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CHAPTER I 

INTRODUCTION 

General 

Interest in the dynamic analysis of structural frames 

has been increasing over the past several years. In many 

cases, the standard method of static analysis of a structure 

undergoing dynamic loading is no longer considered adequate. 

For these cases new methods of analysis have been derived, 

or the methods of static analysis have been adapted for use 

in dynamic analysis. Some structural loadings for which 

dynamic analysis is being used are the vibrational loads 

produced by mechanical equipment, blast forces, and forces 

due to earthquakes. 

In general, the two approaches to the dynamic analysis 

of frames are the lumping of the mass of the frame at dis

crete points and the distribution of mass along the frame 

members. 

The purpose of this thesis will be to discuss the 

application of the method of stiffness coefficients for 

1 
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finding the natural vibrational frequencies of planar frames 

with distributed mass. 

The method of stiffness coefficients, in theory, is a 

practical and simple approach for finding natural frequencies 

of gable frames . The only difficulty in applying the theory 

to practical examples is the evaluation of complex mathe

matical expressions. This difficulty can be partly overcome 

by making use of electronic computers in evaluating the 

mathematical expressions. 

Scope of Discussion 

The basic theory, presented in the second chapter, is 

based on the following conditions and assumptions: 

(1) Frame members have their mass distributed 

along the length of the members. 

(2) Properties of the members; cross-sectional 

area, mass per unit length, moment of in

ertia, and modulus of elasticity are constant 

between joints of the frame . 

(3) Joints of the frame are taken at the base 

points and around the perimeter of the frame 

where there are changes in slope. 

(4} Axial and bending deformations are considered 

in the derivation of the basic expressions. 



(5) Shearing deformations and rotatory inertia 

effects are considered negligible. 

(6) No damping forces are considered. 

3 

In the third chapter the application of the basic theory 

is given for two gable frames. Both are symmetrical, but one 

has fixed bases and the other has pinned bases. Four numeri

cal examples are given for each frame. The mass per unit 

length, cross-sectional area, moment of inertia, and modulus 

of elasticity are constant values for all the frame me~bers 

and for all the example problems. In general, the lower 

natural frequencies are the most important; so, for each 

example, only the first four frequencies are found. A table 

is given with the frequencies for the example problems so 

that a comparison of the natural frequencies for the differ

ent base conditions and different ratios of column height 

and gable height to span length can be made. 

The last chapter gives a brief summary with some 

conclusions and limitations of the method. Also included 

is a brief discussion of possible extensions of the method. 

Historical 

According to historical information presented by 

Laursen, Shubinski, and Clough (1), the basi c differential 

equations governing the natural frequencies of framed 



4 

structures have been known for many years.(2) However, it 

is difficult to obtain solutions for the differential equa

tions except for the simplest of structures. A widely used 

approach which gives approximate solutions is lumping the 

mass of a frame at discrete points. This reduces the par

tial differential equations to ordinary differential 

equations, which can be solved much more readily. 

Among the earliest investigators to use the distributed 

mass properties of a frame were Hohenemser and Prager (3). 

Their approa ch is closely allied to slope-deflection analysis 

of static frames . Si nce this approach gives ~arge systems 

of simultaneous equations to solve, its usefulness was lim

ited before the era of electronic computers. The next 

step in the dynamic .analysis of frames was to adapt itera

tive, relaxation type procedures, corresponding to moment 

distribution in static analysis. This approach was investi

gated first by Gaskell (4) and then developed further by 

Veletsos and Newmark (5). 

In addition to this historical material, Laursen, 

Shubinski , and Clough (1), present a method of dynamic 

matrix analysis for the solution of natural frequencies of 

frames which takes into account the distribution of mass. 



CHAPTER II 

BASIC THEORY 

General 

The basic theory and general expressions required for 

evaluating natural frequencies of planar, single bay gable 

frames are set forth in several steps. First, the stiffness 

matrix for axial deformations and the stiffness matrix for 

flexural deformations of a typical frame member are given. 

The two matrices are then combined to form a general stiff

ness matrix for any member of the frame undergoing axial 

and flexural deformations. Also given in each of the above 

steps is a matrix force equation involving end forces, 

deformations, and the stiffness matrix for the corresponding 

element. Matrix force equations are written for each member 

of the frame, and these equations are combined into a single 

matrix force equation for the frame. 

In the last step of the basic theory development, a 

transformation matrix and procedure is given which will 

transform end forces, deformations, and the stiffness matrix 

5 
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of a member in the member-oriented reference system to some 

base reference system. The frame matrix force equation is 

then rewritten so all terms in the equation are with respect 

to the same coordinate system. 

Stiffness Matrix - Axial Deformations 

The stiffness matrix for dynamic axial deformations 

will be given for a typical member n, shown in Fig. l. As 

previously stated, the cross-sectional area, mass per unit 

length, modulus of elasticity, and moment of inertia are 

constant over the length of the member. 

Fig. 1 

Axial Forces and Deformations of a Typical Member 
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The resulting matrix equation for axial forces in terms 

of stiffness coefficients and axial deformations is as follows: 

n n n n n n (2.1) nPix = nKiixx nKijxx n6u: 

n n n n n n 
nPjx nKjixx nKjjxx n 6jx 

where the stiffness coefficients for axial deformations are 

defined as 
n n 
nKiixx = force developed at i in the x direction 

due to a unit deformation at i in the x 

direction. 
n n 
nKij:xx: = force developed at i in the x direction 

due to a unit deformation at j in the x 

direction. 
n n 
nKjix.x = force developed at j in the x direction 

due to a unit deformation at i in the x 

direction. 
n n 
nKjjxx = force developed at j in the x direction 

due to a unit deformation at j in the x 

direction. 

Equation 2.1 can be rewritten using shorter notation. +his 

gives Eq. 2.2, 

(2.2) 



where 

f n. Kn l = axial stiffness matrix for member n. Ln aj 
To develop expressions for the stiffness coefficients, 

a differential segment is taken from anywhere along member 

n. This segment, with the axial forces and deformations 

existing on the segment, is shown in Fig. 2. 

6xll rr o6x 
dx 6x + ox 

I I 
--1 

oNx 
Nx I ~ Nx + ox dx I 

- -I 

t 
~ 

dx l 
Fig. 2 

Axial Forces and Deformations Existing on a Differential 
Segment of a Typical Member 

n 
If the segment dx is from a member in a frame vibrat-

ing at some natural frequency, the only applied force on 

the segment will be the inertia force due to acceleration 

of the segment. Thus, force equilibrium can be expressed as 

(2.3) 



9 

Using Eq. 2.3 and the equation of deformation for the segment 

dxn the following differential equation can be derived (2). 

EA .oa&x 
or 

= m oa&x 
ot2 

(2.4) 

Solving the differential equation and applying the 

available force and displacement boundary conditions, the 

stiffness matrix for axial deformations is found to be; 

[:~ - ~ f yLcotyL 

~yLcscyL 

-yLcscyLJ 

yLcotyL 

Equation 2.5 can also be written as 
/ 

where 

y = (ii.a)! 
Cl'1 = yLcotyL 

a2 = yLcscyL 

a.a= I 
A 

and all parameters are understood to be for member n. 

Stiffness Matrix - Flexural Deformations 

(2.5) 

(2.6) 

The stiffness matrix for dynamic flexural deformations 
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will be given for a typical member n shown in Fig. J. 

The section properties for the member are the same as for 

the member used for axial deformations. 

n z 

Fig. 3 

n p . 
n JZ 

tP 
n jy 

Flexural Forces and Deformations of a Typical Member 

The resulting equation for flexural forces in terms of 

a stiffness matrix and flexural deformations can be written as 

(2.7) 
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where the asterisk superscript denotes flexural quantities 

only. Eq. 2.7 can be expanded to the following: 

* * n n n n n n (2.8) npi ·= nKii nKij. n 6i 

n nK~. n n n P. nKjj noj n J n J1 

where the submatrices of the stiffness matrix are defined as 

:K~i = flexural forces at i due to unit deformations 

at i 

n n = flexural forces at i due to unit de.formations K .. 
n 1J 

at j 
n n 
nKji = flexural forces at j due to unit de.formations 

at i 

n n 
nKjj = .flexural forces at j due to unit deformations 

at j. 

Eq. 2.8 can be further expanded to give 

n n n n :n n n nK1.1. n 
(2. 9) npiy = I( .. nKiiyz I( •. n6iy n 11yy n J.JYY n J.Jyz 

n n n nJG1 n n n n. n 
npiz nKiizy n iizz nKijzy nKijzz n°iz 

n n n n n n n nK1:. n 
npjy K .. nKjiyz K.j n6jy n Jiyy n J YY n JJYZ 

n n n n n n n n n n 
npjz nKjizy nKjizz nKjjzy K .. n6jz n JJZZ 

Defining only random terms from the stiffness matrix, 

= force at i in they direction due to unit 



deformation at i in the z direction. 

~I~jzy = force at 1 in the z direction due to unit 

deformation at j in they direction. 

:Ijiyz = force at j in they direction due to unit 

deformation at i in the z direction. 
n n ·· 
nKjjzz = force at j in the z direction due to unit 

deformation at j in the z direction. 

12 

To ~evelop expressions for the stiffness coeffici~nts, 

once again a differential segment in length is taken from 

anywhere along the length of member n. This segment, with 

the forces and moments ·which exist on the segment, is 

shown in Fig./+. 

n .--------j....... x 

Fig. I+ 

oV 
y +~dx 
x ox 

Forces and Moments Existing on a Differential 
Segment of a Typical Member 
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As in the case for axial defonnation, if the segment 

of length dxn is from a member in a frame which is vibrat-

ing at a natural frequency, the only forces acting on the 

segment will be those induced by the vibration. If forces 

in they direction are summed, moments about the z axis 

summed, and the condition of defonnation given by Eq. 2.10 

used, the differential equation for transverse vibrations 

of member n (Eq. 2.11) can be determined. This differ-

ential equation is developed by Timoshenko (2) and also 

by Rogers (6). Rogers also gives the expression for the 

stiffness coefficients of Eqs. (2.12) and (2.13). 

EI o4y 
ox4 

(2.10) 

(2.11) 

Solving the differential equation and using the avail-

able force and displacement boundary conditions to eliminate 

the. arbitrary constants, the stiffness matrix for flexural 

deformations becomes: 

* [~Kj ·= 
Er-. 
13 12131 61132 -12133 61134 (2.12) 

61132 412 13s -61134 212 13 6 

-12133 -61134 12131 -61132 

61134 212 136 -61132 412 135 



where 

and 

131 

132 

i3a 

134 

i3s 

Ss 

= {lL) 3 {sinlLcoshlL + sinhlLcosAL) 
12 (1 - COSALcoshAL) 

= {l1) 2 {sinlLsinhlL) 
6 (1 - cosALcoshAL) 

= {AL) 3 {sinlL + sinhlL) 
12 (1 - COSA.LCOShAL) 

= { lL) 2 {cosAL - coshlL) 
6 (1 - coslLcoshlL) 

= JQ 
462 - 'ift 

= J'it 
492 - 'ift 

= ~ (cothAL - cotlL) 

= -1 (csclL - cschlL) lL 

1 

= (~¥2) I; 

A modification of the stiffness matrix for flexural 

deformations can be made for members which have one end 

14 

simply supported. The modified stiffness coefficients can 

be found from the solution of the differential equation for 

transverse vibrations (Eq. 2.11) when the appropriate force 

and displacement boundary conditions are used. 
n 

For Fig. 2.J with the moment nPjz equal to zero the modi-

fied stiffness matrix for flexural deformations is 
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r;~J*= 3EI ' . J ' 
L 1:31 Ll:32 -1:33 

t f t 
Ll:32 ,13, ~5 -Ll:34 

{2.13) 

f ' t 
-1:33 -11:3~ 1:31 

where 

. . . 

' 2{11} 3 (coslLcosh"-L) fil1 I =:; ' 

3 (sinlLcoshl.L - coslLsinhlL) 

t ( :A.L} :a {sinlLcoshl.L + C-Os:A.LsinhlL) 
f32 =·· 

3 {sinlLcoshlL - coslLsinhlL) 

t 
(l1} 3 {cos;>,,L cosh11.L) ~3 

~ + 
3 · { s:i.in.LcoshlL - coslLsinhlL) 

t 
(11.1)2 {sinlL sinhlL} f;l4 ~ + 

3 (sin11.LcoshlL - coslLsinhlL) 

' 1 f3s . = e 

e = ....L {coth11.L - cotlL) 
2l1 

Member Stiffness Matrix 

The stiffness matrix for a typical member n is found by 

combining the stiffness matrices for axial and flexural de-

formations. The equation f'or end f'orces in terms of the 

stiffness matrix and end deformations is similar to the 

two equations written for axial forces and flexural forces 

in the previous topics and is given by 

( 2 .14) 
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The subscript and superscript notation that is used 

will be defined as follows. The left hand subscript on 

all terms denotes the member to which the term applies. 

The right hand superscript on force and deformation terms 

denotes the coordinate system to which the term is refer-

enced . For stiffness coefficient terms the left hand 

and right hand superscripts denote the coordinate system 

to which the terms are referenced with respect to forces 

and deformations, respectively. 

Expanding Eq. 2.14, which will hereafter be called 

the member matrix force equation, into submatrices gives, 

n n n n n n 
{2.15) npi = nKii nKij n 6i 

n n n n n n 
npj nKji nKjj n6j 

The definitions of the submatrices in the stiffness matrix 

are the same as the definitions given for the submatrices 

of the stiffness matrix in Eq. 2.8 except both axial and 

flexural stiffness coefficients are included in the stiffness 

matrix of Eq. 2.15. 

Expanding the stiffness matrix of Eq. 2 .14 into indi-

vidual terms gives 
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~Ki=EI La 
0 0 -12 0 0 (2.16) 2 Ca1) - 2 Ca2) n 1 a a a 

0 121,1 61132,. 0 -12133 6LJ,4 

0 61132 412 135 0 -61134 212 13s 
-12 

0 0 
12 

0 0 a2 (a2) -(a) aa 1 

0 -12133 -61134 0 12131 -6Ll:3a 

0 6Lf34 213 136 0 -6Ll:3a 412 135 

. where all terms in the matrix have previously been defined. 

F~ame Stiffness Matrix 

A typical, planar gable frame with a base reference 

coordinate system and a reference coordinate system for 

each member is shown in Fig. 5. 

----------4~ XO 

\ 
yk 

- j 

~ 
y 

Yi 
h yO y 

l xk 
Fig. 5 

Base and Member Coordinate Systems of a Typical Gable Frame 
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The frame stiffness, matrix is found by combining the 

stiffness matrices of the individual members. This can best 

be shown by first writing the member matrix force equations 

for each member. These equations are 

Member h - Coordinate system h 

[hpj = [~K~ [h~~ (2.17a) 

Member i - Coordinate system i 

[ipi] = [~K~ [i 61] (2.17b) 

Member j - Coordinate system j 

GpjJ = BKjJ G6jJ (2.17c) 

Member k - Coordinate system k 

[kpk] = ~K~ ~6k] (2.17d) 

Combining the four equations above gives the frame 

matrix force equation (Eq. 2.18) from which the frame 

stiffness matrix can readily be identified. 

[hp~ = L~K~ LO] [ 0] [ 0] [ha~ {2 .18) 

[ipiJ [ 0] [iK~ [ 0 J [ 0 J [i 6i] 
GpjJ [ 0 ] [ 0 J rn K~ [ 0 J [j 5j] 
~Pj [ 0 J [ 0] [ 0 J [tKj [k6J 

Transformation Matrices 

In the previous sections the matrix force equation 
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for individual frame members and for a complete frame have 

been set up using member oriented coordinate systems, al

though a base reference coordinate system for all members 

of any given frame has been mentioned. Generally, for the 

solution of problems of the nature discussed here, it is 

convenient to have all forces and deformations referenced 

to the same coordinate system. A transformation matrix 

will be given which will be used to transform forces and 

deformations of any typical member from the member system 

to the base reference system or what is also called the 

"On system. 

Halfman (7) gives a development of the transformation 

matrix for the rotation of axes in a plane which is the 

case for planar frames. Hall and Woodhead (8) gives a 

brief development of a general transformation matrix for 

axis rotations in three dimensions, and also discusses 

the application of axis transformations ~o the analys i s of 

static frames by stiffness methods. 

The transformation for the x, y, and z components of 

a vect or in the XY pl ane from a general coordinate system 

n to a base coordinate system o can be written in the 

following matrix equation form. 

( 2 .19) 



where 

where 

[ n°J= x,y,and z components of a vector in the o 

system 

10 ,pl __ L -J transformation from system n to system o 

20 

[ Dn]= x,y, and z components of a vector in. the n 

system 

Expanding Eq. 2.19 gives: 

·O 
cospn -sin.¢ 0 Dn (2. 20) D = 

.x n x 
Do sinpn cospn 0 Dn 

y y 
0 

0 0 1 n D D 
z z 

= the angle between the base coordinate system 

and the member coordinate system. 

For each member of a frame there are two points at 

which the forces and deformations must be transformed from 

the member coordinat~ system to the base coordinate system; 

these two points are at the member ends. Since the matrix 

r wj will only transform. fore es or deformations at a single 

point along the member, a new matrix designated [0 rr nJ will 

be defined as follows: 

[ 0nj = rw~ 
[o] 

(2.21) 



Also to be defined is the matrixrrr~which is the 

transformation matrix for forces or deformations at the 

ends of a member in the base coordinate system to forces 

21 

or deformations in the member coordinate system. It can 

easily be shown that the matrix transpose of [0 wj is equal 

to the matrixrwj. Using this relationship it follows that 

{2.22) 

Using Eqs. 2.21 an4 2.22 a procedure can be developed 

to transform the stiffness matrix of a member n in then 

coordinate system to the base coordinate system. 

First, consider the following transformation ex-

pressions: 

bP 0
] = t rrn] [nr1 

l 6~ = Lrr0J [no 0
] 

{2.23a) 

{2.23b) 

Next, it is recalled that the member matrix force equation 

is given by 

{2.14) 

Substituting the transformation given by Eq. 2.2Jb into 

the member matrix force equation gives: 



PrEmitiltiplying· both ·sides of the above equation ~Y-_lorrn] 

Substituting the expressions given by Eqs. 2.22 and 2.23a 

yields: 

22 

(2.24) 

From Eq. 2.24 it is seen that the transformation of 

the stiffness matrix of a member from the member coordinate 

system to the base coordinate system is given by: 

(2.25) 

0no· Kol Table L . gives the transformed stiffness matrix LJ J 

in general terms which have been previously defined. 

Substituting transformed end forces, end deformations, 

and stiffness coefficient matrices into the frame matrix 

force equation (Eq. 2.18) gives the following frame matrix 

force equation on which the application of the method given 

in the next chapter is based. 
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-
[hpOJ = [~Ko] [oJ [o] [o] [haoJ (2.26) 

Lip OJ [o] [~KoJ [o] [o] [i oo] 
LpOJ LoJ [o] CTK0] [o] [jaoJ 
~Po] [o] [o] [ 0 J [~K0J [kaoJ 



EI 
L~ 

TABLE I 

STIFFNESS MATRIX TRANSFORMATION FROM MEMBER COORDINATE SYSTEM TO BASE 
. . .. COORDINATE. SYSTElVLF.OR. .. A ... GENERAL .MEMBER * 

L~ at, . 12 
-6Li,2 sin/> 12 . .a r/, La 

-6L1:34 sinr/, a20'1COS · 2 a 1 cospsinp -:-;aa2 cos --a cospsinp 
. a. . .. · . a.a 2 

+l2f31 sin2 p -l2J31cosr/,sinp :-'.""12133 sin2 I> +12f33 cospsinp •· .. , .-

'· ' ' ·,.·. 

v~ . ,f, I> 12 a sin2 I, 6L132 cos/> 
12 L2 • 21, 6Ll:34 cos¢ 2 a 1 cos sin - 2 a 2 cospsinp --a sin: 

a . . a2. i a . . aa a 
-

-12J31 cosl,sinl, + 12131 cos2 I> + 12133 cospsinp -l2j33 cos2 /, 

-6Li,2 sin/> 6Lj32 cosp 412 135 6Li,4 sin,S -6L1:34 cosl, . 212 f3a 
·-··· 12 . . 21, ta . 

6Lf34 sinl, L2 · 21, 12 
61132 sinp -7a2 COS - aa a 2 cosl,sinl> aa1COS -a cosl,sinl, 

a a a.a 1 

-12133 siri2 ,s +12133 cos,Ssinp +121:31 sin2 I> -1213 1 cospsin,S 
,._. 

12 . ·.a 12 . 12 21, L . 2 /, -61134 cos/, .· -61132 cosp -acr2 cospsinp - 2 0'2 sin 2 a 1cosl,sinl> 2 a 1 sin 
a. a a a .. 

+12133 cosl,sinp -12ii~ cos2 ,S -1213 1 cospsin,S +1213 1 cos2 p 

-61j34 sinp 611:34 cos¢ 2L2 13a 6L1:32 sin,S -61132 cos¢ 412 135 
.. 

* All parameters appearing in ~his table are for a typical member n. 
N 
~ 



CHAPTER III 

APPLICATION 

The application of the matrix force equation (Eq. 2.26) 

to any particular frame involves forming the necessary equi

libri'Ulll equations for the solution. The matrix force 

equation in general form has three force equations for 

each end of each member of a frame. This gives six force 

equations for any interior joint, where an interior joint 

can be any joint of the frame excluding the base joints. 

Figure 6 shows the ends of two members comprising a 

typical joint. The joint is shown before and after end 

displacements have occured. End rotations are not shown 

since they are equal regardless of the rotation of the 

member coordinate axes in the XY plane. From the .figure 

it is obvious that the end displacements along the I and 

Y axes of the members in their respective coordinate 

systems are not equal. However, the members do not sepa

rate; so the end displacements of the m.embers at the joint 

in the direction of the X and Y ax~s of the base coordinate 

system have to be equal. a 

25 



Cm) 

0 y 

n .x 
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._ ______________ _,xo 

Fig. 6 

Displac~ents of a Typical Joint 

Writing joint compatibility equations .for the de.forma-

ti.ons of a typical joint i, in the base coordinat·e syste,Jn, 

connecting members m and n, 

0 0 (J.l) m6ix = n 6ix 

0 0 
m6iy 

::;: 

n 6iy 

0 0 

m6iz = n 6iz 



Joint equilibrium equations can also be written for 

the forces at the ends of members m and n at joint i. 

Remembering that for the stiffness coefficient expressions 

developed in the basic theory there can be no externally 

applied forces on a member, the equilibrium equations for 

end forces at joint i are: 

27 

0 0 
0 (3 .2) mpix + npix = 

0 0 
0 mp;i.y + npiy = 

0 0 
0 mpiz + npiz = 

Equations similar to Eqs. 3 .l and 3 .2 can be written 

for all the interior joints of a frame. These equations 

can then be applied to the member matrix force equations 

of the frame matrix force equation to obtain Eq. 3.3. 

Eq. 3.3, which is· for the frame shown in Fig. 7, will 

hereafter be called the matrix equilibrium equation. It is 

noted that the member matrix force equations have been 

expanded into the form of the submatrices of Eq. 2.15. 

It is also seen that the size of the stiffness ·coefficient 

matrix of the matrix equ~librium equation is reduced by 

order 3s from the size of the stiffness coefficient matrix 

of the frame matrix equation, wheres is the nwnber of 

· interior joints. 
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Next, consider frames with fixed connections at the 

bases. The joint equations for deformations of member n at 

the fixed base 5 are given by: 
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0 
(3.4) n65x = 0 

0 

n65y - 0 

0 
0 n 65z 

= 

For frames with hinged connections at the bases, the 

joint equations for deformations of member n at the pinned 

base 5 are given by: 

6° = 0 
n 5x 

a0 = 0 
n 5-Y 

6° f O n 5z 

:'.) 

Ysing these expressions the stiffness coef£icient 

matrix of the matrix equilibrium equation can be further 

reduced by eliminating the rows and columns of the stiffness 

matrix corresponding to the zero displacement terms. This 

reduces the stiffness matrix of a frame with fixed bases 

by order six, and of a frame with pinned bases by order fou.r. 

When joint equilibrium equations are used and the 

terms corresponding to zero deformations eliminated, the 

column matrix of forces on the left hand side of the matrix 

equilibrium equation is zero. To satisfy the equation the 

other side of the matrix equilibrium equation, with the 
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stiffness coefficient matrix postmultiplied by the dis-

place)11.ent matrix, must also b~ zero. The column matrix of 

displacement term.s cannot be zero when a frae is vibrating 

at any natural frequency except for the trival case of the 

natural frequency equal to zero. Therefore, for the matrix 

equilibrium equation to be satisfied 1 the determinant of 

the stiffness coefficient matrix must be zero. The only 

frequencies which will give zero values for the determinant 

of the stiffness coefficient matrix are the natural fre-

quencies of the frame in question. 

The nwnerical examples which follow were evaluated by 

an IBM 1620 electronic computer. The Appendix gives the 

Fortran programs used for the numerical exampies. 

The fral{le dimensions, angle of rotation of gable members, 
. . 

member section properties, an init:ial. value of frequency, and 

an incremental value of frequency were the input data to 

the computer. With this data the coefficients of the stiff-

ness matrix and the determinant.of coefficients were evalu-

ated. The first evaluation was for the initial value of 

frequency. The computer then added the incremental value 

of frequency to the previous value used and reevaluated the 

coefficients and the determinant of the coefficients. This 

cycle was repeated as many times as was needed for the solu

tion of a problem. For each cycle the output data from the 
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computer was the value of frequency used in that cycle and 

the corresponding value of the determinant of stiffness 

coefficients. When the value for the determinant changed 

signs from one frequency value to the ne:ict, this was an 

indication that the determinant was zero between the two 

frequencies. For the range between these two frequencies 

the incremental value of frequency was made smaller, and 

the :natural frequency was found to the nearest cycle per 

second. 

The frame shown in Fig. 7 is typical for all the numeri-

cal problems worked. The properties of the frame members 

are the same for all the problems; the values of these 

properties are as follows: 

-6 2 
Cross sectional area (A)= 20740.0 x 10 in. 

Moment of inertia (I) ··=~34;2282 x 10-6 in. 4 

Modulus of elasticity (E) = 30.6 x 106 lb./in. 2 
2 

~- · 1 h () = 15 .. 2174 x 10-6 lb.~se~ • .1.;1a.ss per unit engt · m 
in. 

The parameters of the frame dimensions, given by ~and~ 

in Fig. 7, vary for each problem~ These parameters and the 

first four natural frequencies for each problem are given 

in Table II. 



TABLE II 

NATURAL FREQUENCIES FOR EXAMPLE PROBLEMS {CYCLES PER SECOND} 

Base Conditions Fixed Pinned 

Example No. 1 2 3 4 1 2 3 
- . 

Dimension (Y 0.2 0.2 0.4 0.4 0.2 0.2 0.4 
Parameters 

~ 0.1 0.2 0.1 0.2 0.1 0.2 0.1 

1st Frequency 321 394 307 300 302 27$ 145 
-· ..• , 

2nd Frequency 697 700 312 303 358 376 311 

3rd Frequency 1146 1031 975 884 1046 940 923 

4th Frequency 1730 1547 1667 1515 1723 1542 1392 
--· 

4 

0.4 

0.2 

$9 

294 

848 

1325 

\,\) 

N 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

Summary 

The method of stiffness coefficients for finding natural 

frequencies of single bay gable frames is presented in this 

thesis. The theory given is based on the mass of the frame 

members being distributed along the length of the members. 

The mass per unit length and moment of inertia are constant 

values over the length of each member. Bending and a~ial 

deformations are considered while shear deformations and 

rotatory inertia effects are neglected. No damping forces 

are considered in the theory development. 

The stiffness matrix for a general member is estab

lished. The stiffness matrices for all members of a frame 

are then combined into a single matrix. A transformation 

matrix and procedure is given to transform the stiffness 

matrices of members in their own reference systems to a 

base reference system .. 

Joint equilibrium equations are formed and the theory 

applied to the cases of symmetrical gable frames with fixed 
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bases and hinged bases •. Four numerical examples are worked 

for each case and the results tabulated. 

Conclusions 

The method of stiffness coefficients provides a rela

tively simple approach to finding natural frequencies of 

gable frames. If the basic assumptions that shear de

formation and rotatory inertia effects are negligible and 

that no damping forces exist are valid, then in theory, 

the method gives exact solutions for the natural frequencies 

of frames. The exactness of the natural frequencies found 

for a numerical problem depends on how accurately the frame 

dimensions and properties are known, and on what increment 

of natural frequency is used in evaluating the determinant 

of the stiffness coefficients. Since the natural frequencies 

of a numerical problem are found by evaluating the deter

minant of stiffness coefficients for various values of 

frequency, the increment or difference between the values 

of frequency used in evaluating the determinant should be 

as small as practical. Due to the nature of the stiffness 

coefficient expressions, if large increments of frequency 

are used some natural frequencies which exist for a particu

lar frame might not be discovered. 
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Two limitations of the method of stiffness coefficients, 

which are obvious, include the following. First, for frames 

in general, the size or number of joints which a frame can 
J 

have and still be analyzed is limited to the available com-

puter facilities. The second limitation is that a frame 

with members of varying cross section can be analyzed only 

if the members are assumed to have a constant section over· 

the member lengths, or if the members are broken into seg-

.ments which have constant cross sections. Breaking the 

members into segments is not very practical, however, since 

at every change of section there must be an associated joint. 

This would require even the smallest of frames with members 

of varying cross sections to have very large stiffness 

coefficient matrices. 

Extension 

The method presented in this thesis is directly applic-

able to the frequency analysis of many types of structures, 

several of which are continuous beams, rectangular frames, 

continuous frames, and complex frames. The method could 

also be extended to the frequency analysis of space frames. 
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APPENDIX 

The Fortran statements for the computer program used 

in fin~ing the natural frequencies of the fixed end frame 

problems are listed below. 

C FREQUENCY ANALYSIS OF A SYMMETRICAL GABLE FRAME 
C WITH FIXED BASES CHARLES W BRINK SUMMER 1964 
c . A=AREA f=MODULus· OF ELASTICITY Z=MOMENT OF INERTIA 
C W=MASS PER UNIT LENGTH CL=COLUMN HEIGHT 
·c BL=BEAM SLANf LENGTH Y=ANGLE IN RADIANS 

. DIMENSION X(9,9) 
5 READ 500,A,E,Z,W 

READ 500,CL,BL,Y 
C COLUMN DYNAMIC FACTOR COEFFICIENTS 

Cl=(A*E)/CL 
C2=(E*Z)/(CL**3) 
C3=C2*CL 
C4=4•0*C3*CL 

C BEAM DYNAMIC FACTOR COEFFICIENTS 
CO=COS(Yl 
SI=SIN(Yl 
BO=(A*El/BL 
Bl=BO*CO*CO 

. B2=BO*SI*SI 
B3=t30*CO*SI 
B4=(2.0*E*Zl/BL 
B5=2.0*B4 
1:30=1:>S/(4.0*BL) 
66=BO*CO 
t37=BO*SI 
l:W=BO/BL 
BB=BO*CO*CO 
B9=BO*Sl*SI 
BlO=BO*CO*SI 

C ACCEPT P=FREQUENCY(CPSl, DP=INCREMENTAL FREQUENCY 
10 ACCEPT 500,P,DP 
20 (P=6.2831853*P 

C COLUMN DYNAMIC FACTORS 
FC=((W*CP*CP)/(E*Zll**0•25 · 
F=FC*CL 

37 



. 
KEY=l 

3U D=SQR(Z/A)*FC*F 
Sll=SIN<F> 
SI2=SIN(D) 
COl=COS(F) 
C02=COS(D) 
C03=EXP(F) 
SH=(C03-l.O/C03)*0.5 
CH=(C03+1.0/C03)*0•5 
DV= 1. 0- ( COl *CH). 
TH=(3.0/(2.0*F))*(CH/SH-C01/SI1) 
PS=(3.0/F)*(l.Q/Sll-l•O/SH) 
GO T0(40,~0),KEY 

40 CFl=D*(C02/SI2> 
CF2=F**3*((Sll*CH+COl*SH)/DV) 
CF3=F*F*((Sil*SH)/DV) 
CF4=(3.0*TH)/(4.0*TH*TH-PS*PS) 

C BEAM DYNAMIC FACTORS 
C=FC*BL_ 
F=C 
KEY=2 
GO TO 30 

50 B=D 
1:3Fl=l:3*(C02/Sl2) 
BF2=B•(l.O/SI2) 
BF3=C**3*((51l*CH+COl*SH)/DV) 
BF4~C*C*((Sil*SH)/DVl 
BF5=C**3*((Sll+SH)/DV) 
BF6~C*C*((COl~CH)/DV) 
BF7=(~.0*THll<4.0*TH*TH-PS*PSl 
BF8=<3.0*PS)/(4•0*TH*TH-PS*PS) 

C STIFFNESS MATRIX 
DO 60 I =1, 9 
DO 60 J=l,9 

60 X(I,J>=O.O 
X<l,l>~C2•CF2+Bl*l:3Fl+Li9*dF3 
X(l,2l=B3*1:3Fl-BlO*BF3 
XU, 3 l =C3*CF3-B7*HF4 
X(l,4)=-Bl*BF2-B9*BF5 
X(l,5>=-U3•BF2+BlO*LIF5 
X < 1 ,6 > =-B7*1:>f6 
Xt2,1>=Cl*CFl+B2*BFl+B8*BF3 
X(2,3l=B6•BF4 
X(2,4)=Xllt5> 
X(2,5)~-H2*BF2~BB*BF5 
X(2,6)=B6*BF6 
X(3,3)=C4*CF4+65*BF7 
X(3,4)=-X(l,6) 
X(3,5)=-X(2,6) 
X(3,6)=B4*BF8 
X(4,4l=2eO*(Bl*BFl+B9*bF3l 
Xt4,6l=2.0*(B7*BF4l 
X(4,7l=X<l,4) 
Xt4,8>=-X<l,5> 
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X(4,9)=X(3,4) 
XC5,5)=2.0*(B2*BF1+~8*BF3l 
X<5,7)=-X(2,4) 
X(5,8)=X(2,5) 
X(5,9l=X(2,6l 
X(6,6)=2.0*85*BF7 
X(6,7)=X<l,6) 
X<6,8l=X<3,5) 
X(6,9)=X(3,6) 
X<7,7)=X(l,l) 
X<7,8>=-X(l,2) 
X(7,9'')=X(l,3) 
X<8,8)=X(2,2) 
X(8,9)=-X(2,3) 
X(9,9)=X(3,3) 
DO 70 I=l,9 
DO 70 J=l,9 

70 X(J,I )=X< I ,Jl 
C EVALUATION OF DETERMINATE 

DET=l.O 
DO 80 K=l,8 
DET=DET*X(K,Kl 
DO 80 I=K,8 
DO 80 J=K,8 

80 X(l+l,J+l)=X(l+l,J+l)-X( I+l,K>*X(K,J+l)/X(K,K) 
DET=DET*X(9,9) 
PRINT 501,P,DET 
IF(SENSE SWITCH 1)10,90 

90 IF(SENSE SWITCH 2)5,100 
100 P=P+DP 

GO TO 20 
500 FORMAT (El6e8,El6.8,El6e8,El6.8) 
501 FORMAT (BX Fl0.4, 12X El4.8) 

END 
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The computer program for finding the natural frequencies 

of the pinned end frame proQlems is the same as the program 

for fixed end except the statements defining the column 

dynamic factors CF2, CF3, and CF4 are deleted and the 

following statements.inserted. 

DIV=Sll*CH-COl*SH 
CF2=2.0*F**3*(COl*CHl/DIV 
CF3=F*F*(Sll*CH+COl*SH)/DIV 
CF4=0.75*(1.0/TH) 
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