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CHAPTER I 

INTRODUCTION 

Purpose and .Scope of Investigation. - This research is a part of a 

program concerned with the study of factors which influence the liquid­

liquid extraction and separation of the transition metal salts. An adequate 

thermodynamic description of organic solvent-water-salt systems is im­

portant to valid conclusions or predictions about their behavior. One 

major objective of this resear~ch is to determine whether or not titration 

calorimetry can be used to study the thermodynamics of hydration. It is 

hoped that the information gained in this research with cobalt (II) perchlo­

rate and cobalt (II) nitrate in ethyl alcohol can be applied to other, similar 

systems . 

. A knowledge of the formation constants and enthalpies of formation 

for aquo complexes in organic solvents is required in order to adequately 

describe and understand salt-water interactions at low water-salt ratios. 

Also,. it is important to know to what degree hydration is involved in the 

extraction process; i.e. how much of the co-extracted water is hydrate 

or "bound" water and how much is second sphere or "free" water. 

The system Co(ClO 4 )2 - EtOH - H20 was chosen because pre­

vious work by Yates et al. (34) seemed to indicate that cation-anion 

1 
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association in hydrous alcohols was not very great, and therefore, a 

minimum of complications could be expected in studying the aquo complexes. 

The Co(N03 )2 - EtOH - H20 system was also selected for the calori­

metric study of aquo complexes because Jo~gensen (16) had previously 

determined an average formation constant for these spectrophotometrically. 

A direct comparison of the optical and calorimetric methods is therefore 

possible. Furthermore, comparatively simple behavior is to be expected 

of these salts in ethanol. 

The calculation of successive formation constants depends on the 

determination of the average ligand number, ii., which, in the case of 

aquo complexes, is the average number of water molecules bound pre-

sumably to the cobalt (II) ions. The "free" or unbound water is then the 

water not complexed according to the following formulas: 

where (H20) 

CH20 
CM 

M 

L 

= 

-· 

-

free water concentration 
total water concentration 
total metal concentration 
free "metal" concentration = Co (II) 
concentration in non- complexed form 
free ligand concentration = uncombined 
water concentration 

The "corresponding solutions" treatment of Bjerrum (5) applied to 

enthalpy data is developed in Appendix A. This is shown there to offer 
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a direct method of obtaining n. Then, if several values of n are plotted 

versus the corresponding values of (H20), a curve is obtained similar to 

Figure 1. The curve should become asymototic to the line corresponding 

to the maximum coordination number of the particular metal ion at large 

"free" water concentrations. , 

6 

5 

4 

3 

2 

1 

0....-~~~~~~~~~~~~~~~~~~~~~---

Figure 1. Theoretical Complex Formation Curve. 

-Now, in principle, if six n values are chosen and the correspond-

ing free water concentrations are taken from the graph of Figure 1 the 

six K values, or formation constant products,. for the aquo complexes 

can be evaluated from the six equations analogous to those derived in 

Appendix A. There will be six equations and six unknown K values. 

The assumption is that the maximum number, N, of water molecules 

filling coordination positions in the octahedral environment of the cobalt 

(II) ion is six (6). In actual practice the maximum ii value is found; i.e. 

-the n value to which the curve in Figure 1 becomes asymtotic, and 
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this is taken as the maximum coordination number, N. 

A comparison between the experimental aquo complex formation 

curve and a "statistical" formation curve (Appendix C) is of value in 

describing the formation of complexes. If the two curves, statistical 

and experimental, do not coincide within experimental error, then some 

explanation other than the statistical occupancy of coordination positions 

is required for the relative values of formation constants of the com­

plexes of the system under investigation. 

An essential part of the quantitative study of systems such as 

Co(ClO 4 )2 - EtOH - H20 and Co(N03 )2 - EtOH - H20 is the 

preliminary qualitative description of them. As will be pointed out 

later,. many questions are unanswered about these systems and it was 

hoped that through the use of titration calorimetry and proper inter­

pretation of the experimental data both a better qualitative and quanti­

tative understanding of the salvation in the systems would result. 

The degree of association of the anion with the cation in an 

anhydrous organic solvent is important to know, for it is reasonable to 

expect that the difference in the extent of the hydration of cations sur-· 

rounded by solvent molecules only and those coordinated with both solvent 

molecules and anions will effect the heat of hydration in solution and thus 

make interpretation of results more difficult. 

As incoming water molecules replace anions and/ or solvent mole­

cules in the formation of aquo complexes, heat will be liberated because 
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of the greater base strength of water relative to either alcohol molecules 

or anions such as NO; or ClO ~. The resulting hydration might even 

include more water molecules per metal ion than the six primarily 

coordinating ones, depending in part upon the salt concentration of the 

solution. One would expect that metal ions in a very dilute solution in 

an organic solvent could hydrate more fully because of the lower degree 

of interac;tion between the aquated metal ions and the anions. 

A major objective of this research was, therefore, to obtain the 

formation constants for the aquo complexes of Co(N03 )2 and Co(ClO 4 )2 

in ethanol and then to calculate the ligational enthalpies. From such a 

thermodynamic description of the solutions before and after the addition 

of water it should be possible to understand better the effect of coordinated 

and non-coordinated anions upon the exchange of ethanol for water about 

the cobalt (II) ion. 

Hydration of Transition Metal Salts in Orgapic Solvents. - One of 

the earliest investigations of aquo complexes was made in 1909 when 

Jones and Anderson (13) discovered that the absorption spectra of many 

rare earth salts in alcoholic solution containing small amounts of water 

showed features of the spectra in pure water as well as in pure alcohol. 

It was reported that the phenomenon is largely independent of anion 

concentration, and therefore, must be caused by a change in solvation 

only. 
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No quantitative study of aquo complexes, that is, the evaluation of 

the formation constants was made apparently until after 1941 when Bjerrum 

(5) introduced his principle of corresponding solutions. This made possible 

the systematic study of the formation of aquo complexes when the con­

centration of free water could not be measured directly. 

In 1950, Katzin and Gebert (1 7) explained qualitatively the marked 

color changes observed when water is added to Co(N03 )2 in alcohol as 

arising from the exchange of coordinately bound nitrate ions with solvating 

water molecules. At the same time a study of Co(ClO 4 )2 was carried 

out by Katzin and Gebert (1 7) and although there appeared to be evidence 

of some small degree of complex formation between the perchlorate anion 

and cations, it was clearly very much weaker than the nitrate. In a later 

study,. Katzin (19) showed that the details of the anion spectrum of salts 

in organic solvents depends on both the cation and the ratio of anion to 

cation present in the solution. In particular, the nitrate anion has been 

shown to commonly occupy some of the coordination positions of transi­

tion metal cations. 

During the 1950' s there continued to be interest in the study of 

hydration of salts in non-aqueous solvents. Part of the interest was 

engendered by work on the extraction of electroytes. Solvent extraction 

offers a method for obtaining information regarding the qualitative aspects 

of salt hydration in organic solvents through measurement of the increase 

in coextracted water with extracted salt. In 1953, Yates et al. (34) made 
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a study of hydration of divalent perchlorates and chlorides in octanol. The 

apparent degree of hydration of Co(ClO ) and Ni(ClO ) in 2- octanol 
4 2 4 2 

was determined by solvent extraction and up to twelve moles of hydrate 

water per mole of each salt were found to be coextracted into 2-octanol. 

This seems to confirm the inability of the perchlorate anion to function 

effectively as a coordinating ion or to approach the cation closely. The 

cation is thus left free to exert its maximum influence on the solvent 

molecules. Such salts are probably best described as solvated ion 

associates. The chlorides, by contrast, seem to exist as molecular 

entities and chloro complexes in anhydrous octanol, the proportions of 

these changing as water is added (1 ). 

The investigations mentioned above are very useful both quanti-

tatively and qualitatively. As might be expected, the degree of anion 

and aquo- complexing is dependent on the mole ratio of ligand to metal 

ion. Depending on the type of association of anion and cation, the in-

coming water ligand exchanges for solvent molecules and/ or anions. 

In 1953 Bjerrum and Jorgensen (3) obtained the average formation 

constant for the aquo complexes of didymium chloride using the prin--· 

ciple of corresponding solutions. They found that the maximum n value 

(corresponding to the maximum coordination number) was six and further 

that the data (n vs log /H29/) can be fitted by a statistical curve. 

However, in a discussion of the degree of ion- association of Co(NO 3 )2 

in ethanol, the evidence for aquo complexes based upon spectral data 
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was challenged by Katzin and Gebert (18). Bjerrum and Jorgensen had 

contended that Co(N03}2 in ethanol behaves as a medium dissociated 

electrolyte, and that the nitrate ion does not interfere with the exchange of 

ethanol for water molecules. Jorgensen (16} similarly determined what 

he regarded as the statistical average formation constants for the aquo 

complexes of the nitrates of Co(II, Ni(II} and Cu(II). 

Jorgensen and Bjerrum (4) later agreed with Katzin and Gebert 

regarding the inner sphere coordination of nitrate but presented evidence 

that the spectral changes for Co(ClO ) in ethanol must be due to hydra-
4 2 

tion and not to perchlorate coordination. It has been reported also that 

the absorption spectra of Co(II) and Ni(II) perchlorates in octanol does 

not change when the water-salt ratio exceeds six, which seems to indi-

cate that only a small amount of free water is necessary to stabilize the 

hexaquo ion (16). 

Larson and Iwamoto (22) in 1962 evaluated the step·-wise formation 

constants for aqua complexes of Cu(II} in nitromethane by electrochemical 

methods and infrared spectral analysis. They also calculated the indi-

victual constants for the reactions in ethanol from the data of Mine and 

Libus (26). The average formation constant value differed only slightly 

from that given by Jorgensen (16). Larson and Iwamoto explained the 

rather large differences in the values of formation constants in ethanol 

and nitromethane as being due to a difference in the compatability of 

water and the organic solvent. It would seem then that any comparison 
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of aquo- complexing of different cations should be made in the same solvent. 

Friedman and Plane (10), in a.spectrophotometric study of Cu(N03 )2 

and Cu(ClO 4 )2 determined the degree of aqua-complexing by the dis­

placement of water molecules by ethanol molecules in one case, acetone 

in another. Failure of either acetone or ethanol to occupy more than two 

sites in the first coordination sphere was interpreted to indicate a rela­

tively strong, probably planer, 4: 1 aquo complex over a wide range of 

solution compositions. In the case of Cu(ClO 4.) 2, the effect of the anion­

cation interaction was found to be essentially zero, but at water concen­

trations less than 0. 5 mole fraction Cu(N03 )2 solutions were slightly 

more absorbing. 

A correlation between the dielectric constant of the solvent and the 

degree of association of the anion and cation has been attempted (1 7 ). It 

was concluded that as the amount of organic solvent relative to water 

increases in a solution of Co(N03 )2 or Co(Cl04 )2 the dielectric con­

stant decreases, and the anion finally becomes strongly associated with 

the cation in the 11 dry" organic solvent. Competition between the water 

and a basic anion results in the anion finally becoming complexed. 

The thinking regarding nitrate complexing has changed through the 

years. Nitrates dissolved in organic solvents were once thought to be 

highly associated; then at a later time nitrates were regarded to be, at 

the most, ion-pair associated except in very dilute solutions, but recent 

work on the displacement of water by organic molecules has resulted in 
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a return to the orginal idea of nitrate to metal bonding in many solutions 

of nitrates. Perchlorates have always been held as dissociated (though 

possibly ion-paired) in solution with water and lower molecular weight 

oxygenated organic solvents. 

Several methods have been employed in determining both the average 

and step-wise formation constants for aqua complexes. The most often 

used is, of course, spectrophotometry. There seems to have been very 

few attempts made to use calorimetry in the study of aqua- complexing 

(30). Such an approach to the problem would not only allow the study of 

enthalpies, but entropies and free energies also. This, as Marcus (25) 

has pointed out in his review of liquid-liquid extraction, is of the greatest 

importance, for much more information is needed on the hydration of 

ions, both with respect to hydration numbers and to the enthalpy and 

entropy of hydration in non-aqueous solvents. 

Titration Calorimetry. - The principle of enthalpic titrimetry or 

titration calorimetry is not a new idea. The instrumentation has im­

proved and new applications have been found, however, 

In 1901, Steinwehr (32) and in 1926, Lange and Durr (20) used 

pipettes to add liquid reagent into a calorimeter. As early as 1921, 

Dutoit and Grobet (7) carried out a step by step thermal titration using a 

conventional buret introduced into a dewar. For detection of temperature 

changes, a thermometer with 0. 01 °c scale divisions was also placed in 

the dewar. 
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However, it remained until the 1940's, the time when much of 

today's laboratory instrumentation was under development for anyone 

to employ anything but a manually controlled apparatus. In 1948, Lingane 

(24) described a motor-driven buret and its use in an automatic poten-

tiometric titration. This made possible the use of automatic recorders 

because the reagent could be added at a constant rate, 

Another important phase in the development of titration calorimetry 

came in 1953 when Linde, Rogers and Hume (23) described the use of 

thermistors for enthalpy titrations. A thermistor, or thermally sensi-

tive resistor, is a semi- conductor device which has a large negative 

temperature coefficient of resistance, usually of the order of 4 percent-

-· 1 
deg. C at room temperature. The combination of high specific re-

sistance, large temperature coefficient, small size, protection by a 

glass envelope from reagents, and rapid response to changes in tern-

perature makes the thermistor a very useful device for enthalpy 

titrations. Thermistors are reliable and stable even when used under a 

variety of ambient temperatures, circuits and voltages (28). Up until 

the advent of the thermistor, thermocouples and thermopiles were in 

much use in temperature-sensing equipment. Benedict (2) gives an 

extensive comparison of the two devices which shows the thermistor to 

be more sensitive and dependable, especially in the temperature ranges 

encountered in titration calorimetry. 

In 1957, Jordan and Alleman (14) described a calorimeter which 
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they had developed to use in enthalpy titrations. The buret was non­

thermostated, was motor-driven for constant delivery, and dipped into a 

dewar flask. Temperature variations were measured by a thermistor in 

a Wheatstone-bridge arrangement and were recorded automatically as 

volume of titrant versus temperature. As the application of the instru­

ment was to determine the end-point in neutralization reactions, the 

difference in temperature between the contents of the buret and dewar 

affected the shape of the curve but not the quantitative results. In 1959, 

Schlyter (31) described a precision calorimeter for enthalpy titrations in 

which the buret was maintained at a constant temperature by means of a 

water bath. The heat capacity of the calorimeter was measured one time 

and the calorimeter was adjusted to 25+0. 1 o0 c after each addition of 

ti tr ant. 

The important features of good enthalpy titration equipment including 

the use of thermistors to detect temperature changes, and automatic 

recording of heat effects, is tied together in the American Instrument Co. 

Menisco-Matic Titra-Thermomat described by Jordan (15). The instru­

ment has a 30 ml. capacity beaker which contains the solution to be 

titrated, a stirrer, a heater, a thermistor and the tip of a motor-driven 

buret. The buret is not thermostated; rather it is insulated to minimize 

heat gain or loss. 

When work was first begun in this laboratory, measuring heats of 

hydration to study the complexing of inorganic salts .in organic solvents, 
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a manually controlled semi-micro buret, 250 ml. dewar, thermistor, 

and recording potentiometer were used. The large volume of solution 

required and the poor protection against atmospheric moisture were ser­

ious drawbacks to this calorimeter, and it became necessary to redesign 

the equipment. Although a Titra-Thermomat was available, this instru­

ment was not regarded as precise enough for the planned investigation. 

A new calorimeter was built which is described in detail in the 

following chapter. The advantages of this calorimeter over the Titra­

Thermomat are (1) inGreased volume of solution in a dewar flask (150 

ml. compared with 30 ml.), (2) the entire system, buret and dewar, are 

more nearly adiabatic in operation and maintained much closer to the 

same temperature and (3) the sensitivity and precision are much im­

proved. 



CHAPTER II 

THE CALORIMETER 

Components. - A sketch of the calorimeter assembly is shown in 

Figure 2. The calorimeter vessel consisted of a 150 ml. capacity dewar 

flask suspended in an air bath whose temperature was closely regulated 

with a Yellow Springs Instrument Co. Thermistemp Temperature Con­

troller. The outer jacket of the calorimeter was made of insulating 

bakelite material with a heater and fan mounted inside to insure a 

uniform environment for the dewar flask and its contents. 

The dewar (D), which composed the bottom half, was coupled by 

a ground flange (G) to a glass solvent-tight lid (A). Through the lid was 

inserted the liquid reagent delivery needle (B), thermistors (C, I) for 

temperature detection and the large copper leads (H) from the internal 

heater (E). The heater itself was made from 40 gauge platinum wire, 

30 ohms of which was wound on a cylindrical glass form. The platinum 

wire was connected to the copper leads through a mercury junction. 

Two Veco (#32A30) 2000-ohm thermistors were calibrated and 

used together with a Rubicon Co. (catalog #3403HH) galvanometer 

(0. 0051.J.<a-mm. -l) in a shielded de Wheatstone-bridge arrangement to 

monitor the temperature of the solution and also that of the buret. The 

14 
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Figure 2. The Calorimeter 
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third thermistor was a Veco (#51Al) 105-ohm probe constituting one arm 

of a shielded de Wheatstone-bridge. The bridge voltage was provided by 

a Willard low-discharge 6-volt battery. It was found that the potential 

across this bridge held very constant. This circuit had as the detector 

of unbalanced current on the Wheatstone-bridge a Sargent Model SR 

recording potentiometer. The recorder, through interchangeable range­

plugs, had several available sensitivity settings. A compromise could 

be reached whereby electrical noise caused by stirring could be minimized 

and at the same time the high sensitivity of the 105-ohm thermistor fully 

utilized. 

The stirrer blade and shaft (J) were made of Pyrex. The stirrer 

was connected through a plastic sleeve and ball bearing (F) to the shaft 

of the metal pully on the outside of the calorimeter jacket by a latex 

sleeve joint. The latter greatly reduced any heat loss or gain by con­

duction to the calorimeter. The stirring rate was closely controlled with 

a Cole-Parmer, GT- 21, thyratron controller. 

A diagram of the circuit for the calibration heater is shown in 

Figure 3. The platinum heating element was entirely immersed and 

exposed to the solution in the dewar. By doing this thermal lags were 

made negligible. The mercury connection and copper leads from the 

calorimeter were made 12 gauge in order to make sure that any resist·· 

ance in the leads outside the calorimeter would be very small compared 

to the resistance of the platinum heater. The heater circuit received 
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current from an isolated 6-volt storage battery; this was used because it 

was found that the voltage from the laboratory outlets was variable over 

the 90-second intervals used in measuring the heat capacity of the solution 

in the calorimeter. 

The resistance of the internal heater was measured over a range of 

temperatures so that when the circuit to the internal heater was open, the 

same current could be caused to flow through a dummy heater of approx­

imately the same resistance as the internal heater at the operating tern -

perature of the calorimeter. The dummy heater was a decade resistance 

box. 

When the circuit was closed to the internal heater by means of an 

X-ray timer switch, a Standard Time Co. (Model SI) timer was activated 

through a relay and then deactivated when the timer switch opened the 

circuit at the end of each preset time interval. The time was determined 

to the nearest 0. 01 second. 

The current used in the measurement of the heat capacity of the 

solution in the dewar was approximately 50 milliamperes. This value of 

the current was chosen in order that the same potentiometer (Rubicon 

Instrument Co., Model 2730) could be used by switching to measure both 

the voltage drop across the heater and across a Genercl-1 Radio (Series 

500) secondary laboratory standard 10-ohm (±0. 05%) resistor in series 

with the heater. This resistor had a resistance of 10. 002 ohms when 

compared with a Leeds and Northrup Co. (Cat. #4025-B) standard 
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10. 0000-ohm resistor. 

Liquid reagent was added through a stainless steel needle; throughout 

the addition of r~agent the end of the needle was kept beneath the level of 

liquid in the dewar. An American Instrument Co. Menisco-Matic buret 

delivered the reagent into the solution. This was a synchronous-motor­

driven micro syringe having a digital readout of the volume delivered. 

The buret had a total capacity of approximately 3. 2 ml., and the volume 

delivered could be .read directly to 0. 0001 ml. Any arbitrary increment 

of reagent could be added at a constant delivery rate. 

A preliminary calibration of the buret was made. Weighed amounts 

of water delivered by the buret were converted to the corresponding 

volumes by density data and compared with the digital volume readings. 

It was found that the volume delivered was actually 0. 983 of the volume 

shown on the digital dial. This correction was incorporated in all of the 

calculations. 

When the rates required for the addition of reagent were less than 

that provided by the Menisco-Matic bur et motor, a thyratron controlled 

motor of variable speed was used. This offered a much wider range of 

addition rates to coincide with the different systems encountered in the 

course of the research. 

Sensitivity. - A calibration of the two 2000-ohm thermistors gave 

a linear 0. 014 deg. -ohm-l relationship over the 25-27° range. The 

individual runs made with the calorimeter were carried out within this 
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temperature span. A calculation of the quantity of heat added or subtracted 

from the solution in the dewar arising from the difference in temperature 

between the buret and the solution showed that no correction was necessary 

for temperature differences up to 0. 1 ° because of the small increments 

added. Thus a 0. 1 gm. water addition would change the temperature of 

the calorimeter contents by less than 0. 0001 °. The buret attained the 

temperature of the calorimeter jacket rapidly. and therefore the differ-

ence in temperature could be controlled easily within 0. 1 °. Usually, 

this difference in temperature was less than 0. 05°. For this reason a 

thermometer with a 65-95°F scale graduated in 0. 05°F divisions was 

considered adequate for the comparison of the resistance of the two 

thermistors. 

The 1 o5-ohm thermistor used to measure the heats of reaction had 

a temperature coefficient of resistance of 4. 6% deg. -l. This is equiv-

-1 0 alent to -4600 ohm-deg. at 25 . When aqueous solutions were in the 

dewar and the one millivolt range-plug was used in the recorder, the 

full sensitivity of the system was utilized corresponding to 65 ohms for 

full scale deflection of the recorder pen. This is equivalent to about 

O. 08 - O. 09 calories-cm. -l depending on the weight and temperature of 

the solution. However, when ethyl alcohol solutions were in the dewar, 

the 2. 5 mv. range-plug was used in the recorder since there was con-

siderable stirring noise introduced; presumably this was due to the lower 

density and heat capacity of the alcohol. The 2. 5 mv. plug gave a 
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sensitivity of 0. 10 - 0. 12 calories- cm. -l, corresponding to 1 70 ohms for 

full scale deflection. 

A 6-volt potential was impressed across the thermistors at all times 

to assure stability and uniformity of response (28). 

The values of current, resistance of the heater, and time were 

measured to four significant figures. The timer had 0. 01 second divi-

sions and the heating runs were about 90 seconds duration. The method 

used in calculating the heat capacity of the calorimeter was to find the 

values of h from 

h = i 2Rt/ 4.186d 

where i = current, amps 
R = heater resistance, ohms 
t time, seconds 
d = recorder deflection, cm. 

4.186 = Joules/ calorie. 

This gave a value of h in calories-cm. -l at a given temperature. Any 

single measurement of the heat capacity raised the temperature of the 

solution less than 0. 014 °, and usually 2 or 3 successive measurements 

could be made without increasing the temperature more than this. When 

corresponding calibrations were compared, the results were always within 

about 1 % of each other. This deviation possibly occurred because the 

calibration times, chosen to give a quantity of heat corresponding to 

approximately the amount of heat produced when an increment of solution 

or water from the buret was added, were long enough that significant 
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fluctuations or drifts arising from the instability of the battery may have 

occurred. Also, any differences in the time required for the heater 

resistance to reach a constant value when the current was switched on 

would contribute to the 1 % variation observed. Current and resistance 

measurements were taken midway through a given run in an attempt to 

obtain average values. 

Performance Test. - The overall performance of the calorimeter 

and associated components was tested by a measurement of formation of 

water by the reaction in solution: 

HCl + NaOH l:lH0 29 3 = -13.34+.02 kcal-mole-l (11). 

Listed in Table I are the results from a typical series of determinations. 

Approximately 0. 15N hydrochloric acid was prepared by diluting 

reagent grade (Fisher Scientific Co.) acid with carbonate-free distilled 

water. Reagent grade (Fisher Scientific Co.) sodium hydroxide was 

first dissolved in distilled water, and then barium choloride was added 

to precipitate the carbonate. The solution was filtered very quickly and 

then stored in a polyethylene bottle. The base was standardized against 

potassium acid phthalate (Merck and Co., primary standard) and the acid 

against tris-hydroxymethylamino-methane (Fisher Scientific Co., primary 

standard). A weighed amount of the acid, about 4 gm., was added to 

approximately 125 gm. of water which had been weighed into the calo­

rimeter dewar. The number of milliequivalents of base per gram of acid 



Solution 
Temperature 

27.67 

27.67 

27.69 

27.69 

27. 69 

27.72 

27.72 

.27.73 

TABLE I 

EXPERIMENTAL MEASUREMENT OF THE HEAT OF 
FORMATION OF WATER AT 27. 7°C 

Bur et Volume Millimoles Total 
Temperature NaOH NaOH Calories 

· 27. 62 0.2044 0.0689 0.903 

27.62 0.1945 0.0655 0.863 

27.62 0.1995 0.0672 0.891 

27.64 0.1969 0.0664 0.870 

27.64 0.1966 0.0663 0.877 

27.67 0.2425 0.0817 1. 079 

27.67 0.2477 0.0835 1.100 

27.67 p,2194 0,0739 0.979 

(1 

~.Hf 

13.11 

13.18 

13.26 

13.10 

13.23 

13. 21 

13.17 

13.25 

Average: 13.19+0.05 

.I:\:) 

c,:, 
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had been determined, so the endpoint of the neutralization could be cal-

culated with accuracy as a further check on the performance of the calo-

rimeter. The concentrations chosen for the acid and base were such as 

to allow approximately 0. 2 ml. increments of the sodium hydroxide to be 

added to the acid in the dewar. The heat liberated was then sufficient to 

give a full scale deflection of the recorder using the 1 mv. range-plug. 

The method used in calculating the heat of formation, 6 HT, of 

water at temperature T was as follows: 

where h is the number of calories required to produce one cm. of 

deflection and d is the number of cm. of deflection. The heat added 

or subtracted as a correction because of a difference in the temperatures 

of the buret and solution in the dewar was calculated by 

Here Cp is the heat capacity of water, l::l. T is the difference in temper-

ature between the bur et and solution in the dewar, . and W is the weight 

of NaOH solution delivered by the buret in a particular increment. Then 

adding QT and Q'T and dividing by the number of milliequivalents of 

base added, the number of kiloGalories of heat produced per mole of 

water formed, 6 H , was found. Calculation of the correction for the 
T 

heats of dilution of HCl, NaOH, and NaCl showed that this correction 

was negligible. 
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The heat of formation of water has been found to decrease by 0. 248 

kcal-mole-l in going from 25° to 30° (.29). By linear interpolation, the 

correction to the most recent literature value of -13. 34 kcal. for the heat 

of formation per mole is - 0. 13 kcal. (11 ). This gives -13. 21 kcal-mole-l 

-1 
compared with -13. 19,±0. 05 kcal-mole found experimentally. 

The degree of agreement (,±0. 4%) is within the desired precision of 

the calorimeter (1 %). The performance of the calorimeter for the measure-

ment of quite small heat increments is thus good. In comparing the results 

of measurements of the heat of neutralization with the recent literature 

values,. it should be emphasized that the actual number of calories measured 

in the calorimeter was only approximately 0. 01 that measured, for example, 

by Hale, Izatt and Christensen (11 ). The calorimeter was designed to 

measure heats of reaction of the order of one calorie with an accuracy of 

1 % or better. This seems to have been achieved. Furthermore, the calo-

rimeter was designed to permit successive metered additions of reagent, 

and the overall accuracy includes any errors in the volumetric addition 

of reagent. 

Heat of Mixing of Ethanol and Water. - A higher degree of precision 

was obtained in the measurement of the heat of mixing of water and ethyl 

alcohol. In these measurements the water was added in increments of 

about 0. 03 ml., releasing about two calories per increment. Each series 

"covered a relatively large temperature range (0. 6°) and required repeated 

measurement of the heat capacity because of the progressive increase in 



temperature and change in the composition of the solution. 

The values tabulated in Table II for the heat of formation of a 1. 0 

molal solution of water in ethanol show about a O. 3% variation for three 

determinations. 

TABLE II 

EXPERIMENTAL MEASUREMENT OF THE HEAT OF 
MIXING OF WATER AND ETHYL ALCOHOL 

!l H . (1 molal) 
mix 

0.404 

0.402 

0.403 

!::::,. H . (1.142 molal) mix 

o. 021 

0.021 

o. 021 

Average 
Temperafure 

25.0 

26.7 

27.0 

As a .further check on the accuracy of the calorimeter the values 

for the heat of formation of a O. 05 mole fraction solution (l.142m) of 

water in ethanol solution was calculated from experimental data. This 

was done in order to make a comparison with the meager data in the 
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literature. 
-1 

The literature value of 7 cal. -mole ethanol does not com-

pare favorably with the value of 21 cal-mole-l obtained in this ·work (33). 

This difference in values may have been due in part to the manner in 

which they were obtained. Whereas the ethanol solutions employed in 

this research were relatively "dry" (0. 04% water) and required very 
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little extrapolation back to a completely dry solution, the methods used 

in previous work necessitated a long extrapolation from heat of dilution 

of ethanol in water data (29). In other words, the shape of the mixing 

curve at very low water concentrations was directly measured during the 

course of this research. 



CHAPTER III 

EXPERIMENTAL METHOD AND PROCEDURE 

Preparation of Solutions and Analytical Procedures. - Ethanolic 

solutions of partially dehydrated cobalt (II) nitrate hydrate were prepared 

by dissolving oven dried (50°) reagent grade (Fisher Scientific Co. ) 

cobalt (II) nitrate hexahydrate in U. S. P. - N. F. absolute alcohol (U. S. 

Industrial Chemicals Co.). The hydrous cobalt (II) perchlorate solutions 

in ethanol were prepared in the same manner using reagent grade cobalt 

(II) perchlorate hexahydrate (G. F. Smith Chemical Co.) which had been 

oven dried at 135 °. Aqueous solutions of both the nitrate and perchlorate 

were found to have a pH very close to 7 after the drying procedure. 

The alcoholic solutions were passed through a column of molecular 

sieve material (Type 3A, Linde Division, Union Carbide Corporation) 

for further drying. All solutions were tested for and found to contain 

no sodium or chloride. 

Cobalt concentration was determined by 'EDTA titration using 

murexide as the indicator (9). 

The water content of the solutions was determined by the Karl 

Fischer method using standard procedures (27). The solutions in the 

calorimeter initially had water-salt mole ratios in the range of from 0.1 

to 0. 3. 

28 
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Solution densities were determined using standard pycnometric 

techniques. A density versus total metal concentration plot was made 

for each of the two systems under investigation so that weight concentra­

tions could be converted to volume concentrations as needed. 

Procedure for Operation of the Calorimeter. - The calorimeter 

dewar was first filled with approximately 150 ml. of solution and clamped 

tightly to the flanged top, which held in place the heater, thermistors, 

stirrer, and liquid reagent delivery needle. The calorimeter dewar was 

next placed inside the insulating jacket. The buret and delivery needle 

were then connected, both having first been filled completely with dis­

tilled water. A three-way connecting valve was opened between the buret 

and a water reservoir, and the bur et was activated for a few seconds to 

drive out any air that might be trapped. The valve was then opened 

between the bur et and needle; however, no water flowed from the bur et 

except when the buret was activated. The calorimeter jacket port was 

then closed, and the stirrer started. 

By means of the internal and external heaters the calorimeter 

temperature was raised about 2° above that of the room (24-25°). This 

was done in order to better control the heat gain or loss by the solution 

in the dewar. At the elevated temperature it was much easier to obtain 

a temperature-time curve whose slope approached zero. 

Before any water was added to the solution from the buret, several 

heat capacity calibrations were made to insure that the calorimeter was 
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functioning properly. Measured quantities of water were then added, time 

being allowed before and after each increment to attain, again, a constant 

slope in the temperature-time curve. The temperatures of both the 

solution and buret, and the volume of water delivered by the buret were 

recorded. Since each run covered a span of about 1 ° in temperature, the 

heat capacity was checked by two or three calibrations at intervals of 

0 
about 0. 2 . 

When the water in the buret had been expended and the final heat 

capacity calibrations made, the apparatus was turned off. The valve 

between the buret and needle was closed to make certain that no more 

water could flow into the solution. The buret was then uncoupled, and the 

dewar was removed from the calorimeter and weighed immediately. The 

parts of the calorimeter which had been in contact with the solution were 

now washed and submerged in distilled water. 

Solutions were weighed at the end of a run rather than at the start 

in order to minimize both evaporation and the amount of moisture ab-

sorbed from the air. The weight of the added water was subtracted from 

the total weight. It was determined in preliminary experiments that the 

weight of a solution after being placed in the calorimeter and allowed to 

reach equilibrium was not significantly different from the weight of the 

solution initially present. This meant that the small amount of solution 

which clung to the heater, etc. was negligible. The solutions, which were 

about 125 gms., were weighed to the nearest ten milligrams. The 
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solutions were found to absorb a small amount of water during the transfer 

from storage bottle to dewar and presumably also from the glass of the 

dewar and lid. Therefore, determination of the water content of the 

solutions was made on samples withdrawn just prior to the first heat 

capacity measurement. 



CHAPTER IV 

TREATMENT OF THE DATA AND RESULTS 

It was shown in Appendix B. that the molar heat of reaction, AH 
r' 

is given by 

(1) 

where an is the fraction of metal in the nth complex and xn is the 

enthalpy of formation of the nth complex in solution. In order to use the 

principle of corresponding solutions in treatment of the data to obtain 

the average ligand number, and the free or unbound water, .a,..H must 
r 

be experimentally evaluated. 

The experimental value of Q, the heat liberated in the calorimeter, 

may be thought of as consisting of two parts. One is the heat of mixing 

of ethanol and water. The other part is simply the heat of exchange of 

water molecules for solvating molecules and/ or coordinated anions. 

The latter corresponds to eq. (1) above. As pointed out in Chapter I, 

there is evidence that Co(ClO ) in ethanol solution probably exists as 
4 2 

{co (EtOH)tj (ClO 4>; with the anions outside the first coordination 

sphere. These may be partly associated as ion pairs, however. On the 

other hand, Co(NO ) in ethanol apparently involves some slight 
3 2 

32 
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degree of cation-anion coordination. Therefore, the species which might 

exist in equilibrium in solution are [co(EtOH)tJ (N03 )2, [co(Et0H)5 

Nofj N03 and Co(Et0H)4 (N03 )2 . 

In order to obtain 6Hr, the heat of mixing of ethanol and water, 

b. HM. , . must be subtracted from the total heat of reaction per mole 
lX, 

= b.HT -EHM. 
lX. 

(2) 

In this chapter there are described possible methods of calculating 

EH 
Mix. 

which will permit the treatment of data 

by corresponding solutions. The results obtained by these methods for 

the systems under investigation are presented. 

Determination and Calculation of the Heat of Reaction. - The value 

of Q, the number of calories liberated in the calorimeter, was cal-

culated in the same manner for the salt-ethanol-water reactions as for 

the heat of formation of water described in Chapter II. Thus, 

Cp . W (3) 

where Q = total calories 
h = heat capacity of solution, cal. - cm. -1 

d = recorder deflection, cm. 
TS = temperature of solution, OC 
TB = temperature of buret, oc 

cP heat capacity of water, cal. -gm. 
-1 -deg. -1 = 

w = weight of water,. gm. 

Following each increment of water added to the dewar, the 
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following experimental quantities were determined: 

(1) Total calories evolved, Q 
(2) Total moles of H 20, y 
(3) Total moles of salt, . z 
(4) Volume of solution, v 

The total increase in enthalpy per mole of salt was then calculated from 

(4) 

In order to obtain QM. and therefore, !::::.. HM. water was 
lX. lX. 

added in small increments to ethanol in the dewar, and the number of 

calories per mole of water was calculated for the reaction 

(5) 

A plot of QM. versus the molality of the water was then constructed 
lX. 

and used to find the partial molal heat of mixing of water with ethanol. 

Consider the following process in the calorimeter. To z moles 

of salt M at molal concentration mM there is added y moles of water, 

liberating Q calories of heat. The latter may be partitioned into the 

differential heat of solution of y moles of water in a mL solution of 

water in ethanol and the heat of reaction of y moles of water at con-

centration mL with z moles of salt at concentration mM to form a 

series of aquo complexes. For the process, therefore, one has the 

overall reaction equation 

y H20 (1) + z salt (mM) ---> aquo complexes 

+ unreacted salt + unreacted H 20 + Q (6) 



The heat of mixing, QM. , is given by eq. (5) above so that one has 
lX. 

after combining, 

+ unreacted H20 + unreacted_ salt + Q-yQMix. (7) 

The reference solutions of water and salt in ethanol are solutions 

of concentrations mL and mM respectively, and since these are arbi-
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trary, consideration must be given to their choice. Ideally, all thermal 

properties should be referred to the infinitely dilute state, but this 

necessitates knowledge of the heats of dilution of both reactants and 

products. While it is possible to make measurements of the heats of 

dilution of the reactants, clearly this is not possible for the aquo com-

plexes. The alternatives are (1) to study the reaction at high dilutions 

or (2) to assume that the nature of the reacting substances and products 

are such that their partial molal enthalpies at experimental concentra-

tions are essentially constant. The latter approach was adopted and the 

consequences of this assumption will be discussed. 

From the plot of QM. versus mL, the heat of forming a 1. 0 lX, 

molal solution of water in ethanol was found to be 0. 403 kcal-mole-l 

H20 (Table II, Chapter II). 

-1 
It is obvious that 0. 403 kcal-mole H20 is the apparent molal 

heat of mixing of water with pure solvent to give a 1. 0 molal solution of 

water in ethanol assuming the enthalpy of liquid water is zero. It is 
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also the average of the partial molal values over the range of water con-

centrations from 0-1. 0 molal. 

From the definition for the heat of mixing, 

(8) 

where QMix. is the heat obtained experimentally, NL is the moles of 

water, HL is the partial molal enthalpy of water in the mixture, and 

-o H L is the molal enthalpy of pure water, the partial molal heat of mixing 

for a one molal solution would be the slope at that point, or 0. 338 kcal­

mole-l H20. The manner in which the water was added, i.e. incre­

mentally; permitted an experimental approximation to d Q/ d NL. The 

slope at various water concentrations, obtained from the experimental 

-1 
values of ~Q/.6. NL, varied .from 0. 511 to 0. 338 kcal-mole H20 

at concentrations of 0. 009 and 1. 000 molal water in ethanol respectively. 

Because of the variation in L Q/ A NL over the range of water 

concentrations employed, the average value of 0. 403 kcal-mole -l 

H20 was thought to be the best approximation to the true heat of mixing 

values when calculating the heat of reaction; this will be discussed later, 

however. 

It should be noted that a direct measure of the heat evolved for the 

reaction of the water initially present in the solutions was not possible. 

· A value for Q was obtained from a short extrapolation to zero water 

concentration on a Q versus total water concentration plot. 



Corrections for the contraction of ethanol when water was added 

were not considered necessary in the calculations. For ten weight­

percent of water, they are about one percent (12). Never more than 

three weight-percent of water was encountered in the research. 

Calculation of the Heat of Mixing for Five Mole Per Cent Water 

in Ethanol. - As a preliminary check upon the accuracy of the calo­

rimeter, the heat of forming a 0. 05 mole fraction water solution was 

calculated for comparison with literature values. The values of the 
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heat liberated are shown in Table II, Chapter II for 0. 05 mole fraction 

water in ethanol (1. 142 molal). For a given solution in the calorimeter, 

the number of moles of ethanol, s, was, of course, constant. There­

fore if y represents the moles of water added to form a 0. 05 mole 

fraction solution, 

-y/(y + s) = 0. 05 

y = s/19 

(9) 

(10) 

The number of calories, Q, liberated when s/ 19 moles of water had 

been added was divided by the moles of ethanol in the solution. The 

resulting values averaged 21 kcal-mole -l of ethanol, which can be 

compared directly with data in the literature. The comparison was 

made in Chapter II, and possible reasons given there for the disagree­

ment between the two sets of values. 

In Table III, is listed the experimental data for the three deter­

minations of the heat of mixing of water and ethanol. 



TABLE III 

CALORIMETRICALLY DETERMINED HEAT OF MIXING DATA 
FOR THREE SOLUTIONS OF WATER AND ETHANOL 

1 2 3 
125. 19 Grams Ethanol 122. 49 Grams Ethanol 117. 50 Grams Ethanol 

24. 8 - 25. 20 C 26. 7 - 27. 30 C 2 6 . 6 - 26 . 9 u C 

Millimoles Total Millimoles Total Millimoles Total 

Water Calories Water Calories Water Calories 

3.61 1. 30 2.51 1. 10 2. 15 1. 10 

7.49 3.06 6.42 2.93 6.93 3.49 

11. 74 4.90 10.35 4.74 10.82 5.39 

15.85 6.76 14.76 6.64 15. 97 7.72 

20.13 8.78 19.28 8.75 21. 01 10. 07 

24.36 10. 7 2 24.35 11. 05 26.56 12.60 

28.84 12.76 29.39 13.30 33.02 15. 41 

33.19 14.70 34.12 15.35 35.72 16. 57 

37.60 16.65 37.98 17.03 40.38 18. 58 

42.12 18. 57 42.09 18.76 46.84 21.27 

46.86 2.0. 56 46.87 20. 83 53.48 23. 97 

51. 76 22.66 52. 01 22.99 59.80 26.55 

56.71 24.75 57.44 25.24 66.84 28.97 

61. 94 26.76 62.68 27.44 74.02 31. 75 

67.00 29. 01 68.17 29.57 81. 44 34 .. 52 

38 
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TABLE III (Continued) 

71. 88 30.96 74.36 31. 94 89.08 3,7. 40 

77.07 33.04 80.03 34.13 97.02 40.20 

82.73 35.27 85.75 36.27 104.69 42.88 

. 88.18 . 37. 33 . 91. 58 38.38 112. 96 45.77 

93.59 39.38 97.77 40.56 120.74 48.40 

99. 41 41.55 104.48 42.93 128.98 51.12 

105.00 43.59 11 o. 97 45.14 137.74 53.90 

110. 87 45.67 11 7. 68 47.40 146.69 56.70 

116.97 47.80 124.26 49.55 

123.07 .49.90 131. 26 51. 77 

129. 11 52.02 138.14 53.99 

135.26 54.10 

141.11 56.03 

147.52 58.11 



Corresponding Solutions. - In the following discussion AH , the 
r 

increase in the enthalpy per mole of salt attending the reaction of water 

at molality mL with the salt solutions, will be referred to as .6.-H for 
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simplicity. The total volume concentration of water present in a solution 

is CL' the total salt concentration is CM' and the concentration of 

unbound water is (H20). All concentrations are given in moles-liter- 1 . 

A general discussion of the relationships between Ci.-H, CL, CM' (H20), 

and n will be presented in this section. Actual results obtained for the 

particular systems investigated will be presented in the sections following. 

Values of .6. H and CL were determined after each increment of 

water, and curves of .6.-H versus CL for several solutions of the same 

system (e.g., Co(ClO 4 )2 - EtOH - H20) were plotted on the same graph 

(Figures 4 and 9). 

According to the corresponding solutions principle, if for, say, 

three concentrations of CM, .t::.H = A-H, = AH", the solutions have 

the same ii. and the same (H 0). Therefore, in accordance with the 
2 

defining equation for n, 

a plot of CL versus CM for solutions having the same L. H values 

gave lines of slope ii., and intercepts of (H 0) (Figure 5 and 11 ). 
2 

The statistical ii. versus log (H20) curves were calculated by the 

method of Bjerrum (5) described in Appendix B and compared to the 
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experimental aquo complex formation curves (Figure 6 ) .. 

The differential heat of reaction, ~ Q/ bNL, curve was also cal­

culated for each increment and plotted versus the CL/ CM ratio to 

determine when the hydration reaction was complete (Figures 8 and 10). 

The values of ~H were plotted versus the CL/ CM ratio for 

further comparison of the degree of hydration of the different concen-

trations of metal ions (Figures 7 and 13). 

Results for Cobalt (II) Nitrate-Ethanol-Water System .. - Figure 4 

represents the integrated curves of ~-H versus the total water concentra-

tion for three Co(NO )2 solutions. The curves were obtained from the . 3 

data listed in Table IV. The curves were very smooth as would be 

expected from the small increments of water added. The limited buret 

volume (ca. 3. 2 ml. ) restricted the water concentrations for any one 

titration to values less than one molar, but still sufficient to allow 

application of the corresponding solutions method. 

The corresponding solutions plot is represented by Figure· 5 for 

AH values ranging from 0.2 kcaJ-mole-l to 3.0 kcal-mole- 1 . It 

can be· seen that there is a small deviation from linearity for the five 

uppermost lines. The method of least squares was applied to the three 

·points in each case to obtain the equation .of the best straight line. The 

values of .6.-H for which the non-linearity occurred were in the region 

where a small error in b-H resulted in a relatively larger error in CL. 

Theoretically. the· limiting value of the slopes· obtained from such 
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TABLE IV 

CALORIMETRICALLY DETERMINED HEAT OF B,EACTION OF 
WATER DATA FOR THREE SOLUTIONS OF COBALT (II) 

NITRATE IN ETHANOL 

1 2 3 
O. 0294 M (150. 4 Ml. ) .0. 0582 M (15.9. 8 Ml.) O. 107 M (151. 1 ML) 

26. 2 - 26. s° C 26. 2 - 27. 5o C 27. 6 - 28. 6° C 
Millimoles Total Millimoles Total · Millimoles Total 

Water Calories Water Calories Water Calories 

1. 58 1. 00 2.70 2.40 2,20 2.10 

4.64 .2.82 6.18 4.78 5.22 4.97 

8.12 5.02 8.90 6.90 8.32 7.90 

11. 56 7.16 11. 02 8.51 10.38 9.87 

14.67 9.08 13.78 10. 58 12.61 11. 95 

18.09 11. 22 16.59 12.69 15.04 14.20 

21. 48 13.23 19. 22 14.62 17.55 16.48 

24.56 15.05 21. 87 16.50 20.20 18.84 

28.40 17.27 25.25 18.89 22.55 20.89 

31. 65 19.16 28.21 20,98 24. 81 22.85 

35.17 21.10 31.65 23.36 27.58 25.22 

' 

38.80 23.09 ·35.43 25.90 29.96 27.25 

42. 32 · 25.00 38.66 28.05 32.43 29.30 

46.14 27.06 42.12 30.35 34.70 31. 21 

49.72 28.92 45.83 32 .. 70 37.31 33.37 
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TABLE IV (Continued) 

53.73 31. 06 49.32 34. 91 39.84 35.45 

57.44 32.95 52.59 36.98 .42. 48 37.50 

60.96 34.73 56.11 .39.20 45.07 39. 53 

65.40 36.96 59.46 41.23 48.03 41.83 

69.53 38.99 63.06 43.42 50.98 44.06 

73.66 40.98 66.78 45.67 53.93 46.22 

77.93 43.04 70.68 ,47.92 56.84 48.38 

82.45 45.17 74.57 50. 19 60.06 50.75 

86.88 47.24 78.42 52.32 63.20 53.04 

90.78 49. 01 82.10 ·54_ 37 66.33 55.31 

95.48 51.13 86.23 56.66 69.92 57.82 

90.45 58.92 73.26 60.11 

94.50 61.10 76.78 62. 51 

98.68 63.30 80.57 65.09 

103. 41 65.78 84.51 67.68 

107.96 68.12 88.22 70.16 

112.29 70.26 92.24 72.75 

116. 66 72.41 96.40 75.46 

121. 45 74.76 100.76 78.16 

125.47 76. 71 104.97 80.83 

109.42 83.51 
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TABLE IV (Continued) 

113.60 85.98 

118.16 88.68 

122.69 91.29 

127.73 94.20 

132.52 96.93 

137.41 99.66 

142.30 102.33 

147. 21 104.96 

152.20 107.57 

157. 23 110. 21 

162.47 112. 88 

167.29 115. 31 
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a plot as Figure 5 should equal the maximum coordination number of the 

metal ion under investigation. Thus, for solutions containing excess 

ligand there should be parallel lines with the maximum slope; for these 

lines the larger the values of 6 H, the larger the intercept, (H20). 

Listed in Table V are the experimentally obtained values of n 

and (H20). The ~-H values from which they were taken are also in-

eluded. Figure 6 shows the shape of the formation curve .for aquo 

complexes of Co(NO ) in ethanol using the data from Table V with ii 
· 3 2 

plotted versus log (H20). The upper portion of the curve at n about 

five appears to be bending over and may become asymtotic to the line 

representing n equal to six. 

A value for K (Appendix C) can be determined for the statis-
av 

tical case when the formation of the aquo complexes is half completed, 

or assuming a maximum coordination of six, when n equals three. 

Then 

from Figure 6. 

-1 
= 3. 57 liter-mole 

The stepwise formation constants evaluated from 

(12) 

(13) 

are: k1 = 21. 4, k 2 = 8. 92, k 3 = 4. 76, k 4 = 2. 68, k 5 = 1. 43, and 

k - 0. 60 liter-mole -l. 6 - The dashed curv~, shown in Figure 6, was 



TABLE V 

EXPERIMENTAL AND STATISTICAL VALUES OF THE FREE 
WATER AND AVERAGE LIGAND NUMBER FOR 

COBALT (II) NITRATE IN ETHANOL 

Experimental Case ·Statistical Case· for N = 6 
and K.,.., = 3.57 

6H I - I (H20) - l (H90) n n 

0.2 0.2 0.02 0.9 0.05 

0.4 0.4 0.04 1. 6 0.10 

0.6 0.6 0.06 2.1 0.15 

0.75 0.8 0.08 2.5 0.20 

0.9 0.9 0.09 3.1 0.30 

1. 2 1. 3 0.13 3.5 0.40 

1. 5 1. 8 0.17 3.8 0.50 

1. 8 2.3 0.22 4.1 0.60 

2.0 2.7 0.25 4.3 0.70 

2.2 3 .. 1 0.28 4.4 0.80 

2.4 3.5 0.33 

2.5 3.8 0.36 

2.6 4.0 0.38 

2.7 4.3 0.43 

2.8 4.6 0.46 

2.9 4.8 0.50 

3.0 5.0 0.56 
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plotted from-the ·data in Table V for-.the statistical ca-se. The two curves 

are mµch closer together pelow ii equal to three than above that value. 

Apparently the formation of aquo c9mplexes in the Co(l."1'03)2 system is 

not adequately described by the -statistical approach. 

When the correction for the heat of mixing, 0. 403 kcal-mole - l 

H20, is subtracted from the total heat evolved for the hydration of cobalt 

(II) ions in Co(NO )2, plots of .C:. ""}! verus the water- salt mole ratio 
. 3 

give the curves of Figure 7. Theoretically, if proper allowance is made 

for .O.ti:Mix., the curves of Figure 7 should have zero slope when 

hydration is complete, for presumably when this occurs, the only inter-

action is the mixing of water and ethanol. Therefore,. if this is sub-

tracted out, the resulting change in A-H would be zero. 

Figure 8 presents the same information in a different manner. The 

incremental slopes, .6Q/ANL. in kcal-mole -l H_2o are-considered 

in terms of moles of water per mole of salt. The hydration reaction 

would be expected to be complete whenever the slope of a particular 

curve became constant and equal to the QM. value if this were con-
- IX. 

stant. For larger water-salt mole ratios, 

6. Q/ £1 NL - QM. = a constant IX. (14) 

At the highest water-salt mole ratios obtained,_ the curves of both 

Figure 7 _ and Figure 8 show that the hydration reaction was probably not 

complete for any of the solutions. The curve representing the most 
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concentrated solution, 0.107 M, approached the (arbitrary) 0. 403 kcal­

mole -l value for the heat of mixing most rapidly, however. 

It should be noted also that initially the curves in Figure 8 .increase 

and then decrease. Several factors probably contribute to this behavior, 

and these will be discussed.: -_ · -

Results for Cobalt (II) Perchlorate..:Ethanol-Water System. - In 

general, the data for the perchlorate solutions were treated .in the same 

manner as for the nitrate solutions. - Some important differences between 

the two systems became apparent, however,. and these will be discussed. 

The data in Table VI, obtained experimentally, were used to con-

struct the integral heat of reaction curves of Figure 9. Although the 

same average value for QM. was used to correct for the heat of 
lX, 

mixing of water and ethanol it is obvious that in contrast to the cobalt 

(II) nitrate results, the curves for cobalt (II) perchlorate reach a.max-

imum and then decrease. This occurs within the same range of total 

water concentration as that for the nitrate solutions. 

Figure 10 shows that for the differential heat of reaction curves, 

.6. Q/ ~NL for the three solutions falls below the average heat of 

mixing value of 0. 403 -kcal.-mole -l H2 O; although the curves all attain 

constant slopes. The solutions act "normal" only. in the sense that the 

least concentrated one, 0. 0444-M, approaches the heat of mixing value 

most slowly. 

- The values-of CL and CM obtained from Figure 9 are presented 



TABLE VI 

CALORIMETRICALLY DETERMINED HEAT OF REACTION OF 
WATER DATA FOR THREE SOLUTIONS OF COBALT (II) 

PERCHLORATE IN ETHANOL 

1 2 3 
0. 0444 M (142. 6 Ml.) 0. 0617 M (143. 6 Ml.) O. 0842 M (138. 6 Ml. ) 

26.4 - 27.0° C 26.1-26.8°C 0 26.4 - 27.3 C 
Millimoles Total Millimoles Total Millimoles Total 

Water Calories Water Calories Water Calories 

2.53 2.60 1.14 . 1. 20 3.49 4.50 

4.77 4.71 3.00 3.06 5.29 6. 51 

6. 52 6.30 4.63 4.90 6.96 8.28 

8.67 8.16 6.42 6.66 9.03 10.28 

10.98 10. 07 8.45 8.63 11. 31 12.40 

13.59 12.03 10.69 10.64 13.46 14.32 

16.24 13.84 13.16 12.64 15.76 16. 21 

19.12 15.71 15.69 14.67 18.16 18.14 

21.97 17.45 18.25 16.58 20.82 20.11 

25.12 19.28 21.11 18. 61 23.66 22.10 

28.63 21. 26 24.02 20.52 26.66 24.07 

32.32 23.21 26.99 22.40 29.65 25.99 

36.35 25.24 30.51 24.48 32.75 27.89 

40.39 27.20 34.19 26.62 36.16 29.83 

44.26 29.08 38.12 28.75 39.73 31. 80 
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'l' ABLE VI (Continued) 

48.56 31. 08 42.07 30.86 43.34 33.76 

53.08 33.14 46.43 33.03 47.36 35.80 

57.63 35.16 50.73 35.15 51. 34 37.77 

62.36 37.21 55,28 37.25 55. 56 39.77 

66.85 39.09 60.04 39.44 59. 91 41. 77 

71. 35 40.96 65.22 41. 74 64.57 43.82 

76.11 42. 91 70.57 44.05 69.06 45.73 

81. 32 44.97 75.85 46.27 73. 71 47.66 

86.60 47.00 81.26 48.51 78.72 49.68 

91. 95 49.02 86.95 50.78 83.78 51.64 

97.82 51.22 92.45 52.92 89.15 53,69 

103.92 53.43 98.31 55.16 94.34 55~ 61 

110. 80 55.86 104.39 57.47 99.95 57.62 

11 o. 46 59,68 106.05 59.77 

116. 84 61.95 111. 97 61.80 

123.56 64.28 118. 04 63.86 

130.48 66.61 123. 97 65.78 

137.27 68.89 129.79 67.60 
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in Figure 11 as a corresponding solutions plot. · At n values greater 

than about three it is seen that the lines begin to intersect. Also, the 

maximum value of ii. obtainable from the data is only about four. The 

intersection of the lines indicates that the solutions are not correspond-

ing and suggests that the heat of mixing correction as well as the basic 

theory of the method needs to be reexamined for the Co( ClO ) 
4 2 

ethanol-H20 system. 

A first attempt was made to correct for the linear portion of the 

curves which fall below the 0. 403 kcal-mole -l H O limit in Figure 
2 

1 O. For all three solutions, it is apparent that the linear portion begins 

at about that value. This suggests that the partial molal heat of mixing 

of excess water with the aquo complexes of Co(ClO ) in ethanol is 
4 2 

different for each salt concentration and cannot be represented by an 

average value. 

The total heat evolved in the calorimeter is the result of four 

thermochemical quantities. 

where X is the fraction of the nth complex, R is the water- salt 
n 

(15) 

mole ratio, H and H0 are the partial molal enthalpies of the reacting 

species in the equilibrium mixture and in a reference state respec-

tively. The reference states were chosen as the anhydrous salt and 
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water in their respective binary mixtures with ethanol. The concentra-

tion of salt in the reference state was. of course. different in each 

series. but since the heat of dilution was found to be negligibly small. 

HMO was assumed to be the same in each. It was assumed that the 

second and third quantities were essentially zero. This assumption 

seems justified from the fact that as more and more water is added and 

N 
more complexes are formed. (1-L Xri) approaches zero, or the non-

1 
complexed metal concentration is small; furthermore. it is reasonable 

N 
that (HM-H0 M) is also small. At low water-salt ratios, (R-LnX ) 

1 n 

which is really (R-n), the free water concentration, is assumed small. 

The term (R-n) (H -H0 ) describes the unbound water contribution to 
L L 

A-HT' and since the difference between the partial molal enthalpy of 

the free water and that of the water in the reference state is probably 

small the contribution of this term was considered negligible. Only the 

interaction of water and ethanol is included in (H -H0 ), since other 
L L 

interactions leading to complex formation are· already included in the 

first term of eq. (15). 

- -o 
However, . if the heat effect represented by (HL-H L) is not 

sufficiently small, then {R-;;_)(HL-H0 L) may not be negligible for large 

R and may be a function of R. 

When the hydration reaction is essentially complete, and n 

approaches N, then eq. (15) becomes 



61 

If (HL-H0 L) is a function of R, differentiation gives 

f(R) + (R-N) df (R) = d(LfH: )/ dR + QM. 
T lX. 

(1 7) 

-1 
The portion of the curve below 0. 403 kcal-mole H20 in Figure 

10 suggested a linear correction of the ·form 

whence 

df (R) = m 

Substitution into the previous eq. (1 7) gives 

Integration gives 

AHT-RQM. lX. 

QM. -2 mR + (mN-b) 
lX. 

2 -mR + (mN-b) R + C 

(18) 

(19) 

(20) 

(21) 

The constant of integration, C, was evaluated for each salt solution at 

the point where the curves of Figure 9 become linear. This is equivalent 

to assuming that reaction is complete when this occurs. When the cor-

rection was calculated, however, for other water-salt ratios, the 

· resulting corrected .A-Hr values were inconsistent with the curves of 

Figure 9. That is, the points calculated from eq. · (21) for a particular 

salt concentration were ·scattered and discontinuous with the existing 

heat-of-reaction curve in Figure 9. 
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The failure of the above to properly correct the AH values for ·the 
r 

- -o 
apparent dependence of (HL - H L) upon the water- salt ratio may be due 

in part to the factor (R-n) in eq. (15) which contains n as an unknown 

variable. Thus the A-H values should be corrected over the entire 
r 

range of water-salt ratios. 

Arbitrarily choosing Q . as the AQ/AN value (O. 338 kcal-
M1x. L 

-1 
mole H20) for a 1. Omolal water in ethanol solution raised the heat-

of-reaction curves, but gave n lines with slopes greater than nine. The 

lines were found to still intersect, also. Although there is some spec-

trophotometric evidence that ii. values in cobalt (II) perchlorate are 

greater than six, without additional information no significance can be 

attached to this fact (8). 

Figure 12 shows how the slope of the heat of mixing curve varies 

with the total concentration of water. At each concentration of water in 

a given salt-ethanol-water system, the water-salt ratio can be multi-

plied by the slope of the curve in Figure 12 at the particular total water 

concentration and this used as .6-H 
Mix. 

= .6-HM. 
lX. 

at some CL 

When this was done and the AH values then plotted, again ii 
r 

(22) 

values greater than six were obtained. Also, values for CL and CM 

for the three solutions were no longer linearly related at constant values 

of AHr. Furthermore, there is no theoretical justification for this 
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kind of correction since it is equivalent to assuming a variable ·reference 

state for water in the solution. 

The corresponding solutions plot (Figure 11 ), although probably 

unreliable in its present form for ii values greater than about four, 

shows that very little free water is present in the solutions for ii values 

of four or less. This indicates that the aquo complexes formed are 

relatively strong in the case of Co(ClO 4 )2. The corresponding solutions 

treatment cannot be carried out accurately when complexes are either 

too strong or too weak, and the first seems to be true here. 

Still another ·interesting feature is noticeable when the heat of 

reaction is plotted versus the water-salt ratio as in Figure 13. The 

curves for the three solutions lie almost on a common curve up to a 

water-salt ratio of about four; at larger ratios they begin to separate, 

For strong complexes CL/ CM is a good approximation to ii and hence 

-the curves of this figure show that AH is a function of n. only, in the 
r 

range 0-4. This fact suggests strongly that the maximum coordinaticm 

number may be no greater than four for the reaction of water with 

Interpretation of Results. - The experimental formation curve of 

Figure 6 clearly indicates that hydration of Co(N03)2 in ethanol solu­

tions cannot be explained by the statistical formation of aquo complexes. 

Since for the replacement of one neutral ligand by another thE: step-

wise enthalpy changes have been found to be nearly equal in most aqueous 
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systems,. the ratio of successive formation constants must be determined 

largely by statistical considerations in such cases. It is reasonable that 

the same would be true ·of the systems under investigation. Thus, the 

deviation from statistical behavior may be due in part to a difference 

in the type of ligands involved; i.e., uncharged species s·uch as water 

molecules replacing charged ions rather than only neutral solvent mol-

ecules. This would be the case, as Katzin argues, when there are 

nitrate ions ·in the inner coordination sphere. 

The formation curve .for aquo cobalt (II) ions in Co(N03 )2 solu­

tions found from this research does not compare favorably with that of 

,Jorgensen (16), although the 'K obtained from Figure ·6 is only about 
av 

three, whereas Jorgensen reports about one. The total water concen-

trations employed were ·much less than those investigated by ,Jorgensen. 

This results, as ·pointed out earlier, in an incomplete heat-of-reaction 

curve and a formation curve which does not approach closely a limiting 

value. 

The curves of Figure 8, 1':::,.Q/ ~NL versus the water-salt ratio, 

have a peculiar shape. In.contrast to what one might expect, there is 

a maximum in the slope at a low water-salt rc\,tio. There are at least 

two possible explanations for the existence of such a maximum. First, 

some particular combination of K values and ..&°H (the heat of forma-. n · n 

tion of the nth aquo complex) values could lead to a maximum, or alter-

natively,. an endothermic process, such as electrolytic dissociation .of 
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cation-anion c\SSOciates by the incoming water molecules would offset 

the initial heat of the solvent replacement reaction. It can be seen that 

the maximum AQ/AN value occurs at very low water-salt ratios, 
L 

and therefore, smaller increments of water need to be added to more 

nearly anhydrous salt-ethanol solutions in order to study the matter 

further. However, the ·results obtained in this work seem in qualita-

tive agreement with observations of Katzin and Gebert .(17) who reported 

that the greatest spectral change occurs upon the addition of the ·first 

few per cent of water to ethanol solutions of Co(N03)2. · Probably both 

sets of observations are to be associated with the displacement of 

nitrate ions from coordination positions about the cobalt (II) ions. 

As mentioned previously,. results indicate that the aquo com-

plexes of Co(ClO 4 )2 are too strong for the successful application of 

the corresponding solutions treatment. · The free water concentration 

is thus too small for a reliable determination of its value ·from the plots 

of Figure 11,. and it is, therefore,. not possible to construct a complex 

formation curve. · It is reasonable to presume that the degr~e of cation-

anion association would be much less in the ·perchlorate solutions than 

it is in the ·nitrate solutions, and direct coordination of perchlorate ions 

-would not occur. This is contradicted by the apparent maximum n 

value of about four for the reaction with water, however. 

Failure of the slopes of the total heat of reaction curves to show 

a maximum similar to the case of Co(NO ) might indicate that a 
. 3 2 
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corresponding initial dissociation process does not occur for Co(ClO 4 )2 . 

The heat of reaction for the binding of the same average number of 

water molecules (n) is less for Co(ClO ) than for Co(NO ) . This is 
4 2 3 2 

in agreement with the spectral evidence of Katzin and Gebert (18). The 

order of ligand field strengths for the three species involved, assuming 

the cobalt to be free for ligand substitution in ethanol solution, is thought 

to be H O ) NO-·> EtOH (4). If this is the case, then more heat per 
2 3 

mole of metal would be evolved in the exchange of water molecules for 

nitrate ions, than for water molecules replacing ethanol molecules. 

Qualitatively, it seems reasonable, also, that a greater change in en-

tropy would be involved in the replacement of a charged ion for a neutral 

molecule. 

One final point seems of sufficient importance to deserve repetition. 

In all of the studies reported in the literature of replacement of organic 

solvent by water, it has been necessary to assume that the degree of 

electrolytic dissociation is without affect upon the formation constants 

for the aqua complexes. Alternatively, either completely dissociated 

salts must be assumed or complete ion-pairing must be assumed. For 

small water-salt ratios this seems a reasonable assumption, but its 

correctness has not been demonstrated, and the linear decrease of the 

slope of the b.Q/ ~NL versus R curve at larger R values (Figure 10) 

may be due in part to the endothermic electrolytic dissociation of 

Co(ClO 4 )2 superimposed upon the exothermic mixing of excess water 

with ethanol. 



CHAPTER V 

SUMMARY AND SUGGESTIONS FOR FURTHER WORK 

The purpose of the investigation was to study the feasibility of 

titration calorimetry as a method for obtaining thermodynamic informa-

tion about aquo complex formation in organic solutions of salts. A 

micro calorimeter was constructed for the measurement of heats of 

reaction, in solution, of one calorie or less with a precision and accu-

racy of one per cent or better. The calorimeter was shown to have the 

desired capability by study of the neutralization of sodium hydroxide by 

hydrochloric acid at 27°. 

Two systems were studied in anhydrous ethanol. These were 

(1) Co(N03 )2 at concentrations from 0. 03M to 0.1M; (2) Co(ClO 4 )2 

at concentrations from 0. 04M to 0. 08M. The reaction of water with 

solutions of each salt at several different concentrations was investi-

gated by measurement of the differential heat of reaction. The results 

obtained for Co(NO ) indicate that although this salt is probably to 
3 2 

some degree nitrato complexed in ethanol solution, the· strength of the 

aquo complexes formed upon the addition of water are of the correct 

magnitude to permit determination of the formation curve by Bjerrum I s 

method of corresponding solutions. Values for the individual formation 
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constants were not calculated, however, in view of the uncertainty in the 

nature of the anhydrous solutions. 

Cobalt (II) perchlorate is apparently not a perchlorato complex and 

appears to form stronger aqua complexes than Co(NO ) . From the 
3 2 

data, it is evident that a correction needs to be made for the amount 0f 

free water present in the solutions, particularly at large ·values of the 

water-salt ratios. The correction needed appears to be dependent upon 

the concentrations employed, becoming less as the concentration de-

creases. Therefore,. lower metal concentrations should be studied, 

probably at least by a factor of ten, if the correction is to become neg-

ligible. At the same time, the lower metal concentrations should .make 

possible the extention .of the measurements to higher water-salt ratios. 

The questions that have been raised by the results obtained for the 

Co(Cl04 )2 -Et0H-H20 system lead one to reconsider the Co(N03)2-

Et0H-H20 system. It seems clear ·from the results of the investigation 

that calorimetric titrations can be used to determine step-wise ·forma-

tion constants and thermodynamic quantities for aqua complexes,. if 

. measurements are carried out in sufficiently dilute solutions. The re-

sults obtained with Co(N03)2 and Co(ClO 4 )2 are such that one should 

probably investigate these systems at much lower metal concentration 

and at much higher water concentrations in order to convincingly 

demonstrate the usefulness of the technique, however. 
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APPENDIX A 

The equations for the ·step-wise formation of ligand complexes, 

MLn, and the respective formation constants are: 

M+ L = ML Kl = k = (ML)/ [(M) (LTI 1 

M.+ 2L ~ ML2 K2 = kl k 2 = (ML2)/ UM) (L?] 

M+ nL = MLn ~ = k1 k 2 ... kn = (MLri)/ [(M) (Lf] 

Bjerrum (5) has shown that since ii. = , and 

CM = M. + ML + ML2 + ... + MLn, and 

CL = L + ML + 2ML2+ ... + nML, 
n 

- ML + 2ML2 + .. ;+ n ML 
then n = n 

M + ML + ML2 + ... + ML 
n 

Substituting the formation constants and dividing both numerator and 

denominator by (M) 

-n = 
2 n 

1 + K1 (L) + K2(L) + .. ; +Kn(L) 
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L 
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n 
nK (L) 
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In order to obtain an equation in useful form, 

N 

- [_ n·~ (Lt = 0 

1 

or n + (n-l)K1(L) + (n-2)K2 (L)2 + ... +(n-n) Kn(L)n = 0 

If at some ii. value, the corresponding . (L) is used an equation is 

obtained: 

a + bK1 + cK2 + ... + dKn = 0, where a, b, c, and d are 

constants. If n = 6 and six equations are used, evaluated at the six 

different half integral n values, the equations are the six normal 

equations to the n versus (L) curve. A computer solution is readily 

available for these six K values. 



APPENDIX B 

Let the following equation represent all of the metal ions in a solu-

tion of solvent and complexing ligand; 

CM = M + ML + ML2 + ... + MLn 

where CM is the total metal concentration, M is the metal and L is 

the ligand. 

If Xn represents the heat of formation of the nth complex, and an 

is the fraction of metal complexed in the nth complex, then 

= Q, or 

the amount of heat evolved per mole of metal is equal to the sum of the 

heats evolved by the complexes. At another concentration of metal, 

Q' = 

When Q = Q', 

= a '· n 
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a I 
n 

Therefore, since 



a = n 

K (M) (L) 
n n 

(M) 

and -n = 

a ' = n: 

K (M)' (L) 1 n n 

(M)' [1 + 

(See Appendix A), 

then (L) = (L) 1 and n = n'. The solutions are 11 corresponding11 since 

77 

for the same value of 6-H , they have the same percentage distributions 
r 

of the solvated ions and the same ligand number, n, i.e., average 

number of ligand molecules bound per metal ion and consequently the 

same concentration of free ligand, (L}. 

Since n - n. 1 

-If a plot of CM versus CL is made, n can be found as the slope, 

(C 1 - C )/ (C · 1 - C ) L L M M. 



APPENDIX C 

The calculation of a statistical ii versus free water or log free 

water curve requires that a statistical 11 factor 11 be defined for each step 

of the aquo complex formation. The value of the factor is simply the 

maximum number of replaceable coordination sites for the forward re-

action divided by the maximum number for the reverse process, or 

N - n + 1 
n 

It is assumed that each consecutive step is as likely as any other and 

that related ligands are exchanged. Thus, for the ·first aquo complex 

formation reaction, with one incoming water molecule encountering a 

solvated metal ion with a maximum coordination number of six: 

The statistical factor, f1 , would be 6/1, or 6. The values for the 

six factors would be: 

fl = 6/1 f4 = 3/4 

f = 5/2 f = 2/5 
2 5 

f3 = 4/ 3 f6 = 1/6 
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and 

and 

If an average formation constant, K , is defined as 
av 

1/N 1 
. kN) = (H 0) 

2 

k = f K 
n n av 

k 
n 
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then for a particular value of the free water concentration, an n value 

can be found using the equation 

N 
Ln K (H20)M 
1 n 

(See Appendix A). n = 

Using several values for the free water concentration within the exper-

imental concentration range a statistical curve can be obtained. The 

average formation constant is evaluated: 

-when n 

K 
av 

N/ 2, or the midpoint of the formation of the complexes (5). 



Q = 

= 

Q = 

= 

= 

= 

~HM. lX. 

GLOSSARY 

heat liberated in the calorimeter for reaction of 
H 20(l) + solution 

heat liberated in the calorimeter for reaction of 
H20(mL) + salt (mM) 

enthalpy increase per mole of salt for reaction of 
H20(l) + solution 

enthalpy increase per mole of salt for reaction of 
H20(mL) + salt (mM) 

HH O(m ) - HH 0(1) 
· 2 L 2. 
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