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PREFACE 

The purpose of this study was to deterllline the relationship 

between the neutron flux from a point source and that from a plane 

source. In many cases, it may be desirable to determine the 

neutron flux within a thermal column of a reactor or in a sub

critical assembly using a reactor as a source of neutrons prior 

to actually using the reactor. 

If the flux can be determined without actually using the 

reactor, considerable savings may be made if design changes are 

required. Thus if a Pu-Be neutron source can be used and the data 

extrapolated to a plane source of neutrons, the reactor need not 

be used. 

In the research carried out in this study, a relationship 

between a point and plane source of neutrons was determined. 

I thank Dr. John B. West for his assistance in carrying out 

·the research and the presentation of the results in this thesis. 

I thank the Computing Center for use of the IBM 650 digital com

puter for use during the research. 

To my wife, Barbara Ann, who has given encouragement and 

understanding throughout this work, I dedicate this thesis. 
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INTRODUCTION 

In addition to the process of production of neutrons, the 

processes of slowing-down, transport and absorption of the neutrons 

completely describe the neutron cycle in a nuclear reactor. A 

mathematical model which describes this cycle would be very use-

ful in designing nuclear reactors. Diffusion theory is such a model 

which lends itself easily to preliminary design application. 

Certain limitations are inherent in neutron diffusion theory 

due to an assumed model which does not completely describe the neu

tron cycle in a reactor. Diffusion theory can be used only for 

mono-energetic neutrons and then only at two or three mean-free paths 

from strong sources. In addition to several other limitations, it 

also is not applicable near strong absorbers nor near boundaries be

tween dissimilar materials. 

In most diffusion experiments where diffusional properties of 

a moderator are measured, external sources of neutrons are used. 

Usually, in applying the diffusion equation, the sources are assumed 

to emit only thermal neutrons. In most cases, however, the external 

sources emit fast neutrons. Therefore, near the source the assump

tion of thermal sources inadequately describes the actual case. 

If the neutron sources are treated as emitting neutrons of 

energies above thermal, a more exact expression for the source term 

-1-
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of the diffusion equation can be calculated. In such a case, the 

source term may be determined for space and energy by the Fermi age 

equation for neutron slowing-down. 

Anselone (2) and Glasstone, et al., (10) describe the mathemat

ical coupling of the Fermi age equation and the thermal diffusion 

equation. Glasstone, et al., use the "kernel method" in developing 

the mathematics; whereas, Ansel one uses the diffusion equation di

rectly. Anselone's method appears to be more easily handled due to 

the fact that the type of source does not ai:preciably change the 

derivation, whereas Glasstone, et al., use a different "kernel" for 

each type of source. 

Previous work indicates that the coupled equation is prefer

able to the thennal diffusion equation alone. Davenport, et al~ 

(7) found that only with a sing:le fast source assumption did the 

solution differ significantly from that deterinined from the thermal 

source assumption. L. R. Foulke (9) indicated that the flux dis

tribution from a Fu-Be neutron source is not adequately described 

by a thermal source assumption. 

Scope and Specific Objectives of the Thesis 

The thesis project was divided into two main considerations. 

These were the following: 

1. Theoretical consideration of diffusion of neutrons for three 

neutron source conditions, ~e., a thermal source case, a mono

energetic fast source case nnd a multi-energetic fast source case. 

2. Experimental analysis of neutron diffusion by measurement of the 

thennal neutron flux distribution in graphite. 
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In the theoretical considerations, the relationship between 

the flux distribution from a point and plane source ot neutrons was 

predicted for each of the source cases. 

The experimental analysis consisted of experimentally verify

ing the theoretically predicted relationship between a point and 

plane source of neutrons. The Pu-Be neutron source was used to 

approximate the point source of neutrons. Data recorded in the 

literature were used in the plane source case. 



CHAPTER I 

REVIEW OF DIFFUSION THEORY 

One-Group Diffusion Model 

In a nuclear reactor, neutrons are continually being produced 

and lost. The general diffusion equation is used to describe this 

process of production and loss of neutrons throughout the reactor. 

The diffusion equation is also applicable, within the limitations 

of diffusion theory, in a reflector or in a pure moderator as well 

as in the core of a reactor. In a reflector or moderator, the pro

duction rate of neutrons is zero. 

In a volume element of the reactor, the change in neutron density is 

due to the following processes: 

1. The diffusion of neutrons across the boundaries of the volume 

element. 

2. The absorption of neutrons by the nuclei within the element. 

3. The production of neutrons by fission or by external sources 

within the volume element. 

If n is the number of neutrons of velocity, v, (which is as

sumed to be constant) present in the unit element at any time, t, 

the rate of change of neutron density is given by the equation of 

continuity, i.e., 

-4-
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an 
at= Production - Leakage - Absorption (1) 

If Fick's first lc'.lw is assumed to be valid for the neutron 

diffusion, the neutron current can be expressed by the following 

equation: 

(2) 

where the neutron current, J, i.s defined as the number of neutrons 

passing through a unit area normal to the direction of flow per 

second. Then)the net number of neutrons diffusing into the volume 

element is given by the divergence of the neutron current or: 

-div(J) = '\}•(D'\JCf) (3) 

where Dis the diffusion coefficient. 

If Dis independent of position, the divergence of the neu-

tron current is given as: 

2 
-div(J) = D'\J Cf 

For a reactor with a macroscopic absorption cross section, 2a . 

(4) 

(the total target area per cc), the rate of absorption of neutrons 

per unit volume will be: 

cp ~a= Rate of Absorption 

where cp = nv. 

If Sis the rate of production of neutrons within the unit 

volume element, the equation of continuity becomes: 

+ s = ~ 
at 

(5) 

(6) 
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For steady state, the change in neutron density with time i.s zero, 

Thus, the one-velocity general diffusion equation becoMes: 

( 7) 

The application of this equation is dependent upon the par

ticular source condition. For the one-group diffusion equation 

only neutrons of thermal energies are consideretl. It also is as

sumed that the neutrons from the source are born at thermal energies. 

This is perhaps the most widely used model in diffusion experiments. 

With the assumption of a one-group model, the source ter.m in 

a pure moderator is seen to be zero. Then the diffusion equation 

becomes: 

Defining I(' as 2a /D, the diffusion equation becomes: 

V 2 cp - K~= 0 

This is the equation for the thermal diffusion model. 

Age-Diffusion Model 

(8) 

(9) 

In the·one-group thermal diffusion model, the assumption was 

made, although incorrect, that the source neutrons were of thermal 

energies. However, in the actual case, the sources emit neutrons 

of energies considerably above thermal energies. The neutrons dif

fuse from the source and lose energy by colliding with the nuclei 

of the moderator. The source term in the equation of continuity 
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for thermal neutrons then is not zero but is a function of posi-

tion and energy. The source term is due to the neutrons that slow 

sown from enerp:ies above thermal to thermal energies. 

To develop a. spatial expression for the source term due to 

slowing-down, it was assumed that the flux is a function of two 

variables, lethargy and a spatial position, r, where r represents 

a vector coordinate locating a point in space. Lethargy is a func-

tion of energy defined by Murray (15) and Glasstone, et al~ (10) 

by the differential equation: 

-du 
dE 

= E 

Thus, as the neutrons slow down, their lethargy increases. 

(10) 

A unit element is now chosen in the position of r. In addi-

tion, the neutrons between lethargy u and u + du are chosen. The 

number of neutrons in this range and position is denoted by n(u,r)du 

and the neutron flux due to these neutrons by cp<u,r)du. 

Applying the diffusion equation for non-multiplying media, the flux 

is given by: 

(11) 

where all the diffusion properties are for neutrons at a lethargy, u. 

1'.,or slowing-down in a non-hydrogeneous moderator., the continuous 

slowing-down model of Fermi age furnishes a means for calculating 

the diffusion of fast neutrons. 

A plot of lethargy as a function of time for a neutron will 

consist of a series of vertical steps. The vertical lines represent 
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the change in lethargy of a collision and the horizontal lines rep-

resent the time interval between collisions. As the lethargy in-

creases, the velocity decreases and hence the time between collisions 

increases. The following is a schematic plot of the above processes 

in slowing-down: 

1 
u E 

l 

t---· 

This plot is for a single neutron and there will be some 

deviation for other neutrons. But for a moderator such as graph-

ite, the change in lethargy per collision is small. In this case 

the individual neutrons will not deviate greatly from the average 

behavior. Since the lethargy change per collision is small, the 

series of steps can be approximated by a continuous slowing-down 

model where it is assumed that the neutrons lose energy continuously 
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rather than by discrete energy changes. 

With the assumrtion of a continuous slowing-down niodel, the 

f,ource term, S(u), in Equation 11 for a non-multiplying m.edium is 

the net flux of neutrons slowing-down from a lower lethargy to a 

higher lethargy over the differential lethargy, du. 

The ne.t flux of neutrons is then defined in terms of a slowing-

down density, q(u,r), where q(u,r) is defined aa the number of neutrons 

crossing a lethargy, u, per cc. per second. Thus, combining these 

definitions with the diffusion equation and using Fermi·-age theory, 

the following equation can be derived: 

2 .::10 
\} q = ¥,. 

d'{ (12) 

For a complete derivation see Murray (15) or Glasstone, et aL, (lO). 

Where u is the lethargy of thermal neutrons, the slowing-down 

density becomes the source term for therma. l neutrons in the General 

Diffusion Equation. 

The General Diffusion Equation.incorporating slowing-down and 

diffusion becomes: 

-I<:P +q=O a (13) 

Criteria for Justification of Diffusion Theory 

Foulke (9) gives a very complete list of the criteria for 

justification of the diffusion equation. These criteria which arise 

from the assumptions in the derivation of the diffusion equation are: 

1. Collisions between neutrons are neglected, making the proba .. 

bility of collision with the nuclei of the diffusion media 

rroportional to the flux. This results in linear equations 
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describi ng the neutron diffusion. 

2. The neutrons a re ass umed to be mono-energetic. The neutrons 

collide elastically with the diffusion media and do not lose 

energy upon collision~ This allows the diffusion equation to 

be inde pendent of energy. 

3. The moderator is assumed to be homogeneous. It also is as

sumed t hat the moderator nuclei are at rest and of such a large 

mass with resrect to a neutron that they do not recoil appre

ciably under the impact of neutrons. 

4. 'l'he fractional change in the neutron flux over a distance of 

two or three mean-free paths is small. In a region near a con

centrated source, strong absorber of boundary, the flux may change 

rapidly. In this region the neutron current cannot be represent

ed as being proportional to the gri:ldient of the flux. 

5. The diffusion medium is assumed to be a weak absorber so that the 

scattering cross section can represent . the tot~l cross section. 

6. The neutron scattering is spherically symmetric or isotropic. 

This assumption places a limitation on the diffusion equation 

near sources, boundaries and absorbers where the scattering is 

not isotropic. 

7. The general dimensions of the moderator are much larger than the charact

eristic lengths, such as the diffusion length in diffusion theory 

and the slowing-down length in Fermi age theory. 

8. The diffusion coefficient is independent of position. This al

lows the diffusion coefficient, D, to be factored out of the term 

for the divergence of the neutron current in the equation 



of continuity. 

Weinberg and Wigner (19) point out that condition one is the 

most important mathematical property of the diffusion equation. 

yage .L .L 

Since the equations are linear, superposition of solutions is possible. 

Weinberg and Wigner also state that the diffusion equation is 

usually derived with the assumption that the scattering is spher

ically symmetric. They, however, show that the diffusion equation can 

be derived without this assumption. 

Foulke (9) states that without condition four, Fick's first 

law of diffusion is not valid in describing the neutron diffusion. 



CHAPl'ER II 

SOLUTIONS OF THE DIFFUSION EQUATION FOR 

PLANE: AND POINT NEU'fRON SOURCES 

The derivation of the flux distribution in a finite cyclindrical 

moderator, neglecting the source term due to slowing-down of fast 

neutrons, is i:resented in. Appendix B. The boundary conditions are 

such that the radial flux is zero at r = R, the extrapolated radius, 

and the axial flux is zero at z = c, the extrapolated height. The 

flux distribution was found to be: 

at) 

t:p(r,z) = ~l An Sinh 'Yn(c-z) J 0 (jn f) (14) 

Where A is a Fourier constant, j is the argument of the zeros 
n n 

of the Bessel Function, J 0 , and 'Yn is the relaxation length defined 

by the following equation: 

(15) 

The symbols are as previously defined for Equation 14. 

The above flux equation represents the flux distribution for 

both point and plane sources of thermal neutrons. The Fourier 

constant, An, differs for the different types of sources. For a point 

·source of thermal neutrons, A was found to be given by the 
n 

-12-



following equation: 

A 
n 

1 
= 2 

tanh ( y c) 
:n 

n 

For a plane source, A was found to be given by: 
n 

A = n 
28 

tanh <;~c) 

n 
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(16) 

(17) 

From this it is seen that the ratio of the Fourier constants is 

given by the following equation: 

A (point) .n 
:A.n(plane) 

(18) 

where K is a constant determined from the ratio of source strengths. 

In Appendix C, the solution of the Fermi age equation is pre-

sented for both plane and point sources emitting neutrons of a 

Fermi age, For a cyclindrical moderator the slowing-down den-

sity is given by: 

q(r,z,-;) exp (19) 

where Kn is a Fourier constant whicb is a function of 7 • Kn 

is also dependent on the type of source, point or plane source 

of neutrons. 

Using the slowing-down density from Fermi age theory with the 

diffusion equation, the thermal neutron flux was also derived in 

Appendix c. The result is given here as: 



cp (r,z) = 
00 

2. 
n:::l 

The flux distribution reduces to: 

cf; (r,z) = 
CD 

r 
n=l 

F nz 

where F was defined as: 
nz 

A 
n 

J 
0 

( j !. ) 
nR 

+ erf ( z 
2T 

e Ynz [ 1 - erf ( 2 ~ + )In T 

Fag;e 14 

(21) 

)In T>J + 

>]} (22) 

Comparing the flux from the fast source with the flux from 

the source emitting only thermal neutrons, it was seen that the 

factor F /Sinh "'\/ (c - z) is used to correct the flux due to the 
nz · In 

emission of fast neutrons. 

The Pu-Be neutron source can not be considered rigorously to 

be a mono-energetic source. Fermi age treatment does not com-

pletely describe the neutron slowing-down. This explains any 

curvature of a plot of the natural logarithm of the slowing-down 

density against z 2 • 

It is noted that ..J"""T' is the slowing-down length of neutrons 

from a mono-energetic source. The quantity,2 ff" ,is referred to 
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as the Gaussian range and denoted by g. For a multienergetic ~urce, 

g. is referred to as the Gaussian range of the i'th group of 
]. 

neutrons. 

The slowing-down density for an infinite number of Gaussian 

ranges of neutrons is given by the following equation: 

a> 
q(z,T) = L 

i=l 
f. K. e 

1 1 

where f. is the fraction of the neutrons in the Gaussian range 
1 

g .• The solution for each range is super positioned onto the 
1 

solution of the other ranges. 

(23) 

W.R. Kimel (13) has found excellent agreement with exper-

imental results when three ranges are used to describe the spectrum 

from the Pu-Be neutron source. lie gives the following equation for 

the slowing-down density to indium resonance using three ranges as: 

q(z,T)res 
Q . 

0 

2~572 exp 

= 1.314 exp 
2 

z 
+ 

+ 0.824 exp 

where q (z, T )res is the slowing-down density to the indium 

resonance. 

The following equation was used to find the slowing-down 

density from the resonance energy to thermal energies. 

T th = T 
res + T 

res-th 

(24) 

(25) 



or 

') 

a~ 
- th 
4 = 

q2 
res 
4 

+ 

') 

q-res-th 
4 
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(26) 

A value of 49.6 for T the age from the indium resonance 
· res-th' 

to thermal enerr;ies, was used. This figure was an average of four 

reported values of the ap:e from the indium resonances to thermal 

ener[!.'ies (13), (15), (6), (10). 

Using the slowing-down density incorporating N Gaussian ranges, 

the flux equation was derived in Appendix Candis given below. 

rp<r,z,q) ... 
N. 
2_ 

i=l 
f. 

1 

~ erf ( 
z (ngi 

~ e fnz [1 - erf + -
rr . 2 
-1 g.D 

( z Yn /> + 
gi 

Defining Fniz for each range 

the flux equation becomes: 

(X) 

+ 

J 
r ) j n R 0 (27) 

as F was done for the Fermi age, 
nz 

cp<r,z,q) 
N s;,.: 

= L. I f. F A J 
1 niz n o (28) i=l n=l 



CIIAP'TEH III 

Neutrons are electrically neutral rarticles. Therefore, 

neutrons can not be detected by any other means than by second-

ary processes. The secondary processes are the release of 

charged particles as the neutron passes through matter, and the 

production of ionizing radiation upon the passage of the neutron. 

For practical efficiencies in neutron detect ion, the s·econd-

ary process must produce ·ionizations which ~an be conveniently 

detected by detectors. The energy of the ionizations must be 

above the th_reshold energy of the detector. 

F'oil Activation :Method of Thermal Neutron Detection 

A number of elements have a large cross section for the 

neutron-gamma ( n,ry ) reaction. If the product of this reaction is 

in itself unsinble and decays 6~ the emission of beta particles 

with a convenient half-life, this element ct111 be used to detect 

thermal neutrons. 

In most applications, the detector element used must be a 

thin foil and need not be more than three or four crn2 in area. 

With such small areas, the foils can be used to determine the 

thermal neutron flux at known localized areas. F'or most detector 

elements, the use of these foils is not affected by the presence 

-17-
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of gamma rays of less than six MEV. Another desirable, if not 

mandatory, characteristic is the absence of resonance absorptions 

with unusually larr:e cross section for neutrons at energies near 

the thermal region. 

From the 'definition of activation cross section, it is evi-

2 
dent that for a foil having an area of A, cm , a density of N, 

nuclei per cc and a thickness, x, that the rate of neutron capture, 

R, is given by: 

R = nvrr tNAX vac : 

Since cp = nv, cp is then given by: 

cp = 

(29) 

(30) 

The radioactive product will decay with a characteristic 

half-life, T,.. In application of this decay to activity measure-

ments, it is convenient to count the activity with an over-all 

efficiency of the counter E C is defined as the counting rate 
s 

which would be observed if the irradiation was continued until no 

further increased in activity is produced. C is referred to as 
s 

the saturation activity. Thus it is seen that R, the rate of cap-

ture of neutrons as previously defined, is C /e s 

The counting rate for any irradiation time less than that re-

quired for saturation is given by Lapp and Andrews (14) as C = 

C Cl - e-A t), where tis the irradiation time. In most cases, 
s 

it is impossible to count the activities immediately after irra-
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diation is terminated. The activity will decay in a time, t 1 , be

ginning at the termination of the irradiation and ending at the 

time t.he counting is started. The counting rate, at the time the 

counter is started, is given by c1 = Ce \ t < 14). 

It is also usual to count the number of emitted particles 

from the foil in an interval of time starting at t 1 and stopping 

at t 2 • If c1 is the number of counts measured in the interval 

t 2 -t1 per cm2 of the foil, the saturation activity count rate, Cs, 

is given by: 

= < - X t 1 - A t 2 ) < 1 - X: t > e · -e -e 
(31) 

In the actual measurement, several rrecautions and corrections 

are required in the use of the above outline for determination of 

the thermal neutron flux. 

Indium foils are used widely to measure the neutron flux. This 

use incorporates the activation of indium-115 according to the fol-

lowing nuclear transformation equation: 

I 115 n __ n~ Inll6 (J-
> 

Snll6 (32) 

In measuring neutron fluxes, the thickness of the foil must 

be considered. Increasin~ the thickness of the foil should in-

crease the sensitivity of detection due to the increase in the 

number of target nuclei. This axrected increase in the sensitivity, 

however, is obtained only up to a thickness which could be called 

the optimum thickness. 
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After the optimum tl;ickness is reached, the sensitivity 

decreases. ;i'he decrease is due to the combination of two effects. 

1. The increased thickness of the foil increases the self absorp-

tion of beta rnrticles. 

2. The increased thickness increases the effect of absorption of 

neutro1,s by the indium and reduces the neutron flux. 

It is sometimes very diffi~ult to determine the correction for 

internal absorption of the beta particles in the foil. Foils thin 

enough that the effect of self absorption is negligible should be 

used. 

Bothe (4) suggests a method by which the correction due to 

the depression oJ,: the neutron flux can be detcnnined. .i3othe as-
" 

sumed that a circular foil of radius R would have· the same effect 

on the neutron flux as a spherical shel 1 of a radius 2 .. {/3. Th.is 

assumption was made since the spherical shell lent itself easily to 

theoretical analysis. It, however, has been found from experimental 

data that the radius of the shell must be taken as equal to the 

radius of the circular foil. This radius gives much better agree-

ment with observations (6). 

Bothe computed a factor by which the obser.vecl counting rate 

was to be multiplied to obtain the actual neutron flux. He gave 

the general formula as: 

3 R L _ l 
2~R + L 

(33) 

It is noted that if L << R · ~ < "-tr' the case for a nonabsorbing 



medium, F becomes: 

3 R 
F = 1 + 4 a A,ir (34) 

In both equations Ct is given by the following equation: 

(35) 

in which x is the foil t}lickness, a· is the absorption coefficient 

in the foil, and E. (-0,C) is the exponential integral function 
1 

taken from ma.thernatical tnbles, Jahnke and Emde (11). 

Curtis (6) defines a as representing the average probability 

that a neutron will be absorbed in an isotropic flux of neutrons 

in a layer of material of thickness x and having a neutron ab-

sorption coefficient of er • Curtis also presents a plot of aas 

a function of O" x. Similarly plots can be found i.n several ref-

erences (6,13,US,19). Ritchie, et al., (16) present several of 

the methods by which the foil data can be corrected for flux de-

pression. One of the methods which appears most applicable is 

that by Skyrme (17)~ Skyrme computed the factor F from transrort 

theory. This factor is: 

3 1 
F = 1 • T ( 4 - ~ lnO"' T) - T (D' - D. ') 1 . (36) 

where i =Lat and D' and Di' are dependent on the thickness and 

properties of the foils. 

Ritchie, et al,. also present the factor F computed by Tittle 

(18). Tittle gi~es Fas: 



1 
- E. ( T 

F 
2 1 (37) = 1 3Q L 

1 + 2 - E. ( T) 
2 Atr 

- 1 
1 (1 + L 

where the symbols are as rreviously defined for the Dothe equation. 

In all cases: 

. ~ 
cpo = F(T) (38) 

cp O is the undisturbed flux, and cp m is the measured flux. F is 

seen also to be a function of the thickness and other properties 

of the foil and not the flux for all cases. Therefore, by compar-

ing the activities of each foil irradiated in the same flux, inter-

calibration factors can be found to correct the measured activity 

to that which would have been measured using only one foil. 

In measurements of relative activities, F can be combined with 

the constant of the following equation: 

cp c 
, r (39) 

rh is the relative flux, and C is the constant needed to transtr 
form the relative flux into an actual flux. Thus: 

Cf = C' cp (40) o . r 

where C' = C/F. 

When cadmium covers are used, another important factor must 

be considered. Cadmium has a very large resonance absorption cross 

section for neutrons. The counting rate obtained from cadmium cov-

ered foils then must be corrected for both flux depression due to 
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the indium absorption and that due to the resonance absorption of 

the cadmium. This correction varies with the thic:;:ness of the 

cadmium cover and also with the thickness of the indium foil. 

The correction factor F cd is most reliably t:ietcrmined by mea-

surement of the nctivities induced in foils of equal thicknesses. 

These foils are placed into identical fluxes with a different 

thickness of cadmium covers surrounding each foil. An extra-

polation of the data to zero cadium thickness will give Fed· This 

method for indiwn foils of various thicknesses produces similar 

curves for each thickness. Using values of Fed calculated in the 

above manner, Fed can be plotted vs indium thickness for different 

thicknesses of cadmium. 

Where both thermal and epithermal neutrons are present in the 

neutron flux, the thermal activity is given by the following 

equation: 

Ath ( x) = n(x) A(x) (41) 

where R(x) is the fraction of the activity of the indium foil due 

to thermal neutrons and is obtained from measurements with cadmium 

covered foils. The cadmium covered foils will cause variations in 

the epithermal neutron flux by absorption. The activity of the 

cadmium covered foils is not rigorously the activity due to the 

neutrons of an energy above thermal. This activity, however, is 

given by the following equation: 

A • = A d Fed epi c 
(42) 

where A . is the actual activity of the foil due to the epithermal epi 

neutrons, and Acd is the measured activity of the cadmium covered 
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foil. 

The activity of the bare indium foil is the sum of the ac-

tivity due to the t>ermal and epithermal neutrons or: 

Atll = A(x) - 1~ • (43) ep 

where Ath is the thermal activity and A(x) is the activity of the 

hDre foil. 

Definin[; the cndmium ratio CR(x) as: 

Cf<(x) = (44) 

the activity due to the thermal neutrons alone is then given by 

the followin~ eauation: 

., 
11 th 

- A(x) 
l - F cd 
C.H(x) 

(45) 



CHAPTER IV 

EXPERIMfi~NT.A.L FA..CILITIES 

All neutron flux measurements were made in the graphite pile, 

shown in Figure 1. The pile consisted of a rectangular parallele

piped section, forty-eight inches square and twenty-eight inches 

high, and a cylindrical section, thirty-four inches in diameter and 

twenty-four inches high. The two sections were constructed by 

stacking layers of machined reactor grade graphite (AGOT) blocks, 

approximately four inches in cross section. All layers in each section 

were identical. 

Five vertical stringers ran the entire length of the pile. 

The position of these stringers can be seen in Figure 3. One 

of these stringers was placed at the central axis of the pile, 

while the other four were placed along two perpendicular radii. 

Each of the stringers along one direction was equidistant from the 

central axis as a stringer along the other direction (see Figure 3). 

ln the center of each stringer was a one-inch hole machined the 

entire length of the stringer. 

Graphite rods were placed into the holes in the stringers to 

make the moderator homogeneous by eliminating the air gaps. In 

addition to eliminating the air gaps, the rods served as holders 

for the indium detection foils. These rods were fifteen-sixteenths 

-25 
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Schematic of the Graphite Cylinder Viewed 
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inch in diameter and fifty-two inches long. Nine-·sixteenth inch 

holes were mil led along the length of the graJ.:hi te rods to pro

vide places for the indium foils. 'l'he foil holes in the rod for 

the center stringer were milled to the center of the rod so that 

the foils would be placed exactly on the central axis of the pile. 

The foil holes in the other rods were milled to a depth of one

fourth inch. The spacing of the foil holes along the rods was 

three cm.between centers. The first foil hole on each rod was two 

cm. from the end of the rod. The center rod had these foil holes 

along its entire length; whereas the other rods had foil holes a

long half their lengths. 

The Pu-Be source was held in position with a graphite block 

four inches square by about three inches high. A cylindrical hole 

was machined through the center of the block. This hole was of 

such a size as to allow the source to be easily inserted and re

moved but still allow positioning of the source accurately. This 

positioning block was placed on top of the center stringer as 

shown in Figure z. 

Polyethylene was used for a shield around the Pu-Be neutron 

source. The polyethylene was in the form of rectangular blocks 

stacked around the source to a sufficient thickness to reduce the 

fast neutron flux around the source to below the maximum permis

sible limit in the working area. 

Foil Counting Facilities 

Twelve indium foils were used in the irradiation. Nine of 

the foils had thicknesses of approximately 0.006 inch and a dia-
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meter of five-sixteenth inch. 'ihis gives a ti:ickness of ap:rrox-

2 
imately 96 mg/cm. The other three foils had thicknesscB of 0.010 

inch and a 6.inmeter of about seven-sixteenth i.nch, r,;iving a thick-
') 

ness of a proximately lbO mg/cm'". 

The cadmium covers used had an inside diameter of sli[r,htly 

more that seven-sixteenth inch and a wall thickness between 0.0196 

inch and 0.0205 inch. In addition to the covers, cadmium caps 

were used to cover the oprosite side of the indium Soils. These 

caps had a diameter of about seven-sixteenth inch and a thickness 

between 0.021 inch and 0.023 inch. This gave an over-all average 

2 
cadmium thickness of about 300 mg/cm. 

A two Tr gas flow rrorortional counter was used to measure 

the activity of the foils. This counter was an Nft.lC model P-10-A 

proportional counter. The foil counting system consisted of the 

flow counter, a Nuclear Chicago scaler and a timer. The counting 

gas was Nuclear Chicago P-10, a mixture of methane and argon. 

The background in the counting room was about sixty-three 

counts per minute. No lead shielding was used to shield the pro-

portional counter. A 0.040 inch aluminum disc provided with the 

counter was used to facilitate handling and positioning of the 

foil in the counting chamber. 



CH.AFTER V 

EXPERIMENTAL PROCEDU:IB 

All measurements of the neutron fluxes were made with either 

bare or cadmium covered indium foils. The bare foils were used to 

measure the total neutron flux due to fast, epithermal and thermal 

neutrons. The cadmium covered foils were used to give a measure 

of the epithermal and fast neutrons. 

The foils were placed into the foil stringers of the graphite 

pile for irradiation. The foils were irradiated for about six 

hours until they had reached about ninety-nine per cent of the 

saturation activities of the 54.1 minute half-life indium isotope. 

In some cases, however, this time was decreased to as low as one 

hour. To limit flux depression, only twelve foils were irradiated 

each time. When cadmium covered foils were used, this number was reduced 

to nine. This was done since the cadmium affects the flux much more 

than does indium. 

After irradiation all the foils were removed from the pile. 

the foils farthest from the source were counted first. This gave 

as high a count rate as possible for the points of low flux. About 

three minuted were allowed to elapse after irradiation before count

ing began. This allowed the very short half-life (seven seconds) 

isotope of indium to decay away. 

-:n-
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The background count was taken each day onl;y after all foils 

were counted. This was due to the fact that with the neutron source 

in position on the pile there was a significant incr~ase in the 

background mensured by the proportional counter. 

After completion of the flux measurements with the foils, an 

intercalibration of the foils was made. Each foil was placed into 

the sa1,1e foil position one at a time. The saturation activity of 

each foil was used to determine intercalibration factors. 

Measurement of any residual activity in the foils was made 

from time to time. After completion of the flux measurements, each 

foil was again checked to see if there were any residual activity 

that had accumulated over the period of flux measurements. Also a 

check was made to see if any impurity with a medium half-life af

fected the measurements. This was done by measuring· the activity 

of the foils at different time intervals and checking to see if 

the decay followed exactly the decay curve of rure indium. 

The proportional counter was operated at 1750 vol t,3. This 

voltage is the middle of the beta plateau as determined by mea

suring the count rate at the different voltages for the Ra DEF 

standard source A plot of this count rate vs voltage is pre:.. 

sented in A i:pendix A. 

F'or counting, the foils were rlaced into the sample chamber 

of the gas flow counter. The counter was then purged for thirty 

seconds by allowing the gas to flow rapidly through the chamber. 

The ~as flow rate was then reduced to about two bubbles per second. 

At this rate the consumption of gas was quite small and the count-



ingrate \\'as not affected by increasing the gas flow rate. 

The same counting procedure as above was used to determine 

the baclq1;round count, except that the sample chamber was empty 

except for the aluminum rosi t ioni rp: disc. 

A foil irradiated each time in the same posi.tion was used to 

establish the stability of the counter and the rer,roducibility of 

the flux in the r,ile. 



CHA.PTER VI 

PRESENTATION AND DISCUSSION OF RESULTS 

Flux plots of the total activities of the foils are presented 

in Figure 4. These activities are due to fast, epithermal and 

thermal neutrons and were obtained from the activities of the bare 

foils. The flux plots of the corrected saturation activities of the 

cadmium covered foils are presented in Figures. The flux plots of 

the thermal neutrons are presented in Figure 6. The curve for 

the thermal neutron fluxes was obtained by subtracting the curve of 

the corrected activities of the cadmium covered foils from the curve 

of the activities of the bare foils. This curye was used in sub-

sequent figures and analysis. 

The experimental thermal neutron flux was analyzed by deter-

mining the diffusion length that gave the best fit to the experiment-

al data. The method used for determining the diffusion length 

was to find the best straight line through the experimental data. 

This straight line was the fundamental solution of,the diffusion 

equation with a rarticular diffusion length. 

The value of the straight line slope,, is -oc.. oC... is 

given by the following equation: 

(!:)2 = R + (46) 

The slope was found to be -0.0332. Substituting this value 

-34-
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into Equation 46, it is seen that l/L2 is equal to -1.72 x 10-4 • 

From physical considerations, it is impossibie for the diffusinn 

length to be ima~inary. The strai~ht line fit is curve A of Figure 

6. 

lroblems Arising From Fhysical Approximations of the Theoretical 

Source Conditions 

If the theoretical conditions could be reproduced physically, 

there would be no rroblem in verifying the theoretical relation

shir- between a point and plane source of neutrons in Equation 18. 

The Fti-Be neutron source, however, is not a point neutron source. 

This in itself prevented a rigorous aprlication of the theoret

ically derived relationship in predicting the flux from a plane 

source of neutrons_ by measuring the flux from the Fu-Be neutron 

source. 

In addition to the above problem of geometry, there is the 

problem of the difference in the s rec tr um of the neutrons from the 

Pu-Be source and from the AGN-201 reactor. The reactor is a thermal 

reactor wherein there is a very large ti1ermal component to the neu

'tron spectrum; whereas the neutrons from the l;u-Be source spectrum 

are almost entirely composed of erithermal and fast neutrons. 

Figures 7 and B present graphs of the spectrums for the Pu-Be neu

trons and fission neutrons respectively. 

The rresence of a large number of fast neutrons from the Pu-Be 

source necessitated shielding of the source for safety purposes. 

In addition to shielding personnel from possible exposure to large 

doses of radiation, the shield provided a hydrogeneous medium in 
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which the fast neutrons are essentially thermalized upon the first 

collision with the hydrogen nucleus. 

Jith the above problems, it became necessary to analyze the 

flux from the fu-Be neutron source by crnxr,aring it with the flux 

fron several theoretical models. If a satisfactory model could be 

found for the flux from the Pu-Be neutron source, it was rostu

lated that the same model with modification could be used to rre-

diet the flux from the AGN-201 reactor. 

Thermal Diffusion ;,iodel 

The flux for a pure thennal point source of neutrons was cal

culated from Eq~ation 14. The thermal diffusion length was taken 

to be 52. 4 cm. This value for the thermal clif fusion length arrears 

to be the most reliable value available in literature (lb). The 

theoretical flux froll1 the thermal point source was calculated using 

the fundamental lrnrmonic in one case and the first twenty harmonics 

in the second case. 

As can be seen from Figure 9, the fundamental solution is a 

simple exponential which gives a strai~ht line plot on semi-

logarithm,paper. It can also be noted that near the source the 

solution using twenty hnrmnnics is difergent and at large distances 

from the source it approaches the fundamental harmonic solution as 

predicted in several references (6, 10, 15, 19). 

The flux calcul2ted from the thermal roint source model has 

also been fitted to the experimental data in Pigure 9. Figure 9 

shows that the flux from a thermal roint source model cannot be 

fitted to the experimental flux except at lar~e distances from 



105t \ 
• 

\ ~ 
! 

I 

\ 
" 

• \ u 
CD 

Cl} • 
C'II. 

I 
~ • a 
0 
It . 
+a :s • 104 Ii!: 

• 
M :s .,- ....... .... ,,, 

....... r.. / 
a I 

0 
It 
+a :s • Ii!: 
.... 
! 
CD 

.c: 
foe 

103 

0 10 

Figure 9. 

\ 

' 

--·- Cnlculated Flux, 
20 Harmonics 

Cnlculated Flux, 
r:armonic 

------- r,:xrerincntnl Flux 

r/R = 0 

I 

\ .. 
\ 

... 

' ' 
... 

' ' " .~ 

.. , 
~ ..... 

':-
......... 

.......... 

' 

Distance From the Source, cm. 
Calculated Neutron fo'luxes From i:oint Thennal 
Sources. 

First 

;.i'irst 

' ' 



Fage 43 

10 

• Calculated Flu¥, 

\ --·- 20 Harmonics 
Calculated Flux, • Harmonic 

\ -------- Experimental Flux 

• r/R = O • 

\ u 
G> 
:I.I 

Cll • • B 

\ ~ 
Cll c • c 

\ "" ~ ::, 
QI 

104 • ~ 

~ .. 
~ .,,, - • ~ ......... 

"' 
r.. / ......... 
.: ' • c 

' ~ "" ~ ' ::s 

' QI z 
' ... ' as e 

G> 
..s;:: 
~ 

......... 
......... 

' 
' ......... 

' 103 

I I 0 10 20 30 40 50 60 
Distance From the Source, cm, 

Figure 10. Calculated Non-diverging Neutron 1',luxes From 
l'oint Thermal Sources. 



Page 44 

the source. 

Since the l.;,u-Ile neutron source is essentially a fast source, 

it was exrected that the therma'i roint source would be inadequate 

near the source. At large distances from the source, the contri-

bution to the thermal neutron flux by slowing-down is small. Thus 

at large distances from the so~rce, the neutrons are expected to 

diffuse as if they had come from a thermal source. 

It is noted that very near the source, the flux from the 

thermal point source model diverges. The experimental flux in this 

area is significantly lower. This may be ·explained by the fact 

that the Pu-Be neutron source is not a point neutron source. There-

fore, by extrapolating the theoretically predicted curve fo.r the 

case of a thermal point source of neut~ons from a point some dis-

tance from the source, the theoretical flux can be found at zero 

for the case where the flux does not diverge at the source. Since 

physically the thermal neutron flux cannot diverge, the extrapola-

tion should give a better fit to the experimental data. This is 

shown to be true by comparing F'igures 9 and· 10. Figure 10 uses 

the extrapolated value for the flux; whereas· Figure 9 does not. 

The thermal point source model is good at large distances 

from the source. However, even with the correction due to the 

physical impossibility of a point source of neutrons, this model 

fails grossly to provide an adequate model. 

Age-Diffusion Model with a Mono-energetic Fast Source 

The theoretical flux from a source emitting fast neutrons 

2 . 
of a Fermi age equal to 421 cm was calculated from Equation 19. 
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The value for the Fermi age was taken from studies made at ~ansas 

State University as rerorted by Kimel (13), Foulke (9) and Kaiser 

(12). The theoretical flux was calculated for both the fundamental 

harmonic and a combination of the first twenty harmonics. As can 

be seen from l•'igure 11, the solution for the fundan!ental harmonic 

is essentially equal to the solution using all the first twenty 

harmonics. 

Figure 11 also .'.':ives the fit of the exrerimental data with the 

theoretical flux from the mono-energetic fast roint sriurce of neu

trons. This arrarently is a good model at distances above thirty 

cm from the source. Iiowever, closer to the source, the fit is only 

slightly better thnn the fit from the thermal source model. It had 

been anticipated that the combination of slowing-down and diffusion 

should rredict the flux more accurately near the source than the 

thermal diffusion model. In this area the processes of slowing

down are significant. 

Even above thirty cm, from the source where the fit is fair, 

the calculated flux deviates from the experimental data. Figure 12 

shows that the slowing-down density from ~ermi age treatment does, 

in fact, deviate from the experimental plot of the slowing-down 

density. The deviation in the theoretical flux from the experi

mental flux may then be due to the limitations on Fermi age theory. 

The mono-energetic fast source model is a much improved model 

over the thermal source model. The flux calculated from the mono

energetic fast source model in the volume greater than thirty cm 

from the source was still inaccurate. 
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No correction for the source not being physically a roint 

source was made since the theoretical model of the flux does not 

div~rge near the source. 

Age-Diffusion Node! with a Multi-energetic Fast Source 

.In Figure 12 the slowing-down density does not follow the ex-

perimental points at large distances from the source for a Fermi 

9 
age equal to 421 cm-. Three Gaussian ranges of neutrons were in-

traduced to account for the deviation from a straight line plot on 

semi-logarithm paper of the experimental data. The values for 

these Gaussian ranges were obtained from values reported by Kimel 

at Kansas State ( 13). For verification of these values, a plot 

of the slowing-down density as predicted by Kimel at ·Kansas State, 

. 
using the three Gaussian ranges tog.ether with our experimental 

data is presented in Figure 13. It is seen that the rredicted 

curve using three ranges is in very good agreement with the exper-

imental data. 

The value of the calculated flux using the three Gaussian 

ranges was calcuted from Equation 28 and is presented in Figure 

14. It is seen, as was the case for the mono-energetic fast source, 

that the fundamental solution does not differ significantly from 

the solution using twenty harmonics. Here also the two are al-

most identical. 

Figure 14 also gives the fit of the theoretical flux from the 

multi-energetic fast neutron source fitted to the experimental data. 

Here, as in the case for the mono-energetic source, the fit is 

grossly inadequate at small distances from the source. However, 
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the multi-energetic source model predicts the flux much closer 

to the actual experimental data in both areas above and below 

thirty cm from the source. Above twenty cm from the source the 

fit is very good. The fit below twenty cm is grossly inadequate. 

Of the three general source models, the multi-energetic source 

model more accurately predicts the flux from the Pu-Be neutron 

source. Here also an extension to measurements with the AGN-201 

reactor would meet with some uncertainty below twenty cm from the 

source. 

Within two or three mean free paths from strong sources, it 

can be expected that no source model using diffusion theory will 

be adequate. However, this does not explain the discrepancy at 

thirty cm or even twenty cm from the source which is approximately 

eleven or nine mean free paths respectively. 

Combination of Thermal Diffusion Model and Age-Diffusion Model 

Anselone (2) added to his solution for a fast source model a 

solution due entirely to a thermal source model. This suggested a 

means to fit the experimental data with the theoretically predicted 

fluxes. An attempt was made to superimpose the thermal point sourcE 

solution on to that of the solutions for the fast source models. 

The relative contribution to the flux by each model was found by 

determining the best fit to the experimental data. The fit of the 

theoretical combination of the thermal model and the mono-energetic 

fast source model is presented in Figure 15. The thermal model in 

combination with the multi-energetic source model is presented in 

Figure 16. 
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This combination of the thermal diffusion model and the Age

diffusion model µ;ives an improved fit to the experimental data. 

Even with this combination, the theoretical curve, as expected, is 

still inadequate near the source. The experimental value of the 

flux has a sip:nificant depression in the area around the source. 

In addition to the limitations on the diffusiori theory in the area 

of the source, the reduction in the flux could be due to the pre

sence of the Pu-Be neutron source as an absorber. The source is a 

strong absorber of neutrons of energies in the thermal rang·e, with 

an absorption cross-section of aprroximately 1000 barns.· Therefore, 

to give a value to this depression, a negative source of thermal 

neutrons is introduced at the origin with the boundary condition 

that all neutrons from the source which are thermal are absorbed at 

one-extrapolation distance in the negative z direction. This type 

of source then becomes only an end correction factor which is mul

tiplied to the thermal flux. The above method of determining the 

correction due to absorption is kno,m as the image method. 

With a co"rrection factor for absorption at the source, the 

experimental data can be fitted very closely to a combination of 

a thermal and fast source model. This is noted in.Figures·17 

and 18. 

The theoretical flux predicted from a combination of the 

thermal point source model with a fast sotlrce model incorporating 

three Gaussian ranges (Figure 18) gives a much improved fit ·over a 

combination using only the Fermi age of Pu-Be neutrons _in graphite 

and the thermal source model (Figure 17). The significant differ-
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ence in the solutions occurs at lar1~e distances from the source. 

Here the second and third Gaussian ranges contribute largely to 

the slowing~ down. Figures 19 and 20 give the comparisons between 

the exrerimental data with the theoretical flux at radial distances 

of r/R equal to 0.338 and 0.666 respectively. The theoretical flux 

was predicted from the same combination of a thermal point source 

with a fast source as determined previously for the center rod. 

In Figure 19 the theoretical flux using a mono-energetic fast 

source and a multi-energetic fast source, each in combination with 

the thermal source, are presented. Figure 20 uses only the theo

retical flux from a combination using a fast source of neutrons of 

three Gaussian ranges and a thermal source. 

With the exception of data near···the boundary between the cyl

inder and shield, the experimental data very closely follow: the 

theoretical flux. The depression may arise from the inadequacy of 

diffusion theory near the boundary between dissimilar materials. 

It is also seen that at large distances from the source the mono

energetic source deviates somewhat from t~e experimental data just 

as it did.for the center rod. 

Thermal Neutron Flux Distribution in the Parallelpiped Section of 

the Graphite Pile 

The plots of the activities of bare indium foils irradiated in 

the parallelpiped section are presented in Figure 21. These plots 

are for rods number one, two and three at radial distances of r/R 

equal to zero, 0.388 a~d 0.666 respectively. 

Figure 22 presents flux plots of the activities of the cadmium 
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covered foils within the parallelpiped section of the pile. The 

plot for the center rod was made as accurately as possible by de-

termining the statistical deviation of the exrerimental points. 

The best curve was then drawn through the points. The plots for 

the other two rods were assumed to be members of a family of curves 

to which the plot for the first rod belongs. The activities of 

the cadmium covered foils were so low that there was a large un-

certainty in the measurements for the second and third rod. 

Figure 23 presents the thermal neutron flux within the parellel-

piped section. Figure 23 was obtained by substracting the epithennal 

content of the activity of the bare foils of Figure 22 from the 

total activity of the bare foils presented in Figure 21. 

From a compar i son of Figure 21 and Figure 23, it is seen that 

the thermal neutron flux curves are almost parallel to the plot of 

the a ctivity of the bare indium foils. This was an indication t hat 

the cadmium ratio was es~entially constant or that the fast neutron 

contribution is very small in this reg ion of the pile. Assuming 

t his t o be true, it was seen that the thermal neutron flux could be 

fitted w i. th the theoretical flux from a pure thermal neutron source ... 

mode l . Thus t he ex rerimental flux was fitted with the theoretical 

ne utron flux f rom a t hermal plane s ource of neutrons located a t the 

top of the rarallelpi ped section. 

Figure 24 s hows that the experimental data tak en within the 

pa r~llelpiped s ection do - follow the theoretical curve very clos e-

ly. Near the source there i s a deviation which is probably due to 

the source not being entirely a p lane so~rce of neutrons at this 
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roint. This is due to the fact that the cylinder does not cover 

the entire top of the parallelpiped, However, at small distances 

from the top, the flux will become essentially that for a plane 

source of .neutrons. 

Extension to Measurements in the AGN-201 Reactor 

Diffusion theory in combination with slowing-down theory was 

adequate in describing the flux distribution from the Pu-Be neu

tron source. 'l'he theoretical fluxes were extended to exr,erimental 

measurements in an AGN-201 reactor. This was done by taking the 

fit of the theoretical curve with the Pu-Be source and applying the 

derived relationship.between the two types of sources, i.e., point 

and plane. The theoretically predicted fluxes for the plane source 

were then compared with exrerimental data from measurements in an 

AGK-201 reactor. 

An axial flux measurement and a radial flux m~asurement are 

given in the AGN-201 Reactor Manual (1). These measurements were 

taken in an AGN-201 reactor thermal column at a reactor power level 

of 0.1 watt. Chambers, et al., ( 5 ) present the axial flux through 

the core, reflector and thermal column of a five watt AGN-201 re

actor. Chambers also gives the axial flux for the case with a lead 

shield between the thermal column and reflector and the case with

out the lead shield. 

the cross sectional view of an AGN-201 reactor is presented 

in Figure 25. The core of the reactor is composed of enriched ura

nium oxide homogeneous~y dispersed in polyethylene. The poly

ethylene in the core will moderate the neutrons that are produced 
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from fisuion of the uranium in the same way in which the neutrons 

from the Fu-Be neutron source were moderated by the polyethylene 

shield. I-roof of this can be seen by observing in iigures 26 

nnd 5 the p..;radi ent of the flux. In Figure 26, the slope of the 

flux curve is much steeper near the core than would be predicted 

with a rure fast source. Figure 27 presents a fit of the exper

imental data with the fast plane source obtained from the mono

energetic fast source model of neutrons. 

The reflector of the reactor is composed of graphite in the 

share of a cylinder. The outer edge of the reflector has a layer 

of lead for shieldin~ of the core. With a layer of lead present, 

it is impossible to establish theoretically the point where the 

radial flux would be extrarolated to zero. The extrapolation 

distance is needed to determine the relaxation length, )' , for the 

reflector. Figure 26 shows that there is no break in the thermal 

neutron flux at the interface between the graphite reflector and 

the thermal column. Figure 26 was reproduced from Chambers (5). 

This Figure indicates that it can be assumed that the reflector 

with the lead shield at the edge will be equivalent to a cylinder 

of a radius equal to the radius of the thermal column. If the ,re

laxation. length did change due to the d-ifference in the radius, 

there would be an indication of this change by a change in slope 

between the reflector and the thermal column. 

The thermal column of the reactor is of graphite in the shape 

of a cylinder. In some. cases, there is a lead shield between the 

thermal column and the reflector. This shield is used to reduce 
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the gamma radiation from the core. Curve one in Figure 26 is for 

the case without the lead shield and curve two is for the case 

with the lead shield. 

Measurements rerorted in the AGN-201 Reactor Manual using 

cadmium covered foils irradiated in the thermal column indicate 

that within the thermal column the cadmium ratio is constant. 

Where this condition exists, it has been shown that the thermal 

source theory is adequate in predicting the neutron flux .(10). 

Figure 27 shows that within the thermal column the flux is ac

curately predict.ed by a thermal source model. 

Figure 27 shows also that, within the thennal column, the 

flux is accurately determined by a mono-energetic fast source 

located at the top of the core. This is an illustration of the 

f;, 0 ct cited in Glasstone, et al., (10) that at large distances from 

l'l fast s,;urce t.::e flux would be almost identical to that from .a 

thermal source. 

Since there are r.o experimental measurements in a parallel

riped section above a cylindrical column available, it was not 

possible to verify the prediction that the flux from the r,lane 

source is a constant times the flux from the point source. How

ever, the following analysis of the available data indicate that 

this is the expected flux from the reactor. 'fhe harmonic con

tent is negligible at the interface between the cylinder and 

paral lelpiped section as can be seen from F'igure 9. This, in add

ition to the above fit of the exrerimental data in the thermal 

column to a. thermal source model, indicates that the source con-



105 

• u 
II 
:;~ 

C\I • 
E 

:..> 
.......... . ID 
c 
0 
s.. 
+> 
:, 
Gi I z 

.; 104 
::, ,.... 
t:. 
c 
0 
s.. 
~ 
::s 
Qi 

z 
.-4 
co 
f 
II 

..c: 
E-< 

0 

~urye one ti' .1.UX W:l.]CllOUJe Legu •. m . .&.t:.LU.&.fg 

COiIB RF--FE:CTO~ 

10 20 30 40 50 60 70 80 90 100 110 
Distance From the Center of the Core, cm. 

Figure 26. Exµerir,1ental Fluxes in a Thermal Colunm of an AGN-201 

Reactor. 
"t:' 
p, 

-,'::) 
ID 

"' tO 



10
5

, ~---r-r----r----r---,-
Calculated Flux~ 

- - - Experimental Flux 

. 
olj ,·· ,.,.., 

• 
C) 
GI 

v.:i 

c:'11 • 
E 

~ 
ID 

§L04 
s.. 
+."I 
:s 
GI z 

-~· 

.... 
~ 

c 
0 
s.. 

+."I :s 
~ z 

.... 
m 
E 
GI 

'- From Figure 26 -----~ 
~ 
~ 
~ 
~ 
~ 

~ 
~ 

~ 3 ~ 100----~-~10'-----~2~0~---~3--0--~-~40~-----:5~0~-----!6~0~-----=-t.7 
Distance From the Base of the Thermal Column, cm. 

Figure 27. Calculated Fluxes From a Plane Source of Neutrons. -Ill. 
~ 
(I) 

·-..J 
0 



• u 
QI 
;.') 

C\I • 
E 

1 
0 
s.. 
+> :::, 
QI 

105 

z 4 
.. 10 
~ 

...... 
r.. 

·~ ·~ 
---- -

• 

1 . 1 r--~ 

_._ Calculated i?lux, Therr:m.l Source 
------Calculated ~lux, Fast ~ource 

Exrerirnental Flux ----

·~., 
I~ 

I 

l 
~ f J o I 
s.. J +> , 

~ r I ~ ...... ! 
~ l 

c 1 
QI i 
~ . 

~ 103 ~ 10 2 1b sb gb 1do 116 
Figure 28. 

• 

Distance From the Core of the Reactor, cm. 

Calculnted Keutron Fluxes From Both a Thermal Source and a 
Mono-ener.c.ctic Source at the Core of the f?.eactor. r:;· 

~ 
11> 

...,] .... 



Page 72 

dition will be that for a thermal source in both cases. The dif

ference will be due to the respective source strengths. 

Figure 28 shows that the thermal model extension is very in

adequate within the reflector. Since the Fermir age of fission neu

trons in graphite is much less than the neutrons from the Fu-Be 

neutron source, _the thermal source model becomes aprlicable at 

distances nearer to the source than was true for the Fu-Iie source. 

Figure 28 also shows that within the thermal column the thermal 

sodrce theory is a very good model. 

Figure 28 also shows that· the extension of the fast point 

source model to the AGN-201 reactor is inadequate near the core. 

Here the fit is very good at large distances from the source. For 

measurements in the thermal column the extension is very good and 

is much better than the thermal source extension. 

A combination of a plane thermal source and a plane fast source 

model should be able to determine an accurate fit to the experi

mental data from an AGN-201 reactor. However, since the fit re

quires an experimental determination of the contribution to the 

neutron flux measurements due to the. different source models, it 

is not r:ossible to make a quantitative extension to the axial flux 

measurements made with the Pu-De neutron source. Qualitatively 

the curve is as was predicted from the measurements with the Pu-Be 

neutron source. Here the flux near the core is· rapidly decreasing 

indicating a thermal component to the flux and then. a gradual 

leveling: off indicating the contributio_n of fast neutrons. 

Figure 29 shows the fit of the experimental neutron flux in 
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an AGN-201 reactor with the theoretical combination of the fast 

plane source and a thennal source model~ The i'i t was not found by 

an extension of the flux from the Pu-Be neutron source but is pre

sented here to show that the combination of the source models will 

describe the flux from an AGN-201 reactor. The contribution of 

the different models was found by finding the best fit to the exper

imental data. The agreement with theory of the experimental data 

is very good. There are, however, deviations from the theoretical 

curve, but this might be anticipated due to the complicated ar

rangement of the reactor. 

An accurate extension of the flux measurements with the Pu-Be 

neutron source to measurements in the AGN-201 reactor could not be 

found. However, it was shown that diffusion theory can accurately 

predict the flux from both the Pu-Be neutron source and an AGN-201 

reactor. Also, it was shown that within the thermal column of the 

reactor the extension of the measurements is very good. Al though 

not experimentally verified, it was shown that the measurements 

with the Fu-Be neutron source made in the parallelpiped section of 

the graphite pile can be extended to measurements in a similar sec

tion using an AGN-201 reactor source. 

Justification of the Theoretical Combination of the Thermal Model 

and Fast Source Model 

An attempt was ma.de to i ustify superposi tioning of the sol

ution for a fast neutron source with the solution for a thermal 

source model. It was noted from results in several references (6, 

13, 7) that the effect of an additional thermal source was not 
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evident in any of their measurements with the l--u-Ce neutron source. 

If an analysis of the geometry of the graphite pile is made, it 

will be noted that the polyethylene is a hydrogenous ·material which 

will moderate the fast neutroRs from the source much faster than 

would graphite. Therefore, the increase in the number of neutrons 

near the source would have the same effect as that of an addi-

tional thermal source of neutrons. 

If a sheet of cadmium is placed between the source and the 

graphite pile, the cadmium will absorb all the thermal neutrons 

that have been thermalized by the polyethylene. The cadmium sheet 

will also absorb neutrons that have been thermalized within the 

graphite pile that have been returned to the cadmium by diffusion. 

This will create a different boundary condition than had been pre-

vi ou_sly postulated for the case without the cadmium sheet. 'l'his 

boundary condition is that the thermal neutron flux must be zero 

at the origin where the cadmium is located. 

It also will be noted that, previously, boundary conditions 

were used such that the flux was zero at p = o, where p is the 

airline distance from a point to the source, Therefore, along the 

central z axis, this will be identical to the condition that the 

flux be zero at z = O, since 
2 

+ r, where for the central 

axis r = 0, 

With the boundary condition that the neutron flux is zero at 

z = O, a flux peak will occur at some point in the positive z 

direction. 

The position of the thennal flux peak from the origin is a 



• 
! 
u .. 
>.. 
+) 
•rt 
::,. 

•rt 
+) 
CJ 
< 

1cr 

102 1 I .j. - I 0 10 20 ~~~3~0~--,-----47.A;\---------.e~,~\---------.l,!~n~--~.:__~ryt~4 

Figure 30. 
Distance From the Source, cm. 

Experimental Activities of Bare Indium Foils Irr11.:iiated iri the 
Graphite Cylinder with a Cd Sheet Between the Source and the 
Cylinder. ~ 

(Jl:j 
Cl) 

...... 
0, 



Page 77 

measure of the thermal component of the neutron source. This fact 

comes from the source term of the diffusion equation for the fast 

source case being dependent on the distance from the source. The 

source term will in effect decrease the flux gradient. The de

crease in the flux gradi.ent will cause a flattening of the flux 

and delay the peak to larger values of z than would be true for a 

thermal source. 

The width of the peak will also give a measure of the number 

of thennal neutrons from the source. This also comes from the flux 

flattening due to the decrease in the flux gradient for the fast 

source case. From a point source of thermal neutrons a sharp and 

narrow :r-eak will be present; whereas with a fast point source of 

neutrons, the peak will be broad and flat. 

Figure 30 gives a rlot of the experimental activity for bare 

indium foils obtained -.,ith a sheet of cadmium between the source 

and the graphite pile. Figure 31 is a plot of the corrected ac

tivity of the cadmium covered foils with the cadmium sheet present. 

Figure 31 was obtained from two experimental measurements and the 

fact that the cadmium sheet should absorb only neutrons below a 

certain energy. The cadmium foils previously used without the 

cadmium sheet should also absorb neutrons below the same energy. 

Therefore, the spectrum of the neutrons above this energy would 

be unchanged by the presence of the cadmium. The slowing-down 

density should then be the same for both cases, with and without 

the cadmium sheet. Taking into account the possibility of reduc

tion of the number of fast neutrons deflected away from the pile 
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by the cadmium, the two exp,erimental measurements do :fall on the 

curve previously determined without the cadmium sheet.. 'l'his curve 

was accurately determined for the case without the cadmium sheet. 

In Figure 32, the activities due only to the thern1al neutrons 

are presented. This thermal activity is found by subtracting the 

activity of the cadmium covered foils of Figure 31 from the activ

ity of the bare foils in Figure 30. Also in Figure 32 the previ

ously determined thermal flux for the case without the cadmium sheet 

is presented for a comparison. 

From Figure 32, it was evident from the position of the peak 

that the assumption of a thermal component of the source was valid 

for the case without the cadmium sheet. The peak for the case with

out the cadmium is indeed nearer to the source. Also it is seen 

from the flatness of the curve in the case with the cadmium sheet, 

as compared with that for the case without the sheet, that the orig

inal case without the sheet does have a significant thermal compo

nent near the source. 

Figures 33 and 34 show a comparison for the fluxes from exper

imental data with the theoretically predicted curves from a fast 

point source of neutrons. Figure 33 uses the theoretical flux from 

a mono-energetic fast source. Figure 34 uses the theoretical flux 

from a fast source incorporating three Gaussian ranges. Compari

son of Figure 33 and Figure 34 further bear out the fact that for 

the single Pu-Be neutron source the multi-energetic assumption is 

better than the mono-energetic assumption. 
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Al-'P1'3NDIX A 

EXFJ~RIMENTAL DATA 

Data Reduction 

All counting data were corrected for background and reduced 

to a saturatinn counting rate. With the exception of the data for 

the intercalibration of the foils, all c·ounting data were cor-

rected with the computer program rresented in Appendix D. 

Most measurements of the counting rate of the indium foils 

were taken over different lengths of time. For a comparison of the 

activities, the counting rate was then corrected to the activity 

at removal from the neutron flux. The computer program made this 

correction with the following equation: 

A 
0 = e- X: t1 - X: t,> - e , .... 

(A - 1) 

where A0 is the activity at removal, Ct is the total counts due 

only to the activity of the foil measured between times t 1 and t 2 , 

t 1 is the elapsed time after removal to the start of counting and 

t 2 ::: t 1 + (counting time). The decay constant A is equal to 

0.01281/Min. 

The foils in most canes had not been irradiated to saturation. 

The counting rates then had to be corrected to a saturation ac-

tivity. This correction was made with the following equation: 
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A 
0 

(A - 2) 

where A is the saturation activity and tis the irradiation time. 
s 

Table I of the Appendix presents data for the intercali-

bration of the foils. In this table the counts due to the back-

ground have been subtracted. 'rhe total number of counts for 

calibration purposes was 10,000 counts including counts due to 

background. 

The saturation activities of the intercalibration measure-

ments are presented in Table I. From the saturation activities, 

the intercalibration factors were calculated. The saturation ac-

tivity of foil number one was used as the standard. These factors 

are presented in Table II. 

Since the raw data were used as input data to the computer 

progr~rn, only the saturation activities from flux plotting are pre-

sented in Table III and Table IV. The raw data are presented in 

Appendix A. It should be noted that in Table IV the activities 

are for cadmium covered foils; whereas Table III i~ for bare indium 

foils. 

The activities of the cadmium. covered foils were corrected 

for flux depression due to the presence of the cadmil.DII absorbers. 

Correction factors were taken from a·Graph in Curtis (6). The 

corrected activities of the cadmium covered foils are presented 

in Table V. 

The activity of the bare foils is due to both fast and thennal 

neutrons; whereas the activity of the cadmium covered foils, cor-



rected for tlux depression, is due only to fast neutrons. '.l'he 

ditterence in the two measurements will then be proportional to 

the thermal neutron flux. 
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the determination ot the neutron tlux from. the saturation activ-

ities incorporated Equations 30 and 31 of Chapter three. Since 

cp:R/6actNAx' where R was shown to be C8/e; ¢:KC1 , where K.:: 1/e: <S'actHAx• 

E was not known; therefore, X was assumed to be equal to one. Thus¢ 

is actually a normilized flux such that¢= C8 • 
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TABLE I 

DATA FOH INTERCAUBRATION OF INDIUM FOILS 

z = 2 Cm. 

r/H = .666 

l 61;2. + 7 ... 
2 595 + 7 -
3 605 ± 7 
4 601 ± 7 
5 574. + 7 
6 635 ± ? 
7 632 ./- 7 .... 

8 632 t. 7 
9 600 '!; 7 

10 802 :t 7 
11 '740 + 7 
12 715 t. 7 
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TABLE II 

INTERCALIBH.ATION ii'ACTOHS i·ti,I. IND.CUM FOILI:i 

Foil F 

1 1.000 
2 1.035 
3 l.053 
4 1.048 
5 L067 
6 1.107 
7 1.102 
8 1.102 
9 1.044 

10 J..396 
11 1.290 
12 1,245 
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TABLE III 

SATURATION ACTIVITIES OF BARI''. INDIUM F'OILS 

r/R = 0 0.388 0.666 

z,cm. c c c s s s 

2 4496 ;t 50 2715 :!; 31 616.1 ± 16.4 
12 3179 ± 35 2072 + 24 685.0 ± 12.5 
19 2292 .:!: 38 1674 + 25 737.5 ± 21.3 
20 2034 ;!; 38 1482 + 38 557.5 .± 45.6 
28 1513 + 20 1210 ;!; 22 557.8 ;!; 13.9 
29 1321 + 26 1130 .:!: 27 504.2 ± 26.8 
37 1204 + 21 861.5 + 11., 6 389.3 ± 9.4 -
38 1020 :!: 24 774.5 + H3 .6 369.0 ± 13.8 
46 807.2 + 10.2 559.4 + 9.6 307.8 ± 4.3 
47 687.3 + 7.8 543.4 + 6.7 274.8 .± 3.6 
60 303.2 + 6.5 242.7 .t 5.0 137.3 ± 3 •. 2 
85.2 154.5 + 10.8 105.4 + 7.2 62,10 ± 4.,04 
94.2 109.5 + 8.2 76.79 .t 4.25 50.29 ± 2.90 

108.2 49.16 + 6.68 41.27 ;!; 5.57 26.72 ± 3.82 
127.2 21.96 + 10.0 13.20 + 18.6 4.92 ± .B5 
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TABLE IV 

SATURATION ACTIVITIES OF Cd COVERED INDIUM FOILS 

r/R = 0 0.388 0,666 

z ,cm. c s c c 
s s 

2 ----- ------- 400 ± 11 ------ ------
5 912.0 ± 35 ------ ------ 79.4 ± 19 
8 540.0 ± 15 ------ ------ 108 ± 10 

11 ----- ------- 292.3 ± 10 ------ ------
17 ----- ------ 240 ;t 10 ------ ------
23 270.0 ± 9.0 ------ ------ 105 ± 10 
29 204.0 ± 15 ------ ------ 63.9 ± 5.9 
35 ----- --.---- 105.2 ± 5,0 

....._ _____ 
------

38 ----- ------ 104 ± 8,0 ------ ------
44 96.0 ± 6.5 ------ ------ 57 ± 7 
59 22,9 ± 4.3 ------ ------ 12.6 ± 1.7 
65 ----- ------ 11.5 ± 1.5 ------ ------
67,2 35.l ·± 12.5 7,36 :t: 6,0 15.0 :t 12 
97.2 14,5 ± 7.5 2.21 :!: 3.0 3.18 ± 4 

124.2 4.7 ± 4.3 12.9 .t 13 2,82 ± 1.8 
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TABLE V 

COW.<'.•'.CTED ACTIVITY OF CADlHUM COVEHED 

FOILS IRRADIATED IN Gi.1i\Fii!T8 PILE 

r/R = 0 0.388 0.666 

z,cm. c c c s s s 

2 ----- ------ 427 ± 12 ------ -------
5 975 ± 37 ------ ------ 85 ± 19.8 
8 578 ± 16 ------ ------ 117 ± 11 

11 --·-- ------ 314 ± 10.5 ------ -------
17 -~--- ------ 257 ;j; 10.2 ------ -------
23 289 ± .9.5 ------ ------ 112 ± 10.8 
29 218 ± 16 .o ------ ------ 68.4 ± 6.4 
35 ----- ---·-- 113 :.t -5.3 ------ -------
38 ----- ------ 111 :.t ·e.2 ------ -------
44 103 ± 7.0 ---~-- ------ 61 ± 7.8 
59 24.5 :.!; 4.8 ------ ------ 13.5 ± 1.78 
65 ----- ------ 12.3 ± 1.6 ------ -------
67.2 37.6 ± 13.2 7.9 ± 6.6 16.0 i 12.2 
97.2 15.5 + 8.0 2.35 ± 3.2 4.06 ± 4.9 

124.2 s.o ± 4.7 13.8 ± 14.0 3.02 ± 2.0 
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AHENDIX B 

THERMAL DIFFUSION MODEL 

Derivation of the Flux Distribution in Cylindrical Coordinates 

Neglectir;.g the source term due to s lowing ... down of fast neu ~ 

trons, the diffusion equation for mono-energetic neutrons in a 

moderator may be written: 

or 

K2 is then subst;i.tuted for the quantity 

ra 
D = 

The diffusion equation then becomes: 

2,.-h 
- K 't" = 0 

= 0 

<:""' 

L /D, where a 

(A - 3} 

(A - 4) 

(A - 5) 

(A - 6) 

Using the definition o~ the operator 2 
\} in cylindrical 

coordinates, the diffusion equation becomes: 

(A - 7) 
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This partial differential equation can be solved by the method of 

separation of variables. It is assumed that the flux is separable 

into a function of z alone and a function of r alone. Thus, 

<p = J'(r)Z(z) (A - 8) 

Making this substitution into the diffusion equation, the following 

equation is obtained: 

1 d2r 
-- + F dr2 

- re • 0 (A-- 9) 

J'rom an analysis of Equation (A - 9), it is see.n that the sum of 

the first two terms is a constant as is the third term. The first 

two terms are functions of r alone and the ~irdd is a function of 

z alone. Taking each component separately the following equations are 

obtained. 

1 d2r,. 1 dF B2 0 -- +(-} dr + = J' dr2 J'r r (A - 10) 

1 d2Z - .Y2 0 Z dz2 = (A - 11) 

where Br and)!" are constants which are defined in the fol~owing 

manner: 

= . (A - 12) 

Equation (A - 10) has the form of a Bessel's equation and the fol-

lowing solution: 
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F ( r) = A J (B r ) + C Y (Brr ) o r o (A - 13) 

The following boundary conditions ~ere used to evaluate the 

constants; 

l. F = 0 at r = R, where R is the extrapolated boundary of the 

cylinder. 

2. Fis finite at r = o. 

From these bound~ry conditions, it is seen that C must be zero and 

Br= jn/R, where jn is the n'th zero of the Bessel function, J 0 , 

for n = l, 2, 3, 4, •• o(I) 

Therefore Equation(A - lO)becomes: 

F(r) = A Jo ( j n I) (A - 14) 

Equation(A - ll)has the following solution: 

· z ::: c1 Sinh <yz) + c2 Cosh <yz> (A - 15) 

The boundary condition, that Z = 0 at z = c, was used to ev,aluate 

the constants. Using this boundary condition: 

o = c1 Sinh <y c) + c2 Cosh <ye) (A - 16) 

Then 

(A - 17) 

and 

(A - 18) 
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or 

z = Sinh <ye) Sinh <ye) Cosh (·yz) -

Cosh <ye) Sinh <yz) (A - JD) 

Simplifying by using the identity, Sinh (x - y) = Sinh x Cosh y -

Cosh x Sinh y: 

z = c3 Sinh y (e - z) · 

where: 

c3 = Sinh <ye> 

Therefore: 

where A is a combination of const~nts. n 

(A - 20) 

( A - :\l) 

( A - :>~. ) 

It is c1 lso seen that cp (r, z) must be the stmt of all pos-

sible solutions of the equation for n = ·1, 2, 3, 4, ••• ~ 

Thus: 

cp (rt z ) = r A J ( j n _Rr )s inh "Yn ( c - z) 
n;l no 

(A - 23) 

where A is n a constant determined by the value of n. 

For an evaluation of A n' the flux at z = 0 Wf'IS tn.ken to be 

'? (r,O). Thus: 

er (r,O) ~ A' J ( j n 
r 

) Sinh(1nC) ( ;\ 24) = R -
n=l 

n 0 
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where A'n = An Sinh <ync). 

For evaluation of A, a point source of thermal neutrons was 
n 

considered at the origin of the coordinate system emitting S neu-

tonrs per second. ,\ source of this kind can be rerresented 

at Z = o. The Dirac delta function, 8 (r), is def i.ned to be 

S 8 (r) 
zero 

everywhere except at rand z equal zero. At rand z equal zero it 

has the value of unity (10). 

Glasstone gives the following conditions that are true for 

the Dirac delta functi~n: 

at z = 0 0 (r) dr = 1 (A - 25) 

where r is some variable. And 

& 5s (r) dr = s s8(r) dr (A .. .,(~ \ 
- ~ ·' J 

Also 

F (r) 58 (r)dr = F (o) (A - 27) 

8(r) satisfying the above conditions between -· oo and 

becomes 8 (r)/r. 

Thus Equation A - 24 becomes: 

S (r) 
8 (r) 

r (A - 28) 

where S (r) is a measure of the source strength. 

The Bessel function J forms a complete orthogonal set in the 
0 

interval Oc:r..::R (lo). Thus multiplying both sides of Bquation 
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(A - 28) by (j /R) 2r J (j /R) and integrating between r = 0 n o n 

and r = R, the extrapolated boundary of the cylinder, all terms 

vanish except wbere jn = jm. Therefore: 

(.A. - 29) 

From the definition of the Dirac delta function,the left side of 

Equation (A - 29) becomes S( j /R) 2 • The right side after integra
n 

tion becomes: 

Therefore, S is given by: 
n 

S/2 

From a definition of the neutron current: 

= -D O¢n 
oz 

(A - 30) 

(A - 31) 

(A - 32) 

At z = o, it is seen that this is half the number of neutrons 

emitted by the source in the n'th mode which is S 
n • Glasstone, et • 

al., note that due to lack of symmetry the fraction is not one-half. 

Combining the two equations: 

Thus: 



A 
n 

1 = 2 
S tanh(-ync) 

R2 J 12 ( j n) D Y n 
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(A - 34) 

This is the Fourier constant for the point source of thermal neu-

trons at the origin. 

For an evaluation of A for a plane source, the source of 
n 

thermal neutrons is taken at the origin. For a plane source the 

Dirac delta is not considered. Only rpCr,O) is considered which 

is seen to be equal to s. Following the same procedure as for 

the point source but with the above noted modifications: 

Integrating: 

Then 

j' 2 

~ rJO 
r 

( jn R) dr = 

28 
Sn = _j_n_J_l_( _j_n_)_S-in_h.....,..()'_n_C) 

The neutron current at z = 0 then is: 

r 
( jn R )Cosh y n (c - z) 

Thus 

(A - 35) 

(A - 36) 

(A - 37) 

(A - 38) 

(A - 39) 



or 

A (plane) 
n 

A (point) = 
n 
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(A - 40) 

where C is a constant determined from the ratio of source strengths. 



APPE:NDIX C 

1.'HEHMAL DH'f,'USim; INCU,U-(L-U.TL,G A FAST i:::iOU;.1CE 

As shown previously, the slowing-down density, q, is equal to 

the source term for thermal neutrons that result from slowing-down 

of fast neutrons. 'I'hus the diffusion equation incorporating this 

type of source is: 

And from the Fermi age theory: 

+ i = 0 D (A - 41) 

'\J 2 q = ig, (A - 42 ) 
aT 

Solution of Fermi age equation: The slowing-down density q is 

assumed to be separable into a function of r, T and z, ie, 

The terms in 

v'2 q = 

and 

q:F(r) 8(T)Z (z) 

i.quation A - 42 now become: 

ez d21<.., Gz dF 
2 + 
dr r dr 

= F z aG 
dT 

@F d2 F 
+ 2 

dz 
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(A - 43) 

(A - 44) 

(A - 45) 



Then the Fermi age equation becomes: 

1 dF --+ Fr dr 
1 d(~ 

8dT 
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(A - 46) 

The left side is only a spatial distribution and the right 

side is only an energy function. Therefore, each side is equal to 
2 a constant (- a ) . 

Thus: 

- a.2 

and 

Taking only the r function, Equation A - 47 becomes: 

which has the solution: 

a 2 
r 

(A - 47) 

(A - 48) 

(A - 49) 

where F must always be finite. It also I11ust satisfy the followin.g 

boundary condition at r = R, F = o. Thus: 

where 3· 
n 

is the n'th zero of J. Then: 
0 

a. 2 (A - 52) 



Then the Fermi a~e equation becomes: 

2 
j n 

(-) 
R 

Multiplying by q(z,; ) which is equal to Gi: 

2 
d2Z j n ~- -(-) 
dz2 R 

( ) Z' d(.;) 
q z, i = di 

Therefore: 

2 j 2 

~ -<T> q - h a z - a, 

Introducing a substitution: 

and 

and 

V exp [- ljnn~ -r] = q 

1 ' 

a2v [ j 2 1 a1- q = ~ exp - ( Rn ) 'T J a, 2 az 

_Q...S - .-2..! a, - a, exp [ 
j 2 1 j 2 

. ( Rn ) 'T - V ( Rn ) 

j 2 J 
exp I -( Rn) , 

Equation A - 55 with these substitutions. becomes: 
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(A - 53) 

(A - 54) 

(A .. 55) 

(A - 56) 

(A - 57) 

(A - 58) 

.a 2v j 2 j 2 
exp [ -

j 2 

d z2 
exp [ - <,f) 'T" J - v (-;2!) ( Rn) J = R 

av [-
j 2 

J 
j 2 

[-
j 2 

'T ] - exp (--1! ) - v ( it ) exp ( ._...!! ) 
a7 R R 

(A - 59) 
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which reduces to: 

av -a, (A - 60) 

Assuming that V is separable into a function of z and --,-
' 

Equation <.1-eo > becomes: 

2 
1 dT( 'T) 1 d . X(z) 

(A - 61) xrzr dz2 
= T(,) d, 

The left side is a function of z alone and the right is a 

function of I alone. Therefore each side is eaual to a constant 

2 -B. Then: 

and ! .!!!__ = -B2 
T d7" 

which have the solutions: 

X = A Cos (Bz) + C Sin (Bz) 

and 

Thus: 

V = e-B
2 T [ A' Cos (Bz) + C' Sin (Bz)J 

(A - 62) 

(A - 63) 

(A - 64) 

(A - 65) 

where A' and C' are combinations of constants. Following the 

proced'ure in Glasstone, et al: 

2 
V = K' exp -z 

(A - 66) 4, 

for both a point and plane source, where K' determines whether a 



plane or point source. 

Therefore: 

q ( r' z' 'i ) = 1 Kn T 
n=l 

2 -z ,--
exp ( rr) l! 0 

where KnT incorporates the constants. 

Solution of the Diffusion Equation 
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(A - 67) 

A solution similar to the solution for the thermal source is 

assumed, i.e., 

cp (r,z) = ! 
n=l 

Z (z) A J n n o (A - 68) 

cp<r,z) is again assumed to be separable into a function of r 

and a fuQction of z vi~, 

cp<r,z) = F (r) z (z) (A - 69) 

The gradient of ihe flux then becomes: 

v'2cp F 
d2Z 

+ z d2F z dF = 
dz2 

-- + r dr 2 dr (A - 70) 

or 

(A - 71) 

Substituting this into the diffusion equation and noting that: 

(A - 72) 

when F = J 0 ( j r/R). 
n 

The diffusion equation then becomes: 
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(A - 73) 

2 
where qn = K'n exp. (-z /4T ), Equation(A - 73)becomes: 

2 
Z"n (z) + 'Y n Zn (z) = C exp (A - 74) 

Fo~ a solution of Equation(A - 74), the following general equation 

was solved: 

Z" + y 2 Z = exp 
2 -z 

"ff (A - ?5) 

The general solution to Equation (A - 75) is:. 

(A - ?6) 

c1 and c2 are arbitrary constants which may be functions of z. 

Thus using the method of variation of the parameters: 

z• = -'\/z Vz e-'Vz c2 e f + c• ef + c• f 1 .2 

Letting Ci e yt + c2 e-Yz; o,.zn'; be~s 

Z" 'V 2 C · 'Vz 'V 2 C -Yz + = r 1 •' + t 2 e 

Z" and Z are substituted into Equation CA - 7~. 

c• e Yz -
1 

-z2 ' -Yz e c2 e = ~ 

. . . ·:: ~ -:·· 

C ' Yz 1 e -

Thus: 

(A - ??) 

(A - 78) 

(A - 79) 

Equations (A - 77) and (A ... 79) are solved simultaneously. c1 and 



c2 become: 

and 

C' 1 

2 
exp ( ;; .. y z) 

2 
exp ( ;~ + y z J 

Integrating between z = O and z = z to obtain c1 and c2 : 

and 

[ 
2 -, 

;~ - yzj 

0z r .. z2 -, 
-)o exp. L4T + 'Y~ 

dz+ G 

dz + G 
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(A - so) 

(A - 81) 

(A - 82) 

The change in the value of the lower limit to other than 

zero will only change the value of G. 

Letting z = u, and completing the square on the exponential 

under the integral sign, E,quation(A - 81) becomes: 

[-('uo _.) exp 
u 

2VT 

and Equation(A - 82'becomes: 

Letting n2 = (u/2'1T° 

c1 then becomes: 

0uo r: 0 exp L2 ff + 

. 2 
+ yff") , du becomes: 

dn 
du = 2 \fT 

+ 
2 

du'+ G 

(A·- 83) 

TI 2 Y j du+ G 

(A - 84) 

(A - 85) 
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7T T e'Y2T 2 s: 2 
-n dn + G (A - 86) cl = 2y 'TT e 

Thus: 

cl = Al 
e'Y2T erf (n) + G (A - 87) 

where A1 equals 'TT --r /2y • Thus c1 becomes: 

e ")/ 2 T [2~; 
-, 

cl = Al erf + Y1rJ + G (A - 88) 

Likewise c2 becomes: 

(A - SD) 

Substituting c1 and c2 into Equation(A - 7$, ~ becomes: 

- e-yz erf 
-, 

Y'V.J + 

"V'z 
e f erf + yfr] + c .Sinh ( y z) 

(A - 90) 

where C equals G/2. 

To evaluate C the boundary condition for T = o, the value 

for thermal neutrons, Z becomes identical to ~quationv\ - 24~ 

F'rom this, it is seen th'at C = 2A. Thus Z becomes: 

y2-r 
Z = e' ' 

11 - erf 
L-

+ 

yF)]+ 
"\ 

-yv)] r (A - 91) 

._) 

For each value of n there is a different value of A. The 

complete solution then muet be the sum of all solutions for n = 



1, 2, J, 4," •CIO 

The flux distribution then becomes: 

cp (r,z) = 2-
n=l 

A 
n 

F is then defined as: 
nz 

') 

·y· .. . n 
e [ efhz ~ 

F nz 
e-Ynz 5 + erf 

Ii - erf ( z L:' 2Q'f 

cp<r,z) then becomes: 

CD :p (r,z) = i: 
n=l 

F A J nz n o 
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(A - 92) 

\' - 'V°'fT / I t n _J 
+ 

(A - 93) 

(A - 94) 

This is the result for an infinite cylinder. The result is 

modified for a finite cylinder by multiplying by the follow~ng 

end correcti'on: 

Using- the 

-2 11n(c - z) 
C = 1 - e f 

E 

same procedure nnd superpositioning the 

the followi111; result is found for N number of Gaussian 

cp<r,z) 
r; Cl) 

L t" f. F A Jo 
r = L niz ( j n ii> 

i=l n=l 
1 n 

(A - 95) 

solutions, 

ranges: 

(A - 96) 

where F . is dependent on n, i, and z; and f. is the fraction of 
niz i 

neutrons in the i'th ron~e. 



APPENDIX D 

IBM 650 COMHJ'l'ER IHOGRAM F'Oi< ±HWUCTION OF' DATA 

This computer program was written to obtain the saturation 

activity of each indium foil from the exrerimental data. The 

saturation activities from this program have been standardized to 

a standard foil activity by intercalibration. 

The program was written in IBM 650 Fortran language. A print 

out of the program is presented in Table VI. 

The program calculated the solution for the following equation: 

A = s (A - 97) 

where F is the intercalibration factor obtained by comparing the 

saturation activities of all foils irradiated at one foil location. 

The other symbols are those as previously defined. 
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----11 Read I1:rut 1----- Calculate cj, Calculate cp /F 

Punch <f'/F 

Figure 36. Flow Diagram for the IBM 650 Program for 
Data Reduction. 
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Table VI 

IBM 650 FORTllAN I'rogram for Data Reduction 

10 Read,Z,RR,T,TA,TB,C,F 

G=0.01281 
A=EXPEF(-G *T) 
B=EXPEF(-G•TA) 
D:EXPEF(-G•TB) 

20 AO:((C+-(TA-TB)•63.2)*G) 
21 /((1.0-A)•(B-D)) 

AO=AO/F 

PUNCH,AO,Z,RR 

IF(Z) 100,l,l 
1000 END 
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APPENDIX E 

IBM 650 COMPUTER FROGRAM Ji'OH FLUX DISTHIBUTION 

This computer program was written in IBM 650 Fortran language. 

The program predicts the theoretical thermal flux from four dif-

ferent source models, ie, plane thermal source model, point source 

model, point fast source. and plane fast source. The program ob-

tained the solution for the Equation: 

cp (r,z) = 'f 
n=l 

A F J (j !:) 
n nz o nR 

For a point source: 

S Tanh CYnC) 
A 

n 
1 

= 2 R2 J 2 ( j ) D '\/ 
1 n f n 

For a plane source: 

2s Tanh ( Yue) 
A = n j J ( j ) D 

n 1 n ,'n 

For a thermal source: 

F nz = Sinh 'Y n ( c - z) 

And for a fast source: 
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(A - 98) 

(A - 99) 

(A - 100) 

(A - 101) 



F nz f-)' [ 1 + erf ( 
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z 
2 T 

(A - 102) 

The Fortran program is presented in Table VII and the flow 

chart is presented in Figure 37. 

The value of the Bessel's function is obtained from a sub-

routine incorporated in ·the program. The program makes use of a 

convergent series approximation for the Bessel's function. The 

Bessel's function was obtained from the following equation taken 

from DP - 124 (3): 

F = A (x) G (x) (A - 103) 

where Fis the function, G (x) is the sum of an infinite series 

and A (x) = Xn/2n n! where n is the order of the Bessel 1 s function. 

For a Bessel's function of order n, ie, Jn(x): 

where G = 1 and G. 
0 1 

Also r. and 'vr = 1 
1 

The G (x) series 

than 10-4 • G (x) was 

of x less than 5.29. 

Gx = l G. 
1 

--
and 

was 

i=O 

2 
-(x/2) G. l 

1-

r. = r. 1 + 
1 1-

considered 

a very rapidly 

I 

'\Ir. 

complete 

(r. + n) 
1 

when G. 
1 

convergent series 

(A - 104) 

was less 

for values 

For values of x greater than 5.29, the following asymptotic 

solution (8) for the Bessel's function was used. 
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J (x) - ~ 
0 - 'hrx 

Q0 (x) Sin(x - ! ) (A - 105) 

where for large values of x, P = 1 and Q = 1/Sx. P and Q 
0 0 0 0 

are series functions of x. 

The value of the error function was obtained by using the 

first two terms of Taylor's series, 

F(x ! h) = F(x) + hF'(x) (A. :.. 106) 

Taylor.•• series was used as an interpolation formula between 

given values of the error function. Several values of the error 

function at different values of x were provided in the program. 

The program uses an interative process with h set equal to 

0.01. A new F(x) was calculated from the Taylor's series. This 

F(x) then was substituted into the series to obtain still an-

other value of F(x). When the difference in the argument of the 

series and the required value of the argument was less than 0.01, 

h was changed to the difference to give an F(x) at the required 

argument. 

The hyperbolic sine was calculated from its definition: 

Sinh y n(c - z) = 
-2Y (c -e In 

\ 

z)l i 

J ( 
(A -:::: 107) 

This FORTH.AN program computes the theoretical flux up to a 

z of sixty cm. at increments of ten cm •• At z equal sixty cm.,an 

increment of l. 96 was added to find the flux at (H. 96 cm. the 
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interface between the cylinder and parallelpiped. In the radial 

direction the flux was calculated up to the extrapolated distance 

of R in increments of r/R or 0.1 starting at r/R equal zero. 



Page 118 

Set: z 0 I Read Input.I 
= ANPT 

r/R 0 - Calculate: = ANPL I i 0 = 

l 
¢,-. .... Calculate: J (j r/R)~ Calculate: Sinh y n (c-z) 

Calculate : $&J.. 
.,:.. 

cf.,q.t 

~ . -~-·-·· --· 

I 

z = 61.96 I. ves -

yes 

I 

¢,J.. 
¢2l 

unch c:p~:.. 
¢4-.:.. 

Figure 37. 

o n 
F I nz 

j 

I 

\ .. 
I 101 I Set 1.96 I Set z = z + z = z + 

I 

- • 
I Is z = 601 VRC> I Is r/R = 1 I n~J Set r/R 
I - I ___ J I 

Flow Diagram for the IHM 650 Program for 
Flux distribution. 

= r/R + 0.11 

i 

, I 



TABLE VI 

650 F'OR'l'RAN STATEMENTS F'OH F'LUX CALCULATION 

100 0 DIMENSION FN(88),FP(88), 
100 1 CFP(88),ERX(2),CFN(88) 

J:O 
READ,C,T 

1 0 READ,Z,R 
l=l 

2 0 GMS:.000387+((Z/45.2)**2) 
3 0 GAM= EXPF((LOGF{GMS))/2.0) 
4 0 ANPL:1.0/ ( GAM*R*Z) 
5 0 ANPT= ANPL* (Z/R) 
6 0 ZE= O.O 
7 0 IF( (2.0*GAM* (C-ZE) )-40.0) 92, 
7 1 93,93 

92 0 ECOR= EXPEJt..,(-2.0*GAM*(C-ZE)) 
GO TO 94 

93 0 ECOR= O.O 
94 0 SHN:(EXPEF(-GAM*ZE) )* ( 
94.1 1.0-ECOR) 

8 0 RR= O.O 
29 0 EP=(ZE/(2.0*T) )+(GAM* 
29 1 20. 54) 
30 0 EM=(ZE/(2.0*T) )-(GAM* 
30 1 20.54) 

L= 1 
31 0 IF (EP-1.0) 35,32,39 
32 0 ER0:0.8427 
33 0 E:1.0 
34 0 GO TO 50 
24 0 ERO= o.o 
25 0 E= O.O 
26 0 GO TO 50 
35 0 IF(EP) 36,24,24 
36 0 EP= -EP 
37 0 J= 1 
38 0 GO TO 31 
39 0 IF (EP-1.5) 32,40,43 
40 0 ERO= O. 9611 
41 0 E= 1.5 
42 0 GO TO 50 
43 0 IF (EP-2.0) 40,44,47 
44 0 ER0=0.99532 
45 0 E= 2.0 
46 0 GO TO 50 
47 0 IF (EP-2.5) 44,48,88 
48 0 ER0:0.99959 

rage lHl 



49 0 E= 2.5 
50 0 H=O.Ol 

TABLE VI (Continued) 

51 0 DR0=(2.0/1.772)*(EXPEF(-E*E)) 
53 0 IF ((E)-EP) 56,58,54 
54 0 H= EP-E 
55 0 GO TO 56 
56 0 E= E+H 
52 0 ERA= ERO+(H*DRO) 

ERO= ERA 
ERA=l.O-ERA 

57 0 GO TO 51 
88 0 IF (EP-4.0) 48,89,104 
89 0 ERO= 1.5417258E-8 

E= 4.0 
102 0 DRO= (2.0/l.772)*(EXPEF(-E*E)) 

H= 0.1 
IF((E)-EP) 101,58,103 

103 0 H= EP-E 
101 0 E= E+H 

ERA= EHO-(H*DRO) 
ERO= ERA 
GO TO 102 

104 0 IF(EP-6.0) 89,105,106 
105 0 ER0:2.1519737E-17 

E=6.0 
GO TO 102 

106 0 IF (EP-8.0) 105,107,107 
. 107 0 ERA= O.O 

58 0 IF (J-1) 60,59,60 
59 0 ERA=-ERA+2.0 

J:O 
EP= -EP 

60 0 ERX(L)=ERA 
61 0 IF (EP-EM) 6s,65,62 
62 0 EP= EM 
63 0 L= 2 
64 0 GO TO 31 
65 0 GZ= GAM*ZE 

ERX:(2)= - .O+ERX:(2) 
66 0 FNZ= 
66 1 (ERX(l)*EXPiW(GZ)-(EHX:(2)* 
66 2 EXPEF(-GZ)) )/SHN 

9 0 IF (Z-3.0) 90,99,99 
90 0 CFN(I)= O.O 

CF'P(I )= O.O 
FN(I)= o.o 
FP(l)= O.O 

99 0 BAR=Z*RR 
10 0 IF(BAR-7.29) 11,22,22 
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11 0 AJX= 1.0 
12 0 ON= 1.0 
13 0 BSE= 1.0 
14 0 TER= -((BAR-7.29) 
14 1 (ON*ON) 

TABLE VI (Continued) 

15 0 IF(ABSF(TER)-(l.E-4)) 20,20,16 
16 0 ON= ON+l.O 
17 0 BSE= BSE+ TER 
18 0 AJX= TEH 
19 0 GO TO 14 
20 0 BSE= BSE+ TER 
21 0 GO TO 27 
22 0 BSE= (0.125*(SINF(BAR-0.7854)) 
22 1 /BAR)+(COSF(BAR-0.7854)) 
23 0 D=EXPEF((LOGEF(2.0/(3.1416* 
23 1 BAR)))/2.0) 

BSE= BSE*D 
27 0 FN(I)= (ANPL*BSE*SHN 
27 1 )+FN(I) 
28 0 FP(I)= (ANPI'*BSE*SHN 
28 1 )+FP(I) 
67 0 CFN(I)= FNZ*(ANPL*BSE*SHN 
67 1 )*((1.0-ECOR)**2)+CFN(I) 
68 0 CFP(l)=FNZ*(ANPr*BSE*SHN 
68 1 )•f(l.O-ECOR)**2)+CFP(I) 
69 0 l= I+l 
70 0 IF(RR-1.0) 71,73,73 
71 0 AA= RR+O.l 
72 0 GO TO 9 
73 0 IF(ZE-60.0) 74,76,78 
74 0 ZE=ZE+lO.O 
75 0 GO TO 7 
76 0 ZE:ZE+0.96 
77 0 GO TO 7 
78 0 IF(Z-62.) 1~79,79 
79 0 IUNCH, FN 
80 0 PUNCH, FP 
81 0 l~UNCH, CFN 
82 0 PUNCH ,CFP 
86 0 CONTINUE . 
87 0 END 
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APFl~NDIX Ji' 

Ifill 650 F'OHTRAN liWGRAM :rem THE ]!-,LUX DIX'l'lUDU'l'ION 

FROM A MUL'Tl-EN~HGETIC FAST SOURCE Oli' NEU'rHO!'\S 

This computer rrogram was written in IBM 650 Fortran Language. 

The program uses the solutions of the flux from Appendix E for 
I 

different values of the Gaussian ranges. 'l'he program combines the 

values of the flux according to the following equation: 

(A - 108) 

where the cp 's are fluxes, the A's are the weighting factors and 

the subscripts denote the Gaussian range. 

It ie: seen that the above equation weights the flux from each 

of the Gaussian ranges and sums the weighted results to obtain the 

flux from the multi-energetic fast source. This is in effect super-

positioning the solutions. The Fortran Statements are presented in 

Table VIII.-
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TABLlE. VIII 

IBM 650 Fortran Program for Flux Weighting 

100 0 DIMENSION 0(364), (364) 
100 1, B(364),C(364) 

READ,A 
READ,B 
READ,C 
l=l 
READ,E,F ,G 

1 0 D(I) = A(I)*E + B(I)*F + C(I)•G 
IF(I-364) 3,2,2 

3 0 l=I+l 
GO TO 1 

2 0 FUNCH D 
END 

Where: 

A = (!)1 

B = cp2 
c = 'P3 
D = cp 
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