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CHAPTER I 

INTRODUCTION 

The ciliated protozoan Tetrahymena pyriformis has been maintained 

in bacteria-free cultures for many years. There have been many studies, 

both direct and indirect, concerning glycogen in!· pyriformis1 . It is 

understandable why this organism has been the subject of such studies 

since it has been shown to contain a dry weight glycogen content as high 

as 50 percent (1). 

The glycogen isolated from!, pyriformis is a polysaccharide with 

properties that closely resemble those of mammalian glycogen. In an 

exte?sive study of glycogen isolated from the GL strain, Manners and 

Ryley (2) found several properties of!· pyriformis glycogen to be 

nearly identical to those of rabbit muscle and rabbit liver glycogen. 

The properties that were similar were specific rotation, unit chain 

length, and percent conversion to maltose by ~-amylase. Using a light-

scattering technique, they found that the major difference between T. 

1 The following abbreviations are used:!· pyriformis, Tetrahymena 
pyriformis; UDPG, uridine diphosphate glucose; ATP, adenosine triphos
pha~e; G-6-P, glucose-6-phosphate; G-1-P, glucose-1-phosphate; UTP, uri
dine triphosphate; UDP, uridine diphosphate; NAD, nicotinamide-adenine 
dinucleotide; NADH, nicotinamide-adenine dinucleotide (reduced form); 
NADP, nicotinamide-adenine dinucleotide phosphate; NADPH, nicotinamide
adenine dinucleotide phosphate (reduced form); Tris, Tris-(hydroxymethyl) 
aminomethane; ADP, adenosine diphosphate; 6-P-gluconate, 6-phosphogluco
nate; PP, inorganic pyrophosphate; GSH, glutathione (reduced form); and 
CoA, coenzyme A. · 

1 
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pyrifqrmis glycogen and mammalian glycogen is the greater molecular 

weight of the T. pyriformis glycogen. They determined the molecular 

weight of highly purified.!..:_ pyriformis glycogen to be 9.8 x 106 as com

pared to 6. 8 x 106 for rabbit liver glycog(;!n and 2. 8 x 106 for rabbit 

muscle glycogen. Wagner (1), using strain E, also has studied the gly-

cogen isolated from.!..:_ pyriformis. He reported that the glycogen occurs 

naturally in the organism as subcellular granules of particle weight not 

less than 14 million. Wagner estimated this particle weight for glyco-

gen from sedimentation data obtained in a preparative Spinco Model L 

ultracentrifuge. 

The remaining studies to be discussed have been performed with cells 

grown on a medium containing protease peptone and salts which frequently 

was supplemented with glucose and/or acetate as the primary carbon 

source. Under certain growth conditions, the glyoxylate cycle may be 

important in glycogen synthesis from lipid materials. However, with 

carbohydrate in the medium, glycogen synthesis occurs, but the glyoxylate 

cycle appears to be inoperative. In view of this fact, the nature df the 

growth medium will be indicated for each of the experiments from the 

literature described below. 

Using washed suspensions of T. pyriformis strain E which had been - . 

grown with aeration in a protease peptone medium containing acetate, 

Wagner (1) determined that the lipid content of the cells is depleted 

when glycogen synthesis occurs. The increase in glycogen was foun'1 to 

be equivalent to the decrease in lipid. He also noted that the cells 

contain a large portion of their lipid as phospholipids and that all of 

the decrease which occurs in lipid content during glycogen synthesis is 

due to a decrease in phospholipids. 
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Wagner (1) also reported that 0.1 percent glucose (final concentra

tion) added to a proteose peptone-acetate culture medium caused a con

siderable i.ncrease in glycogen accumulation in_!. pyriformis. All of the 

increase i.n glycogen which occurred on the addition of glucose to the 

medium could be accounted for on the basis of glucose disappearance from 

the medium. In agreement with this conclusion, Levy (3) cites Hogg and 

Wagner (4) as having reported that strain E stationary phase cells could 

incorporate 75 percent of the label from added glucose into glycogen. 

Wagner (1) has observed that the glycogen content of older cultures 

varies with age and nature of the growth medium, He observed that cells 

grown in a medium containing glucose and acetate had a glycogen content 

of 462, 142, and 73 µg per mg dry weight at 48, 112, and 161 hours of 

growth, respectively, The phase of growth of the organism was not 

stated for each of t:he time periods considered above. However, from 

growth curves presented by Wagner (1), it would appear that the 48 hour 

growth period represented logarithmically growing cells and that the 112 

and 161 hour growth periods represented stationary phase cells. If this 

be true, then the results obtained with glucose in the medium would indi

cate that the glycogen content per cell decreased in going from loga

rithmic growth phase cells to stationary phase cells, This result is in 

contrast to those obtained by Wilken and Best2 who also used strain E 

cells, They found a 7- to 12-fold increase in the glycogen content per 

cell in stationary phase cells compared to logarithmiJ phase cells when 

grown on a medium containing glucose. The glycogen content per cell in 

one experiment was 2.6 x 10-4 µg per cell in logarithmically growing 

2 Dr. D. R. Wilken, personal communication of unpublished results. 
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cells and 18,l x 10-4 µg per cell in stationary phase cells. 

Wagner (1) also demonstrated that cells grown on the proteose pep

tone-acetate medium described above, but without added glucose, had a 

glycogen content of 49, 177, and 166, µg per mg dry weight at 48, 112, 

and 161 hours of growth, respectively. This apparently represents an 

increase in glycogen content of stationary phase cells compared to loga

rithmic phase cells. Similarly, in the course of other.studies employing 

strain GL cells grown on a proteose peptone~salts medium, but without 

either glucose or acetate, it has been established that the glycogen 

content of 1· pyriformis is considerably greater in stationary phase 

cells as compared to logarithmically growing cells (3, 5). 

Levy (3) found that cells harvested in the logarithmic phase of 

growth had a glycogen content which ranged from O.o60 to 0.180 mg per 

million cells. The cells were grown in a medium containing proteose 

peptone, liver extract, and salts, but no glucose pr acetate. In sta

tionary phase cells the glycogen content varied from 0.07 mg to as much 

as 2.0 mg per million cells. When the glycogen content was expressed 

as percent of total dry weight, stationary phase cells contained as 

much as 25 times more glycogen than did logarithmic phase cells. 

Scherbaum and Levy (5), using the GL strain, have reported an appttoxi

mate 3-fold increase in glycogen content, on a percent dry weight basis, 

in stationary phase cells over logarithmically growin~ cells. The 

growth medium they used was essentially the same as that used by Levy 

(3). 

The glycogen content is not only increased in the stationary phase 

cells over the cells from the logarithmic phase of growth, but the rate 

of glycogen synthesis is also increased. Levy (3) showed that station~ 
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ary phase cells incorporated tracer amounts of 14C labeled acetate into 

glycogen 5 times faster than did logarithmic phase cells when compared 

on a per cell basis. Substrate amounts of acetate also were converted 

to glycogen in washed suspensions of stationary phase cells at a higher 

rate than in washed suspensions of logarithmic phase cells. Levy (3) 

also demonstrated that stationary phase cells incorporated 40 times as 

much labeled pyruvate into glycogen as did cells harvested in the loga-

rithmic growth phase. It is apparent from these studies that the 

increase in glycogen content observed for stationary phase cells is due, 

at least in part, to an increase in the rate of glycogen synthesis and 

not merely to an accumulation of glycogen with time. 

Wagner's (1) demonstration that net synthesis of glycogen could 

occur at the expense of phospholipids was the basis for examining.'.!..:_ 

pyriformis for the presence of the glyoxylate cycle enzymes. Evidence 

for the occurrence of these enzymes in.'.!..:_ pyriformis was first presented 

by Hogg (6) and later confirmed by Reeves et al. (7), Hogg and Kornberg --
(8), and Levy (3). 

Hogg (6) made an early attempt to relate the glyoxylate cycJ..e to 

glycogen synthesis from lipids. Although his results were tentative, 

they indicated that the amount of isocitrate lyase (E.C. 4. l.3.l) found 

in extracts was sufficient to account for only 10 percent of the glyco-

gen formed. These results did not rule out the glyoxylate cycle, since 

some doubt existed about the stability of isocitrate lyase in the crude 

extracts. Levy (3) has tested the hypothesis that the increased rate 

of glycogen synthesis in stationary phase cells might be due to increased 

levels of the glyoxylate cycle enzymes. In stationary phase cells the 

specific activity of both isocitrate lyase and malate 
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synthase (E. C. 4. 1. 3, 2) increased approximately L 5 to 4 times compared 

to logarithmic phase cells. If puromycin or p-fluorophenylalanine at 

concentrations which completely inhibited culture growth were added to 

the growth medium, the increase in isocitrate lyase activity was com

pletely or greatly suppressed. Under the same conditions; however, the 

ability to incorporate acetate into glycogen increased to an even 

greater extent than in control experiments in which these compounds were 

not added to the growth medium. He therefore concluded that an increase 

in the glyoxylate cycle enzymes is not required for increased glycogen 

synthesis from lipids, 

Hogg and Kornberg (8) studied the effects of added acetate and/or 

glucose in a proteose peptone medium on the levels of the glyoxylate 

cycle enzymes malate synthase and iso~itrate lyase. Their findings are 

summarized in Table I. The addition of acetate to a proteose peptone 

medium resulted in a 15-fold increase in isocitrate lyase but had rela

tively little effect on malate synthase. The addition of glucose to the 

proteose peptone medium had little effect on isocitrate lyase but com

pletely suppressed malate synthase. Glyconeogenesis from acetate was 

observed only in cells grown on the proteose peptone medium supplemented 

with acetate, A comparison of the enzyme activities from cells grown on 

proteose peptone-acetate medium and those grown on this medium supple

mented with glucose indicated that in cells grown on the latter medium 

the isocitrate lyase activity was depressed 70 percent while the malate 

synthase activity was depressed 30 percent. There were, however, ap

preciable amounts of each of these enzymes. Despite this fact, the 

cells were not capable of glyconeogenesis from acetate. It was found, 

however, that if cells were grown on the acetate- and glucose-containing 



TABLE 1, 

FORMATION OF GLYOXYLATE-CYCLE ENZYMES 
AS A FUNCTION OF GLUCOSE AND ACETATE 

IN Tl:IE GROWTH MEDIUM~\ 

Specific Activityb 

Isocitrate Malate 
Composition of Medium Lyase Synthase 

Proteose Pep tone 0.055 3,5 

Proteose Peptone + Acetate 0.85 3.00 

Proteose Peptone + Glucose 0.04 (0.01 

Proteose Peptone +Acetate+ Glucose 0.60 0.90 

a 
b Data taken from Hogg and Kornberg (8). 

µmoles of substrate transformed/mg of soluble protein/hour. 

7 
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medium, but not harvested until all of the glucose had disappeared from 

the medium, the inhibitory effect of glucose on glycogen synthesis from 

acetate was reversed. Hence, it appears that the pre~ente of glucose in 

the growth medium causes the glyoxylate cycle to be inoperative for gly-

cogen synthesis in T. pyriformis. 

Hogg and Kornberg (8) also showed that unless the glyoxylate cycle 

enzymes were incorporated into an organized intracellular structure, gly-

cogen synthesis from acetate could not occur. In cells which were 

capable of glyconeogenesis from lipids, essentially all of the isoci-

trate lyase and malate synthase was contained in one of two distinguish-

able types of submicroscopic (0.5 to 1.0 µ) intracellular particles. In 

cells incapable of glyconeogenesis from lipids, however, the enzymes of 

the glyoxylate cycle were distributed in both of the two intracellular 

particles and in a soluble supernatant fraction. In the latter type of 

cells, 62 percent of the malate synthase activity was found in the 

soluble fraction. The subcellular particles from cells which could syn-

thesize glycogen from acetate not only contained the glyoxylate cycle 

enzymes but also several of the tricarboxylic 'acid cycle enzymes. When 

L-{:2-i4 c_7 glutamine was added to a cell suspension actively converting 
I 

acetate into glycogen, most of the i 4 c was recovered as carboµ dioxide 

while onlya negligible amount was recovered in glycogen. This isotopic 

distribution pattern suggests that the four carbon acids produced from 

L-L-2- 14C ~ glutamine do not equilibrate with the four carbon acids 

which are active intermediates in the glyoxylate cycle, and hence, that 

the site of oxidation and carbon dioxide production is separate from 

that of glyoxylate cycle activity. In view of the relatively high acti-

vities of isocitrate lyase and malate synthase in T. pyriformis capable 
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of glyconeogenesis, Hogg and Kornberg (8) concluded that "the glyoxylate 

cycle plays a necessary role in the conversion of fat into carbohydrate.tr 

From the above discussion it .tlppears that the relative importance 

of the glyoxylate cycle in glycogen synthesis in.!.:_ pyriformis. is pri

marily related to th~ intracellular distribution of the enzymes involved, 

rather than to an increase or decrease of their concentration. 

It was noted earlier in this discussion that labeled pyruvate is 

incorporated into 1.:._ pyriformis glycogen (3). The glyoxylate cycle also 

is probably the route by which 1.:._ pyriformis incorporates pyruvate into 

glycogen after decarboxylation to acetyl coenzyme A by the pyruvic 

dehydrogenase complex. 

The results discussed thus far have indicated that glycogen may be 

synthesized from either carbohydrate or lipid carbon sources. Several 

of the probable intermediate enzymes involved in glycogen synthesis from 

either of these sources are depicted in Figure 1. Glycogen ~ynthesis 

from carbohydrate is indicated as pathway 1, and glycogen synthesis from 

lipid precursors is indicated as pathway 2. As shown in the figure, the 

two pathways probably merge to form a common pathway just prior to the 

final synthesis of glycogen. Since the klyoxylate cycle is not opera

tive when glucose is present in the medium (8), all of pathway 2 would 

not be operative. Hence, no net synthesis of glyc6gen from pyruvate, 

acetate, or lipids would occur. However, under these same conditions 

glucose would be utilized for net glycogen synthesis via pathway 1. 

When the cells are grown in the absence of glucose, hexokinase (pathway 

1) is not required, but the cells may nevertheless synthesize glycogen 

by pathway 2. Regardless of which pathway is used, 1 or 2, both eventu

ally must depend on the enzymes presumed to be common to both pathways. 
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Control of the glyoxylate cycle via the absence or presence of glucose 

in the medium (as discussed earlier) is the factor controlling which of 

the two pathways would feed substrate into the common pathway. 

Although considerable attention has been given to the possible role 

that the glyoxylate cycle enzymes may play in glyconeogenesis in .I:.. 

pyriformis, little attention has been given to the enzymes immediately 

preceding the final step of glycogen synthesis or the final step itself. 

Similarly, little attention has been given to the enzymes involved in 

glycogen synthesis from glucose which would involve the enzymes hexo

kinase (E.C. 2.7.l.l), phosphoglucornutase (E.C. 2.7.5.l), UDPG pyrophos

phorylase (E.C. 2.7.7. 12), and glycogen synthetase (E.C. 2.4.1.11). Of 

these four enzymes, only hexokinase and phosphoglucornutase have been 

reported to occur in 1'..:_ pyriformis. Very few reports concerning the 

presence of these two enzymes in I.:_, pyriforrnis appear in the literature. 

Ryley (9) attempted to measure hexokinase, phosphoglucomutase, and phos

phorylase (E.C. 2.4.1.1) as well as several other enzymes in the GL, 

strain. His attempt: to measure hexokinase activity did not unequivo

cally demonstrate the presence of this enzyme, but the data obtained 

were consistent with its presence in .L_ pyriforrnis extracts. He was 

able to show the presence of phosphoglucomutase (0.016 µmoles of sub

strate utilized per minute per mg protein) and of phosphorylase. 

Warnock and van Eys (10), using strain E, reported a specific activity 

for hexokinase of 50 µmoles of substrate per minute per mg of protein in 

stationary phase cells. Neither UDPG pyrophosphorylase nor glycogen 

synthetase has been reported to occur in.!.:.. pyriformis. 

From the foregoing discussion two major deficiencies in our know;_ 

ledge of the synthesis of glycogen in T. pyriforrnis are evident. These 
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deficiencies are that a direct precursor of g1ycogen has not been esta

blished and that all the required enzymes for glycogen synthesis by 

organisms grown on aimedium containing glucose as the carbon source have 

not been detected in extracts of the organism. Therefore, the object~ 

ives of the present investigation were to determine: 

A. If the ~nzymes hexokinase, phosphoglucomutase, UQPG pyrophos

phorylase, and glycogen syntbetase are present in.!:.. pyriformis strain E. 

B. If the glucosyl moiety of UDPG is incorporated into glycogen, 

thereby establishing UDPG as a direct precursor of glycogen in T. 

pyriformis. 

C. If the enzymes hexokinase, phosphoglucomutase, UDPG pyrophos

phorylase, and glycogen synthetase are present at sufficient levels to 

account for glycogen synthesis from glucose. 

D. If increased glycogen synthesis in the stationary phase could 

be due to an increase in the level of one or more of these enzymes. 



CHAPTER J;I 

EXPERIMENTAL 

Materials 

UDPG- 1 4c. UDPG-14C with the label in the number one carbon of glu

cose was synthesized enzymatically essentially as described by Anderson 

et al. (11). This method employs a series of enzymatic reactions to 

convert giucose-14C into UDPG-14C in a single incubation mixture. Glu

cose-14C is phosphorylated by ATP in the presence of hexokinase, and the 

G-6-P formed is then ~onverted to G-1-P by phosphoglucomutase. The 

G-1-P is reacted with UTP in the presence of UDPG pyrophosphorylase to 

form UDPG- 14c and inorganic pyrophosphate. Inorganic pyrophosphatase is 

added to hydrolyze the inorganic pyrophosphate. This removes one of the 

products and thereby causes the sequence of reactions to proceed in the 

direction of UDPG synthesis. The reaction was stopped by heating at 

80°· · C for 2 minutes. The reaction mixture was then cooled on ice and 

centrifuged, The UDPG-14c which was in the supernatant fluid was puri

fied by chromatography on a 40 x 1. 8 cm. Dowex-1 formate resin column. 

The elution procedure used was similar to that of Hurlbert et al. ( 12¢. 

In the procedure used, the sample was applied to the column and followed 

by water until 100 ml of effluent had been obtained. A gradient elution 

was then begun by passing 1,500 ml of 4 M formic acid followed by 4 M 

formic acid plus 0.2 M ammonium formate through a 500 ml mixing chamber, 

13 
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which was originally filled with water, until the UDPG- 14c was eluted . 

The UDPG- 14C in the column effluent was detected by ultraviolet absorp

tion at 260 mµ and radioactivity measurements. The eluted UDPG- 14c was 

adsorbed on Norite and eluted with 50 percent ethanol containing one ml 

of concentrated ammonium hydroxide per liter. The ethanol was removed 

on a flash evaporator, and the ramaining aqueous solution lyophilized. 

The UDPG- 14C obtained after lyophilization was dissolved in water and 

further purified by descending chromatography in isobutyric acid, 

ammonia, and water (66 :l:33) all by volume (13). The UDPG- 14c was de

tected on the paper by its ultraviolet absorption properties and radio

activity measurements. After elution from the paper with water, the 

UDPG- 14C concentration was determined by its absorption at 262 mµ 

employing a millimolar extinction coefficient of 10 (13), and its radio

activity measured in a Packard Tri-Carb liquid scintillation counter. 

The UDPG- 14C isolated had a specific activity of 0.352 µc per µmole . It 

was diluted 8-fold with carrier UDPG prior to use in glycogen synthetase 

assays . 

Additional Materials. Glycogen was isolated and purified from a 

T. pyriformis culture in the stationary phase by the procedure of 

Manners and Ryley (2). Pyruvate kinase was isolated from rabbit muscle 

according to Buchler and Pfleiderer (14). Other reagents and their 

sources were: ATP, G-1-P, phosphoenolpyruvate, UDPG, NAD, NADP, hexo

kinase, G-6-P dehydrogenase, and phosphoglucomutase, Sigma Chemical Co . ; 

UTP, Pabst Laboratories; inorganic pyrophosphatase, Worthington Bio

chemical Corporation; glucose-l- 14C, California Corporation for Bio

chemical Research; benzoic acid-14C isotopic standard, Volk Radiochemical 

Company; and UDPG dehydrogenase from bovine liver acetone powder (1 5) 
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and UDPG pyrophosphorylase from bovine mammary tissue, which were gener

ous gifts from Dr. K. E. Ebner. All other chemicals used were of reagent 

quality. 

Methods 

Maintainance and Growth of!.:_ pyriformis. Cultures of!.:_ pyriformi~ 

strain E, originally obtained from Dr. ~- van Eys through the courtesy of 

Dr . L. G. Warnock, were maintained and grown in the glucose-containing 

medium described by Warnock and van Eys (10) except that it also con

tained 0.8 ml of Dow Corning antifoam B per liter. Cells were grown 

aseptically, generally at 27 to 29° C with vigorous aeration in a 2 liter 

aspirator bottle containing l. 5 liters of medium. Such bottles usually 

were inoculated with 7. 5 to 10 ml of three day old stock culture per 

liter of medium to yield approximately 1 to 3 x 103 cells per ml . Cell 

counts were made in a Sedgewick-Rafter counting chamber with a Whipple 

ocular micrometer (16 ) after fixation in 0.5 percent formic acid con

taining 0 . 5 percent sodium chloride. Logarithmically grown cells were 

harvested when the culture reached 1 to 2 x 105 cells per ml ( i . e. , near 

the end of the logarithmic phase of growth which usually took approxi

mately 24 to 30 hours) , and stationary cultures were harvested aft er 3 to 

5 days of growth when there were approximately 1.2 x 106 cells per ml. 

Enzyme Extracts. Cells were harvested by centrifugation at Oto 

5° C for 5 minutes at 11,700 x gin a Sorvall RC-2 centrifuge. All 

further operations were done at Oto 5° C. After decanting the super

natant solution, the cells were resuspended in cold 0.5 percent sodium 

chloride solution and centrifuged in conical centrifuge tubes in an 

International Clinical centrifuge at approximately 80 x g (maximum 

speed) for 3 to 4 minutes. The supernatant solution and small "fluffy" 
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layer on top of the sedimented cells were removed by aspiration. The 

cells were washed once again in sodium chloride solution, and finally, 

once in cold water, and were recovered each time by centrifugation at 

80 x g. The packed : wet cells were weighed : and one volume of 0.05 M 

Tris-HCl buffer pH 7.5 was added. The suspension was homogenized at 

maximum speed in a VirTis homogenizer for 10 minutes in the cold. The 

homogenate was centrifuged for 15 minutes at 10,000 x g, and the super

natant solution was filtered through a layer of glass wool: The fil

trate usually contained 13 to 27 mg of protein per ml as determined by 

a biuret procedure (17). 

Enzymatic Units and Specific Activity. All enzyme units are de

fined as that amount of enzyme which transforms one µmole of substrate 

per minute under the assay conditions. Specific activity is the number 

of units of enzyme per mg of protein. 

Enzyme Assays. All assays were performed at pH 7. 5 and 28° C. 

Spectrophotometric assays were performed using a Beckman DB spectro

photometer. The reaction rates were recorded directly on a Sargent 

Model SRL Linear-Log recorder. The linearity of the assay with time and 

protein concentration was determined for each of the assays and with 

each T. pyriformis extract studied. Specific activities were calculated 

from the linear portion of such curves. All assays were completed with~ 

in 24 hours after harvesting the cells. The extract was maintained at 

O to 5° C until the assays were completed. 

Hexokinase. Hexokinase activity was assayed spectrophotometri

cally. The reaction components and their final concentration were: Tris

HCl buffer pH 7.5, 50 mM; MgC12 , 5 mM; NADP, 0.15 mM; glucose, 2 mM; 

G-6-P dehydrogenase, 0.1 5 units; X:_ pyriformis extract; and ATP, 0.1 mM. 



ATP was added last to initiate the reaction. The final volume was one 

ml. The rate of the reaction was followed by measuring the reduction of 

NADP at 340 mµ. 

Phosphoglucomutase. Phosphoglucomutase was assayed in the 

same manner described for hexokinase except that G-1-P, 5 mM and cysteine 

(adjusted to pH 7.5 just prior to use), 25 mM were added to the reaction 

mixture, and ATP and glucose were omitted. G-1-P was added last to 

initiate the reaction. 

UDPG Pyrophosphorylase. UDPG pyrophosphorylase was assayed 

spectrophotometrically. The reaction components and their final concen

trations were: Tris-HCl buffer pH 7.5, 50 mM; MgCl2, 5 mM; NAD, 1 mM; 

G-1-P, 5 mM; UDPG dehydrogenase, 0.016 units;.!.:_ pyriformis extract; and 

UTP, 1 mM. The reaction was initiated by the addition of UTP. The final 

volume was one ml. The rate of reduction of NAD was recorded at 340 mµ. 

Glycogen Synthetase. The glycogen synthetase assay of Traut 

(18) was modified to contain: Tris-HCl buffer pH 7.5, 50 mM; MgC12 , 10 

mM; purified.!.:.. pyriformis glycogen, 1 percent; .!.:.. pyriformis extract; 

G-6-P, 1 mM; glutathione, 5 mM; and UDPG- 14c, 0.4 mM. UDPG- 14c was added 

last to initiate the reaction. In certain experiments, either G- 6-P, 

glutathione, or both were omitted from the assay system. These assays 

are indicated in the text. Water was used to bring the final volume of 

the reaction mixture, which was contained in a 12 ml conical centrifuge 

tube, to 0.5 ml. At the end of the desired reaction time 1 the reaction 

was stopped by adding 0.5 ml of 60 percent KOH to the reaction mixture , 

followed by heating for 20 minutes in a boiling water bath. Then, 0 . 1 

ml of saturated Na2S04 and 1.5 ml of 95 percent ethanol were added and 

thoroughly mixed. The glycogen suspension which formed was cooled on 
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ice with occasional mixing for 20 minutes to allow complete precipitation 

of the glycogen. The precipitate was collected by centrifugation for 5 

minutes at maximum speed in an International Clinical centrifuge. After 

the supernatant solution was decanted, the precipitate was redissolved 

in one ml of water, and the glycogen was reprecipitated by addition of 

1,5 ml of 95 percent ethanol. The mixture was cooled on ice with occa

siopal mixing for 20 minutes. The precipitated glycogen was collected 

by centrifugation as described above, the supernatant solution decanted, 

and the purified glycogen dissolved in one ml of water. The glycogen 

solution and washings were transferred to a planchet and dried in pre

paration for the determination of the radioactivity in the sample. Each 

series of glycogen synthetase assays also included tubes which contained 

the same components and which were carried through the same procedures 

as the normal assays, exc~pt that the UDPG-14C was added just prior to 

transferring the glycogen solution to planchets. Counts observed in the 

experimental samples were compared to these samples to directly obtain 

the amount of glucose from UDPG- 14C incorporated into glycogen. 

Radioactivity Measurements 

Monitoring Radioactivity During UDPG- 14C Isolation and Purifi

cation. Radioactivity was determined in liquid solutions by plating 

small aliquots on aluminum planchets. The samples were ~ried and counted 

as described below for glycogen synthetase assays. Radioactivity was 

located on paper during chromatography with a gas-flow strip counter. 

Determination of UDPG- 14c Specific Activity. UDPG- 14c speci

fic activity was determined by dissolving a 0.01 ml aliquot of UDPG- 14C 

with 0.19 ml of water in 10 ml of scintillation fluid. The scintillation 

fluid contained the following components: 4 g of 2,5-diphenyloxazole, 
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200 mg of l,4-bis-2-(phenyloxazole)-benzene, 400 ml of absolute ethanol, 

and 600 ml of toluene. The counts observed were corrected for the effi-

ciency of the system used. The efficiency was.determined by counting a 

benzoic acid standard containing 88.2 x 10~ dpm in the same system. The 

counting was done in a Packard Tri-Carb liquid scintillation counter. 

Radioactivity Measurements for Glycoge~ sxnthetase Assay. The 

glycogen- 14C isolated and purified from glycogen synthetase incubation 

mixtures, as described earlier (also see 18), was plated on aluminum 

planchets. The dried planchets were counted with a gas-flow Gieger 

M"uller tube having a thin end-window. The counting times employed were 

such that the counting error was never more than 10 percent (usually 

much less) in the glycogen synthetase assays; 



CHAPT~R III 

RESULTS AND DISCUSSION 

.1:_ pyriformis Growth Curve 

A typical growth curve for.!.:.. pyriformis is shown in Figure 2. The 

results of two separate experiments are shown. Logarithmic growth phase 

cells were harvested near the end of the logarithmic phase of growth at 

a concentration of approximately 1 x 105 cells per ml, and stationary 

. phase cells were harvested at a concentration of 1.2 x 106 cells per ml 

or at some time after this concentration was reached. The concentrations 

of cells per ml at which the cells were harvested are indicated in 

Figure 2. After the cell population reaches a concentration of 1.2 x 

106 cells per ml, the cell concentration remains essentially constant; 

however, there are still a few dividing cells at this phase of growth as 

revealed by microscopic examination of culture samples. 

Enzyme Assays 

Hexokinase. Hexokinase activity was determined by coupling the 

hexokinase catalyzed reaction (equation 1) with an excess of G-6-P de-

hydrogenase (E.C. 1.1.1.49) which catalyzes the reaction shown in 

equation 2. 

( 1) ATP + glucose ··---~) G-6-P + ADP 

(2) G-6-P + NADP+ f-: ) NADPH + H+ + 6-P-gluconate 

(sum) ATP+ glucose+ NADP+ NADPH +IP"+ 6-P-gluconate + ADP 

20 
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The reaction was followed by observing the increase in absorbance at 

340 mµ due to the formation of NADPH. Figure 3 shows the effect of T. 

pyriformis extract protein concentration on the reaction rate of the 

hexokinase catalyzed reaction. In this figure the change in absorbance 

per minute is shown as a function of T. pyriformis protein concentration. 

The absorbance change per minute in the linear portion of the plot is 

very small. In order to obtain a large enough total change in absor

bance to be read reasonably accurately from the recorder paper) it was 

often necessary to allow the rate of NADP: reduction to be recorded for 

as long as 15 minutes. During such assays the rate of NADP r eduction 

remained linear with respect to time. The specific activities of hexo

kinase in~ pyriformis extracts reported later were calculated from the 

linear portion of the reaction rates versus protein concentration curve s . 

Phosphoglucomutase. Phosphoglucomutase activity was determined by 

coupling the phosphoglucomutase catalyzed reaction (equation 3) with an 

excess of G-6-P dehydrogenase which catalyzes reaction 4. 

(3 ) G-1-P F ) G-6-P 

( 4) G-6-P + NADp+ E ~ NADPH +. Ji+ + 6-P-gluconate 

(sum) G-1-P + NADP+ ~ NADPH + W + 6-P-gluconate 

The r eaction was followed by observing the increase in absorbance a t 

340 mµ due to the formation of NADPH. Figure 4 shows t he effect of T. 

pyriformis extract protein concentration on the reaction rate of the 

phosphoglucomutase catalyzed reaction. Each reaction rate point was 

taken from an individual assay in which the rate of NADPH formation was 

linear with time . The phosphoglucomutase activity, shown as absorbance 

change per minute ) was linear with respect to protein concentration a t a 

higher protein concentration than exhibited by hexokinase. In add i t ion) 
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the change in absorbance per minute in the linear portion of the curve 

was considerably higher than for an equal protein concentration in hexo

kinase assays. These two factors resulted in easier and more accurate 

phosphoglucomutase assays than the hexokinase assays. Because of the 

greater acttvity, the phosphoglucomutase assays were carried out for 

only 3 minutes or less in order to deterrnine the absorbance change per 

minute from the line .. r portion of the plot. Phosphoglucomutase specific 

activity was determined from the linear portion of plots such as shown 

in Figure 4. 

UDPG Pyrophosphorylase. UDPG pyrophosphorylase activity was deter

mined by coupling the UDPG pyrophosphorylase catalyzed reaction (equation 

5) with an excess of UDPG dehydrogenase (E.C . 1.1.1.22) which catalyzes 

the reaction shown in equation 6. 

( 5 ) UTP + G-1- P ~(===z.) UDPG + PP 

(6 ) UDPG + 2NAD+ ~UDP glucuronate + 2 NADH + 2IP" 

(sum) UTP + G-1-P ·+ 2 NAW ~ UDP glucuronate + PP + 2NADH + 2irt 

The reaction was followed by observing the increase in absorbance at 

340 mµ due to the formation of NADH. Because of an initial lag in the 

rate of NAD reduction, it was necessary to employ a 6 to 10 minute time 

period for each assay. A constant rate of reduction of NAO was reached 

within this time period. The rates obtained as a function of.!.;.. .PY.E.!-.

formis extract protein concentration are shown in Figure 5. UDPG pyro

phosphorylase specific activity was determined from the linear portion 

of plots such as the one shown in Figure 5. 

Glycogen Synthetase. The details of the glycogen synthetase assay 

are given in the experimental section. Unlike the assays for hexokinase , 

phosphoglucomutase, and UDPG pyrophosphorylase , the glycogen synthetase 
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assay was not a continuous spectrophotometric assay. The glycogen syn

thetase assay was based on the incorporation of the label from UDPG- 14c 

into primer glycogen. Figure 6 shows the incorporation as a function of 

time. The results shown in this figure were obtained when one mg of pro

tein was incubated in each of six identical but separate assay mixtures 

for the indicated lengths of time. The results recorded are based on 

the incorporation above a zero-time control. In this manner, the 

actual incorporation of label into primer glycogen was obtained. The 

incorporation of 14C into glycogen was linear with respect to time. 

Figure 7 shows the incorporation as a function of protein concentration. 

The results shown in this figure were obtained when the indicated amounts 

of protein were incubated in identical but separate assay mixtures for 

the same period of time (30 minutes). The results shown are based on 

the incorporation above a zero-time control sample. The figure shows 

that the incorporation of 14C into glycogen was linear with respect to 

protein concentration. The specific activity of glycogen synthetase 

was calculated using data from the linear portion of plots such as those 

shown in Figures 6 and 7 where the incorporation was linear with respect 

to both time and protein concentration. 

The results from the typical enzyme assays shown in Figures 3 - 7 

show that all of the enzymes necessary for the conversion of glucose to 

glycogen are present in!.:.. pyriformis strain E, including UDPG pyrophos

phorylase and glycogen synthetase, neither of which has previously bee n 

reported to occur in!.:.. pyriformis. These assays establish that a path

way is available in!.:._ pyriformis for the synthesis of glycogen from 

glucose in the growth medium. 
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UDPG - A Direct Precursor of Glycogen in 1.:.. RYriformis 

The results obtained in the glycogen synthetase assay suggested that 

UDPG is a direct precursor of glycogen in I:_ pyriformis. Other possibi

lities which might explain the results were considered, however. The 

possibility that the counts observed in the experiments described were 

due to UDPG-14C which was carried through the procedure was eliminated 

because the small incorporation observed in zero-time controls was sub

tracted from the incorporation observed in experimental tubes. Another 

possibility which might explain the observed incorporation is that 

either free glucose- 14C or G-l-P-14c might have been formed from UDPG-

14C during the incubation. If either of these compounds was carried 

through the procedure used to isolate glycogen from the incubation mix

tures, the same results as those which were obtained would have been 

observed. This possibility seems unlikely:, however, since neither of 

these compounds should have been insoluble under the conditions used to 

precipitate the glycogen. The most plausible explanation for the ob

served incorporation, other than by the direct incorporation of glucosyl 

residues from UDPG-14C into glycogen, would be that G-l-P-14C was formed 

from UDPG-14C during the incubation period and then incorporated into 

glycogen by the action of phosphorylase, This possiblity was tested by 

comparing 14C incorporation into glycogen in glycogen synthetase assays 

conducted in the presence or absence of 5mM unlabeled G-1-P. The results 

of two such experiments are shown in Table II. In experiment T-7, ex

tract from logarithmic growthphase cells was employed as the source of 

glycogen synthetase, and in experiment T-5, extract from stationary 

phase cells was used. The addition of G-1-P to standard glycogen syn

thetase assays had very little effect on the amount of 14C.incorporated 



TABLE II 

EFFECT OF G-1-P ON THE INCORPORATION OF UDPG- 14C INTO GLYCOGEN 

Cells per ml µg Protein 

Incorporation of 
14c into Glycogen 

Experiment at Harvest -~r Assay Assay Time 
a b 

-G-1-P +G-1-P 

a 
b 

T-7 

T-5 

1. 05 x 105 

1. 3 x 106 

minutes 

105 20 

67 30 

Standard glycogen synthetase assay conditions were employed (see Methods). 

39.5 

18.3 

mµmoles 

35.2 

17.9 

Standard glycogen synthetase assay conditions were employed except that 5 µmoles of unlabeled G-1-P 
also were added to the incubation mixtures. 

\jJ 
f-1 



into glycogen in either experiment. At the beginning of each experiment, 

the ratio of unlabeled G-1-P to UDPG- 24C in the incubation mixtures was 

25. If the route of incorporation of .1.4 c had been via.G-1-P and phos

phorylase, the incorporation in tubes to which unlabeled G-1-P was added 

should have been markedly depressed. It may be concluded, therefore, 

that the incorporation of 1 4 c into glycogen in the glycogen synthetase 

assays is due to a direct transfer of glucose residues from UDPG to 

primer glycogen. 

Enzyme Levels as a Function of the Growth Phase 

In order to establish if the level of one or more of the enzymes, 

hexoki.nase, phosphoglucomutase, UDPG pyrophosphorylase, or glycogen syn

thetase, is increased in the stationary phase over the logarithmic phase 

of growth, the levels of these enzymes in the logarithmic and stationary 

phases of growth were compared. The results of such experiments are 

shown in Table III. Cells used to prepare enzyme extracts for each of 

the experiments were grown in.separate containers. If the level of a 

limiting enzyme increases in the stationary phase of growth over that in 

the logarithmic phase of growth, this could be a factor controlling the 

i~creased rate of glycogen synthesis in the stationary phase of growth 

compared to the logarithmic phase of growth. Table III shows that there 

is considerable variation in enzyme activity with respect to a single 

enzyme among the several experiments. This variation in enzyme activity 

among the experiments precludes any firm conclusions concerning relative 

levels of enzymes in logarithmically growing cells as compared to cells 

in the stationary phase of growth. In spite of the variability of 

enzyme activity among experiments, the data in Table III show that phos

phoglucomutase and UDPG pyrophosphorylase always exhibited 60 or more 



Growth Phase 

Logarithmic 

Stationary 

TABLE III 

COMPARATIVE ACTIVITIES OF ENZYMES ON THE PATHWAY OF GLYCOGEN SYNTHESIS 

Specific Activitya 

Phospho- UDPG Pyro- Glycogen 
Experiment Hex.okinase glucomutase phosphorylase Synthetase 

TPGA 

TPGC 

TPGD 

TPG14 

TPGE 

TPGF 

TPG4 

TPG13 

16 

10 

6 

5 

15 

280 

680 

660 

94 

146 

390 

540 

690 

89 

127 

1. 9 

9.2 

5.0 

0.4 

3,5 

1. 5 

o.6 

0.2 

a uµmoles/minute/mg protein 

\>I 
\>I 



times as high a specific activity as glycogen synthetase. Although in 

some experiments the specific activity of hexokinase and glycogen synthe

tase were very nearly the same, in other experiments hexokinase exhibited 

a specific activity several times that of glycogen synthetase. Therefore, 

if any of these enzymes are limiting in logarithmic cells, it would 

appear that glycogen synthetase would probably be the limiting enzyme. 

The hexokinase activity reported here is 3~ to 100-fold less than 

that reported by Warnock and vanEys (10) who used the same strain of 

the organism. The reason for the low values of hexokinase activity re

ported in Table III as compared to their value is not understood. This 

difference is particularly puzzling since the spectrophotometric assay 

used in these experiments is inherently more sensitive than the spectro

photometric assay (19) which they used. The latter assay measures the 

change in color of the indicator cresol red due to increased acid pro

duction during the hexokinase catalyzed reaction. The difference between 

the hexokinase activity reported here and that reported by Warnock and 

van Eys (10); however, has no direct bearing on glycogen synthesis from 

glucose since it has already been suggested that glycogen synthetase 

activity in T. pyriformis_i~ as low or lower than hexokinase activity. 

Potenti_al Importance of the Glycogen 

Synthetase Pathway for Glycogen 

Synthetase in.!..:_ pyriformis 

If glycogen synthetase is the limiting enzyme, the potential 

importance of the pathway of glycogen biosynthesis involving this enzyme 

may be estimated. For example, 4.124 g of dry 64.3 percent pure glyco

gen were isolated from 10 liters of growth medium containing 1. 3 x 106 

cells per ml at harvest. Because these cells had been grown for 5.5 
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days and were very fragile, it was estimated that approximately one- half 

of the cells were lost during harvest. Hence, twice the amount of glyco

gen actually obtained should have been obtained had no cell breakage 

occurred. The total glycogen content, therefore , was probably nearly 

5.3 g of pure glycogen per 10 liters of cells for 5,5 days of gr owth . 

In another experiment, one liter of medium was harvested when the cell 

concentration was 1,7 x 106 cells per ml. From this liter of cells , 

286 mg of protein were extracted which had a glycogen synthetase specific 

activity of 0.6 mµ moles per minute per mg protein (Experiment TPG4 of 

Table III). If the cells from which the glycogen was isolated contained 

the same amount of protein per cell and had the same specific activity 

as the cells from experiment TPG4, then 10 liters of cells would have had 

the capacity to synthe~ize 1.68 g of glycogen in 5.5 days. To obtain 

this number, it had to be assumed that glycogen synthesis per day was 

linear and that the specific activity of glycogen synthetase was constant 

throughout a 5.5 day period. These assumptions are not entirely valid. 

If the assumptions are reasonably close to reality, then the calculations 

indicate that the glycogen synthetase activity was high enough to account 

for about 32 percent of the glycogen synthesized. 

The glycogen synthetase specific activity observed in four different 

experiments employing extracts from stationary phase cells ranged from 

3-fold less to 6-fold more than the activity used in the above calcu

lation, The average glycogen synthetase specific activity of these four 

experiments was more than 2-fold greater than the specific activity used 

in the above calculations. The calculations, even with their assumpt ions 

and approximations, serve to indicate that the levels of the enzymes 

necessary to convert glucose into glycogen, as depicted in Figure 1, are 



sufficient to account for a large portion, if not all, of the glycogen 

produced by the cells. 

Effect of GSH and G-6-P on Glycogen Synthetase Activity 

Traut and Lipmann (20) have detected glycogen synthetase in a 

variety of organisms. They observed that stimulation of glycogen synthe

tase by G-6-P is a general property of the enzyme regardless of its 

source. In crude extracts of frog, turtle, lobster, and a preparation 

from Neurospora, Traut and Lipmann (20) established that activation of 

glycogen synthetase required the presence of a sulfhydryl compound. In 

addition, activation by G-6-P was dependent on the presence of a sulf

hydryl compound, such as GSH, in the reaction mixture. Glycogen synthe

tase from other sources such as lamb muscle were not stimulated by sulf

hydryl compounds nor was a sulfhydryl compound required to observe stimu

lation of activity by G-6-P. In agreement with other studies (21, 22, 

23, 24, 25), they found that the degree of stimulation of glycogen syn

thetase from different sources by G-6-P was variable. They found that 

variation was also frequently encountered in different preparations of 

the enzymes from the same source. 

The effects of G-6-P and a sulfhydryl compound, GSH, on glycogen 

synthetase activity of T. pyriformis are shown in Table IV. In all cases 

tested, stimulation by GSH was observed. Attempts to establish if G-6-P 

caused stimulation of glycogen synthetase alone and in the presence of 

GSH yielded variable results. In some experiments, however, stimulation 

was observed. These experiments indicate that glycogen synthetase in 

crude extracts of T. pyriformis has characteristics similar to those of 

the same enzyme isolated from some multicellular organisms. 



TABLE IV 

EFFECT OF GSH AND G-6-P ON..!'..:.. PYRIFORMIS 
GLYCOGEN SYNTHETASE ACTIVITY 

.i4c Incorporation 

Experiment 

Addition TPG A TPG4 TPGF 

a 
cpm 

Enzyme Alone 202 106 82 

Enzyme+ GSH 299 222 -- ... 

Enzyme+ G-6-P 214 139 163 

Enzyme+ GSH + G-6-P 360 274 280 

a 
Glycogen synthetase assays were conducted as described in Methods 

except that GSH and G-6-P were omitted. These two components were 
added to assays as indicated. The incubations shown all contained 
one mg of protein and were assayed for 30 minutes. In experiment 
TPGA extract from logarithmically growing cells was used, and in 
experiments TPG4 and TPGF' extracts from stationary phase cultures 
were used. 
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CHAPTER IV 

SUMMARY 

The occurrence of the enzymes hexokinase, phosphoglucomutase, uri

dine diphosphate glucose pyrophosphorylase, and glycogen synthetase was 

demonstrated in Tetrahymena pyriformis strain E and at levels sufficient 

to account for a significant amount, if not all, of the glycogen synthe

sized by the organism. The presence of the latter two enzymes was demon

strated to occur in Tetrahymena pyriformis for the first time. The 

direct incorporation of glucose- 14C residues from uridine diphosphate 

glucose- 14C into glycogen by cell-free extracts was demonstrated) thus 

establishing uridine diphosphate glucose as a direct precursor of glyco

gen in Tetrahymena pyriformis. In order to explore the possibility that 

the rapid rate of glycogen synthesis in stationary phase cells compared 

to logarithmic phase cells might be due to variation in the amount of 

one or more of the four enzymes required for glycogen synthesis from glu

cose, the relative amount of each of these enzymes as a function of 

growth phase was determined" Although variation in enzyme activity from 

one preparation to another precluded the conclusion that an elevation in 

the level of any of these enzymes is responsible for the increased gly

cogen synthesis in stationary phase cells, the activities of phosphogluL 

comutase and uridine diphosphate glucose pyrophosphorylase were a~ways 

high compared to hexokinase and glycogen synthetase activities. Gluta-
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thione was observed to stimulate glycogen synthetase activity. Although 

the results were variable, in some experiments glucose-6-phosphate stimu

lated glycogen synthetase from Tetrahymena pyriformis as has been demon

strated for the glycogen synthetase of some multicellular organisms, 
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