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CHAPTER I

INTRODUCTION

A. Eﬁg Problem

The fundamental axiom in classical electrodynamics is that
moving charged particles affect each other's motions by means of so-
called electric and magnetic fields. There are, therefore, three basic
problems in classical electrodynamics.

(i) The determination of these fields at evef& point in
space and time for a given system of interacting charges.

(i1) The determination of the motions of the charges which
occur in response to the fields present.

(iii) The determination in so far as is possible of the structure
of the fundamental charged particles.

Problem (i) has been solved since the days of Maxwell, who
first formulated the field equations which bear his name. Problem (ii),
the determining of the equations of motion for charges was first treated

(1 (2)

by Lorentz and later by Dirac. It is the problem with which we

are primarily concerned in this work. Problem (iii) is generally re-

garded today as being beyond the scope of classical electrodynamics.

The current attitude is summarized by Rohrlich(s). He says,
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"The problem is to find a formulation of classical
charged particle theory which does not require any re-
ference to or assumptions about the particle structure,
its charge distribution and its size'(3)

We will present some preliminary cvidence that when problem (ii) is
treated in a way which i1s both physically meaningful and mathematically sound,
the resulting formulation has statements about the structure of the classical
charge already built.into it and thus classical electrodynamics may indeed be
capable of making meaningful statements about particle structure. In

the next sections, we review the important elements of the current

theory. The notation and development closely follow Rohrlich.

B. The Maxwell-Lorentz Equations

The electric field E, the magnetic induction §, the charge

.
density p, and the current density j, are related by

3E A1 >
VXB-l/Cgt——?J
V.E = 47p
(11)
3B
VXE*']./CS-{:O
VB = 0, where

¢ is the speed of light.
These equations may also be written in terms of a vector po-
tential A and a scalar potential ¢. These are introduced through the

equations



- >
B=VXxA
> (1.2)
dA
- V¢ =E + 1/c Y:
A and ¢ are not unigquc but arc defined only te within a2 gauge
transformation
R+R =A+VA
(1.3)
oA
' - _ -
¢ >¢'=¢ - leor
with A an arbitrary function.
If A is required to satisfy the wave equation
2
v2p = 12 &L (1.4)
at2
the expression
I = VR + 1l/c 3 s (1.5)
at
is invariant under all gauge transformations. If we choose I = 0,
the Maxwell-Lorentz equations take the form
2 >
(V2 - 1/c2 3_)K=_ﬂ_ s
at2 ¢
) (1.6)
(v2 - 17¢2 294 = - 4np
£2

We now introduce four-vectors in a Minkowski space. Our con-

b* = (b0, bl, b2, b3) . (1.7)
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b9 is the component of b along the x%(= ct) axis and b!, b2, b3 are the

space components of b. When we write a quantity as a four vector, we

are implying that the quantity transforms as

Su - ba Bi“
ax”
under Lorentz transformations:
. ij
_i i v o, i VXV
o=yt - xT) -y - D - )
v
v, -3
0=y - —1) Y= (- v¥/e?)
c
. 3
i,j = 1,2,3 vx. = ] vx
J j=1 J

Vv is the velocity of one reference frame relative to the other.

>
¥ = (e0,3) s
and four-vector potential

A = (4,0

Our notation is simplified by defining

- ]
3“ = (l/C 5t ,V)
and using the metric tensor
-1 0 0 0}
0O 1 0 o0
g:
HY 0 0 1 0
0 ¢ 0 1

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)



C
o~

and its contravariant associate to raise or lower indices.

The Maxwell-Lorentz equations then become
3 3%M - - 4r ju (1.14)
o c )
The quantities " defined by

FHY = gMAY - VAl (1.15)

2

from an antisymmetric tensor of the second rank under Lorentz transfor-

mations. They are given explicitly in terms of the fields by

[0 E. E E_)
X y z
-E 0 B_ -B
pHY o X Z y (1.16)
-E, -B 0 B
4 z X
-E B -B 0
z Y X
¢ J
The field equations become
3 PV o= . éz-jv
v c

(1.17)

aaFuv + aquA + avFAu = 0.

In order to consider the solution to these equations, we
imagine a charged particle moving along its trajectory or world line.

We define an increment of proper time by the equation

- ¢2d72 = g daxMdx’ . (1.18)
LV
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1 plays the role of arc length along the world line and is a monotone

u

increasing quantity. Let z" = zM(t) be the position of the charge.

Its four-velocity vector is given by

PR | I
dz’
V() = —Til-’- , v“vu = -2, (1.19)

Let x" be an arbitrary space-time point. The vector Ru(r) is defined

as

RY = x* - M) . (1.20)

U

For a given point x" there are two values of, 1, T and 7, T < T such that

Ru(T)Ru(T) 0 (1.21

s
1]
K]
A
3

Now define a unit vector u, orthogonal to v

uuuil= 1, v =0 . (1.22)

If a tilde over each quantity refers to the quantity evaluated at

T = T, we have

N . - !
TG (1.23)
5-uRr = L R
u Cc u (1‘24)
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The solutions to Eqs. (1.17) for the field due to a particle

with charge e can be written

v € <M~V Vsl
F M = = @'Y - Vo
ret( ) 52(: ( )
e ~UV Vol MTIATA VR PR
P = (@ - @ - W T a v aY) (i.25)
pec? ¢ Tu

This is the so-called retarded field. There is also another solution,

the advanced field given by

WV _ e oV uep
Fagy®)" = 530 (Vo' - viu) (1.26)
b S L@ - ) /e - (L q g% ¢ (Y g
537 ' ¢ "u T 4y

and

= VW= 1)

and F;v can be put in equivalent

. uv
The expressions for Fret dv

forms which are more convenient for our purposes.
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Take Eq. (1.20) as the definition of RY and define

p (1) = - v (DR (D)/e
and .
px(t) = + v (1)RV (1) /e
u
(Note:
= p*(T)lr=%
p = pf(T)|r=? )
Then it can be shown that
Yoo pe_d V(ORY (D) -v (DR (1)
ret o c? dt P
Y e d v" (DR () -v (DR (1)
adv p*cz dt o,

0

nv

C. Momentum ﬁ the Field

)}|T=;

e

(1.

(1.

(1.

27)

N
0
-

29)

. 30)

.31)

We next introduce the energy-momentum tensor 0"V defined by

wv _ 1 uonv uv aB
] =7 (F Fa+lzg FaBF )

is divergenceless:

sV =0.
u

(1.

(1.

32)

33)
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Using Eq. (1.30), 0"V can be expressed in terms of the kinematics of the

charge
MY - e2 (~u~v Y - 1Y)
ret  gnpt c2
2 ey o) )
e ~ R'R v ~ R
+ a - (= =
27532 2, = ¢ A’ Y 5 ] (1-39
62 ~9 ~ ~A Ruﬁv
+ @ - a,a) ==
4mpct T U A& p
where
al"b¥) = 3(a¥pY + a'bYy. (1.35)

A space-like plane in Minkowski space is defined as a three-
dimensional surface such that the distance between any two points x

and y satisfies

x -y )" -yHso0. (1.36)
H u
It is specified geometrically by a unit normal vector n such that
not=-1. (1.37)

We can define an element of area for such a plane

do’ = n'do (1.38)
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with

do = dxdydz.\. (1.39)

Where x, y, z is the coordinate system in which

n* = (1,0,0,0). (1,40)
Consider the expression
pt =L je“"da (1.41)
Cc \Y

where the integration is carried out over the plane which contains
the charge, excepting the portion of the plane which the charge it-
self occupies.

The surface element is given by
o =% do . (1.42)

Thus the plane is always nommal to the world line of the particle.
It is obwious from its definition that P" is a four vector. We shall
take Eq. (1.41) as the definition for the momentum vector of the

electromagnetic field.

D. The Dirac Equation

We are now in a position to ask the question which was first
asked by Dirac. What is the change in the momentum of the field as

the particle moves along its trajectory? To answer this we surround
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the worldline with a mathematical surface, the world tube, of invari-
antly defined radius 2. If 1 and 2 are points on the world line

separated by an increment of proper time dt, then
1 .
0" 'ds - |, 0 do (1.43)

is the change in momentum, where Oys 0y are space-like planes simul-

1
taneous with the charge at points 2 and 1, respectively, and the in-
tegration is carried out outside the charge. By Gauss's theorem,

however, this difference in integrals over the space-like planes is

equivalent to an integration over the surface of the world tube. The

element of surface area for this tube is known to be

do" = u’(1 + ray)deade . (1.44)

Where dQ is an element of solid angle. Therefore

dpu _ uv 2
rralie j@ uv)L (1+/l.a.u)d9 . (1.45)
This is the rate of change of electromagnetic momentum.

In order to calculate this explicitly, o™V

must be expressed
not in terms of retarded quantities but rather in terms of instan-
taneous ones. Let 1 = 0 be the point of interest on the world line
Tt

and denote 1 by -t. The technique used by Dirac and others was to

make expansions of the foxm
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n
<
1
~
a
+
N

[~

a¥ o+ e (1.46)

It
&
o
4
-
<

I

- &Tz
T(+ng ) - =54, ¢

el
n

where the quantities without the tidle refer to instantanecus values.
The second series contains both t and #. In order to eliminate 1,

one makes use of

R'R =0 (1.47)

to express 1 as a function of #. Since one only needs a few terms
in each series, these techniques are not too unwigldy. The result

of carrying out the expansion and integration is

a2 ,p oo e2 pv
T M (@’-asv7) + 2 ¢ Fextvv

(1.48)

)L"‘Afi.?"‘““‘

A 2

The A's represent the coefficients of an infinite series in the radius
of the world tube which depend on the kinematics of the charge, and
Fext represents fields which may be present due to sources other than

the charge of interest.
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The mechanical momentum of the charged particle is

[ Jap—s (1.49)

@, _
vl e 0 (1.50)
2 2
- a4 = - L e2(aY _ 42yHy - gH 200
(m + 7 Ja 3 © (a asv") Fext + Aln. + Azn + (1.51)
U _ pHV :
Fext = Fextvv' (1.52)
At this point, Dirac let
e2
Mps =M™ * 357 (1.53)
be the experimentally observed mass. Then writing
b= -2 a2 - a2vMy - BY '
mps® = -3 (a asv") Fext + Aln + (1.54)
he took the limit as #»>0, to obtain
Bo_ 2 fM Lo My _gH
mob‘sa = -3 (a asv") Fext . (1.55)

This is known as the Lorentz-Dirac equation.
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It is clear that while it is convenient to renormalize the
mass so as to be rid of the infinite series, the renormalization it-
self is totally unjustified, mathematically. The question therefore
arises as to the true significance of the infinite series; are there

values of n other than zero such that the series vanishes? The major

which relate the retarded and advanced quantities in electrodynamics
to the corresponding instantaneous ones. This formalism will allow

the investigation of questions such as the one raised above,



CHAPTER II

THE CALCULATIONS IN QUTLINE

A. The Objectives

This treatise is concerned with developing all the mathema-
tical machinery necessary to derive the Lorentz-Dirac equation of
motion in a manner which is physically cogent and mathematically sound.

By physically cogent, we mean that all the assumptions used
are either well-accepted in the current understanding of the problem
or else are natural and appear practically self-evident. By mathema-
tically sound, we mean that no ill-defined mathematical techniques such
as renormalization need be utilized.

The work naturally divides itself into three major endeavors.
First, the conversion of the usual retarded and advanced formalism into
an "instantaneous' or ''co-present' formalism. Second, the use of this
formaliism to obtain general formulas for the quantitiés appearing in
the expression for the electromagnetic momentum. Finally the drawing

of conclusions about the equation of motion.

15
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B. Heuristic Considerations

We shall take Rohrlich's interpretation of Dirac's derivation
seriously. That is, by assuming conservation of the total momentum
associated with the charge (mechanical plus electromagnetic), we shall
lay the groundwork for being able to deauce the equation of motion
without having to employ renormalization.

To begin however, we must have a justifiable definition of
electromagnetic momentum. This definition is not as natural to come
by as one might suppose. Since integrating a second rank tensor over
the world tube of the particle is equivalent (if the field vanishes suf-
ficiently rapidly in space-like directions) to forming the difference
of the integrals of the tensor over two adjacent space-like planes
which are perpendicular to the world line (the integration excludes the
volume which the particle itself occupies), it seems natural to look
for a tensor 0"’ whose integral over such a space-like plane can be
considered '"'the" four-momentum. As we mentioned in Chapter I, Dirac

chose " to be G where

HV ua v HVLoB
Oret = 7 (F ret reta 4 8 Fret retaB) ’
The general definition of electromagnetic four-momentum is then (1.41).
This choice has some support: let a charge initially be at

= 0 and consider the electromagnetic field produced in the interval
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from 1 = 0 to t = dt by the arbitrary motion of the charge. If an ob-
server moves along between the light cones which have their apexes at
1 =0, and v = dv he finds that the fields produced in the interval dr
are more and more confined to the region between the cones until, in
the region of the field vary for how the changes location during dr,
there is no field outside this region due to the motion considered.

Let dcz be an element of a timelike surface o, which the fields in-

tersect at r = o, Then
1
ar" = - = oY dg
rad c Jo= ret oy

can be shown to be the momentum associated with the radiation emitted
in the interval dt. This definition depends on the '"'asymtotic" fieid,:
where there are no charge singularities. *It is not obvious however,
that when the integration (1.41) includes that portion of the field
near the charge (singularity) the physical meaning of the integral re-
mains unaltered. We do not choose to discuss here other choices and
their merits but instead will adopt (1.41) for the simple reason that
we are specifically interested in extending Dirac's notions to their
proper limit.

The second important point and the most fascinating is, if one

believes the Dirac equation but does not believe in renormalization,

*See Rohrlich for a discussion of this problem.
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what logical positions are left to him? One is that the equation is
right but the derivation is wrong. This is not an untenable position
but it is not very interesting either. The alternative seems to be
that the rest of the series. which Dirac threw away, must be important

amd in Fant+ w» miict wanllvy ha +ha
@G A Xalh H UL Avdaa Uv i

I
-
L
>~
-

~

was successful. In particular, one could suppose that there are values
of the world tube radius 4 for which the series in the right hand
member of (1.57) vanishes, thus giving the Dirac equation rigorously.
The value(s) of £ would be associated with the dimension of the charge.

Thus in this theory, classical electrodynamics would imply something

about the structure of the (classical) electron. It is this possibility
which we want to explore and in the prese‘nt work, we lay the foundation
for a study of it.

We make three assumptions:

(i) The electromagnetic field of the particle is described by
the Lienard-Wiechert potentials [Eqs. (1.25) and (1.26)].

(i1) The motion of the charge is such that all power series ex-
pansions of field quantities have a radius of convergence which is at
least as large as the radius of the electron.

(iii) The electromagnetic four-momentum of the electron is given
by Eq. (1.41).
Assumption (i) actually defines our model of the electron and

so is an assumption only in the weakest sense of the word.



19

Assumption (ii) is indispensible. Without it, the entire
Dirac formalism collapses. Note however, that we are assuming that
the power series are valid only in a very small region of space time
and are not assuming that the various quantities are analytic every-
where.

Assumption (iii), we have already discussed.

The remainder of this chapter is devoted to an outline for
and a commentary on, the detailed calculations which are present in

Chapter III.

C. The Geometry

Consider the situation in which a field point P, with coordinates

n

x" is simultaneous with a point Q [coordinates 2" (1=0)] on the world

line of a charged particle (Fig. 1) . The retarded field at xM is
generated by the particle when it is at the point Q [coordinates 2"

(t)], #<0. The advanced field at x" is generated when the particle

is at the point Q [coordinates z" (7), 1>0]. What we want is an ex-

pression for the field quantities, e.g. Fi;t (x), in terms of the '"'co-
present’’ quantities
vu(r=0) = v* au(1=0) = " etc.,

and the distance #, where

A2 = (x“-z“)(xu-zp) (2.1)
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(we are following the convention that quantities not evaluated at 7=0,
are accompanied by explicit reference to tr). The old technique was to

expand the relevant quantities

(1]
(52
(8]

pHrzy = wH - oMy H
[ - o\t

an an ’

<
~

2
Nt

in a power series in . Then, making use of the fact that

R“(f)Ru("t) =0 (2.2)

one obtained a relation between % and % to only a few orders. Using
this relation one then aliminated ¥ from the expansions and obtained
power series in terms of 4 and the kinematical quantities evaluated at
T = 0.

In general we shall also follow this approach but we shall make
explicit use of the fact that we are expanding all quantities of in-
terest in terms of #. This will simplify the procedure enormously.

We proceed to find a technique which will allow us to differentiate
directly with respect to 2. This is an approach which, to the author's
knowledge has not appeared in the literature, and in fact, provides the

sought after relation between T and 4, to all orders.

D. The Differentiation Process

by considering the change introduced in the function of interest when

the distance 2 is infinitesimally varied. This variation must be
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carried out in such a way that

H is unvaried

(i) the point z
(ii) the point P' (coordinates x'u) which P is mapped into by
the variation of 4 is still simultaneous with z".

(11i) account is taken of the fact that a variation &x will

H W M eany
-4 \l

map 7' in such a way, that R' ({')ZX ) cbeys th

R'MR' =0 .
H

Requirement (i) is necessary since ¥ is the given point of

interest. Requirement (ii) is necessary because all field points must
be simultaneous with z". Requirement (iii) guarantees that the field
at x'" is really the retarded field of interest.

These conditions are sufficient to specify uniquely the dif-

ferentiation process. Since

M- 2H = (2.3
we have
sxM = st (2.4
or
d—d’jli =u" . (2.5)

Now we want to consider the derivative of a function of %, say

£(t). Then

B

df _ df ¢ QEE (2.6)
dn d axu dn :
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and since, setting ¢ = 1, (much later we shall allow c to enter the

formulas explicitly)

9T
— - (ﬁ + 'V) (2.7)
BXU H H
we have
d4( - _ i@+ v ) ;=498 (2.8)
dn v u u ¥ T odt

From this formula, we see that in order to calculate the nth derivative

of §(%¥), we need the (n-1) derivative of a" o+ oM.

We assume that " + v" can be expanded in a Taylor series and

take its form to be

(2.9)
n=0 n
Now, since
dt _ 3% p _ _ (O o
E)L- = ——a " u = (ﬁ + v )uo (2'10)
X
g .
T Y% n
= Z ._I_l!_.’,' (2.11)
n=0
we have the set of equations
d3 o}
- = - Au
dn 720 00
ézi = - Ai—uo'
2
dn -0
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. . (2.12)
d1 .
9—1 = - A c,u
.. 1 n-1 ¢
Wi
. pt An 10uo n
. QT()L) = - nz] n! ’L . (2»13)

The quantities A.nou0 turn out to be of fundamental significance

and so we introduce some convenient notation. Define

_ g
an(l) = An-l Uc
(2.14)
ao(l) =0
then
v o
) =- | 72,0 . (2.15)
n=0
If we define
r-1
P n-zz ki r-1 pil
a (p) = 1 n - k.) ax 8(n- ) k.,k ) (2.16)
n r=1 k_=0 =0 't i
T
k
T
[so that an(l) agrees with (2.14)]
a = ak(l) ko =0
(2.17)

al(O) = ao(ﬁ) = §8(0,2)
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where §(0,%) is the Kronecker delta, then we show in section A of

Chapter III, that

Py oA
tp=(-D7] ra® .

n=0
In a similar way, starting from the equation

L_a -7
NETER VR

we have the following relations

u” - v o= =T Ay
n=0
* fo1 _ *
Ah—l Y5 an(l)
© N
_- }L x*
1= ) a1
=0
L
- }L *
= ) o72,®
n=0

we can then deduce the important relations

—6—dn (’f) = r%_.___(-l)p .g_ T
d;l_n =0 Péo P! an (P) [d—“fp 6(T)]T=0
d"f (7)

n

1]
N~
o

* P _
S A @ = §(M15,

(2.18)

(2.19)

(2.20)

(2.21)
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E. The Recursion Relations

As mentioned above, the an(p) are the fundamental quantities
in this retarded field theory. Once they are known, all other retarded

quantities may be expressed in terms of them. The an(p) do not seem to

one endeavor of this work. This determination is detailed in section
B of Chapter III.

There are several approaches which one could use to find the
a's. One method consists of deriving a differential equation which the
quantity 4 + # must satisfy and then using the method of Frobenius to
find the solution in the form of a power series in 4. The coefficients

of this series will be a. The differential equation can be shown to

be

4da My _ _ % call By ro 2 o eV
7y "+ v) = au(u + v )(uv + vv)u

(2.22)

- 1 U RTIN - Vi

: + - + + u
au 3 {u v (uv Vv) {
where, as in Chapter I, quantities with a tilde over them are to be
evaluated at v = ¥. Because of the non-linearity of the equation (§
must be expressed in terms of the assumed solution), the solution is

quite difficult.

A second approach is to write the vector RY as

W_:
]
He~8
=
¥

Qn“ (2.23)

n
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with

n-1 (-l)k
W - kzo DT 2K+l [8(1,n)ubsv"] (2.24)

(The details important in arriving at Eq. (2.24) are discussed in

o PR, hY 4 mmen T ma ko ~lae e -~ A AsrmaTcs AN A X ~
uiapoer 1I1). It can also be shown that the ¢ Pansion for o takes
the form
b n
1 _ 1 ) n g
X n! °n
e n=0

where the g, are functions of an(l), an(Z), I Therefore, because

S H
o+ Vu = Er
p
we obtain
) n n+l
' 1 n+l
et =) A2 = 7 (Mhe Y
q=0 ™! n+l k=0 k 7%k Qn+1-k
which results in
n+l
g_ 1 n+1
Ar T T kZO Cx -)gk Qe1-k* (2.25)

Because the g, depend on the a s the resulting equation is

all but intractible.

The approach which seems most straightforward is to begin with

Eq. (2.2). Equations (2.23), (2,24) give

It i3
-
=]
[
O
L1
o
i
o
lo
1
o
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as the necessary condition which the a's have to satisfy. This equa-
tion, after a certain amount of disagreeable algebra results in the

recursion relation

-4
AP J 1 ___ 2(p1)! 12 ) (KD uy
Lot L AT Va2 T(pe2-k) T~ (k+1) ! (p-K) I (p+3) '™, !
p=0 k=0
(2.26)
n-2 D
(-1)*
a (p+4) + 2n —_—
n (Pr4) pZO D)
a (VP =8 (2) n>2
n-1 u n :
Coupling this equation with
1 R2 g
2,-1 = 3 [3,(2) - kgz G2, ] (2.27)
gives an explicit expression of a1 in terms of 3 9s B g5t 3y,
where a = 1.

The recursion relation [Eqs. (2.26) and (2.27)] does not give
the a's in a form which is convenient for integration over a spacetime
surface [such an integration must be performed in order e.g. to evalu-
ate P* in Eq. (1.41)]. Therefore, we want to find a way of represent-
ing a's which will allow us to do such integrations. This represen-
tation is based on what we choose to call form coefficients jcz, if
one calculates a typical a  say ag:

A i oA 9 oA
a = a u - 78,4 v paauu
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he notices that i1t is composed of a sum of terms, each of which is a

H, a", etc, contracted on products of

product of kinematic terms a
pauers of the metric tensor gy and powers of the vector u. What we
will show is that there is a general form for the a_ in which the jcf;
determine exactly what combinations of powers apnear, or to he more
precise, the jCE are the coefficients of a linear combination of in-
variants formed on the tensor quantities<£p)“, u”, g”v which deter-
mine the a . The jCE determine the invariant a, just as the metric
tensor g, completely determines the invariant dr“. In section D of

Chapter III, we obtain the recursion relation for the jcgn Since their

form is rather complicated, we postpone displaying it until Chapter III.

F. Further Considerations

In section E, we solve the following problem: suppose one

has a power series for the arbitrary function f(4) i.e. suppose

:SIPI':,

§n) = T £ 6, # 0 (2.28)

n 0

i~ 8

n=0
What is the series expansion for the inverse series 1/£f(n)? The
beauty of the final expression for the inversion formula, which we
find, is that its form does not depend in an essential way on the
value of n, the order of the term. In section F, we obtain the

bivariate series for 7/p(1), where r is not necessarialiy equal to

¥ but remains arbitrary. This series is important because it allows

. RE(D)

us to find the expression for u" () - v° (1) 3

which is used in
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Eq. (1.30). Referring to Eq. (1.30), it will be seen that the value
of 1 is set equal to t only after differentiation and for this reason
Ef%y is expressed in terms of arbitrary .

After the differentiation in Eq. (1.30) is performed, cer-
tain inverse powers of % appear. To deal with these terms, we chose
to find the series expansiors for the quantities (%32 where £ is an
arbitrary positive integer. These series are found in section G.

The resulting formula is elegantly simple and stands out among similar
quantities whose series expansions are far more complex. Using these
formulae and Eq.- (2.18) T can now be eliminated from the series.
Having gone to some length to develop the machinery necessary
to express all the field quantities directly in terms of series de-
pending on 4, the most direct approach might seem the simple combina-
tion of all these series to calculate the required results. It turns
out, however, to be more elegant to work in terms of doubie powers
series in the variables t and £, and only express 7 in terms of £ at

the end of the calculations.

Now that all the machinery has been developed, the series ex-

Uvu

! T 0
pansion fo retdy’

(which is the essential portion of the different-
ial flux of momentum through the world tube) can be found. The rather
intricate calculations which lead to this series are carried out in
section H. Finally, in section I, all that remains is the calculation
oflé? fe;:tuvkz-(l+nau)dﬁt In order to accomplish this, a general

U

formula is derived for the tensor |u"...u"dQ, where the dots indicate

4
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an arbitrary even number of vectors u" (the tensor is zero for an
odd number of vectors). When this formula is used in conjunction
with the results of H, the general series expension for the momen-

tum flux is obtained.



CHAPTER III

A. The Quantities an(p)

In this chapter, we derive in detail the results discussed in

Chapter II. First, consider the product of two power series
@© [+ <]

A . . .
and C = Z Cn' Their direct product is

= n:OF!—Bn’ Qn'

(3.1)

It is clear that formally at least, we can group the terms together

which have # to the same power. Thus we have

RS R
BC = n T = = B,, C_. . (3.2)
n=0 k=0 k! —k]' n=0 n! K=0 '(n k)' n-
Refining the binomial coefficient as
n!
(k) moT (3.3)
We obtain
I ol
BC = — (,)B, C . (3.4)
n=0 n! X=0 k" "k n-k

31
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This is the usual form for the Cauchy product of two power series.
If, in particular, the two series are identical, we obtain the square

of a series in the form

n

w n
p2 _ ¥ v M\n PR
oY = L T L G by b . 19.90)
=0 ™ k=0 k’ 'k n-k
Equation (3.5) is the special case p = 2 of
r-1
> o r-1
= g P 120" (n- J kg Pl
= § = 1 7§ i20 “p s(n- J k.,k) (3.6)
n! r=] r . i’’p
n=0 k_=0 i=0
r kp
k =0
o

This general expression for the pth power of a power series has not,
to the author's knowledge appeared in the literature.

If we define

r-l r-1
p n- 2k [n- ]k pil
a(p) = I §(n- ) k,,k)
n r=1 k_= ' kI‘ akr i°p
(3.7)
a, = ak(l) az(O) = ao(z) = §(0,8)
It will follow from Eq. (2. ) and Eq. (3.5) that
o /l_n'
P (DP] S . (3.8)
n=0
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Before proceeding, let us prove two properties of the a(p)'s:
T n

1) a(pts) = ) ) a (P a _,(s)
k=0

(i) a (p) = 0 p>n

The following simple proofs should suffice: To begin, sup-

pressing the minus sign, we have

tp= ] 772,
n=0 "’
w
5 = ) %T-an(s)
n=0 °°
P. .S (p+s) S A
Fref” = 1 = Zo = & (p+s)
n=

But considering the Cauchy product of

Z A0 a . kp
aT %@ ad ) Tra(s)

we have the result

[
Xo ;,kao(k) a (@) a ,(s) . (3.9)
n= =

Therefore, equating the two expressions, we have

n

) = 1 ) 2 @) a () (3.10)
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As for (ii), notice that since the first non-zero term in the expan-
sion of %# is proportional to %, 7P has as its first non-zero term

something that goes as AP, Thus
an(p) =0 p>n . (3.11)

Let us now obtain the expression for the nth derivative of

§(¥). Expand {(%) as a power series in %,

0 = [ =[5 401, - (3.12)

P T . oy S
r (1) n.—z.o“ (P)[ 6]~ (3.13)

(=N

~
~

-

i
it~ 8
|~
~~

which, in view of our assumptions about power series convergence
along with property (ii) of the a's gives, after interchange of the

order of summation

go"_ z a_ (p) [—6(r)]~_0 - (3.14)
Therefore, the nth derivative of a function of 7 is given by

n ,
L-l)p

p!

P
[—-6( Dm0 = a_ (@)1 f‘:}; 6] - (3.15)

p‘
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It may be reassuring to know that Eq. (3.15) can be derived in a
manner which does not depend on the validity of interchanging summa-

tions. In fact it was originally discovered by the author using a

4 e e
formula due to Schwatt( ), for the nth implicit derivative. Indeed,
while the method of intcrchanging summations will bc cmployed freely

throughout these derivations, the results do not depend on the inter-

change as one who wants to do sufficient algebra can show.

B. The Recursion Relation

As discussed in Chapter II, the a's play a central role in the
retarded field theory. We want therefore to give a systematic method
for finding them. Let us apply the results of the previous section by

expanding z"(¥) in powers of .

® n n P p
b1k (-1) af
2 = — a —_— 2 3.16
n=o 7' pg pr @ Lp O 619
or
: , ® ,pno. P p
R R R N C g B I BT
n=1 " p=0 P d-P
Not 1let
p=p'+1.
Then we have, suppressing the prime,
© n n-1 P+l D+1
U u - N ¢ (—1) . d H
=2+ ) = a_(p+l) [ +Z(T)]
nop M p=0 (p+1)! “n a-P 1 0
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or
n n-1 _1)p+1

(p)
n! (p+1)! v
1™ pso P

an(p+1)v

Since an(O) = 0 when n # 0. Now from Eq. (1.20),

o -1 1
RM = xM -zt oMol ﬂinz CH> a_{(p+1)v
] 1
n=1 ™ p=0 (p+D!
Then using
x* - ¥ = o,
We have
R¥ = E A ncl (-1 2 (pr1)[6(1 nu® + V(p)u]
= ol To+1) 1 s
n=1 p=0 (p+1)! ™n

For convenience in manipulation we define

n-1 k
Q"= 1 LU gensamut + vEY

- L 1
k=0 (k+1)!
u
Q, =0
Then we may write
© 1
B _ v A
R" = ¢ n!Qn.
n=0

R .
It can be shown that ¢ can be expanded in the form

}Ln
0 nt &n

Il >~ 8

1
x

O =

n

(3.

~~
w

(3.

(3.

(3.

(3.

(3.

18)

[
Y
v

20)

21)

22)

23)

24)
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Therefore because

o
@ + ") = %; (3.25)
We have,
© n n
Bt s L T AT My o ¥ (3.26)
n 2o ni 120 k’Bk “n-k
Let
n=n'+1.
Then suppressing the prime and making use of the fact that
w
Q, =09
we have
1 ® n+] n+l n+l
o ~u__ '
wrves Lo @Y kz Oyl Qn+1 X
= n+l - (3.27)
= ¥V = ¥
= L oar G L Oy )8y Qn+1 -k
n=0 k=0
Thus we obtain the result
n+l
po_ 1 =" n+1.
Ay T o k=0 Cx )g 8k Qn+1 k ) (3.28)

As discussed in Chapter II, we could use this as an equation for
finding the a's. It turns out to be simpler to follow an approach

in which we begin with instead

R“ﬁu =0 . (3.29)
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In terms of Eq. (3.23) this condition is

n
T Myn M _
L ()Q . =0
o 1% Sk
(3.30)
o
Q, - 0
Writing this out, and using Eq. (3.22), we have
n-l k"'l n"k-l P+q
) X e +1 +1)-
k=1 pﬁo qgo G DT & Pa, i (a+D)
(3.31)

[8(1,K)u" + V(P)“][s(l,n_k)uu . "(Q)u] =0 .

When the kronecker deltas have done their work, the result is

n-1 n-1 P*q n
ettt ee, (@ ¢ on
pZO qz0 (P*1)T(a+1)! VeIV kgo (2 (p*Da , (q+1)
2 (3.32)
n=e  yP
*+ 2n Zo %5%%TT a _,(p+l)a (1) v(P)“uu =0 (n>2).
p:
But
no
kZO (V& @a |, (a+1) = a_(p+q+2) . (3.33)
So
n-1 n-1 p+q )
y I 2 ) N ¢ ) T )
po gt (P*1T(@*D): VTV 8y (prar2)
5 (3.34)
n- P
+ 2n z (-1) an_l(P*l)V(p)uu =0
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Now transform the first term,

n-1 n-1 p'+q' . ,
-1
v 'ZO q'=0 (p$+1§!(q'+l)! v L )uan(p'+q'+a) (3.35)
p'= =
by letting
p':P"*‘Q' q':P_pl
then
n-2 p |
_l 1 Tt
v= 1 E (P'*i)!%p+l-p')! vy (p pu)an(p+2) (3.36)

p=0 p'=0

since an(p) = 0 for p>n. Thus the equation determining the a's is

n-2 p
(-1) (qQ)u_(p-q)
p=0 q=0 (q+1) ! (p+1-q)! v v \V an(P+2)
(3.37)
n-2 P
1G5 Pwu. =0 for n>2.
" PZO GrDT 2n-1 (P VT

It is more convenient for later work to transform the first

term in the equation. First consider

© (s)u
Vu(T) = SZO Vs! TS
(3.38)
® (t)u
u _ T 4a Lt
a (v) = tgo ranL A
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u

Since v° is orthagonal to ap,

© n n
k) (n-K)u
0=wWma (= F = § Gk g (3.39)
W n=0 ™ x50 KM
or
n
1 on. Ky, (-k) o
b GIv - ra =0 (3.40)
k=0 H
. M, § m,0u @k
< va + 1 Qv Ha =0
H k=1 H
(3.41)
forn > 1,
let
k =k'+1
giving
wom o 0u, (mek-1)
v = - kgo (o) 4 . (3.42)
Changing indices again gives
Wy M niz Ly g (-s=k) oo oy (3.43)
W k=0 K+l W s

Without further qualification, this equation is valid only
for n > 2. At this point we introduce the following important conven-

tions:
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(1) Whenever the upper summation limit is less than the lower
summation limit, the sum is identically zero.
(ii) The integer arguments of all non-zero quantities are non-
negative, i.e. negative integer arguments imply the quantity is zero.
Convention (i) makes Eq. (3.43) valid for all n. Convention
(ii) will be valuable throughout this chapter.

Now write Y as

L p
= (-1) (q)u_(p-q)
i pgo qgo @D (p+l-qr ¥ " 120 (P*2)
(3.44)
n-2 P
(-1) (@u, (p-q)
' p=2 q=0 (@D Ip*i-qf © ' L2 (P2) .

The first sum is just

. H _
an(Z), since v au =0 .

When we separate the q = 0 and q = p terms from the rest of the summa-

tion, the second term in Eq. (3.44) becomes

n-2 p-1 (_1)p

pézlqzl( (q+1) ! (p+1-q)!

V(q)uv(p—q)u)

(3.45)

1P
+ 2?% VUV(P)u]an(p+2)

Carrying out another transformation similar to those used already, and

uvﬁﬂ

use of the formula for v u yields for the above equation
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n:2 pe2 (o CUP_ 26DPenr
p=2 k=0 (k+2) ! (p-k)! (k+1) I (p-2-k) I (p+1)!
(3.46)
(Ku _(p-2-k)
a a " ]an(p+2) .
One final transformation gives then for Eq. (3.37) the form
n-4
. P 1 2(p+1)! 1o (K) (P-K)uq,
pzolkgo D T 0T - D R TEHT ¢y & ]
n-2 (= l)
2 (pt4) + 2n péo (p+D 1! & 1D (3.47)
v(p)uuu = an(2) n>2
Using the definition of an(Z) we have
n-2 n
a(=ma , + kgz Glaa i - (3.48)

Combining Eq. (3.47 and Eq. (3.48) gives at last, the basic recursion

relation as

o1 ™ 1 2(p+1)!
41 " ‘ﬁ‘p{ [ Z -1P D TE2 0T - @D 0T

_ n-2 _11P
a(t)a(p k)U]an(P+4) + pZO %%T an_l(p+l) .
(3.49)

-2
V(P)L‘u o n\" (n) a
w2 L ek
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Similar considerations, which we shall omit, give the recursion

relations for the advanced quantities in the form

. _l_“§4 [ P { 1 i 2(p+1)! ;.
-1 " 2n L z (k+2) ! (p+2-~k)! (k+1) ! (p-k) ! (p*3)!
p=0 k=0
a(ﬁ)a(p l)"Ja"(p+4) + (3.50)
n-2 n-2

P,
IJ

2n Z (k)ak n-k

1
(p+1)v
pZO )T "n-1 d k=2

C. Algebraic Description of Field Quantities

It will become evident in the following development that all
the quantities which appear in the current classical charged particle
theory can be cast into a form which is in one-one correspondence with
a form which depends only on algebraic quantities for its definition.
This result will allow us to derive explicit expressions for the pro-
pertime rate of change of the four-momentum associated with a charge,
which would otherwise possibly be unobtainable.

To demonstrate this, we begin by writing down the most general

form which the a's could have and still depend on the kinematic terms:

"
>
1
=
{3

an+1(1) =

n j 2
] 1ifa ) {Za ()| f.Cpr (3.51)
j=0 250 r=1 r=1 3
. R- -2
GpUj_p 8-3- Loy - Z P;-9)
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with the following definitions

U =zZu u ... U
2 Ml u2 My
Gpp = BuyviBuovy  Bugug (3.52)
: Pr
a?r) 2 [ - e
dTPr =0

and where the form coefficients have the following properties

Cn = 6“ §
op o 0,p
(3.53)
n P>
.C" = 0 whenever .
Jp j>n

p odd integer.

j-1 9-1  j-g
We also define [ (q+p) = ] q; - 1§0Pi’ where q = p_ = 0 and

j=0
n
r=1

j-1
Ja®r)spn-j- T (qep) qul = 1.

While we have not explicitly indicated it, jCE is a function of 4>
gs +++5 Ay PysPys ++- Pj-ﬁ' Finally the a's which have the indices
q, are contracted on the G's and those which have the indices p; are
contracsed on the U's. The range of summation on the P; and a; is
n-j. TQ; important points require discussion. The condition

jCE = 0 j>n, and the limitations imposed by the kronecker delta in
Eq. (3.51) are necessary. To see this, consider the following di-

mensional argument.
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* has the dimension of time. The dimension of 4 is length.
Thus, keeping Eq. (2.15) in mind, we see that only those combinations
of kinematic terms can appear in the an(l) which, when divided by the
appropriate power of the speed of light, convert {length) into (time).

.

imensions of time, [L] dimensions of iength.

~

Let [T] de he di-

mension of the nth term of the series for ¥ is thus

L1 pn (1P

Wk [L}™*?
a
n

where the last factor is the appropriate power of c. The necessary

condition is
n+p-q=1 and o=p . (3.54)

Now it must be that q > 2p, when n>1; for if q< 2p, then there must
be at least one factor which is v" (if all of the factors were a" or

higher derivatives then q > 2p). When '

is contracted on u, it
gives no contribution. When it is contracted on gy with some other
kinematic term then either the resulting term is expressible as a

term in which g > 2p since for this C? are produced [see Eq. (3.43)]

or else one has either the product
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In the first case the result is zero; in the second, the factor vyvy=l

no longer depends on kinematic terms. Thus in any case

q>2p whenn>1, (3.55)

Equations (3.54) and (3.55) together imply that the maximum that p

. Ao .
e is n - 1. Thus the restriction jbk = 0, j>n, A simple exten-

can b
sion of these arguments results in the further limitations imposed by
the kronecker delta.

We now want to show that a +1(2), +1(3), etc. have the same

form as an+1(1). We will show that an+1(2) can be written as

n-1 %
By @ = 1 z’ 1 | (599} 1"y 0 ).
j: = = r—l
(3.56)
n-1 I
3G () GU, ) s(n-1-j- ! (a*p),q,)

and will determine the expression for the constants jc2'1(2).

To show this, we begin with

nil n+l

A (@) = % (e 1241 2ok

which is just Eq. (3.7) with a minor transformation of indices. 1In

accordance with Eq. (3.51), we have
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k .2 . =% i1-2
1 e (a1 15 (pr)) ok R
ae = L L n{IaMT} o H{Jatrt co6 UL ) 8[k-3- ] (a+p),q, ]
k] j,=0 2,50 r=1 r=1 By Ry 8!
and
n-1-k 2 Y2 @ 272 @
a = 1 ) 0{fa “ton {Ja T ; Cn'l'kGo u, _
P 5,70 2,50 =1 r=1 J2 72 F2 9272
2
J -1
6[n-1-k-j,= °J (q'+p' e
and
i, R i,
n-1 k 1 " 17" k
1 1
t1@ = TG I [ (@} 1@l
k=0 j,=0 £,=0 =1 r=1 h*1h™
j 2 a2
n-1-k 72 @n 272 ey
v, , § I 1 {za bonof{fa T} Gt
1171 3,20 2,20 =1 =1 I2 %2
G, U, _, 8[k-j,- (a+p).q, ] &[n-1-k-j, - @'+p'), q) 1 .
22 i, 22 1 21 2 22
We now do the following three things:
(i) since jlctl = 0 when j1>k we may raise the upper limits of

j1 and j2 to n. Then we may interchange the summations over jl’ j2

with that over k.

(ii) note that G21.622 = G21+22, UQI'UQQ = Ugl+22
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(iii) relable the q; and p; according as

q; i qr+21
Py~ Pti;iy

These manipulations result in

2) = ) E ) Z I [ch.q )}'
2

Jtj,=L,-2
172 17z o) nl ha n-1-k

- {la Z (g+175.C j CQ )

r=1 J1 192 %2

j -1 (3.57)
G u. .. . 8[k-j.- [ (q+p).q, 1-
2% 314357874, 1 Y

by )i,
5(n-1-k‘32'222 Q- 22 Pisdy 4p)
171 1™ :

It will be seen that the summation over k gives a contribution only

when

3174

=Ja+ I py*i - (3.58)

Thus the sum over k and the product of the two kronecker deltas may

be replaced by

(3.59)
2 jo-b AR A PRI R
SMm-1_4 =4 - vl, Ig 1 T A v - o~ 3\
C\R=273173,7 £ 94 L Pj L9 L PioGy 4 )
2 PEIN 172



49

Finally, carry out the sum over %., 2, in such a way that the

1 72

terms are grouped according to the value of 2 +22, in the same way that

1
we grouped the terms in the double series (3.1) according to the powers
of 7. This suggests that we introduce

L= Q,1+22

In the same way, we carry out the sum over jl’ 32 and define

i =3y,
Then we obtain
n-1 j j 2 L (q) -+ (p).
T{a T} n{a T}
j=0 220 j;=0 £,=0 r=1 r=1

n+1
‘ i+ lavlp n-1-3;-Ja-lp
c c

. : . . C, (3.60)
T O ! 373y A4
Jl+1 + z qi + Z piJ
L=1  j-2
GUs_o8(m-1-3-] ;- ) p;.4,)
with
. n+1
- I )
C@ e T b ik
31=0 2,1=0\ It o+ Q * L P;
(3.61)

j*l+larip  n-1-j -fa-Jp,
CZ ji-3, -2
14 17J1 ™
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Then

n-1 3 ¢ () 3-%  (p)
@ = 5 ) ifa Tin{fat
j=0 2=0 r=1 r=1

-1 j-2
J

For purposes of generalization, we make the definitions

r
L %, [1-8(0,1)]

A(r) =

i=0
T

Kr) = ] (j;-%;)[1-8(0,1)]
i=0
A() | .

i = ) q;{1 - 8[a(r-1),A(0)]}
i=Aa(x-1)
K(r)

I(x)p = p;{1 - 8[K(r-1) ,K(x)1}

i=K(zr-1)

Now our previous result can be written

n-1 ]
i @ = )

lz { n+l
340 2420 Y +1+ F(Dgrl(Dp

3l Wi p n-1-35-1(a-F(p -

C . C
Ity =3y Ay

ni-1. , . T
.Co () Gz”j-z §(n-1-j- ) q;- LP;»9,) -

(3.62)

(3.63)

(3.64)

(3.65)
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Next we consider an+1(3)u

n-1 n-

a .(3) = z
n+l k,=0 k

K1 qe1 n-k

(k+1)(k2+l)ak1+1 ak2+l‘

N 10

=0
(3.66)

a .

n-l-kl—k2

We just write the results since there is essentially nothing new in

the calculation

n-2 j 2 (q.) J-2
a .(3) = I11{)a it
n+l jZO zzo 1»=1{z }r=l

(p.).
{Ja Tt
2-1 j-2

n-2 .Y v
i€y “(3) GU, o 8(n-2-3- La; - 1Pp;.9,)

J

I o PR A 0
Cn-2(3) - z Z 1 z 1 [ n+l1 ] (3.67)

Ay . . .
J Jl=0 J2=0 21=0 22=0 J1+1+X(1)q+2(1)P

{n-jl-Z(l)q-Ztl)p~ Jprlarl e 3+l (2 (2Dp
C C

i l@el@p 1t I2 %

n-2-j,-3,-2(0a-}(1p-1(2)a-L(Dp
j'j]'jz 2'21‘22
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We can easily generalize if we define

T(x) (q+p) = J(x)q + J(2)p
o(x) =i+ 1+ ](x)(a*p) 150 (3.68)
o(r=0) = 0 .

Now we may write

n+l-s j 2 (qr)_j-l (p.)

a =1 1 nf{la Tiu{ja T}
j=0 2=0 r=1 r=1
(3.69)
n+l-s gt
iCo  (s) G,y S[n+l-s=j- ] (a+p),q]
with
r-1 r-1 r-1
s I7L3i% 0 (nal T oq)
n+l-s
jC2 (s) = 1 -z .
r=1 Jr—O 2r=0 o(r)
(3.70)

o(r)-1 ... s:l s.1 sil
jrc“r 8- L d;odg) 8(a- ] 2:58.) 8[n+l- ] 0(i),0(s)]

D. Form Coefficient Recursion Relation

Since we are interested in developing the algebraic description
of field quantities, we want to obtain a recursion relation for the
form coefficients. To do this, consider the fundamental recursion re-

lation on the a's, which we shall transform piece by piece. Starting
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with the last term we have

n-
Z (;ig)' “n 1(p+1)v(p)p“u ) pf %ﬁ%%j? (p+1)a(P'1)“uu

This term becomes, upon transformation

n-3 (- l)n +1

(pu
2] F %

a 1(p+2) a
p=0

Therefore

n-3 _1)p+l

(Pv,
peo @+ Yy T

ah_l(p+2)a

n-3-p j % (q,)
% m{fa T} (3.71)

1
GO LA DN
1520 920 r=1

(p+2)! 4

-2 (). o = -1
1 {Ja T}y Ppe2) 6 U, 8[n-3-3- Z (a+p)»q,]

where we have used Eq. (3.69). If we relable p = pj+1_2, then the

definition

Pisy-
n-3 _ (-1) j+l-2+1 Cn 3- pJ+l 1}
)

= ( +2) (3.72)
(Pyyp-q * 2013

pj+1—2
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allows us to write the right hand side of Eq. (3.71) as

n-3 £ (q) j+1-2 _ (p)
) % I {)a n {Ja T

3=0 2=0 r=1 r=1

-;.5101;1_3 Gouj_._1 0 5[“-3-J"-i(q+p),qA]

j+17g [AETS I

Now let

AP = (_I)P { 1 _ 2(p+1)!
k- TR0 - ToD [(p-K T (pr3))

This gives the first term in Eq. (3.49) the simpler form

’Z’ iPa g (p K o (ped)] .
-0 k 0

Now use Eq. (3.69) to write an(s+4) as

n-4-s 2 (0.) j-2 _(p.)
T T
ol e T e T
j=0 £2=0 r=1 r=1
n -4-s it

sCo (s+4) GU, , 8(n-d-j-s- | (a+p).ay)

(3.73)

(3.74)

(3.75)

(3.76)
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So we have for the first term in Eq. (3.49)

n-4 s _ .y
3 e g 0 (g -
s=0 k=0
s s sk (k) (k)
1~ < 3
Z Z z 1115( a a G2 G(S-kl,kz)
s=0 k.=0 k_=0 1
1 Z
n-4-s 2 (q.) -2 _ () _ 4,
LD idle T} nqle T et
j=0 2=0 r=1 r=1 J
j-1

: y
GR‘Uj_z 6[“"4"J"5- L (q+p))q2’]
We introduce the eta function with the definition

n (k)

A = APn(p-k)

(3.77)

(3.78)

(3.79)

With this definition, we may interchange the order of summation on the

k's and s. Relabling the kinematic term, letting the kronecker delta

do its work and making the transformation #+2 = &' and, suppressing

the prime, we have for the right hand side of &q. (3.77).

n-1 j+2 2 (qr) j*2-2 _ (p.)
m{a *} 1 {a
j=0 2=0 r=1 r=1

Il ]
bzuj+2_20 In-4-j3- 2, (q+P)’q2J

(3.80)
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where

n-4 _ 95179 P4-q; -9,

. = , . 3.81
j*2 4 Ap.p I 2-2(q)_17q,+4) -8

So the fundamental equation becomes

n-4 b

(3.82)
n-3 j 2 (q.) j+1-2  (p.)
+n ] m{ja “} n {] T}
j=0 2=0 r=1 r=1

j
n-3 :
J"'IDQ G,Q,UJ*'I-R. 5[“'3'3'2(q+P) 1q£] °

Now make the substitutioms j' = j+2, j' = j+1 in the first and second

terms respectively. Then we have, suppressing the primes

n-2 j (a.) i-2 _ (p,)

T - SFr7y _n-4

a (=17 [ nia " t1ia }sz
j=0 2=0 r=1 r=1

j-1 n-2 j %
GU. , 8[n-2-j- N (q+p),q,] + 2n ) i i (3.83)
J j=0 2=0 r=1

(a.3-2 . (P 4.3 J:l

1la ;1 {ja Dy GUs_y §[n-2-j- | (a*p),q,]
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with
e Gt Ty
12 qp_; 1-272-2(q, _;+q,+4)
(3.84)
Py g n-3-p
-3 (DY c j-2
: S it
it (py_g*2) 1 3-170(py_o+2)

comparing this with the general expression for an(2) from Eq. (3.69),

we have

AL _ P;_,*1
Urtde PVt Tt
9 _1 j-2 2-2(q2_1+ql+4) (pj_2+2 !

J.c‘!z'z(?.) = {n

(3.85)
n-3-p j-1

- J—
j—lcl(pj_i+g) } 8[n-2-j- Z (q+P),q2] .

Since we are not explicitly interested in the jCI;(Z), but
rather the jCg(l), we proceed to solve for them.

In general, from Eq. (3.70)

]2 3;*2(1) (a+p)
™2 = GCooP ), c.1
je jlzo 2120 L (a*p) 3 Y
(3.86)
n-2-j,-7(1) (a+p) R
j-jlcl-il §[n-2-j- (q+p),q2] .

Solving this for jC;—z’ with the by now familiar techniques, we obtain
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from Eq. (3.85) and (3.86)

n-2 _ {_l_qu-1+qz ST
2n 9 _1 j-2 -2(q2_1+q£+4)

P”—i*l i-3- )
(-1) Pj-2 17

. .C -
(Pi_£+2)! J'l R(Pj_2+2) 2n ‘{

+

o

(3.87)

o il atp)  n-2-5,-1(1) (a+p)
G el @5, Oy i-3,C0-1,

j-1
§[n-2-j- [ (a+p),q,)

We can put this equation in a more accessible form with the

following definitions

s-1
8(3;s) = 8- | 35.34)
s-1
A'(838) = 8(2- ] 2;,80) (3.88)
S;l
a=(m;s) = ofm- } a(i),0(s)]

Now the general form for the C's becomes, from Eq. (3.70),

r;l T:l r-1
n+l-s R T2 25221 n+l- } o(i)
jCQ (s} = 1 L . ( . )
r=l j =0 &= c(r)
- (3.89)
o(x)-1 i-l
3 C, 8(j;s) &' (4;8) 8*(n+l;s) &{n+l-s-j- } (a+p),q,]

r r
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Using this equation on the separate terms of Eq. (3.89) gives after

the transformation n = n'+2,

q*a, 4 5, 5
1 qg +q2 2 "2-1 J‘Z‘ L Jl
.cz {5 7 I )
J (n -1 r=1 j_=0
r:l
r:l (n+2' ) 0(1)\ P

2-2- ) &, ) L CUMTE A(G-25q,4q, L+4)

) 1l o (1) JJr Lr L2 "2-1

2_=0

r

A(Q'2§q2+q2_l+4) A*(H*Z;ql*q2_1*4)

p. +1 p. -2 . r-l. r;l r-1
(_1) J-% 3-% J'1§ Z Ji Q; 1A zi M+l z U(l)
* BT I ) L
(py_g+2)t r=1 3, =0 2 =0 o(xr)
(3.90)
o(r)-1 ,.. .. ‘o N . )
G AUy ) 8 (5py g32) 8r(eLipy o02)
izt 2 n+2 1+ (1) (a+p)
. Z z 2(n+2) |. j Cz
ji=1 2,=0 311+l (1) (a*p)’ 71 1
n-3;- (M ap) o
j_Jng-gl * 85 85,5 So,¢i0MM"3= 4 (@P).ay)

which is the recursion relation for the form coefficients, i.e. the

. C . T T,
relation existing between various ij = }Cr$l),
3 . A
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Similarly the recursion relation for the advanced quantities

=

-1
. . r=1
TR SRS T R e R
q_1 it . 2
r=1

n _f
397 = tzmeay

rzl .. -
M*2-"L o(i), C*o(r)-lA,
\ c(r) / J' 2 \

1
O A we 1z -

*0(r)-1

2
r T

n+1-F5o (1)
( o(r) ) j ¢

A(j-l;pj_2+2)A'(1;pj_£+2)'
j-1

3
1
A*(n+lipy _p+2) - Z Zo ey (Ge1e
31—1 21- 1

n+2 )e
Z(1) (q+p)

. . (3.91)

«J1*1+2(1) (q+p) M-J1-2(1)(a+p)

i Gy "5-3.C0-1 *65%0,3% o}
1 M1 1™ 2 O

sl
§[n-3-7% (a+p)»q,]

P s PP
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E. The Inversion Formula

It will be necessary in what follows to find the power series
expansion coefficients for the reciprocal of a function when the coef-

ficients are known for the function itself. Therefore, suppose

© n
£(x) = [ b (3.92)
n=0 °°
bo #0
and let
o Tn
1/£(x) = |} W - (3.93)
n=0
The necessary condition follows from Eq. (3.4)
n
Y GOb W, =8 (3.94)
K0 k’"kn-k  "o,n
or
n
bW, + ) )bknk on (3.95)
k=1
Thus
T N ™ )b (3.96)
n o o,n o .4 k k n k :
kl—l 1 1
Use this recursively
-1 -1 zkl n-kj
W =b " 8§ b- ¢y, W
n-b1 0 o,n—kL 05 k k2 k.-k
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Then
n
-1 -1 -1,
Wy = b Go,n - b kL (k )b 1{ o “o,n-k;
1
X (3.97)
-1 -k
D G L
k2= l\2 2 an ‘\1 A\2
n
1 -2
wn T o Go,n bo ) (k )bk o,n-k
k1 1
n—k
-2 -k1
CEndZ] T .
k -1 k =1 k k k k k1 k2
This gives
n .
wo=bls _+bt T pdvd o
n o o,n o .
j=1 r=1
(3.98)
r-l r-1
n- r-1
Z ™ zk1)b stn- ] k;uky)
k_=1 r
T
It is more convenient to alter the form a little by defining
by
Ck = -5 k>0 (3.99)
C =0
)
Then we have
I‘il r-1
) .0 jon-) k. j-1
wo=bls _+b Y om ] i Zkl)c s(n- § k, k). (3.100)
1i O O,n O -
j=1 r=1 kr “r “r
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F. The Series for t/p(t)

In this section and the next, we develop the remaining formalism
necessary to obtain the general expression for the electromagnetic

four-momentum. Let us begin with Eq. (1.20)

RM (1) = x* - z2%(0)
u E K gk M
=x - [ = 27 ()]

k=0 k! d k o

o Kk
xt -l T T &-u

k!

k=1

The 1 under concern here is any v < 0. Using Eq. (2.3) this is

k

T (k-Du
TV .
1

R* (1) = m -
k

e~ 8

Since

p(1) = - vu(r)R“(r)

multiplying the two series together gives

o k
k
p(1) = -1 ) %T v )uuu
k=1

(E)V(k)u Vin-l-k)

(ﬂ)v(k)“{vﬁn'l‘k) - s(k,mu} . (3.100)



64
(n-1-k)

Note that the expression Vu in Eq. (3.101) would be undefined

for n,k = 1 were it not for convention (ii) in Section B of this

chapter. I.e., this convention implies that vﬁ_l) = 0. To proceed,

from Eq. (3.101) we have

(Jugy (n-1-K) s ,myu }.

1Loa
n %’ " u

I}
#Hes18

Make the transformation n = n'+l, then suppressing the prime

© n n+l
o(0) _ 5 UYL mel, (Kug (n-k)
= = nZO ar Lo wt (Y v, A8 (k,n+l)u b (3.102)
We define
n+1
w10 nel (K (nek)
S ——— ' - k,n+l .10
“n ¥ w1 kZO G Yy 26 (k,nt )uu} (3.103)
so that
@._ 5
Bl ] Len . (3.104)
; n=0
We see that
" - _ . = g
cé = -(1 + nau), where a, | au . (3.105)
With Eq. (3.99) in mind, we consider
) 1 “El 1 mely, (w1, (oK) |
¢! = - —= (L )v {v - 18 (k,n+1)u
c;; 1+au/L X=0 n+l “ k u u

(3.106)
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Using Eq. (3.43), it is not difficult to show that,

n+l
G LA AR TR
k=0 H
E L nel ()u_ (n-2-K)
n+ n-1 u_(n-2-
+ kZO {Gop) - G e e (3.107)
Similarly
n+1 n
n+l, (k)u - n+l, (k)u . ®Kw _ (k-Dup
Z ( X v uu = kgo (k+1)a u“, since v =a .
(3.108)
If we define
n-2 _ 1 n+l n-1
T T LG - @G n 2
(3.109)
%20 ne
Eq. (3.106) then takes the form
1 “iz n-2_(k)u. (n-2-k)
c! = {1 o %Y e
n 1+aun k=0 k !
(3.110)
T 1 n+l, (K
- n kzo miT Gep)duy 8Gm) - §(o,m)} .

With our experience in dealing with the a's, we seek to write

the cﬁ in the form

Q

H
Ine-~18
3],

‘(p) . (3.111)
n
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Expanding (1 + h.au)'l, we find

«© n
(1+-aau)'1 =7 L bn
n=0 n:
(3.112)
Bn = (-1)"n'(a )"
u
Developing this series in cﬁ gives, after a little algebra
2@ = (-D™Hn; @) (0,p) - (1)1
n-1 1 ptl, (K)u
(a,) Lo P (1)@ u é(k,p)} (3.113)
n_, . P5 p2 (k) (p-2-K)
+ (DM@ )" ) TP 2 Va'P H
=
The first term we can write as
n (r.,) n
1 Ja T {ED™nt sc0,p,) 80,mIU
r=1 p
r (3.114)
n 1 p+l n:l
P EDTD! i 8o, I p)se P U} .

The second term is

(@) (@,) n _ (p.) n
1 2 v T 3D P-2 T _
a nja [(-1) n!qu §(0,)p,)8(p z-ql,qz)}czun. (3.114")

a
2 r=1

)
q

£ o~

1
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Now we can write

2 j (q)J- (p.)
Z n {Ta T} n{Ja T}.0!n,p)G,U.
=0 r=1 r=1 Je 23

n
(3.115)

IIM+

er(p) = -1

Where, in the above, extra indices were introduced and then removed

with 6-factors in order to achieve the above famiiiar form.

n
;Dpm.p) = 8(3,m)8(0,0) (-1 nt 8(0,p)8(0, [p;)
p+l n-1 \
- (n-1)! ETT ()80 I p)ép .p)] (3.116)
n_, p-2 th
+ 8(3,m2)8(2,2) (-1)"n! "6 (0, [p;)- 6(p-2-q),a)) -

1

In order to meet the second requirement in Eq. (3.99), which
is necessary in order for the inversion formula to be valid we now de-

fine

e (p) = e (p) p#0

(3.117)

n
o

e, (=0)

This calls for the definition

1 n
D, (3P = 8(3,0)6(0,2) (-1)*7 " (m-1) 1{6(0,p) 5 (0, p;)

n-1 ‘
ey (P*,l)s(o Ip)8(p P} + 8(3,m+2)8(2) (-1)"

. p-2.. 1 (3.118)
ni qu G(Q,ZPi)od(p-Z-ql,qz).
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Note that the definition Eq. (3.118) implies

jDz(n,p) Dé(n,p) p>0

(3.119)

1]
o

Thus, the coefficients which are to be used in the inversion formula

Eq. (3.100) are

n
%T e (p) (3.120)

0
=]

]
e~ 8

n=0

n+2 J 2 (q) i-% _ (p))
) Tt

j=0 2=0 r=1 r=1

L]
=]
~
8
——
8

e, (@)
(3.121)

and the form of Eq. (3.115) is preserved.

Now consider the essential part of the inversion formula

-1 r-1
j n-Zk j-1
1] M Mye s Yk, ,K,)
e _ 1 J
r=1 kr-O T

Look at e.g. the case for j = 2,

n n l
Zo (;) pCn-p Zo (P) Z e () Z z, e, (n-p) . (3.122)
j= p= n=0

Taking the Cauchy product gives

“() ?"—_-{

LG L aT G Je e,  (n-p)} . (3.123)
p= m=

N eg

0
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Let us fix our attention just on

m
go(ﬂ)eg(p)em_g(n-p) -

)
mo 242 s @ ‘17%1 ()
V fm\ T %1 H]‘IV ~ T 1 ™ [Ta Tr 1 12} £n N £ Aaman
L YgJ) L L L« F LI WA Jj “S (%X, p) (D0.144)
2=0 J1=0 sl=0 r=1 r=1 171
m2-2 72 %2 (q)) J27%2 _ (p)
1 m{la *} 1 {ja *}, D (m-2,n-p)-G_ Us 45 os.-s
j,=0 5,=0 r=1 =1 2°2 17°2 717927°17%2
Since

jDs(R,p) =0 j>e+ 2 (3.125)

the jDs behave formally just like the jCZ. The only difference in
behavior is exhibited in Eq. (3.125). Thus we may carry out the same

manipulations with the jDS that we did with the st. For example, if

we write

co

n

n
C.C 3.126
DZo(P) oCnep (3.126)

ﬁ

0 m! e£2)(n)

m=

then in the same way that we arrived at the corresponding result for

.Cn(2), we can show
Jjp

m+2+2 3 2 (a.) -2 (p.).
P =T § 1l Trrfa T}
j=0  2=0 r=1 r=1

(3.127)

(2)
jDz (m,n)GEUj_2
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where

¢

j m n
2Pam =] 1] [ (@0 p)

J j'=0 s=0 2=0 p=0
(3.128)
D (m-2,n-p)
i-i'"q-q' r
Generalizing, we have
rz1 r-1
© m vV n-_17kj . v-1
I ZeMm=n1 [ 7™ g so- [k k)
m=0 ~° =1 kr= T T
(3.129)
with
me2v j 2 (@) i-2 _ (p.)
M =1 I n{le TVi{la "}
j=0 2=0 r=1 r=1
(3.130)
(v)
jD2 (m,n)GQUj_2
and
r-1 r-1 r-1 r-1
V J-2j.q-2q, m=-Z & n- I p,
jDéV)(m,n) = I Z 1 z 1 z 1 1,
r=1 ]r=0 qr=0 2r=0 pr=0
r=1 r=1 . .
m-"I %3, M-I pj . vl _vel . (3.131)
C o DO, 7y By Gpepe(-2y 5 )8(e-27a;.q,)
T r r ‘r i’y

G(m-vilz;,lo)é(n—vilp:,p")
; iV 1TV
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Therefore from Eqs. (3.100), (3.129), (3.130), we have

-1 @ /Lm n W)
¥ = Teax {Go,n + ] o le )} (3.132)
u m=0 =]
where
T - '['n
= ——y 1
p (1) néo T (3.133)

Since, as follows from Eqs. (3.125) and (3.131),

jDév)(m,n) = 0 §>0 + 2v (3.134)

we may raise the upper limit on the j-summation to m+2n and then in-

terchange summations. This gives

© m
1 V)
W= T Zﬁ?“mm (3.135)
u m=0
where
m+2n j 2 (q.) i-& _ (pJ).
Gm) = § [y ©nffa T}m{fa T}
j=0 2=0 r=1 r=1
(3.136)
n
T (v)
) qu (m,n)GZUj_Z] + ao,mso,n

1
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Now define
L S E ﬁf. T
1+1a ni n
u n=0
(3.137)
_ n+l n
- -1 n!(au) .
If we let
n _ n+l . . n
sz z (-1) n!é(o,z)é(J,n)é(o,Zpi) (3.138)
then
n o3 2 (a) -+ _ (p)
T.= 1 T{la "}n{la T}
j=0 =0 r=1 r=1
(3.139)
n
3T GaUj-4
e )Lm T m
Wo= I o7 1 G) G@mkn) . (3.140)
m=0 k=0
Carrying out the manipulations we finally have
c N ? A0
oy ) o7 L grs(mn) (3.141)
=0 T om=
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with
m+2n L () j-¢ _ (p,)
S = 3 ) w{le TPE{la T
j=0 2=0 r=1 =1
S (m n)G U,
J 2‘\ > ra 2 J-ﬂl
and
2 m k (D V
Sl(m,n) = f. Jquv{ z n-
j'=0 2'=0 k=0 v=1l r=1
TR &3 S £ e rsl _r:=l -
j=J z i L-2'-"L li m k‘ z bi n-"1 Pi n m-k-TF
1= 2= 4,5 P.=
(“‘rilpi) D 6_,p)6G-3"-"sY. 5 )60e-0"-VE e, L0 )

vzl vzl
§(m-k-"274.,8 )8(n-"L7p,,p ) + so,nsj’j,sl’2 am,k}

G. The Series For ( %)2

Let us begin with Eq. (2.15)

(3.142)

Ai).

(3.143)

(3.144)



Set

io_ N E gi n+1(1)
n- n! n+1
n=0
(1)

= n+l n>o0
n n+l

=0
o

which we can write explicitly as

Let us define

b

Note that bn(p) = 0 fo

1cl)
[1-8(0,n)]

P n- 3 k

r=1 k_=0 r
T

r p>n. Consider e.g. the case for p =

then this expression becomes

3 ¢

b (3 = (-7 ]

k1=

n n-kl

K
() B, B
0 kzzo SR k

Look first at this portion of the expression:

(-1)

3

n-k1
Y‘l

0

kl—k

2

NOENSILES N kz kl)s 6(n-PElk; k)

ni (n-k )i A q+l  Bkogel

L
k -0 k =0 1

(k)1 KT (- k)T K

a
n+1-k1—k2
n+1 -kl—k2

1

+1

K.+1

2

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)
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A little algebra and the transformation

k+1 = k'
yields
n+3 n+3-k
3 nl 1 n+3, n+3-k;

using Eq. (3.7) this becomes

3 n!
(-1) THIETT an+3(3)

Now look at the terms which result from considering the product,

[1-8(1,k )1 [1-8(1,k,) 1[1-6(1,n+3-k)-k,)] , (3.152)

which appears as a consequence of Eq. (3.147). Proceeding as before,

we find that the three terms linear in the Kronecker deltas give

-1)2 BT fne2@

while the quadraic terms result in

3 n!
(-1) m+1) ! 2n+1

Therefore,

3 .
_ 3 ni BTy,
bn(s) = JZO (J) (n+j3)! (-1) an+j(j)
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Generalizing, gives

_ P nl Ty . s
b (p) = jgo G) T (1) 7ag,; GIntp-)

(3.153)

Where we have appended the.n-function because it will allow us to

raise the upper summation limit on j without changing the value of
b (p).

We can now find the coefficients hn in the series

e

1]
=
Ines-18
(o
=3
3 |
S

n * (3.154)

Observing that Eq. (3.145) implies

hy = -1 (3.155)
we apply Eq. (3.100) and (3.148). Thus
n
hy= 1 =D (p) . (3.156)
p=0
Define
n '-—-—n! j 2 .
S5 T 17 GInte-3) (3.157)
Then

h = - f E ®)sh
n ~ 7%

(3.158)
p:O j:O
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Raise the upper summation limit on j to n. Then we can interchange

the order of summation but due to the n function, there will be no

contribution to the sum over p until p > j i.e.

the transformation

results in

It is known that(s)

Thus we obtain

(3.6)

n n
o= 11 O] (3.159)
T og=0p=j I
P =p'+]
B I pejgn
Ry = - DL Eihsy . (3.160)
j=0p=0 7 )
3 P*] n+j+1
Zo G5 = i) (3.161)
? n+l ni j+l
hy = jéO G TepyT (17 e Gn(e-3) . (3.162)

Now turning our attention to (%02, 2>1, we have, using Eq.

BF . ] L W
7 st on
(3.163)
r=1
@, bV Tl S Jo n-25lk
n . A ( k ) 2 (' ) k (Pr (n' i? y/)
r=1 kr=0 T pr=0 T
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As a consequence of the n-function in Eq. (3.153),

bk(p) =0 p°k (See Eq. 3.148) (3.164)

we may raise the upper limits on the P. summations and thus inter-

change the summations
2 n  n-"Ik. r-1
() _ 3% T i n-"I7k3 )
hpoo= GDT LT O by (p)
r=1 p =0 k_= T T
T
(3.165)

= -n* Z_ SRR -N ) pi)* (3.166)

Let us consider the sum

01
=]
[

i

there is more than one set of numbers Pys Poys e s pz, such that Zpi

equals a given number, say p. Let N(2,p) be the number of distinct

sets of % numbers whose sum is p. Then Eq. (3.166) can be rewritten

*This results follows from the definition of bn(p) which includes

the second of Eq. (3.146) as well as Eq. (3.148). Compare Egs.

(3.7) and (3.10) with the above.
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as
bt - ZN(zpw ® (3.167)
P._
To find N(2,p), we recognize that N(&,p) is the number of ways that

p balls can be placed in % boxes and thus

N(p) = B - (el (pracl) (3.168)

So Eq. (3.167) becomes

n
h(g) ( 1) Z (P+l)(p+2) (P"',Q. 1) (p)s . (3.169)

p=0 j=0 (1)

Interchénging summations as we did above we have

n Ti

L ¢ v (p+l)(p+2) - (p+2-1) Py

-n-) ] - x)s: , (3.170)
520 p=j (2-1)! 3775

which is

25 T (prie1) (pr3+2) - (pri*a-1) pHygD

0" ] st . (3.171)
j=0 p=0 (4-1)!

Some algebra puts this into the form

- +3+8-1
3+ 1)[ L (P i+

&) %
hn (-1) 0 i+ 1

J

o~

)]S? , (3.172)
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and using Eq. (3.161) one obtains

n . 3
hr(lz) - (_1)2. z (JHL—I) (n+£) _n! (-I)Jan+j(j).

j=0 3 i (m+g)!

(3.173)
n(n-j)
The corresponding relations for the advanced quantities are
AT, )
@ = [ STh (3.174)
n=0 =’

(2) ROy re-ly meRy L \
R = (1T ) T (g, (9) (3.174")

j=0

with a;(j) given by Eq. (3.50).
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H. The Series for Ouv(r)uv

In the first paragraph of Section F of this chapter, we ob-

tained the equation

RM(1) = a® - ] L vTHE (3.175)

Another result which we have previously derived is

8

315

8

I™=

1

1 .1
T

50 S(m,n) . (3.176)

=

o~
il O~

n=0 0

This is essentially just Eq. (3.141). To shorten our notation, let

us define

n
M) = uh(n) V) = %% : (3.177)

Using Eq. (3.175) and Eq. (3.176) we can obtain the series for the

electro-magnetic field tensor V. To begin with, we have

U n E Tn E nm u
r (1) == — ~— S(m,n)u
T oo ' poo ™
(3.178)
1 ? Tk (k-1)u E = E A"
-= ) v — — S(m’n)
T x=1 k! n=0 n! m=0 m!
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which we can condense through the definition

to the compact expression

Frot = {%e' ae:{("wff)rw(f))ﬂuf : (3.179)

Let us momentarily work on the second term of Eq. (3.178).

Make the transformation

k' = k-1 .

Then multiplying the two series in t together, the second term of Eq.

(3.178) becomes

© qn ® n (K)u
'ZLZ’L—Z()V S(m,n-k) . (3.180)
n=0 n! =0 m! k=0 k+1
Using
W) = EOITT' y@u
n=
\
we have, after some rewriting
© n o n
! %A /L
Vo' =2 =1 o z G)S(m,n-k) -
n=0 " m=0 k=0 (3.181)
K ® n o« .m I (k)u (L)v
ARSI S S ) Z @ 98 mn-k-p) ¥
n=0 7" m=0 " k=0 2=0
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Carrying out the multiplication the other way gives

u v n ? Tn E nm E n
r(t)vi(t) == ) = — G, )S(m,k) -
T .20 n! =0 m! K0 k
b (n-k)v E " E A" E E &
u'v - — — .
n=0 M oo ™! k2o g=p KX
(R, (n-k)v
S(m,k-2) X--E§T--
Now make the transformations
i' = n-k, k' =n-j .

The result is

(Vi) = -

|
 ~
3]
it~

=)=
it~

KOV T LT L] T e

] | -
n=0 ™ p=0 ™ j=0 g=0 ™I %
(Ru (
e jv
S(m,n-j-2) i v
Since
n n
(n-j) = (j)

we have therefore,

(3.182)
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= 0o m
v =2 ] L Z (J)S(m ,n-j) -
n=0 m=0 J-O (3.183)

" A MEOL

j -
T %0 RZ G Bl J) S(m,n-j-2) — v

uo(3)v

uv

Il 0~ 8

It 0~ 8
l#

L
|
o™

8

n 0

Then

8

H
ol

Alex

B~ §

n -
.Z (})-smn-jyv P ]

:J,-—i
fl 0~
5,«-\*

n=0 : m=0

(3.184)

3 () [, (2)v]
n-j yvooov
' JZO 220(3)( )S(m,n-3-8)* =y :

1~ 8

©
T
e

Sl#

n=0

With Eq. (3.179) in mind, we now differentiate Eq. (3.184)

giving

- m=0 7 3=0 (3.185)

S L~ () [u (2)V]
T R . v v
) Z1 (n-1)! § —mx 5 ()( )S(m,n—a-z)- BT
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We can work on the second term above, writing it as

8

cIos

}L [+ <]
72 n§1 {n-1

-
il ©~

n .
y cg’)scm,n-j)v“”“u” ,

" m=0 j=0

which transforms into

n
I n
T 1

n=0 m

n -
& L (Hsm,n-j)v) L]

Il ©~1 8

L
2

I e~138

‘.:!

0

This gives

£ ooy - =2 .

it~ 8

m n .
%T ~ZO(?)[H-1]'S(m,n-j)V(J)[“uV]

A

0
(3.186)

E & E " “51 “*% L S R S N :
gy it CH T )smme-5-0-
=0 m=0 J=O 2=0

V(j)[uv(l)v]
L+1

Using Eq. (3.176), we have

1 d g.[u, V] LY ot n
—{V (t)r (T)}=_ —_ g ¥ ()()()
p(t) dt 3 z : mzo m! 2o zzo JZO k

. * n m
(k-1)$(2,k-7)S(m-2,n-kyv ) Tyvl _ 1 7 A2 Y T (318

k+1 k+1l-j m, k+1, k+l-j ‘ L) [, (s)v]
J_EO L @O s 59500
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It is convenient for the manipulations below to define

n m
F(m,n;j) = kzo ZO(;)(?)(?)(k-l)scz,k-j)-S(m-,z,n-k)n(k-j) (3.188)
: =0 ¢=

v
F(m,n;js) = )
L=

(3.189)
S(n-2,0-k) (p)n (k#1-3)n (k#1-5-5).

Now we can write Eq. (3.179) using Eq. (Eq. 3.187) and these defini-

tions as
©® n ® mn .
2n A .
W) = = 1 %T' ) ﬁﬁ'_z F(m,n;J)v(J)[“uV]
om0 w0 T 50 (3.190)
© qn @ n+l n+l-j
2y Ly _’L'- § T Flmn;j,s)ev) I, vI*
T L onl & ml &
n=0 m=0 j=0 s=0

Since our aim in this section is to calculate @“vuv, we will
not express FHY completely in terms of £ here but proceed directly to-
ward the expression for @““uv. Since 0"V is given by Eq. (1.32) we

first compute

Hv 4&2 > A e, m o0
T e S Z nf Zo aTkZO zZoﬁ
n-4
Z I Flk,2;5)Fm-k,n-2,s)v 3 v, (8)y
j=0 s=0 [ 0]

*Note that this is not Fiet because as yet we have not set 1=%.
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minifl il T e
- — — _. ( )-

™ nz0 ™ m=0 ™ k=0 220 j=0 s=0 p=0 K *

_ (3.191)

F(k,Z;j)F(m—k,n—ﬂ;S,P)V(J)[uuv]v(?iv(P)o]

g 2 e mm n 2+l +l-jn+l-2 n+l-2-q
*Zloar Loar boLoLo Lo Lo Lo

n=0 m=0 k=0 2= 0 j= 0 s=0 q=0" p=0
(E)(E)F(k,z;j,s)F(m-k,n-E;q,p)V(j)[uV(s)v]'V(q) vv(p)o]
with
s, VI (BIv]

fu o] guAgvc

which follows straightforwardily from Eq. (3.190). Now we need the

following identities, which one verifies by direct computation

DBPLE) W - vV v 9% vOINE) 1 (5.102)

OBILE g0 oy vy (3.193)

V(j)[uuv]V(S)[vv(p) - 1ty (J)v[v(s)ouov(p)v-v(p)oucv(s)v]

a1"
(3.194)

SO BMLE @ L (e, 6) ey, L ey ®) 6Dy,
[U V] o] v g v

(3.195)
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VDOV (@) 0 (B @ 6,0,

o]
(3.196)
NORNOLENOINE) IO RN O IR O ORMO LAY
v g v v o
(i)[u (s)v]l (a) (n) .. (o (@) (s)v (D) (i)o (p)
VTSRS Tyt Ly e = S{vioovt vt Ty oyt iyl
[u v] c v o
(3.197)

MOPNCIN RS

Using these identities we find that

2 ® N ®© m M n 2 n-%
A OO T T ) :
T n=0 7" m=0 k 0 2=0 j=0 s=0

F(k,z;j)F(m—k,n-l;s)[&uu{v(j)vuvv(s)o vy, (S) b« 8 o {v (G)v,

(s)_, (3)o _(s)v - 81 ? S M g ? £ n+l-% n+l-s-2
Yo 7Y sV Uy ] 4 L pl z m! &
T n=0 =0 k=0 &= 0 j i=0 s=0 p=0

GO () Fk, 2330 F(m-k,n-255,p) [y V(v (3% y )y (Do, (9))

(3.198)
1 . . 4 0 n <« m m
T N OO INNCI LY O N I tigigl.
n R+1 2+1-j n+l-2 n+l-2-q
PoIodT 1 QGIFR ekt p (kD

2=0 j=0 s=0 q=0 p=0

V(s)vv(q)_v(s)uv(j)uvgq)}V(p) . &1V( s)u, (Fv, (p) y3Ir, (sdv,

Y

(p) (a)o,

el

1 uU{V(j)Uvéq)v(S)vvgp)_V(j)oVSP)V(s)vVSq)}] ,

}v
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We now want to eliminate t from Eq. (3.198). To do this, we
use Eq. (3.8) and the following relations which follow from Egs.

(3.163) and (3.173)

1

2 1 v on
-t z L pl (6) (3.199)
with
3+5 N+8 ! _1yJ . .
Z C3Gee) T D 2 GIn(m-3)
o 1 (3.200)
ALy oA,
;E‘-} ”.3 n=0 n! n
with
(i} th ]+3 n+#,  nl
h-n = JZ ( )(J+4) (]’H‘J)' ( 1) a (J)n(n'J)
and
® M
1 1 ) 2)
—= = = = h 3.201
‘[2 /LZ nzo n! n ( )
with
(2) _ 3+1 n+2, n! J . .
hy Z C36G42) Tyt D ag,; In(-3)
. o
When the lengthy but standard algebra is done, FretFretucu +
*uquthretaB can be expressed as the sum of three terms, the first

of which 1is



ky ky-ky kyo kg kg kgoke mokg n Ky
D T Y N S N N e [k
50 kz=0 k=0 k=0 4,20 4,20 k=0 "1 "2

2

)Lm%l
Ly
2t a0 ™ k,=0 k

Il ~1 8

0

k. +k (m-k,)!
3°6 k6+5 m-ky+6 1 .
CD " OO0 Tyt FlkyksseFlkykykykgse,)

3.202
{(k Infm-k_-%k 1 fdn uhr(él)\)n "(62)0" (61)\) (62) 11 ( )
R AR D S b “v “g 4 >

R m k1 kl-k2 k2 k3 k5 k3+1-k5 k3+l-A2-k5 m--k1
s Z ml Zo kz—o k Zo kz—o kz—O on Zo Z—-o kz- .
=0 7 k=0 ky=0 ko= 470 Kg=0 8,20 4,= 435" 6=0
k_+k
-1 376 k1 k2 k3 k6+3 m- k1+4 (m-k )'
K31 (k )(k )(k G )( kg )( kg +4 ) (m-E'IE‘TT akl‘kz(ks)'

) N up (81)v,
am_k1+k6(kG)F(k4,k5,Al)F(k2 kyskg-ke38,,8 )n(m-k -k ) [u {v
v(éz)v(63)°u -vcél)vv(bs)ou ] (3.203)

\Y) g \Y) [o}

The third term is

k.-k k2 k3 m-k1 ks+1 k5+1-41 k3+1—kS

1 -] /Lm m kl 1 2

5 Iar Zo Lo ) - ) o ! 0oty L I,
m=0 "7 y=0 k=0 k=0 k70 k=0 kg=04)70 45%0 457

kg+i-k-44 (-l)k tke ky Ky kg ketl mek #2 (m-kp)!

e e R I T I S TR T Y )T T
8,50 KTk, k) ke ke U k2 Tk R )
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am_kl(k6)ak1_k2(k3)F(k4,k5,él,AZ)F(kz—k4,k3-k5,63,A4)n(m-kl-k6)-
[iuu{V(A1)°v§63)v(42)vv564)-v(él)°v§64)v(62)vvsés)}+ V(64)°uc-

yBDH, B2)v, (83)_ (62)n, (81)v, (83)y | (83)0, 1, (82)n, (61)V, (44)
L - -\) . - -_\) _' v - v v v

g \Y

- v(él)“v(éz)“v£64)}]. (3.204)

Since we want to integrate

v 0 uo o8
+
ret rety %8 ret retaf

over the surface of the world-tube, we want to express it entirely
in terms of products of u, and AN To do this, we use the defini-

tions (3.188) and (3.189) to express F(m,n;p) and F(m,n;p,q) in the

form
m2n j 2 (q) i-%_ (p)
F(m,n;p) = ) n{fa “}n}ja T}
j=0 2=0 r=1 r=1
(3.205)
sz(m,n;p)GQUj_z
with

jr DM onom ok
Fommnip) = [ ] ) 1 GI(I()K-1). S, (q,k-p)-
J 3;=0 2,20 k=0 q=0 © 4 9 11
(3.206)

. S -q,n-k)n (k-
3=, z_zltm q,n-k)n (k-p)
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FF, (monip,q)-

(3.207)

(again preserving the now familiar form)

j + +
jFammip.a) = ) 2 Z Z (k)( )(k h P) SM(/‘S k+1-p-q)-
5,70 2,20 k=0 420

(3.208)
1
j-3,50-0, @-8:0K) oy nlkel-pin(kel-p-q),

with j82 defined in Eq. (3.143). Now using Eq. (3.69), Eq. (3.207),

and Eq. (3.208) we find after considerable calculation that Eq. (3.202)

can be written

© m m m 3m J & (@) j-& _ (p.)
1 n ] r
o Loar 1 P I nfle "in{la’}
m=0 =O 52-0 j=0 2=0 r=1 r=1
(3.209)
21 i (81)v - (42)0 (¥1)v_(42)
3'2(m 181,8,)6,U - LRt {v u v u_-v A .,
with
. jo o3z & & omo kg kitky Ky k3
49 = L 'z—o z—0 z-0 K Zo kz—o K20 K20 Ko=0
1170 3570 2,30 2,20 k;=0 k,=0 k= 4=0 k=0
m-kj k Ks*ke k +5 m-k_+6 (k) m-k
] (km)(kl)L(ﬁ ) C v6 VTTAETT 5,0 g
k=0 1 2 3¢ 6 ket it
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il

g )Inlky*+2kg-JoIn(m-k, -k (ky-k +2k =2k +j +3,-3In (kg8 In(kg-kg-4,)

(3.210)
Similarly, Eq. (3.203) becomes
© m3m J m m m 2 (q.) i-2 _ (p)
1 R N N by Ry T3
FIET I L 1 I n{latin{a T
m=0 j=0 £=0 Al=0 42=0 43=0 r=1 r=1
(3.211)

.Eﬁ(m,él,éz,és)[u“{v(bl)vvgéz)v(63)0u0—v(51y$553)v(AZ)UuO}]

with

i =il iz 8
bty = L1 )
5,70 3,50 3,50 2,50 2,70 2.0k,

ne--18

Ky kiky Ky
!

k
0k Z k kZ
kz— 3--0 4-0 5-0 k

m-k k3z+k
D cgm)ctl)(:z)(:S)(k§+3)-
3 1 2 "4 5 6

o

=0

hkl-kZ-k m-k

m-kq+4, _ (m-kp)! 3
Cea ) -k 7k) T j,"2, (kz)

1
jzc22 (k6) jSFzs(k4,k5,Al).
CoJicd
53733 g ey -0, Ko Kg Kskg 8208 )8 (kyKykymd - ] (avp) apy)
- j2-1 . ? 0] - - -
8 (m_kl-J 2- Z (q+P) :QQ’Z) n (k4+2k5"3 3) n [kz_k4+~ (ks'ks‘l) +3] 1*]2"&] 3' J) °

n(kg=870n (kg+1-ke-8)n(k +1-k;=4,-4 ;) (3.212)
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As they stand, Egs. (3.209), (3.211) and (3.213) are not in
the standard form which we have worked with throughout this develop-
ment in that they depend on the a" and v". Consider e.g. the essen-
tial part of Eq. (3.209).
(kv (ko (kv (k)
-V v

.'E}(m)k'u ’kﬂ) [V uv u..
X 1 4 v \Y v

m m
1
k1=0 k2=0

]

The first term can be written

m-1 m-1

Il

. =0 p.=0

(p. ) (p; )
=1 j+1-2 j+2-2
j“zcm’pj+1-2+1’pj+2-2+$)a a U2 .

The second we first write as

m-1 m§1 . (kl) (kz) m-1 .
L jEgmkrLkya “a “6, + Z 5810k 1,00+
k,=0 k,=0 k.=0
1 2 1
(3.215)
(ky)v m-1 (k,)v
a v o+ ) :El(m,0,k, +1)a 2V, -
Vioox S d L 2
2
Then using
(kl)v ki-1 kl-l (kz)u (kl-k2-2)
a v, = - ) (i +1) a
k,=0 2 ¢

we can write Eq. (3.215) as
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m-1 m-1 (kl) (k2)G ) m-1 klEI (kl-l)a
2 L k2+1

)) .Ei(m,k1+1,k +1a ~a
k=0 k,=0 k,=0 k=0

(k,-k,-2) m-1 ky-1 k-1 (k,)(k,-k,-2)
a % Emk+1,00 - 1 ) (La Ya? 1
j R 1 L L “k,+1
k=0 k,=0 "1
2 1
(m,0,k,*+1) .
4
(k1-k2-2) (k1)

Next, we want to transform a to a**] so let

or
k1 = ki+k2+2
This gives the term

(kp)u (k})
a 2 a 1

Notice that the sum of k! and k2 is k1-2 which ranges from zero to

1
m-3 so we can write the second term in Eq. (3.216) as

1

m-1 m-1 m-3 k,+k+1 (k,) (k,)
172 )a 1 a 2 G2

kj=0 k,=0 q=0 k,+1

jEi(m,ki+k2*3,0)é(kl+k2,q)

m . (kl)v (kz) m-
j:Q(m,kl,kz)v v, = iy Z

~ 3

k1=0 kZ

il

0

j

)

1o(k) (k)
a 1 a 2 G

l'
L

2

(3.216)
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m-3 k1+k2+l
=l - =1
{525 mky+1,k)41) qu Cipn 5Ea0mok 7Kg 3,008 (kyy00)
m-3 k1+k2+1 )
- LG 500k kG, (3.217)
q:

To keep the formulas from becoming too unwieldy, it is con-

venient to introduce the substitution operator

m-3 k1+k2+1
P(pysDysk k) = 8(p Lk +1)8(py k1) - 20 Cepr1 2
q:

m§3 ky+k,y*1
§(p,,0)8(p,,k, +k,+3)8(k, +k,,q) - qio ( k,+1 )8(py -k +k,+3)
§(p,,0)8(k;+k,,q) , (3.218)
this gives
m n , kv (k,) m-1 m-1
L1 ek kv N ) SEpmk k)
k,=0 k,=0 k,=0 k,=0
m-1 m-1 (Pl) (pz)
Vo ] r(k,.k,5pyspo)a S a C G, . (3.219)
Lo o 2o 1212 2
pl" p2—
Now the Eq. (3.209) takes the form
= m 3m J 2 (q)i-t _ (p)
< 1 %7 ¢ ondla T¥n{ja Thelmeu, ¥ (3.220)
7" m=0 ™ j=20 £=0 r=1 r=1 J J
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with

He~1s

m
1 = =1 -
jel(m) - i‘{j_Z_Q(m’pj_1_2+1)pj_2+1) ZO
577 4

=l
j-Z"R,(m’Al ’Az)r(m)bl ’Az’qz_lql)} *

becomes

m 3m J 2 (q.).3-%  (p) y
} i {Za }jeﬁ(m)GzUj_zu

j=0 £=0 r=1 =1

m
2 = 22 .
;0 m = Zo \ Zo 5350 (Ms8758,P T (81,439, 1.9,)
2

m m
- =2 .
1 3

Lastly, Eq. (3.213) is

(p.)
A r N
ila }jog(m,é)GzUj_Z ,

(3.221)

(3.222)

(3.223)

(3.224)
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with

m m m m

200 N S N TM,81,8,,84,8,)"
= = = _J42 234
41—0 42-0 AS-O ¢4—0

1t

02 (m)

[F(8,,8250, 259, )T (8554,3Q, 4,9,) - T(4,,4,3q, 5,0, -)*

Flogsb3idy 10901 (3.225)
and
Pt
j o5 (m,8) = \ Zo \ L 55 z(m 818758 55P; RO LIRS R )
2 3
m m I%\l
- =3 .
Z Z J‘_S“z(m)bl’6’Az’pj_2+1)r(61’63’q£_1’q2) + L
- — 5. =0
41—0 AS-O 1
m m I{‘l
z J -3~ z(m 41’5:P 2+1 4 )I‘(A 4’q2_1’q2) = Z é *
=0 42-0 5 ,=0
4
i3 2(m ) Az,pj_2+1,b4)F(é2,64;q2_1,q2) . (3.226)

Making use of the standard manipulations, we finally obtain

from Eqs. (3.220), (3.222), and (3.224)

pv _ phv o HpaB
ret’v - ‘ret retv Yo s u FretFretonB
©w m3m J (q.)
1 n N T T
== ) )2 1 nila T}
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-+ (p, )
n{Ja * “[ ol(m) + mJ“Z’ﬂ 1) + m(m-1), 63(m~2)]
r=1
m
s 7 v“hmum1)e(mzan}l - (3.227)
4=0 3=

From Eq. (3.227), we can obtain the expression for the flux

of electromagnetic momentum leaving the world tube. The complete ex-

pression for the world-tube surface element is given by Eq. (1.44).
A simple calculation gives
©® m3m J (q). -  (p,)
drapama =4 T 2T T on g i)
2" m=0 j=0 2=0 r=1 r=1
T L@
[ ¢1(m)u + § oy ¢2(m 816U, , (3.228)
j-2
4=0 :
where

d(m) = .o (m) + m0f (m-1) + m(m+1) ;07 (m-2) + {j_lei(m-l)

+ (m-1)j_le§(m-2) + m(m-1)j_log(m-3)}5(pj,0) . (3.229)

j g(m 8) = m(m-l)j@z(m-Z,A) + (m-1) (m-2) j_193(m‘3’4)'

5(p;_y»0) (3.230)
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I, The Integration of U,

In this section, we will find general expressions for inte-

grals of the form

where Q is a constant vector with respect to the integration. Using
this general expression, we will at last be able to obtain the ex-
pression for the electromagnetic momentum.

In the rest frame of the charge
i
ut = (058
Where the semicolon separates the time component from the space com-
ponents and g' are the components of the unit position vector which

points from the charge to the field point of interest. To begin our

investigation, let us consider the integral

Jéji E’j de .
The integral is a symmetric tensor and thus is proportional to the

Kronecker delta
{E.E.dﬂ =b, 6.. b2 a constant. (3.231)
J

Since

£¢e. =1 (i summed)
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when we contract on i and j, we find

_4q
b2 T3
The integral of an odd number of products of 51 is zero. Con-

sider next

r d

Jaigjakaz Q.
This integral is completely symmetric in the indices i, j, k, 2. More-
over, the integral can be nonzero only if the indices are '"paired".

Thus

Now contract j on i and k on %.

47 = b4{(3)(3)+3+3}
_ A4x
by = 15

Now let us consider the general case. If we have an integral

over d? of 2m position vectors, then there will be

(2m) !
=—— ways of
20 4

pairing the indices as above and so there will be this many terms in

the three-tensor expression for the integral. Symbolically

Jgi...gk do = me{S ..... 8, *+ other arrangements} . (3.233)
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To find the proportionality factor b, , contract on the indices in

2m

an arbitrary order. The left hand side is

In the right hand meme
Kronecker delta is contracted on itself. This arrangement we call
completely faithful. 1In all other arrangements, there are deltas in
which the partners of the pair of indices belonging to the delta are
not contracted on each other but are contfacted on the indices of
other pairs belonging to other deltas. The contribution which such

an "unfaithful configuration'' makes to the right hand member of Eq.
(3.233) is i (3™ Py.(3) where p is the number of 'unfaithful
pairs" in the arrangement.

For m pairs let us find the number of arrangements in which
there are p unfaithful pairs. The smaliest number of unfaithful pairs
is two. These pairs can be rearranged in

2221
ways but one of these ways is the faithful pairing. Thus the number

of unfaithful arrangements of two pairs are

(2.2)!
2221

There are (g) ways of choosing two pairs from m pairs. Hence, among
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m pairs, there are
2)1
N, (m) 2 WL STIERNY (3.234)
= 2
242!
arrangements in which there are precisely two unfaithful pairs.

For three unfaithful pairs there are

~~
N
wl
—

N
w |-
(9]

arrangements of three pairs but along these are the arrangements
containing no unfaithful pairs and two unfaithful pairs. Hence there

are
(2.3)!
2331

Nem) = (I - Ny(3) - 1] (3.235)

arrangements with precisely three unfaithful pairs. The number of

arrangements of m pairs which contain j unfaithful pairs are

_ oMy (2)0 _ Mm it
N (m) = 1 (3.236)

Using this recursively gives

Nom = (AL g
] Y I

j-l . 1
- M AHEEL -
J kZO SPU



105

Rewrite it as

o2k )! . koil K
N m = )l === -1] - () G
0 ko'~ Kok 1 Ko k.20 ©1
o 1
(2! k-1 k-1
[ 1+ G L QO8N &
21k 1 Kok 20 k=0 K1~ Ky 1
1 1 "2
Generalizing we have
k -1 k
0 P r-1k p-1
1 -1
N m = D n{CDP I
k k k
o p=1 "o r=1 kr=0 T =1

(2kP)1
{n(k,_;-1-k D1} T “118 3,y 5k,
P

where n is defined in Eq. (3.78). The expression for me is

with Np(m) given by Eq. (3.237).

If we define

sV = (u“uvdn
4

we know from Eq. (3.231) that

ij

1]

s b GlJ

s% = 7% =0

(3.237)

(3.238)

oY

N

ey
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in the rest frame of the charge. Also since, in the rest frame

Juuuvdﬂ nggjdﬁ
SOO = 0

in the rest frame. Let us now prove that

stV = s(l)uv = bz(g”v+v”vv) . (3.240)

From Eq. (1.13), we see that s(l)uv satisfies Eq. (3.239). Also,
since

v = (1;0,0,0)

in the rest frame, we see that

THY = MV S(l)uv =0

S

(Duv

in the rest frame. But since s'’ and s are both tensors by

. s v . e 1 e .
their definitions, T"V is a tensor which is zero in one reference

frame and hence zero in all frames, which proves Eq. (3.240). For

sHVIA - [u“uvuouxdﬂ
Eq. (3.232) suggests

suvoh - b4{(guv+vuvv)(gck+vovk) . (gu°+vuv0)(gvk+vvvk)

+ @ )]

which can be proven in precisely the same manner.



107

We can write this result in a short hand way as

L Vo A _ ARV PN
Iu uuude = b4E{[G2+v(2)] }

where the notation P{...} means from the sum of all the possible dis-
tinct terms resulting from different arrangements of two pairs of in-

dices. In general

n/2}

Iundsz = bnlj‘{ [G,+v (3.241)

)]

where the tensor indices have been suppressed, and where it is under-
stood that the right hand member is zero if g-is not an integer.

Using Eq. (3.241) to integrate Eq. (3.229), we find at last

mi3m J 2
1 Z Z I
j=0 2=0 r=1

dp I AT 2 _ 1
T odr Jeretuvn (1+ra,) = 73 m

o~ 8
2=

0

(a.) j-2+ _ (p)
Pn{la ¥

r=1

{la

Hjohm g7 b5, o PLIG,+v )]

b

. m .
l:%:&}u + Z V(A)ujQ%(m’A),—%%& ?{[G2+v(2)].

4=0
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CHAPTER IV

The Dirac Technique is far from simply being a gimmick which
works ror electric charges. ‘ﬂmhba(6) has used it to derive the equa-
tions of motion which a ''classical meson' obeys, while Bhahba(7),
Mathisson(s), and others have also applied it to the study of spinning
charges. Never-the-less, until the present work, the theory was open
to serious objections due to renormalization. The general formulation
which has been presented here disposes of all reasonable questions con-
cerning rigor. Moreover, our model of the electron is among the most
general imaginable, with no restrictive assumptions about structure.

In short, the author's formalism carries Dirac's technique to its

rigorous limit.

B. Applications of the Current Investigation

Nearly all of the results derived in the last few years for
classical charges apply only in the limit #»0. One of the most in-
teresting examples is the problem of the Coulomb momentum. The

Coulomb momentum, as defined by Rohrlich is

u _ lazwv
Peour = Jocoul da, (4.1)
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where

M

vV-1g"Y) . (4.2)

If the charge has always been in uniform motion, then it can be shown

that in the limit 20,

dpzou1 u
It~ Tein® (4.3)
with
m =£
elm 21

However, Professor Cohncg) has shown that for arbitrary motion, the
Coulomb momentum based on Eq. (4.2) is not given by Eq. (4.3) Cohn
has been able (again in the limit #20), to define a Coulomb momentum
which is given by Eq. (4.3) for arbitrary motions. The question
naturally arises as to what happens when one is not restricted to the
limit 2>0. With the author's work, it is now possible to investigate
all questions of this nature.

The most exciting problem of all is what significance the in-
finite series Eq. (3.242) holds for the equations of motion. That the
series is significant is clear from many points of view. The most
direct way of regarding it, is to imagine comparing the solution of
the Dirac equation tc the solutions cobtained for equations of motion
when more and more of the higher order terms are considered. To il-

lustrate this, the author has calculated the equation of motion resulting
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from keeping terms in Eq. (3.242) which are linear in #. This equa-

tion is

ext v’ (4.4)

To compare a solution of this equation with one of the Dirac equation,
assume that
W - gHV
Fext - Fextvv

is not a function of 1 and that the particle moves so that

| AT AT
U H ue

vV =ae +8 . (4.5)
Since
vy = - ¢2
u
we have that
auau =0 = BUBU; 2au6u = - ¢2

Otherwise o, and B, are arbitrary four-vectors. Because the rate

at which the charge radiates energy in the form of radiation is



For the motion Eq. (4.5) the Dirac equation forces that conclusion

that 4" is 1-independent and that

w_ 1 n
a ﬁ;;;; Fext . (4.6)

This is the so-called constant intrinsic acceleration case. When the
same motion is substituted in Eq. (4.4) the result is
Fu

u ext
a

Moare - %%)
i.e. the intrinsic acceleration is constant for the same physical
situation that produced constant acceleration for the Dirac particle.
The ratio c¢f magnitudes for the two different accelerations in Egs.
(4.6) and (4.7) respectively is

3 R
1 - = —
T8 peld

Thus, in principle, an experiment could distinguish between the Dirac

equation and Eq. (4.4).
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The general treatment of the series Eq. (3.242) is beyond the
scope of this investigation. The question which is begging to be
answered is whether there exist values of 4>0 such that one recovers
the Dirac equation exactly from the series Eq. (3.242). If at least
one such value of 7/ exisis then the Dirac technique is completely
justified, and we obtain the remarkable result that the classical
theory is capable of predicting the size of the (classical) electron.
If no such value of % exists, then the Dirac tehhnique is utterly

without rigorous foundation. In either case, the present work has

made the investigation of this question possible.
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