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PRETACE

This thesis is a brief investigation of some aspects of
isomorphism in linear graphs. The desire to initiate this
study began while I was enrolled in a graduate course concern-
ing linear graph theory '‘and its applications-to electrical
'networks.' In particular, it was a question posed by the
‘instructor that aroused this interest. The question was
stated, "Is there a method or algorithm which will establish
whether two graphs are isomorphic?" This thesis answers that
gquestion affirmatively and outlines a suitable method for
establishing isomorphism. |

The concept of isomorphism has long been clearly and
concisely defined. There is, however, only a minimum of
material on particular cases of isomorphism, and no mono-
graphs specifically on testing for isomorphism which could
be used as a basis for this study. Irving M. Copi's
INTRODUCTION TO LOGIC was used extensively for logical
symbolism and theorems.

Indebtedness is acknowledged to Dr. R. L. Cummins for
his incisive criticisms and helpful suggestions. Df. Cummins
first suggested the topic of testing for isomorphism. Special
gratitude goes to the Computer Center of Oklahoma State Univer-

sity for providing the computer time necessary to complete’the
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program. The library staff of Oklahoma State University has

been a great help by procuring materials for me.
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CHAPTER I

INTRODUCTION

It was common in the 18th Century for a new area of
mathematics to evolve from a need for techniques with which
to solve the favorite puzzles of the time. It was in this way

that Leonard Euler created graph theory in the year 1736.[1]

Euler created. (a better word might be formalized)'graph theory
as an aid.to solving the famous Konigsberger bridge problem.
An interesting description of the inception of graph theory

is given in Linear Graphs andElectrical Networks by Seshu

and Reed. For those not familiar with graph theory, the first
three chapters. of this beok would be an excellent background
for the: material presented in-this thesis.

After Euler's isolated contfibution, investigation in the
area:of graph theory lay dormant for almost one hundred years.
"It was not until the middie: of the lgth’Cenfury“that'a revival
‘of interest. in the study of "graphs occurred. ~This revival was
stimulated_by.an'increasing application  of graph' theory to pop-
ular puzzle problems; the' most celebrated of which' is the Four
Color Map Conjecture which DeMorgan posed around 1850. This
problem,:because of its continued interest to mathematicians,

has‘been'reéponsible for many- contributions to- graph theory.



"In the early 1930's, Americans became interested in graph

theory, as witnessed by the numerous papers written in this

period. The most productive of these writers were Whitney and
Tuttle. . It was around this time that a German mathematician
named DeneS‘Kbnig wrote his pioneer book on graphs: -“Unfortun-

ately, Kdnig's book has yet to be translated; in the last five
or ten years, however, many books on the subject have been
published in English.

Today, graph theory is a flourishing field. "It-is usually
considered a branch of-topology, although it overlaps large
areas of. set theory, combinationdl analysis, geometry, matrix
theory, logic and many other fields. In graph theory, as in
many‘ofheruareaS‘of'mathematics, computers and new methods of
programming.have'oﬁened'the'door to more systematic and

thorough investigations.
Definitions of Terms

In brief, a graph-is-"a collection of points and lines
‘which connect these points. Two:names often used synonymous-
ly  with a point. of a graph are node and vertex. ~The lines
which connect the vertices of a graph are called elements
or edges. For identification purposes, the vertices and
edges of a graph are' labeled with numbers. Figure 1 shows a
‘graph which has four vertices and five edges.

Each edge of a graph has two end-points. An edge may

be attached to a vertex only at an end point.
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FIGURE 1

Graph with Four Vertices and Five Edges

An edge of a graph is said to be incident at a vertex
if an endpoint of the edge is attached to. the vertex. Having
‘only two endpoints, an edge can thus be incident at only two
vertices of ‘the graph.  In'Figure 1, edge 2 of the graph is
incident at vertices 2 and 4.

"The ‘degree of a vertex is the number of the edges
incident at that vertex. For the1graph in' Figure 1, the
degree of vertex 3 is two while“the degree of “vertex 4 is
“three,

Two vertices are said tO'be'oénnected'when‘there exists
an edge which is incident to'both of them: Vertices 1 and
4 of Figure 1 are connected by edge number three. Vertices
which are connected are spoken of as neighbors. For example:
The neighbors of vertex 4 in Figure 1 are the vertices 1, 2,
and 3.

Two or more edges which are incident at the same vertex
‘pair-are called parallel edges. "An edge which is incident
twice at the same vertex is called a self-loop. Examples of
parallel edges and a self-loop are shown in Figure 2.

A homogeneous graph is a graph in which all the vertices

are of the same degree.
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Graph with Parallel Edges Graph with a Self-Loop

FIGURE 2

Illustration of Parallel Edges and a Self-Loop



CHAPTER II
STATEMENT OF THE PROBLEM

A linear graph, or topological graph, will be isqmorphic
to another linear graph only if certain conditions exist. An
algorithm for establishing isomorphism must contain a sufficient
set of these conditions. It seems quite apropos that a concise

and concrete definition of isomorphism be given at the beginning.
Definition of Isomorphism

Two graphs, Gl and G2, are isomorphic (or congruent)[2]
if there is a one-to-one correspondence between the vertices
of G1 and G2, and a ocne-to-one correspondence between the
edges of Gl and G2 which preserves the incidence relationship.[1]

| To prove that two graphs are isomorphic, we must define
a unique one-~to-one correspondence between vertices and edges
and show that incidence relationships are preserved under this
correspondence. If the one-to-one correspondence is found by
using the fact that all incidence relationships must hold,
that correspondence would be sufficient to show isomorphism.
If no correspondence exists such that incidence relations are
preserved the two graphs are not isomorphic. This Thesis

gives a method of finding this correspondence if one exists.
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It was felt that in the first investigation of isomorphism,

1

only reduced" graphs, that is graphs which have no parallel

edges and no self-loops, should be considered,
Preliminary Theorem

Under the restriction that graphs have no parallel edges,

Seshu and Reed's definition of isomorphism may be shortened to:

Two graphs, Gl and G2, neither of which

have parallel edges, are isomorphic if

there 1s a one-to-one correspondence

between the vertices of Gl and G2 which

preserves the incidence relationship.
Why is this possible? Assume a one-to-one correspondence
between vertices of Gl and G2 exists which preserves fhe
incidence felationship, and that neither Gl nor G2 has
parallel edges. Select any edge in Gl, call it edge k. Since
k is a single edge, it 1s the only edge between its end verti-
ces., Let k's end vertices be i and j. Because of the one-to-
one correspondence between vertices, there are two vertices
of G2, i' and j', which correspond to i and j. All incidence
relations hold and thus there must be an edge between i'and jt
Since there are no parallel edges in G2, there is one and only
one edge connecting i' and j'. Call this edge k'. There is
only one possible correspondence for edge k of Gl and that is
edge k' of G2. By associating each edge of Gl with its two
incident vertices, locating the corresponding vertices of G2
and thus the edge connecting them, a one-to-one correspondence

can be obtained between the edges of Gl and the edges of G2.

Thus, there is a one-to-one correspondence between vertices



of G1 and G2, and a one-to-one cofrespondence between the edges
of G1 and G2 which preserves the incidence relationship.

Then, according to the original definition, gfaphs Gl and @2
are isomorphic. This conclusion is supported by the fact

that the vertex incidence matrix completely defines a graph
‘'when the graph has single edges.[3] Since vertex-incidence
matrices fully describe graphs with no parallel edges, they

will be used henceforth as the only definition for graphs.

Vertex-Incidence Matrix as the Definition of a Graph

A vertex-incidence matrix is a square matrix of order Nv,
where Nv 1s the number of vertices in the graph. Each element
of the matrix is defined by the following rules:

Ai,j = 13 if vertex 1 is connected to vertex j.
i3 = 03 if vertex i is not connected to vertex j.

An example of a graph and its associated vertex-incidence

matrix are shown below.

011001
101100
110010
010011
001101
100110

@

®
FIGURE 3

Example of a Graph and its Vertex-Incidence Matrix



With graphs which contain only single edges, the problem‘
degenerates to proving the existence or non-existence of a one-
to-one correspondence between vertices which preserves
incidence relationships. Some examples will illustréte the
concept of isomorphism and clarify later arguments. To
simplify expressions, the symbol, 6, will be used in place
of the phrase "correspondsvto."

It should be obvious that two identical graphs-are iso-
morphic. Figure 4 shows two identical graphs and one possible

correspondence between their vertices.

OQ—0

Gl - ' ' G2
Vertex Vertex
of Gl of G2

1 : 0 1
2 3] 2
3 3] 3
4 8 I
FIGURE 4

Two Isomorphic Graphs and'Their Vertex Correspondence

This is, of course, the simplest correspondence. There are



three other possible correspondences, two of which are shown

below:

1 6 1
2 8 3
3 6 2
4 6 4
1 6 4
2 6 2
3 6 3
4 8 1

G2

FIGURE 5

Other Vertex Correspondences of Gl and G2

As has been shown, two graphs which are isdmorphic'may have
many possible correspondences, although there need‘be only
one.

The isomorphic graphs above are special cases because
their edges have the same dimensions. Isomorphism deals
only with the topological properties of graphs. Thus, edges
have .no special length or direction and can be imagined as
being made of elastic, which may be lengthened or shortened
and moved as we please. Likewise, vertices may be méved as
desired. This change in edges and vertices does not disturb
the connectivity of the graph. Some examples of this property

on isomorphic graphs are shown in Figure 6.
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FIGURE 6

Example of Three Isomorphic Graphs

In the graphs above, the vertex correspondence between any two

graphs 1is:

1 8 1
2 8 2
3 8 3
4oe oy
5 8 5
6 6 6

This correspondence can more easily be represented in the

matrix form;

]
[a]
(@]
(@]
(@]
ol

000100

0 00001
Row i1 of this correspondence matrix is associated with vertex
i in Gl. Column j of the matrix is associated with vertex j

of G2, If vertex i of Gl corresponds to vertex j of G2, a 1

is placed in the i, j position. An example 1s given in Figure 7.
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0010 : 1 6 3
1000 2 8 1
represents the correspondence
0100 3 e 2
0001 L 6 L
FIGURE 7

Tllustration of a Vertex-Correspondence Matrix

The two graphs in Figure 8 are isomorphic. They are shown
with their respective vertex-incidence matrices, and a
correspondence matrix which represents a possible isomor-
phic correspondence between thé vertices of the two graphs.
If in writing the vertex-incidence matrix for G2,
column 1 and row 1 were‘associated with vertex 2, column 2
and row 2 with vertex U4, column 3 and row 3 with vertex 1,
and column 4 and row 4 with vertex 3, as the cofrespondence
matrix suggests, the result would be a vertex-incidence
matrix which is identical to the vertex-incidence matrix
for G1, In matrix theory this changing of row and columns
is called permutation. Permutation can also be accomplished
by multiplication of the matrix of the same form as the
correspondence matrix. Pre-multiplication of the vertex
incidence matrix of Gl by CM permutes the rows of VIGL in
the manner desired. Since the order of indices is reversed
when post-multiplying, the transpose of CM is used to obtain

the desired permutation of columns.
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Two Isomorphic Graphs

0111 0110
1001 1011
VIGL = 1001 : VIG2 = |1 4 4
1110 0110

Vertex-~-Incidence Matrices

=l
s
o
o

CM =

0010

Correspondence Matrix
FIGURE 8

Some Matrices of Isomorphic Graphs

Thus

[yIe1l = [cM] [vie2l [cMIT®

The matrix CM is the unknown in this equation. It would be
possible, using a computer, to check this equation with

possible CM matrices until an isomorphism is found. In order
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to find every isomorphism, every possible CM matrix would have
to be tested. For a graph with 6 vertices, thisvwould require
6! or 720 tests. By using set theory and the connection
properties of graphs, a significant reduction of the number

of necessary tests can be made.



CHAPTER III
PROOT OF THE ALGORITHM

We will begin by using set theory and propositional
calculus to derive logical expressions which will be réduced
by computer techniques. In the following discussion, graph 1
will be referred to as Gl, and likewise, graph 2 will be
referred to as G2,

The symbol Pl,l will be equivalent to the statement:
Vertex 1 of Gl corresponds to Vertex 1 of G2. In general,
Pi,j will be equivalent to the statement: Vertex i of G1
corresponds to Vertex j of G2. Note that the order of the

subscripts on P is important. The statement: Vertex i of

Gl does not correspond to vertex of G2, will by symbolized

Po LN
1]

Similarly, the symbols C, R, and I are defined to
represent the following statements:

C: There exists a one-to-one correspondence between -

vertices of Gl and vertices of G2.
R: All incidence relationships hold.
I: Gl and G2 are isomorphic.

Recall the definition of isomorphism: Two graphs Gl and

G2 are isomorphic if there is a one-to-one correspondence

14
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between the vertices of Gl and G2 and a one-to-one correspondence
between the edges of Gl and G2 which preserves the incidence
relationships.[5] We have shown that for connected graphs

with no parallel edges this definition can be rewrittén as:

Two graphs Gl and G2 are isomorphic if there is a one-to-one
correspondence between the vertices of Gl and G2 which preserves

the incidence relationships.
Implication of the Definition

Symbolically, this definition could be statéd: I being
true is equivalent to C being true and R being true. Written
in logical shorthand:

I -~ C + R
The logical symbols from Copil[4] will be adopted in writing

all logical expressions.
Logical Relations

Suppose we have two graphs, Gl and G2, both with Ny
vertices, which we wish to test for isomorphism. Let the
vertices of Gl be labeled l,2,...NV and the vertices of G2 be
labeled 1,2,...Ny. If there exists a one-to-one correspondence;
i.e. C is true, it is necessary that vertex i of Gl correspond
to one of the vertices of G2.  Symbolically: C implies that

is true or.. or P. is true.

Pi,l 1s true or Pi,2 1Ny
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Therefore, we write

c > [P. .. v P ]

1,1

\Y Pi,2 v P. |
If this is done for each vertex of Gl, we would have:

i,3 i,Ny

C - [(Pl,l \ Pl,2 \ Q..Pl’NV) (P2,l \ P2’2 v P2,Nv) .
(P, 1V Pi 0V Py gV Py N 0 (Py,,1 ¥V Pay,2
v P ) ]
NysNy
N, :
By -defining TT f(Pi‘k) to be the logical product ("and"
i=1 ’

operation) of expressions involving Pi where i ranges from 1

sk

to Ny, we may more conveniently write the above implication as:

c ~ L = (P P P P ) ]
le 1,0V 51,2 VP, o iy
This represents all possible associations. As an example:
if Ny = 2
c~ I (Pl,l V'Plgz) (P2,l v P2’2 ) ]

Using the principle of distribution[4], this implication may

be expressed

Cr L P Py 1 VP 1 Py g VP g Fp 1 VP 5 Pyl

Since this expression contains all possible associations, the

terms P and P P are included. These terms state

1,172,1 1,2%2,2

that some vertex of one graph corresponds to two vertices of
the other graph. This is a correspondence, but it is not a
‘one~-to-one correspondence. Further restrictions must be
placed on the correspondence to make it one-to-one.

If vertex 1 of Gl corresponds to vertex j of G2, we can

write, because of the necessary one-to-one correspondence:
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C By 5 0 By 4Py 5Py 5 0Pt e Pr )
(P, .P, . .P. .P. ... D, )
1,1 2,3 1-1,3 1+1,] 13NV ] }
Ny
By defining [} P. 1 to be the logical product of P terms
k l l’ ’k

where k ranges from 1 to N, we may more convenlently write the

above implications as:

N

N

C - P. . ~[( P. ) ( P, . ) 1
{ 1,] g!l 1,k g:l k5] |
k#] k#3
Note that for obvious reasons, the term Pi is omitted from
2
the logical product since C»-[Pi : > ?i j] would not be a
b b
valid statement.
By absorption[4],
Ny Ny
cC - [P, . (P, ) C 11 P. . )« . ]
1,3 1,] ng 1,k ng ky]
k#7 k#1

If C is true and vertex i of Gl corresponds to vertex j, and

it should be apparent that the statement

only to j, of G2,
Ny Ny ‘
c »[ (P. .) ( P. .Y T3 P .)=>P. . 1
L« 1] gjl 1,k £=l k>3] L]
k#7 k#1
is true,
By Material Equivalencel4]
Xy Ny _
. .. . P
C > L Pl’ “ (Pl’j) ( k=E Pl,k) ( J K,3 ) ]
k#7 k#i

This simply means that under a 1-1 correspondence, vertex 1
of Gl corresponds to one and only one vertex of G2 and vertex

j of G2 corresponds to one and only one vertex of Gl.
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This statement is very important to the analysis and will
be referred to several times. The statement eliminates self-

contradictory terms of the form P P

1,100 i,j"'Pi,k' By

replacement of Pi 5 with its equivalent expression, we would
b .

have

P. ....P. . <> P

1,1°°F1 5 Fix l,l"'Pi,jPi,lPi,2'°'Pi,k"°P

i,k*
The logical product Pi,k ﬁi,k would be interpreted: vertex 1
of Gl corresponds to vertex k of G2 and vertex i1 of Gl does not
correspond to vertex k of G2. This statement is obviously
false, and therefore the expression

P10 F i,k i,k

is false. The equivalence will be used often in reducing

P ... P P

i,5 Ti,1%4,2

complex statements as shown in the following example.

Assume NV = 2, as before, then
C > [Py 1Py 1V Py 1P0,0V Py 0F0 1V P10 By o
C > [Py <> P) 1 Py 5Py ]
C > [Py = Py, Py 1 By o]
C > [Py > Py 1 Py 1 Fpod
C > IP) o> Py T)-1,2 Py

By replacing each P, . in the first implication with its
?

equivalent given in the succeeding statement we obtain

p P P P v P P P

c - [Pl,lpl,Q 2,1°2,171,172,2 1,171,2%2,1%2,2%1,2%2,1

v P P P P

1,251,152,2%2,1F1,1F2,2V F1,2F1,1%2,2F2,2F1,2%2,1 ¢

By elimination of self-contradictory terms, the above statement

reduces to
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—

c~ [Pl,lﬁl,ZFZ—,IPZ,ZFl',ZFZ,l v P1,2§1,1§2,2P2,1P1,1F2,2 L
For graphs with more than 3 or U4 vertices this expression
showing the existence of a correspondence becomes.quite cum-
bersome. For this reason, it will be written
c > [ Tl\lly(P.vP.'vP. N
14 1,1 1,2 1,3 i,Ny,
By defining the right side of the above implication as Q,
it may be written
‘ . X .
And from previous statements
N N,
C o { By s Py . SIVINES I ]I:Tl Poy ) 1}
k%3 k#i
Xy Ly
by defining Si,j as | Pl’j ( gjl Pl,k) ( kgl Pk,j) }
k#7 k#7]
the above méy be written
cC - [Pi,j +> Si,j]
Now, since
Q implies the existence of a correspondence
And
P +~ S. . for all i and j, states that any correspondence

1,357 21,3

1s one-to-one,
Therefore

) » Q1 » ¢C

> S

[ (P

1,3 1,3

By material equivalencell4],

C <[ (Pi . <> S. .) Q 1]

] 1,]
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We have established an equivalent expression which describes
all the possible one-to-one correspondences.

We now pursue a logical expression equivalent to R. We
observe that no vertex of Gl which is of degree d can corréspond
to a vertex of G2 which is of degree other than d. Thus we
can separate the vertices into classes by their degrees. It
follows that: Any vertex of Gl which is of degree d must
correspond to some vertex of G2 which is contained in the set
of vertices of G2 which are of degree d and must not correspond
to any vertex of G2 which is of any degree other than d;

Expressed Symbolically:

R - (Ph,i v Ph,j \% Ph,k"Ph,e) (Ph,wPh,XPh,y'f'Ph,z )
h is a vertex of Gl of degree d. Each i,j,ks...e 1is a
vertex of G2 of degree d. Each w,x,y...z 1is a vertex of G2,

not of degree d.
If this 1s done for each vertex of degree d, it could be

written in the product form:

Ny Ny

R > {[ ﬁgnﬁiﬁ’i VPV Py eV Py TG B P P By
is a vertex of degree d).

)1

d ranges through all possible values
IfSi,"j and R are true, it follows that each neighboring vertex
of 1 of G1 must correspond to one of the neighbors of vertex j
of G2, and not to any other vertex of G2. That is, the set of
vertices which are the neighbors of i of Gl is equal to the set

of vertices which are the neighbors of j of G2 and not equal to

the set of vertices which are not neighbors of j of G2.
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This implication assures a one-to-one correspondence within
the degree classes of Gl and G2.

Written Symbolically:

R Si,j > | [(Pa,mv Pa,nv Pa,q"°) (Pb,mv Pb,nv Pb’q..;) cean
[(Pa,upa,wpa,x"') O N A .1}
where a,b,c ... are neighbors of i.
m,n ... are neighbors of j.
and U,W,X ... are not neighbors of j.

Again, using the logical product notation, the above implication

is written:
Ny

P —

RS. . ~{[ v P v Py o) By PGPy Py ) ] }

s k=1
For simplification, define the right hand of the above implica-

tion as Wi : and rewrlite as:
b ]

RS. . -» W. .
1,] 1,7

By exportation, the above equation is changed to:

R > (S )

R
1,3 i,] |
If all incidence relations hold, this expression should be

valid for all combinations of the double subscript pair (i,3).

That is,

R > [ (Sl,l +wl,l) (S >W ) (81,3 +wl,3)°'°(8i,j +wi,j)

H‘,(Sn’n +wn,n) ]

Written with TT notation
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If vertex i of Gl corresponding to vertex j of G2, i.e. (S R

1,]
implies that the subset of vertices of Gl which are neighbors

of 1 is in a one-to-one correspondence with the subset of ver-

tices of G2 which are neighbors of 7j, (Wi j), for all combinations
bl

of the subscript pair (i,j), then all incidence relationships
hold (R).

Written logically:

Ny

C 11 (Si,j > wi,j) ] - R

o

i
N
Proof by contradiction:

Assume that Gl and G2 are reduced graphs with the same

number of vertices and the same number of edges. Suppose that

N

[1 (S; :» W, .) 1is true and that R is false. If all incidence
=l,j=l ’j l,j

i
do not hold (R), there is at least one pair of connected

vertices of Gl (call them k and %)

RN
~ -~ —
~ ~
/ Gl G2
which correspond to two vertices k' and ' of G2 which are not
connected. If this is true, then there is at least one

neighbor of k (meaning %) which does not correspond to any

neighbor of k'. Therefore, the neighbor sets of k and k' cannot
be in a one-to-one correspondence. Symbolically stated:
(S > W )

k,k' k,k'
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The hypothesis stated that (Si j'+Wi j) for all cases of 1 and
M M

J and therefore it is necessarily true that

S > W

k,k' k,k'

A contradiction has been obtained. Therefore the assumption

that R is false is false. Therefore, R must be true, which
leads to:

Ny

7 (S. . sW. .) » R

PR U5 B I,

j=1

By material equivalence, the expressions

Ny
R+ ) (S, > W. .)
=1 1,] 1,7
j=1
and
Ny
(S > W, .) =+ R
%5 7 %3
3=1
become
Ny
R« T1 (S; 5 » W, )
i:l 1,7 5]
j=1
A ivalent ression for (S, . » W, .) is (S, .<»S, .W. .
n equivalent expre n ( i, 5,3 i3 5,591 .4

as proved by the following truth table:

S W SW S>W 5 <« SW (S »W)<«> (S<«> SW)
T T T T T T
T T F F T T
T T F T T T
T F F T T T
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Thus, we may rewrite the equivalence for R as:

N

R <> [] (S, . <> S, .W. )
; 1,3 1,374,3
J

<

B

Three of the equations thus far presented are of primary
importance for completion of the proof. They are:

I <> C-* R

C <> (P <> g .
: 1,7 laj) Q J
NV
<> Y . <> S . W )
R [ 131 (35 3 1,5 W5,5)
Jj=1

to:

, 3. .):0-
I ++(Pi’j <> l,j) Q [

Consequences of Logical Relations

In simplyfying the right hand side of the above expression,
there are two possible outcomes:
1) If the expression is self-contradictory and all
- terms vanish, then the expression is false and
denies the existence of any one-to-one correspond-
‘ence between the vertices of Gl and the vertices
of G2, such that all incidence relations hold.
Conclusion: Gl and G2 are not isomorphic.
2) If the expression is not self-contradictory, it

is a true statement and shows existence of a one-



to-one correspondence between the vertices of
Gl and’the vertices of G2 such that all incidence
relations hold.

Conclusion: Gl and G2 are isomorphic.
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CHAPTER IV
DESCRIPTION O PROGRAM

A Fortran program which simplifies.the logical expressions
described in Chapter III is listed and discussed in Appendix
A. This program was written for homogeneousvgraphs only,
but may be converted for the general case by changing Sub;
routine BMXX. An explanation of the necessary steps for this
convefsion is also included in Appendix A.

Some information about each pair of graphs to be tested
for isomorphism must be read into the computer. The only
information necessary would be some means of defining the
neighbor sets of each vertex of both graphs. Vertex—inéidence
matrices will serve the purpose while keeping the input at
a minimum.,

There are two input cards to the program; one for each
graph. On each input card there is a graph identification
number (NG), the number of vertices in the graph (NV) and
elements of the vertex-incidence matrix taken rowwise by
columns.

Consideration is now given to how each logical expression
will be stored in memory. Boolean Algebra is used throughout

the program whenever numerical values represent logical

26
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expressions. In Boolean Algebra, any logical expression
which is true is replaced by 1. Likewise, any false ex-
pression will be replaced by a 0. Of necessity, the Boolean

1's and 0's must have a Weight" or place value, just as the
"weights" unit, tens, hundreds, etc. serve to clarify our

decadic number system.

A special matrix will be used to handle all expressions

of the Wi . form. Consider the matrix:
s
€1,1 1,2 €1,3 y
€2,1 2,2 €2,3

eNv,l eNV,2 eN. .3 cen

Each element of this matrix has a truth value (1 or 0) and a
"weight" (Pi,j)’ If the truth value is 1, the weight is
entered into a secession of "or" terms. If the truth is 0,
the complemented weight is entered into a secession of "and"
terms, which is then put into logical product form with the
secession of "or" terms. Expressions are created in this
manner only for rows. The logical product of all such row
expressions is logically equivalent to the matrix.

Example: Suppose the first row of this matrix were
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ts equivalent row expression would be (Pl,3 \% Pl55 v Pl,6)

— e

(P P )

1,1 71,2 F1,4

Consider its equivalent expression would be

lo »
SR
IH o R

[(P v P, (P v P )(P

1,1 1,3 1,2)] LCP

3):II:(P3’2 v P (P, )]

2,1 2,27 52, 3,3753,1

By using commutation ['4 ] this can be rewritten as

P p p

(P v Py og) v B, ) (P 3,3) 1,1 “2,3 °3,1

1,1 VP1,30 (P 1 VP, v P

3,2
This form is exactly the same as for the wi,j with one
exception. The wi,j expressions descfibe only the possible
correspondences between the neighbors of i and the neighbors
of j, they say nothing of the possible correspondences between
the other vertices of the two graphs. Since the wi,j terms
give no information as to the vertices which are not neigh-
bors of 1 and j, it must be assumed that all correspondences
between them are possible. This assumption is sometimes
referred to as putting the expression in "cannonical" form.
The Si,jwi,j

incidence matrices. Suppose that the input vertex-incidence

expressions can be written from the input vertex-

matrices for Gl and G2 are as shown in Figure 5. The neighbors

of vertex 1 of Gl are 2, 3, and 6. The neighbors of vertex 1
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—011001~ _001011—
101100 - 001101
110010 110010
010011 010011
001101 101100
100110 » 110100

FIGURE 9

Illustration of Program Input

of G2 are 3, 5, and 6.
Thus:

W <> P ( v P v P ) (P v P v P

P1.1W1 1 1,1P2 .3 2,5 2,6

v P v P )y (P P P P, P P )

6,3 6,5 6,6 2,2 T2,4 ©3,2 T3,4 6,2 6,4

Replacing Pl 1 with Sl 1 and rearranging terms the above
b b

equivalence is rewritten

v P )

S, W 2.6

1,1%1,1 7 [(Pl,l) P1,2P1,3P1,uP1,5P1,6] [(P2;3 V'Pys

]

) P

P2,1P2,2P2,u] [(P v P v P

3,3 3,5 3,67 3,1F3,2F3,u

Py 1P 3Py, sPu .60 [F5 1P5 3Fs sFs5 6

]

[ (P v P v P ) P

6,3 65 6,6 6,156,261

The matrix equivalent to Sl-lwl 1 would then be
- ,

b

o
(]

| © © ©o o o |
o
= O O = O
o
H O O 1 O
| o o + = o]
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The blank locations are replaced with ones to put the matrix

in "cannonical" form.

100000
0010101
6001011
010100
010100
001011

This logical matrix can be used to represent Q also.

Ny
=Ty (P, . vP. _ vP, _ ...vP, )

Q fjl i,1 i,2 i,3 i,N,
1 11 oo 1
1 11..... 1
1 11 ces 1

Q= o e« °
11111 1

We now replace each Pi . term in the Q matrix with its

2
equivalent Si ﬁwi 5 term to obtain what may be called a matrix
2 2

of matrices. Using the vertex-incidence matrices shown in
Figure 5, the matrix of matrices is formed as shown at the
end of Appendix A.

The matrix in position (1,1) denotes all possible
correspondences if Sl,l is true. The possible correspondences
with vertex 2 of Gl are 3, 5, and 6. The subroutine BMXX(I,J)
finds the P. . matrix according to its arguments I and q and

1,]

stores the result in Ai 5,10 The BMXX subroutine also requires
) s
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the vertex-incidence matrices of both graphs. To see how the
two Pi,' matrices combine, rewrite Q in the form
Q <+ (Pl;l \Y% P1,2 \Y% Pl,3 \Y% Pl,u \Y% Pl,S \% Pl,G)
(P2,l \Y% PQ’2 \Y% P2,3 \Y% PZ,M \Y% P2,5 \% PZ,G) .
N
[ TTV (P, v P P. ) ]
i=3 i1 i,2 1,Ny

Using distribution,

Q <= (Pl,l P2,l v Pl,l P2,2 v Pl,l P2,3 v Pl,l'PZ,S
VP 1 Py g VP g Py a VB g Py Ve Py g Py g)t
L o )]
(P v P. V «v. P
JJ3 51 1,2 : 1,Ny
In this expression Py is first combined with all P,y terms ,
9 3
then P is combined with all P, . terms, then P is used
1,2 2,1 1,3
and so on until P is combined with all P, . terms.
1,6 2,1

What happens when the logical product of fwo Pi,j terms
is taken? Before examining this question further;‘it will be
easier to start with a simplier example. Suppose the ex-
pression T is to be reduced to its lowest terms, T being
defined as follows: |

T = (AvBvCvD) BETF
The reduction takes place as follows:
Distribution is used to obtain the form

T = ABEFT v BBEF v CBEF v DBETF
The term B B E F is self-contradictory, while the others are

not.

The self-contradictory term is eliminated to obtain

T = ABEF v BCBEF v DBET
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Again,; using distribution the expression simplifies to:

T = (AvcvD BETF
This example can be extended fo larger expressions” by using
commutation. [ 4 ] The following reduction is an example of
this extension. SuprSe a reduction is to be~made with

T = [(P ) (P P P P P ) (P v P v P )

1,10 YF1,2%1,31,uF1,5F1,67 F2,3V Fo 5V P
(By 1Py 9Py W) (Py gV Py v Py O(Py 1Py ,Pg )
(Py oV Py ) (By 1Py 3Py §Py ¢) (Pg ,v Pg \)
(Pg 1P5 3P5,5P5,67 P53V Pg 5V Po,67(Pg,1P6,2P6,40 ]
[(Pp v Py ,v By (B 3By (B (P, )
(Py 1Py 9Py 4Py 5Py g) (P3 1V Py v Py g)(Py 3Py Py o)
(Pu’lv PH,ZV Pq )(PH 3P4 HPM 6) (PS,”V P5,6)

P. ,P. ,P. )]

v Pg ) (P 6,2 6,3 6,5

(P. ,P. ,P. ,P Y(P 5,6 5,1

5,1 5,2 5,3 5,5’ 76,4
Using the rule of commutation, the self-contradictory terms

may- be brought together régardless'of'their‘original:position
and simplified as shown in the example on page 31. The self-

contradictory terms of the above expression are:

(P, .v P. .vP. ) (P, B. )

2,3 “2,5° 2,6 2,572,6
(P3,3v P3’5v P3,6) (P3,3P3,6)v
(Py oV Py ) Py .y
(Pg 1V Pg gv Pg gv Py ) Fg g
(Pg 3V Pg 5V Pg ) Pe,s
(Py v Py oV Py ) Py 0Py g
(P3,l§3 5) (P3,lv Py oV P3,5)
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(Py 1Py, 5 Py 1V Py oV By o)
(P5,6) (PS,HV P5,6) and
(PB,H) (PB’HV P6,6)

The above example is the same as simplifying the expression
Pl,lP2,3 in the example on page 56. This simplification
eliminates terms which have a "ene" in one Pi,' matrix and a
"zero" in the corresponding position of the other. Like
digits in corresponding‘matrix positions do not cause any

simplification to occur. The MPY subroutine makes use of

these rules when it is called to take the logical product

of two P. . matrices. Using matrix notation P P can be
i, : 1,172,3
written:
100000 110010 1000000
1001011 001000 0010000
001011 110010 0000100
010100 110010 0100000
010100 000101 0001000
001011 000101 0000010

It follows from the combination P P that if vertices

1,1°2,3
1 and 2 of Gl correspond to vertices 1 and 3 of G2, respectively,
it must be true that vertices 3, 4, 5 and 6 of Gl must corres-
pond to vertices 5, 2, 4 and 6 of G2 respectively. In essence,
this is the basis for a reduction in the number of necessary
tests. In this form of simplification, there are two irregular
circumstances which might occur. The first is that in a
series of Pi 3 correspondences a row or column of all zeros

9

could occur.
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Such as this:

o o O -+ o

j© © o o
H B o o
o o o o o
|1~ = o o ol

If it did, it would mean that there was no possible correspond-
ence between some vertex of one graph (designated by the row
or column of zeros) and any of the vertices of the other graph,
and therefore the series is not a possible correspondence.

The second circumstance that might occur is represented

by the following matrix.
¥ column 2

10000
00100
row 3 > (01000
01011
01011

In this matrix there is a single P term, which says that with
the combinations taken thus far, there is only one possible
correspondence; 1.e., vertex 3 of Gl must correspond to vertex
2 of G2.

If this Pi : term is replaced by its equivalent S

9

expression, the terms Pu ? and P5 ” become self-contradictory,
s ] 5

and are replaced by zeros. After each step of combining

matrices, the program control is transferred to subroutine

Zero, which checks for the occurence of these two circumstances

and takes appropriate action if they do occur.
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Knowing that the subroutines BMXX, MPY and ZERO are
available, the problem now is one of combining the Pi;j matrices
in such a way that all possible correspondences are considered.
A nest of DO loops was set up to accomplish this function.

The skeleton for this nest is:

DO 10 I1 = 1,N

IF (N.EQ.1) GO TO 101

DO 20 I2

1,N

IF(N.EQ.2) GO TO 101

DO 30 I3

1,N

DO 90 IS

1,N

IFZN.EQ.g) GO TO 101

DO 100 T10 = 1,N

GObTO 101
This nest of DO statements will test all correspondences.
While the program was written for a maximum of 10 vertices
per graph, there is no need to test all 10! cases when N<10.
For this reason, IF statements are inserted to skip unnecessary
tests.

From the rules set out for finding the logical product

of two Pi . matrices, it can be seen that in order to combine

b

Pi 3 with Pz I without obtaining a contradiction, there must
2 2

be a "1" in the ¢ row and k column position of the matrix P 5
b4
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l’i‘WIth'the matrices P2,i

For the cases where i1 takes on the values 1, 2, or 4, the

Examihé‘the”casewofmcombining"P

matrix Pl lP2 5 will have a row of zeros and is thérefore
b b

self-contradictory. By checking for the occurrences of ones

in row two of matrix Pl (this is done by cycling subscript
]

I2) and eliminating those cases where they do not appear, a
significant reduction in the number of correspondences which
must be iInterrogated is made. In this example, the pfodUcts

P and P P are self-contradictory,

F.ab,1 2 Pi1ifen 1,1 Fo,u

and when combined with any other Pi'.

matrices, remain self-
9 ;

contradictory. ' All the possible correspondences

N
p (B, 1 vV Py p v By ) fj: P, )
;Y

J
may thus be disregarded. This amounts to a reduction of 3.4!

or 72 tests.

The subscripts i and J are cycled such that matrix Pl 1
]

is combined with the first matrix of the form P2 5 which
b

fulfills the conditions described above. That matrix would

be P2 3 As shown in the example on page 32, the combination
]

Pl le 3 leaves only one correspondence to test. At this
b b

level, the number of tests eliminated is 4! -1 or 23. After
the above case is fully tested by cycling the subscripts
I3 -I6 through the values 1 to 6 and eliminating unneccessary

tests at each level of the DO loop nest, the cases Pl lP2 5
- ]

and Pl le g are examined in the same manner. At this point
2 b

subscript Il is changed to 2 and the process is repeated with

P replaced by P Each correspondence which survives

1,1 1,2°

all levels of testing represents an isomorphism of the two



graphs Gl and G2. The correspondence matrices are saved up in
groups of ten and then printed out. An example of this print-
out is shown in Appendix B. An abundance of comment cards
have been placed in the pfogram with the hope that they will

help to clarify the preceding description.



CHAPTER V

CONCLUSION AND DISCUSSION

The importance of this thesis is that there is now
avallable a tool for classifying graphs. Consider the case
where identical vertex incidence matrices written from one
graph are used as input to the program. When this is done,
the output is a 1list of all automorphisms of the graph. In
some cases, it is easy to determine that two graphs are iso-
morphic; but it is not easy, in general, to enumerate all
possible isomorphisms by inspection or even by the exhaustive
process of trying all possible combinations. This is parti-
cularly true when the graph is non-planar. It is in this
situation that the computer excels in speed and accuracy.
Graphs cannot only be classified by their number of auto-
morphisms, but also by their symmetries and the number of
permutations necessary to change each automorphic vertex-
correspondence matrix to the unit matrix. It is the intention
of the author to continue his study of graphs by using the
output of the isomorphic testing program for investigation of
the symmetry and permutations of isomorphic graphs.

The choice of investigating homogeneous graphs was two-

fold. First, it was the simpliest structure to study. Second,

38
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homogeneous graphs have special significance in map coloring
studies. In particular, homogeneous graphs of order three seem
to be the key to the solution of the Four-Color Map problem.

If the program inputs are the vertex-incidence matrices
of two graphs which are seemingly non-similar, the program
will test for the existence or non-existence: of isomorphisms
between. the two graphs.

The speed of the program depends upon the computer used,
the number of vertices in the graphs being tested and also
upon the number of vertex-correspondence matrices which must
be printed as output. As shown in the examples in appendix
B, the case where graphstll and 12 were tested took 18.6
seconds. to. test and print ¥ vertex-correspondence matrices.
However., -when testing graphs 9 and 10, which have 120 iso-
morphisms, the running time was 32.4 seconds. This increase
is-due to.print-out time since 'graphs 11 and 12 have the
greater:number of vertices and thus require more testing time.
The time. required for typical -examples has been within
‘reason, . It is interesting to note, however, that a complete
graph,. (i.e., a graph in which each vertex is connected to
every other vertex) with 10 vertices would require approxi-
mately 10 hours of testing time and 50 hours printing time
for a total of 60 hours or over 2 days. It is appareht
that sucﬁ cases as this should be avoided. This could be
accomplished by not printing out the vertex-correspondence
matrices. and changing the program to terminate after one

isomorphism is found.
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The author not only intends future investigations of
symmetry and permutations, but also plans to discover the
answer to some interesting questions which havé occurred to
him. For instance, what is the number &6f vertex correspon-
dences which must be chosen before isomorphism: or non-
isomorphism can be detected? Or, are all graphs which have
the same number of vertices, elements and trees isomorphic?

The author has found a fascinating life-time project.
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17
18
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23

MAIN PROGRAM

INTEGER AsSUM,4C

HE ORDER OF SUBSCRIPTING DIMENSIONED VARTABLES IS 8Y ROWs COLUMN,

AYER

DIMENSION MCG1(10+10)9sMCG2(10+910)sA(10910+10)9C(10510+10)
COMMON NsAsMCG19MCG29SUM

FORMAT (214,7011/7(7211))

FORMAT (//63Xs5HINPUT/54X+24HNODE CONNECTION MATRICES)
FORMAT (40X s 5HGRAPH s 14434X9s5HGRAPH,14/)

FORMAT (1HQO s THGRAPHS +s1495H AND +14,15H ARE ISOMORPHIC / 1HOs42HALL

1 POSSIBLE VERTEX CORRESPONDENCES FOLLOW )

FORMAT(1H 410I149(2Xs1011))

FORMAT (1HO » 34HNON-EQUAL ENUMERATION OF VERTICES / )
FORMAT (1HO 4 38HNO POSSIBLE ISOMORPHIC CORRESPONDENCES /)
FORMAT(1HO » 34HNON~EQUAL ENUMERATION OF ELEMENTS /)

FORMAT (1HO, 25HNUMBER OF VERTICES EQUALSs18+6Xs25HNUMBER OF ELEMENT

1S EQUALS,I8 /)

FORMAT(1HO)

FORMAT (39Xs1011433X,1011)

FORMAT(//13H NET TIME IS +F6e¢2+48H MINUTES)

FORMAT(//1H +38HNUMBER OF POSSIBLE ISOMORPHISMS EQUALS,I18)
FORMAT(//1H s THGRAPHS ¢1445H AND +14419H ARE NOT ISOMORPHIC)
FORMAT (59X 16HI SOMORPHISM TEST)

FORMAT{1H ,1011)

INITIALIZE

STORAGE BLOCK A IS WHERE THE LOGICAL MATRICES ARE COMBINED

IF G1 AND G2 ARE ISOMORPHICs THE VERTEX-CORRESPONDENCE MATRICES
ARE SAVED s FOR LATER PRINTOUTs IN STORAGE BLOCK C

1000 CALL CLOCK(TIMEON)
1001 DO 1002 1=1,10

DO 1002 J=1,10
MCG1(1+J)=0
MCG2(1+J)=0

DO 1002 K=1410
Al sJsK)=0
CllsJdsK) = 0

1002 CONTINUE

THE VARIABLE LOG KEEPS AN ACCOUNT OF THE NUMBER OF ISOMORPHISMS.

LOG = 0

READ THE IDENTIFICATION NUMBERs NUMBER OF VERTICESs AND VERTEX-
INCIDENCE MATRIX FOR GRAPH 1.
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READ(591) NG1sNV1se{(MCG1(IsJ)sJd=14NV1)sl=14sNV1)
READ THE IDENTIFICATION NUMBER, NUMBER OF VERTICES AND VERTEX-
INCIDENCE MATRIX FOR GRAPH 2

READ(551) NG2sNV2s ((MCG2(IsJ)sJ=1sNV2)sI=1sNV2)
PRINT HEADINGS AND LABELS

CALL PAGE

WRITE(6522)

WRITE(642)

WRITE(653) NGlsNG2
FIND THE MAXIMUM OF NV1 AND NV2e THIS IS DONE SO THAT ALL
INFORMATION READ IN IS PRINTED OQUT EVEN THO THE NUMBER OF VERTICES
OF THE GRAPHS ARE UNEQUAL.

N = MAXO(NV1sNV2) |
PRINT OUT BOTH VERTEX-INCIDENCE MATRICES.

DO 1003 I=14N

1003 WRITE(6917) (MCGLl(IsJ)sJ=1510)9s(MCG2(I9J)sJd=1510)

CHECK TO SEE THAT THE NUMBER OF VERTICES IN EACH GRAPH ARE THE SAME

IF (NV1eNEeNV2) GO TO 109

By SUMMING THE NUMBER OF ONES IN EACH VERTEX-INCIDENCE MATRIX WE
OBTAIN NUMBERS WHICH ARE TWO TIMES THE NUMBER OF EDGES QF EACH
GRAPHe THESE NUMBERS ARE USED TO SEE IF THE TWO GRAPHS HAVE THE
SAME NUMBER OF EDGES.

IELS1 0

IELS?2 0

DO 1004 I = 1N

DO 1004 J=1sN

IELS1 = ITELS1 + MCGl(Isd)
TELS2 = TELSZ2+MCG2(1,4J)

[ ]

1004 CONTINUE

IF (IELS1eNESIELS2) GO TO 111
TELS = IELS1 /7 2

PRINT OUT THE NUMBER OF VERTICES AND THE NUMBER OF EDGES.
WRITE (699) NVILIELS

ENTER LEVEL 1 OF DO LOOP NEST =- M= 1
DO 10 I1=1sN

CALL BMXX(1l,I1)
IF(NesEQel) GO TO 101
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EXIT LEVEL 1 - ENTER LEVEL

DO 20 12=14N
IF(A(2+1291)eNEsl) GO TO
CALL BMXX(2s12)

CALL MXP(2)

CALL ZERO(2)
IF(SUMsEQeO) GO TO 20
IF(NeEQe2) GO TO 101

EXIT LEVEL 2 - ENTER LEVEL

DO 30 I3=1,sN
IF(A(3+1I392)eNEsl) GO TO
CALL BMXX(3,13)

CALL MXP(3)

CALL ZERO(3)
IF(SUMeEQe0) GO TO 30
IF(NeEQe3) GO TO 101

EXIT LEVEL 3 ~ ENTER LEVEL

DO 40 I4=1,N
[F(A{49s1453)eNEel) GO TO
CALL BMXX(4y14)

CALL MXP(4)

CALL ZERO(4)
IF(SUMeEQeO) GO TO 40
IF(NeEQe4) GO TO 101

DO 50 15=1,N
IF(A(591594)eNEel) GO TO
CALL BMXX(5415)

CALL MXP(5)

CALL ZERO(5)

IF(SUMeEQeO) GO TO 50
IF(NeEQe5) GO TO 101

DO 60 I6=1sN

IF(A(6+1695)eNEsl) GO TO

CALL BMXX(6+16)

CALL MXP(6)

CALL ZERO(6®6)
IF(SUM.EQ.QO) GO TO 60
IF(NeEQe6) GO TO 101

DO 70 17=1,N
IFCA(7+1796)eNEel) GO TO
CALL BMXX(T7+1T7)

CALL MXP(7)

CALL ZERO(T7)

IF(SUMEQ.Q) GO TO 70
IF(NeEQe7) GO TO 101

DO 80 18=1,N
IF(A(B+1837)eNEel) GO TO
CALL BMXX(8,18)

CALL MXP(8)

CALL Z2ERO(8)

20

30

“’.................ETC.

40

50

60

70

80
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IF(SUMeEQsQ) GO TO 80
IF(NeEQe8) GO TO 101
DO 90 19=14N
IF(A(9+19+,8)eNEel) GO TO 90
CALL BMXX(9519)
CALL MXP(9)
CALL ZERO(9)
IF(SUMsEQs0) GO TO 90
IF(NeEQe9) GO TO 101
DO 100 110=1,N 3
IF(A(10+s11059)eNEs1) GO TO 100
CALLBMXX(105110)
CALL MXP(10)
CALL ZERO(10)
IF(SUMEQeO) GO TO 100
GO TO 101

100 CONTINUE

90 CONTINUE

80 CONTINUE

70 CONTINUE

60 CONTINUE

50 CONTINUE

40 CONTINUE

30 CONTINUE

20 CONTINUE

10 CONTINUE

IF THE PROGRAM CYCLES THROUGH ALL DO LOOP INDICES AND LOG REMAINS
ZEROs THERE ARE NO POSSIBLE ISOMORPHISMS --GO TO 110 AND PRINT
APPROPRIATE MESSAGE

"IF (LOG+EQeO) GO TO 110
GO 70 106

112 WRITE(64+19) LOG

108 CALL CLOCK(TIMEOF)

TIMERN = (TIMEOF -~ TIMEON) / 600
WRITE(6+18) TIMERN
GO 7O 1000

THE PROGRAM ENTERS AT STATEMENT 101 EVERY TIME AN ISOMORPHISM IS
ENCOUNTERED,

101 IF(LOGeEQeO) WRITE(694) NG1lsNG2
LOG = LOG + 1 :
IF(LOGsEQe40) CALL PAGE
LXX = LOG -~ 40
LXX = MOD(LXXs50)

IF(LXXeEQeO) CALL PAGE
IST = MOD(LOG»10)
IF(ISTeEQe0Q) 1S5T=10

SAVE THE VERTE,&NCIDENCE MATRICES IN C(IsJsIST) AND PRINT A WHOLE
ROW WHEN LOG IS A MULTIPLE OF TEN

DO 102 I=1,N
DO 102 J=1sN
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102 C(IeJsIST) = A(IsJsN)
ITEST = MOD(LOG,10)
IF({ITEST.NE.O) GO TO 103
WRITE(6416)
DO 104 I=14N
104 WRITE(6+5) ((C(19JsK)sJ=s1910)9K=1510)

ZERO ALL OF STORAGE BLOCK C AFTER PRINTOUT.

DO 105 I=1410

DO 105 J=1,10

DO 105 K=1910
105 C(1yedeK) =0

STATEMENTS 106 TO 109 PRINT PARTIAL ROWS OF CORRESPONDENCE MATRICES

1032 GO TO (10520930+40+50960970+804+905100)sN
106 ITEST = MOD(LOG,»10) .
IF(ITESTSEQe0) GO TO 112
WRITE(6+16)
DO 107 I=14N
107 WRITE (645) ({C(IsJsK)sJ=1910)sK=1sITEST)
WRITE(64+16)
WRITE(6+19) LOG
GO TO 108

CONTROL IS TRANSFERED TO 109 WHENEVER THERE ARE NON-EQUAL VERTEX
SETS

109 WRITE (6+21) NG1sNG2
WRITE (6+6)
GO TO 108

CONTROL IS TRANSFERED TOF110 WHENEVER THERE ARE NO POSSIBLE
I SOMORPHISMS,.

110 WRITE (6921) NG1lyNG2
WRITE (6s7)
GO TO 108

CONTROL 1S TRANSFERED TO 111 WHEN THE NUMBER OF EDGES OF G1 IS NOT
EQUAL TO THE NUMBER OF EDGES OF G2

111 WRITE (6921) NG1sNG2
WRITE (6+8)
GO TO 108
END
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SUBROUTINE BMXX (ML)

THIS SUBROUTINE FINDS THE MATRIX P(MsL) FROM THE VERTEX-INCIDENCE
MATRICES (MCG1 AND MCG2) AND STORES THE RESULT IN A(IsJsM).

M IS THE LEVEL OF THE DO LOGP NEST AT WHICH THE BMXX SUBROUTINE
IS CALLED

INTEGER AySUM
DIMENSION MCG1(10410)9sMCG2(10910)9A(10510510)
COMMON NsAyMCG19MCG29SUM

THE FOLLOWING DO LOOPS CYCLE I AND J WITH M REMAINING CONSTANT

L IS THE VALUE OF THE DO LOOP INDEX AT LEVEL M OF THE DO LOOP NEST

DO 15 I=1sN
DO 15 J=1sN

RULES FOR FINDING A(IsJyM)
1) IF MCG1(MeI) IS NOT EQUAL TQ MCG2(LsJ)s A(IsJsM) = 0

2) IF MCG1(MyI) IS EQUAL TO MCG2(LsJ)s THEN A(IsJsM) = 1
UNLESS I EQUALS M AND J DOES NOT EQUAL L
OR UNLESS J EQUALS L AND I DOES NOT EQUAL M

THE LAST TWO RESTRAINTS INSURE THE APPEARANCE OF A 1 IN THE
(MsL) POSITION OF A(IsJsM) AND ZEROS ELSEWHERE IN ROW M
AND COLUMN L

IFI{MCGL(Ms1)eEQeMCG2(LsJ)) GO TO 5
AllysJaM)=0
GO TO 15
5 AllsJeM)=1
IF(1eEQeM) A(I9sJsM)=0
IF(JeEQelL) A(I9sJeM)=0
15 CONTINUE
A(MyLsM)=1
RETURN
END
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SUBROUTINE MXP (M)

THIS SUBROUTINE COMBINES A(IsJeM) WITH A(lsJsM-1) TO PRODUCE THE
LOGICAL PRODUCT A(IsJoM)®A(I9JsM-1) WHICH IS STORED BACK INTO
THE MATRIX A(IsJeM)

INTEGER . Ay SUM

DIMENSION MCG1(10+10)9sMCG2(10+10)9A(10+10+10)
COMMON N»A,MCG1 sMCG29SUM

K=M-1

THE RULES FOR FINDING THE LOGICAL PRODUCT A(IsJoM)RA(I9JsM-1)
ARE SUMMARIZED IN THE FOLLOWING TABLE~

AlIsJeM) AllgJdeM-1) A(ToJoM)*A(I sJeM=1)
0 0
0 1 , 0
1 0 ' 0.
1 1 1

THESE RULES ARE SATISFIED BY THE ARITHMETIC PRODUCT OF A(lsJsM)
AND A(lsJsM-1) ' '

DO 5 II=1,10

DO 5 JJ=1+10

AlITodJIoM) = (A(ITsJJoM)I*(A(TITJJeK))
5 CONTINUE

RETURN

END
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SUBROUTINE ZERO(M)

THIS SUBRQUTINE TESTS FOR TWO STATES OF THE MATRIX A(lsJsM) WHICH
CAN LEAD TO A REDUCTION IN THE TOTAL NUMBER OF CORRESPONDENCES
TESTED

l)vTHE POSSIBILITY OF A ROW SUM OR COLUMN SUM BEING ZERO

2) THE POSSIBILITY OF ONE AND ONLY ONE 1 IN A ROW OR COLUMN.
STATED IN ANOTHER WAY =~ IF A ROW SUM OR COLUMN SUM IS 1.

INTEGER AsSUM,SUMR, SUMC :

DIMENSION MCG1(10+10)sMCG2(10910)3A(10510+10)
DIMENSION SUMR(10)sSUMC{10)sNEWSR{10)sNEWSC(10)
COMMON NysAyMCG1sMCG2ySUM ’

THE NEXT SIX STATEMENTS COMPUTE N ROW SUMS - SUMR(I)

SUMRI( 1)
2 CONTINUE
1 CONTINUE

MR(IVY+A(1sJsM)

THE NEXT 11 STATEMENTS CHECK THE ROW SUMS FOR ZEROS OR ONES AND
TAKE THE APPROPRIATE ACTION.

DO 15 I=1sN

IF ANY ROW SUM 1S Os THE VERTEX-CORRESPONDENCE BEING TESTED IS
NOT AN ISOMORPHISM - SET SUM TO 0 AND RETURN TO THE MAIN PROGRAM

IF{SUMR(I)«EQe0) GO TO 50

IF SUMRI(I) IS NOT EQUAL TO 1 OR 0s THERE CAN BE NO REDUCTION OF
AllsJsM) =—~ GO BACK AND CHECK SUMRI(I+1)

IF(SUMR(I)eNEesl) GO TO 15 ’

IF SUMR(I) EQUALS 1 CYCLE J TO FIND WHICH COLUMN THE 1 IS IN AND
ZERO ALL POSITIONS OF THAT COLUMN EXCEPT IN ROW 1.

DO 10 J=1sN
IF(A{IsJsM)eEQel) GO TO 11
10 CONTINUE
11 DO 12 L=1sN
IF{LeEQel) GO TO 12
AlLsJeM)=0
12 CONTINUE
15 CONTINUE

THE OPERATIONS FROM THIS' POINT TO STATEMENT 30 PERFORM THE SAME
TESTS ON THE COLUMN SUMS /SUMC(I)sI=14Ns THAT WERE PERFORMED ON
THE ROW SUMS ABOVE.
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DO 16 J=1sN
SUMC(J)=0
DO 17 I=1sN
SUMC(J)=SUMC(J)Y+A(TsJsM)
17 CONTINUE
i6 CONTINUE
DO 30 J=1sN
IF(SUMC(J)eEQWeO) GO TO 50
IF{SUMC(J)eNEel) GO TO 30
DO 25 I=1sN
IF(A(IsJeM)eEQel) GO TO 26
25 CONTINUE
26 DO 27 L=1sN
IF(LeEQsJ) GO TO 27
AtTsLsM)=0
27 CONTINUE
30 CONTINUE

CONSIDER THE CASE WHERE UPON ENTERING THE ZERO SUBROUTINE »
A{TlsJsM) WAS '

01010
01001
00010
11101
11000

SINCE SUMR(3) IS 1 4 COLUMN 4 IS ZEROED EXCEPT FOR ROW THREE.
THUSs AT THIS POINT IN THE SUBROUTINE A(IsJsM) IS

01000
01001
00010
11101
11000

SUMR(1) NOW EQUALS 1 BUT HAS ALREADY BEEN CHECKED AND FOUND NOT
EQUAL TO 1e THUS, IF ANY ROW OR COLUMN SUM CHANGES, MORE REDUCTION
MAY BE POSSIBLEe THIS IS NOT ALWAYS THE CASE, BUT THE POSSIBILITY
DOES EXISTe

THE NEXT 15 STATEMENTS COMPUTE NEW ROW AND COLUMN SUMSs AND COMPARE
THEM WITH THE PREVIOUS ROW AND COLUMN SUMSe IF ANY ROW OR COLUMN
SUM HAS CHANGED, CONTROL IS TRANSFERED TO THE BEGINING OF THE
SUBROUTINE AND A(I,JsM) IS CHECKED AGAINe IF ALL ROw AND COLUMN
SUMS REMAIN THE SAME, ALL POSSIBLE REDUCTIONS HAVE BEEN MADE.

SUM IS SET TO 1 AND CONTROL IS RETURNED TO THE MAIN PROGRAM.

DO 31 I=1,N
NEWSR(1)=0
DO 32 J=1sN
NEWSR(T)I=NEWSR(I)+A(1esJeM)



32

31

34

33

50

CONTINUE
IF(NEWSR{I)eNEsSUMR(I))
CONTINUE

DO 33 J=1»N

NEWSC(J)=0

DO 34 I=1»sN

GO TO 100

NEWSCUJ)=NEWSC(J)I+AlTsJeM)

CONTINUE |
IFINEWSC(J)eNEWSSUMC(J))
CONTINUE

SUM =
RETURN
SUM =

" RETURN

END

1

0

GO TO 100
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DESCRIPTION OF CHANGES

FOR THE GENERAL CASE

To change the program so that it will handle graphs with
vertices of different degrees, only the BMXX subroutine must
be altered. Assume that the vertex-incidence matrices were
written using the lowest degree vertex as vertex 1 and the
highest degree vertex as Nv. ' The vertices have now been
separated into sets by degrees. This may not be considered
the general case, but if the data were to be set down in any
order, it seems natural that the first operation of the
computer would be to sort the data and order it in some man-
ner.

We know that two vertices of different degrees cannot
correspond under isomorphism. We construct a matrix which
allows vertices of the same degree to correspond, but nbt
those of different degree.

A matrix that would perform this function for a graph
with 3 vertices of degree 2 and 3 vertices of degree 3 would

be

111000
111000
111000
000111
000111
000111
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This matrix isolates the degree sets. If this matrix were
combined in the "and" operation with each P(I,J) matrix, which
is derived by equating the neighbor sets, we would generate
logical matrices which would exhibit equality of degree sets
and equality of neighbor sets.

This masking technique would not be at all difficult to
accomplish. It would only be a matter of checking the row
sum and column sum in the vertex-incidence matrix fér each
row—cdlumn position and setting the corresponding element
of the masking matrix to 1 if they were equal and to 0 if
they were not. If the masking matrix is found in this way ,
it seems at first glance that the order of the input data

makes no difference.



1000000000
oolo01l10000
ooio0110000
0101000000
0101000000
0010110000

0010110000
1000000000
gol0110000
0010110000
0101C00000
0101000000

0o10t10000
¢ol10110000
1000000000
0101000000
0010110000
0101C00000

0101C00000
col1oll10000
0101000000
1¢0gQcoo0000
0010110000
ooi0l10co00

0101000000
0101000000
0010110000
0010110000
1000000000
0010110000

0010110000
0101000000
0101000000
0010110C00
0010110000
1000000000
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Q Matrix for the Example Discussed on Pages

0100000000
0011010000
oo11010000
1000100000
1000100000
ool1010000

0011010000
0100000000
0011010000
0011010000
1000100000
1000100000

0011010000
0011010000
0100000000
1000100000
0011010000
10001000C0O

1000160000
0011010000
10001000C0
0106000000
0011010000
ool1010600

1000100000
1000100000
0011010000
0011010000
0100000000
0011010000

001101000¢C0
1000100000
1000100000
00110100¢C0O
0011010000
01000000CO

0010000000
1100100000
1100100600
0001010000
0001010000
1100100000

1100160000
0010000000
1100100000
11001€0000
0001010000
0001010000

1100160000
1100100000

0010000000

0001010000
1100100000
0001010000

0001010000
110010000

0001010000

ool10Qc0000
1100100000
1100100000

0001010000
0001010000
1100100000
1100100000
0010000000
1100100000

1100100000
0001010000

0001010000

1100100000
1100100000
00100C60000

28-29

0001000000
0100110000
0100110000
1010000000
1010000000
0100110000

0100110000
0001000000
0100110000
0100110000
1010000000
1010000000

0100110000
0100110000
0001000000
1010000000
0100110000
1010000000

1010000000
010011€000
1010000000
0001000000
0100110000
0100110000

1010000000
1010000000
010011C000
0100110000
0001006000
0100116000

0100110000
1010000000
1010000000
0100110000
0100110000
0001000000

oooaol1ccoaQo
1011000000
1011000000
0100010000
01C0010000
10110€C000

1011000000
0000100000
1011000000
1011000000
0100010000
0100010000

1011000000
1011000000
0000100000
0100010000
101100€000
010001Cc000

010€010000
1011000000
0100010000
0000100000
1011000000
101100000

0100010000
0100010000
1011000000
1011€00000
0000100000
1011006000

1011000000
01C001C0C0
0100010000
1011C00000
1011000000
0000100000

0000010000
1101000000
1101000000
0010100000
0010100000
1101000000

1101000000
0000010000
1101000000
1101000000
0010100000
0010100000

1101€C0000
1101000000
0000010000
0010100000
1101000000
0010100000

0010100000
1101000000
0010100000
0006010000
1101000000
1101000000

001010C000
0010100000
1101000000
1101000000
0000010000
1101000000

1101000000
0010100000
0010100000
1101000000
1101000000
0000010000



APPENDIX B

PROGRAM OUTPUT
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GRAPHS USED AS PROGRAM INPUT

GRAPH 4

. LS



GRAPH 5

GRAPH 6

GRAPH 8
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GRAPHS 9 and 10 GRAPHS 11 and 12

Graphs 88, 89, 98, and 99 were
fictional and were used only to
show the various forms of output.

GRAPHS 13 and 14



GRAPH 1

0110010000
1011000000
1100100000
0100110000
0011010000
1001100000

NODE CONNECTION MATRICES

ISOMORPHISM TEST

INPUT

NUMBER OF ELEMENTS EQUALS

NUMBER OF VERTICES EQUALS 6

GRAPHS 1 AND 2 ARE ISOMORPHIC

ALL POSSIBLE VERTEX CORRESPONDENCES FOLLOW
1000000000 1000000000 0100000000 0100000000
0010000000 0000100000 0001000000 0000010000
0000100000 0010000000 0000010000 0001000000
0100000000 0001000000 0000100000 1000000000
0001000000 0100000000 1000000000 0000100000
0000010000 0000010000 0010000000 0010000000
0000010000 0000010000

0100000000 0001000000

0001000000 0100000000

0010000000 0000100000

0000100000 00100000CO

1000000000 1000000000

NUMBER OF POSSIBLE ISOMURPHISMS EQUALS 12

NFT TIME IS

0.15 MINUTES

0010000000
1000000000
0G0o0100000
0000010000
0001000000
0100000000

0010000000
0000100000
1000000000
0001000000
0000010000
0100000000

GRAPH 2

0010110000
0011010000
1100100000
0100110000
1011000000
1101000000

0001000000
0100000000
0000010000
0010000000
1000000000
0000100000

0001000000
0000010000
0100000000
1000000000
0010000000
0000100000

0000100000
1000000000
0010000000
0000010000
0100000000
0001000000

0000100000
0010000000
1000000000
0100000000
0000010000
0001000000

09



ISOMORPHISM TEST

INPUT
NODE CONNECTION MATRICES
GRAPH 3
0110100100
1011010000
1101001000
0110010100
1000011100
0101101000
0010110100
1001101000
NUMBER OF VERTICES EQUALS 8 NUMBER DF ELEMENTS EQUALS 16
GRAPHS 3 AND 4 ARE [SOMORPHIC
ALL POSSIBLE VERTEX CORRESPONDENCES FOLLOW
1000000000 1000000000 0000100000 0000100000
0000001000 0000000100 0000001000 0000000100
0010000000 0000010000 0001000000 0100000000
0001000000 0100000000 0010000000 000010000
0000000100 0000001000 0000000100 0000001000
0000100000 0000100000 1000000000 1000000000
0100000000 0001000000 (©O0001000G 0010000000
0000010000 0010000000 010000000C 00019000000

NUMBER OF POSSIBLE ISOMORPHISMS EQUALS 4

NET TIME IS

0.19 MINUTES

GRAPH 4

0010011100
0010110100
1101001000
pololllo00
0101001100
1101000100
1011100000
1100110000

19



NUMBER OF VERTICES EQUALS

GRAPH 5

0110010000
1011000000
1100100000
0100110000
0011010000
1001100000

ISOMURPHISM TEST

INPUT
NODE CONNECTION MATRICES

NUMBER OF ELEMENTS EQUALS 9

GRAPHS 5 AND 6 ARE NOT ISOMORPHIC

NO POSSIBLE ISOMORPHIC CURRESPONDENCES

NET TIME IS

0.05 MINUTES

GRAPH 6

0110010000
1001100000
1001100000
0110010000
0110010000

1661100000

[4°]



NUMBER OF VERTICES EQUALS

8

GRAPH 7

0110001000
1001000100
1001100000
0110100000
0011010000
0000101100
1000010100
0100011000

ISOMORPHISM TEST

INPUT
NODE CONNECTION MATRICES

NUMBER OF ELEMENTS EQUALS 12

GRAPHS 7 AND 8 ARE NOT ISOMORPHIC

NO POSSIBLE ISOMORPHIC CORRESPONDENCES

NET TIME IS

0.23 MINUTES

GRAPH 8

0101100000
1010010000
0101001000
1010000100
1000010100
0100101000
0010010100
0001101000

£9
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0000000100
0000001000
0000010000
0000000001
0000000010

0000000100
0000001000
0000000010
0000010000
0000000001

0000000010
0000010000
0000001000
0000000100
0000000001

0000001000
0000000100
0000010000
0000000001
0000000010

0000001000
0000000100
000000001¢C
0000010000
0000000001

0000010000
0000000010
0000001000
0000000100
0000000001

0600000100 0000010000
0000010000 0000000100
0000001000 0000001000
0000000001 0000000001
0000000010 0000000010
0000000070 0000000100
0000000100 0000000010
0000010000 0000010000
0000001000 0000001000
0000000001 0000000001
0000001000 0000010000
0000010000 0000001000
0000000010 0000000010
0000000100 0000000100
0000000001 00000000071
0000001111
0000010111
0000011011
ogooott101
000001IT110
01 HdVY¥9

0000001000
0000010000
0000000100
0000000001
0000000010

0000000010
0000010000
0000000100
000000100C
0000000001

0000000100
0000001000
0000010000
0000000010
0000000001

0000010000
0000001000
0000000100
0000000001
0000000010

0000010000
0000000010
0000000100
0000001000
0000000001

0000001000
0000000100
0000010000
0000000010
0000000001

0600000010
0000000100
0000001000
0000010000
0000000001

0000000100
0c00010000
0000000010
0000001000
0000000001

0000000100
0000010000
0000001000
0000000010
0000000001
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0000000001

0000010000
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0000000010
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0000000010
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0000000010
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0000000100
0000010000
0000000001
0000000010
0000001000

0000000001
0000001000
0000000010
0000010000
0000000100

0000000001
0000001000
0000010000
0000000010
0000000100

0000001000
0000010000
0000000010
0000000001
0000000100

0000000001
0000010000
0000000100
0000001000
0000000010

0000010000
0000000100
0000000001
0000000010
0000001000

0000001000
0000000001
0000000010
0000010000
0000000100

0000001000
0000000001
0000010000
0000000010
0000000100

0000010000
0000001000
0000000010
0000000001
0000000100

0000010000
0000000001
0000000100
0000001000
0000000010

0000000010
0000000100
0000010000
0000000001
0000001000

0000000010
0000001000
0000000001
0000010000
00600000100

0000000001
0000010000
0000001000
0000000010
0000000100

0000000001
0000000100
0000001000
0000010000
0000000010

0000000100
0000010000
0000000001
0000001000
0000000010

0000000100
0000000010
0000010000
0000000001
0000001000

0000001000
0000000010
0000000001
0000010000
0000000100

0000010000
0000000001
0000001000
0000000010
0000000100

0000000100
0000000001
0000001000
0000010000
0000000010

0000010000
0000000100
0000000001
0000001000
0000000010

0000000010
0000010000
0000000100
0000000001
0000001000

0000000001
0000000010
0000010000
0000001000

0000000100

0000001000
0000010000
0000000001
0000000010
0000000100

0000000001
0000001000
0000000100
0000010000
0000000010

0000000001
0000001000
0000010000
000000010C
0000000010

0000010000
0000000010
0000000100
0000000001
0000001000

0000000010
0000000001
0000010000
0000001000
0000000100

0000010000
0000001000
0000000001
0000000010
0000000100

0000001000
0000000001
0000000100
0000010000
0000000010

0000001000
0000000001
0000010000
0000000100
0000000010

0000000100
0000010000
6000000010
0000000001
0000001000

0000000001
0000010000
0000000010
0000001000
0000000100

0000000010
0000001000
0000010000
0000000007Y
0000000100

0000000100
0000001000
0000000001
0000010000
0000000010

0€000G0001
0000010000
0gooonotoQo
0000000100
coo00000t0

0000010000
ooocco0100
0000000010
0000000001
000000100C

0000CT1000C
0000000001
0000000010
0000001000
0000000100

0000001000
0000000010
00000100060
0000000001
000000010C

0000001000
0000000100
0000000001
0000010000
00000000710

0000010000
0000000001
0ooonotcne
Qooo0cCo100
0000000010

0000000001
0000000010
0000001000
0000010000
0600000100

0000000010
0000010000
0000000001
0000001000
0000000100

0000000010
0000010000
0000001000
0000000001
0000000100

0000000001
0000000100
0000010000
0000001000
0000000010

000000100C
0000010000
0000000001
0000000100
0000000010

0000000010
0000000001
0000001000
0000010000
0000000100

0000010000
0000000010
0000000001
0000001000
0000000100

0000010000
0000000010
0000001000
0000000001
0000000100

0000000100
0000000001
0000010000
0000001000
0000000010

0000010000
0000001000
00600000001
0000000100
0000000010
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00000000O0TY
0000000010
0000000100
0000001000
0000010000

0000000070
0000001000
0000000001
000000OO0TO00
0000010000

0000000010
ooooo00OTO00
0000000100
0000000001
0000O0T0000

0000000001
0000000010
0000070000
0000000100
0000001000

0000000010
0000000001
0000000100
0000001000
0000010000

0000001000
0000000010
0000000001
0000000100
0000010000

0000001000
0000000010
0000000100
0000000001
0000010000

0000000010
0000000001
0000010000
0000000100
0000001000

0000000001
0000000100
0000000010
0000001000
0000010000

00000000071
0000000100
0000001000
0000000010
0000010000

0000000100
0000001000
0000000010
0000000001
0000010000

0000000001
0000010000
0000000010
0000000100
0000001000

0000000100
0000000001
0000000010
0000001000
0000010000

0000000100
0000000001
0000001000
0000000010
0000010000

0000001000
0000000100
0000000010
0000000001
0000010000

0000010000
0000000001
0000000010
0000000100
0000001000

0000000010
0000000100
0000000001
0000001000
0000010000

0000000001
0000001000
0000000100
0000000010
0000010000

0000000001
0000000010
0000000100
0000010000
0000001000

0000000010
0000010000
0000000001
0000000100
0o0ooo00T00C

0000000100
00000000710
0000000001
0000001000
0000010000

0000001000
0000000001
0000000100
0000000010
0000010000

0000000010
0000000001
0000000100
0000070000
0000001000

0000010000
0000000010
0000000001
0000000100
0000001000

0z1

0000000001
0000000010
0000001000
0000000100
0000010000

0000000100
0000001000
0000000001
0000000010
0000010000

0000000001
0000000100
0000000010
ooocoloo000
0000001000

0000000001
0000000100
0000010000
0000000010
0aooo0t1000
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0000000010
0oooo0000T
0000001000
0000000100
0000010000

0000001000
0000000100
00000000071
0000000010
0000010000

0000000100
0000000001
0000000010
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0000001000

0000000100
0000000001
0000010000
ooococoo1t10
0006001000

0000000001
0000001000
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0oo000000T
0000010000

0000000010
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0000000001
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0000001000
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0000000010
0000000001
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0000001000

0000010000
0000000001
0000000100
0000000010
0000001000



ISOMORPHISM TEST

INPUT
NODE CONNECTION MATRICES
GRAPH 11
0111000000
1000110000
1001001000
1010000100
0100010010
0100100001
0010000101
0001001010
0000100101
0000011010
NUMBER OF VERTICES EQUALS 10 NUMBER OF tLEMENTS EQUALS 15
GRAPHS 11 AND 12 ARE ISOMORPHIC
ALL POSSIBLE VERTEX CORRESPONDENCES FOLLOW
1000000000 1000000000 0100000000 0100000000
0100000000 0100000000 1000000000 1000000000
0010000000 0001000000 0000100000 0000010000
0001000000 0010000000 0000010000 0000100000
0000100000 0000010000 0010000000 0001000000
0000010000 0000100000 0G0O100000CG 0010000000
0000001000 0000000100 0000000010 0000000001
0000000100 0000001000 0000000001 0000000010
0000000010 V000000001 ©O00001000 0000000100
0000000001 ©00000V000LI0 0000000100 00000010UG
NUMBER OF POSSLIBLE ISUONMJRPHISMS EQUALS 4

NET TIME IS

Qe31 MINUTES

GRAPH 12

0111000000
1000110000
1001001000
1010000100
0100010010
0100100001
0010000101
0001001010
0000100101
0000011010
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GRAPH 13
0110000000
1010000000
1100000000

NUMBER OF VERTICES EQUALS 3 NUMBER UF

GRAPHS 13 AND 14 ARE ISOMORPHIC

ALL POSSIBLE VERTEX CORRESPUNDENCES FOLLOW

1000000000 1000000000 0100000000 0100000000
0100000000 0010000000 1000000000 0010000000
0010000000 0100000000 0010000000 1000000000

NUMBER OF POSSIBLE ISOMDRPHISMS EQUALS 6

NET TIME IS 0.05 MINUTES

INPUT
NODE CONNECTION MATRICES
ELEMENTS EQUALS 3

0010000000
1000000000
0100000000

ISOMORPHISM TEST

0010000000
0100000000
1000000000

GRAPH 14

0110000000
1010000000
1100000000

89



GRAPHS a8

NON-EQUAL

NET TIME IS

GRAPH 88

0110010000
1011000000
1100100000
0100110000
0011010000
1001100000
0000000000
0000000000

AND 89 ARE NOT ISOMORPHIC

ENUMERATION OF VERTICES

0.04 MINUTES

ISOMORPHISM

INPUTY

TEST

NODE CONNECTION MATRICES

GRAPH 89

ollio0100100
1011010000
1101001000
0110010100
1000011100
0101101000
0010110100
1001101000
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GRAPHS 98

NON-EQUAL

NET TIME IS

AND

ENUMERATION OF ELEMENTS

0.04

GRAPH 98

0110010000
1011000000
1100100000
0100110000
0011010000
1001100000

99 ARE NOT [SOMORPHIC

MINUTES

ISOMORPHISM TEST

INPUT
NODE CONNECTION MATRICES

GRAPH 99

0110010000
1011000000
1100100000
0100110000
0011010000
1011100000
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