 

with no parallel edges this definition can be rewritten as: 

Two graphs Gland G2 are iso~orphic if there is a one-to-one 

correspondence between the vertices of Gland G2 which preserves 

the incidence relationships. 

Implication of the Definition 

Symbolically, this definition could be stated: I being 

true is equivalent to C being true and R being true. Written 

in logical shorthand: 

I +-+ C R 

The logical symbols from Copi[4] will be adopted in writing 

all logical expressions. 

Logical Relations 

Suppose we have two graphs, Gland G2, both with Nv 

vertices~ which we wish to test for isomorphism. Let the 

vertices of Gl be labeled 1,2, ..• N and the vertices of G2 be v 

labeled.1,2, ..• Nv. If there exi~ts a one-to-one correspondence; 

i.e. C is true, it is necessa~y that vertex i of Gl correspond 

to one of· the vertices of G2. Symbolically: C implies that 

P. 1 is true or P. 2 is true or,. or P. N is true. 
l, i, l, v 
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Therefore, we write 

C + [P. l v P. 2 v P. 3 ... v P. N ] 
1, 1, 1, 1, V 

If this is done for each vertex of Gl, we would have: 

• • .• v p ) 
2,Nv 

( p . 1 v p ' 2 v p ' 3 ... v p ' · N ) . • . ( PN 1 v PN 2 ... 
1, 1, l, 1, V V' v, 

v PN N ) ] 
v' v 

By defining 
Ny 
-,1 f(.P. ·k) 
i=l 1 ' 

to be.the logical product("and" 

operation) of expressions involving P. k where i ranges from 1 
l' 

to Nv, we may more conveniently write the above implication as: 

J:h, 
C + [ f I (P. l v P. 2 v P. 3 i=l 1, 1, 1, 

p. N ) ] 
1, v 

This represents all possible associations. As an example: 

if Nv = 2 

C + [ (Pl,l v Pl,2) (P2,l v P2,2 ) ] 

Using the principle of distribution[4], this implication may 

be expressed 

Since this expression contains all possible associations, the 

terms P1 , 1P 2 , 1 and P1 , 2P 2 , 2 are included. These terms state 

that some vertex of one graph corresponds to two vertices of 

the other graph. This is a correspondence, but it is not a 

one-to-one correspondence. Further restrictions must be 

placed on the correspondence to make it one-to-one. 

If vertex i of Gl corresponds to vertex j of G2, we can 

write, because of the necessary o~e-to-one correspondence: 
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C ~{P .. +[ (P. 1 P. 2· ... P .. 1P. ·+i· .. P·. N· ) 
·1,J . 1, 1, 1,J- 1,J ·.1, 'V 

( p""":'" • p 2 . • .•.• p ' 1 . p. + 1 .••.• p . N ) J } 
1, J , J 1- , J 1 ; J 1, V 

NV -By defining fl 
k=l 

Pi,k to be the logical product of Pi,k terms 

where k ranges from 1 to Nv, we may more conveniently write the 

above implications as: 

c + { p .. 
1,J 

+[ ( 
Nv -II 

k=l 
kt j 

p. k) ( 
1' . 

Nv -II 
k=l 
k;t j 

pk . ) ,J J } 

Note that for obvious reasons, the term P .. is omitted from 
1,J 

the logical product since c~ [P .. + ~- .] would not be a 
l,J l,J 

valid statement. 

By_absorption[4], 

Ny -[P. . c + + ( p. . ) ( I I 1,J 1,J k=l 
k;t j 

If c is true and vertex 1 of Gl 

only to j ' of G2, it should be 

Nv -· p, k c +[ ( p. . ) ( II 1,J k=l 1, 

k;t j 

is true. 

By Material Equivalence[4] 

c + [ p . . ++ ( p . . ) ( 
1,J 1,J 

..!v I\ . P. k) ) J ( II 1, k=l ,J 

k;ti 

corresponds to vertex J ' and 

apparent 

N v 
) ( -I I 

k=l 
k;ii 

that 

p . ) 
k 'J 

the statement 

+ P. J 
.1 'J 

pk . ) 
'J 

J 

This simply means that under a 1-1 correspondence, vertex i 

of Gl corresponds to one and only one vertex of G2 and ve~tex 

j of G2 corresponds to one and only one vertex of Gl. 
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This statement is very important to the analysis and will 

be referred to sever;al times. The statement eliminates self-

contradictory terms of the form P1 1 ... P ....• P. k" By 
' l,J i, 

replacement of P .. with its equivalent expression, we would 
l,J 

have 

pl 1 · . p' ' 0 • "p. · k .. ' l~J i, 
++ pl 1 · .. p . . P. lp. 2 . 0 • p ' k' ' 0 p . k' ' l,J i, l, . l, l, 

The logical product P. k P. ]< would be interpreted: vertex l 
i, i, 

of Gl corresponds to vertex k of G2 and verte~ i of Gl does not 

correspond to vertex k of G2. This statement is obviously 

false, and therefore the expression 

pl 1 ' ' ' p. ' p' lp. 2 p. k p. k ' l,J i, l, i, l, 
is false. The equivalence will be used often in reducing 

complex statements as shown in the following example. 

Assume Nv = 2' as before, then 

c + [Pl,1P2,lv Pl lp2 2v Pl 2P2 lv pl 2 P2,2] 
' ' ' ' ' 

c + [P ++ pl 1 Pl,2 p2 1 ] 
1,1 

' ' 
c + [P ++ pl 2 Pl,l P2,2 ] 

1,2 ' 
c + [P ++ p2 1 Pl,l p 2"; 2 ] 

. · 2, 1 
' 

c + [P 2, 2 ++ p2 2 Pl,2 P2,1 ] 

' 
By replacing each p, in the first implication with its l,J 

equivalent given in the succeeding statement we obtain 

C + [P1,1P1,2P2,1P2,1P1,1P2,2 v P1,1P1,2P2,1P2,2P1,2P2,1 

By elimination of self-contradictory terms, the above statement 

reduces to 
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For graphs with more than 3 or 4 vertices this expression 

showing the existence of a correspondence becomes quite cum-

bersome. For this reason, it will be written 

c -+ [ ( p. lv p. 2 v p . 3 ' ' 'p. N ) i, i, i, i, v J 

By defining the right side of the above implication as Q, 

it may be written 

c -+ Q 

And from previous statements 

c -+ { P. ++[P .. ( 
i,J i,J 

by defining S. o as { P. . ( 
i,J i,J 

the above may be written 

c -+ [ p O O +-+ s O O J 
i,J i,J 

Now, since 

N;v 

kTJl P. k) ( 
i' 

k;t j 

NV -II 
k=l 

p O k) ( 
i, 

k;t j 

Nv 
1T 
k=l 
k;ti 

~ 
I I 

k=l 
k;t j 

pk . 
'J 

pk .) 
'J 

Q implies the existence of a correspondence 

And 

) J 

} 

} 

Po .+-+ s .. for all i and J, states that any correspondence 
i,J l,J 

is one-to-one. 

Therefore 

[ ( p O O +-+ s O O ) • Q J -+ 
i,J i,J 

c 

By material equivalence[4], 

c +-+ [ ( p . . +-+ s . . ) Q J 
i,J i,J 
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We have established an equivalent expression wh~ch describes 

all the possible one-to-one correspondences. 

We now pursue a logical expression equivalent to R. We 

observe that no vertex of Gl which is of degreed can correspond 

to a vertex of G2 which is of degree other than d. Thus we 

can separate the vertices into classes by their degrees. It 

follows that: Any vertex of Gl which is of degreed must 

correspond to some vertex of G2 which is contained in the set 

of vertices of G2 which are of degreed and must not correspond 

to any vertex of G2 which is of any degree other than d; 

Expressed Symbolically: 

R -+ (Ph,i v Ph,j v Ph,k" .Ph,e) (Ph,w1\,x'.i\,y· .. Ph,z ) 

his a vertex of Gl of degreed. Each i,j,k, ... e is a 

vertex of G2 of degreed. Each w,x,y ... z is a vertex of G2, 

not of degreed. 

If this is done for each vertex of d~gree d, it could be 

written in the product form: 
,Nv 
II (Ph . v Ph .v Ph k'" .v Ph )] 

h - I , i 'J , , e -n n, 
R -+ { [ 

Nv 

cJJn ( Ph Ph Ph .. Ph ) J 
l1 ,w ,x ,y ,z 

is a vertex of degreed). 

d ranges through all possible values 

IfS .. and Rare true, it follows that each neighboring vertex l,J 
of i of Gl must correspond to one of the neighbors of vertex j 

of G2, and not to any other vertex of G2. That is, the set of 

vertices which are the neighbors of i of Gl is equal to the set 

of vertices which are the neighbors of j of G2 and not equal to 

the set of vertices which are not neighbors of j of G2. 



This implication assures a one-to-one correspondence within 

the degree classes of Gland G2. 

Written Symbolically: 
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R • S . . + { [ ( P v P v P ... ) ( Pb v Pb v Pb· .• ·. ') •.•. ] 1,J a,m a,n a,q · ,m ,n ,q 

[ (P P P 
a,u a,w a,x ... ) (Pb p p ... ) ,u a,w a,x . . • J } 

where a,b,c are neighbors of 1. 

rn, n are neighbors of j . 

and u,w,x are not neighbors of j . 

Again, using the logical product notation, the above implication 

is written: 

R S .• 
1,J 

Nv -+ { [ I\ ( pk v pk v pk .•• ) ( pk pk pk pk ••• ) J } k=l ,m ,n ,q ,u ,v ,w ,x 

For simplification,define the right hand of the above implica-

tion as w .. and rewrite as: 
1,J 

R S. • + W .• 
l,J 1,J 

By exportation, the above equation 1s changed to; 

R + (S •• + W •• ) 
1,J 1,J 

If all incidence relations hold, this expression should be 

valid for ail combinations of the double subscript pair (i,j). 

That is, 

••• ( S +W ) ] n,n n,n 

-Written with f I notation 

NV -R+ II (S .. +W .. ) 
i=l l,J 1,J 
j=l 
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If vertex i of Gl corresponding to vertex j of G2, i.e. (S .. ), 
l,J 

implies that the subset of vertices of Gl which are nei15hbors 

of i is in a one-to-one correspondence with the subset of ver-

tices of G2 which are neighbors of j, CW .. ), for all combinations l,J 
of the subscript pair Ci,j), then all incidence relationships 

hold CR). 

Written logically: 

~ 
fl CS .. +W .. ) 

i=l l,J l,J 
[ J + R 

j=l 

Proof by contradiction: 

Assume that Gland G2 are reduced graphs with the same 

numb.er of vertices and the same number of edges. Supp·ose that 

1:!.v 
t I ( S · · + W. . ) is true and that R is false. If all incidence . . l,J l,J 1= 1, J = 1 

do not hold(~), there is at least one pair of connected 

vertices of Gl (call them k and t) 

I Gl G2 

which correspond to two vertices k' and ' of G2 which are not 

connected. If this is true, then there is at least one 

neighbor of k (meaning t) which does not correspond to any 

neighbor of k'. Therefore, the neighbor sets of k and k' cannot 

be in a one-to-one correspondence. Symbolically stated: 

+ 
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The hypothesis stated that ( S. • -+W. • ) for all cases -of i and 
l,J l,J 

j and thereiore it is necessarily true that 

A contradiction has been obtained. Therefore the assumption 

that R is false is false. Therefore, R must be true, which 

leads to: 

( S. • -+W. • ) -+ 
l,J l,J R 

By material equivalence, the expressions 

and 

NV -R -+ '1 

!_v 

i=l 
j=l 

(S •• + W •• ) 
l,J l,J 

ti (S •• -+ W •• ) -+ R 
i=l l,J l,J 

f=l 
become 

R +-+ (S •• -+ W •• ) 
l,J l,J 

An equivalent expression for (S. , -+ W .• ) is (S •• +-+S .• w .. ) 
l,J l,J l,J l,J l,J 

as proved by the following truth table: 

s w SW s-+ w S +-+ SW (S -+W)+-+ (S+-+ SW) 

T T T T T T 

T F F F F T 

F T F T T T 

F F F T T T 



Thus, we may rewrite the equivalence for Ras: 

2:.v 
R ++ f I Cs . . ++ s . . w . . ) 

i=l l,J l,J l,J 

j=l 

Three of the equations thus far presented are of primary 

importance for completion of the proof. They are: 

I ++ C • R 

c ++ [ ( p . . ++ s . . ) • Q J 
l,J 1,J 

R ++ [ 
Nv --, I cs. . 

i=l l,J 
j=l 

++ s. . w. . ) J 
l,J l,J 

By the Rule of Replacement[4], these three equations reduce 

to: 
Nv 

I ++ ( p . . ++S . . ) • Q • [ 
l,J l,J 

-.I I 
i=l 

cs ... ++s. . w. . ) 
l,J l,J l,J 

J 

j=l 

Consequences of Logical Relations 

24 

In simplyfying the right hand side of the above expression, 

there are two possible outcomes: 

1) If the expression is self-contradictory and all 

terms vanish, then the expression is false and 

denies the existence of any one-to-one correspond-

ence between the vertices of 81 and the vertices 

of 82, such that all incidence relations hold. 

Conclusion: 81 and 82 are not isomorphic. 

2) If the expression is not self-contradictory, it 

is a true statement and shows existence of a one-



to-one correspondence between the vertices of 

Gland the vertices of G2 such that all incidence 

relations hold. 

Conclusion: Gland G2 are isomorphic. 

25 



CHAPTER IV 

DESCRIPTION OF PROGRAM 

A Fortran program which simplifies the logical expressions 

described in Chapter III is listed and discussed in Appendix 

A. This program was written for homogeneous graphs only, 

but may be converted for the general case by changing sub

routine BMXX. An explanation of the necessary steps for this 

conversion is also included in Appendix A. 

Some information about each pair of graphs to be tested 

for isomorphism must be read into the computer. The only 

information necessary would be some means of defining tpe 

neighbor sets of each vertex of both graphs. Vertex-incidence 

matrices will serve the purpose while keeping the input at 

a minimum. 

There are two input cards to the program; one for each 

graph. On each input card there is a graph identification 

number (NG), the number of vertices in the graph (NV) and 

elements of the vertex-incidence matrix taken rowwise by 

columns. 

Consideration is now given to how each logical expression 

will be stored in memory. Boolean Algebra is used throughout 

the program whenever numerical values represent logical 

26 



expressions. In Boolean Algebra, any logical expression 

which is true is replaced by 1. Likewise, any false ex-

pression will be replaced by a 0. Of necessity, the Boolean 

l's and O's must have a 'weight" or place value, just as the 

"weights" unit, tens, hundreds, etc. serve to clarify our 

decadic number system. 

A special matrix will be used to handle all expressions 

of the W. . form. l,J Consider the matrix: 

el,l el,2 

e2,l e2,2 

Each element of this matrix has a truth value (1 or 0) and a 

"weight" ( P. . ) . l,J If the truth value is 1, the weight is 

entered into a secession of "or" terms. If the truth is O, 

the complemented weight is entered into a secession of "and" 

terms, which is then put into logical product form with the 

secession of "or" terms, Expressions are created in this 

manner only for rows. The logical product of all such row 

expressions is logically equivalent to the matrix. 

Example: Suppose the first row of this matrix were 



0 0 1 0 1 1 

Its equivalent row expression would be (P1 , 3 vP1 ,. 5 v P1 , 6 ) 

(Pl,l Pl,2 fl,4) " 

Consider 

1 0 1 

1 1 0 

O l 1 

its equivalent expression would be 

By using commutation [ ·4 J this can be rewritten as 

(Pl,l v Pl,3) (P2,l v P2,2) (P3,2 v P3,3) Pl,l P2,3 P3,l 

This form is exactly the same as for thew .. with one 
1,J 

exception. The W .. expressions describe only the possible 
l,J 

28 

correspondences between the neighbors of i and the neighbors 

of J ' they say nothing of the possible correspondences between 

the other vertices of the two graphs. Since the w. terms l,J 
give no information as ta the vertices which are not neigh-

bors of i and j, it must be assumed that all correspondences 

between them are possible. This assumption is sometimes 

referred to as putting the expression in "cannonical" form. 

The S .. w .. expressions can be written from the input vertex-
1,J 1,J 

incidence matrices. Suppose that the input vertex-incidence 

matrices for Gland G2 are as shown in Figure 5. The neighbors 

of vertex 1 of Glare 2, 3, and 6. The neighbors of Vertex 1 
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011001 001011 

101100 001101 

110010 110010 

010011 010011 

001101 101100 

_ 10 0110 _I 110100 

FIGURE 9 

Illustration of Program Input 

of G2 are 3, 5, and 6. 

Thus: 

Pl,lwl,l ++ Pl,l(P2,3 v P2,5 v P2,6) (P3,3 v P3,5 v P3,6) 

(P6,3 v P6,5 v P6,6) (P2,2 P2,4 P3,2 P3,4 P6,2 P6,4) 

Replacing P1 , 1 with s1 , 1 and rearranging terms the above 

equivalence is rewritten 

81,1w1,1 ++ 

[P4,1P4,3p4~5F4,6J [P5,1P5,3P5,5P5,6 J 

[ (P6,3 v P6,5 v P6,6) 1\,1I\,2i\,4J 

The matrix equivalent to s1 ~1w1 , 1 would then be 

l 0 0 0 0 ~I 0 0 1 0 1 

0 0 1 0 1 1 

0 - 0 - 0 0 

0 - 0 - 0 0 

0 0 1 0 1 1 



30 

The blank locations are replaced with ones to put the matrix 

in "cannonical" form. 

This 

Q 

Q 

1-
1 0 0 0 0 o-l 
0 0 1 0 1 1 

0 0 1 0 1 1 

0 1 0 1 0 0 

0 1 0 1 0 0 

0 0 1 0 1 1 

logical matrix can be used to represent Q also. 

Ny - (P. l v p. 2 ) = J I v p. 3 ... v P. N 
i=l l, l' i, l, v 

1 1 1 1 1 • • Ill • • 1 

1 1 1 1 1 O II fl • t!! 1 

1 1 1 1 1 l'l •• 41 • 1 

. . . . = . . . 

1:. 1 1 1 1 1 

We now replace each P, , term in the Q matrix with its 
l 'J 

equivalent S, ,W, . term to obtain what may be called a matrix 
i,J l,J 

of matrices. Using the vertex-incidence matrices shown in 

Figure 5, the matrix of matrices is formed as shown at the 

end of Appendix A. 

The matrix in position (1,1) denotes all possible 

correspondences if s1 1 is true. The possible correspondences 

' 
with vertex 2 of Glare 3, 5, and 6. The subroutine BMXX(I,J) 

finds the P. , matrix according to its arguments I and.J and 
l,J 

stores the result in A. , 1 . The BMXX subroutine also requires 
l 'J ' 
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the vertex-incidence matrices of both graphs. To see how the 

two P; . matrices combine, rewrite Qin the form 
1,J . 

Q ++ (Pl;l v Pl,2 v Pl,3 v Pl,4 v Pl,5 v Pl,6) • 

(P2,l v P2,2 v P2,3 v P2,4 v P2,5 v p2 6) . 
' . 

[ *' ( p. 1 v p. 2 P. N ) J 
i= 3 1, 1, 1, v 

Using distribution, 

Q CP1,1 P2,l v Pl,l P2,2 v Pl,l P2,3 v Pl,l P2,5 

v Pl,1 P2,6 v Pl,2 P2,l v Pl,2 P2,2 v •..• Pl,6 P2,6)• 

~ 
[ 11 (P. l v P. 2 v ..• P. N )] 

i=3 1, . 1, 1, v 

In this expression P1 , 1 is first combined with all P2 ,i terms, 

then P1 , 2 is combined with all P2 ,i terms, then P1 , 3 is used 

and so on 

What 

until Pl, 6 is combined with all P 2 , i terms. 

happens when the logical product of two P .. t~rms 
. 1 'J 

is taken? Before examining this question further, it will be 

easier to start with a simplier example. Suppose the ex-

pression Tis to be reduced to its lowest terms, T being 

defined as follows: 

T = ( A v B v C v D ) B E F 

The reduction takes place as follows: 

Distribution is used to obtain the f6rm 

T = ABE f v v C B E F v DBE F 

The term BB E Fis self-contradictory, while the others are 

not. 

The self-contradictory term is eliminated to obtain 

T = ABEF v BCBEF v DBEF 



Again; using distribution the expression simplifies to: 

T = (Av C v D) §ff 

This example can be extended to larger expressions ... by· using 

commutatioJl.. [ 4- ] The· following reduction is an example of 

this extension. Suppo~e a reduction is to be-made with 

T = [ ( P 1 , 1 ) (P 1 , 2 i\ , 3 P 1 , 4-i\ , 5 i\ , 6 ) ( p2 , 3 v P 2 , 5 v P 2 , 6 ) 

(P2,1P2,2P2,4-)(P3,3v P3,5v P3,6)(P3,1P3,2P3,4-) 

(P4- 2v P4- 4-)CP4- lp4- 3P4- 5P4 6) (P5 2v P5 4) 
' ' ' ' ' ' ' ,. 
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(P2,1P2,2P2,4-P2,5P2,6) (P3,1v P3,2v P3-~5)(.P3,3P3,4-P3,5> 

(P4 , 1v P4 , 2v P4 , 5 )(P~, 3f> 4 , 4P4 , 6 ) CP 5 , 4v P5 , 6 ) 

<Ps,1Ps,2Ps,3Ps,s><P6,4-v P6,6) (P6,1P6,2P6,3P6,5)J 

Using the rule. of commutation, the self-contradictory terms 

may:, be brought together regardless of- their· origim3.L position 

and simplified as sh0wn in the example on page 31. The self-

contradictory terms of the above· expression are: 

(P2,3v P2,5v P2,6) (P2,5P2,6). 

(P3,3v P3,5v P3,6) (P3,3P3,6) 

(P 4 , 2v PI.J.,4-) PI.J.,4-

(PS,lv P5,3v P5,5V PS,6) PS,6 

(P6,3v p v 
6,5 P6,6) l\ '3 

(Pl,lv Pl,2v Pl,5) P1,2P1,s 

<i?3,1P3,2> (P3,lv P3 2v 
' 

P3,5) 



0\ '6) ( p 5 '4v p 5 '6) and 

(~6,4) (P6,4v P6,6) 

The above example is the same as simplifying the e~pression 

P1 , 1P2 , 3 in the example on page 56. This simplification 

eliminates terms which have a "one" in one Pi,j matrix and a 

"zero" in the corresponding position of the other. Like 

digits in corresponding matrix positions do not cause any 

simplification to occur. The MPY subroutine makes use of 

these rules when it is called to take the logical product 

of two Pi,j matrices. Using matrix notation P1 , 1P 2 , 3 can be 

written: 

100000 1110010 1000000 
001011 001000 0010000 
001011 110010 0000100 = 01010 0 110010 0100000 
01010 0 000101 0001000 
001011 000101 0000010 

It follows from the combination P1 , 1r 2 , 3 that if vertices 

1 and 2 of Gl correspond to vertices 1 and 3 of G2, respectively, 

it must be true that vertices 3, 4, 5 and 6 of Gl must corres-

pond to vertices 5, 2, 4 and 6 of G2 respectively. In essence, 

this is the basis for a reduction in the number of necessary 

tests. In this form of simplification, there are two irregular 

circumstances which might occur~ The first is that in a 

series of P, . correspondences a row or column of all zeros 
l,J 

could occur. 
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Such as this: 

1 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 0 0 1 

0 1 0 0 1 

If it did, it would mean that there was no possible correspond

ence between some vertex of one graph (designated by the row 

or column of zeros) and any of the vertices of the other graph, 

and therefore the series is not a possible correspondence. 

The second circumstance that might occur is represented 

by the following ·ma-trix. 
,j. column 2 

Ii 0 0 0 0 

0 0 1 0 0 

row 3 + 0 1 0 0 0 

0 1 0 1 1 

0 1 0 Ll 

In this matrix there is a single P term, which says that with 

the combinations .taken thus far, there is only one possible 

correspondence; i.e., vertex 3 of Gl must correspond to vertex 

2 of G2. 

If this P·; • ierm is replaced by its equivalent S 1,J 

expression, the terms P4 , 2 and P5 , 2 become self-contradictory, 

and are replaced by zeros. After each step of combining 

matrices, the program control is transferred to subroutine 

Zero, which checks for the occurence of these two circumstances 

and takes appropriate action if they do occur. 



Knowing that the subroutines BMXX, MPY and ZERO are 

available, the problem now is one of combining the P. · . matrices 
i 'J . 

in such a way that all possible correspondences are considered. 

A nest of DO loops was set up to accomplish this function. 

The skeleton for this nest is: 

DO 10 Il = l,N 

IF (N.EQ.l) GO TO 101 

DO 20 12 = l,N 

IF(N.EQ.2) GO TO 101 

DO 30 I 3 = l ,N 

DO 90 19 = l,N 

. 
IF(N.EQ.9) GO TO 101 

DO 100 110 = l,N 

GO TO 101 

This nest of DO statements will test all correspondences. 

While the program was written for a maximum of 10 vertices 

per graph, there is no need to test all 10! cases when N<lO. 

For this reason, IF statements are inserted to skip unnecessary 

tests. 

From the rules set out for finding the logical product 

of two P .. matrices, it can be seen that in order to combine 
i,J 

P .. with P k without obtaining a contradiction, there must 
i 'J !l, 

be a "l" in the !l row and k column position of the matrix P. . . i,J 



Examine ··the··cas·e· ··of-- combining ·P · with the matrices P2 . . 1,1 ,1. 
For the cases where i takes on the values 1, 2, or 4, the 

matrix P1 , 1P2 ,i will have a row of zeros and is therefore 

self-contradictory. By checking for the occurrences of ones 

in row two of matrix P1 , 1 (this is done by cy6ling subscript 

I2) and eliminating those cases where they do not appe~r, a 

significant reduction in the number of correspondences which 

must be interrogated·is made. In this example, the products 

l,l ~,l , P1 , 1P2 , 2 and P1 ,i P2 , 4 are self:..contradictory, 

and when combined with any other P .. matrices, remain self-
1,J 

contradictory. All the possible correspondences 
N 

Pl,l (P2,l v P2,2 v P2,4) ( l1; Pi,j) 
j :;:l 

may thus be disregarded. This amounts to a reduction of 3·4! 

or 72 tests. 

The subscripts i and j are cycled such that matrix P1 , 1 

is combined with the first matrix of the form P2 . which 
,1 . 

fulfills the conditions described above. That matrix would 

be P2 , 3 . As shown in the example on page 32, the combination 

P1 , 1P2 , 3 leaves only one correspondence to test. At this 

level, the number of tests eliminated is 4! -1 or 23. After 

the above case is fully tested by cycling the subscripts 

I3 -I6 through the values 1 to 6 and eliminating unneccessary 

tests at each level of the DO loop nest, the cases P1 1P2 5 
' . ' 

and P1 1P2 6 are examined in the same manner. At this point 
' ' 

subscript Il is changed to 2 and the process is repeated with 

P1 , 1 replaced by P1 , 2 . Each correspondence which survives 

all levels of testing represents an isomorphism of the two 
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graphs Gland 82. The correspondence matrices are saved up in 

groups of ten and then printed out. An example of this print

out is shown in Appendix B. An abundance of comment cards 

have been placed in the program with the hope that they will 

help to clarify the preceding description. 



CHAPTER V 

CONCLUSION AND DISCUSSION 

The importance of this thesis is that there is now 

available a tool for classifying graphs. Consider the case 

where identical vertex incidence matrices written from one 

graph are used as input to the program. When this is done, 

the output is a list of all automorphisms of the graph. In 

some cases, it is easy to determine that two graphs are iso

morphic; but it is not easy, in general, to enumerate all 

possible isomorphisms by inspection or even by the exhaustive 

process of trying all possible combinations. This is parti

cularly true when the graph is non-planar. It is in this 

situation that the computer excels in speed and accuracy. 

Graphs cannot only be classified by their number of auto

morphisms, but also by their symmetries and the number of 

permutations necessary to change each automorphic vertex

correspondence matrix to the unit matrix. It is the intention 

of the author to continue his study of graphs by using the 

output of the isomorphic testing program for investigation of 

the symmetry and permutations of isomorphic graphs. 

The choice of investigating homogeneous graphs was two-

foldo First, it was the simpliest structure to study. Second, 
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homogeneous graphs have special significance in map coloring 

studies. In particular, homogeneous graphs of order three seem 

to be the key to the solution of the Four-Color Map problem. 

If the program inputs are the vertex-incidence matrices 

of two graphs which are seemingly non-similar, the program 

will test for the existenee or non-existence of isomorphisms 

between the two graphs. 

The speed of the program depends upon the computer used, 

the number of vertices in the graphs being tested and also 

upon the number of vertex-correspondence matrices which must 

be printed as output. As shown in the examples in appendix 

B, the case where graphs 11 and 12 were tested took 18.6 

seconds. to test and print 4 vertex-correspondence matrices. 

However~ when testing graphs 9 and 10, which have 120 iso

morphisms, the running time was 32.4 seconds. This increase 

is due to print-out time since graphs 11 and 12 have the 

greater-number of vertices and thus require more testing time. 

The time required for typical examples has been within 

reason. . It is interesting to note, however, that a complete 

graph, ( i. e, , a graph in which each vertex is connected to 

every other vertex) with 10 vertices would require approxi

mately 10 hours of testing time and 50 hours printing time 

for a total of 60 hours or over 2 days. It is apparent 

that such cases as this should be avoided. This could be 

accomplished by not printing out the vertex-correspondence 

matrices and changing the program to terminate after one 

isomorphism is found. 



The author not only intends future investigations of 

symmetry and permutations, but also plans to discover the 

answer to some interesting questions which have occurred to 

him. For instance, what is the number 6f vertex correspon

dences which must be chosen before isomorphism or non

isomorphism can be detected? Or, are all graphs which have 

the same number of vertices, elements and trees isomorphic? 

The author has found a fascinating life-time project. 

4- u 
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MAIN PROGRAM 

INTEGER A,SUM,C 
c 
C THE ORDER OF SUBSCRIPTING DIMENSIONED VARIABLES IS IY ROW, COLUMN, 
C LAYER 
c 

c 

DIMENSION MCGl<l0,10l,MCG2(10,10l,A(10,10,10l,C<lO,l0,10l 
COMMON N,A,MCG1,MCG2,SUM 

1 FORMAT (214,70Il/(72Jlll 
2 FORMAT !//63X,5HINPUT/54X,24HNODE CONNECTION MATRICES> 
3 FORMAT(40X,5HGRAPH,I4,34X,5HGRAPH,I4/l 
4 FORMAT!lH0,7HGRAPHS ,14,5H AND ,I4,15H ARE ISOMORPHIC I 1H0,42HALL 

1 POSSIBLE VERTEX CORRESPONDENCES FOLLOW l 
5 FORMATClH ,10Il,9(2X,10Il)) 
6 FORMAT!1H0,34HNON-EQUAL ENUMERATION OF VERTICES I > 

7 FORMAT!lH0,38HNO POSSIBLE ISOMORPHIC CORRESPONDENCES /l 
8 FORMAT<lH0,34HNON-EQUAL ENUMERATION OF ELEMENTS /l 
9 FORMAT11H0,25HNUMBER OF VERTICES EQUALS,I8,6X,25HNUMBER OF ELEMENT 

15 EQUAL.S,IB /l 
16 FORMAT<lHO) 
17 FORMAT (39X,10Il,33X,10Ill 
18 FORMATl//13H NET TIME IS ,F6.2,8H MINUTES) 
19 FORMATl//lH ,38HNUMBER OF POSSIBLE ISOMORPHISMS EQUALS,IBl 
21 FORMATl//lH ,7HGRAPHS ,I4,5H AND ,I4,19H ARE NOT ISOMORPHIC) 
22 FORMAT<59X,16HISOMORPHJSM TEST) 
23 FORMAT<lH ,lOill 

C INITIALIZE 
( 

C STORAGE BLOCK A IS WHERE THE LOGICAL MATRICES ARE COMBINED 
c 
C IF Gl AND G2 ARE ISOMORPHIC, THE VERTEX-CORRESPONDENCE MATRICES 
C ARE SAVED, FOR LATER PRINTOUT, IN STORAGE BLOCK C 
c 

lOOU CALL CLOCK(TIMEONl 
1001 DO 1002 I=l,10 

DO 1002 J=l,10 
MCGl( I ,J l =O 
MCG2<I,J>=O 
DO 1002 K=l,10 
A<I,J,K)=O 
C<I,J,K) = 0 

1002 CONTINUE 
c 
C THE VARIABLE LOG KEEPS AN ACCOUNT OF THE NUMBER OF ISOMORPHISMS• 
c 

c 
c 

LOG= 0 

C READ THE IDENTIFICATION NUMBER, NUMBER OF VERTICES, AND VERTEX-
( INCIDENCE MATRIX FOR GRAPH 1. 



c 

c 
c 
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READ15,ll NGl,NVl,l(MCGllI,J),J=l,NVl),I=l,NVl) 

C READ THE IDENTIFICATION NUMBER, NUMBER OF VERTICES AND VERTEX-
( INCIDENCE NATRIX FOR GRAPH 2 
c 

READl5,l) NG2,NV2,((MCG21I,J),J=l,NV2l,I=l,NV2l 
c 
C PRINT HEADINGS AND LABELS 
c 

c 
c 
c 
c 
c 

c 
c 
c 

CALL PAGE 
WRITE(6,22) 
WRITE(6,2) 
WRITE16,3) NG1,NG2 

FIND THE MAXIMUM OF NVl AND NV2e THIS IS DONE SO THAT ALL 
INFORMATION READ IN IS PRINTED OUT EVEN THO THE NUMBER OF VERTICES 
OF THE GRAPHS ARE UNEQUAL. 

N = MAXO(NV1,NV2) 
1 

PRINT OUT BOTH VERTEX-INCIDENCE MATRICES• 

DO 1003 l=l,N 
1003 WRITE16,17> IMCGl(l,J>,Jal,lOJ,tMCG2(I,J),J=l,10l 

c 
C CHECK TO SEE THAT THE NUMBER OF VERTICES IN EACH GRAPH ARE THE SAME 
c 

c 
c 

IF INVleNE.NV2) GO TO 109 

C BY SUMMING THE NUMBER OF ONES IN EACH VERTEX-INCIDENCE MATRIX WE 
C OBTAIN NUMBERS WHICH ARE TWO TIMES THE NUMBER OF EDGES OF EACH 
C GRAPH. THESE NUMBERS ARE USED TO SEE IF THE TWO GRAPHS HAVE THE 
C SAME NUMBER OF EDGES. 
c 

IELSl = 0 
IELS2 = 0 
DO 1004 I = 1,N 
DO 1004 J=l,N 
IELSl = I ELS 1 + MCGl( I ,J> 
IELS2 = IELS2+MCG2(1,J) 

1004 CONTINUE 
IF (IELSleNE.IELS2) GO TO 111 
!ELS= IELSl I 2 

c 
C PRINT OUT THE NUMBER OF VERTICES AND THE NUMBER OF EDGES. 
c 

WRITE 16,9) NVl,IELS 
c 
C ENTER LEVEL 1 OF DO LOOP NEST -- M= l 
c 

DO 10 Il=l,N 
CALL BMXX(l,Il) 
IFIN.EQ.l) GO TO 101 



c 
C EXIT LEVEL 1 - ENTER LEVEL 2 
c 

c 

DO 20 12=1,N 
IF!A(2,12,lleNEell GO TO 20 
CALL BMXX(2,12) 
CALL MXP(2) 
CALL ZER0(2l 
IF(SUMeEOeO) GO TO 20 
IF!N.EQ.2) GO TO 101 

C EXIT LEVEL 2 - ENTER LEVEL 3 
c 

c 

DO 30 13=1,N 
IF!A(3,I3,2leNEell GO TO 30 
CALL BMXX13,13) 
CALL MXP(3) 
CALL ZER0(3) 
IF<SUM.EQeO) GO TO 30 
IF(NeE0.3) GO TO 101 

C EXIT LEVEL 3 - ENTER LEVEL 4t•••••••••••••••••ETCe 
c 

DO 40 14=1,N 
IF<A<4,14,3leNE.l> GO TO 40 
CALL BMXX(4,I4) 
CALL MXP(4) 
CALL ZER0(4l 
IF<SUM.EQ.O) GO TO 40 
IF(NeEOe4) GO TO 101 
DO 50 15=1,N 
IF(A(5,I5,4)eNEel) GO TO 50 
CALL BMXX<5,15) 
CALL MXP(5) 
CALL ZER0(5) 
lFISUM.EQeO) GO TO 50 
IF!NeEQ.5) GO TO 101 
DO 60 16-=1 ,N 
IF(A(6,I6,5).NE.ll GO TO 60 
CALL BMXX<6,I6) 
CALL MXP(6) 
CALL ZER0(6l 
IF(SUM.EOeO) GO TO 60 
IF(N.EQ.6) GO TO 101 
DO 70 17=1,N 
IF(A(7,17,6)eNEel) GO TO 70 
CALL BMXX17,17) 
CALL MXP(7) 
CALL ZER0(7l 
IF!SUM.EOeO) GO TO 70 
IF(N.EQ.7) GO TO 101 
DO 80 18=1,N 
IF!A(8,IB,7leNEell GO TO 80 
CALL BMXX(8,18) 
CALL MXP(8) 
CALL ZER0(8) 
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c 

IF<SUMeEQeOI GO TO 80 
IF<N.EQe81 GO TO 101 
DO 90 19=1,N 
IF<A<9,19,81eNEel) GO TO 90 
CALL BMXXC9,19). 
CALL MXP.( 91 
CALL ZER0<91 
IF<SUM.EQ.01 GO TO 90 
IFIN.EQe91 GO TO 101 
DO 100 110=1,N 
IF!A(lO,Il0,91.NEell GO TO '100 
CALLBMXX(lO,IlOI 
CALL MXPClOI 
CALL ZERO<lOI 
IF(SUM.EQ.01 GO TO 100 
GO TO 101 

100 CONTINUE 
90 CONTINUE 
80 CONTINUE 
70 CONTINUE 
60 CONTINUE 
50 CONTINUE 
40 CONTINUE 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 
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C IF THE PROGRAM CYCLES THROUGH ALL DO LOOP INDICES AND LOG REMAINS 
C ZERO, THERE ARE NO POSSIBLE ISOMORPHISMS --GO TO 110 AND PRINT 
C APPROPRIATE MESSAGE 
c 

c 

IF (LOG.Ea.a, GO TO 110 
GO TO 106 

112 WRITE(6,191 LOG 
108 CALL CLOCK(TIMEOFI 

TIMERN = CTIMEOF - TIMEON> I 60e0 
WRITE<6,181 TIMERN 
GO TO 1000 

C THE PROGRAM ENTERS AT STATEMENT 101 EVERY TIME AN ISOMORPHISM IS 
C ENCOUNTERED. 
c 

101 IF(LOG.EQeOI WRITEC6,41 NG1,NG2 
LOG= LOG+ 1 
IF!LOG.EQ.40) CALL PAGE 
LXX = LOG - 40 
LXX = MOD(LXX,50) 
IF(LXXeEQ.O) CALL PAGE 
IST = MOD(LOG,101 
IF< IS T • EQ • 0 > IS T = 10 

c 
C SAVE THE VERTE~NCIDENCE MATRICES IN C<l,J,IST) AND PRINT A WHOLE 
C ROW WHEN LOG IS A MULTIPLE OF TEN 
c 

DO 102 I=l,N 
DO 102 J=l,N 



102 C<I,J,ISTl = A(I,J,NJ 
ITEST = MOD(LOG,10) 
IF<ITESTeNE.Ol GO TO 103 
WRITE<6,16) 
DO 104 I=l,N 

104 WRITE16,.5> ((C!I,J,K),J•l,lOJ,K=l,10) 
c 
C ZERO ALL OF STORAGE BLOCK C AFTER PRINTOUT• 
c 

c 

DO 105 I=l,10 
DO 105 J=l,10 
DO 105 K=l,10 

105 CCI,J,K) = 0 
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C STATEMENTS 106 TO 109 PRINT PARTIAL ROWS OF CORRESPONDENCE MATRICES 
c 

c 

103 GO TO (10,2Q,30,40,50,60,70,80,90,100),N 
106 ITEST = MOD!LOG,10) 

IF<ITESTeEO.O> GO TO 112 
WRITE16,16J 
DO 107 I=l,N 

107 WRlfE (6,51 ((CCI,J,K>,J=l,10>,K=l,ITEST) 
WRITE<6,16) 
WRITE<6,19> LOG 
GO TO 108 

C CONTROL IS TRANSFERED TO 109 WHENEVER THERE ARE NON-EQUAL VERTEX 
C SETS 
c 

c 

109 WRITE (6,21) NG1,NG2 
WRITE ( 6, 6 J 
GO TO 108 

C CONTROL IS TRANSFERED TO 110 WHENEVER THERE ARE NO POSSIBLE 
C ISOMORPHISMS. 
c 

c 

110 WRITE (6,21) NG1,NG2 
WRITE <6,7) 
GO TO 108 

C CONTROL IS TRANSFERED TO 111 WHEN THE NUMBER OF EDGES OF Gl IS NOT 
C EQUAL TO THE NUMBER OF EDGES OF G2• 
c 

111 WRITE 16,21) NG1,NG2 
WRITE ( 6, 8 > 
GO TO 108 
END 



c 
c 

SUBROUTINE BMXX(MtL) 
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C THIS SUBROUTINE FINDS THE MATRIX PCMtL) FROM THE VERTEX-INCIDENCE 
C MATRICES CMCGl AND MCG2) AND STORES THE RESULT IN A(I,JtM)e 
c 
C MIS THE LEVEL OF THE DO LOOP NEST AT WHICH THE BMXX SUBROUTINE 
C IS CALLED 
c 
c 

c 
c 

INTEGER A,SUM 
DIMENSION MCG1(10,10)tMCG2Cl0tlO)tAC10,10,lO> 
COMMON N,A,MCG1,MCG2,SUM 

C THE FOLLOWING DO LOOPS CYCLE I AND J WITH M REMAINING CONSTANT 
c 
C LIS- THE VALUE OF THE DO LOOP INDEX AT LEVEL M OF THE DO LOOP NEST 
c 
c 

c 
c 

DO 15 I=l,N 
DO 15 J=l,N 

C RULES FOR FINDING A(IiJ,M) 
c 
C l) IF MCGl<M,Il IS NOT EQUAL TO MCG2CL,J>, ACitJtMJ = 0 
c 
C 2) IF MCGlCM,I) IS EQUAL TO MCG2CL,JJ, THEN ACI,J,MJ = 1 
C UNLESS I EQUALS MAND J DOES NOT EQUAL L 
C OR UNLESS J EQUALS LAND I DOES NOT EQUAL M 
c 
C THE LAST TWO RESTRAINTS INSURE THE APPEARANCE OF Al IN THE 
C <M,L> POSITION OF ACltJtM) AND ZEROS ELSEWHERE IN ROW M 
C AND COLUMN L 
c 
c 

IF<MCGl<M,I).EQeMCG2CL,JJ) GO TO 5 
A(I,J~M>=O 
GO TO 15 

5 A(I,J,M)=l 
JFIJeEQ.M) ACI,J,M)•O 
IFIJeEQeL> ACI,J,M)=O 

15 CONTINUE 
AIM,L,M)=l 
RETURN 
END 
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SUBROUTINE MXP(M) 
c 
C THIS SUBROUTINE COMBINES A<I,J,M) WITH A<I,J,M-1> TO PRODUCE THE 
C LOGICAL PRODUCT AlI,J,M)*A<I,J,M-1) WHICH IS STORED BACK INTO 
C THE MATRIX A<I,J,M) 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INTEGER.A,SUM 
DIMENSION MCGl<l0,10),MCG2(10,10ltA(l0,10,10) 
COMMON N,A,MCG1,MCG2,SUM 
K = M - 1 

THE RULES FOR FINDING THE LOGICAL PRODUCT AlI,J,M)*A<l,J,M-l) 
ARE SUMMARIZED IN THE FOLLOWING TABLE-

A<I,J,M) 
0 
0 
1 
1 

A< I, J ,M-1) 
0 
1 
0 
1 

All,J,M)*A<I,J,M-1) 

0 
0 
1 

THESE RULES ARE SATISFIED BY THE ARITHMETIC PRODUCT OF A(t,J,M) 
AND A<I,J,M-1) 

DO 5 II=l,10 
DO 5 JJ=l,10 
A<II,JJ,M) = CA(II,JJ,M))*(AlII,JJ,K)) 

5 CONTINUE 
RETURN 
END 



c 
c 

SUBROUTINE ZERO(M) 

50 

C THIS SUBROUTINE TESTS FOR TWO STATES OF THE MATRIX ACI,J,M) WHICH 
C CAN LEAD TO A REDUCTION IN THE TOTAL NUMBER OF CORRESPONDENCES 
C TESTED 
c 

c 
c 
c 
c 
c 

c 

1) THE POSSIBILITY OF A ROW SUM OR COLUMN SUM BEING ZERO 

2> THE POSSIBILITY OF ONE AND ONLY ONE 1 IN A ROW OR COLUMN• 
STATED IN ANOTHER WAY - IF A ROW SUM OR COLUMN SUM IS le 

INTEGER A,SUM,SUMR,SUMC 
DIMENSION MCG1(10,lO>,MCG2Cl0tlO)tA<l0,10,10) 
DIMENSION SUMRC10>,SUMCC10),NEWSR<l0),NEWSCC10> 
COMMON N,A,MCG1,MCG2,SUM 

C THE NEXT SIX STATEMENTS COMPUTE N ROW SUMS - SUMRCI) 
c 

c 

100 DO 1 I=l,N 
SUMR<I>=O 
DO 2 J=l,N 
SUMRCI)=SUMRCl)+A<I,J,M). 

2 CONTINUE 
1 CONTINUE 

C THE NEXT 11 STATEMENTS CHECK THE ROW SUMS FOR ZEROS OR ONES AND 
C TAKE THE APPROPRIATE ACTION. 

DO 15 I=l,N 
c 
C IF ANY ROW SUM ISO, THE VERTEX-CORRESPONDENCE BEING TESTED IS 
C NOT AN ISOMORPHISM - SET SUM TOO ANO RETURN TO THE MAIN PROGRAM 
c 

IF!SUMR!I).EQeO) GO TO 50 
c 
C IF SUMR<I> IS NOT EQUAL TO 1 OR Ot THERE CAN BE NO REDUCTION OF 
C A!I,J,Ml -- GO BACK AND CHECK SUMR<I+l) 
c 

IF(SUMR<I)eNEel) GO TO .15 , 
c 
C IF SUMR(l) EQUALS 1 CYCLE J TO FIND WHICH COLUMN THE 1 IS l~ AND 
C ZERO ALL POSITIONS OF THAT COLUMN EXCEPT IN ROW Ie 
c 

c 

DO 10 J=l,N 
IF!ACI,J,M>eEOel) GO TO 11 

10 CONTINUE 
11 DO 12 L=l,N 

IF!L.EQ.I) GO TO 12 
ACL,JtM)=O 

12 CONTINUE 
15 CONTINUE 

C THE OPERATIONS FROM THIS•90INT TO STATEMENT 30 PERFORM THE SAME 
C TESTS ON THE COLUMN SUMS /SUMC(I)tl=l,N/ THAT WERE PERFORMED ON 
C THE ROW SUMS ABOVE. 



c 

c 
c 

DO 16 J=l,N 
SUMC(JJ=O 
DO 1 7 I= 1, N 
SUMC(J)=SUMC(J)+A(I,J,M> 

17 CONTINUE 
16 CONTINUE 

DO 30 J=l,N 
IF(SUMC(J).EQ.O) GO TO 50 
IF(SUMC(J).NE.ll GO TO 30 
DO 25 I=l,N 
IF(A<I,J,M).EQ.ll GO TO 26 

25 CONTINUE 
26 DO 27 L=l,N 

IF<L.EQ.J) GO TO 27 
A( I ,L,Ml =O 

27 CONTINUE 
30 CONTINUE 

C CONSIDER THE CASE WHERE UPON ENTERING THE ZERO SUBROUTINE, 
C A( I ,J,M) WAS 
c 
C 01010 
C 01001 
C 00010 
C 11101 
C 11000 
c 
C SINCE SUMR(3l IS 1 , COLUMN 4 IS ZEROED EXCEPT FOR ROW THREE. 
C THUS, AT THIS POINT IN THE SUBROUTINE A(I,J,Ml IS 
c 
C 01000 
C 01001 
C O 0010 
C 11101 
C 11000 
c 
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C SUMR(ll NOW EQUALS 1 BUT HAS ALREADY BEEN CHECKED AND FOUND NOT 
C EQUAL TO l• THUS, IF ANY ROW OR COLUMN SUM CHANGES, MORE REDUCTION 
C MAY BE POSSIBLE. THIS IS NOT ALWAYS THE CASE, BUT THE POSSIBILITY 
C DOES EXIST. 
c 
c 
C THE NEXT 15 STATEMENTS COMPUTE NEW ROW AND COLUMN SUMS AND COMPARE 
C THEM WITH THE PREVIOUS ROW AND COLUMN SUMS. IF ANY ROW OR COLUMN 
c SUM HAS CHANGED, CONTROL rs TRANSFERED TO THE BEGINING OF THE 
C SUBROUTINE AND A(I,J,M) IS CHECKED AGAIN• IF ALL ROW AND COLUMN 
C SUMS REMAIN THE SAME, ALL POSSIBLE REDUCTIONS HAVE BEEN MADE. 
C SUM IS SET TO 1 AND CONTROL rs RETURNED TO THE MAIN PROGRAM. 
c 
c 

DO 31 I=l,N 
NEWSR(Il=O 
DO 32 J=l,N 
NEWSR(IJ=NEWSR(Il+A(I,J,MJ 



32 CONTINUE 
IF(NEWSR(l)eNEeSUMRCIJ) GO TO 100 

31 CONTINUE 
DO 33 J=l,N 
NEWSC(Jl=O 
DO 34 I=l,N 
NEWSC(J)=NF.WSC(J)+Att,J,M) 

34 CONTINUE 
IF<NEWSC(J) .• NEeSUMC(JJ) GO TO 100 

33 CONTINUE 
SUM= 1 
RETURN 

50 SUM= 0 
RETURN 
END 
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DESCRIPTION OF CHANGES 

FOR THE GENERAL CASE 

To change the program so that it will handle grapns with 

vertices of different degrees, only the BMXX subroutine must 

be altered. Assume that the vertex-incidence matrices were 

written using the lowest degree vertex as vertex 1 and the 

highest degree vertex as Nv. The vertices have now been 

separated into sets by degrees. This may not be considered 

the general case, but if the data were to be set down in any 

order, it seems natural that the first operation of the 

computer would be to sort the data and order it in some man-

ner. 

We know that two vertices of different degrees cannot 

correspond under isomorphism. We construct a matrix which 

allows vertices of the same degree to correspond, but not 

tho~e of different degree. 

A matrix that would pe~form this function for a graph 

with 3 vertices of degree 2 and 3 vertices of degree 3 would 

be 

111000 
111000 
111000 
000111 
000111 
000111 
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This matrix isolates the degree sets. If this matrix were 

combined in the "and" operation with each P(I,J) matrix, which 

is derived by equating the neighbor sets, we would generate 

logical matrices which would exhibit equality of degree sets 

and equality of neighbor sets. 

This masking technique would not be at all difficult to 

accomplish. It would only be a matter of checking the row 

sum and column sum in the vertex-incidence matrix for each 

row-column position and setting the corresponding element 

of the masking matrix to 1 if they were equal and to O if 

they were not. If the masking matrix is found in this way, 

it seems at first glance that the order of the input data 

makes no difference. 
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Q Matrix for the Example Discussed on Pages 

28-29 

1000000000 0100000000 0010000000 0001000000 OOOOlCOOOO 0000010000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 

0010110000 0011010000 1100100000 ofoo110000 1011000000 1101000000 
1000000000 0100000000 0010000000 0001000000 0000100000 0000010000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 

0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
1000000000 o 100000000 00·1Mooooo· .ocro1000·000 0000100000 onooo1oono 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 

OlOlCOOOOO 1000100000 0001010000 1010000000 0100010000 0010100000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
1000000000 0100000000 0010000000 0001000000 0000100000 0000010000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 

0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
0010110000 0011010000 110010·0-ouo 0100110000 1011000000 1101000000 
001011000.0 0011010000 1100100000 0100110000 1011000000 1101000000 
1000000000 0100000000 0010000000 0001000000 0000100000 0000010000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 

0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
0101000000 1000100000 0001010000 1010000000 0100010000 0010100000 
OOlOllOCOO 0011010000 1100100000 0100110000 1011000000 1101000000 
0010110000 0011010000 1100100000 0100110000 1011000000 1101000000 
1000000000 0100000000 0010000000 0001000000 0000100000 0000010000 



APPENDIX B 

PROGRAM OUTPUT 
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GRAPHS USED AS PROGRAM INPUT 

GRAP.H 1 

GRAPH 3 

GRAPH 2 

GRAPH 4 
u, 
--J 



--~~~- 4 --~~~~ 

-------.. 3 ,__ __ __,. 

GRAPH 5 GRAPH 6 

GRAPH 7 GRAPH 8 
c.n 
CX) 



GRAPHS 9 and 10 

GRAPHS 13 and 14 

GRAPHS 11 and 12 

Graphs 88, 89, 98, and 99 were 
fictional and were used only to 
show the various forms of output. 

(fl 

co 



ISOMORPHISM TEST 

INPUT 
NOOt CONNECTION MATRICES 

GRAPH 1 GRAPH 2 

0110010000 0010110000 
1011000000 0011010000 
1100100000 1100100000 
0100110000 0100110000 
0011010000 1011000000 
1001100000 1101000000 

NUMBER OF VERTICES EQUALS 6 NUMBER OF ELEMENTS EQUALS q 

GRAPHS 1 ANO 2 ARE ISOMORPHIC 

ALL POSSIBLE VERTEX CORRESPONDENCES FOLLOW 

1000000000 
0010000000 
0000100000 
0100000000 
0001000000 
0000010000 

0000010000 
0100000000 
0001000000 
0010000000 
0000100000 
1000000000 

1000000000 
0000100000 
0010000000 
0001000000 
0100000000 
0000010000 

0000010000 
0001000000 
0100000000 
0000100000 
0010000000 
1000000000 

0100000000 0100000000 
0001000000 0000010000 
0000010000 0001000000 
0000100000 1000000000 
1000000000 0000100000 
0010000000 0010000000 

NUMBER OF POSSIBLE ISDMuRPHISMS EQUALS 12 

NFT TIME IS 0.15 Ml"IUTES 

0010000000 0010000000 0001000000 0001000000 
1000000000 0000100000 0100000000 0000010000 
0000100000 1000000000 0000010000 0100000000 
0000010000 0001000000 0010000000 1000000000 
0001000000 0000010000 1000000000 0010000000 
0100000000 0100000000 0000100000 0000100000 

0000100000 
1000000000 
0010000000 
0000010000 
0100000000 
0001000000 

0000100000 
0010000000 
1000000000 
0100000000 
0000010000 
0001000000 

(]\ 
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ISOMORPHISM TEST 

INPUT 
NODE CONNECTION MATRICES 

GRAPH 3 

0110100100 
1011010000 
1101001000 
0110010100 
1000011100 
0101101000 
0010110100 
1001101000 

NUMBER OF VERTICES EQUALS 8 NUMBER OF ELEMENTS EQUALS 16 

GRAPHS 3 AND 4 ARE ISOMORPHIC 

ALL POSSIBLE VERJEX CORRESPONDENCES FOLLOW 

1000000000 
0000001000 
0010000000 
0001000000 
0000000100 
0000100000 
0100000000 
0000010000 

1000000000 
000·0000100 
0000010000 
0100000000 
0000001000 
0000100000 
0001000000 
0010000000 

0000100000 
0000001000 
0001000000 
0010000000 
0000000100 
1000000000 
000001000(1 
010000000{) 

0000100000 
0000000100 
0100000000 
0000010000 
0000001000 
1000000000 
0010000000 
0001000000 

~UMBER OF POSSIBLE ISOHO~PHISMS EQUALS 4 

l\ltT TIME IS 0.19 MINUTl:S 

GRAPH 4 

0010011100 
0010110100 
1101001000 
0010111000 
0101001100 
1101000100 
1011100000 
1100110000 

°' I-' 



ISJMORPHISM TEST 

INPUT 
NODt CONNECTION MATRICES 

GRAPH 5 

OllOOlOOOO 
1011000000 
1100100000 
0100110000 
0011010000 
1001100000 

NUMBER OF VERTIClS EQUALS 6 NUMBEK Of ELEMENTS EQUALS q 

GRAPHS 5 AND 6 ARE NOT ISOMORPHIC 

NU POSSIBLE ISOMORPHIC CORRESPONDENCES 

NET TIME IS 0 • 0 5 M I NU TE: S 

GRAPH 6 

0110010000 
1001100000 
1001100000 
0110010000 
0110010000 
1001100000 

a, 
N 



ISOMORPHISM TEST 

INPUT 
NOD£ CONNECTION MATRICES 

GH.APH 7 

0110001000 
1001000100 
1001100000 
0110100000 
0011010000 
0000101100 
1000010100 
0100011000 

NUMBER OF VERTICES EQUALS 8 NUMBER OF ELEMENTS EQUALS 12 

GRAPHS 7 ANO 8 ARE NOT ISOMORPHIC 

NO POSSIBLE ISOMORPHIC CORRESPONDENCES 

NET TIME IS 0.23 MINUTfS 

GRAPH 8 

0101100000 
1010010000 
0101001000 
1010000100 
1000010100 
0100101000 
0010010100 
0001101000 

0\ 
l,.) 
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00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
00 o ... o 0..000 0 0 0 ... 00 
00 ... 00 00 0 ... 0 000 ... 0 
0""000 0000 ... 0000 ... 
0 000 ... 0 0 ... 0 0 -0000 
... 0000 ... 00 00 o..oo 00 

00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
0000 .... 0 ... 00 0 00..000 
O o ... oo 0000 .... 000 o..o 
0""'000 000 ... 0 000""'0 
000 .... 0 00 .... 00 ..00000 
""'0000 ""'00 00 0..0000 

00000 00000 00000 
00000 00000 00000 
00000 00000 00000 

0 00000 00000 00000 00000 .... 00000 00000 00000 00000 
00000 000 .... 0 00 .... 00 000..00 
00000 0000 ... o ... oo O 00 ... 00 

::r:: 00000 0 ... 000 000 .... 0 0000 .... a. ................. 0 00..000 0000~ ..ooo O O 
c ............ 0 .... -0000 ..0000 0 0..0000 
cr: ......... 0 ......... 
c.., ,...o .... ~ .... 

0 ............... 00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
00000 00000 00000 
00000 00000 00000 .,, 0000..0 00..00 0 0000..0 

w 000-,0 o-,o O O 00 ... 00 
u 0-000 0000 .... 0 00 ... 0 ... 00 ... 00 000 .... 0 -0000 .,, er: ""'0000 _, 00 00 0 ... 000 

w ... 0 ..... "" ... 
z: 00000 00000 00000 x 00000 00000 00000 .,, z 00000 00000 00000 

1-0 00000 00000 00000 :r =>- 00000 00000 00000 
0.. 0..1- 00..000 0 00 ..oo 000 ... 0 
cr: ZU .,, 000 .... 0 0-,000 0000 .... 
0 -.,... -' 0000 .... 00-00 00 ... 00 x z "" o ... 0 00 0 00 o..o .... 0 000 
a z :::, ... 0000 -0000 0..000 0 .,, 0 a 

u w 
00000 00000 00000 

w .,, 00000 00·000 00000 
0 ... 00000 00000 00000 
0 z 00000 00000 00000 
z w 00000 00000 00000 

:IC 0 0..000 00 00'"" 000 0'"" 
w 00 00..0 o..o O 00 000 .... 0 _, 000-,0 O o..o O O 00-00 .,... 0 ... 0 00 000 .... o -0000 

..o O O 00 ..o O O O O 0,... 00 0 
::,. 00000 I.L. 

00000 0 
00000 00000 00000 00000 
00000 "' 00000 00000 00000 

:r 00000 w 00000 00000 00000 
0.. .................. 0 Cl) 00000 00000 00000 
< ........ ~o ..... :IC '"K 00000 00000 00000 
er: .......... 0 .......... :::, 0 000 ... 0 0 0 0 .... 0 0'""000 
c., ..... 0 _. ......... z _, 00..000 0 ... 0 CO 00 ... 00 

0 _. .............. _, 0000 .... 00 0 o..o 000 .... 0 
0 0-000 00-00 00 00 .... 
~ .... 0000 ..o O O O O ... 0000 

u .,, - w 00000 00000 ·00000 
It\ :c u 00000 00000 00000 

a. z 00000 00000 00000 
ot: w 00000 00000 00000 
0 0 00000 00000 00000 
:IC ? 0000 .... 0 000 .... o .-,o o o 
0 0 00 .... 00 o ""0 o o 00 .... 00 .,, 0.. 00 o ... o 0 0 0 _. 0 0 0 00..., .,, o ... 0 0 0 o o .... a o o o o -a 

V) ..u .... 0000 -0000 _. 0 0 0 0 _, w °' c °' :t: 
:::> < :::, 00000 00000 ·00000 ~.., u 00000 00000 00000 
.u 0 00000 00000 00000 .... )( 00000 00000 00000 .,, w 00000 00000 00000 
',I.I ... 0 0 0 ... 0 O o- 0 0 o-oo O 
u 0:: 0 000 ... 000-0 0 00 ... 0 - 0 w 0 0 ... 00 0'"' 00 0 00 ... 00 .... z > 0""' 00 0 000 o- 0 000 .... 

°' < ... 0 0 00 ....0 '.:)00 _. 0 0 0 0 
w w 
> a, _, 

::0 00000 00000 00000 
L£. - 00000 00000 00000 
0 v, 00000 00000 00000 .,, 00000 00000 00000 
a: .,, 0 00000 00000 00000 
w J:: 0.. 0000..0 O o- 0 O 0..000 0 
Cl) 0.. 000..00 0 00 0 .... 0000..0 
s: < ...I 00..00 0 o-o 00 00"" 00 
:::> er: _, o ... o O O O oo- 0 0 00 _. 0 
z c.., < ... 0 0 0 0 -oo 00 ... 00 00 
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00000 00000 00000 00000 00000 
00000 00000 00000 00000 00000 
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ISOMORPHISM TEST 

INPUT 
NODE CONNECTION MATRICES 

GRAPH 11 

0111000000 
1000110000 
1001001000 
1010000100 
0100010010 
0100100001 
0010000101 
OOOlOOlOiO 
0000100101 
0000011010 

NUMBER OF VERTICES EQUALS 10 NUMBER OF tlEMENTS EQUALS 15 

GRAPHS 11 AND 12 AKE ISOMORPHIC 

All POSSIBLE VERTEX CORRtSPONDENCES FOLLOW 

1000000000 
0100000000 
0010000000 
0001000000 
0000100000 
0000010000 
0000001000 
0000000100 
0000000010 
0000000001 

1000000000 
0100000000 
0001000000 
0010000000 
0000010000 
UOOOlOOOOO 
0000000100 
0000001000 
0000000001 
UOOOOOOOlO 

0100000000 
1000000000 
0000100000 
0000010000 
0010000000 
OOOlOOOOOC 
0000000010 
0000000001 
0000001000 
0000000100 

0100000000 
1000000000 
0000010000 
0000100000 
0001000000 
0010000000 
0000000001 
0000000010 
0000000100 
0000001000 

~UMBER OF POSSIBLE ISU~JRPHISMS EQUALS 4 

J\IE.T TIME IS O. H Ml -..UllS 

GRAPH 12 

0111000000 
1000110000 
1001001000 
1010000100 
0100010010 
0100100001 
0010000101 
0001001010 
0000100101 
0000011010 

O"I 
-..J 



ISOMORPHISM TEST 

INPUT 
NODr CONNECTION MATRICES 

GRAPH 13 

0110000000 
1010000000 
1100000000 

NUMBER OF VERTICES EQUALS 3 NUMBER UF ELEMENTS EQUALS 3 

GRAPHS 13 AND 14 ARE ISO"ORPHIC 

ALL POSSIBLE VERTEX CORRESPONDENCES FOLLOW 

1000000000 
0100000000 
00.10000000 

1000000000 
0010000000 
0100000000 

0100000000 
1000000000 
0010000000 

0100000000 
0010000000 
1000000000 

NUMBER OF POSSIBLE ISOMORPHISMS EQUALS 6 

NET TIME IS 0.05 Ml i\lUH-S 

0010000000 
1000000000 
0100000000 

0010000000 
0100000000 
1000000000 

GRAPH 14 

0110000000 
1010000000 
1100000000 

"' 00 



GRAPH 88 

0110010000 
1011000000 
1100100000 
0100110000 
OOlLOlOOOO 
1001100000 
0000000000 
0000000000 

GRAPHS 88 AND 89 ARE NOT ISOMORPHIC 

NON-EQUAL ENUMERATION OF VERTICES 

NET TIME IS 0.04 MINUTES 

ISOMORPHISM TEST 

INPUT 
NODE CONNECTION MATRICES 

GRAPH 89 

0110100100 
1011010000 
1101001000 
0110010100 
1000011100 
0101101000 
0010110100 
1001101000 

"' \0 



GRAPH 98 

0110010000 
1011000000 
1100100000 
0100110000 
0011010000 
lOOUOOOOO 

GRAPHS 98 AND 99 ARE NOT ISOMORPHIC 

NON-EQUAL ENUMERATION OF ELEMENTS 

NET TIME IS o.o~ MINUTES 

ISOMORPHISM TEST 

INPUT 
NODE CONNECTION MATRICES 

GRAPH 99 

0110010000 
1011000000 
1100100000 
0100110000 
0011010000 
1011100000 

""-I 
0 
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