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CHAPTER I 

INTRODUCTION 

1-1. General. 

Anisotropic materials, unlike isotropic materials, have differ­

ent elastic properties in various directions. The number of indepen­

dent elastic constants involved for the analysis of a structure of iso­

tropic material is two, namely Young's modulus and Poisson's ratio. 

In the case of an anisotropic material the number of independent elas -

tic constants involved is considerably larger. 

A common example of anisotropic material is wood. It has 

three different moduli of elasticity along three directions, longitudinaL 

radial and tangential. In practice we often come across anis.otropic 

plates, s,uch as a concrete slab reinforced with steel, or a steel plate 

stiffened with ribs. In both the above cases, the material used is iso­

tropic but due to reinforcement in the former and ribs in the latter 

anisotropy is achieved artificially. 

Gehring (1860) and Boussinesq (1879) first studied the problem 

of an isotropic plate. Huber (1914) [ l] presented the solution of the 

differential equation for an anisotropic plate. The computations in­

volved in the solution of the anisotropic plate are very tedious. In the 

last decade, due to the development in electronic computersi compu­

tations have been feasible. 

1 
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1-2. Rayleigh-Ritz Method. 

In 1877 Lord Rayleigh developed a method of obtaining an ap-

proximate value of the natural frequency of vibration of an elastic 

body by assuming a suitable function for the displacement. This meth-

od is used for finding an approximate value of deflection of different 

structures with comparatively very little effort [ 2]. Ritz (1908) con-

sidered an infinite series as the assumed deflection curve and devel-

oped the method of solution directly from an energy consideration with-

out solving the diffe rential equatior1, based on Rayleigh's principle. 

This method of assuming an infinite series for deflection curve is 

known as the Rayleigh-Ritz method. When finite number of terms are 

considered in the infinite series the solution obtained is an approximate 

one. This approximate solution approaches the exact value as the 

number of terms considered in the series is increased. Generally a 

few terms will yield a satisfactory solution. When all the terms of an 

infinite series are considered, the solution is an exact one [ 3]. 

The analysis of bending and buckling of thin isotropic plate 

w.ith-,-ribs or grooves or stiffeners can be simplified by consider ,,._ 

ing this plate as an anisotropic .. · Th.is can be achieved by 

setting up an analgous anisotropic plate equivalent to isotropic plate 

with ribs. The analysis of an anisotropic plate involves the solution of 

the fpllowing differential equation [ 4] 

D 84w4 + 2(Dl + 2D ) 84w + D 84w = P(x,y) 
x ax xy ax2ay2 y oy 4 
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Where D , D , D and D 1 are the elastic rigidity constants 
x y xy 

of the anisotropic plate. 

The main purpose of this the sis is to develop a method by 

which these elastic rigidity constants can be evaluated. 

These constants can be evaluated by considering an anisotro-

pie plate equivalent to the original isotropic plate with stiffeners. The 

equivalent anisotropic plate cannot be equal to the isotropic plate with 

stiffeners in all respects. However for the same boundary conditions 

and loading one can consider equal deflection or equal strain components 

at the corresponding points. Alternatively the strain ener'gies m ,ay be 

considered equal. 

If all these equalities were to give different values of the rigid-

ity constants one cannot use them. But other investigations and ex-

perimental results show that the anisotropic plate theory is applicable 

to stiffened plate [ 7, 8, 9] provided that the stiffener spacing to plate 

dimension (:>-./b << 1) is small to have homogenity of stiffness. 

In this presentation a double trigonometric series has been 

assumed as a deflection curve for a rectangular plate , simply sup-

ported at the edges. The plate is assumed to be isotropic and it is 

considered that the plate has parallel beams :>-. distance apart, in-

clined at an angle 8 to the x axis of the plate. Thus , two problems -

are involved. 

(1) Determination of the rigidity constants for the analgous 

anisotropic plate. 

(2) Determination of the coefficients in the infinite series for 

deflection. 
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In this thesis methods are presented to determine the following 

analytically. 

(l) By comparison of the strain energies of equivalent aniso­

tropic plate and isotropic plate with stiffeners elasticifrigidity con­

stants are developed in terms of the elastic constants of the isotropic 

material and the geometrical and elastic properties of the stiffener. 

(2) Total potential energy of the system consists of two parts: 

(a) strain energy, (b) potential energy due to loads. The principle 

of minimum energy which states that "The Potential energy/is a mini­

mum when an elastic body is in equilibrium" [ 3] is considered. The 

coefficients in the infinite series for deflection are obtained by mini­

mizing the total potential energy of the system. As mentioned before, 

by this method, the solution is obtained without solving the differential 

equation. 

A numerical example is presented with the following variation 

in loading. 

(1) Uniformly distributed load p lbs. sq. ft. for y = a/b = 
1, 2 and 3. 

(2) Concentrated load P lbs. at x/a = y/b = O. 25 for y = 
1, 2 and 3. 

Computations were carried out with the help of the IBM 1620 

computer. 
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1-3. Assumptions. 

1. The thickness· of the plate is small compared to its other 

dimensions and is constant. 

2. The material of the plate is elastic, continuous and homo-

genous. 

3. The deformations are small and they do not alter the ori­

ginal geometry of the plate. 

4. The loads are perpendicular to the plane of the plate. 

5. Stresses normal to the middle surface are negligible. 



CHAPTER II 

Basic Theory 

2-1. Anisotropic Plate. 

x' 

x 

w 

Figure 2-1. Anisotropic Plate. 

6 
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Assume the displacement function as a double trigonometric 

series 

00 (X) 

w = ~ ~ A sin mTrx sjn mry 
m=l n=l mn -a- . I) 

in order to satisfy the following boundary conditions. 

The deflection must be zero along the simply supported edges. 

w ( x=O )( y-=,y ) = 0 

w ( x=a )( y=y ) = 0 

w '( x:;:x )( y=O ) :;: 0 

w ( x=x )( y= b ) :;: 0 

Generally in Rayleigh-Ritz method, the assumed deflection 

function satisfies the natural geometrical boundary conditions. In this 

particular case it also satisfies the force boundary condition, namely 

the bending moments are zero along the edges 

M ( x=O )( y:;:y) :;: 0 x 

M ( x=a )( y:;:y) :;: 0 x 

M { x=x )( y=O ) = 0 y 

My ( x:;:x )( y= b ) :;: 0 

The values of the elastic rigidity constants of the anisotropic 

plate depend upon the geometrical configuration of stiffeners, hence 

it has been assumed that the properties of the analogous anisotropic 
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plate are al_ong x'y' axes. The· strain energy of the plate is given 

by [ 4] 

= 1/2 Jf fn ,(w, 1 ,/ + D ,(w, , ,) 2 + 201,(w, .1 ,)(w, , ,) ~ x xx y y·y xx yy 
A 

+ 4D , ,(w, , ,) 2 ] dA x y x y (1) 

Transformation of co-ordinate.s. 

As the limits of integration are in x-y co-ordinate system, it 

is preferable to work in x-y axis, rather than in x 1y' axes. Trans-

formation is done by direction cosines. 

where 

x = 1 x' + 1 y' xx xy 

y = 1 x' + 1 y' yx yy 

1 = cos(~, x') 
xx 

lxy = .cos (x,, y') 

1 = cos (y, x') 
yx 

1 = cos (y, y') 
yy 
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12 + 12 = 1 and 1 2 + 12 = 1 xx xy yx yy 

p (x, y) 

x' 

e 

x 

,--------·-------·----......i..~.,,, ... 
x' cos e l_y• sin 8 

Figure 2-2. Transformation of Co-ordinates. 

As w, the deflection, is a function of x and y; partial de:ri-

vative s of w work out as follows. 
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a aw l + aw . 
ax' w(x,y) = ax . xx By 1yx 

a 2 a 2w 2 a 2w l l + a 2w l 2 
(w,x'x') = -=-zr w(x,y) = -:-T lxx + 2 - . xx yx -:::-z-.a yx 

ax ax axay 
y 

2 2 
+~l 1 +awl 1 

axay yx xy a7 yx yy 

a 2 a2w 2 2 2 2 
( ) ( ) 1 + 2 a w 1. 1 + ~ 1 W, I 1 : -:--:z-W X, Y : -:-7 - ~ 

y y ay' ax xy axay xy yy ay yy 

( ) 2 ( ) 2 l 4 + 4( w ) 2 l 2 l 2 + ( w ) 2 l 4 
w 'x 1 x' = w' xx xx · ' xy .xx yx ' yy yx 

+ 4( w, xx)( w, xy) 1 3 1 + 2( w, )(w, ) 1 2 1 2 
xx yx xx yy xx yx 

3 + 4( w, )(w, ) 1 1 xy ·yy xx yx (2) 

( w, )(w, ) and ( w, )( w, ) when. integrated work out to be zero 
xx xy xy yy 

due to orthogonality. 

00 00 

w= ~ ~ A sin~sin~ 
m=l n=l mn a u 



aw 
ax 

= (w, ) = xx 

= 
(X) (X) 

~ ~ 
m=l n=l 

(X) (X) 

~ ~ 

m=l n=l 

Arnn mTr cos mTrx · nTry 
a a sin --S-

Arnn 
2 2 

m 1T sin mTrx 
a 

. nTry 
sm~ 

Squaring the above the following is obtained. 

= 
(X) (X) 

~ ~ 

m=l n=l 

(X) 

~ 

r=l 

(X) 

~ 

s=l 

2 2 
A A 4 m r X 

mn rs Tr a2 a2 

sin mTrx sin r1rx sin nTry sin sTry 
a a l> l> 

Using the trigonometric identities: 

sin mTrx 
a 

sin rTrx dx = 0 for m f. r 
a 

= a for m = r 
2 

sin ~ sin ~ dy = 0 for n f. s 

b = 2 for n = s 

and integrating the following is obtained, 

11 
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ff 
00 

2 
(w, ) dx dy = 

xx 

co co 4 
~ ~ AZ ~ m4. 

m=l n=l mn a 4 · · 

a b 
"Z • "Z 

similarly the following expression may be obtained, . . 

ab 

J J (w, yy? dxdy = 

0 0 

co 00 4 
~~AZ . .!...n4.'t 

m=l n=l mn b 4 
b 
"Z 

Taking the second derivative of aw 
ax with respect to y and 

squaring the following is obtained, 

jJ 
0 0 

2 (w, ) dxdy 
xy Jafb .. co co co co 

= ~ ~~~A A · mn rs 
m=l n=l r=l s=l 

0 0 

• cos r1rx c s n1ry cos s1ry • dx dy 
a 0 -,;- 'b 

= 

ab 

co co 
~ ~ 

m=l n=l 

JJ. (w, )(w, ) dxdy = ';J ';J 
xx YY m=l n=l 

0 0 

let 1 = 1 = a, 1 = -1 = 13 xx yy xy yx 

substituting into (2) the following is obtained 

ab J J (w,x'x') 2 dxdy = 

0 0 
m=l n=l 

[ 
4 m 4 

a -:r 
a 

2 2 
6 2 A.2 m n 

+ a ""' 2 2 
a b 

a 
"Z 

b 
"Z 

Tr 

b 
"Z 

4 mTrX cos-­a 

12 

( 3) 
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w = w l +2w l l +w l [ ]
2 [ 2 · 2]2 

' y' y' . ( 'xx) xy ( 'xy) xy yy ( 'yy) yy 

= ( w, ) 2 l 4 + 4( w, ) 2 l 2 l 2 + ( w ) 2 l 4 
xx xy · · xy xy yy ' yy yy 

3 · 3 
+ 4( w, ) ( w, ) l 1 + 4( w, ) ( w, ) 1 l xx xy xy yy xy yy xy yy 

+ 2( )( ) 1 2 1 2 
w' xx w' yy xy yy ( 4) 

substituting and integrating, the following is obtained 

J J(w,y'y'? dx dy = 
(X) (X) 

~ ~ AZ 'IT4 ~ • 
m=l n=l mn 

(5) 

w 1 + 2w 1 l + w, 1 [ 2 2 ] 
( ' xx) xy ( ' xy) xy yy ( yy) yy 

= (w ) 2 1 2 1 2 + (w w ) ( 1 2 1 2 + i2 1 2 ) · ' xx xx xy ' xx ' yy xx yy xy yx 

2( · )( · )(1 2 1 1 +i2 1 1 )+2(w )(w · )(1 1 12 +l 1 12 ) + w' xx w' xy xx xy yy xy xx yx ' yy ' xy xx yx yy xy yy yx 

+ 4(w, ? 1 1 1 1 + (w ? i2 12 
xy xx yx xy yy ' yy yx yy ( 6) 
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substituting and integrating the following is obtained, 

a b 

(w, 1 1 )(w, 1 1 ) dx dy = ~ . ~ A 'IT - • ff 00 00 2 4 ab 
x x y y m=l n=l mn 4 

0 0 

.:::__ + ~ O! f3 + [ ( 4 4) 2 2 
a4 b4 

(7) 

[ w ]2 - (w )2 12 12 +(w )2(12 12 + 12 12 ) 
' x' y 1 - ' xx xx xy ' xy xx xy yx yy 

+ (w )2 1 12 + 2(w )(w )(1 2 1 1 ) ' yy yx yy ' xx ' xy xx xy yy 

+ 2(w )2 1 1 1 1 · ' xy xx xy yx yy 

2 + 2(w ) (w ) 1 1 1 ' xy ' yy xy yx yy 

2 + 2(w ) (w ) 1 1 1 ' xx ' xy xx xy yx 

2 + 2(w )(w } 1 1 1 ' xy ' yy xx yx yy (8) 

Substituting and integrating the following is obtained 
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a b 

Jfw, , .,/· dx dy = x y ·. 

co co 4 
I: I: P? ,r ab • 

m=l n=l mn 4 

O O 

(9) 

Substituting all values in the energy expression (1), the total strain 

energy is obtained as follows 

co co 
= 1/2 !: !: 

m=l n=l 

This can be written as 

{ 
4 2 2 4 } + D . ~. 4 ~ + 6a2A2 ~ + a4 ~ 

y' "' 4 ,,, 2· 2 4 a a b b 

co co 4 
1/ 2 !: !: A 2 ,r [ S] 

mnTao m=l n=l 

where 

(lOA) 
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The expression lO(a) represents the total strain energy of the 

analogous anisotropic plate in terms of elastic rigidity constants. 

2-2. Isotropic Plate Stiffened By Beams at an Angle 0 to X Axis. 

y 

b 

I 

all beams ~ 

distance center 
to center 

x' 

x 

;Figure 2-3. Isotropic .Plate with Beams Inclined at an Angle 8 to the 
x axis of the plate. 
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The total energy of the plate consists of two parts, 

(1) Energy of the isotropic plate. 

(2) Energy of the beams. 

Consider an element of the plate. Energy of the isotropic plate 

element [ 4] 

= D/2 Gw, 1 ,)
2 + (w, , ,/ + 2µ (w, 1 ,)(w, 1 ,) + 2(1-µ )(w, , ,) 2Jdx' dy' L xx · yy xx yy xy 

The energy of the beam consists of two parts: 

(l) Energy due to flexural bending. 

(2) Energy due to torsional bending. 

substituting from previous results total energy, 



D 
co co 
!: !: = 2 m=l n=l 

co co 
+ 1/ 2 !: !: 

m=l n=l 

A2 ,,.4ab 
mn 4 

4 
A 2 ,,. ab 

mn_4_ 

18 

8a4 
4 2 2 

+ ~4 n 4} ~ + 6a2~2 mn 
a2b2 a4 b4 

a4 n4} 
4 b 

2 2 4 4 }] (-4a ~ + a + ~ ) 

Expressions (10) and (11) are for the energies of the analogous ani-

sotropic plate and the ribbed plate. To establish equivalence between 

the analogous anisotropic plate and the isotropic plate with ribs these 

two strain energies will be considered equal. Therefore comparing 

these two energies, rigidity properties of analogous anisotropic plate 

can be determined as follows: 



D.' x 

D .1 = D 
y 

2D I + 4D > I ' I = 2D + GK 
1 xy ~ 

19 

(1 2) 

(1 3) 

(14) 

Mr. N. J. Buffington, Jr. obtained the same properties, assum-

ing Levy's type solution for deflection and considering the strain energy 

of the plate [ 7]. His values are as follows: 

where 

D: I = 
y 

D' x. 

EI1 
= D +-x_-

b 

31 2 2 
(by-y ) 

D(y) 
a 

dy. 

2D ' + 4D 1 , = 2 µ D + ~G 
1 x y "-

D(y) 
E[h(y)] 3 

= 2 
12 (1-µ ) 

h(y) is the total thickness of the plate-stiffener combination. By 



comparison the following can be noted: 

(1) 

(2) 

The value of D:,,' is the same in both of the cases. 
x 

The value of D ,,-i = D is an approximate one. 
y 

This is 

easier to calculate compared to tedious integral involved 

in Buffington I s method. 

(3) The equation (14) 2D1; + 4D, , = 2D + GK/X. is the same 
xy . 

as that of Huffington's except that it does not have the 

coefficient µ in the first term of the right hand side. 

For the complete analysis of the anisotropic plate it is neces-. 

sary to determine the deflection surface of the plate for various types 

of loading. To calculate the deflection, the coefficients in the infinite 

series for deflection must be known. These coefficients for two 

different types of loadings will be considered. 



2-3. Plate Loaded With Uniformly Distributed Load. 

plate simply supported 
at the edges 

x 

Figure 2-4. Anisotropic Plate Loaded with Distributed Load. 

21 

The potential energy of the load acting upon an element is given 

by 

p • w dx dy. 

Therefore the potential energy due to the total load is 

ab 

= J J p • w • dx dy 

0 0 

Substituting the value of w the following is obtained 



ab 

=f f p 

0 0 

= p • 

00 00 

:E :E 
m=l n=l 

00 00 

:E :E A 

A . ffi'Tl'X 
s1n--

mn a 
. mry d d sm """"'!) x y. 

.. m,rx n·rry 

m=l n=l mn 
Jfb 

sin -a- sin~ dx dy 

0 0 

22 

= p • 
00 00 

~ :E 
m=l n=l 

[ a mTrx] a 
Arnn -m'TI' cos -a-

0 

[ - _E.. cos nTry] b 
n'TI' b 

0 

= 0 for m = even 

n = even 

= 4p 
00 00 

:E :E 
m=l n=l 

A 
mn mnTr2 

ab when m = odd 

n = odd (15) 

From equation (10) and (15), the total potential energy of the system 

is found to be 

III = strain energy - potential energy due to loads (1 6) 

4 

m=ln=l 
Tl' [ s] 

4aD = 1/2 

00 00 

- 4p :E :E A 
m=l n=l mn 

for m = odd 

n = odd 
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The principle of minimum energy states that "the potential 

energy is a minimum when an elastic body is in equilibrium" [ 3]. 

The potential energy III will be minimized with respect to each 

coeffifient as follows 
- }1 

~ = 1/-1"1 A 3.k 4:_: [S] - 4p ~ = O 
a jk T jkrr 

Solving for the coefficient Ajk yields 

4p ab 
jk,r2 

4 

:ab [s] 

(17) 
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2-4. Plate Loaded with Concentrated Load at x/a = y/b = O. 25. 

P lbs 

j 
,_------ \\ 

\ 

plate simply supported at the edges 

Figure 2-4. nisotropic Plate Loaded with Concentrated Load. 

The potential energy due to load is given by 

=P·w 

at x = a/ 4 

y = b/4 

= p A . m1r . n1r • mn sin 4 sin 4 

III = total potential energy of the system 

= strain energy - potential energy due to loads. 



oo co 4 
III = I ~ ~ A 2 ;r [s] "Z mn 4ao 

m=l n=l 

P A . m,r . n'lT 
- • sin --;r-- ·• s.,in-,-mn ":I: ":I: 

4 
= i /. A jk :ab [ S] - p • 

• J.1T • k;r 
sin - sin 

4 4 

= 0 

4P · ab · 
• J.1T 

sin -
4 

ir4 [s] 

. k,r 
• sin 4 

25 

(18) 



CHAPTER III 

NUMERICAL EXAMPLE 

3-1. Data. 

To illustrate the theory discussed in the previous chapter the 

following example is considered. A 3/ 8 11 thick steel plate has 

1/8 x 3/8" stiffeners at l" center to center. The angle of inclination 

. 0 
of the stiffeners (0) with the x axis of the plate varies from O to 

0 0 
90 with an increment of 10 . Elastic rigidity constants are worked 

a 
out for 3 different sizes of the plate, b = y = 1, 2 and 3. Deflec-

tions at the various points of the plate are worked out for two types of 

loading 

(1) Distributed Load p lbs I sq. ft. 

(2) Concentrated Load P at ~ = r = 0. 25 

3-2. Computation of Rigidity Constants. 

Eh3 
D=-----..-2 

12 (1 - µ ) 

30 x 10 6 1 
= 12(1 - • 09) x b4 

E = 30 x 106 lb/in.2 

h = 1/4 11 

26 
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,...A 

-

-
b 

--
- - --

a . 

Plan 

Detail B 

Section. AA 

1/.4" 

µ1r~ 
, ... _____ l"------....1 ... 

Detail B 

Figure 3-1. Plan, Section and Detail of Anisotropic Plate. , 



= 42. 92 x 103 lp in µ = O. 3 

6 D = O. 04292 x 10 lb. in 

3 
I = bh + Area x (distance from n - a) 2 
1 12 

2 

= ~ x .!.:.. x _!_ + ~ x !. (~ + ,4.- ) 
8 8 12 8 8 8 .10 

-3 4 = 1. 71 7 x 10 in 

K (for whole section) [s] 

= j3 Bh 3 j3 = o. 141 
3 

= o. 141 x : x ~! ) for B n = i 

· -3 4 
= 2. 786 x 10 in 

K (for plate only) 

3 3(1) = 0.196 x - -. 8 4 j3 = 0.196 

= 1.148 x 10- 3 in4 fo:r fE = 1. s 

K (increment due to beams) 

D' x 

6 -3 4 . = 1. 3 8 x 10 in 

28 

(12) 



. 6 3 1 6 - 3 = • 04292 x 10- + 0 x O x 1. 717 x 10 

6 = (. 04292 + .• 05151) x 10 

= • 09443 x 106 lb in 

DI - D y -

= • 04292 x 106 lb in 

. GK 
2D11 + 4Dx'y' = 2D +-x.-

1 

= 2 (. 04292 x 106) + 11. 26 x 106 x 1. 638 x 10- 3 
. 1 

= (. 08584 + .!) 1835) x 106 

= .10419 x 106 lb in 

3-3. Determination of Coefficients. 

(1) Distributed Load. 

?9 . 

(13) 

(14) 

(17) 



(a) For y = ~ = 1 
b 

A. = mn 

= 

16 p b4 

1r 6 mn [s] 

16 p b4 
.· 6 6 · · J 
TT X 10 mn [S' 

where [s] = 106 [s~ 

where 
4 

C = 16 pb 
1T6 x 106 

_ ~16 p b4 j - 6 6 ·. 
TT X 10 

c = ----..-~J m • n 

x 144 

4·C 
A = ----.-mn m • n • (S'J 

a 
(c) For y = 0 = 3 

A = 9 • C 
· mn m • n [S 1J 

1 1 
mn {IT 

inches 

inches 

inches 

30 

(20). 

(21) 



(2) Concentrated Load at x/a = y/b = 0. 25. 

4 P . mir . n,r b 
• • s1n 4 · sm4 • a 

(a) 

A = mn 

a 
For 'I = b 

A = mn 

= 1 

4 • p. b2 

Tl' 4 

= C' • 

. m,r 
sin --:r-

where [s•J= 106 [s~ 

C' = 4P b 2 
-.---.....--- x 144 
1T4 x 106 

a 
(b) For y = 0 = 2 

m,r 
sin -;r-

• n1T 
• Sln-

4 

C ' 2 . m,r . n,r • • sin 4 sm 4 
A mn 

a 
(c) For y - b = 3 

[s•J 

ll1T . sin 4 

[s] 

inches 

inches 

31 

(18) 

. 

(22) 

(23) 



A mn 

C' · 3 · sin T · sin ~ 

[S'] 

3-4. Computations. 

32 

inches (24) 

Computations were carried out with the help of the IBM 1620 

computer. The coefficients in the infinite series for deflection were 

computed using equations (19), (20), and (21) for .distributed load, and 

(22), (23), and (24) for concentrated load. After determination of these 

coefficientf:l, deflections starting from~ = i = 0.1 with an increment . a o 

of each value of 0.1 were computed. Various results of the deflec-

tion for different values of y and for corresponding value of a are 

shown in table 3-1 and 3-2. 

The Rayleigh-Ritz method as mentioned previously, gives an 

exact value of the deflection if all the terms in the infinite series are 

considered. As it is impossible to consider all the terms, only a few 

terms were considered. When two consecutive terms showed very 

little variation, the values of the deflection were considered as ·Suffi-

ciently converged. For the distributed load case, m and n = 5, 7, 

9 and 11 were considered. Results with m = n = 7 and 9 showed less 

than 3 percent variations.· For concentrated load m and n = 6, 7, 8 

and 9 were considered. Results with m and n = 7 and 9 showed 

less than 3 percent variation. Results, therefore, with m and n = 7 

were considered sufficiently converged values of deflections. 

The maximum value of deflection was noted in each case. Then 

graphs of maximum value of the deflection versus angle a were 



33 

plotted. These graphs showed that for y = 1, a square plate, deflec­

tion is maximum for e = 0° and 90° and it is minimum for e = 45°. 

Also from the above graphs minimum values of the maximum deflec­

tion for various y values were noted. A separate graph showing 

these values was plotted. The graph showed that the maximum deflec­

tion approaches its minimum value, as 0 approaches 90° and y 

increases from 1 to 5 very rapidly for distributed load and slowly 

for concentrated load. This criteria confirms that beams should be 

along the shorter span to have the minimum value of the maximum 

deflection·~. 
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TABLE 3-1 

DEFLECTION AT VARIOUS POINTS FOR DISTRIBUTED LOAD 

Point Deflection in Terms of C 

x/a y/b 'V = 1 '( = 2 'V = 3 

0 .. 
Angle • 0 

0.1 0.1 0.433 1. 44 77 2. 1861 

0 .. 2 0.2 1. 4969 4.9203 7.0245 

o. 3 o. 3 2 . .7304 8. 8.35p 11. 9791 

o. 4 o. 4 3.6847 11. 7960 15.4576 

o. 5 o. 5 4.0399 12. 8816 
., 

16~ 6626 

Angle 10 
0 

0.1 0.1 0.4142 1.4017 2. 12 72 

o. 2 o. 2 1. 4308 4. 7677 6~8494 

o. 3 o .. 3 2.6087 8.5657 11. 7039 

o. 4 o. 4 3. 5193 11. 4414 15. 1232 

o. 5 o. 5 3. 8582 12. 4965 16. 3108 

·Q 

Angle 20 

0.1 o.i· 0.3894 1. 3099 2.0008 

0~2 o. 2 1. 3442 4.4476 6.4360 

o. 3 o. 3 '2.4492 7.9800 10 •. 9958 

0.4 0.4 3.3028 10.6500 14. 2134 

o. 5 o. 5 3.6202 11.6284 15. 3316 
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TABLE 3-1 (Continued) 

Angle 30° 

x/a y/b y = 1 y = 2 y = 3 

0.1. 0.1 0.368 1.2040 1.8396 
0.2 0.2 i.2699 4.0735 5.8889 
! 

0.3 0.3 2.3131 7.2859 10.0266 
o.4 o.4 3.1187 · 9.7042 12.9394 
0.5 0.5 3.4182 10.5879 i3.9482 

Arigle 4qo 

0.1 0.1 0.3568 1.1102 1.679 
0.2 0.2 1.2316 3.7358 5. 3223 
0.3. 0.3 ·~2.244o 6.6495· ,8.9917 
o.4 o.4 3.026o 8.8289 11.5535 

I 

0.5 0.5 3.3169 9.6216 12.4326 

Angle 45° 

0.1 0.1 0.3561 1.0724 116o74 
0.2 0.2 1.2296 3.5955 5.06o2 
0.3 0.3. ' ' · 2.2411 · 6.3797 . 8. 5()02 
o.4 o.4 3.0228 8.4533 10.8855 
0.5 0.5 3.3136 9.20·52 · -11.698o 
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TABLE 3-1 (Continued) 

Angle 50° 

x/a y/b y = 1 y = 2 y = 3 

0.1 0.1 0.3588 1.0414 1.5447 
0.2 0.2 1.2398 3.4775 4.8231 
0.3 0.3 2.26o4 ' 6.1475 B.0457 
o.4 o.4 3.0495 8~126o 10.26o9 
0.5 0.5 3.34-31 8.84o5 -i1.0083 

Angle 60° 

0.1 0.1 .3742 · 1.0~03 1.4507 
0.2 0.2 L2936 3.3070 4.4394 
o •. 3 0.3 2.36oo '5. 79'29 7.2787 
o.4 o.4 3.1853 7~6110 _9.1870 
0.5 0.5 3.4926 8.2614 9.8148 

Angle 70° 

0.1 0.1 0.3987 .9835 1.3990 
0.2 0.2 1.3788 3.214 4.1849 
0.3 o.·3 2.516o 5.569 6.7276 

- o.4 o.4 3.3963 ·7.2639 8.:3928 
0.5 0.5 3.7241 ·7.8626 8.923" 
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TABLE 3-1 (Continued) 

Angle 80 ° 

x/a y/b y = l y = 2 y = 3 

0.1 0 ... ..... .4228 .9820 1.3795 
0.2 0.:2 1.4616 3.1759 4.0472 

0.3 0.3 2.6656 5.4492 6.3978 -
o.4 o.4 3.5988 7.06o4 7.9042 
0.5 0.5 3.94.60 ·7 .6628 8.3692 

Angle 90 ° 

0.1 0.1 .4331 .9837 1.376o 
0.2 0.2 1.4970 3.1678 4.0052 

.0.3 0.3 2.7304 5.4127 6.2886 
o.4 o.4 3.6847 6.9931 7.7395 
0.'5 0.5 4.04 7.5419 8.1812 
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TABLE 3-2 

DEFLECTION AT VARIOUS POINTS FOR CONCENTRATED LOAD 

Point Deflection in Terms of c 

x/a y/b y = 1 y = 2 y = 3 

Angle O O 

0.1 o.4 0.9872 2.1612 2.4893 
0.25 0.25 2.2677 4.0721 4.6651 
0.3 o.6 1.4144 3.463 4.1385 
o.4 o.8 .7427 1. 7961 1.8404 

0.5 0.5 1.9190 2.9520 2.1967 
o.6 0.9 .3461 o.6o59 .3706 
0.7 0.3 1.346o 1.1959 .4993 
o.8 0.7 0.6082 0.6945 .2481 
0.9 0.2 0.3494 0.2406 .0621 

Angle 10° 

0.1 o.4 .9424 2.0817 2.4131 
0.25 0.25 2.1738 3.931.3 4.5214 . 

0.3 o.6 1.3446 3.3339 4.0075 
o.4. o.8 .7037 l.7321 1. 7913 
0.5 0.5 1.8309 2.8681 2.1645 
_o.6. 0.9 .3277 0.5895 .. 3689 
0.7 0.3 1.2939 1.1769 .5076 
o.8 0.7 0.57'78 0.6835 .2553 
0.9 0.2 0 .. 3370 0.2388 0.0651 
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TABLE 3-2 (Continued) 

Angle 20° 

x/a y/b y;:: 1 '( = 2 '( = 3 

0.1 o.4 0.8922 1.9452 2.246o 
0.25 0.25 2.0493 3.685 4.24o2 

.3 o.6 1.276o 3.1163 3.7501 
o.4 o.8 0.6679 1.6o94 1.6705 
0.5 0.5 1.7155 · 2.6595 2.0322 
o.6 0.9 .308o 0.5430 0.3494 
0.7 .3 1.2041 1.0962 o.496o 
o.8 0.7 0.537 0.6320 0.2551 
0.9 0.2 0.3133 0.2234 .0682 

Angle 30"' 

0.1 o.4 0.8548 1.8o15 2.0458 
0.25 0.:25 1.9387 3.4i7 3.9087 
0.3 o.6 1.231+2 2.8921 3.4519 
o.4 o.8 o.6485 1.4762 1.5165 
0.5 0.5· 1.6187 2.4o2·5 1.8259 
o.6 0.9 0.2949 o.4851 .3130 
0.7 0.3 1.1110 0.9767 .4491 
o.a 0.7 0.50~ 0.5581 .2341 
0.9 0.2 0.2870 0.1982 .0634 
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TABLE 3-2 (Continued) 

Angle 40° 

x/a y/b '( = 1 '( = 2 '( = 3 

0.1 o.4 o.8445 1.6887 1.8585 
0.25 0.25 1.8769 3.1964 3.6o45 
0.3 o.6 1.2382 2.7227 2.1849 
o.4 o.8 0.6552 1.3673 1.3631 
0.5 0.5 1.5717 2.1564 1.5826 
o.6 0.9 0 .. 2935 o.4293 0.2655 
0.7 0.3 1.0389 o.8414 0.3692 
o.8 0.7 o.4867 o.4774 0.1924 
0.9· 0.2 0.2647 0.1671 .0499 

Angle 45 ° 

0.1 o.4 0.8519 1.6498 1.7776 
0.25 0.25 . 1.8703 3.1i62 3.4787 
0.3 o.6 1.26o7 2.6677 3.0763 
o.4 o.8 0.6701 1.3264 1.2931 
0.5 0.5 1.5712 2.0462 1.4576 
o.6 0.9 0.2978 o.4o37 0.2398 
0.7 0.3 1.0142 0.7728 0.3220 
o.8 0.7 o.4862 o.4369 0.1668 
0.9 0.2 o·.2561 0.1506 Q.0411 
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TABLE 3-2 (Continued) 

· Angle 50° 

x/a y/b y = 1 y = 2 y = 3 

0.1 o.4 0.8683 1.6236 1.7067 . 
0.25 0.25 1.8817 2.6579 3.3753 
0.3 o.6 1.2978 2.6339 2.9879 
o.4 o.8 0.6929 1.2949 1.2293 
0.5 0.5 . 1.5865 1.946o. 1.3351 
o.6 0.9 0.3056 0.3800 0.2140 
0.7 0.3 0.9974 0.7052 0.2732 
o.B 0.7 o.49)7 0.3968 o.14o2 
0.9 0.2 0.2492 0.1339 .0319 . 

Angle 60° 

(' "I 
..,; • ....t...:. o.>-i, 0.9275 I.6)74 1.5944 
0.25 0.25 1.9559, 3.014o 3.2390 
0.3 o.6 1.4134 2.6259 2.'8720 
o.4 o.8 0.7615 1.2568 1.1214 · 
0.5 0.5 1.6597 1. 7735 1.1062 
o.6 0.9 o.~3305 0.3357 0.1645 
0.7 0.3 0.9850 0.5761 0.1799 
.o.8 0.7 0.51.20 0.3183 0.0902 

0.9 0.2 0~2401 0.1014 0.0145 
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TABLE 3-2 (Continued) 

Angle 70° 
I •j 

x/a y/b 'Y = 1 'Y = 2 'Y = 3 

O .. l o.4 1.0125 1.6283 1.5160 
0.25 0.25 2.,0823 3.0449 3.1877 
0.3 o.6 1.5685 2.6789 2.8276 
o.4 o.8 0.8509 1.2438 1.04o1 
0.5 0.5 1.7705 1.6355 0.9135 

L o.6. 0.9 0.3628 0.2967 0.1228 
0;7 0.3 Oe9920 o.4625 l O.J.OLJ.3 

o.8 0.7 o.5420 0.2469 0.0521 
f. 

0.9 0.2 0.2358 .0727 0.012:5. 

Angle 80° I 

0.1 o.4 ' ~.0949 1.661€i 1.4659 
' ' 0.25 9.25, 2.2111 3.107 3.1685 

' 
0.3 o.6' 1.7142'. 2.7499 ' · 2·.8265 · 

' o.4- .. b.8 01',9331 1.2433 0.9868 
' ' 

0.5 0.5 1~8751 I 1.5379 0.7788 
I 

o.6 0.9 q.3914 0.2669 o.'0945 ! 
··, 

0.7 d.3 ;i..00_39 0.3797 . ·0.0561 
o.8 o·.7 0.5672 0.1942 0.0303 
0.9 0 .. 2 0.2336' .0523 - .. 0639 
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TABLE 3..:2 (Continued) 

Angle 90° 

x/a y/b 'I = 1 'I = 2 'I = 3 

0.-1 o.4 1.1306 1.6776 1.4478 
0 ,:ii:-.c:.-,; 0.25 2.26'77 3.1387 3.'1968 
0.3 o.6 1. 7764 2.7833 2.8326 
o.4 o.8 0.9677 1.2447 0.9677 
0.5 0@5 1.9190 1. 5012 0.7293 
0~6 0$9 0~·4030 0.2553 0.0844 
0.7 Oo3 .1.0092 0.3487 0.0398 
o.8 0.7 0.5768 9.1744 0.0236 
0.9 0.2 0.2329 0.0445 -.0878 
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CHAPTER IV 

CONCLUSIONS AND SUMMARY 

From the discussion in the previous chapters it can be concluded 

that the isotropic plate with stiffeners can be considered equivalent to 

an anisotropic plate. The elastic rigidity constants derived are, in 

general, in good agreement with the theoretical and experimental 

results derived by others. The value of Dy' = D. is an approximate 

one compared to values obtained by others. 

From the numerical example the following conclusions may 

be drawn 

(1) For y = 1, a square plate, deflection is maximum for 
0 

e = o0 and 90° and deflection is minimum for 9 = 45 • 

(2) The maximum deflection approaches its minimum value, 

. 0 
as 9 approaches 90 and y increases from 1 to 5, very rapidly· 

for distributed load and slowly for concentrated load. Th.is criteria 

confirms that the beams should be along the shorter span to have t.he 

minimum value of the maximum deflection. 

SUMMARY 

An isotropic plate simply supported at the edges, with beams 

inclined at an angle 0 to the x axis of the plate can be analyzed 

by the method presented in this thesis. This plate can be considered 
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as an anisotropic plate. The· rigidity constants can be found in terms 

of elastic properties and geometrical configuration of the isotropic 

plate and the stiffners. The coefficients in the infinite series for 

deflection are obtained by minimizing the total potential energy of the 

system. This method can be applied to any other kind of general 

loading. Once the deflection is known the complete analysis of the 

plate is possible. With the help of the computer it is always possible 

to check if the series has converged, or if a few more terms are 

required. 



BIBLIOGRAPHY 

1. "Design Manual For Orthotropic Steel Plate Deck Bridges." 
American. ln.st:l.tute of Steel Construction, 1963. 

2. Timoshenko, S. P. "History of Strength of Materials." McGraw­
Hill Book Company, Inc~, 1953. 

3. Hoff, N. J. "The Analysis of Structures." John Wiley & Sons, Inc. 

4. Timoshenko, S. P. and Woinowsky-Krieger, S. "Theory of Plates 
and Shells. 11 M.cGraw-Hill Book Company, Inc., 1959. 

5. Seely, F. B. and Smith, J. 0. "Advanced Mechanics of Materials~" 
John Wiley & Sons, Inc., 1952. 

6. Krug, S. and Stein P. "Influence Surfaces of Orthogonal Anisotropic 
Plates. 11 Springer-Verlag OHO, Berlin, 1961. 

7. Huffington,, N. J., Jr. "Theoretical Determination of Rigidity Pro­
perties of Orthogonally Stiffened Plates." Journal of Applied Mechan­
ics, March, 1959, pp. 15-20. 

8. Hoppmann, W. H. "Bending of Orthogonally Stiffened Plates" Journal 
of Applied Mechanics, Trans. ASME Vol. 77, 1955 pp. 267-271. 

9. Petersen, F. F., Johnson, E. S. and Jacobs, E. N. "Orthogonally 
Stiffened Steel Plates" Final Report, Navy Contra.ct N-6 - onr -
25513 (NR-035-258) Mechanical Engineering Laboratory. Stanford 
Univ. , Standard, Calif. , 1949. 

49 



APPENDIX 

IBM FOR TRAN ( WITHOUT FORMAT ) PROGRAM 

1 DISTRIBUTED LOAD 

C CALCULATION OF COEFFICIENTS 

1 READ, C, R, DX, DY, DI 

READ, IF, JF, ALP, BET 

DIMENSION P ( 15, 15 ) 

PUNCH, R, ALP, BET 

DO 10 I = 1, IF, Z 

DO 10 J ·= 1, JF, Z 

FI= I 

FJ = J 

FIZ = I * I 

FJZ = J * J 

FI4 =FI** 4 

FJ4 = FJ ** 4 

ALPZ =ALP* ALP 

BETZ = BET * BET 

ALP4 =ALP** 4 

BET4 = BET ** 4 

RZ = R * R 

T = 6· 0 * ALPZ * BETZ * FlZ * FJZ 

PT = DX * (((ALP4 * Fl4)/RZ) + T + (BET4 * FJ4 * R2)) 

PT = PT + DY * (((BET * FI4)/R2) + t + (ALP4 * FJ4 * R2)) 

PT = PT t DI* ((FI4/RZ) + (FJ4 ,:c RZ)) ,:c (ALPZ * BETZ) 

50 



PT = PT + DI * (FI2 * F J2) * (-4;. 0 * ALP2 * BET2 + ALP4 + BET4) 

P(I, J) = C/{PT>'.c FI* FJ) 

PUNCH, P (I, J) 

10 CONTINUE 

C CALCULATION OF DEFLECTION 

READ, IF, JF, CMIN, DMIN 

READ, CDELT, DDELT, CMAX, DMAX 

C = CMIN 

11 D = DMIN 

18 SUM= O. 

20 DO 40 I = 1, IF, 2 

30 DO 40 J = 1, JF, 2 

40 

60 

80 

FI= I 

FJ = J 

SUM= SUM+ P(I, J) * SIN(FI * 3.-1416 * C) * SIN(F J * 3.1416 * D) 

CONTINUE 

PUNCH, SUM, c, D, 

D = D + DDELT 

IF (D-DMAX) 18, 18, 60 

C = C + CDELT 

IF (C-CMAX) 11, 11, 80 

PAUSE 

GO TO 1 

END 
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2 C ONCE NT RA TED LOAD 

C CALCULATION OF COEFFICIENTS 

1 READ, C, R, DX, DY, DI· 

READ, IF; JF; ALP, BET 

DIMENSION P (10, 10) 

PUNCH, R, ALP, BET 

DO 10 I = 1, IF, 1 

DO 10 J = l, JF, 1 

FI= I 

FJ = J 

FI2 = I * I 
FJZ = J * J 

F14 = FI ,:~,:< 4 

FJ4 = FJ **4 

ALPZ = ALP *ALP 

BETZ = BET * BET 

ALP4 = ALP ::!<* 4 

BET4 = BET >!<* 4 

RZ = R * R 

T = 6 •. 0 >l< ALPZ * BETZ >l< FlZ * FJZ 

PT = DX * (((ALP4 * FI4)/RZ) + t + (BET4 * FJ4 * RZ)) 

PT =PT+ DY * (((BET * FI4)/RZ) + t + (ALP4 * FJ4 * RZ)) 

P'l' =PT+ DI,:,: '((FI4/RZ) + (FJ4 ,:,: RZ)) '* {ALPZ ::!< BETZ) 

PT = PT + DI "'1 (FI2 ::!< FJ2) * (-4. 0 * ALPZ ,:< BETZ + 1\LP4 + BET4) 

P(I, J) =: {C ,:< SIN(FI * 3.1416/4.) * SIN(FJ * 3.1416/4. ))/PT 
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PUNCH, P(I, J) 

10 CONTINUE 

C CALCULATION OF DEFLECTION 

READ, IF, JF, CMIN, DMIN 

11 

18 

20 

30 

40 

60 

80 

READ, CDELT, DDELT, CMAX, DMAX 

C = CMIN 

D = DMIN 

SUM= O. 

DO 40 I = 1, IF, 1 

DO 40 J .= 1, JF, 1 

FI= I 

FJ = J 

SUM = SUM+ P(I, J) * SIN (FI * 3.1416 * C) * SIN (FJ * 3.1416 * D) 

CONTINUE 

·PUNCH, SUM, C, D 

D = D + DDELT 

IF (D-DMAX) 18, 18, 60 

C = C + CDELT 

IF(C-CMAX) 11, 11, 80 

PAUSE 

GO TO 1 

END 
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