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General 

CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to present a method for finding 

the natural frequencies of a one dimensional distributed mass system. 

A general stiffness matrix is presented for a typical merhber. takihg 

into account the distribution of mass. By establishing equilibrium ·of 

forces at nodes and compatibility with the boundary conditions. the 

defining dynamic equations for the frame are obtained. 

It is assumed tµat each element of the structure ·is of constant 

cross-section and has uniform distribution of mass per unit length. 

All end forces (including moments) and end displacements (including 

rotations) are denoted by vectors, and are designated positive in ac

cordance with the selected reference axes. 

The general theory is applied to typical rectangular frames 

with the bases either fixed or pinned. A typical frame is analyzed 

with both sets of boundary conditions, and the first five frequencies 

for each case are tabulated for comparison. All symbols are defined 

where they first appear. 

A lumped mass approximation to the distributed mass system 

for the dynamic analysis of structures yields reasonably good. results 
(: 

for the lower modes of vibration(l); however, in order to find theo-

retically exact solutions the distributed mass properties of actual 

structures need to be considered. Darney (2) found the natural. 
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frequencies of continuous beams using determinants. In 1933, 

Hohenemser and Prager(3) developed a method for dynamic analysis 

closely allied to the slope-deflection method for static analysis. 

Holzer(4) presented a method for finding torsional frequencies, which 

has been generalized a.nd extended to flexural problems by Myklestad (5) 

and Thomson(6). 

The application of transfer matrices to vibration analysis has 

been presented by Marguerre(7) and Pestel(8). A relaxation-type sol

ution has been shown by Gaskell(9), which utilizes some principles of 

moment distribution as set forth by Cross(l 0). Looney(ll) and Veletsos 

and Newmark(12. 13) made further contributions in this area. An 

approach, similar to the presentation in this thesis, has been presented 

by Laursen. Shubinski, and Clough(14 ). 



CHAPTER II 

BASIC THEORY 

Longitudinal Vibrations 

A general axial stiffness equation is assumed, relating the 

end forces and end displacements for a typical member m (Fig. 2. 1) 

or 

where 

p~ 
m lX 

6~ m lX 

mk:1:1 
m lJXX 

p~ = mk~ mk:1:1 6~ m lX m llXX m lJXX m lX 

---·-- ---·---·- . -----·--·------· --------· 

m 

:::: 

= 

= 

p~ mk1::1 mk1::1 6~ 
JX m JlXX m JJXX m JX 

x-component of force at end i of member m in the m- · 
reference system, 

(2. 1) 

x-component of displacement at end i of member m in the 
m-reference system. 

element of stiffness matrix; x-component of' force at end i 
of member m in the m-reference system due to a unit dis
placement in the x-direction at end j of member m in the 
m-reference system, 

The remaining elements are similarly defined. 

3 



P m. 6m_ 

m 1x // (m) (D m Jx m 

m6~ ---- CD ~,, ========~=====:J--P-1:Il __ ____::_: _____ x 

L m JX 
~ _____ __m __ _ 

FIG. 2. 1 - TYPICAL ELEMENT SHOWING CONVENTION FOR 
AXIAL FORCES AND DISPLACEMENTS 

4 

Considering longitudinal forces and displacements of q. typical 

member. the wave equation for longitudinal vibrations is (1) 

(2. 2) 

where 

A = cross-sectional area 

E = modulus of elasticity 

m = mass per unit length 

u ::: longitudinal displacement. 

Separation of variables yields two uncoupled equations. Utilizing 

duplicate sets of boundary conditions. the stiffness matrix is evalu-

ated. 

•mKm, 
· rn xx 

.. _! 
= EA 

L [ YL cot yL 

L-yL csc yL 

-yL csc yL l 
YL cot YL J 

(2. 3) 
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where 

and each parameter is understood to be for member m. 

Transverse Vibrations 

Similarly to the consideration for longitudinal vibrations, a 

flexural stiffness equation is assumed for member m (Fig. 2. 2). 

P:11 ::: mk:1:3- mk:1: mk~ mk~ o:11 m 1y m nyy m nyz m lJYY m lJYZ m 1y 

P:11 mk~ mk:1:3- mk:1: mk~ o:11 m lZ m nzy m llZZ m lJZY m lJZZ m. lZ 

---····· ----·--·· ...• --L- - . - ····-

P1:1 mk1? mk1? mk1? mk~ 01:l m JY m JlYY m JlYZ m JJYY m JJYZ m JY 

~ mk1? mk1? mk1? mk1? o1:1 m JZ m J1zy m JlZZ m JJZY m JJ zz m JZ 

or 

P:11 = mK:1: mK~ o:11 m 1 m 11 m lJ m 1 

P1:1 mK1? mK1? o1:1 m J m Jl m JJ m J 

In compact form 

[mpm] = [:Km] [ mom] (2. 4) 

where 



= element of stiffness matrix; z-component of force at end i 
of member m in the m ..;reference system due to a unit y
component of displacement at end j of member m in the 
m-reference system, 

The remaining elements are defined as for Eq. (2. 1 ). 

6 

For the case of pure bending, a fourth-order partial differential 

equation is obtained, 

4 2 
~_y +~ ~.Y_ = 0 "ax4 EI ~ 

(2. 5) 

Separating variables and utilizing the duplicate boundary conditions, 

the force-displacement relations are established, 

P:11 = EI 
12 {31 6L {32 -12 (3 6L {34 o:11 , (2. 6) 

m 1y Ii 3 m 1y 

P:11 6L {32 4c f3 -6L (3 2c f3 o:11 
m lZ 5 4 6 m lZ 

P1:1 -12 (3 -6L (3 12 {31 -6L {32 01? m JY 3 4 m JY 

P1:1 6L {34 2-C f3 -6L {32 4JJ {35 61:1 
m JZ 6 m JZ 

where 

{31 = f>i.L)3 sin AL cosh AL + cos AL sinh AL 
12 1 - cos AL cosh ~L 

f32 
(AL) 2 sin AL sinh AL 

·-
6 1 - cos XL cosh XL 

f33 = (AL) 3 sin AL + sinh .. AL 
12 1 - cos AL cos XL 



7 

= (AL) 2 cos AL - cos AL 
(3 4 -6- 1 - cos AL cosh AL 

f35 = 
38 AL cosh AL sin AL - sinh AL cos AL = 4 1 - cos XL cosh XL 

AL sin AL - sin AL 
::: 

-2- 1 - cos XL cosh AL 

e ~2 
= AL (coth AL - cot AL) 

= Ai (csc AL - csch AL) 

and 

2 1 
A - (~i )4 

Also 

E -· modulus of elasticity 

I :: moment of inertia of the cross-section with respect to 
the axes of bending 

rn - mass per unit length 

L - length of member 

p -· circular frequency 

A. ::: shape parameter. 

All parameters are understood to be for member m. 



zm 
m ~ 

m 6iz .,/ 

mp~// ~ 
(D (m) ~m jz 

mp~ I :ify 
6~ 

m JZ 

o~ om I 
m 1y L m jy t 

----·· ... -·····---------·· ---······-·--···-~ 

ym 

FIG. 2. 2 - TYPICAL ELEMENT SHOWING CONVENTION FOR 
FLEXURAL FORCES AND DISPLACEMENTS 

8 

Combining Equations (2. 3) and (2. 6). a final dynamic stiffness matrix 

for member m is obtained. 

[:Km]= 
EI (L? 0 0 

L2 0 0 (2 0 7) ""3" r al -(r) a2 
r:; 

0 12,81 6L,B2 0 -12 .83 6L,B4 

0 6L,B2 
2 

4:r.:; .85 0 -6L,B4 2L 2 ,86 

L2 -<r) a2 0 0 L2 
(r) al 0 0 

0 -12,83 -6L,B4 0 12,81 -6L,B2 

0 6L,B4 211 ,86 0 -6L,B2 4J,a5 

where 
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al = YL cot yL 

a2 = YL csc YL 

y = (*)~ = A2r 

r = (}){ 

Transformations 

For planar structures. the necessary transformations are 

confined to angular transformations only. This type of transformation 

is common (.15); thus, its derivation is not shown here. 

Consider the final matrix equation of a typical member m 

in the m-reference system. 

or 

P:Il 
m 1 

P1:1 
illJ 

mK1:_1 
m Jl 

mK1::1 
m JJ 

6~ 
m 1 

61:1 
mJ 

(2. 8) 

If the displacements are expressed in a different reference system 

"o". Eq. (2. 8) becomes 

p~ = m 1 



or 

where 

[m 0f J = 

[np1 = 

10 

(2. 9) 

element of stiffness matrix; effect at end i of member m 
in the m-reference system due to a unit cause a:t end j 
of member m in the a-reference system. 

end force vector at end i of member m in the m-reference 
system 

end force vector at end j of member m in the m-reference 
system 

deformation vector at end i of member m in the a-reference 
system 

deformation vector at end j of member m in the a-reference 
system 

composite force matrix of member m in the m-reference 
system 

composite stiffness matrix of member m in the mixed m 
a-reference systern 

composite deformation matrix of member m in the o
reference system. 

If the force vectors are also tran~lformed to the o-reference systemJ 

Eq, (2, 9) takes the form 

P?l:-; OK?. OK?. 
m 1 I m 11 m lJ 

_mPrJ OK?. OK?. 
m Jl m. JJ 

or 



where 

11 

(2. 10) 

element of stiffness matrix; effect at end i of member m in 
the o-reference system due to a unit cause at the end j of 
member m in the a-reference system, 

end force vector at end i of member m in the a-reference 
systerno 

composite force matrix of member m in the a-reference 
systemo 

composite stiffness matrix of member m in the a-reference 
systemo 

For member m, the angular transformation matrix from the 

o- to the m-reference system is 

where in this case 

o m cos cp 

. ornm -sin 't' 

0 

Therefore, 

o m cos cp 

0 

(2 0 11) 

0 

0 

1 
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Substituting 

(2. 12) 

which implies 

(2. 13) 

For a structure composed of several members, a matrix equa

tion is written in the primary (member) reference systems, which 

includes the force-displacement relations for each member. 

GpiJ 
[jpjJ 
1; 

[kp~ 
t1P1] 

or 

= 

[1Kj] 

[~Kj 

[iKl] 

[ i6i] 

[ lj] 

[k61 
[ 161] 

(2. 14) 
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After transformation to an absolute reference system (all elements 

referred to the same system) 

= 

LPOJ [~Ko] [ ioo] 

Gp0J ITKO] [joo] 

[kpo] [~Kol [k6°J 

fipo] [fKo] [ 16cJ 

or· 

(2. 15) 



where each element of Eq. (2. 15) is transformed ;in accordance 

with Eq. (2. 12), 

In order to establish equilibrium at the nodes (joints), the 

corresponding force components in Eq. (2. 15) are summed by 

adding appropriate rows. For compatibility of displacements, 

certain displacement components in Eq. (2. 15) are the same; thus, 

the appropriate columns are superimposed. The resulting matrix 

equation represents equilibrium and compatibility of the structure. 

Thus 

where no external forces are applied. Then 

for non-trivial solutions 

thus, the determinant of the coefficient matrix must vanish 

14 
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General 

CHAPTER III 

APPLICATION 

The application of the theory developed in this thesis is 

shown for a rectangular planar frame with distributed mass 

(Fig. 3, 1). Two types of boundary conditions are considered: 

both ends fixed, and both ends pinned. 

In general, a transformation of joint displacements for 

the frame can be written 

[1°~] 

G0 i J 
G0 i] 

Go~J 
Go~J 
'30~] 

•. - - t 

= [lTT OJ [ O J [ 0 ][ 0 ][ 0 J [ 0 J 
[ O JETT 0] [ O J [ O J l O J [ O j 

[ 0 ][ 0 J ~TT 0J[ Q ][ 0 J [ 0 J 
.... < 

[ o ][ o J[ o J~TT 0][ o J [ o J 
..... 

[ 0 ] [ 0 J [ 0 J [ 0 Jr TT~ [ 0 J 
[ 0 ][ 0 J [ 0 J [ 0 ][ 0 J ~TT OJ 

[10~ J 
[ 16~ J 
[20~] 

[20~ J 
[30~] 

J~ 3 6~ l 

(3. 1) 

A modified transformation matrix can be obtained by introducing 

displacement compatibility at all joints, including compatibility 

with support conditions. Thus, 

15 
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(3. 2) 

where 

[ m~~= 

[io ]= 

joint displacement matrix in the member refe.rence 
system. 

modified angular transformation matrix. 

modified displacement matrix in the a-reference 
system. 

EI, A, m 
I . __ l aL 

~-----. .. L __ ···-·-1 
FIG. 3. 1 - R_ECTANGULAR FRAME WITH DISTRIBUTED MASS 

For the frame with bases fixed, support conditions require that 

1 I 3 i i 
16 0 '. = i 35 3 ! - ; 

.· _J .. J ' 

ol ··-J:o 1 =1, 
50 :=:. u3 . ' 

Modifying the transformation in accordance with these boundary 

conditions, the following relation is obtained. 

(3. 3) 
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[ 16i J = [lTT OJ [ 0 J [a~] (3. 4) 

[2°i] [2TT 0] [ 0 J [a~] 

La;J [ Q J PTTOJ 

Go~J [ Q J [3TT OJ 

Since no external forces exist, joint equilibrium is expressed by 

(3, 5) 

thus, 

(3. 6) 

The natural frequencies are determined by evaluating the shape 

parameter when the determinant of the coefficient matrix vanishes, 

For the frame with bases pinned, the stiffness matrix in the 

m-reference system for the bar with one end pinned can be modi-

fied. A bar m with end i pinned is shown (Fig, 3, 2), The force-

displacement relation at end j can be written 

CD CD 
============='="("=m=')"""""=--;;;;;::f.t------ xm 

/ ,, 

FIG. 3. 2 - BAR m WITH END i PINNED 
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P1? EI (L) 2 a 0 0 01? (3. 7) = 
L3 m JX r 1 m JX 

P1? 0 3{37 -3L {38 01? 
m JY m JY 

P1? 0 -3{3 3Cf3 01? 
m JZ 8 9 m JZ 

where 

f37 
2P,.L>3 cos AL cosh AL 

:::: 
sin AL cosh AL - cos XL sinh XL 3 

f38 
::: P·t>2 sin .AL cosh AL + cos \.L sinh \.L 

sin XL cosh XL - cos XL sinh XL 

f3g 
2(>..L) sin AL sinh AL 

::: 
sin XL cosh XL - cos XL sinh XL 3 

This modification permits the end displacement vector for the 

pinned ends to be eliminated from the formulation of joint equili-

brium equations, With these modifications and the same approach 

as previously discussed, Eq. (3. 6) can be obtained for the frame 

with pinned ends. 

Numerical Examples 

A rectangular frame with fixed bases is considered. Each 

member of the frame is assumed to be a uniform bar with constant 

circular cross-section, mass per unit length and moment of inertia. 

These properties are as follow: 

E = 30. 6 x 106 lb/in~ 

I = 34. 22822 x 10- 6 in~ 



m = 15. 2174 x 10- 6 lb-sec 2/in~ 

A::: 0,02074in~ 

L ::: 8 in, 

l L ::: aL = 4: in , , a = 0 , 5 

r ::: O. 0406 in, 

Diameter == 0, 1625 in, 

zo 

f yO t 
xl 

I 
3 @, (2) @ 2 

y ----r----~-............... ---=""'="~~--.------- x 

L = aL 
1 

I 
! ( 1) 

I 
I 

_t_. /// 
CD 

(3) 

yl 

-- ~S// © 
2L"' L 

--------~----·- ~----·- ·-·--~~~---·--·---

! x3 

L = aL 3 

FIG. 3, 3 - RECTANGULAR FRAME WITH FIXED BASES 

The modified angular transformation matrix (Eq, (3, )) is shown 

in numerical form by Eq, (3, 8), 

19 
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[m~o] = 0 -1 0 0 0 0 (3. 8) 

1 0 0 0 0 0 

0 0 1 0 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 
. -- ··-··------- --------

0 0 0 1 0 0 

0 0 0 0 1 0 

0 o o I o o 1 ---------,--- ---------
0 0 0 I O 1 0 

I 
! 

0 0 0 -1 0 0 

0 0 0 0 0 1 

(12)(6) 

. The stiffness matrix of the frame in the member reference systems 

is shown by Eq. (3. 9). After transformation, the modified stiff-

ness matrix for the frame in the a-reference system is given by 

Eq. (3. 10), which is the matrix utilized to determine the natural 

frequencies. 

The same problem as previously formulated, except that the 

end conditions are changed to pinned bases, is presented. Utilizing 

the modifications of the dynamic stiffness factors for the column 

members, the stiffness matrix for the frame in the m-reference 

systems, is written (Eq. (3.11)) a.ccorcli.ng to Eq.(2. 14). This 

matrix is transformed using the same angular transformation 

matrix Eq. p. 8). The final stiffness matrix in the a-reference 

system is shown by Eq. (3. 12). 



-L·. m;l= Elr. 1 ('L/ ( a) J L31? r 1 1 

12 
:;t1l\l 

' 6aL 
7C1/32l 

~<1ll2l 
a 

2 . 
4(ar) <11351 

• .c, 

L2 
(-;:) <2"'1 l 

L2 
-<rl "'2 

12(2/31) 

6L(2/32) 

-12(2/33) 

6L(2/34 ) 

6L(2/32) 

4L2(21l5) 

-6L(2/34) 

2L 2(21!6) 

2 
-<1;l C2"'21 

-12(21>3) 6L(2/34) 

-6L(2 /l4 ) 2L 2(2/!6) 

L2 
<rl <2"'11 

12<21!1) -6L/32 

-6L(21!2l 4L2(21l5) 

2 
lf''L) (3"'1} a· r-

12 
. ;i-C3ll1 l 

~(31!2) 
a 

{3o 9) 

6aL 
7<313zl 

2 
4(<>!3') (3135) 

" 
12 x 12 

t-:l 
I-' 
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[OKOJ= 2 I 
3(11\) _ 6aL ( .B ) 
ll' 0 '""""]'"" 1 2 

L2 ll' 

+ <r> <2a1) 

1 &L 2 

0 
~ C-:-r-> · Ci al> 

6L(2132) ·a,. 

+ 12(2.81) 

2 

_ 6aL ( ,8 ) 
4(a1) <1135) 

6L(2132) ll' 
'""""]'"" 1 2 

ll' 2 + 4L (2135 ) 

L2 
-(r) <2a2> 0 0 

0 -12(2133) -6L(2 .f34 ) 

6L(2.B 4) 
2 

0 2L (2.85) 

L2 
-(r) <2a2) 0 

0 -12(283) 

0 -6L(213 4) 

12 
3(3.81) 0 
ll' 

L2 
+ <r> <2a1) 

1 I., 2 

0 
~ <r> C3a1 > 
ll' 

+ 12(2.81) 

6aL ( .B ) 
~ 32 -6L(2.B2) 

ll' 

(3. 10) 

0 

6L(2 134 } 

2 2L (28 6) 

_ 6&L ( l3 ) 
'""""]'"" 3 2 

ll' 

6L(2.B2) 

2 
4L C2.B5) 

2 
+ 4(ar) (3.B5l 

ll' 

6 x 6 

ts:) 
ts:) 



-f m~}.2 l L 2 
·,f;> <1"1>-

a 

3(1/37) 

-3L(_i/3sl 

-3L(l/38) 

3L2(1/39l 

L2 
~) C2a1l 

-(i:l2(2a2) 

12(2/31) 6L(2 /32 ) 

6L(2/32l 
2 

4L (2 /35 ) 

-12(2/33) -6L(2B4 ) 

6L(2/34 ) 2L2(2/36) 

2 
c(i:l (2"21 

L2 
<r> "1 

-12(2/33) 6L(2 /34l 

-6L{2 /3~) 2L2c21\l 

12(21\) -6L(2 S2 ) 

-6L(2/32) 4L2(21l5l 

l L 2 
~(r) (3a1l 

(3o 11} 

3(387) 3L(3 tl8 l 

3L(3/38 ) 3L 2(3S9J 

12 x 12 

NJ 
c,., 



[ oKo]= 2 I 
3 

"""'3 ( 1137) 
0 -3L(1138 ) a 

L2 
+ <r-l al 

12(2131) 
0 

1 L 2 
6L(2 132 ) 

+3(r) (lal) 
a 

2 
3L (1139) 

-3L( 1138 ) 6L(2 132 ) 
2 

+4L (2/\) 

L2 
-(r) <2a2) 0 0 

0 -12(2133) -6L(2 134 ) 

0 6L(284 ) 2 
2L (2 136 ) 

L2 
-(rl <2a2J 0 

0 -12(2133) 

0 ~6L(2134 ) 

3 
3 (3137) 
a 

0 
L 3 . 

+(r) <2a2) 

12(2/\l 
0 

3 
+3 139 

a 

-3L(3138 ) -6L(2132 ) 

(3. 12) 

0 

6L(2/34) 

2 
2L (2 136 ) 

-3L(3138 ) 

-6L(2/32) 

2 
4L (2135 ) 

2 
+ 3L (3 139 ) 

6 x 6 

t'v 
>+'>-
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Eqs. (3. 10) and (3. 12) are the coefficient matrices utilized 

to find the natural frequencies, iri accordance with Eq. (2. 17). 

The numerical calculations are performed by the IBM 1410 Electronic 

Computer. Crout's method is used to expand the determinants of 

the characteristic matrices. The lowest five natural frequencies 

are obtained for each case, from the values of the shape parameter 

AL which makes the determinant in Eq. (2. 17) vanish(16 ). The 

final values of the shape parameters AL and natural frequencies for 

each case are tabulated for comparison (Table 1 ). 

TABLE 1. NATURAL FREQUENCIES-RECTANGULAR FRAME 

-· - - -· - --·-· -- --· -·-··- -- --- . ··-·. -- ···-- . .. -

Mode Fixed Base Pinned Base xr., ·---- - f (cpsy·-"' XL f (cps) 
-· 

--'==. ·-···· 

1 3.0280 180 1. 42 3 3 41 

2 4.0580 339 4.0430 337 

3 4.6864 452 4.6842 451 

4 6.7901 951 7.8351 1266 

5 7. 7114 1227 7.8406 1268 
-· ----- ···----



Summar_y 

CHAPTER IV 

SUMMARY AND CONCLUSIONS 

The dynamic analysis of a rectangular planar frame, con

sidering uniform distribution of mass and constant cross-section, is 

presented. A stiffness formulation is utilized to obtain the final 

equilibrium equations. 

A general stiffness matrix for a single member is derive.d, 

including the effects of axial and flexural deformations. An expres

sion is obtained relating all end forces and displacements for the 

frame by combining these independent equations into a composite 

matrix equation. From the compatibility conditions of joints and 

supports, a transformation matrix is obtained. Using this trans

formation matrix, joint equilibrium is established. 

The frequencies are obtained by evaluating the shape para

meters AL which cause the determinant of the characteristic matrix 

to vanish. Numerical examples are worked out for symmetrical 

rectangular frames with fixed bases and pinned bases. The first 

five frequencies for these cases are tabulated for comparison. 

Conclusions 

The stiffness method can be used directly for the vibration 

analysis of planar frames. Displacement compatibility and force 

equilibrium can be established using basic transformations. The 

26 
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necessary angular transformation matrices are the same as for static 

analysis. 

The accuracy of this method depends on the increment of the 

shape parameter in the incremental process of evaluating the deter

minant, and the computing facilities available, The stiffness matrix 

elements are qui.te complex; however, they can be evaluated with 

the aid of an electronic computer. 

The theory presented in this thesis is directly applicable to 

the frequency analysis of any planar structure, Extension to include 

the analysis of three dimensional structures can be attained with 

minor additional complexities. 
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