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CHAPfER I 

INTRODUCTION 

De localization of electrons between phosphoryl groups and (X, S -

unsaturated linkages had not been examined previously in detail by means 

of ultraviolet spectroscopy. Compounds containing adjacent C=O, C=N, and 

c=c seemed attractive as functi.onal groups capable of electronic inter­

action with the phosphoryl function. It was anticipated that by exami­

nation of the acylphosphonates and their corresponding (2,4-dinitrophenyl)­

hydrazone (DNP) derivatives some insight could be· gained ~oncerning 

the ground state geometric requirements with respect to the dihedral angle 

between the plane of the phosphoryl group and the plane of the P-C=X 

atomso 

1 



CHAPrER II 

HISTORICAL 

Ultraviolet Spectroscopy 

When a molecule absorbs ultraviolet light, an electron is excited to 

one of the unoccupied, antibonding orbitals of the molecule. A loosely 

held electron in a TI orbital may easily be excited to an antibonding TI 

(rt*) orbital having higher energy. 

x x y 

/Y 

H"'Q\ Jl>H 
"""· 

/ / 
c C ·-Z 

H<f ~H 

rr orbital TT * orbital 

UsuallyTI--+rt* transitions are very intense as demonstrated by large molar 

absorptivities (emax.) 10 ,ooo). The bands produced by n-rr* transitions 

within the near-ultraviolet are called K-bands. Conjugation of double 



bonds y such as in butadiene and in acetophenone,, shifts TT -n* bands to 

longer wavelengths and increases their number and intensity. Further 

extension of a conjugated system produces regular shifts to longer wave­

lengths (i.E, 29). 

Because of the symmetry of aromatic systems, the transition to a 

homopolar excited state is 11 forbiddenn and can occur only with low in­

tensity (emax. = 250-3,,000). 

'V (B) 

3 

The loand produced by the above transition is called the B-band. Tran­

sitions to various vibrational energy levels impart fine structure to the 

B-ba.nd. In a conjugated system of a hydrocarbon the excited state re­

sulti.ng from a TT-11* tra.nsit:i.on is said to be more "polar11 than the 

ground state due to the increased separation of the electrons from the 

nuclei to which they are bound ( 12, 21, 27, 29). 

Electron-donor substituents are known as auxochromesJ and they effect 

a bathochromic shift upon TT---j.'tf* transitions. Electron-accepting sub­

stituents oppose the vaca.ting of' a low-energy TI orbital. Consequently, 

more energy is required for the transition, and a hypsochromic shift is 

observed (12). 
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Transition of a nonloonding(n) eleetro:ri to 11"* (n-.:rr*) may be illus-

tra.ted by the transition of a. nonbonding electron of the oxygen atom in a 

carbonyl group to a TT* orbit.al ;of-',the, c.mibo.nyl ;gz,aup. 

.......... 
/c . . 

n 

0 

x 

c 0 . .. 

n* 

A n--+n'II- transition produces a band called the R-ba.nd (e:.max. .. <100) (12., 2;~). 

Steric hindrance to copla.na.rity of a conjugated group usually raises 

the energy of the excited .state more than the energy of the ground state. 

The required higher transition energy produces a. hypsochromic shift which 

increases as the steric hindrance to copla.na.rity increases. For even a. 

slight hindrance to coplanarity., a large hypochromic shift is often 

observed (12). 

Ultra.violet Absorption of Ketones, Aldehydes, and Certain Derivatives 

Isolated ketone groups absorb in the near ultraviolet at 270-285 mµ 

(ema.x. (100) while isolated aldehyde groups absorb in the region of 280-300 

m µ. (2$) • Donation of electrons from the methyl group by. resonance inter-

action ra-ises the energy of then·* orbital relative to that of an n elec­

tron; consequently in cyclohexa.ne., acetone bas maxim.um absorption (A.max.) 
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at 277.5 IDµ.(l0gemax •. ,;; L.11) 111hileiXmax,. ,for acetaldehyde ,is 290 mµ(log 

e max. ::::: 1.23) (21). The absorption maxima of isolated ketones, R-bands, 

exhibit a hypsochromic shift with increasing polarity of solvent (19). 

Unsaturated groups in conjugation with an ethylenic linkage display 

a strong K-band in the region of 215-250 mµ.(emax. = l0»000-20JOOO). Also 

a weak R-band appears in the region of 300-350 mµ.. The two bands are 

shifted toward one another as the polari.ty of the solvent increases (29). 

C=C--C=O 

TI 

+ 
C-C= C-0 

* TI 

Benzaldehyde has K-, B-, and R-bands at approximately 248 mµ.., 280 mµ.,1 

and 3:28 mµ., respectively (10;). Benzophenorie in ethanol has K- and R-bands 

at approximately 252 mµ.(emax. = 20,000) and 325 mµ.(ema.x. = 180), respectively 

(29). The R-bands of aryl ketones are found at longer wavelengths than 

those of aliphatic carbonyl compounds (12). 

No K-band (rr~rr*) is observed for a-diketones such as 2,3-butanedione. 

Besides the expected R-band (n ...... rr*) at 286 mµ.(log e:max. = 1.39) in ethanol,, 

2,3-butanedione di.splays a series of bands in the region of 420-450 mµ.(e:max..-

20) (27 J 29). HoweverJ benzil in ethanol has the expected K-band at 250 mµ. 

(log emaxo = 4 .20) and the expected R-band at 370 mµ.(log e max. = 1.89) '(J7), 
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Compared to the K- and R-bands of benzophenone in ethanol, the corresponding 

R-ba...~d of benzil has undergone a bathocbromic shift. 

TI * TT 

Leonard and Mader (24) studied the influence of steric configuration 

on the ultraviolet absorption of alicyclic 1,2-diketones having different 

ring sizes. The position of the R-bands of these diketones was found to 

vary in a regular fashion with the dihedral angle between the plane de-

fined by one carbonyl ~arbon and : its substituents and the plane def ined · by 

the next r·carbonyl 1c~rbo:p. with its substituents. As the angle became larger 

or smaller than 90°, the band experienced a bathocbromic shift. Overlap of 

p orbitals between the two carbonyl groups was greatest when the angle was 

o0 or 180°. The dihedral angle in benzil was postulated to be 90° (27). 

However, three of the cyclic ketones having dihedral angles greater than 

90° displayed wavelength maxima lower than 370 mµ. (27). 

Barany and co-workers (3) reported that the monooxime and the mono­

hydrazone of 2,3-butanedione in ethanol had>.. max. at 229 mµ.(emax. = 13,000) 



and at 275 mµ(ema.x. = u~;5oO)j respectively. These K-bands must involve 

an im..i.ne bond since the parent compounds have no K-bands. 
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Although the position of the 'X. .max. of (2,4-dinitrophenyl)hydrazones 

varies slightly with alkyl substitution of the parent carbonyl group, 

approximate assignments for the (2,4-dinitrophenyl)hydrazones of saturated 

and a, ~-unsaturated carbonyl compounds list~.= 360 mµ.(emax. = 20 ,000) 

and Amax• = 380 mµ.(emax. = 25 ,ooo), respectively (27). The D~P frbm ; · 

propionaldehyde has an approximate -x..max. = 340 nµ (log e·ma.x. =· 4 .35) (2·5). 

The DNP derivative of acetophenone in ethanol has A max. = 376 irµ.(log 

e max. = 4 .38). 

Ultraviolet Absorption of Some Phosphorus Compounds 

Involvement of d orbitals of phosphorus in n·bonds may be divided 

into two classes: (a) formation of such n· bonds between a phosphorus atom 

and another atom or group, such as oxygen, an unsaturated group, or an 

aromatic group, and (b) the conjugation of two chromophoric groups through 

a phosphorus atom. Evidence appears to show that formation of dnbonds by 

expansion of the valence shell of phosphorus does occur when, and only when, 

the phosphorus atom, without multiple bonds, would be positivel y charged. 

The energy required to remove an electron from a substituent in tetra­

substituted phosphorus compounds approximately equals the energy released 

by placing the electron into one of the 3d orbitals of the positive 

phosphorus atom. The positive charge on phosphorus not only increases the 

energy required to remove ad electron from phosphorus (its orbi tal energy) 

but also increases the overlap integral by pulling an electron i n this 

orbital closer to it. Consequentl y, pn-dn bonding is the most probable inter­

action by which the formal charge of phosphorus can be neutralized (21). 
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Then bonds around a tetrasubst i t ut ed phosphorus atom do not couple 

very much with then bonds of phenyl groups (10, 20, 3i). The benzenmid 

spectra of the various mono-, di-, and triphenyl derivatives of tetra-

substituted phosphorus compounds in which phosphorus is part of a phosphoryl 

group are only mildly perturbed . It is sometimes possible to recognize 

the B-band as the one with closely spaced, discrete peaks. The slight 

conjugation between a phenyl ring and a phosphoryl group is recognized by 

the bathochromic and hyperchromic effects on the B-band, and particularly 

by t he bathochromi c effect on the pri mary band of benzene, normally at 

about 200 mµ. . The B-band in triphenylphosphi ne oxide displays a 11. max. and 

emax. of 265 . 5 mµ. and 2,420, respectivel y , while the corresponding values 

for benzene are 254.5 mµ. and 180 . The corresponding values for di phenyl-

phosphonic acid are 265-.0 mµ. and 1,200. Additivity of the effect s on 

molar absorptivity of several phenyl groups bound to the phosphorus atom 

indicates the lack of interaction between them (21). 

The electronic spectra of phosphoryl compounds having a vinyl group 

bonded t o phosphorus but lacking aromatic groups, display maxima in the 

same wavelength region and with approximately the same molar absorptivity 

as do simple olefins . For example 1-hexene has 11. max. = 180 m.µ.( emax. • 

11,000) . The corresponding values for a series of phosphoryl compounds 

having a vinyl group bonded to phosphorus are as follows : bis-(N,N-di­

methylamido)vinylphosphonate [174 mµ. (16,400) ], · di-n-butyl vinylphosphonate 

[177 mµ. (13,400)], and di-(n-butyl)vinylphosphine oxide [179 mµ.(14,600)]. 

The absorption maxima of the latter three compounds either remain unchanged 

or are slightly shifted to shorter wavelengths (no more than 6 mµ.). From 

the values given, it is apparent that emax. differs only slightly (f2) . 

The maxi mum for bis-(2-chloroethyl)vinylphosphine oxide in tetrahydrofuran 
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is at 215 mµ(emax. = 19) •. The wavelength position of this band, with very 

low intensity, is significantly removed from that of the series of the 

three vinyl compounds above. However, the spectrum of this compound was 

not recorded below 210 mµ (11). At present chemical evidence argues in 

favor of conjugation between vinyl and phosphoryl groups, but spectral 

evidence for conjugation is inconclusive (22). 

Jaffe and Orchin (~H) proposed that if oxygen is considered as lying 

on the z-a.xis of the central phosphorus atom, and if its two n orbitals 

interact with dxz and dyz orbitals of the phosphorus atom, then the axes 

of the remaining d orbitals of phosphorus also become fixed in position 

relative to oxygen. 

y y 

x x 

Consequently~ owing to the fixed position of the d orbitals, the rr orbitals 

of the three chromophoric substituents on phosphorus may not be properly 

oriented with respect to any of the five d orbitals of phosphorus for 

optimum overlap. However 1 some interaction of d orbitals of phosphorus 
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with TI orbitals of the chromophoric substituents is possible whatever 

the orientation of the chromophore plane with respect to the rest of the 

molecule. 

Conjugated sulfone groups are similar in many respects to conjugated 

pb.osphoryl groups. When the normally transparent sulfone group is con­

jugated with a multiple bond, as in ethyl vinyl sulfone and in divinyl 

sulfone, the molar absorptivities at 210 mµ. are approximately 450 and 2,200, 

respectively. The effect of the sulfonyl group on the spectrum of benzene 

in phenyl methyl sulfone is to shift the primary and secondary absorption 

maxima to about 217 mµ. and 264 mµ., respectively. Also, loge max. for the 

corresponding maxima are increased to 3.83 and 2.99, respectively. In 

diphenyl sulfone the primary absorption maximum is shifted to 235 mµ.(log 

em.ax. = 4.2). This band is thought to represent the excitation of the 

benzene sulfonyl group with interchange with the other phenyl group. Since 

the two benzene rings are known to be non-coplanar, the two p orbitals on 

the aromatic carbons attached to sulfur may overlap with lobes of the 

proper sign of the same 3d orbital on sulfur (26). 

Griffin and Polsky (19) reported evidence for strong conjugative 

effects in tri-2-pyrrylphosphine oxides. While the weak absorption of 

pyrrole and of N-methylpyrrole drops smoothly from 225 ~µ. to 300 mµ, in­

tense bands appear at 237.5 roµ(log e= 4.06) and at 248 mµ.(log e= 4.11) in 

95% ethanol for tri-2-pyrrylphosphine oxide (XVIII) and the N-methyl 

analog (XIX), respectively. The appearance of the new, intense band for 

XVIII and XIX is indicative of conjugative interaction between the 

phosphoryl group and then electrons of the pyrrole ring. 
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11 
I 
R 

XVIII. 

XIX. 

3 

P-+ 0 

R=H 

R=CH 
.3 
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Pyrroles substituted in the 2-position with carbonyl or phenyl groups dis-

play two intense bands, designated X and Y, at 228-252 mµ.(log e= 3.57-3.70) 

and 263-289.5 mµ(log e= 4.10-4.22). The single intense band in the spectra 

of XVIII and XIX is probably related to the Y-band. The hypsochromic shift 

displayed by XVIII and XIX relative to the 2-carbonyl substituted pyrroles 

indicates the degree of conjugation to be much weaker. However, the in-

tense band in both XVIII and XIX indicates conjugation of the pyrrole ring 

with the phosphoryl group to be much more pronounced than that of a phenyl 

ring with the phosphoryl group. 

Griffin and Brown (1'~) reported tp.at the ultraviolet absorption spec­

trwn of 2,5-diphenyl-3-furylphosphonic acid (XX) is similar to that of 

2,5-diphenylfuran (XXI). 
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xx XXI 

For XX the absorption maxima are 225 mµ.(ema.x. = 30,200) and 318 :mµ.(ema.x. = 

36,400), while the corresponding maxima for XXI are 226 nµ(emax. = 16,200) 

and 324 mµ.(ema.x. = 29,200). The hyperchromic shift for XX relative to XXI 

is consistent with the effect of a number of arylphosphonic acids and 

indicative of a weak resonance interaction between the phosphono group and 

the furan ring. The very weak hypochromic shift observed may be due to 

interference of the phosphono group with planarity of the 1,4-diphenyl-

butadiene system which is the main chromophore. Ortho phosphono groupings 

in the biphenylylphosphonic acids cause a similar disruption of planarity 

leading to a comparable effect on the absorption spectra. 

Cotton and Schunn (11) have studied the ultraviolet absorption of 

salts of dialkoxyphosphonylacetylmethanide ions (XXII) and of tetraalkoxy-

diphosphonylmethanide ions (XXIII) in tetrahydrofuran. The former compounds 

displayed much greater near-ultraviolet absorption than did the compounds 

containing single chromophores analogous to those in the separate canonical 

forms. 
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Eti<t~~)cl!C (P)ci:iJ { [caovco>]2(l1Jf 
XE:I :XXIII 

Consequently, the entire chrOJil.ophorte chain [::P(O)CHC(O)-]- must ~e 

responsible f~r the intense absorption. The maxima for (::P(O)CHP(O)-]-, 

~P(O)CHC(O)-]-, and [-c(O)CHC(O)-]:- are g7ven as 225. np;(e) 2,000) .,'-. 240 

mp;(e~8 ,000), and """'." 280 Jllj.L(e:::: 20 ,000), respecti'rely. The above data for 

the three linkages illustrate the much greater conjugative ability of 

carbonyl groups as compared to phosphoryl groups. 

Arbuzov a.nd co-workers ( 2) have show that the ultraviolet ·absorption 
. . 

spectrum of diethyl 2-cyclopentanon-1-ylphosphonate (:XXIV) in sodium 
I 

.' I 

methoxide-metha.nol displays a maxiJ!lum at 245 m~. This wavelength is 

given as evidence for the enol form, and the value compares favorably 

with xmax. for the §P(O)CHC(O)-J- linkage given above. 

XXIV 
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One would not expect XXIV to be in the keto form in inert solvents because 

diethoxyphospl}onylacetylmethane (XXV) has)..max. at 285 nµ(emax.:: 38) as 

expected for isolated ketones (11). 

xxv 

Ackerman and co-workers ( 1) in 1956 reported ultraviolet absorption 

data for two acylphosphonates, diethyl octanoylphosphonate and diethyl 

palmitoylphosphonate. In isooctane as solvent both phosphonates showed a 

double peak at 333 and 341 mµ.. The molar absorptivities were 59.04 and 

62.81 for the c8 and c16 derivatives, respectively. An extensive study of 

the ultraviolet absorption spectra of acylphosphonates was not made. 



CHAPI'ER III 

DISCUSSION OF RESULTS AND CONCLUSIONS 

The ultra.violet -spectra. of some substituted acylphosphonates, their 

2,4-dinitrophenylhydra.zones, a.nd two phosphine oxides were recorded. The 

object of this research was to examine conjugative effects of the phos-

phoryl group with three types of adjacent double bonds. The double bonds 

were ~C·~, ::c=N-, and :::c=c::. 

R" 

""'x 11 

- IC"- t 
R' P(OR) 2 

The acylphosphonates examined were as follows: diethyl acetylphos-

phonate (I), diethyl propionylphosphonate (II), diethyl cyclopentoyl­

phosphonate (III), diethyl cyclohexoylphosphonate (IV), diethyl benzoyl­

phosphonate (V), diethyl (~-tert-butylbenzoyl)phosphonate (VI), diethyl 

~-chlorobenzoylphosphonate (VII), and dimethyl ~-anisoylphosphonate 

(VIII). 
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I. 

II. 

III. 

IV. 

v. 

VI. 

VII. 

VIII. 

0 

rr 
c 

R / ~ P(OR 1 ) + 2 
0 

R 

CH.3 

C2H5 

Cyelopentyl 

Cyclohexyl 

C6H5 

p-(~. -C4H9) C6H4 

;,e-ClC6H4 

p-CH3oc6H4 

R' 

C2H5 

C2H5 

C2H5 

C2H5 

C2H5 

C2H5 

C2H5 

CH3 

The 2,4-dinitrophenylhydrazones examined were as follows: diethyl 
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acetylphosphonate (2,4-dinitrophenyl)hydrazone (IX), diethyl propionyl­

phosphonate (2,4-dinitrophenyl)hydrazone (X), diethyl cyclohexoylphos­

phonate (2,4-dinitrophenyl)hydrazone (XI), dimethyl benzoylphosphonate 

(2,4-dinitrophenyl)hydrazone (XII), dimethyl (;e-tert-butylbenzoyl)phos­

phonate (2,4-dinitrophenyl)hydrazone (XIII), dimethyl E-anisoylphosphonate 

(2,4-dinitrophenyl)hydrazone (XIV), and diethyl :e_-an:i.soylphosphonate 

(2,4-dinitrophenyl)hydrazone (XV). 
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R R' 

IX. CH 
3 .C2H5. 

x. C2H5 C2H5 

XI. Cyclopentyl C2H5 

XII. C6H5 CH3 

XIII. }!-(l-C4H9) C6H4 c~ 

XIV. ;2-cn3oc6H4 CH 
3 

xv. p-CH3oc6H4 C2H5 

The phosphine oxides examined vere diphenylvinylphosphine oxide (XVI) 

and diphenylpropenylphosphine oxide (XVII) • · 

o: 0' 

t 
(C6H5)2PCH=C~ 

t 
(C6H5)2PCH=CHCH3 

XVI XVII 



18 

The acylphosphonates were obtained by methods developed in this 

laboratory (5, 6, 7, 8). Repeated distillation and/or fractional 

crystallization was used to purify all compounds needed. Thin layer 

chromatography on silica gel with anhydrous acetone-chloroform was em­

ployed to check purity on all the acylphosphonates immediately before 

dilution with cyclohexane. The DNP derivatives in which the carbonyl 

group was bonded to a benzene nucleus were dissolved in methanol owing to 

their low solubility in cyclohexane. All compounds studied were carefully 

weighed to the nearest 0.0001 gram. The absorbance of the compounds was 

recorded within the wavelength region of 210 mµ. to 400 mµ., 

In the compounds studied there is strong ultraviolet spectroscopic 

evidence for conjugation involving adjacent phosphoryl and carbonyl groups. 

The R-band (n-n*) of the carbonyl group in the corresponding aliphatic 

aldehydes (observed in cyclohexane and isooctane) at 290-292.5 mµ appeared 

at 334-345 mµ in the acylphosphonates. A high-intensity absorbance, 

probably due to the bathochromic shift from approximately 188 mµ of the 

K-band of the carbonyl group being conjugated with the phosphoryl group, 

begins to sharply increase at about 220 mµ for I, II, III, and IV. This 

region is just outside of the range of the Cary Model 14 and the exact 

location of the band cannot be established. 

The K-band (n-n*) of the corresponding benzaldehydes (observed in 

cyclohexane or hexane) was observed at longer wavelengths ~Amax. of 17 to 

40 m~t) in the acylphosphonates, v~ VII,· and VIII,· than,,in ,the substitu-· 

ted be:i:1za.ldehydes. The expected increase in bathochromic shift with 

increasing mesomeric effect of a E-substituent on the K-band was observed 

as follows: E-H(:e-Cl( E-(!-C4H9) ( p_-cH3o. A high-intensity band, probably 

due to the bathocbromic shift of the 198 mµ band in benzene, appears at 
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increasingly higher wavelengths in the series following: VII ( VI ( VIII. 

In the series of (2,4-dinitrophenyl)hydrazones the conclusions con­

cerning conjugative effects between the phosphoryl and the imine group 

were not as evident as with the acylphosphonates. The DNP derivatives of 

I, II, and IV displayed intense bands in the region of 333 to 347 .5 mµ.., 

very similar in wavelength position and molar absorptivity to certain bands 

in the corresponding aliphatic aldehydes. The compound XII in methanol 

displayed an intense band at 360 mµ.(emax. = 25,000) while the Amax. for 

the DNP derivative of benzaldehyde in methanol was at 377 mµ.(emax. = 

21,900). The direction and :magnitude of wavelength change and band 

intensity, respectively, were not perfectly duplicated, but the general 

direction of change is consistent. 

In the two phosphine oxides studied, conclusive evidence for con­

jugation of the phosphoryl group with an ethylenic double bond is lacking. 

In both compounds the position of the original 198 mµ. band of benzene is 

moved toward longer wavelengths and the molar absorptivities of the maxima 

at 222 and 223 mµ. are more than twice the molar absorptivities of the same 

bands in benzene. In addition the characteristic fine structure of the 

B-band is observed in the region of 254 mµ. to 272 mµ. for both phosphine 

oxides. A slightly greater intensity of both bands is found in the spectrum 

of XVII relative to XVI. Any conjugative effect between the vinyl group and 

the phosphoryl group would probably be obscured by the bands due to the 

benzene nucleus. 

The four humps and/or shoulders on the bands at 334 mµ.(emax. = 52.3) 

and 340 mµ.( emax. = 71.5) for both I and II, respectively, closely resembled 

those in acetaldehyde (290 mµ., emax. = 17 .0) and propionaldehyde (292.5 mµ_, 

ernax. = 18.6) (23). In I, II, III, and IV the Amax. of the R-band displayed 
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a bathoohromic shift of approximately 44 mµ. in comparison with the alde--

hydes mentioned above. This shift is comparable in magnitude to that ob-

served fo:r acrolein with :respect to propionaldehyde, app:roxi.:m.ately equal 

to 37.5 (29). 

The postulated, pe:rpendieu.la:r orientation of the plane of the P-->- 0 

bond to the plane defined by the carbon atom of the carbonyl group and 

its two substituents ,(7) is supported by the bathochromic u.1.trav.i..olet 

shift observed with the acylphosphonates. 
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The situation is more favorable when the shifts are compared with the 

bathochromic shift. a..'11d hyperchromic effect of an axial a-halogen ttpon 

the n-+ rr* transition of an u..t1suhstituted cyclohexanone. The direction 

of the inductive effect of a halogen and/ or the P - O group would oppose 

the flow of electrons int@ the carbo:nyl·fun.ction. This effect should be 

greater fo:r the P-+ 0 group than the halogen atom. The i.nducti ve effect 
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of an O:'-equatorial halogen upon the n ... n.* transition lowers the energy 

of the ground state (27). The result is a hypsochromic shift of the R­

band, approximately 5 mµ, (21). An CY-axial halogen appears to have little 

inductive effect on the carbonyl group, probably because the inductive 

effect is overshadowed by the electronic interaction. Overlap of the 

orbital of the carbonyl group and a a orbital of the O:'-halogen is greater 

for an axial substituent (15). It must be admitted that the angle between 

the C-X bond and the C=O bond in axial a-halocyclohexanones is approxi­

mately 109°, whereas the postulated angle between the P--o )>lane. and . the 

plane defined by- the carbonyl group and its two substituents is 90°. The 

larger bathochromic shift upon the R-band by the phosphoryl group in com­

parison to that produced by an axial halogen in anO:'-halocyclohexanone is 

very likely related to the greater overlap of a nonbonding orbital from 

the phosphoryl oxygen with a TI orbital of the carbon atom of the carbonyl 

group in comparison to the overlap of a nonbonding orbital from the 

halogen atom .with a similar n orbital. 

The acylphosphonates containing a benzene nucleus on the carbonyl 

group displayed bathochromic shifts in the K-band (TI ... TI *) relative to 

the corresponding benzaldehydes. In these compounds, V, VI, VII, and VIII, 

the B-band apparently was obscured by the higher-intensity K-band. Chromo­

phoric substituents in the benzene nucleus often produce K-bands in the 

region usually associated with B~bands (approximately 240-260 mµ,) (17). 

An examination of molecular models of I and V revealed that when 

the plane of the phosphoryl group was perpendicular to the plane defined 

by the carbon atom of the carbonyl group and its two substituents, less 

overlap of van der Waal radii was observed than in any other orientation 

of the carbonyl group with respect to the phosphoryl function. 
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Examination of a molecular model of a DNP derivative XI indicated 

that when the phosphorus-carbon bond was rotat.ed until all nonbonding 

interactions were at a. minimum, the phosphory.l group was trans and coplanar 

with respect to the imine bond. In this conformation overlap b.etween an 

sp2-hybrid, nonbonding orbital of the oxygen atom in the phosphoryl group 

.with a. TT-orbital of the carbon atom in the imine .. group would be 

difficult. 

In the comparison of the spectra of the DNP derivatives with those of 

the acylphosphonates, the change in wavelength from the K-ba.nd of the 

carbonyl compound to the highest intensity band of the corresponding DNP 

derivative was significantly less than the 150 mµ. shift observed for most 

a,~-unsaturated carbonyl compounds. Perhaps the trans, coplanar confor­

mation of the imine and phosphoryl groups does not permit as extensive 

delocalization of electrons through the two groups. In analogy, it is 

thought that a-diketones resist 11- TT* transitions because both terminal 

oxygen atoms resist polarization in which one· of them acquires a positive 

charge (10). 

Conjugative effects between ethylenic and phosphoryl bonds have been 

postulated from chemical data in that nucleophiles attack in a. l,4-fashion, 

but direct spectroscopic evidence for an a,13-eonjuga.ted system is lacking 

(:22). In triphenylphosphine oxide. the ema.x. at 224 mµ. is 21,300 and the 

e.ma.x:. at 265 .5 mµ. is 2,420 (20). A strong hyperchromic effect on benzene 

bands, originally at about 200 mµ. (primary) and 255 mµ. (B-ba.nd), in tri­

phenylphosphine oxide may be due to resonance between the phosphoryl group 

and the benzene nucleus, although it is doubtful since the hyperehromic 

effect due to addition of benzene rings is additive (20). The molar 

absorptivity of XVII at 222 mµ.(emax. = 22,900). is approximately equal to 



23 

that of triphenylphosphine oxide while that of XVI at 223 mµ.(emax. = 17 ,400) 

is more than the molar absorptivity of diphenylphosphinic acid at 224 mµ. 

(emax. = 13,000) (20). Apparently the propenyl group does slightly affect 

the primary and the B-band of benzene. A small bathochromic shift (about 

7 mµ.) from the :X.max. of the B-band in XVI is observed. The :X.max. of XVI 

for the B-band is essentially the same as that for triphenylphosphine oxide. 

The slight perturbations due to the vinyl and propenyl groups upon the B-band 

of benzene may take place by way of conjugation with the d orbitals of 

phosphorus. 

In conclusion, strong ultraviolet spectroscopic evidence has be.en 

found for delocalization of electrons between adjacent phosphoryl and 

carbonyl groups.· By comparison of the ultraviolet absorption effects of 

the acylphosphonates with those of axial a -halocyclohexanones upon the 

R-band of a carbonyl group and by examination of molecular models of the 

acylphosphonates, support has been found for a perpendicular 

orientation of the P~b plane with respect to the plane defined by the 

carbon atom of the carbonyl group and its two substituents. It seems 

quite likely that a similar type of delocalization of electrons does occur 

I 
in the system ~P(O)-C=N. However, geometric requirements of the ground 

state for DNP derivatives may be important since syn and anti forms are 

possible and could change the degree of overlap between the phosphoryl and 

the imine groupings. The phosphine oxides studied did not allow good 

interpretation of any delocalization of electrons between adja~ent phos-

phoryl and ethylenic bonds owing to the phenyl groups. 
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TABLE I 

ULTRAVIOLET SPECTRAL DATA FOR THE DIALKYL ACYLPHOSPHONATES 

Com:.; Solvent Concentration r.max. . . '-1 log e:max. e.:max. x 10 . 
pound (moles/liter x 10-5) (~) 

I cyclohexane 948.0 345 4.89 1.689 

334 5.23 1.718 

322.5(s) 4.37 1.640 

II cyclohexane · 1020.u 352.5 4.98 1.697 

340 7.15 1.854 

330 7.07 1.849 

318.5 5.49 1.739 

III cyclohexane 787.0 340 6.17 1.790 

280(s) 2.57 'i.410 

IV cyclohe:xane 1840.0 345. 5.34 1.727 

279 4.01 1.603 

v cyclohexane 8.93 258 926.0 3.966 

VI cyclohexane 18.7 271 217 .o 3.336 

219 361.0 3.557 

VII cyclohexane 4.89 270 1500.0 4 .176 

217.5(s) 971.0 3.987 

VIII cyclohexane 8.85 295 433.0 3.518 

228 205.0 3.312 
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TABLE II 

ULTRAVIOLET SPECTRAL DATA FOR THE DNP DERIVATIVES 

Com- Solvent Concentration ~max. -3 log em.ax. e.max. x 10 
:pound (moles/liter x 10~5) (mµ.) 

IX cyclohexane 2.56 333 19.4 4.288 

274 28.2 4.450 

227.5 13.7 4 .137 

x cyclohexane 1.92 345 41.8 4.621 

252.5 21.7 4.336 

225 21.6 4.334 

XI cyclohexane 2.81 347 .5 23.9 4.378 

255 12.2 4 .104 

XII methanol 2.52 360 25.0 4 .398 

260 14.1 4 .149 

222.5 17.8 4.250 

XIII methanol 2.64 385 26.5 4.423 

266 24 .8 4 .396 

231 20.9 4.320 

XIV methanol 1.49 395 24.7 4.392 

268 40.9 4.612 

xv methanol 3.53 395 26.2 4 .418 

297 8.5 3.929 

234 17 .3 4.238 
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TABLE III 

ULTRAVIOLET SPECTRAL DATA FOR THE PHOSPHINE OXIDES 

Com- Solvent Concentration AID.ax. -2 log emax. emax. x 10 
pound (moles/liter x 10-5) (mµ.) 

XVI cyclohexane A 73.2 272 10.7 3.029 

265 12.3 3.090 

259 9.29 2.968 

254 6.82 2.833 

B 5.86 223 174 .o 4 .240 

XVII cyclohexane A 12.7 272 27.8 3.444 

265 27.0 3.431 

260 22.2 3.346 

254 17.3 3.238 

B 2.54 222 229.0 4.360 



CH.A.PrER IV 

EXPERIMENTAL 

Ultraviolet Spectrophotometer. The ultraviolet spectra were obtained 

on a Cary Model 14 recording spectrophotometer using quartz cells. The 

rate of change in wavelength was 0.25 mµ per second and the chart speed 

was two inches per minute. 

Spectral Determinations; General Information.- Spectral-grade cy­

clohexa.ne -was the solvent used for all compounds except the dialkyl acyl­

phosphonate (2,4-dinitrophenyl)hydrazones in which the carbonyl group was 

bonded to a benzene nucleus. The concentration of the maximum a.mount of 

the latter compounds in cyclohexane was too low to give good absorbance. 

Consequently, the (2,4-dinitrophenyl)hydrazone derivatives were dissolved 

in Baker analyzed reagent grade methanol (99.8 per cent purity) containing 

only 0.0003 per cent acetone. 

Thin Layer Chromatography Determinations; General Information. Thin 

layer chromatography (t.l.c.) on a 0.25 mm. thickness of silica gel with 

acetone-chloroform in the volume ratio of 1:9 showed only one spot after 

development with iodine vapor for each of the compounds examined. A micro­

liter pipet was used to apply the dialkyl acylphosphonate dissolved in 

methylene chlorideo Rt values were recorded for each of the above compounds. 

Compounds E:xaminedo The following compounds were obtained by methods 

developed in this laboratory ( 5, 6, 7, 8): diethyl acetylphosphonate (I), 

diethyl propionylphosphonate (II), diethyl cyclopentoylphosphonate (III), 

27 
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diethyl cyclohexoylphosphonate (IV)" diethyl benzoylphosphonate (V) 1 

diethyl (;e.-tert-butylbenzoyl)phosphonate (VI), diethyl (E_-ch;i.orobenzoyl)­

phosphonate (VII), dimethyl :E_-anisoylphosphonate (VIII), diethyl acetyl­

phosphonate (2,4-dinitrophenyl)hydrazone (IX), diethyl propionylphosphonate 

(2,4-dinitrophenyl)hydrazone (X), diethyl cyclohexoylphosphonate (2,4-di­

nitropheriyl.)hydrazone (XI), dimethyl benzoylphosphonate (2,4-dinitrophenyl)­

hydra.zone (XII), dimethyl (p_-tert-butylbenzoyl)phosphonate (2,4-dinitro­

phenyl)hydrazone (XIII), dimethyl E_-anisoylphosphonate (2,4-dinitrophenyl)­

hydra.zone (XIV) , diethyl E_-anisoylphosphonate (2 ,4-dini trophenyl) hydrazone 

(XV), diphenylvi:nyl:phosphine oxide (XVI), and diphenylpropenylphosphine 

oxide (XVII). The compounds listed gave the corresponding Rf' values on 

t.l.co chromatograms with a.cetone-chlorof'orm (1:9 ratio by volume): I 

(.39), II (.36), III (.42)J IV (.38), V (.40), VI (.38), VII (.39) and VIII 

( .34) • 
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