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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Introduction 

The positive integers 1, 2, 3, ... are called the natural numbers. 

These numbers form the basis for the study of the theory of numbers. 

The name, theory of numbers, might suggest that it is a kind of gen

eral theory concerning the notion of number and its generalizations 

which, starting from the integers, introduces successively, rational, 

real, and complex numbers, and perhaps some other kinds of numbers, 

and builds up a theory of operations on these numbers. This, however, 

is not the case. Elementary theory of numbers is concerned primarily 

with the properties of the integers, while the theory of operations on 

them is a part of higher arithmetic, or algebra. 

From earliest tim€;ls man has shown curiosity about the natural 

numbers. This is particularly true of the ancient Chinese and Greeks. 

It was not until the seventeenth century, however, that a serious study 

of number theory was made. Much of the work was done by the French 

mathematician Pierre de Fermat (1601-1665). Bec.ause. of his leader

ship in this area he is often referred to as the founder of the theory of 

numbers. Another leader in the field was Carl Friedrich Gauss, who 

was not only a mathematician, but also a physicist and astronomer. 

He. once indicated his partiality for mathematics in general, and for 

l 



the theory of numbers in particular• by stating that "mathematics is 

the queen of the sciences and the theory of numbers is the queen of 

mathematics. " G. H. Hardy [8] 1, a twentieth century mathematician, 

made the following statement concerning the theory of numbers: 

The elementary theory of numbers should be one of 
the .best subjects for early mathematical instruction. 
It demands very little previous knowledge, its sub
ject matter is tangible, and familiar; the processes 
of reasoning which it employs are simple, general 
and few; and it is unique among the mathematical 
sciences in its appeal to natural human curiosity. 

The study of the theory 0£ numbers does not employ integers ex-

elusive Ly, however. Many properties of integers have been dis cover-

ed with the aid of irrational or complex numbers and many theorems 

about integers can be proved in a much simpler way if one makes use 

not only of irrational or complex numbers, but also of calculus and 

2 

theory of functions. The part of number theory which makes extensive 

use of various parts of analysis is called the analytic theory of num -

bers, to be distinguished from the elementary theory of numbers, 

which does not use the notion of limit. 

Because the concept of natural number is so simple, one might 

think that there is not much left to discover in this area. This is not 

the case, since as some problems are being solved, more questions 

are being asked. As an illustration of the progress that the theory of 

numbers has made in the last fifteen years, two examples can be cited. 

In 1950, the largest prime number known was 2127 - 1, which has 39 

· 11213 
digits, compared with the largest prime known today, 2 - 1 of 8376 

1Numbers in brae kets refer to references in bibliography. 
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digits. In 1950 only 12 perfect numbers 1Nere known; as of this date 23 

have been found. Many other discoveries and advances have been and 

are being made in this fascinating subject. 

Statement of the Problem 

Many of the ideas of elementary number theory provide motiva-

tional material for secondary school students. Some of the material 

forms a basis for many ideas that are presented in the so-called "mod-

ern mathematics II of elementary school. Because of its importance, 

number theory will probably become one of the required courses for 

all secondary school teachers and perhaps even elementary school 

teachers. ~he_ Course Guide for the Training of Teachers of Elemen-

tary Mathematics [ 16] written in July, 1964 by the Committee on Under-

graduate Program in Mathemat:i,cs (CUPM) recommends that number 

theory be taught as a part of a two course sequence devoted to the . 
'· 

structure of the real number system and its subsystems. A similar 

guide [ 15] for the·training of secondary school teachers recommends 

a full course in number theory for all future teachers of high school 

mathematics. It is therefore important that number theory be empha-

sized in the teacher training institutions. 

The purpose of this paper is not to write a number theory text, 

but to take one small part of number theory, that dealing witli primes 

in arithmetic progressions, and bring together in one volume the ma-

terial .,that has been written on the subject. It is expected that many 

high school students, as well as their teachers, will be able to com-

prehend much of th.e material of this paper. 
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Procedure 

A survey and analysis of the published results concerning primes 

m arithmetic progressions was made. The Mathematical Review, bib-

Liographies of texts, bibliographies of published papers, and bibliog-

raphies of unpublished theses served as primary tools for Locating 

source papers. Some of the results given were found in journals writ-

ten in foreign Languages and the results have not appeared before in 

English. The material was analyzed and presented in an expository 

manner. The material was also organized in an increasing sequence 

of difficulty. Chapter II provides an introduction to Dirichlet's famous 

theorem and is, along with Chapter III and part of Chapter N, direct-

ed to secondary school students. The remaining part of Chapter IV 

and Chapter V presupposes a knov.rledge of elementary number theory, 

while Chapter VI is for those students possessing the mathematical ma

turity of a beginning graduate .:~tudent. 

Scope and Limitations 

The published material concerning primes in arithmetic progres.;;· 

sions is quite extensive, therefore this paper is limited to those top-

ics which are applicable to the various audiences mentioned above. 

This paper is based upon two types of progressions, finite and in-

finite, and their applications. A finite arithmetic progression is a se-

:' quence of the form ak + b (k = 0, L, 2, .•.. ,n), where bis the first term, 

a is the common difference and an + b is the Last term. An infinite 

arithmetic progression is a sequence of the form ak + b (k = 0, 1, 2, 

3, ... ) • In the former, progressions in which each term is prime will 



be investigated. In the latter, the number of primes in the progres

sion will be the focus of interest. 

Expected Outcomes 

5 

It is expected that as a result of reading this paper an individual 

will become aware of the simplicity of some of the ideµ.s of elemen

tary number theory. It is also expected that high school teachers will 

find material that can be used as enrichment in high school algebra, 

and that students studying elementary number theory will be able to 

understand how the basic theorems of the course can be used to prove 

theorems about primes in arithmetic progressions. Finally, it is 

hoped that this material will stimulate the reader's interest in mathe

matics. 



CHAPTER II 

ELEMENTARY INTRODUCTION TO DIRICHLET'S THEOREM 

Although the reader is probably familiar with the notions of ele-

mentary number theory, in this chapter such an assumption will :p.ot 

be made. The basic definitions, notations, and operations that are 

needed will therefore be given. 

Probably the most basic aspect of the natural numbers is the at-

tribute of being prime or composite. Before defining this, the concept 

of a divisor is needed. This concept is associated with the integers, 

which include the natural numbers, zero, and the negatives of the nat-

ural numbers. 

Definition 2. 1, An integer dis said to divide an integer a if there is 

an integer c such that a= de. In this case dis called a divisor of a 

and a is called a multiple of d. If d is a divisor of a we write d la. 

Definition 2. 2. If d is a divisor of a and d is a divisor of'b, then d is 

called a common divisor of a and b. 

Definition 2. 3. If p is an integer greater than 1 whose only positive 

divisors are 1 and p it!:'lelf, then pis callep. a prime. If pis greater 

than 1 and is not prime, then it is called composite . 

• 
The problems with which this paper is concerned can be under-

6 
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,,,,.,gtood by ex:a:rnining ·a table of the ·natural numbers written in a form 

similar to that of Table I. Upon examining the table it is evident that 

the first row consists of all .numbers whose units -digit is l; the next 

row contains numbers with 2 ·as the units ··digit, 'etc.. One natural 

question is:· How many prime number·s are there in any given row? 

Since Euclid proved that there is an infinite number of prime numbers, 

at Least one of the rows must contain an infinite number of primes. 

For suppose each row contained less thank primes; since there are 10 

rows there would be Less than lOk primes, contradicting the fact that 

there is an infinite number of primes. Which row, or rows, then con

tain an infinite number of primes? 

TABLE I 

.NATURAL NUMBERS IN COLUMNS OF LO 

L L L 2L 3 l 4 l · 5 L 6 L 7 L 8 l 9 L 10 L Ll L L2 l .•• 

2 J2 22 32 42 52 62 72 82 92 L02 U2 122 •.. 

3 13 23 33 43 53 63 73 83 93 L03 1L3 L23 

4 14 24 34 44 54 64 74 84 94 104 1L4 L24 

5 15 25 35 45 55 65 75 85 95 LOS us L25 

6 16 26 36 46 56 66 76 86 96 L06 U6 L26 

7 L7 27 37 47 57 67 77 87 97 LO? lL 7 L27 ... 
8 L8 28 38 48 58 68 78 88 98 L08 ll8 L28 

9 L9 29 39 49 59 69 79 89 99 109 119 129 

10 20 30 40 50 60 70 80 90 LOO LlO 120 L30 

The first row contains more than one prime; LL, 3L, 41, and 61 are 

prime and there are others. There seems to be many primes in the 
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first row. The secontl row contains numbers·divisible by 2. .A.LL num

bers in this row, except 2, have-at le·astthr'ee ·divisor-s, l, 2, and the 

· number itself, and so t:P,e only prime in this row is 2. The third row 

contains the primes 3, 13;·--and 23, ·and hence ·more than one prime. 

The fourth row is ev-en le-ss interestirig than the second to those seeking 

prime numbers; the ·second row contains one prime, the fourth has none. 

The fifth row has the prime number 5 but all other entrie.s in this row 

are divisible by 5 and therefore are not prime. The sixth row con-

tains no primes since all numbers in this row are divisible by 2 and 

greater than 2. The seventh row has primes 7, 17, 37, and others. 

Rows eight and ten, like the sixth, are void of primes, while tp.e ninth 

row contains the primes 19, 29, 59, and more. 

The question concerning which rows have an infinite number of 

primes has been partially answered. Since rows 2, 4, 5, 6, 8, and LO 

contain at most one prime, all primes greater than LO must appear in 

rows. l, 3, 7, and 9; that is, at least one of these rows contains an in

finite number of primes. The immediate questions are: how many, 

and which ones, have the desired property? These questions were ans

wered only l30 years ago in a famous paper by P. L. Dirichlet (1805-

1859). He proved that each of the rows 1, 3, 7, anci 9 contains an in-

finite number of primes. 

The theorem which he proved is much more general than the one 

discussed here. To make the meaning of his theorem clea.re:r o:r;ie 

might write the sequence of natural numbers in a form similar to that 

of Table I, but this time in columns of 12. Again the question is posed. 

Which rows contain primes and which rows contain many primes? As 
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TABLE II 

NATURAL NUMBERS IN COLUMNS OF 12 

';:~ 

1 13 25 37 49 61 73 85 97 -1'0·9 12 l 133 ........ 

2 14 26 38 50 62 74 86 98 110 122 134 •.• 

3 15 27 39 5 1 63 75 87 99 111 123 135 

4 16 28 40 52 64 76 88 100 112 124 136 

5 17 29 41 53 65 77 89 10 1 113 125 137 

6 18 30 42 54 66 78 90 102 114 126 138 ... 

·;1 19 3 1 43 55 67 79 9 1 103 115 127 139 ••. 

8 20 32 44 56 68 80 92 104 116 128 140 

9 2 1 33 45 57 69 8 1 93 105 117 129 141 

10 22 34 46 58 70 82 94 106 118 130 14'2 ..• 

11 23 35 47 59 7 1 83 95 107 119 13 1 143 ... 

12 24 36 48 60 72 84 96 108 120 132 144 ... 

in Table I it appears that the first row contains many primes. The 

second row has 2 as its only prime. All elements in the third row can 

be c.haracterized by the formula 12k + 3 where k is the number of the 

column if the column on the left is called the O column. Since 

12k + 3 = (4k + 1)3 and 4k + 1 is always a positive integer for k = 0, 1, 

2, •.. it follows that each element of the third row is divisible by 3, 

and so 3 is the only prime in this row. AU numbers in the fourth row 

can be expressed in the form 12k + 4 = ( 3k + 1)4 and so 4 divides all 

numbers in this row. Hence there can be no primes in row four. 

Similarly, numbers in the sixth, eighth, ninth, tenth, and twelfth 

rows can be written in the form (1 + 2k}6, (2 + 3k)4, (3 t 4k}3, (5 + 6k}2, 
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and (1+ ,k)12, respectively. These rpws, there~ore, contain no pri:i;nes. 

There are at least six primes in eaqh of the remaining rows as. 

can be verified by Table II., It appears that there will be many more, 

however, 

From a table such as this one it is possible to create general the -

orems about prime numbers. For instanc::e, one might suspect that if 

a row contains many primes then the first number in that row must be 

prime. This is ruled out by checking row nine of Table I. It appears 

also that if the first two numbers of any row are prime then there are 

many primes in that row. The most important generalization that can 

be drawn from these examples concerns the first number in the row 

and its relationship to the common difference between adjacent columns. 

If these two numbers have a common divisor greater than 1 then this 

common divisor will divide all numbers in that row, and there can be 

no more than one prime in that row. In Table II the difference be

tween adjacent columns is 12. The first number in the ninth row is 9. 

Both 12 and 9 are divisible by 3 and so 3 divides all elements in the 

ninth row. In the fifth row the first number is 5, and since the only 

common divisor of 5 and 12 is 1, it cannot be concluded that 5 divides 

all numbers in that row. 

ChaUenge: Try to arrange the natural numbers in a form similar· to 

that of Table I and obtain a row that contains exactly two primes. 

Leonard Euler ( 1707-178 3) was probably the first mathe:p:iatician to 

make a conjecture publicly concerning the number of primes in a pro

gression of the type mentioned above, He claimed, in 1775, that there 
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i•s ·an infinite number of primes in the ·progres·sion ·ak + l -(-k = O~ 1, 

2, ... ) where a is any natural number. Legen·dre (1752-1883) claimed 

a proof of the· existence of an infinite number of ·prime·s in the progres-

. sion 2ka +· b (k = 0, 1, 2, ... ) if the only common divisor of 2a and b is 

1. In his proof, however, he used a lemma that was later shown by 

Dupr~ to be false. This paved the way for Dirichlet's famous theorem 

in 1837. Before stating this theorem two more definitions are needed. 

Definition 2. 4. A positive integer, d, is called the greatest common 

divisor of the integers a and b if d is a common divisor of a and b and 

is a multiple of every other common divisor. If d is the greatest com

mon divisor of a and b we write d = (a, b). 

Definition 2. 5. The natural numbers a and b are said to be relatively 

prime if and only if (a, b) = 1. 

Dirichlet's Theorem. If a and bare relatively prime, then there 

exists an infinite number of primes in the progression ak + b (k = 0, 1, 

2,3, ... ). 

Euler's conjecture is therefore one special case of Dirichlet's 

Theorem since l and any other natural number are always relatively 

prime. 

Because the proof of Dirichlet's Theorem is difficult, many math

ematicians have proved and are proving special cases of it. Some in

volve fixed values for a and b, some only fixed b and still others only 

fixed a. Lucas gave a proof for the special case 5k + 2 and 8k + 7 in 

1891; von Sterneck for ak - l in 1897; Carmichael for pnk - 1, p an odd 



:prirne a,md 2n3k - 1,. n·a natural number, in l-913;·a-nd·,Mare Low and 

P. T. Baten1anfor · 24k + b-in l'96-5. · Proofs of some of the special 

c:a'ses·:a•r1e given in Chapter V. 

l2 

Another inter'e·sting problem that is suggested by Tables I and II 

concerns finding prime numbers inany given row that are equally 

spaced. For example, ~n row l of Table I it can be seen that 4l, 71, 

and lOl are each prime and that there are two numbers in the row be

tween each pair 4l, 71, and 71, lOl. In the language of elementary al

gebra one would say that the numbers 4l, 71, and lOl form an arith

metic progression with common difference 30. In row seven another 

arithmetic progression with 3 prime terms can be found, namely, 67, 

97, l27. 

In T.able II different arithmetic progressions with only prime 

terms can be found. In the first row the prime numbers 13, 37, 61, 

form an arithmetic progression with common difference 24. In row 

five the first 5 .terms are all prime and form an arithmetic pr ogres -

sion with common difference 12. 

All numbers in Table I are of the form lOk + b where b is the first 

tertn of the row and k determines the column. The numbers in Table 

II are expressed as 12k + b where the k and bare as in Table I. By 

listing the natural numbers in other similar manners it is possible to 

discover other arithmetical progressions containing only prime terms. 

This and necessary conditions for the existence of certain arithmetical 

progressions is the subject of _the next chapter. 



·CHAPTER III 

ARITHMETIC PROGRESSIONS WITH ALL TERMS PRIME 

Consider the natural numbers as they are arranged in Table III. 

Each of the rows is an infinite arithmetic progression with first term 

1, 2, 3, or 4 and common difference 4. In the third row the numbers 

3, 7, 11, form a finite arithmetic progression consisting only of prime 

numbers. The numbers 11, 15, 19, also form an arithmetic progres

sion but 15 is not prime. Another arithmetic progression is 19, 27, 

35, but in this case 19 is the only prime term. 

TABLE III 

NATUR.f\L NUMBERS IN COLUMNS OF 4 

L 5 9 13 17 21 25 29 33 37 41 ....... 

2 6 10 14 18 22 26 30 34 38 42 

3 7 11 15 19 23 27 3 1 35 39 43 

4 8 12 16 20 24 28 32 36 40 44 , .. 

Definition 3. L. A prime arithmetic prosres sion (PAP) is an increasing 

arithmetic progression which contains qnly prime terms and which 

contains at least two distinct terms. 

A PAP with two terms and common difference 2 is called a prime 

twin pair. A discussion of prime twin pairs is included in Chapter N. 

13 
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One PAP of three terms is 3, 7, lL Notice that this PAP con

si1>ts of the three terms· of the third row of Table III. There are other 

PAP 's in the third row of Table III, namely 3, 11, 19 and 19, 31, 43, 

but are there other PAP's in this row with a common difference 4? 

This question is answered by Theorem 3.1. 

Theorem 3.1. The arithmetic progression 3, 7, 11, is the only PAP 

of three terms in the progression 4k + 3 (k = 0, 1, 2, ... ) . 

Proof: Suppose there is another PAP of three consecutive terms 1n 

this progression. Let 

c, c + 4, · c + 8 

represent the prime terms of the progression. If c = 1 or c = 2, then 

the progression is not a PAP. If c = 3, the progression 3, 7, 11, is 

generated. Therefore c > 3. Since every integer can be written in 

the form 3t, 3t + 1, or 3t + 2, for some integer t, c can be written in 

one of these forms. 

Now c is not of the form 3t, for if it were it would be divisible by 

3 and therefore not prime since c > 3. If c = 3t t 1 for some integer 

t, then 

c t 8 = ( 3t + 1) + 8 

= 3t + 9 

= 3(t + 3), . 

and hence c + 8 is not prime. Therefore c = 3t + 2 for some integer 

t, and hence 

c + 4 = ( 3t + 2) + 4 

= 3t + 6 

= 3(t + 2) I 
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and in this case c + 4 is divisible by 3 and cannot be prime. Since 

there are only three possibilities and a contradiction results in each 

case, there can be no other PAP 's of this form with common difference 

4. 

A proof similar to the one given would prove that 3, 11, 19, is the 

only PAP in the third row of Table III with common difference 8. 

There are many PAP 's in the third row with first term 3 contain-

ing exactly three terms. Two examples not already mentioned are 3J 

31, 5 9 , and 3 , 6 7 , 131. 

,S:onjecture: There exists an infinite number of PAP 's with three 

terms, first term 3, and each term of the form 4k + 3. 

This conjecture gains more meaning by writing the numbers of the 

form 4k + 3 in a row. Above each number is placed a 3 and below each 

number the corresponding number 8k + 3 is written. (See Table N). 

TABLE N 

ARITHMETIC PROGRESSIONS OF THE 
FORM 3, 3 + 4k, 3 + 8k. 

..,, ,,, 

* ,:c * '•' ,,, 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 

3 7 l l 1 5 1 9 23 27 3 1 35 39 43 47 5 1 55 

3 11 19 27 35 43 5 1 59 67 75 83 9 L 99 107 

-·- ,:< ,,, -,- ,,, 

3 3 3 3 3 3 3 3 3 3 •, "' .... 

59 63 67 7 1 75 79 83 87 107 3+4k ... 

115 123 13 1 139 147 155 16 3 1 7 1 2 11 3+8k .•. 
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Each column in ·the table forms ·an arithmetic ·pro-gr'es·sion with differ

ence 4k. · An asterisk is placed above each prime triple. Since 

( 3, 4) = L and ( 3, '8) = L, Dirichlet 1s Theorem proves that row two and 

row three each contain an infinite number of primes. To prove the 

conjecture one would have to prove that an infinite number of primes 

in row two are in a column with a prime of row three. Mathematic:j.ans 

have been unable to solve this seemingly simple problem. 

Another question posed by Table III is this. Is there a PAP with 

first term 3 that has four terms? The answer is no ... 

Theorem 3. 2. If 3 is the first term of a PAP then the PAP contains 

at most three terms. 

Proof: Suppose a progression of four terms did exist. The terms 

could be represented by 

3, 3 + d, 3 + 2d, 3 + 3d, 

but 3 + 3d = 3(1 + d) is not prime since (L + d) > 0. 

Theorem 3. 2 might Lead one to believe that there would never be 

a PAP with four terms. The PAP 7, 19, 31, 43, shows that it is pos -

sible. 

Another manner of expressing the natural numbers is shown in 

Table V. This table points out a fact about the primes that is used 

many time,s in elementary number theory. Rows two, three, four, 

and six each contain at most one prime, while rows one and five have 

many. The numbers in the first row are of the form 6k + 1, while the 

numbers in row five are of the form 6k + 5. This arrangement veri

fies that all prime numbers greater than 3 can be expressed in the form 
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6t + 1 or 6t + 5 for ·some non-negative integer t. From this table one 

can find many PAP 1·s with a common difference which is a multiple of 6. 

TABLE V 

NATURAL NUMBERS IN COLUMNS OF SIX 

1 7 13 19 25 3 1 37 43 49 55 6 1 67 73 79 .•• 

2 8 14 20 26 32 38 44 50 56 62 68 74 80 ... 

3 9 15 2 1 27 33 39 45 5 1 57 63 69 75 8 1 .•• 

4 10 16 22 28 34 40 46 52 58 64 70 76 82 .•. 

5 1 1 17 23 29 35 41 47 53 59 65 7 1 77 8 3 ... 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 .•. 

For example, 5, 11_, 17, 23, 29; 17, 29, 41, 53; and 19, 3~, 
' . 
I 

43; are three 

immediate ones. The results of the table also help esta~lish the follow-

ing theorem. 

Theorem 3. 3. Every PAP of three terms with first term greater than 

3 has a common difference which is a multiple of 6. 

Proof: Let b be the first term and d the common difference. Then 

b, b + d, b + 2d, 

represents the PAP. The proof will follow by showing that dis a mul-

tiple of 6. Since b > 3, b can be written in the form 6t + 1 or 6t + 5 

for some non-negative integer t. Now d must be even, for if d were 

odd then b + d would be even, g_reater than 2, and hence not prime. 

Also dis positive since a PAP is increasing. Since dis 1an integer, d 

can be represented in one of the following forms for some integer r. 

6r, 6r + 1, 6r + 2, 6r + 3, 6r + 4, 6r + 5. 



Since cl must be eve·nthe ·second, fourth, and sixth possibilities are 

eliminated. That is, dis of the form 6r, 6r + 2 or 6r + 4. The two 

cases for the b's will be considered separately. 

Case I. b = 6t + 1 

If d = 6r + 2, for some r, then b + d = ( 6t + 1) + ( 6r + 2) 

= 6r + 6t + 3 

= 3( Zr + Zt + 1), 

and thus b + d is not prime. 

If d = 6 r + 4, for some r, then b + Zd = ( 6 t + 1) + 2( 6 r + 4) 

= 6t + 12r + 9 

and sob.+ Zd is not prime. 

Case II. b = 6t + 5 

= 3( Zt + 4r + 3), 

If d = 6r + 2, for some r, then b + Zd = (6t + 5) + 2(6r + 2) 

= 6t + 12r + 9 

= 3(2t+4r+3), 

and as before, b + Zd is not prime. 

If d = 6r + 4, for some r, then b + d = (6t + 5) + (6r + 4) 

= 6t + 6r + 9 

= 3( Zt + Zr + 3), 

and in this case b + dis not prime. 

18 

Since five of the six possibilities for the representation of d have 

been ruled out, the only pas sibility left is for d to be of the form 6r ~. 

that is, d is a multiple of 6, and the theorem is proved. 

In checking for PAP 's with first term greater than 3 it is only nec

essary to check those arithmetic progressions with common difference 



19 

6, 12, 1,8, 24, etc.. The theorem does not 'prove that-every d of the 

form 6r will give a PAP, ·for if b = 5 ·and ·d = 30 then b, b + d, b + 2d., 

gives the progr,ession 5, 35,. 65, which is not a PAP. 

Challenge: Consider the arithmetic progression ak + b (k = O, l, 2).,", 

Let b = 5 and find which values of a = 6, 12, 18, 24, ... 66, will gen

erate a PAP. 

Theorem 3. 3 involved PAP 's of three terms and first term greater 

than 3, Since a PAP of four terms contains a PAP of three terms it 

follows that a PAP of four terms with first term greater than 3 would 

also have a common difference which is a multiple of 6. I Since Theo

rem 3. 2 guarantees the nonexistence of PAP 's of four terms and first 

term 3 the first term of a PAP with four terms must be greater than 

3. Some of the pr()gressions of three terms:fromc: the exercise above 

can be extended to PAP 's of four terms. With a = 6 the PAP 5, 11, 

17, 23, is obtained and when a = 18, the PAP 5, 23, 41, 59 is gener -

ated. 

Challenge: Of the PAP 's from the previous challenge, which ones can 

be extended to PAP 's of four terms by taking k = 3? 

Challenge: Find at least one PAP of four terms with first term 7; 

with first term 11; with first term 13; with first term 17. 

The search for PAP 's with five terms :i,s more difficult yet. The 

progression with first term 11 an1 difference 60 is such a progression, 

in fact,. more than the first five terms of this progression are prime. 

The following chal~enges will help the reader discover some facts about 



PAP's. 

Challenge: What is the first composite number in the progression 

60k + 11 (k = o, 1, 2, ..• ) ? 
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Challenge: Find a PAP of five terms with first term 5; with first term 

7; with first term 13 . 

. Challenge: Find a PAP of six terms with first term 5. 

There are other facts about PAP 's that are helpful in locating cer

tain ones. These facts are stated in the following four theorems. 

Theorem 3. 4. There does not exist a PAP of b + 1 terms and first 

term b. 

Proof: Suppose such a progression did exist. Then the progression 

could be represented by 

b, b + d, b + 2d, b + 3d, ... , b + bd. 

But b + bd = b(l + d) is not prime since b /= 1 and d > 0. 

It should be noted that Theorem 3. 2 is a special case of this theo-

rem. 

The next theorem is similar to Theorem 3. 3 since it involves in

formation about the common divisor. It is interesting to note that as 

the number of terms in a PAP increases and the first term increases, 

the common difference must also increase. 

Theorem 3. 5. All PAP 's with five terms and with first term greater 

than 5 have a common difference which is a multiple of 5. 

Proof: Let b, b + d, b + 2d, b + 3d, b + 4d represent the terms of the 
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pro·gres-sion. Every natural number ·can be written in one of the fol

lowing forms: 5t, St + l, St + 2, 5t + 3, 5t + 4, for some non-negative 

integer t. Therefore, d can be represented in one of these forms. The 

proof follows by showing that if d is not of the form 5t, then one of the 

terms of the progression is divisible by 5 and hence not prime, since 

all terms are greater than 5. Now all prime numbers greater than 5 

have units digit l, 3, 7, or 9 (see Table I, p. 7), and therefore b is of 

the form lOm + 1, lOm + 3, lOm + 7, or lOm + 9, 

Case I. b = lOm + l. 

If d = 5t + 1, then b + 4d = lOm + l + 4( 5t + 1) = 5( 2m + 4t + l). 

If d = 5t + 2, then b + 2d = lOm + l + 2( 5t + 2) = 5( 2m + 2t + l). 

If d = 5t + 3, then b + 3d = lOm + l + 3( 5t + 3) = 5( 2m + 3t + 2). 

If d = 5t + 4, then b + d = lOm + 1 + 5t + 4 = 5( 2m + t + l). 

So if b is of the form lOm + l, then d must be of the form 5t. 

Case II. b = lOm + 3. 

If d = 5t + l, then b + 2d = lOm + 3 + 2(5t + 1) = 5(2m + 2t + l). 

If d = 5t + 2, then b + d = lOm + 3 + 5t + 2 = 5( 2m + t + 1). 

If d = 5t + 3, then b + 4d = lOm + 3 + 4(5t + 3) = 5(2m + 4t + 3). 

If d = 5t + 4, then b + 3d = lOm + 3 + 3(5t + 4) = 5(2m + 3t + 3). 

If b is of the form lOm + 3, then d is of the form 5t. 

Case III. b = lOm + 7. 

If d = 5t + l, then b + 3d = LOm + 7 + 3( 5t + l) = 5( 2m + 3t + 2). 

If d = 5t + 2, then b + 4d = LOm + 7 + 4( 5t + 2) = 5( 2m + 4t + 3). 

If d = 5t = 3, then b + d = lOm + 7 + 5t + 3 = 5( 2m + t + 2). 

If d = 5t +4, then b + 2d = lOm + 7 + 2{5t +4) = 5(2m + 2t + 3). 

Hence if b is of the form lOm + 7, then d is of the form 5t, 



Case N. b = lOm + 9. 

If ·d = St + 1, then b + d = lOm + 9 + 5t + l = 5( 2m + t + 2). 

If d = St + 2, then b + 3d = lOm + 9 + 3( St + 2) = 5( 2m + 3t + 3). 

If d =St+ 3, then b + 2d = lOm + 9 + 2(5t + 3) = 5(2m + 2t + 3). 

If d =St+ 4~ then b + 4d = lOm + 9 + 4(5t + 4) = 5(2m + 4t + 5). 

If b is of the form lOm + 9, then again d is of the form St. Since b is 

of one of the four forms listed it follows that d is of the form St and 

therefore is a multiple of 5, 
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A well-known theorem in elementary number theory states that if 

d is a multiple of a and d is a multiple of b, where (a, b) = 1, then d 

is also a multiple of the product of a and b. Since every PAP with 

first term greater than 5 satisfies the hypothesis of Theorem 3. 3; 

the common difference d of Theorem 3. 5 is both a multiple of 5 and a 

multiple of 6. Since (5, 6) = 1, the following theorem has been proved: 

Theorem 3. 6. A l1 PAP 's with five terms and with first term greater 

than 5 have a common difference which is a multiple of 30. 

Challenge: With the aid of Theorem 3. 6, find another PAP of five 

terms and first term 13; with first term 17. 

PAP 's with ten terms are known; for instance 210k + 199 for 

k = 0,1, 2, •.. ,9, is one example. The largest known PAP has thir,

teen terms. It is the progression 60060k + 4943 for k = 0, 1, 2, 3, .. ..,12. 

It is not known whether or not there exists a PAP of a hundred terms. 

The following theorem, of which Theorems 3. 3 and 3. 5 are special 

cases, shows that if one does exist then the common difference would 

be a multiple of 2 x 3 x 5 x 7 x ll x 13 x 17 x 19 x ... x 97, which has 
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more than 30 digits in its representation. With the aid of faster com-

puters PAP 's with more than thirteen terms will probably be found. 

Theorem 3. 7. [ 27] If n and dare natural numbers, n > 1, and if n 

terms of the arithmetical progression 

b, b + d, b + 2d, b + 3d, ... , b + (n - l)d 

are odd prime numbers, then the difference dis divisible by every 

prime number less than n. 

Proof: Now b > n, because if b < n, then b < n - land b + bd = b(l + d) 

would be a composite term of the progression. 

Let p denote any prime number le.ss than n. Divide each of the 

terms b, b + d, b + 2d, ... , b + (p - l)d by p obtaining remainders 

r , r 1, r 2 , ... , r 1, respectively, where O < r. < p since b + id is 
O p- 1 

prime for O < i < p - I.. There are p remainders which can take on the 

values 1, 2, 3, ... ,p - 1. So for some k and j where O < j < k < p - 1, 

That is 

Hence, 

b + kd = p Qk + r k 

b + jd = pQ. + r. = pQ. + rk. 
J J J 

p Qk = b + kd - r k 

= b + kd - (b + jd - pQ.) 
J 

= kd - jd + pQ .. . J 

Therefore p divides kd - jd = (k - j)d. But by the inequalities 

0 < k- j ..Sp - l < p, it follows that p does not divide k - j and so p 

must divide d. Since p was an arbitrary prime number less than b, 

the theorem follows. 

Corollary: If a PAP consisting of n terms exists, then the common 
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-difference ,dis -divisible ·by the product ·of al:l·prime numbers less than 

n 1 and is therefor'e greater than or equal to n. 

Proof: The proof follows from the theorem and a generalization of the 

remarks preceding Theorem 3. 6. That is 1 if dis a multiple of a 11 a 21 

a 31 ••• ,, ak and the greatest common divisor of these numbers is 11 then 

d is a multiple of the product a 1 • a 2 · a 3 · • · ak. 



CHAPTER IV 

GENER ALIZA TIO NS ON PAP'S 

Prime Twins 

As has already been noted, many of the problems of number the

ory are concerned with the number of prime numbers of a certain 

form. One method that one may use in attempting to solve these prob

lems is to look at the difference between the primes. Since 2 and 3 

are the only prime numbers with difference 1, one can proceed imme

diately to those primes with difference 2. In so doing one is really 

looking for PAP 's with common difference 2. Theorem 3. 3 guaran

tees that if the PAP has three terms and first term greater than 3 

then the common difference is a multiple of 6, hence 3, 5, 7, must 

be the only progression of three or more terms and common differ

ence 2. As was noted in Chapter UI, progressions of two terms with 

difference 2 are called prime twin pairs. , The natural question is:, 

How many prime twin pairs are there? There are four pairs less 

than 25: 3, 5; 5, 7; ll, 13; and 17, 19. By checking a table of primes 

one can find all such pairs less than any desired number. There are 

8 pairs less than 100; 7 between 100 and 200; none between 700 and 

800 but 5 between 800 and 900. Neglecting noticeable irregularities 

there is a decrease in the frequency of prime twin pairs as one con

tinues into the higher ranges of numbers. There are two pairs be-
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tween 209200 and 209300 which are: 209201, 209203; and 209267, 

209269. Thus there are prime twin pairs even- in very high ranges, 

but their number does -decrease. This is to be expected since the 

number of all primes in these ranges also decreases. 

No one has been able to prove .that there is an infinite number of 

prime twin pairs. D. H. and E. Lehmer [ 11] have found that there 

are 152, 892 pairs less than 30 million. The greatest of the known 

pairs of twin primes is the pair 140737488353699, 140737488353701. 

To generalize this idea of differences between primes consider 

the PAP 's with exactly two terms. That is, consider all primes p 

such that another prime p' exists such that p' = p + d, where dis 
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some fixed natural number. By so doing it is possible to note some 

interesting facts about the prime numbers. The situatio11 is quite un

interesting unless d is even. The fact that other primes petween p and 

p' might exist does not matter. The list of such primes with d = 6 such 

that the first prime does not exceed 100 is as follows: 5, 11; 7, 13; 11, 17; 

13, 19; 17, 23; 23, 29; 31, 37; 37, 43; 41, 47; 47, 53; 53, 59; 61, 67; 67, 73; 

73, 79; 83, 89; 97, 103. It is curious to note that in the range less than 

100 there are more pairs of this kind than there are primt:: twin pairs. 

In fact, there are exactly twice as many. In the range less than 30 

million there are 304867 primes followed by another pri?l'le of dis

tance 6, or nearly twice as many as the number of prime twin pairs. 

The numbers of these prime pairs have been obtained by Professor 

and Mrs. Lehmer with the appropriate use of computing ~pparatus; 

they computed up to 30 million the number of prime pairs p, ~ + d; 

where d takes on the values 2, 4, 6, 8, ... ; 7.0. 
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In ·order to discuss the results i.t will be convenient to introduce 

. some new notation.· Let 1rd(x) represent the number of those primes 

p which satisfy the following conditions: 

For instance, 

p 2: x, p + dis a prime number. 

1r 2(100) = 8 1r 2(30, ooo, ooo) = 152, 892 

1r6 (100) = 16 1t2(30, ooo, ooo) = 304, 867. 

Then set Rd= 1rd(30, 000, 000)/1r 2(30, 000, 000). For instance 

R 6 = 304, 867/152, 892 = 1. 9940. A small part of the material computed 

by the Lehmers is included in Table VI. .. 

TABLE VI 

APPROXIMATIONS OF Rd 

d Rd d Rd d R 
d 

d Rd d Rd 

2 1. 0000 16 1. 000 1 30 2.6632 44 1. 1097 58 1. 0 349 

4 0.9979 18 1. 998 2 32 0.9970 46 1. 0467 60 2.6632 

6 1. 9940 20 1. 33 11 34 L 9965 48 1. ·996 5 62 1. 034 1 

8 0.9996 22 1. 1088 36 1. 9997 50 1.. 3308 64 0~9999 

10 1. 33 17 24 1. 9976 38 1. 0566 52 1. 089 2 66 2. 2186 

12 1. 9985 26 1. 09 10 40 I 1. 3330 54 1. 998 1 68 1. 066 3 

14 l. 1.985 28 1. 1974 42 1 2.3987 56 1. 1957 70 l. 5977 

It has been pointed out that all primes greater thc!.n 5 have a units 

digit that is either 1, 3, 7, or 9. It is thougp.t that there are as many 

of one. kind as there are qf another. Do the 35 kinds of prime num

bers with which Table VI is asso~iated occur with such regularity? 

If it were so then all ratios Rd of Table VI would be approximately 

1. Remarkably enough, a few entries of Table VI are close to l. 



Perhaps, however, it is the case that the ratio 1Td(x)/rr2(x) may con

verge to some limit, not necessarily 1, as x approaches infinity and 

Rd= 1rd(30, 000, 000)/1r 2(30, 000, 000) entered in Table VI may be an 

approximation of that limit. 
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The values for which Rd are close to l correspond to d = 2, 4, 8, 

16 and 64. These values are also the smallest values in the table. 

Are there other entries in the table as close to each other? 

In trying to answer this question notice that the entries corre

sponding to d = 6, 12, 24, and 48 are approximately equal to each 

other, and so are those corresponding to d = 10, 20 and 40 or,those 

corresponding to d = 14; 28, and 56. In general, multiplication by 2 

seems to leave Rd almost unchanged. 

What about multiplication by 3? It approximately doubles the 

values of Rd in some cases, as from 2 to 6, 4 to 12, 8 to 24, 16 to 48, 

LO to 30, 20to 60 3 14 to 42, and 22 to 66. Yet, in other cases this is 

not so, as from 6 to 18, 12 to 36, and 18 to 54. In these latter cases 

the multiplication by 3 leaves the values of Rd almost unchanged. 

It is hard to account for the regularities in some instances and irreg

ularities in others. By checking more carefully one may discover 

that the values of Rd contained in Table VI come close to simple 

fractions. (See Table VII} 

Table VII strongly suggests that Rd depends only upon the decom

position of d into prime factors. In other words, just the presence of 

a prime factor in, or its absence from, the decomposition seems to be 

relevant; for instance, to values d of the form 2x3y with x, y = 1, 2,. 

3,. ~. there corresponds approximately the same value of Rd. 
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TABLE VII 

RATIONAL APPROXIMATIONS OF Rd 

" 

2 16 6 36 10 14 22 30 142 
. I 
166 I 70 

d 4 32 12 48 20 28 44 60 I 
I 

8 64 18 54 40 56 I 
! I 

24 50 I 

I i 
I 

Rd 
(approx) 1/1 2/1 4/3 6/5 10/9 8/3 12/s[ 20/9 8/5 

Moreover, to ea.ch prime factor d there seems to correspond a 

factor of Rd; to the unavoidable factor 2 of d, the trivial factor 1 of 

Rd; to the prime factors 3, 5, 7 and ll of d the factors 2/1, 4/3, 6/5, 

and L0/9 of Rd respectively. 

Then, when d is a product of different primes or powers of primes, 

Rd seems to be the product of the corresponding fattors. 

The observations pointed out here point to the conjectural formula 

This formula is merely a conjecture which can be conceived by 

examining Table VI. In Table VIII the observed values of Rd taken 

from Table VI are compared with the cbrresponding conjectural lim-

iting values. 

To attempt an explanation of this s~emingly simple yet amazing 

result is beyond the scope of this paper. The interested reader will 

be interested in Polya's attempt at an explanation. [ 17: 381-384) 

Another interesting note concerning the number of primes and 

prime twins is the fact that the series z::J., where the sum is over all 
pp 
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the primes, -diverges, thus proving the existence of an infinite num-

ber of primes; however the series ~ L L (- + -) where p and q are 
p+2=q p q . 

prime, converges, and has been approximated to 3 decimal places by 

E . S • Se Lm er [ 2 2] . This does not imply that the number of twin 

primes is finite, however. 

TABLE VIII 

VALUES OF Rd, OBSERVED AND THEORETICAL 

d Rd(obs} Rd(theor} d Rd(obs) Rd(theor) d Rd{obs) R d(theor) 

2 1. 0000 1. 0000 26 1._09 LO 1. 0909 50 1. 3308 1. 3333 

4 0.9979 1. 0000 28 1. L 974 1. 2000 52 1. 0892 1. 0909 

6 l. 9940 2.0000 30 2.6632 2.6667 54 1. 998 1 2.0000 

8 0.9996 1. 0000 32 0.9970 1. 0000 56 1. 1957 1. 2000 

10 1. 33 17 L. 3333 34 1. 0645 1. 0667 58 1. 0 349 l. 0370 

L2 1. 9985 2.0000 36 L. 9997 2.0000 60 2. 66 32 2.6667 

14 ·1.L985 L. 2000 38 1. 0566 1. 0588 62 1. 0341 L. 0345 

16 1. 000 1 1. 0000 40 1. 3330 1. 3333 64 0 ... 9999 1. 0000 

18 l. 9982 2.0000 42 2.3987 2.4000 66 2.2186 2.2222 

20 l. 33 L 1 1. 3333 44 1. 1097 1. 1111 68 1. 0663 1. 066 7 

22 L. 1088 1. 1111 46 1. 0467 1. 0476 70 1. 5977 1. 6000 

24 l. 9976 2.0000 48 1. 9965 2.0000 

Prime Quadruplets 

Another generalization on the prime twin pair problem concerns 

primes in the finite sequence p, p + 2, p + 6, p + 8; for example 5, 7, 

11, 13. Such sequences with a11 terms prime are ca11ed simply quad-

ruplets. It is not krtown whether or not there exist infinitely many 



31 

such qua-dr·uplets. The.first.six conse!,:utive quadruplets are obtained 

for p = 5, 11, 101, L9L, 821 and 148l. tlardy and Littlewood [ 9] found 

165 quadruplets less than 100, 000 and Sierpihski [ 25: 117] states that 

W. A. Golubew recently found .897 quadruplets less than LO million. 

Several known results concerning quadruplets are shown in the 

followip.g theorems. The proofs are elementary in that only the very 

fundamental ideas of congruences are used. 

Theorem 4. 1. If p, p + 2, p + 6, p + 8 is a quadruplet and p > 5, then 

the four primes differ only in the units digit and these digits are· 1, 3, 

7, and 9 respectively. 

Proof: Since p > 5, it is sufficient to show that p has units digit 1. 

This will follow by showing that if p has units digit other than 1 then 

one of the terms· of the sequence is not prime. H p has up.its digit 

which is even then p is divisible by 2 and obviously not prime E;1ince 

p > 5. If p has a units digit which is 5, then p is di visible by 5 and 

not prime. 

Hp has units digit 3, 7, or 9, then p + 2, p + 8, or p + 6 has units 

digit 5 respectively, and therefore is divisible by 5 and greater than 5, 

and hence not prime. The only possibility left is for p to have units 

digit L 

The preceding theorem is extremely helpful to one using the 

"search" method to locate such quadruplets. The next theorem is 

not as helpful as far as locating quadruplets is concerned but the re

sult is still quite amazing. The theorem is somewhat similar to Theo-, 

rem 3. 7 of the preceding chapter. The reason for the choice of the 



number 210 is brought out in the proof. 

Theorem 4. 2. If p f 5 and p, p + 2, p + 6, and p + 8 are all prime, 

then dividing p by 210 leaves a remainder of 11 1 101, or 191. 
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Proof: It is sufficient to show that at least one of the foUowing holds: 

p = 11 (mod 210) 

p = 10 l (mod 210) 

p = 19 1 (mod 210) 

Note first that 111 101 and 191 are p 1s that generate quadruplets 

and that 210 is the product of the first four primes. The proof will fol

low by showing that if p 'f- l.l(mod 210) and p :} 101 (mod 210) then 

p = 191(mod 210). 

Now p must be of the form 6 k - 1, k > 1. This follows from the 

fact that all primes greater than 5 are of the form 6 k - 1 or 6 k + 1 

(see Table V 1 Chapter III}, and if p were of the form 6k + 1, then 

p + 2 = 6 k + 3 = 3( 2k + 1) would not be prime, Since p is odd it follows 

that 

(1) p = 1 = 191 (mod 2). 

Also since p > 5 it follows that either p = 1 (mod 3) or 

p = 2 (mod 3). But if p = 1 (mod 3), then p + 2 = 1 + 2 = 3 = 0 (mod 3) 1 

which implies that 3 divides p + 2. This is impossible since p + 2 is 

prime, hence it must be the case that 

(2) p=2=191(mod3). 

Similarly p is congruent to 1, 2, 3, or 4 modulo 5, 

If p = 2 (mod.5), then p + 8 = 10 = 0 (mod 5) and p + 8 is not prime. 

If p = 3 (mod 5), then p + 2 = 5 = 0 (mod 5) and p + 2 is not prime. 

If p = 4 (mod 5), then p + 6 = 10 = 0 (mod 5) and p + 6 is not prime. 
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Hence it must be the case that 

(3) p = l = 191 (mod 5). 

Also p is congruent to 1, 2, 3, 4, 5, or 6 modulo 7. If p is con

gruent to 1, 5, or 6 modulo 7, then p + 6, p + 2, or p + 8 is not prime 

respectively. Therefore either p= 2 (mod 7 ), p = 3 (mod 7) or 

p = 4 (mod 7). 

Now if p = ll (mod 210), then the following four condit~ons must 

all hold: 

p = ll = 1 (mod 2) 

p = LL = 2 (mod 3) 

p = U = 1 (mod 5) 

p = U s 4 (mod 7) 

while if p = 101 (mod 210) then in the same fashion the following four 

congruences are satisfied: 

p = 101 = l (mod 2) 

p = 101 = 2 (mod 3) 

p = 101 = l (mod 5) 

p = 101 = 3 (mod 7). 

Since it has been shown that p =. l (mod 2), p = 2 (mod 3}, and 

p = 1 (mod 5) it follows that if p 1- ll (mod 210) and p ¢ 101 (mod 210), 

then p "I= 4 (mod 7) and p I 3 (mod 7). Therefore the following congru

ence holds. 

(4) p = 2 = 191 (mod 7). 

Therefore by (1), (2), (3), and (4), it follows that 

p = 191 (mod 2, 3, 5, and 7), 

hence: 

p = 191 (mod 210), 
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and the theorem is proved • 

. Many other generalizations on prime twins could be made and more 

theorems proved. The triples of primes of the form p, p + 2, p + 6, or 

p, p + 4 1 p + 6 provide examples from which simple theorems can be 

proved. A different type of theorem concerning these sequences will 

be given in Chapter V. 

Conjecture H 

In the field of mathematics and number theory in particular, many 

conjectures are made. One such conjecture haa already been discuss

ed in this chapter. Sometimes the conjectures are proven and become 

theorems, while many times they remain unsolved or are proven false. 

Once a conjecture is made new challenges arise. Mathematicians at

tempt not only to prove or disprove the conjecture, but also try to 

find statements which are equivalent to, which follow from, or which 

imply the given statement. In so doing new mathematics is created. 

In 1958, A. Schinzel [ 20: 188], a Polish mathematician, made a 

conjecture which has come to be known as Conjecture H. If proven, 

many of the unanswered questions of number theory would be solved 

including several that have been mentioned in this paper. The con

jecture is based upon a certain class of polynomials with integral co

efficients. It is known that there is no polynomial f(x) having integral 

coefficients which gives a prime for each natural value of x. However, 

it is possible for a polynomial to give infinitely many prime values for 

natural values of x. The polynomial f(x) = 2x + l is one simple exam

ple, and it is conjectured that f(x) = x 3 + 2 is another. 
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There is a natural connection between prime numbers and poly-

nomials which are irreducible over some set of coefficients. The 

polynorpials with which Conjecture H is concerned are irreducible 

over the integers a:nd can be illustrated as follows: let s denote a 

natural number and let f 1(x), f 2(x), f 3(x) ... , fs(x) be polynomials with 

integral coefficients. Suppose there are infinitely many natural num-

bers x for which each of the polynomials f 1(x), f 2(x) ... , fs(x) generate 

a prime. 

f.(x) must 
1 

The coefficient a. . 1 of the highest power of the variable x of 
0 

be positive, because for large values of x the value of the 

polynomial at x has the same sign as ai , hence fi(x), i = 1, 2, 3, ... , s, 
0 

can be arbitrarily large. Also f.(x) cannot be the product of two poly-
1 

nomials with integral coefficients otherwise for sufficiently large val-

ue s of x, £. (x) would be composite. Therefore f. (x), i = 1, 2, 3, ... , s, 
1 . 1 

must be irreducible. This implies that there is no natural number 

d > 1 which divides the number P(x) = f 1(x) , f 2(x) •.. fs(x), for any nat

ural value of x. If such a number did exist it would he the divisor of 

s arbitrarily large prime numbers, which is impossible. 

It therefore follows that ifs is a natural number and f 1(x), 

f 2(x), ... , fs(x) are polynomials whose coefficients are integers, and 

if for infinitely many natural numbers x, the numbers £1 (x), 

£2(x), ... ,fs(x) are prime, then the polynomials must satisfy the fol

lowing: 

Condition S: Each of the polynomials f.(x), i = 1, 2, 3, ... , s, is ir-
1. 

reducible, its leading coefficient is positive, and there is no natural 

number d > l that is a divisor of each of the numbers 

P(x) =f1(x) · £2(x) ..• fs(x), where xis an integer. 



Conjecture H: [ 20: 188] If s is a natural number a:n-d if f (x) . . l ' 
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f 2(x), ... , fs(x) are polynomials with integral c?efficients satisfying Con

dition S, then there exist infinitely many natural values of x for which 

each of the numbers f 1(x), f 2(x), ..• ,fs(x) is a prime. 

It can now be shown how some of the unanswered questions follow 

from Conjecture H. It must be noted, however, that the results fol-

low from an unproven statement and by no means cari be taken as theo-

rems. The value of showing how statements follow fror:n a conjecture 

is twofold. It demonstrates the interrelation of many other conjectures 

and it reformulates the problem so that an alternate approach to its 

proof might be taken. The first consequence that will be shown con-

cerns the number of prime twin pairs. 

Conjecture H implies that if a c!,nd b are natural numbers such 

that (a, b) = 1 = (a, b(b + 2)) then. there exist infinitely many prime num-

bers p pf the form ak + b, where k is a natural number, such that 

p + 2 is also a prime number. The result follows by letting 

£1 (x) = ax+ b, f 2(x) = ax+ b + 2, and P(x) = f 1 (x) · f 2(x). Then 

P(O) = b(b + 2), P(l) =(a+ b)(a + b + 2), and P(-1) =(-a+ b)(-a + b+ 2). 
. . 2 2 2 
Then P(l) + P(-1) = 2a + 2b + 4b = 2a + 2b(b + 2). 

Suppose there exists a prime number q such that q!P(x) for all 

integers x. If bis odd then P(O), and consequently q are odd; and if 

b is even, then since (a, b) = 1, a is odd; thus both a + b and a + b + 2 

are odd, and so P( 1) must be odd, which also implies that q is odd; 

hence q is odd in any case. Since it has been assumed that q!P(O), 

that is qlb(b + 2), and q!P(l) + P(-1), it follows that ql2a 2 and since q 

is odd, qla, But this is impossible since (a, b(b + 2)) = 1. Hence con-
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dition S is satisfietl. Therefore by Conjectur·e H it follows that there 

exist infinitely many natural numbers x for which the numbers 

f 1(x) =ax+ band f 2(x) =ax+ b + 2 are prime. Therefore if Conjec-

ture His true there must be an infinite number of prime twin pairs. 

That the condition (a, b(b + 2)) = l is necessary for the existence 

of infinitely many primes p of the form ak + b for which the number 

p + 2 is also prime also follows. For if d = (a, b(b + 2)) > 1, then d la, 

di b(b + 2) and since (a, b) = 1, it follows that (d, b) = I., and so dl(b + 2). 

But this implies that d lax + b + 2 for any integer x, and so p + 2 would 

not be prime. 

Conjecture H also implies that there are infinitely many quad-

ruplets. This follows by showing that for any natural number n there 

are infinitely many natural numbers x for which each of the numbers 

Zn Zn Zn Zn 
f 1(x)=x +l,f2(x)=x +3,f3(x)=x +7,f4(x)=x +9 

is a prime. If 

P(x) = f 1 (x) · f 2(x) • f 3(x) · f 4 (x) 

then P( 0) = l · 3 · 7 · 9, P( 1) = 2 · 4 · 8 • 10 and so (P( 0), P( 1)) = L. 

Hence Condition S is satisfied and Conjecture H implies that these 

four polynomials are prime for infinitely many quadruplets. 

Probably the most remarkable result which is implied by Con-

jecture H concerns the number of PAP's with any given number of 

terms. This results states that for any natural number n there exists 

infinitely many PAP 's of n consecutive prime numbers. Examples of 

such PAP's with three terms are: 3, 5, 7; 199, 211, 223; 1499, 1511, 1523; 

and 4987, 4993, 4999. Examples with four terms each are 251, 257, 

263, 269; 5101, 5107, 5113, 5119; and 5381, 5,387, 5393, 5399. There are 
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none with five terms in the range less than 10 million, 

The result can be formulated accurately as follows: 

Statement D: If r is a natural number divisible by each prime less 

than or equal to n and n is a natural number greater than 1, then 

there exists an infinite number of systems of n consecutive prime 

numbers which are in an arithmetic progression with difference r. 

Statement C will now be introduced. To show how Statement D 

follows from Conjecture H, it will be shown that Statement C follows 

from Conjecture H and then Statement D follows almost immediately 

from Statement C. 

Statement C: If s is a natural number, a 1, a 2, ... ,as are integers such 

that a 1 < a 2 < a 3 < ... < as and if fi(x) ::: x + ai for i ::: 1., 2, 3, ... ,s sa.t

isfy Condition S, then there exists an infinite number of natural num-

bers x for which f 1(x), f 2(x), ..• ,fs(x) are consecutive prime numbers. 

Proof that H implies C: The binomials £.(x) are irreducible and sat-
1 

isfy Condition S by hypothesis, hence by Conjecture H there exists an 

infinite number of natural numbers x for which each of the numbers 

£.(x), i ::: 1, 2, 3, •.. ,s, is a prime. 
1 

Leth be one of those natural numbers such that h > as - 2a 1 + 2 

and then let b be defined as follows: 

Then let g.(x) ::: bx+ h +a.for i ::: 1, 2, 3, ..• ,s. Now 
1 1 

2(h + a.) ::: h + h + 2a. 
1 1 

> h + h + 2a 1 



2: h + (as - 2a1 + 2) + 2a1 

=h+a +2 s 

> h + a . s 
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The number h + a. = £.(h) is prime, the factors of (h + a ) ! other than 
1 1 S 

h + a. being less than 2(h + a.) are not divisible by h + a. and hence 
1 1 1 

(b, h + a.) = 1. 
1 

· The g.(x) 's satisfy Condition S; for suppose not. That is, suppose 
1 

there is a prime p such that 

for x = 0, 1, 2, 3, ... ,p - 1. Then 

that is 

but since these factors are all prime there must exist a k < s such 

that 

and as before 

and p does not divide b. Continuing this process for x = 1, 2, 3, •.. ,p - l 

it follows that for each i < s there exists one and only one x, where 

0 < x < p - 1, such that 

If there were two then 

plh + a. + bx. 
1 

plh + ai + bx1 and plh + ai + bx2 

and so pl b(x1 - x 2), but pj1b, and so pj(x1 - x 2), which is impossible. 

Therefore 
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.and since p divides exactly one g. (x) for each x there must be at least 
1 

p gi(x) 's, that is p . .'.:: s, hence h + ak . .'.:: s. Also 

h + ak > h + a 1 

> as - a 1 + 2 

> s + l 

which is a contradiction. Therefore the binomials g. (x) satisfy Con-
1 

dition S, and hence by Conjecture H there exists an infinite number of 

natural values of x for which the numbers g_(x), i = 1, 2, 3, ..• ,s, are 
1 

prime. 

If for some x these primes were not consecutive then there would 

exist an integer j where a 1 < j < a , j f:. a. for any i = 1, 2, 3, ... ,s, such 
S 1 

that the number 

q = bx+ h + j 

is prime. Now since b = (h +a) !/(h + a 1) ! (h + a 2), · ·(h +a) it fol-
, s s 

lows that h + j divides b, therefore h + j divides bx+ h + j, but this.· 

implies that h + j divides q, which is prime. This is impossible, 

since x > O. 

It will now be shown how Statement C implies Statement D. Let 

£. (x) = x + ir for i = O, 1, 2, ... ,n-L If there exists a prime p which 
1 

divides f (x) • f 1(x) · · · f 1(x) for x = O, 1, 2, 3, ... ,p-1, then by o n- . 

LaGrange 1s Theorem p < n, hence pjr. But 

plfo(l) . fl(l)·. ·fn-1(1) 

and so pll(l + r)(l + 2r)· · · (1 + (n - l)r), and since pjr, it follows that 

pjl, which is.impossible, and so Condition Sis satisfied. As a result 

of Statement C there exists an infinite number of natural numbers x 

such that the numbers f.(x) = x + ir, i = 1, 2, 3, .. .,n, are consecutive 
1 . 
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prime numbers. But these numbers form an arithmetic progression 

of n terms, and hence it follows from Conjecture H that for any nat

ural number n there exists an infinite number of systems of n consec

utive prime numbers which are in arithmetic progression. 

There is a famous conjecture known as Goldbach 's conjecture, 

which states that every even number greater than 2 is the sum of two 

prime numbers. Although this conjecture has not been shown to fol

low from Conjecture H, one very similar to it does. This is the con

jecture that every even number can be represented as the difference 

of two primes. In fact, Conjecture H implies that every even num

ber admits infinitely many representations as the difference of two 

prime numbers. 

Let k denote an arbitrary integer; let f 1(x) = x and f 2(x) = x + Zk. 

Then for P(x) = f 1(x)f 2(x) = x(x + Zk) it follows that P(l) = Zk + 1 and 

P( 2) = 4( k + 1). But since ( Zk + 1, 4( k + 1)) = 1, Condition S is satis -

fied, and from Conjecture H it follows that there are infinitely many 

natural numbers x for which the number p = x and q = x + Zk are both 

prime numbers. Hence 2k = q - p, which shows that the number Zk 

has infinitely many representations as the difference of two prime 

numbers. 

Conjecture H also shows how to construct one prime from another 

in a progression-type sequence. For if (a, b) = 1, a> 0, and either a 

or b is even, then from Conjecture H it can be shown that the re are 

infinitely many primes p such that ap +bis also prime. Let 

f 1(x) =ax+ band £2(x) = x. With P(x) = f 1(x) . f 2(x) it follows that 

P(l) = a+ b and P(-1) = a - b. Since one of the numbers a or bis even 

the other must be odd, since (a, b) = 1, and so (a + b, a - b) = 1 and 



Condition S is satisfied. Consequently, from Conjecture H it can be 

concluded that there exists infinitely many x's for which both ax+ b 

and x are primes. 
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There are many other consequences which follow from Conjecture 

H. Whether or not these consequences will be proved independently 

of the conjecture, remain unsolved, be proven false, or become theo

rems as a res ult of the proof of Conjecture H is another unanswered 

question. 



CHAPTER V 

SPECIAL CASES OF DIRICHLET'S THEOREM 

The primary interest in the present chapter is in the method of 

proof of the theorems, rather than the theorems themselves, since 

each is a special case of Dirichlet's general theorem. It will be seen 

that in some simple cases the result follows from the most elementary 

ideas of factorization. In other cases well-known theorems from ele~ 

mentary number theory help to establish t.he proof, while in still oth

er cases more advanced techniques are needed,, It can be noted, how

ever, that as the a 1s and the b 's of the expression ak + b increase, 

the proofs become more complicated and more complex methods are 

needed to establish the result. The same is true in cases where 

either a or bis allowed to vary over the values such that (a, b) = 1. 

The methods of Theprem 5. 1 are similar to those used by Euclid 

to prove the existence of an infinite number of primes. 

Theorem 5.1. There exists an infinite number of primes in the pro

gression 4k + 3 (k = 0, 1, 2, 3, ... ). 

Proof: Th~ numbers 3 and 7 are prime and are elements of the pro

gression so the set of primes of this form is not empty. 

Suppose there is only a finite number of primes in the progres -

sion, say p 1, Pz~ Py .•. ,pr. Let 

m = 4p1PzP3·. • Pr - l = 4(P1PzP3· .. Pr - 1) + 3. 
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Since m is a number of the progression and m > p., for each i, m 
1 
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must be composite and have prime factors of the form 4k + l or 4-k + 3. 

All of the prime factors of m cannot be of the form 4k + l since the 

product of two numbers of that form is again of that form, but m is 

not of that form. Therefore there must be at least one i, where 

0 < i < r, such that p. Im, that is 
1 

Pi!(4p1PzP3·. ·pr - 1), 

which implies that pi 11, which is impossible. Since a contradiction re -

suits, the supposition must be false and hence there must be an infi-

nite number of primes in this progression. 

This type of proof will fail in many cases since the result is based 

upon the fact that the product of two numbers of the form 4k + l is 

again of that form. If one attempts to prove that there are an infinite 

number of primes of the form 4k + l by imitating this proof, trouble 

results. For eventually the statement that the product of two primes 

of the form 4k + 3 is again of that form will be needed. This state -

ment is false, since (4r + 3)(4t + 3) ::: 16rt + 124 + 12t + 9 ::: 

4( 4rt + 3r + 3t + 2) + l ::: 4 k + l. 

The next theorem does involve primes of the form 4k + l, how-

ever, and again the proof is by contradiction. The contradiction is 

obtained from an important theorem of elementary number theory. 

This theorem is attributed to the famous French mathematician 

Pierre de Fermat. 

Theorem 5. A. If p is a prime number and pJa, then ap-l = l (mod p). 

Corollary: If p is a prime number then for every integer a, pl aP - a. 
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Theorem 5. 2. There e~ists an irtfinite number of primes in the pro-

gr e s s ion 4· k + 1 ( k = 0, 1, 2, 3, . • . ) • 

Proof: [ 18] Let n be an arbitrary natural number greater than 1 and 

let 

N=(n!) 2 +1. 

Since n > 1,. n ! is a multiple of 2, therefore N is odd and greater 

than 1. Let p denote t.p.e smallest prime divisor of N. Now p > n, for 

if p .:'.: n then pin! 1 hence p l(n !) 2 which implies that pj 1, which is impos -

sible. 

Since n is odd, n is of the form 4k + 1 or 4k + 3. Since p]N1 it fol-

2 
lows that (n !) = -1 (mod p). By raising each side of the congruence 

p-1 
to the - 2-th power it follows that 

p-1 
(n !)p-l = (-1)"'.'7"(mod p). 

But pJ (n !), so by Fermat's theorem 

( n!) p·-l = 1 (mod p) 

and by the transitive property for congruences 

p-1 
(-1)2 = 1 (mod p). 

P-1 If p is of the form 4k + 3, then 2 = 2k + 1 would be odd and then 

p-1 
(-1)'7 = (-1) 2k+l = -1 = 1 (mod p) 

which implies that Pl 2, that is, p = 2, but this is impossible since N 

is odd and 2 cannot divide N. Therefore p must be of the form 4k + !.. 

It follows that for every natural number n > 1 there exists a prime p 

greater than n of the form 4k + 1. In fact 1 every prime divisor of N 

is such a prime. Since n is arbitrary, the theorem follows. 



46 

The proofs of the first two theurems -are quite sim'ple because it 

is only necessary to consider primes not of the form under consider;a.-

tion. In each case there was only one other form to consider. In the 

next theorems primes of the form Bk+ 7 and Bk+ 3 are considered. 

If a prime p > 2 is not of the form Bk + 7, then it could be of the form 

Bk+ l, Bk+ 3, or Bk+ 5. Other procedures than those used in Theo-

rems 5. land 5. 2 must be used. Before attempting the proofs the nee-

essary theorems and definitions from elementary number will again be 

gi veri.. 

Definition 5. 1: Quadratic Residue. If p is an odd prime with (n, p) = l 

2 
and the congruence x - n (mod p) is solvable, then n is called a quad-

ratic residue modulo p. Otherwise n is called a quadratic non-residue 

modulo p. 

Definition 5. 2: Legendre Symbol. If pis an odd prime and (n, p) = l, 

then the symbol ~) ·is defined by the following equations. 

(~) = 1·if n is a quadratic residue modulo p. 

(-np) -- -1 if n is a quadratic non-residue modulo p. 

Theorem 5.B. If m and n are integers and neither is divisible by p, 

then 

Theorem 5. c. 

then 

(~nj = (~ '(;) 
Euler 1s Criterion. If pis an odd prime 

p-1 

(;) - n---Z (mod p) and (;[) = 
p.-1 

(-1)2. 

(p, n) = 1, 



Theorem 5.D. If pis an odd prime, then 

2 
p -1 

~) = (-1)-8 . 
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The plan of the proof is similar to that of Theorem 5. 2. For 

every natural number n it will be shown that there is a prime larger 

than n in the progression. Since there are an infinite number of n's 

which can be considered, there must be an infinite number of primes 

in the progression. 

Theorem 5. 3. There exists an infinite number of primes in the pro-

gression 8k + 7 (k = 0, 1, 2, 3, ... ). 

Proof: The progression· can be represented 8k - 1 (,k:;:: 1, 2, .••.. ). Let n 

be any natural number greater than l and consider the number 

N = 2( n ! ) 2 - 1. 

Since n > 1, it follows that N > l and therefore must have at least one 

odd prime divisor p which is not of the form 8k + 1. The reason is 

that the product of two numbers of the form 8k + l is again of that 

form but N is of the form 8k - 1. Since p IN it follows that 

2 2 
2(n !) = l (mod p), 

- 2 
and so 2(n !) is a quadratic residue modulo p. By Theorem 5. 8 the 

following equalities are obtained. 

2 
Theorem 5. D and the preceding equalities imply that Y is even, 

(!) = 1 

therefore p must be of the form 8k + l. But it has been shown that p 

is not of the form 8k + 1, so it must be of the form 8k - 1. Also since 
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p!(Z(n !) 2 - 1) it follows that p > n. If not, then as before, p would di-

vide 1. So for every natural number n > l there exists a prime p 

greater than n of the form 8k - 1. Since n is arbitrary, the proof is 

completed. 

The plan of the proof of the next theorem is similar to the pre -

ceding one but the theorems from elementary number theory are used 

in a slightly different manner. 

Theorem 5. 4. There exists an infinite number of primes in the pro-

gression 8k + 3 (k = O, 1, 2, 3, ... ). 

Proof: Let n be a natural number greater than land let a= p 1p 2p 3 ••• pn 

be the product of the first n odd prime numbers. Since a is odd, its 

square, a 2 , is of the form St+ 1. Let 

2 
N = a + 2. 

N is therefore of the form St + 3. If every prime divisor of N were 

of the form St+ 1, then N would be of that form. Since it is not, N 

· must have at least one prime divisor p of the form 8k + 3 or 8k + 5. 

Suppose p were of the form 8k + 5. Since pjN and N = a 2 + 2 it follows 

that 

and so (;7 = 1. 

2 . 
a _ -2 (mod p) 

But Theorems 5. B, 5. C and 5. D imply that 

2 
p-1 p -1 

(-p2) = f~) (!) = (-1)2(-1)_8_ 

p-1 
Since p = 8k + 5, p - 1 = 8k + 4 and '7 = 4k + 2 is even and 

2 
p 2 = 64k2 + 80k + 25 which implies that P 8-l = 8k2 + lOk + 3 is odd. 

Therefore the following equalities are obtained. 
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1 = (-:) = (-l)even (-l)odd = _1 . 1 = _1 

This is obviously a contradiction, therefore p must not be of the form 

8k + 5, that is, it must be of the form 8k + 3; Now pja 2 + 2 and 

Hence p > p. for each i, 
1 

l < i < n. Since n may be chosen arbitrarily large the theorem is 

proved. 

A proof for the sequence with elerpents of the form 8k + 5 follows 

similarly by choosing N = a 2 + 4. 

With the exception of the proof of the case 8k + l, and details of 

the case 8k + 5, it has been shown that there is an infinite number of 

primes of the form Bk + b, where ( 8, b) = l, The case for the progres -

sion with terms of the form 8k + l is a special case of Theorem 5. 8. 

After the proof of this theorem we will have established Dirichlet 1s 

Theorem for the case 8k+ b, where (8, b) = l. 

All of the proofs thus far have involved only the very !'undamen-

tals of elementary number theory, and yet one of the more well-

known theorems of the subject has not been used. This theorem is 

referred to as the quadratic reciprocity law of Gauss. It is probably 

called a law since a proof of it was not given until ten years after it 

had been discovered. Euler and Legendre are given credit for its 

discovery in 1785. Gauss rediscovered it in 1885 when he was only 

18 years of age. The first proof was given by Gauss, who writes of 

his initial effort: 

F0r a whole year this theorem tormented me and 
absorbed my greatest efforts until, at last, I ob
tained a proof ... [ 13: 82] 

Eventually Gauss devised seven different proofs and since that time 
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several more havB bBen added. 

The n·e:Kt proof will µs·e the quadratic reciprocity law but the basic 

plan of the proof is similar to the preceding ones in that a prime of the 

desired form is shown to exist larger than any preassigned natural 

number n. 

Theorem 5. E. Quadratic Reciprocity Law. If p and q are distinct 

odd primes then 

(!) . (~) = ( -1.) 

Theorem 5. 5. There exists an infinite number of primes in the pro-

gression 5k - l (k = l, 2, 3, ... ). 

Proof: Let n be an arbitrary natural number greater than l. Let 

N = 5(n !) 2 - l. 

N is odd, N is greater tha1; l, and N is not of the form 5t + l. N must 

therefore have at least one prime divisor p, which is odd, is not 5, 

and is not of the form 5t + L If p < n then Pl (n !) 2 and therefore p 11, 
which is impossible, hence p > n. Since pjN it follows that 

5(ri !) 2 = 1 (mod p) 

and so (i) = 1. The quadratic reciprocity law gives 

p-1 . 5-1 

(:) (~) = ( -1) 2 2 = 1 
p 

and therefore (~) = l. Since p f 5, p must pe of the form 5k + 1 or 

5k + 2. If p = 5k + 2, then by Theorems 5. B, 5. C, and 5. D, it fol-

lows that 
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(~) = (;:_) = ~) (;) = l · -1 = -1 

which is a contradiction, therefore p must be of the form 5k + 1. It 

_has been shown that it is not of the form 5k + 1 and so the only re

maining pas sibility is for p to be of the form 5k - 1. Thus for any 

natural number n there is a prime p greater than n and of the form 

5k - 1. Since n can be chosen arbitrarily large, there must be an in

finite number of primes of this form. 

The next theorem is Dirichlet 1s Theorem for all progressions 

with common difference between succ.essive terms equal to 24. It ap

pears that the theorem considers an infinite number of progressions, 

however, every progression of the form 24k + b (k = 0, 1, 2, 3, ... ), 

where (24, b) = 1, is a sub-sequence of the progression 24k + b' where 

b 1 < 24 and b = b I modulo 24. It is therefore sufficient to prove the 

theorem for specific cases of b, that is, for those h's less than 24 

such that ( 24, b) = 1. 

The plan of the proof, which is due to Bateman and Low [ 2], is 

this. For each value of b a certain polynomial in P will be consider

ed, where P is the product of any finite set S of primes each greater 

than 24·. From the divisibility properties of the polynomial it wil.1 be 

shown that S cannot possibly contain all primes greater than 24_ in the 

progression 24k + b, and so the number of primes in the progression 

will have to be infinite in number. 

The proof is based upon the fo(lowing four lemmas. 

Lemma 1. Let p be a prime number greater than 3. Then 
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(~l) = l if and only if p = l (mod 4) , 

(!) = l if and only if p = 1, 7 (mod 8), 
J 

rr) = l if and only if p = 1, 3 (mod 8),, 

(·i) = 1 if and only if p = 1, 11 (mod 12)., 

(-!) = 1 if and only if p = 1 (mod 6),, 

(-~) = 1 if and only if p = 1, 5, 19, 23 (mod 24)., 

(-!) = 1 if and only if p s 1, 5, 7, 11 (mod 24) .• 

Proof: The proofs follow from Theorems 5.A-5.E. The first state-

ment follows directly from Theorem 5. C. The second follows from 
. 2_1 

Theorem 5 ... D and the fact that~ is even when p = 1, 7 (mod 8), and 

is odd when p s 3, 5 (mod 8) •. ., For the third statement the following 

fact is used.· 

(-:)= C~) (!)=Liff C~) =(!)=Lor(-~)= (i) = -1. 

In the first case p = 1 (mod 4 and p = + l (mod 8), If p = -1 (mod 8), 

then p = -1 (mod 4) and thus p = l = -1 (mod 4) which implies that 412, 

which is not true, and so p = l (mod 8). In the second case 

p = 3 (mod 4) and p = . .±. 3 (mod 8). Now if p s -3 (mod 8), then 

p = -3 (mod 4) and thus p = 3 = -3 (mod 4) which implies that 416, 

which is false, and so p = 3 (mod 8). By Theorem 5. E. 

p-1 3-1 
·-y· -y-

p-1 
·-y 

= ( -1) 
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and so p-1 

(!) = (~) (-1)2 = (!) if p = l (mod 4) 

= -(~) if p = 3 (mod 4). 

Since (~) = ~;) where r is the least residue of p modulo 3 1 it follows 

that 

(~) = (i) = l if p = l (mod' 3) 

= .:,.i 'if p = 2 (mod 3). ,-

Therefore the following congruences hold. 

(i) = l if p = l (mod 4·) and p = l (mod 3), 

= l if p = 3 (mod 4) and p = 2 (mod 3), 

= -1 if p = l (mod 4) and p = 2 (mod 3), 

= -1 if p = 3 (mod 4) and p = l(mod3). 

By the Chinese Remainder theorem: 

p = l (mod 4) and p = l (mod 3) imply p = l (mod 12), 

p ::.3 (mod 4·) and p = 2 (mod 3) imply p = 11 = -1 (mod 12), 

p = l (mod 4) and p s 2 (mod 3) imply p = 5 (mod 12), 

p s 3 (mod 4) and p = l (mod 3) imply p = 7 = -5 (mod 12). 

The above conclusions can be summarized by 

(!) = l if p E= + l = 1, 11 (mod 12) 

= -1 if p = + 5 = 5, 7 (mod 12). 

The proof of the fifth statement is similar to the proof of the 

third statement and statements six and seven follow in the same man-

ner as four and five. 
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Lemma 2. 
. 8 4 

If n is any integer, then any prime factor of n - n + 1 

is congruent to l modulo 24. 

Proof: It is sufficient to prove the statement for n 2::,. 2 since the expo

hents of the polynomial are even and i£ n = 0 or n = l the polynomial 

takes on the value land there are no prime factors. Suppose 

n > l and pl n 8 - n 4 + 1, that is 

8 4 · 
n - n + l = 0 (mod p). 

Now p f 2, since the polynomial is odd. Also p? 3, for if it did, 

then by Fermat 1s Theorem (Theorem 5. A), 

2 
n = l (mod 3) 

and hence 

8 4 
n = l (mod 3) and n == l (mod 3) 

which imply that 

8 4 
n - n = 0 (mod 3) 

8 4 . . 
which is impossible since h - n = -1 (mod 3) and O ¢ -1 (mod 3). 

Therefore p > 3. Since 

8 4 2 6 2 2 3 .3 _ 
n - n = n (n - n ) = n (n - n)(n + n) = -1 (mod p) 

it follows that 

(p, n 2) = (p, n 3 - n) = (p, n 3 + n) = l. 

The congruence a x = l (mod p) has a solution if and only if . 0 

(a , p) = 1, and so there must exist integers a, b, and c, such that 
0 

( 1) 
2 . 

an = l (mod p), 

( 2) 
3 

b(n + n) = l (mod p), 

( 3) 3 
c(n - n) = l (mod p), 



S . 8 4. l ( 4 1) 2 ( 2) 2 'h 1nce n - n + = n - + n t e congruence 

a 2(n 8 - n 4 + 1) i: 0 (mod p) 

implies that 

2 4 2 2 4 
a (n - 1) + a n = 0 (mod p) 

which gives 

28 24 2 24 
a n - 2a n + a + a n = 0 (mod p) 

and since a 2n 4 = l (mod p), it follows that 

( 4) 
4 2 

(an - a) + l = 0 (mod p). 

By algebraic manipulation the following equalities are obtained. 

( 5) 

( 6) 

( 7) 

( 8) 

( 9) 

( 10) 

8 4 4 2 2 3 2 
n - n + l = (n + n + l) - 2(n + n) 

= (n4 - n 2 + 1) 2 + 2(n3 - n) 2 

= (n 4 + l) 2 _ 3(n 2) 2 

= (n4 _ _!)2+ 3~)2 
2 2 

= (n 4 + 3n 2 + 1) 2 - 6(n 3 + n) 2 

= ( n 4 - 3n 2 + l) 2 + 6 ( n 3 - n) 2• 

By using methods similar to those used to derive (4) it can be 

verified that 

(2) and (5) imply (bn4 + bn 2 + b) 2 - 2 = 0 (mod p}, 

(3) and (6) imply (cn4 - cn2 + c) 2 + 2 = 0 (mod p), 

4 2 
( 1) and (7) imply (an + a) - 3 = 0 (mod p), 

Multiplying (8) by 2 2, (2n4 - 1) 2 + 3 = 0 (mod p) is obtained, 

(2) and (9) imply (bn4. + 3bn2 + b) 2 - 6 = 0 (mod p), 

(3) and (9) imply (en 4 - 3cn2 + c) 2 + 6 = 0 (mod p). 
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The preceding six congruences and (4) imply the following equal-

itie s. 

(-p 1) = ( i) = (-:) = (;) = f: ) = (:) = (-:) = l 

and so by Lemma 1, p = 1 (mod 24). 

In the following lem~a the following polynomials are used. 

f 5 (x) 
4 

=x 

4 2 2. 2 2 2 2 
f 7 (x) = x + 2x +4 = (x + 2) - 2x = (x + 1) + 3 

. 4 2 2 2 2 2 2 
fll (x) = x +4x + 1 = (x + 1) +2x = (x +2) -3 

· 2 2 2 
= (x -3) +6x 

= (x2 - 2) 2 t6x2 

=(x2-1) 2+6x 2 

4 = x - 2 1 ( 2 l) 2 2 ( 2 1) 2 3( 1) 2 = (x2·+ l) 2 _ 3xz x + = x - + x = x -z: + 2 

4 
=x 

2 2 2 + 1 = (x + 1) - 2x 

f 19 (x) = x 4 -zx2+ 1 = (x 2- 1) 2+zx2 = (x 2- 1) 2+3 

fz3(x) = x 4 -4x2+ 1 = (x 2-1) 2-zx2 = (x 2-z) 2 -3 

2 2 2 
= (x - 1) +2x 

= (x2+2) 2 -6x2 

=(x2+1) 2-6x2 

Lemma 3. Suppose bis one of the numbers 5, 7, 11, 13, 17, 19, 23. Sup-

pose n is an integer and pis a prime number greater than three. If 

fb(n) = 0 (mod p), then p = 1 (mod 24) or. p = b (mod 24). 

Proof: The proof follows from Lemma 1 and the corresponding iden-

ties for fb(x). Only the cases for b = 19 and b = 13 will be given. 

If b = 19 and f 19 (n) = 0 (mod p), where p > 3, then 

(n 2 - 2) 2 + Zn 2 = (n 2 - 1) 2 + 3 = (n 2 + 2) 2 - 6n 2 = 0 (mod p). 

Hence the congruences 

2 2 . 
x = -Zn (mod p) 

2 
x =-3 (modp) 

2 2 
x = 6n (mod p) 



each have a solution in the integers, Therefore 

2 2 
( -2; ) = c:) (;) = c:) = L, 

(-:) = 1, and 

2 2 

( 6; ) = ( !) (;) = (!) = 1 

Therefore, by Lemma 1, p = 1, 5, 19, 23 (mod 24), since (!) = 1.. But 

if p = 5 (mod 24), then p = 5 (mod 8) and this is ruled out since 

(-:) = 1. (See Lemma 1). If p s 23 (mod 24), then p = 5 (mod 6) and 

this is impossible since (-:) = 1.. Therefore p = 1 (mod 24) or 

p = 19 (mod 25). 

If b = 13 and f 13(n) = 0 (mod p), with p > 3, then the term involv

ing ~ of f 13(n) must be multiplied by 2 2, and then it follows that 

2 2 2 2 2 L2 2 12_ 2 2 2 . 
(n - 1) + n = 2 (n - 2:) + 2 ( 3) (z:) = (n + 1) - 3n = 0 (mod p), 

and as before: 

2 2 

(-; ) = c ~) ( ;) = c ~) = 1, (-:) = 1 and 
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( 3; 
2

) a (!) (i a G) a l, and by checking the possi-

bilities of Lemma 1, it follows that p = L (mod 24) or p = L3 (mod 24). 

The other five cases follow similarly. 

In the next lemma and the main theorem polynomials are again , 

used. The importance of each polynomial is in the fact that the con-

stant term of each one is one of the b 1s under consideration and the 

other coefficients are integers which are divisible by 24. The 
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polynomials are: 

(x) l 
(12x+l) 24(432x 4 + 144x3 + 18x2 + x) + 5 gs = ·zfs = 

g7 (x) = f7 ( 6x+l) = 24( 54x4 + 36x3 + 12x2 + 2x) + 7 

gl l (x) 
l 

6x+2) = 24( 
4 

24x3 + 14x2 + 4x) + l l = 3f l l ( 18x + 

gl 3(x) = f 1 3(l2x+2) = 24(864x4 + 576x3 + l38x2 + l4x) + 13 

gl 7(x) = f 1 7( 6x+2) = 24( 54x4 + 72x3 + 36x2 + 8x) + l 7 

l 24·( 72x4 + 96x3 + 4 7x2 + lOx) + 19 g19(x) =12f 19(12xH) = 

g23(x) 
l 4 4 l 50x3 + 2lx) + 23 = 2;f 23( 12x+3) = 24(4·32x + 432x + 

Lemma 4. If bis one of the numbers 5, 7,U, 13, 17, 19, 23, and n is any 

integer, then gb(n) has at least one prime factor which is congruent to 

b modulo 24. 

Proof: From the way the gb(x) 's were defined it follows that 

gb(n) = b (mod 24), since gb(n) = P + b where Pis some polynomial in 

n. Also, gb(n) is not divisible by 2 or 3, for if it were then b would 

be divisible by 2 or 3, but b is a prime greater than 3. Since gb(x) 

is defined in terms of fb(y) where y is also an integer defined in terms 

of x, Lemma 3 applies, and so all prime factors of gb(n) are congruent 

to l or to b modulo 24. If all prime factors of gb(n) were congruent to 

1 modulo 24, then all powers and products of these primes would also 

be congruent to 1 modulo 24 and thus gb(n) would l;>e congruent to 

b modulo 24. If this is the case then b = l (mod 24), but l < b < 24 

and so the congruence is impossible. Thus there must be at least one 

prime divisor p of gb(n) which is congruent to b modulo 24. 

The main theorem can now be proved. 
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Theorem 5. 6. There exists an infinite number of primes in the pro-

gression 24k + b (k = 0, 1, 2, 3, ... ), where (24, b) = 1. 

Proof: Since b is fixed it can be assumed that b is one of the numbers 

1, 5, 7, 11, 13, 17, 19, 23. If b > 24, and (24, b) = 1, then the progression is 

the same as one with the first ter.m listed, less a finite number of 

terms. 

Let S be any non-empty finite set of primes each element of which 

is greater than 24. That is S = {p1, p 2 , ... ,pr} where pi > 24, for each 

i. Let p = p 1 · p 2 · ··Pr· Therefore p > 1, and by Lemma 2, each 

8 4 
prime factor of p - p + 1 is congruent to 1 modulo 24 but different 

from any of the primes in S. If some p. in S were a factor of the poly-
1 

nomial then it would have to be a factor of 1, which is impossible. So 

each factor of p 8 - p 4 + 1 is greater than each prime in S and each is 

congruent to 1 modulo 24. That is, each is of the form 24k + 1. Since 

S can be chosen to include a:qy number of elements, there must be an 

infinite number of primes of the form 24k + 1. 

The proof for each bf 1 follows by using the gb polynomials. If 

bis one of the numbers 5, 7, 11, 13, 19, or 23, choose a positive integer 

cb such that 

Such a cb exists, for each b, because b is prime and since the leading 

coefficient of gb(x) is not divisible by b the polynomial cannot have 

more zeros than its degree. In fact cb can be described numerically 

as follows: 

b-1 
The positive integer, gb( cbP ) , has at least one prime factor 
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which is c,on-gruent to b modulo 24, by Lemma 4. Since b is a prime 

less than 24 it follows that (b, P) = 1. The constant term of gb(x) is b 

b-1 
and so each term of gb(cbP ) except the constant term is divisible 

by each prime in S. Now b is not divisible by any prime in S and so 

b-1 
gb(cbP ) is not divisible by any prime in S. By Fermat's Theorem 

b-1 
and so gb(cbP ) is not divisible by b. · The following has been shown: 

( 1) 
b-l 

gb(cbP ) has a prime factor which is congruent to b modulo 

24. 

( 2) This prime factor is not b. 

( 3) This prime factor is different from any prime in S. 

If there is only a finite number of primes in the progression under 

consideration, then let S be that finite set. Then there exists a prime 

factor of gb(cbPb-l) which is in the progressfon, is not b, and is not 

in S. Therefore S did not include all such primes, and so there must 

be an infinite number of primes in the progression. 

Before proving a more general theorem concerning the primes in 

an arithmetic pro gr es sion the equivalence of the following two state

ments is needed. 1 

Statement T • If a and b are natural numbers such that (a, b) = 1, 
0 

then there exists an infinite number of primes in the progression 

1The proof of the equivalence of T and T 1 was given by Sierpinski 
in 1950. Six yea_rs later the ?roblem o~ the. equivalence of TO and T 1 
was formulated 1n The American Mathematical Monthly as E 1218 
(1956) p. 342; and solved by D. Zeitlin (1957) p. 46. 
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a k + b ( k = 1, 2, 3 I • • , ) • 

Statement T 1• If a and b are natural numbers such that (a, b) = 1, then 

there exists at least one prime numb-er pin the progression ak + b, 

where k is a natural number. 

T is Dirichlet's Theorem, while T 1 merely states the existence 
0 . 

of one prime in the progression. If T O and T 1 are equivalent, then if 

one wishes to prove the existence of an infinite number of primes in 

the arithmetic progression ak + b, where (a, b) = 1, it is sufficient to 

prove the existence of one prime in each of the progressions of this 

form. 

Theorem 5. F. T O and T 1 are equivalent. 

Proof: Trivially T 0 implies T 1. It is sufficient to prove the converse, 

that is T 1 implies T 0 • 

Let a and b be any natural nu:rtlbers such that (a, b) :;: 1. By T 1 

there exists a natural number k1 such that ak1 + b is prime. Then 

(a, ak1 + b) == 1 and by T 1 again there exists a k 2 such that 

ak2 + (ak1 + b) = a(k1 + k 2) + bis prime. Continuing this process, it 

follows that ak + bis prime for infinitely many values. 

The following theorem concerns primes in the progression with 

first term l and common difference which is 2 times some power of a 

prime. The method of proof uses more ideas from elementary number 

theory to prove the existence of one prime in the progression. One 

definition and one more theorem are needed for the proof. 

Definition 5. 3. If t is the least positive integer such that nt - l (mod r), 

then n is said to belong to the exponent t modulo r. 



Theorem 5. G. H (a, m) = 1, then: any solution of ax= l (mod m} is 

divisible by the exponent t to which a belongs with respect to the 

modulus, and in particular t!¢(m), where¢ is the well-known Euler 

~ -function. 
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s 
The next theorem considers the progressions of the form 2p k + 1, 

where s is any natural number. The proof follows by considering a 
s -1 

polynomial of the form ap-l + aP- 2 + ·, • + l where a= 2P , and 

showing that any prime divisor of the polynomial has the form 

s 
2p k + 1. 

Theorem 5. 7. If pis a prime ands is a natural number, then there 

is an infinite number of primes in the pr,ogression 2psk + l (k = 1, 2, 

3, ... ) . 

Proof: Let p be a prime and let s be any natural number. Let 

a = 
s -1 

2P 

and let q be an arbitrary prime divisor of the number 

p-1 p-2 p-3 
a +a +a +··•+a+l. 

The fact that a I l (mod q) is needed. Suppose a = 1 (mod q). Then 

2· 
a _ l (mod q), 

3 
a - l (mod q), 

p-1 
a = l (mod q), 

and summing the congruences 

p-1 p-2 p-3 
a +a +a +···+a+lE=l+l+ + 1 = p (mod q) 
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is obtained. Since q is a factor of ap-l + aP- 2 + · • · +a+ 1 it follows 

that qjp, and in view of the fact that q and p are both primes, p :::: q. 

Also if a= 1 (mod p), it follows t.ha.t aP = a= 1 (mod p), where 
s -1 

a :::: 2P Therefore 

s -1 s 
( 2P ) p = 2P = 1 (mod p). 

By the corollary to Theorem 5. A, it follows that 

2P = 2 (mod p), 

and by induction 
s 

2P = 2 (mod p), 

hence 
s 

1 = zP = 2 (mod p) 

which is impossible, so a ~ 1 (mod q). 

Let t denot~ the exponent to which 2 belongs with respect to the 

modulus q. By hypothesis 

a P - l + a p- 2 + · · . + a + 1 = 0 ( mod q) 

and multiplying by a, 

is obtained. From this it follows that 

aP = 1 (mod q), 

that is 
s 

2P = 1 (mod q). 

s -1 
By Theorem 5.G; tips and since zP fo 1 (mod p), t~ps-l, and 

hence t = p 8 • Since tlfo?(q) and .¢(q) = q - 1, it follows that psi (q-1). 
s 

Since zP = 1 (mod q), q must be odd and q-1 is therefore even. If p 

is a prime number greater than 2, then (2, p) = 1, and hence 



Zpsj (q-1), which shows that 

s 
q = Zp k + 1 

for some natural number k. If p = 2, then zsl (q-1) and 

s 
q=Zk+l 

for some natural number k. So if p is prime then there is a prime 

s 
number of the form Zp k + l. Since T O is equivalent to T 1, the theo-

· rem is proved. 
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The next and final proof of a special case of Dirichlet 1s Theorem 

that will be given is even more general than the preceding one. The 

progressions under discussion are those with first term 1 and common 

difference any natural number. 

The proof follows by considering the expression nn - 1. This 

expression is shown to have a prime divisor that belongs to the expo-

nent n with respect to the modulus p. Then Fermat's Theorem is used 

to show that this n is a factor of p-1, and hence p is of the form nk + 1. 

The difficult part of the proof is in showing that nn-1 has a prime divi-

sor belonging to the exponent n. 

The reader is reminded of the definition of the Mobius function 

and one more basic theorem from elementary number theory. 

Definition 5. 4. Mobius Function: The Mobius function µ is defined on 

the set of natural numbers as follows: 

µ( l) = 

r 
µ(n) = (-1) , if n =pp · · ·p where the p. 's are 

1 2 r 1 

distinct odd primes. 

µ(n) = 0 if p 2 ln for any prime p. 



Theorem 5.H. ~ µ( d) = 1 if n = 1 
djn 

=Oifn>l. 

Theorem 5. 8. For every natural number n, there exists an infinite 

number of primes in the progression nk + 1 (k = 1, 2, ... ). 

Proof: [19] By the equivalence of T and T 1 it is sufficient to show 
0 . 
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that for any natural number n there exists at least one prime number 

of the form nk + 1, where k is any natural number. 

If n = 1, then the progression consists of au natural numbers 

greater than 1 and therefore the theorem holds. If n = 2, then the pro-

gression consists of all odd numbers greater than 2 and this set also 

has an infinite number of primes. Therefore assume that n > 2. 

a 1 a 2 a 
Let n = q 1 q 2 ... qr r be the canonical representation of n 

where q 1 < q 2 < · · · < qr. Suppose that for every prime divisor of the 

n 
number n - 1, the number n belongs to an exponent less than n with 

respect to the modul.us p. It will be shown that this is impossible. 

Let 

p = 
n 

n 
tr (nd - 1)µ( d) 

djn 

where µ is the Mobius function. Then for every divisor d, represent 

each of the factors (nd - 1) as the product of its prime factors. The 

exponent of any factor is an integer, either positive, negative, or 

zero. Let p be one of those prime factors. Then there exists a 
0 

natural number d such that djn and p 0 J(nd - 1), that is nd = 1 (mod p 0 ). 

Therefore 

ds 
n 

n 
= n = s 

1 = 1 (mod p ), 
0 

and (n, p ) = L Let t denote the exponent to which n be Longs with 
0 



respect to the modulus p . 
. 0 

Then by hypothesis it follows that t < n. 

Now among the numbers (nd - 1), where din, p l(nd 
0 

tj d. The only if part follows from Theorem 5. G. 

If tj d, let tk = d. Then 

d 
n 

- 1) if and only if 

Hence the numbers nd - 1 are divisible by p for 
0 

precisely those d 1s for which ti d, that is, for those for which d = tk, 

where k is a natural number such that tkln. Since tin, kl·1, where~ 

is a natural number greater than 1 because t < n. 

Lets be the greatest exponent for which p0 sl(nt - 1), that is 
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p 0 s+lJ(n t - 1). It will be shown that s is the largest exponent such that 

sl kt In P0 (n - L), where k '[· s+ll kt-1 For suppose p 0 (n ) · Then consider 

the following identity. 

n -1 t k-1 t k-2 ! t ·· ·· ·· kt .·· J E _ 
nt-1 = ~n) - 1 + (n) - ~ + ... + E -~ + k. 

Since p divides the left side of the equality it must also divide the 
0 

right side, but p al.so divides each term of the right side which is rn 
0 

brackets, and hence p 0 jk. This is impossible since kin and (n, p 0 ) = 1. 

Therefore sis the largest exponent such that p 0 
8 j(nkt - 1). 

From the preceding, it follows that in the factorization of P the 
n 

exponent of the prime p is 
0 

But since ~ is a natural number greater than 1, Theorem 5. H implies 

the following: 
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Since this is valid for any prime factor of P , it follows .that P = 1. 
n n 

Now n 

p 
n 

n 

= 7T (nd _ l)µ(d) 

dJn 

= Ti (~d - l)µ(d) 

dJq1q2· · ·qr 

because µ(d) = 0 when dis divisible by the square of a natural number 
a - 1 a -1 a -1 

h 1 L t b _ q 1 1 q 2 2 ... q n 
greater t an . e - n . , n Therefore 

b > n > 2 and 

Hence 

p 
n 

a-1 a-1 a-1 
q 1 1 q 2 2 · · · qr r ) q 1 q 2 · · · qr 

= (n 

al a2 ... q 
ql q2 r 

= n 

n 
= n Q 

a 
r 

- 1) µ( d). 

Since µ(d) = + 1, it follows that P n is the quotient of two polynomials in 

b with integral coefficients. The least e~ponent of b that appears in 

the numerator and in the denominator of the quotient is needed. Two 

separate cases will be considered, r even and r odd. 

If r is even, then the least natural exponent of b in the numerator 

occurs when d = q 1qz- ··qr' and in this case the exponent of b is 1. 

Writing the numerator as the product of (b-1) and a polynomial in b, 

it follows that all terms of the polynomial except the constant term, 

which is + 1, will have degree greater than 5. Then by expressing the 

numerator as one polynomial in b, all terms except the last two will 

be exactly divisible by b 2, while the last two terms can be expressed 

as.±, (b-1). Therefore, dividing the entire numerator by b 2 leaves a 

remainder of b-1. if the last two terms of the numerator are + (b-1), 
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and b 2 - b + 1 if the last two terms are -(b-1). In the denominator) 

however, since q 1 < q 2 < · · · < qr, the least exponent is obtained for 

d = q 2q 3 - ··qr. Consequently, the exponent is equal. to q1, therefore 

dividing the denominator by b 2, a remainder of 1 or b 2 - is obtained. 

But since P = 1 a contradiction results, because for b > 2 the numbers 
n 

b - land b 2 - b > 1 are always different from 1 and b 2 - 1. 

If r is odd, then the least exponent of b in the numerator is obtain-

ed for d = q 2q 3 · · ·qr; the least exponent of b in the denominator for 

d = q 1q 2 · ··qr, and as before a contradiction results. 

The assumption: For every prime divisor p of nn - 1, n belongs 

to an exponent less than n with respect to p, leads to a contradiction. 

Therefore it must be the case that nn - 1 has at least one prime divisor 

p such that n belongs to the exponent n with respect to the modulus p. 

Since (n, p) = 1, Fermat 1s Theorem yields 

P -1 
n · = 1 (mod p) 

whence by Theorem 5. G, nl p - 1, that is, nk = p - 1 for some natural 

number k, and p = nk + 1. So for every natural number n > 1, there 

exists at least one prime number of the form nk + 1 £or some natural 

number k. From this and the remarks made at the beginning, the theo-

rem follows. 

There are several applications which follow from Theorems 5. 7 

and 5. 8. One of these concerns the representations of the primes in 

base two. 

Every prime number greater than 2 is odd, and hence the units 

digit of the prime in base two, with the exception of 2 = lOt must 
WO 

have a units digit 1. Theorem 5. 7 implies that for any natural number 
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m, .there is c1. prime which, when represente4 in base two will have m 

zeros preceding the units dig~t l. For example, 101, 101001, 10001, and 

1100001, are -primes expresfled in base two with one, two, three and 

four zeros respectively, preceding the units digit l. The proof follows 

from the fact that for any natural number :rn there is a prime p of the 

for:tn 2m+lk+l, where k is a natural number. Therefore in the repre

sentation of this number in base two m of the last m + l digits are 

zero, and one, the very last, is 1. If k is odd then exactly m of the 

digits preceding l are O while if k is even then the m +1st digit pre

ceding the l is also 0. 

From Theorem 5. 8 it can be deduced that there are infinitely 

many primes that are not elements of a triple of primes as discussed 

in Chapter IV'. (See p. 34) That is, if fro:rn the set of primes one re -

moves all those primes which belong to a triple of primes of the form 

p, p + 2, p + 6 or of the form p, p + 4, p + 6, then infinitely many 

primes still remain in the set. The proof follows. 

From Theorem 5. 8, there exist infinitely :rnany prime numbers 

q of the form 15k + 1, where k is a natural number.· For any of the 

q's, it foUo~s that 3lq + 2, 5lq + 4, 3lq - 4, and Slq - 6. Since 

q > 15; it follows that q + 2, q + 4, q - 4, and q - 6 are all composite. 

If q were any of the numbers of the first set then q = p, q = p + 2, 

or q = p + 6, and if these were prime, then in the first case p + 2 = 

q + 2 would be composite, in the second case p + 6 = q + 4 would be 

composite, and finally, in the third case the number p = q - 6 would 

be composite. So none of the cases is possible. 

Si:rnilarly, if the numbers p, p + 4, p + 6 are prime, then if 



p = q, p + 4 = q + 4 is composite, if q = p + 4, then p + 6 = q + 2 is 

composite, and finally, if q = p + fr, then p = q - 6 is composite. 
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Thus it follows, in a sense, that there are not "too many" triples 

of primes of the form mentioned, since by removing all of them, there 

are still infinitely many primes remaining. This does not tell us that 

there is only a finite number of such triples of primes. 

There are probably many other facts which can be established 

with the aid of the theorems of this chapter. Perhaps the reader will 

attempt to find and prove some of his own. 



CHAPTER VI 

DIRICHLET 1S THEOREM 

The methods that Dirichlet used to prove the theorem about primes 

in arithmetic progressions involve much more than the methods of ele

mentary number theory. The methods are based upon the Riemann 

Zeta function and a special type of function called a character, The 

importance of the character lies in the fact that one may represent a 

sum over all natural numbers of a finite or infinite interval as the sum 

over the numbers of a particular arithmetic progression. The 

Riemann Zeta function is defined by a series and the importance of it 

arises in the properties of certain variations of the series. 

In the discussion, the logarithms of complex numbers are used 

and for this reason Dirichlet 1s proof is called non-elementary. In 

1949 Atle Selberg gave a different proof of the theorem. His proof 

does not involve logarithms of complex numbers and is referred to 

as the II elementary II proof. This does not mean that the new proof is 

simple since it is as difficult to understand as the originaL 

Since this paper is concerned primarily with number theory, the 

number -theoretic ideas and theorems that Dirichlet used will be dis -

cussed in detail, while the methods of analysis will be mentioned and 

the necessary theorems will be stated without prooL The interested 

reader may refer to LeVeque., Volume II, [ 12] for proofs which are 

not given. 
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Characters 

A character is defined by the following: 

Definition 6.1. A complex valued function, X, defined on the natural. 

numbers is called a character modulo k provided that: 

I. If (a,k) > 1, then x(a) == 0. 

II. X ( 1) f O. 

III. F or a 11 a, b, X ( a · b) = X ( a) X ( b) . 

IV.. If a = b (mod k), then X (a) = X (b). 

Those familiar with the elementary notions of group theory and 

congruences classes of integers will note that X is a completely 

multiplicative function from the congruence classes of integers 
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modulo k into the complex numbers. Hence x is periodic with period 

k. From the definition several theorems are immediate. 

Theorem 6.1.. For every cr,iaracter X, X (l) == L. 

Proof: By III, x(l) = x(l · 1) == X(l) X (1) and so 

x(l) [1 - x(L)] == o, 

and since x(l) I 0, [l x(l)] == 0 and x(L) == 1. 

Theorem 6, Z. 
h 

If (a, k) = 1. and .¢(k) == h, then (X (a)) == 1, that is, x (a) 

is an h-th root of unity, 

Proof: By Fermat 1s Theorem (Theorem 5. A), 

h 
a = l (mod k) 

and by III, IV, and Theorem 6. 1, 

h h 
(x(a)) == x(a) = x(L) == 1. 

With k given there always exists at least one character defined by: 



{ 
i. f (a, k) > 1. 

X (a) = 
1f (a, k} = l. 

That this function is indeed a character can be easily verified by 

checking I-N of the definition. 

Definition 6. 2. The character defined above is called the principal 

character and is denoted by X . 
0 

The theorems and proofs which follow are, of necessity, some-

what technical and the reader interested only in the main result may 

skip to page 79 where the basic theorem on characters is given. 
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Theorem 6. 3. For every natural number k, there exists a finite num-

ber of characters modulo k. 

Proof: Let x be a character modulo k. If l ,.S a < k, then x (a) is O or 

an h-th root of unity, that is x(a) must be chosen from a finite num-

ber of values. Since X is periodic the value of X (n) for any natural 

number n is determined since n = a (mod k) for some a where. 

l <a< k. Since there is a finite number of a 1s between 1 and k and 

a finite number of values that X (a) can assume, there could not be an 

infinite number of x 1s. 

It will be shown later that the number of x 1s is exactly equal. to 

,0( k) = h. 

Theorem 6. 4. If X 1 and X 2 are two characters modulo k, then x 1x 2 

is also a character modulo k where X 1 X 2(a) = X 1 (a)x 2(a). 

Proof: The proof follows directly from Definition 6. 1. 

Theorem 6. 5. If X is a character .modulo k, then xis also a character, 



74 

where X (a) = 'x (a). 

Proof: I, II, and IV of Definition 6. l are immediate. Since 

x(ab) = x(ab) = x(a)x(b) = x(a) X(b) ~ x(a) X(b), III also holds. 

Theorem 6. 6. Let Rk denote a complete system of positive residues 

modulo k. Then 

~

ifx =x 
0 

:E x(a) = 
ae:Rk if X f X 0 

Proof: If x = x 0 , then x (a) = l for each a in R k where (a, k) = l and 

X (a) = 0 for each a in R k where (a, k) > l. Since ,0(k) = h, there are h 

a 1s where x (a) = l and k-h a 's where x (a) = 0, and so :ER = h if 
ae: k 

X = x 0 • If Rk denotes a complete system of positive residues, then 

choose b such that (b, k) = 1, and b > l. The set bRk = {baj a e: Rk} is 

also a complete system of positive residues and since x(a) = x(b) if 

a = b (mod k) it follows that 

:E X (a) 
ae:Rk 

= ~ x(ba) = ~ x(a) x(b) = x(b) ~ x(a). 
ae:Rk ae:Rk ae:Rk 

and so ( 1 - X (b)) ~ X (a) = 0, and since X (b) f 1 it follows that 
ae:Rk 

~ x (a) = 0. 
ae:Rk 

Theorem 6. 3 verified that there can be only a finite number of 

characters modulo a fixed k, say c. The following theorem can now 

be proved: 

Theorem 6. 7. Let G ={ X 0 , X 1, X 2 , ... X c-l} be the set of c characters 

for a fixed k. Then the set G. = {x. x , x. x 1 ... X. X l is exactly the 
1 1 o ".!. 1 c -r 

set G for each i where O < i < c. 
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Proof: The theorem follows by showing that the c characters of Gi are 

distinct. That each element of G. is indeed a character follows from 
1 

Theorem 6. 4. 

Suppose X ·X = x .x for some i where O < i < c-l, 0 _< m _< c-1 1 
· 1m 1n ·--

0 ~ n ~ c-l, and m I- n. Then for each a in Rk 

xi(a)xm(a) = xi(a)xn(a). 

If (a, k) = 1, then x .(a) 'f O and by elementary algebra it follows that 
l 

Xm(a) = xn(a); if (a, k) > 1, then Xrn(a) = 0 = Xn(a). Thus Xm(a) = 
Xn(a) for every a in Rk. But this is impossible since the c characters 

in G are distinct. Hence G ::: G .. 
l 

Before proving the next theorem two results from elementary num-

be r theory will be stated. The results are needed in the proof of the 

theorem. Proofs may be found in Landau. [ 9: 107-108] 

Theorem 6. A. If p > 2 and, i. > 2, then there exists a number g such 

that g be longs to the exponent .¢( /') modulo l. 

Theorem 6. B. If a is an odd number and J. > 2, then 

a-1 
- b £ a=(-!) 2 5 (mod 2) 

where b > 0 and bis some element of a particular residue class 

_I- 2 
modulo z- . 

Theorem 6. 8. If d > 0, (d, k) = 1 and d ~ l (mod k), then there is a 

character x such that x ( d) f l. 

Proof: Since x(a) = 0 for (a, k) > 1, it is sufficient to define the char-

acter for those a 1s where (a, k) = 1 and verify II, III, and N of the def· 

inition. 
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Since d ~ 1 (mod k) it follows that there is a prime p and an 

. 11 1 1 > 0 such that p k and d ~ l (mod p ) . Two cases will be taken, p = 2 

and p > 2. 

Case I. Let d ~ l (mod /L p > 2, 1 > 0 and /I k; then pJd because 

(d, k) = 1. By Theorem 6.A there exists a g such that g belongs to the 

i.. 1 1 2 3 P(l) 
exponent p(p ) modulo p , hence g , g , g 1 ••• g form a reduced 

residue system modulo p1 For each a where (a, k) = 11 p/a, thus 

b 1 
there is a b > 0 such that a = g (mod p ) . Set 

( 2rri ) 
t = exp ¢(/) 

and define x by x (a) = tb. Then tb has period ¢(/) and b is uniquely 

determined modulo p(/). Therefore x is completely determined once 

g has been chosen. The second part of the definition is verified by 

bl 1 
x(l) =t0 =lf 0. If(al,k) =l=(a2,k), al= g (modp)and 

b1+b2 1 b1+b2 
then a 1a 2 = g (mod p) and x(a1a 2) = t = 

X (a1) X (a 2) and so the third part of the definition holds. The fourth 

follows from the fact that if a 1 = a 2 (mod kL then a 1 = a 2 (mod/) 

bl f.. b 2 ,' 1 bl b 2 1 
and if a 1 = g (mod p ) 1 a 2 = g (tnod p), then g = g (mod p L 

and by a well-known theorem from elementary number theory it fol-

1 
lows that b 1 = b 2 (mod ¢(p ). Hence 

Now if d satisfies the hypothesis of the theorem then there exists 

an r such that 



contradictory to the hypothesis. Therefore 

r (' 21ri )r =/ . ne £ y x(d) = t = exp --1- 1 smce l"(P ) 11 r. 
J?(p ) 

Cq.se II. Let d f 1 (mod z1), £ > O, z1j k. Now£ > 1, for if J.. = 1, then 

since k is even d must be odd and so d = 1 (mod 2). Since 2 divides 

d - t~. 4 divides either d - 1 or d + 1. Each case will be considered 

separately. 

Let 4 divide d - 1, that is d = 1 (mod 4). Thus £ > 2 and for 

(a, k) = l it follows from Theorem 6. B and the fact that (a, 2) = 1 that 

a-1 
-2- b £ 

a=(-1) 5 (modZ)forb>O. 

Lett= exp( ~~i2) and x(a) =' tb. Since tb has period -z!- 2 and bis 

determined modulo /- 2, x is well defined. We must verify that x 

satisfies II, III, and IV of the definition. Since X(l) = t 0 = 1, 

a 1 -1 

x(t) I- o. If (al, k) = (a2, k) 
-· -2- bl £ 

=l,a1 :(-l) 5 (modZ)and 

b2 _J 
5 (mod ;:q, then 

a -1 a -1 
_1 _ +-2- b +b 

a1a2=(-l) 2 2 5 1 2=(-1) 

then a 1 = a 2 (mod l) and as before x(a1) = x(a 2). 

Therefore if d = 1 (mod 4), then d;l is even and 

d = Sr (mod zl), 
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_U-2 1-2y 
and since O < r < z- , 2 II r and so 

r "!Tl ( 
2 . )r 

x(d) = t = exp -J--2 f 1. 

Let 4 divide d + 1, that is d = -1 (mod 4). With (a, k) = 1 and k 

even, a must be odd. Let 
a-1 
-z 

x(a) = (-1) . 

0 
Then X(l) = (-1) = 1 f 0. If (a1, k) = (a 2, k) = 1, then 

a 1a 2 -1 a 1 -1 a 2 -1 

x(ala2) = (-1)_2 _ = (-1)_2 _ (-1),_2_ = x(al)x(,;1.2)· 

If a 1 = a 2 (mod k), then since 4jk, it follows that a 1 and a 2 are either 

both odd or both even and so 

a 1-1 a 2 -1 

x (a1) = (-1)_2_ = (-1)-2 = x (a 2) 

d-1 . .L Therefore x is a character, 2 1s odd, and X ( d) = -1 r 1, and the 

proof is complete. 

Theorem 6. 9. For fixed .a> 0, 

G if a = 1 (mod k) 
~ X (a) = 
X O otherwise. 

Proof: If (a, k) > 1, then a f=. 1 (mod k) and X (a) = 0 for each X. If 

(a, k) = L, and a 1- 1 (mod k), then x (a) = 1 for each X and since there 
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are c such x 1s, ~ x(a) = c. If (a, k) = 1 and a= 1 (mod k), then there 
x 

exists a character x 1 such that x 1(a) f 1, by Theorem 6. 8. Then by 

Theorem 6. 7 

~ x(a) = ~ x(a). X1(a) = X1(a) ~ x(a) 
x x x 



and so ~ x (a) (X 1 (a) - 1) = 0, and since x 1 (a) f 1 it follows that 

x 
~x(a)=O. 
x 
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Theorem 6.10. There are exactly ¢(k) = h characters modulo k, that 

is c = h. 

Proof: Let R k denote a complete system of residues modulo k, and 

let G be the set of x 1s. Then 

X (a) = 

and since there is only one a in a complete residue system such that 

a = l (mod k) it follows that 

X (a) = c + 0 + 0 + · · · + 0 = c. 

But by Theorem 6. 6 

~ ~ x (a) = h + 0 + 0 + · · · + 0 = h. 
xeG aeRk 

and so c = h. 

Theorem 6.11. Let b > 0, a> O, and (b, k) = 1. Then 

~ X (a) 
x (b) x 

= r- if a = b (mod k) 

~ otherwise. 

Proof: The congruence bx = 1 (mod k) has a solution which is unique 

modulo k. Let c be the solution; thus be = 1 (mod k), and ( c, k) = L 

then 

~ x(a) = 
x x (b) 

~ x (a)x (c) 
x (b)x (c) x 

= ~ X (ac) = 
X X (be) 

~ x (ac) 
x 



Therefore 

h if ac = l {mod k) 
~ X {a) _ 

X xl"5, - 0 otherwise 

but ac = 1 {mod k) if and only if ac = be {mod k) which implies that 

a= b{mod kL since {c, k) = l; and the theorem is proved. 
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The preceding theorem is the main one involving characters. As 

. was mentioned before this theorem single~ out the elements of a par-

ticular residue class modulo k and then by the relation 

~ g{a) 
1 ..., X { a) 

= h · u < ~ < v g(a) ~ X {b) 
u<a<v 

a= b-(mod k) 

sums can be extended over infinite arith!r).etic progressions as well as 

over finite or infinite intervals. 

L-Functions 

Among the topics from analysis that are needed is the Riemann 

Zeta function. This function is defined by the series 

00 

t;{ s) = ~ 
n=l ns 

which is known to converge absolutely for s > 1. It is a special case 

of the Dirichlet's series The L-function, which is used in 

the proof of the main theorem, is also a special case of the Dirichlet 

series and is defined by 

00 

L{s, X)= ~ X(n) 
n=l ns 

where X is a character modulo k. Since j X (n) j = 1 or 0, the series 
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defined by the L-function also converges absolutely for s > 1. A 

fundamental relationship exists between the L-functions and the se-

quence of primes. This relationship is given in the following theorem. 

Theorem 6. 12. For s > 1, L(s, x) = TT (1 - X (p))- 1. 
s 

p p 

00 

Proof: L(s,x) = ~ X(n) 
s 

n=l n 

N 
= Limit ~ x(n) and TT(l - X(p) )-l = 

s s N-oo n=l n p p 

Limit 
N-oo 

!TT (1 - X(p) )-l so it suffices to show that these two limits are 
s 

P.~N p 

equal. 
00 

The sedes l~x 

l t 

2 3 n 
= 1 + x + x + x + · · · = ~ x.- is known to con-' 

n=O 

converge for lxj < 1 and since 1.x(p) I< 1, it follows that TT ( 1-X ( p) ) • l 
s s 

p P.~N p 

p;N(l-~p(:)) 0 

TT (l+X(p) 
2 (x(p))3 

+ 
(x (p)) 

+ + . . . ) . This last 
s 2s 3s 

P.~N p p p 

product, upon expanding, contains terms of the form X (n) where n is 
s 

n 

the product of primes and powers of primes not exceeding N. Also 

each such n occurs exactly once because of unique factorization. 

Since the series involved are absolutely convergent, the terms can be 

arranged in any order, that is: 

( 1) 

where the accent indicates a summation, in the natural order, over 

all natural numbers n whose prime factorization includes only primes 

less than or equal to N. In particular, the sum contains all terms 

= 



X (n) .. ·-fo,r which n < N. Therefore (l) can be written 
s 

n 

N 
:E x(n) + :E' x(n) 

s l!l n=l n n>N n 

where the primed sum is as before. But since s > lJ 

0 < :E, X (n) < 
s n>N n 

00 

I: 
n=N+l 

!xi(n)j 
s 

n 

Limit ·:E I X (n)' 
N-oo n>N n 6 

< Limit 

Limit 
N-oo 

Limit 
N.:_oo 

N X (n) 
:E --;--- • 

n=l n 

< Joo I X (n) I dx = 1 
N xs (s-l)Ns .. 1 

---1 = 0 and therefore: 
(s-l)N 9 '" 1 

~ X (n) + Limit :E I 

n:::l n 6 N-+00 n>N 

and so 

X (n) ::: 
s 

n 

Using Theorem 6~12 and by letfil').g x = x it follows that 
0 

Xo(p) -1 
---) = s 

p 

-s -1 · 
\ (1 • p ) , and so L(s, x ) = 

ptfk O 

. -s -1 
1r(l-p) 

= p - = 
'It (l _ p ~ s) • 1 

Plk 

.. 5 -1 
11',· (1 - p ) . 

pk . 

82 

:: 

The behavior of t(s) in the neighborhood of 1 must be investigated. 
' . . 

The following theorems are heeded and are stated without proof. 

Proofs can be found in LeVeque, Volume II. [ 12] 

Theorem 6.13. Limit ~(s) (s-1) = land Limit ,(s) = oo 
s·-1+ s-1+ 



Theorem 6. 14. L( s, X ) is continuous for s > l and 
0 

h 
Limit (s-l}L(s, x 0 ) ::: ·k' where h::: ¢(k). 
s-1+ 

Theorem 6.15. For X f X , L(s, x) converges. 
0 

Theorem 6. 16. If x I= x , then L(s, x) has a continuous .derivative 
0 

for s > O, and is therefore itse l£ continuous. 

Theorem 6. 17. For each X the function 

F(s,x) ::: log L(s, x) - ~ X(p) 
s 

p p 

1s bounded in absolute value for s > l. 

Theorem 6.18. For any X, L(l, x} f 0. 

The most difficult proof of the theorems stated is the one that 

L(l, x) /= 0. Dirichlet proved the theorem, as does LeVeque, in two 

cases. The first case is for those x which assume at least one non-

real value, and the second for those x which have only real values, 
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that is X (a) ::: + 1 for each a where (a, k) ::: 1. It is somewhat s urpris-

ing that in the latter case the proof is the more difficult. 

With the preceding background information, Dirich1et 1s Theorem 

can now be proved. 

Theorem 6.19. Dirichl.et 1s Theorem. If (k, b) ::: 1, then there are 

infinitely many primes pin the progression kt+ b (t ::: O, 1, 2, 3, ... ). 

Proof: First note that the statement is equivalent to the statement 

that there are infinitely many primes p such that p = b (mod k). 



From Theorem 6. 17 

log L(s,x) =F(s,x) + :E .X(p) 
. s p p 

and multiplying both sides of the equality by /(b) and summing over· 

all X, where X is taken modulo k we obtain 

:E log L(s, x) 
x (b) x 

:E F(s,x) 
x (b) x 

= :E F(s,x) + :E :E.x.i£!.-= 
x x (b) x p x (b) 

+ :E 
p 

l 
s 

p 

x (p) 
:E x (b) 
x 
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and then by Theorem 6. ll, which g,ives ~ ~ a:: = h ll p s b (mod k) and 

O otherwise it follows that 

( 2) :E log L(s, X) 
x . x (b) 

= :E· F(x, X) 
x x (b) 

+ h :E 1 
s 

psb(modk) p -· 

Consider the limit as s approaches 1 from the right of each side · 

of ( 2). The first term on the right remains bounded by Theorem 

6.17. We need to show that the left side becomes infinite and then 

the second term on the right, h :E 
p = b (mod k) ps 

l 
will also tend 

to infinity. This can happen only if there is an infinite number of 

primes p such that p = b (mod k). For suppose there were only a 

finite number of primes in the progression. Then summing this 

finite number of terms would certainly yield q finite sum and since h 

is fixed the expression 

h :E l 

p = b (mod k) ps 
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would be finite. We show, therefore, that the left side tends to infin-

ity as s approaches 1 from the right. 

By Theorem 6. 12. 

TT -S 
Limit L(s, X ) = Limit lk (1-p ) s(s) = 00, 

s-1+ 0 s-1+ P . 

and so Limit 
s-1+ 

log L(s,x } 
.· 0 

x (b) 
= oo. · Now for x f x , L( s, X) is continuous 

0 
0 

at s = 1, and so 

Limit 
s-1+ 

log L( s, X) 
-x(b}--

=log(l,x) 
x (b) 

which exists and is finite since L(l,x)-/:- O, and L(s,x) converges for 

X f X . Therefore, 
0 

I Limit 
s-1+ 

~ logL(s,x}I < 00 

x f x x (b) 
0 

and the left side of ( 2) tends to infinity as s approaches 1 from the right. 



CHAPTER VII 

SUMMARY AND EDUCATIONAL IMPLICATIONS 

In this paper the material concerning primes in arithmetic pro

gressions is discussed. This presentation makes the research con

cerning this topic more readable and more readily available to the 

student of elementary number theory. It also provides examples of 

how the basic theorems of number theory can be used to prove theo

rems a.bout primes in arithmetic progressions. 

Summary 

In Chapter I the statement of the problem, scope of the paper, 

methods and procedures, and expected outcomes are given. Chapter 

II includes a very elementary introduction to the meaning of Dirichlet's 

Theorem. In Chapter III a discussion of arithmetic progressions in 

which each term is prime is presented. · The basic result is Theorem 

3. 7, which states that if n odd prime terms are in an arithmetic pro

gression, then the common difference is divisible by each prime Less 

than n. Chapter N provides generalizations of the problems concern

ing arithmetic progressions in which each term is prime. Prime twin 

pairs and quadruplets are discussed and a presentation of a recent con

jecture known as Conjecture H is given. This conjecture, if proven, 

would provide answers to many of the unanswered questions of ele-
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mentary number theory, Chapter V is devoted to proofs of special 

ca-ses of Dirichlet's Theorem. It is shown how the well-known results 

of elementary number theory can be used to prove special cases. In 

Chapter VI an outline of Dirichlet's general theorem is given. The 

proofs of the necessary theorems involving number-theoretic ideas 

are given while the theorems invoiving complex analysis are stated 

without proof. 

Educational Implications 

Many of the ideas of mathematics, and number theory in particu

lar, can be understood by the layman and also by secondary school 

students. It is important that some of these ideas be presented to 

these groups in a systematic manner. A study such as this one, in 

addition to consolidating the research, presents the necessary back

ground needed for an understanding of the problem, and brings the 

collection of knowledge to many students. 

As a result of reading this thesis, the student should gain an 

awareness of some of the elementary ideas of number theory and of 

the current and past research that has been done int.he area concern

ing primes in arithmetic progressions. It is also of significance that. 

the reader, who is a potential teacher at either the public school or 

the college level, may find motivation material for his class, and 

perhaps enlarge on some of the ideas presented. 

Undoubtedly the most significant result of this paper lies in the 

experience that the investigator gained in its preparation. 
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