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NOMENCLATURE

The following symbols have been adopted for use in the thesis:

A0 & Ll components of first variation of auxiliary functional;
JiEl et o AR T flexural rigidity;

Ei ....... modulus of elasticity of ith facing membrane layer;
FD’ Fz, FS . property coefficients of plate;

Gixz’ Giyz i moduli of rigidity of ith core layer; -

G, Gx’ Gy o e property coefficients of plate;

Kx’ Ky ..... property coefficients of plate;

Mx’ My’ Mxy i moment stress resultants;

Nx’ Ny’ ny a % face-parallel stress resultants;

) 5 R S load function normal to the plate;

Qx’Qy v Sl transverse shear stress resultants;
W 5 » brs ' mow ® total transverse resultant;

N property coefficient of plate;
i o5 5 ohie strain eziergy;

Sl ORI N B work done on the part of boundary where displace-
ments are prescribed;

XY, QM. M total resultants in a specific direction along the
y boundary;

Bills 4 o 4% o8 plate dimensions;
L5 ot (o e s boundary;
G > e as - the part of boundary where displacements are specified;;

By 56056 6.5 thickness of jth core layer;

vii



- R index, designates ith facing membrate layer;
< RS index, designates jth core layer;

BEi5 o e etn total number of layers;

B o v s aisioon length;

TR WA s o thickness of ith facing membrane layer;
WV W e a e e displacements;

V. % %le% % coordinates;

Ly, W w w e aiis distance measured from xy-plane to middle plane
of ith membrane layer;

Z.u+so0ses property coefficient, defining position of weighted
neutral surface;

e B PR . complementary energy;

T ... .. auxiliary functional;

- RPN R SRR generalized displacements;
o e Vel el et g first variation;
AsRgseeedig o Lagrangian multipliers;

My o e on Poisson's ratio for ith facing membrane layer;

Vps @ Vg « v v e property coefficients of plate;

G50, el o face-parallel stresses at ith facing membrane layer;
Vb Tl "o e transverse shearing stresses at ith core layer;
e T AN Laplacian operator;

B Y, . V292 and

vG - . L . vzvzvz.

Additional symbols used in the example problems are defined when

they appear and are not listed.
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CHAPTER I

INTRODUCTION

1.1 General

Sandwich constructions are characterized by different material
properties between facing layers and core layers. The facing materials
have relatively high moduli of elasticity and low moduli of rigidity as
compared with the core materials. In this investigation the facing ma-
terials are considered to be homogeneous and isotropic, and the core
materials homogeneous and orthotropic. All displacexhents are defined
on a weighted neutral surface whose location will be given in the next
chapter,

In addition to the above general description, the following as-
sumptions are essential for this analysis:

(1) The material of each layer is elastic and follows Hooke's

law.

(2) The transverse rigidities of the core materials are rela-
tively high compared to the facing materials, i.e., trans-
verse shear forces are completely taken by the core layers.

(3) The core stiffnesses associated with face-parallel stresses
are neglected.

(4) The facing layers are thin compared with the core layers,
i.e., the facing layers act as membranes.

(5) The total thickness of the multilayer plate is small compared



with the other dimensions,

(6) Prior to buckling the deformations are small.

(7) At any section of the plate the transverse deflection of each

layer is the same as that of the weighted neutral surface.

(8) No bond failure may occur prior to buckling of the plate.

(9) Local buckling is not considered.

(10) Temperature effect is neglected.

The governing differential equations for the stability of multi-
layer sandwich plates are derived by means of a variational method
and the minimizing principle. The problem is formulated in a com~
plete Lagrange form and the minimizing of the functional maps the
general state of stresses to the one which satisfies the compatibility
conditions. Once the set of Euler equations is obtained, the stress
resultant - generalized displacement relations may be found and hence~-
forth lead to the governing differential equations. A discussion of the
effect of unequal Poisson's ratios in the facing layers and the ortho-
tropic moduli of rigidity in the core layers is also included.

The letter symbols adopted for use in this thesis are defined

where they first appear and are listed in the Nomenclature,

1.2 Historical Notes

The analytical study of structural members composed of sand-
wich construction becomes increasingly important with the develop-
ments of modern technology and the introduction of new materials.
The majority of the past efforts connected with this work have been

confined to single core construction with two facing layers.



The general solution for bending of sandwich plates was pre-
sented by E. Reissner(5’ 6). He considered a plate consisting of a
core with two facing membranes identical both in thickness and elastic
properties, and assumed that the face-parallel stresses in the core
layer and the variation of the stresses over the thickness of the facing
layers were negligible. This assumes that the sandwich is a thin
plate composed of a core layer of high transverse rigidity and low
stiffnesses associated with the face-parallel stresses and that the
facing layers act as membranes. Since Reissner's work many exten-
sions of the theory have been presented(]“ 2). One of the more signi-
ficant extensions to the theory was the one presented by S. Cheng(3)
in which he treated the bending of sandwich plates with orthotropic‘
core. The problems were formulated either by minimizing the com-
plementary energy with the stress resultants taken as variables or by
minimizing the potential energy with the displacements taken as vari-
ables.,

The problem of multilayer sandwich plates was less explored.
Recently a theory of bending was presented by B. D. Liaw(4). Based
on Reissner-Cheng assumptions, he formulated the problem in terms
of the complementary energy with stresses taken as independent vari-
ables and stress resultants as dependent variables, and developed a
general Lagrange-Navier type equation for the multilayer plates with
equal Poisson's ratios for all facing membrane layers and orthotropic

core layers.



CHAPTER II

GENERAL ANALYSIS

2,1 Statement of the Problem

The mathematical model considered is a rectangular plate con-
sisting of two core layers of thickness h1 and h2 and three facing
membrane layers of thickness tys o and t3. Each facing membrane
layer is assumed to be isotropic and homogeneous and possesses dif-
ferent elastic properties, while each core layer is orthotropic and
also possesses different elastic properties. Let the xy-plane coincide
with the weighted neutral surface at the undeformed position, with z-
axis normal to this plane, Also let Z1s Zg and Zg be the distances
measured from the xy-plane to the middle plane of each facing mem-

brane layer respectively (Fig. 1). The weighted neutral surface of

o b
11: _lz_z Zl
= — — ty &
; %
h
2 Zg
e
/

Figure 1 - A Cross Section of Plate
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the multilayer sandwich plate is at the position such that

3, E.t.z, (1)

z iti g

1

. - VE.

i=1 i
where Eie and vy are the modulus of elasticity and Poisson's ratio of
the ith facing membrane layer respectively.

The problem is then to develop the governing differential equa-
tions for the stability of multilayer sandwich plates. Though the model
adopted is a five-layer plate, the final result is valid for any finite num-

ber of layers.

2.2 Stress Resultants and Equilibrium Equations

In accordance with the assumptions made previously that face-
parallel stresses of core layers and the varjiations of stresses over -
the facing membrane layers are_négligible, the stress resultants may

be defined as follows:

3 v ‘
M, = Z o, t.z, (2)
X ix1i7i
i=1 '
3
My = Z Giytizi (3)
i=1
3 :
Mxy N Z crixytizi ‘ - &)



3
i=

1
3
N, = Z oyt (6)
i=1
3
N = 2 o, . t. (7)
Xy ixy'i ‘
i=1 _
2l :
Qx B zjz: J (8)
=1
2
) = T. h, 9
QY Z yz ] )
=1
where
Mx(My) designates the bending moment about y(x) axis,
Mxy(Myx) the twisting moment about x(y) axis,
NX(Ny) the normal force on the x(y) face,

ny(Nyx) the shear force parallel to the plane of the plate

on the x(y) face,

QX(Qy) the transverse shear force on the x(y) face,

Gix(oiy the normal stress on the ith membrarié in x(y)
direction,

Gixy(ciyx) the shearing stress parallel to the plane of the

plate on. the ith membrane in y(x) direction,

(

Tixz ) the transverse shearing stress on the x(y) face of

T.
Jyz
the jth core (Fig. 2).



jth core layer

iy
ith facing membrane layer ‘ - _
1 Tixz
T.
yz
Figure 2 - Siresses on Typical Layers
Also the relations M =M _, N =N and o. =0, are
Xy yxo Xy yX Xy 1yx

retained.
Equilibrium of forces and moments acting on a differential

plate element (Fig. 3) yield the following equations:

¥N,_ =0 (11)

Q +Q +P+(Nw_+N_w_) +(Nw TN w )

X,X Y.y XX yX,L,¥LX >y Xy %% y(12)

Mx,x'+ Myx,y_Qx = 0 (13)
+ M - =0 14

Y.y Xy, X ,Qy (14)

where comma means to take partial derivative of the quantity in front

of it with respect to the following Sub$cripts, and P is the intensity



Figure 3 - A Differential Plate Element

of transverse load applied on the differential plate element, Equations

(10), (11) and (12) may be combined into one equation:

Q +a, R0 (15)

where

RwP I o SR L AN (16)

2,3 Complementary Energy

Considering a rectangular plate of the dimensions a by b,

the strain energy stored in the system may be expressed in terms of



siresses as:

b 3 g
U=%if{z [tl(a +02 - 2vo. . )+2ti(1+v} 2 :|

e iy iix iy
2 h. 5
+ JZ=1[ — - ’ m]} dxdy (17)

where G (G ) is the shear modulus of rigidity in xz(yz) plane of
the jth core 1ayer.

Let u, v, w, aand B be the generalized displacements at the
boundary; then the work which the surface stresses do over that por-

tion of the surface where the displacements are prescribed is
* = Xu 4.7 X Y Q
w ch[Xu +¥v + (Xw’ = F Yw,y +Q)w
+ M a+ MyB] ds . (18)

where the capital bar letters indicate the total resultants in a spevific
direction along the boundary, for example, X represents Nx on

x =0, x=a and Nyx on y=0, y=b and 4 designates the boundary
where displacements are specified.

Then the complementary energy of the plate is
n*-U - W (19)

Thus the problem becomes one of seeking the conditions for the extre~
mum of the functional ™* subjected to the constraint conditions of

equations (2) to (14).
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2.4 Auxiliary Functional

Iﬁtrodﬁcing thirteen Lagrangian multipliers 11,- 12, ceos 113,
the auxiliary functional, whose integrand consisting of the.terms of
complementary energy and the constraint equations fnultiplied by the

Lagrangian multipliers, can be formulated as follows:

ba 3 t, | t(1+V:) g
2 -2 i’ 2
E '+ c’iy B zvlclxcly) + E, c’ixy
OO0 i= -1

j=1 jxz Jyz
3
+)\1(M - Z Glxtlzl)
i=1
3
+ Ao(M_ - Z Glytlzl)
i=1

3
(M, - Z CiwytiZi)

i=1
3
AN, - z Oix i)
i=1
3
+')‘5(Ny - Z G-iyti)

Ci=1
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il P

+ )\G(ny'— O'ixyti)
1
2
Q- ) Toeay)
j=1
‘ 2
+agQ - Zl o)
J:

N .)‘9(NX:X *Nyx; y)

- XlO(Ny,y * ny,x)

+P +(wa < +Nyxw y) <

s

ot )‘ll[Qx,x‘_‘ +Qy y

+(Nw _+N__w ) :I
y o,y Xy »XLY¥

* ')‘12(Mx,-x * Myx,y B Qx)

+ )‘13(My,y + Mxy,x - Qy)} dxdy

- fcd [Xu+Yv + (}(W’X +YW’y +Q)w +an+»MyB:|ds ‘ (20)
It is obvious that the Lagrangian multipliers have physical meanings.

k3
By the law of dimensional homogenity, the Lagrangian multipliers are

some sort of displacements.
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2,5 Compatibility Equations

The well known principle of complementary energy states that
for all stresses satisfying the equilibrium conditions, the actual state
of stress, i.e., the stresses which satisfy the compatibility equations,
is such that the complementary energy m* assumes a stationary
value. For problems with small strains and displacements, it can be
shown(zo) that m* is a minimum. In order to ha‘ve extrema for the
functional subjected to the constraint conditions, the necessary
and sufficient condition is that the first variation of the auxiliary func-

3

tional must vanish, i.e., &7 = 0,  Thus the condition &7 = 0

furnishes the set of compatibility equations.
Taking the first variation and c'ollecting terms, the following

expression-is obtained:
T**F = A+B+C =0 ' (21)

where

t
+.80, [E“’ e e U M ""5%]

2ti(1 +vi)
* 6Gixy[——'——'Ei Oixy - M3ti%i T )‘Gti]}

2
h.
i -
+z JL(S'zjz(Gr. 'zjz )‘7hj)
=1 jxz



+ 6T, fm——T. -\ gh)} dxdy
JYZ(GJYZ iyz )} Y

X, X

b a
B =f f{xléMX +x126M
0 O

T AgM, + 1y 50My ¢

+ A 6Mxy+x

3 §M + A

128Myy o T A1g8 My

Y, X

FALON, + AN, Ay (w BN )

9
FA6N +A 86N+

50Ny + 21080y * A1 (W (8N o
FAGBN__ +AGBN, + A (6N

6 xy 9" xy,y 107" xy,x

tAppw BN ) Ay (w BN
Ty - Ap)0Q +A,,8Q

+ (g = A g6Q, + A 16Q y} dxdy ,

C=- fcd[usx +ve¥ +wiw 6K +w _8Y +5Q)

+ a8l + BaMy]ds

XY,y

13

(212)

(21b)

(21c)

The vanishing of s requires the individual vanishing of

A, B, and C. By the fundamental lemma of calculus of variations,

the vanishing of A furnishes thirteen Euler equations which are the

compatibility equations. They are:



1. - - - - -
E, Cix V%) M%7 M 70 1 L2
t, |
E; Oty " Vi%) " AalyA T M 70 17128
2t (1+Vv.) |
L 1o, = Agt.z, = At =0 i=1,2,3
B, Oy T Maf% T Meh T »2,3
L -, =0 = 1,2
ixz Xz 7 J ’
G}}:Jyzﬂa"o IRt

(22)

14

(23)

(24)

(25)

(26)

Thus the stresses may be written in terms of the Lagrangian multi-.’

pliers:

E.;

= i
%ix T T2 [z,0y +vag+ 0y + )]
1

E, !

iy TT2 (2305 + v + 00 + v )]
E,

0‘ixy 2(1 +v ;) (Z )‘ * 16) !

7sz - ijz)‘7 ]

T, =G, A | '

Tiyz ~ Tiyz"8 }

1]

[}

i

]

1,2,3

1,2,3

1,2,3

1,2

1,2

(27)

(28)

(29)

(30)

(31)



15

2.6 Lagrangian Multipliers

Integrating by parts equation (21b), then adding the results to
equation {21c), and recalling from equation (21) that the sum should

vanish:

b a
B+C =J J{aMx(xl - )\12,x)
o o0 -

+EM (b - Ayg )

+8M, (kg - A S\

12,y ~ M3,%)

+ 6Nx()‘4 B )‘9,x B Xll,xw,x)

+ BN (A5 - A -

10,y

+ 6ny(x6 - )‘Q,y

T8Q (g = dyq 4 = Ay9)

t8Qu0g = Ayg,y T Ay g)fixdy

5 Y
+ L [xgax + A 8Y + )‘11(W,x6X + W yaY + 6Q)
+ )\126Mx + )\136My]ds

- -Ld [uaX +voY + w(w’ X6X + w, yéY + 6Q)

+ @b M+ BaMy]ds =0 - 82)



Therefore, the area integral and the line integrals iﬁu‘st vanish indi-
vidually.

It may be observed that the first line integral of equation (32)
vanishes on the part of the boundary where surfade stresses are spec-
ified, hence it has a non-zero value only at that portion of the boundary

where the displacements are prescribed, i.e., at Cq- Then on the

boundary:
Ag = u (33)
Ao =V | (34)
Xll = W (35)
Mg = @ ‘ (36)
Az = B (37)

Since equation (21) also holds for any part of the plate, it follows that
the Lagrangian multipliers throughout the plate are related to the
generalized displacements by equations (33) to (37). |

Introducing equations (33) to (37) in the area integral of equa-
tion (32), the other eight Lagrangian multipliers may be expreséed in

terms of the generalized displacements:

L ‘ SRR S 8)

Ay, = B | . | (39)



Ag = a’.y+B’x (,4%01
Ay = ‘u’x+w’xw’x (41)
X5 = .y W,yW,y (42)
)\6 = V,x+u,y+’2W,xw,y (43)
Np = etw o (44)
)‘8 = .B+W,y (45)

2.7 Boundary Conditions

From.the line integrals of equation (32), the following quanti-
ties should take on the corresponding values at the boundaries x = 0

and x = a:

wor Nw_+N w _+Q (46)

B or M

and at the boundaries y =0 and y = b:

u or N

v or N
Yy

17
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W or Nyw +N w_+Q (47)

M
B or ¥

2.8 General Analysis

The purpose of this investigation is to find a general solution
for the stability of multilayer sandwich plates. At the beginning, thir-
teen conditions are known: There are eight equations defining stress
resultants in terms of stresses and five equilibrium equations in terms
of stress resultants. Thus the problem is essentially to find the com~
patibility conditions and then the governing equations which satisfy
both the thirteen known conditions and the compatibility conditions.

Two approaches appear to be adequate for the task. The first
approach calls for the formulation of the complementary energy from
which the Euler equations are obtained. Then these compatibility con-
ditions can be solved simultaneously with the thirteen known conditions.
The second approach introduces an auxiliary functional containing the
complementary energy and the thirteen known conditions each multi-
plied by a corresponding Lagrangian multiplier. Since the known con-
ditions are treated as constraint conditions, the set of Euler equations
provided by the auxiliary functional represents the compatibility con-
ditions subjected to the constraint of the thirteen known conditions; in
other words, both the equilibrium equations and the stress resultant-
stress relations are incorporated in the Euler equations. The second

approach takes full advantage of the elegant Lagrange formulation,
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reflects a deeper philosophy of structural mechanics, and is thus
adopted.
For an n-layer sandwich plate, n = 3,5,7 ..., there are
%(5n + 1) stresses. Except for the fundamental case, where n = 3,
the number of stresses is always more than the number of equations
given by the stress resultant-stress relations. A direct inversion of
the stress resultant-stress relations for the stress-stress resultant
relations is not feasible. The technique of taking stress resultants
as independent variables in the formulation of an auxiliary functional,
“which has been employed by many investigators in the study of three-
layer sandwich plates, is not applicable to sandwich plates composed
of more than three layers. In this investigation, the stresses are
taken asindepehdentvaliables and the stress resultants as dependent
variables.
The auxillary functional approach is both general and unique.
For an n-layer sandwich plate there are 21 +%(5n + 1) unknowns:
-;—(Sn +.1) stresses, eight stress resultants and thirteen Lagrangian
multipliers. Also there are 21»+é45n-+1) conditions: %(5n»#1)
Euler equations, eight relations between Lagrangian multipliers,
eight stress resultant-stress relgﬁons and five equilibrium equations.
Introducing the thirteen Lagrangian multipliers has important
physical significance. Their presence enables the known conditions
to be treated as constraint conditions and also provides information
which is necessary for the stress-generalized displacement rela-

tions.
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The successful definition of a proper reference surface, the
weighted neutral surface, is essential to the problem. The location
of the weighted neutral surface in a multilayer sandwich plate may
not be recognized without elaborate exploration of the problem. Due
to the proper choice of a reference surface, the elimination processes

that lead to the governing equations are reduced substantially.



CHAPTER III
GOVERNING DIFFERENTIAL EQUATIONS

3.1 Property Coefficients

For convenience, the following constants are defined:

(48a})

g
]
>~
- 1 H
pts
N
ST

3
z =Z Fili% (48b) -
—— .
i‘:_‘ . )
3 R
s sz el (48c)
i=
e _ . (484)
3
E.t.z.V. o
: |
E.t.v,
Vg * § 2 — (481)

21
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3 Ei‘cizi2 48
Fp= ) 2TV (482)
i=1
31 Eitizi ‘
P2 © L oIV) (48h)
i=1
3
E,t
F = Z -t (48i)
S T+ a1).
i=1
2 _
Gy = Z ijzhj ‘ (487)
j=1 » |
2
G_ = G. h. '8k
y '21 vz’ (48k)
J::

Recalling the definition of weighted neutral surface, z =0,

3.2 Stress Resultants

By substituting equations (27) to (31) in equations (2) to (9),

stress resultants may be written in terms of Lagrangian multipliers:

M, = D(A; +Vphy) + ¥hg (49)
M, = D(y +Vph;) + ¥hy (50)
M, = Fplg + F kg (51)

Nx = qoxz +-S(>\4 + vsk5) (52) .
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Ny = ~cp}\1: + s(xsz + va4) (53)
ny = sz3 + FS>‘6 (54)
QX = ka7 (55)
= G_A 56
%y y'8 (56)
From equations (44), (45), (55), and (56),
Q Q
a:.(.}_’i-w’x:_(ng-éﬁ) (57)
X X
Q Q
B =E§ -W’y-:-(w,y-f}?) (58)

Hence the generalized displacements « and B are the negative slopes
(excluding shear effect) in x and y directions respectively.
Introducing equations {38) to (45) in equations (49) to (56), the

stress resultants may be written in terms of generalized displacemeﬁts:u

M, = Dle , +VpB ) +0y +w w ) (59)
M = D(B _+vpe ) 4ol tw w ) (60)
MXy = FD(Q,y + B’x) + FZ(V:’F + u + 2W,XW, y’) ‘ (61)
Nx = ch,y +Sl:u,x +W,xw,x + VS(V,y+W, yW’y)] (62)
N, = %a + S[v’y tw W Vgl 4 w,‘xw’x)vj (63)



ny = Fz(af’y + B,x) + FS(V,X + u,. + ZW,XW,y)
Q, = G (a+t W,x)

= G +
W yB W )

3.3 Governing Differential Equations
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(64)

(65)

(66)

The governing differential equations for stability of multilayer

sandwich plates may be obtained by substituting equations (59) through

(66) into equations (10) to (14):
Da + F .« +(Dvp + FD)B’ Xy

» XX D, yy

+Fu _ + @+ F W

z 53y Xy .
FOE I W gy TG EI Wy Gl w = 0
FpB xx ¥ DB gy + (DVp + Fple o0
+ sz,xx + (p + Fz)u, xy
T2F,W W T2 F )W W Gy(ﬁ tw )= 0

D(a" _— + B, yyy) + (D\)D + 2FD)(Q, X3y + B, xxy)

+ (% + 2Fz)(u v )

+
» XYY » XXy

+ 2w w o_.)

FEELV Y xyy Ty, xxy T2V W, gy

+ 9 + ‘ . 4 x +'2
(CP FZ)(W,, XW,AXYY Wu;yW,,xxy W, Xy LX¥.

W )-I-R:-

- (87)

(68)

0 (69)
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F a - + (o + Fz)B, xy

+ Su + R

s XX Su, vy A (SvS L FS)V,

Xy

+ 2w, x(Sw,xx + st, yy) + 2w,yw’xy(8vs + FS) =0 (70)

FZB, XX Pt Fz)a, Xy

+ Fov +Svyy+(SvS+FS)u

S s XX 3 » Xy

+ 2w, y(FSw,xx ;S Sw’ yy) + 2w’ xw,xy(svs + FS) =0 (71)

3.4 Approximate Solution

It is possible to solve the set of nonlinear differential equations
(67) to (71) by the method of successive approximations. First an
approximate solution is obtained by some convenient method, then this
solution is introduced into the original equations, and the error may
be distributed and minimized. This process may be repeated several
times until the error is within a preassigned tolerable range.

An approximation solution is suggested by neglecting certain
terms in the governing differential equations. By comparing the order
of magnitude, it is obvious that Fz and @ are small for practical
materials whose Poisson's ratios fall between 0,30 to 0,34, If ¥

and @ are neglected, the approximate equations take the form:

- Gylatw ) =0 (67a)

Da £ I - < (D\JD + F.-‘D)B, Xy

FpB yx +:PB o+ (Dvy+ Fp)a

-G 4 =0 58a
, V¥ \xy " GyFrw ) (68)

D(& 4o + B, yyy) * (DVp+ 2PN oo+ B L V+R =0 (692)
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By neglecting FZ and ®, the equations are simplified consid-
erably. This simplification not only uncouples equations (67a), (68a),
and (69a) from u and v, but also linearizes the equations. It is felt
that equations (67a), (68a), and {69a) would give fairly good approxi-
mate results. If the solution furnished by these equations is not satis-

factory, then a successive approximation technique may be applied.



CHAPTER IV

SPECIALIZATION FOR EQUAL POISSON'S RATIOS

4.1 ©Poisson's Ratio

The theory presented so far is for a general case in which each
facing membrane "'iéye‘r may have a different Poisson's ratio. Due to
the presence of a different Poisson's ratio for each facing membrane
layer, the governing differential equations may not be simplified to a
favorable form. It is observed that the values of Poisson's ratio may
fall in a narrow rwe gion for materials with appreciably different moduli
of elasticity. This is particularly true for materials that are generally
used as facing membrane layers, such as steel (E = 29 x _106 psi,

v = 0, 30) and aluminum (E :AIO X 106 psi, v = 0,33).

In the following, an analysis is presented for the case of equal
Poisson's ratios for.all facing membrane layers. . It is believed that
this specialization represents fairly good approximation for the general

case.

4,2 Stress Resultants

For the case of all facing membrane layers having an equal

Poisson's ratio,

=Y ) (72)

27
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the property coefficients defined by equation (55) become:

3
o 1 2
D-== ) o) Z Eitizi (73a) .
. 1=V R
i=1
z =0 (73b) .-
S = T2 Z Bt (73¢) -
i=1
Vp =V : (73d}
® =0 (73e) -
Vg =V (731)
1-v .
F, =0 - (73%)
= 1l-v ey -
Fg= =58 (738}
2
G, = ) Cph (73)
j=1
2
G _ = G. h. . 3
v Zl iy (73%)
J:

And the stress resultants are:



Oy

(1

1]

{]

DIF,y * Ve y)

1;\) D{e _+8 )

Y s X

Sl:u +w _wW
’x ’x 3

x TV o F W,yw,y)]

S[v +w yw

3 3 3

+ viu +w W ]
y (3X ’X 3x)

1-v
5 S(v’X + u’y + 2w’xw,y)

Gx(a/ + W,x)

Gy +w o)
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(75)
(76)

(77)
(78)
(79)
(80)

(81)

It is readily recognized that the property coefficient D is the equi-

valent flexural rigidity of the multilayer sandwich plate.

Making use of equations (57) and (58), equations (74), (75), and

(76) may be expressed as

M
X

Q Q
- X, X .Y .
- D[ G, TV _-C:‘rly-X (W, xx OV, yy)]

(742)

(752)

(76)
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4,3 Governing Differential Equations

Differentiate equation (74a) with respect to x, equation (76a)

with respect to y and substitute into equation (13),

Q Q Q
N X,xx , 1-V ™x, 1+V "y, xy g2
Q * D[ G "2 Tﬂx = 4, v W,x] (82)

where v? is the Laplacian operator. Similarly from equations (73a),
(74a), and (14),
Q

Q Q
Dl oYY L 1oN Tyexx 14V Txoxy g2
QU D[ d, ) G, T TG, Y.y (83)

Differentiate equation (82) with respect to x, equation (83) with res-

pect to y and substitute into equation (15),

Q Q
vy =-RD-+ v éxx +..é;1») (84)

Differentiate equation (82) with respect to y and equation (83)

with respect to x:

1-vQ

Q .
- X, XXY X, yyy o, 1+V XYY _ g2
.,y D[ & + = & + _XG_lZy v W,xy] (85)

Q Q. . Q
- s X 1=V Ty, xxx | 1+V "X, XXy o2
Qy,x D[ i;y =3 Gy Ty Gx v w, xy:l (86)

Subtract equation (86) from equation (85),
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Q Q
Q - Q = 1=V g2

X,Y _ *
X,y ¥, X 2 ( GX G ) (87)

Differentiate equation (87) with respect to y, equation (15) with res-

pect to x,

QR Q
_1=-v 2,7°x, _ , X
U,yy " Vyxy TTT DY (‘ﬁfz _%;‘z) (88)

-Q Q +R (89)

Y, Xy i} X, XX »X
Substitute equation (89) into equation (88),

1=V 2 1-v 2 2 1-v 2
v -V = - v
2Gx D Qx,yy * 2Gy D.v Qx,xx Qx R,x 2Gy D R,X((QO)

Let

_(1-v)D
K, = L0 (912)

X

Kk = (1-V)D
v N (91b)

After rearranging, equation {90) may be written as:

4 2 2 2
. - Y = - v
va: Qx * (Ky Kx)v Qx,xx Qx R,x ' Ky' R,x (92)
and similarly,
4 2 2 2
K V +(K_-K_)V -V =R _-K V'R 93
y QY ( X Y) QY:YY QY s Y X s (93)
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Equations (84), (92), and (93) are the governing differential equations.

4,4 Deflection Surface

It is possible to develop a governing differential equation in
terms of the deflection surface. Such an equation is of the same form
as the Lagrange-Navier equation of classical homogeneous thin plates.,

Differentiate equation (82) with respect to x, equation (83)
with respect to y and add together,

1 1 2 4 :l
= -V e Y -V

Qx,x * Qy,y I)[GX Qx,x i Qy,y W

Substituting above expression into equation (15), then multiply by

_%(1 - V) and rearrange,

2 1-v)D, 4 R 2
- v = - — K V
K, - K)7°Q, LoD vty - 2y + K, V'R (94)
That is,
K
2 (1-vD_ ¢4, R v 2
"%, x TIR K ) ( D)+KX-Ky R (95)

Differentiate equation {92) with respect to x, making use of equation

(95) and rearranging

6 4 4
Vw + - K )V -V
Kx w ((Ky KX) W’XX w
1 ZI:X: 4 2
:.._.l:__l_..._lv R+(K +___I)VR+ \)(K -K)R _R:l

(96)
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Equation (96) is the governing differential equation in terms of the
deflection surface. Another form of equation (96) in which x and y

are balanced is as follows:

4 4 4

. -V
Ky w’ %% + va W, w
L 2KE 2K 2K
-l v -
ST VR R KR L+ K F IR R | (97)

The governing differential equation may be written in a form similar

to the Lagrange-Navier equation of classical homogenous thin plates:

2 2
9 0 4

1-K —5-K —)Vw

, Y ox xay

2K 2 2K 2 2K _K
d N %y 4R
= 1-(——_—X+K)-—--(K + _y) S A (98)
[ T=v © Ry 2 x TV T TV :ID .

4.5 Isotropic Core Layers

For multilayer sandwich plates with isotropic core layers, the

elastic constants become:

G.=G_ =G (99)
x Oy

K =g ={1-VD _ | (100)
x Ty 2G

Then from equation (94)

L2 vty - 2y + K9%R = 0 (101)



Thus the governing differential equation is

(102)



CHAPTER V

A SIMPLY SUPPORTED RECTANGULAR PLATE

Two examples of a simply supported rectangular plate are pre-
sented in this chaptef. The first example treats a multilayer sand-
wich plate with unequal Poisson's ratios for each facing membrane
layer by the linearized approximate equations. The second example
illustrates a multilayer sandwich plate with equal Poisson's rat‘ios.
for all facing membrane layers by the exact equation.

-

5.1 Example 1

A rectangular muitilayer sandwich plate simply supported
along all edges is subjected to a uniform distributed compressive load
of intensity P_ (Fig. 4). Determine the critical load by the linear-

ized approximate equations.

Figure 4 - A Simply Supported Rectangular Plate
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For this case

P=N_=N__=0 N _=-P

And Gx’ Gy’ D, Vpe FD are constants as defined by equation (48).

The governing equations are

Da: XX + FDQ, vy * (DvD + FD)‘B, Xy B Gx(a + W,x') =0 (103)
VFDB’ XX i DB, yy * (DvD * FD)Q: Xy ) GY(B * W,Y) =0 (104)
D((alg XXX + B, yyy) + ((Dv + 2FD)((a/ X3y B, xxy) +R =0 {105)
Assume soluticn of the series form:
- . MNX . NNy
w }:Zwmn sin === sin — (106)
mn
a = ZA cos BIX gin BOF (107)
mn a b
mn
_ .. mTx nmny
B = ZZan sin —= cos = (108)
m n

at x =0, x=a

(1092) -
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at y=0, y=b
w=0
(109b)
-My=D(B,y+vDa, )=0
.a=0

Substitute equations (106), (107), and (108) into equations {103), (104),

and (105):

S 2
[D(Lna—n,) + FD(%TT) + GrX]Amn + (_r{lél) (Ebﬂ) (DVD + FD)an

+BIgw_ =0 (110}
a X mn :

2 5
D EH v, + PR)A,, [ DAY+ FpED” v [B,

nm

%

G Wi = 0 (111)

3 2
[DED + vy + 2B & A
3 2 :
+ D@D’ + vy + 2r )@ ED |B_
+ (_r%_n)2 PW__ =0 (112)

n

For critical load, the folio.wing determinant must vanish:

mT, 2 nt, 2 mTl, n mT :
DED) +Fply) * Gy CFIEFHDVp * Fp) = G
2 2
mT, nt nTtr mTT nt
GEE)OvptFp) Dep) +FplH) + Gy T % |7
mm3 , | 5T, N2 nm3 mm2nm,  ,mm2
D)+ (Dvp* 2Pl D) + (Dvp+ 2Fp) ) () ) By

(113)
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For fundamental mode, set m =n =1 in equation (113) and solve

for P
X

5.2 Example 2

A rectangular multilayer sandwich plate simply supported
along all edges is subjected to a uniform distributed compressive
load of intensity Px' Assume all facing membrane layers have the

same Poisson's ratio., Determine the critical load.

P=N_=N__=0 N_=-P

And D, v, Kx’ 'Ky are constants which may be calculated from the
respective defining equations.
The governing equation is
2 2
-k, 2y -k, 2 [t
Y ox oy
2KX ‘ 82 2K 82
R R S AP
L=v = Ty’ g 2 X v .8y2

Assume solution of the series form:

mx nmx

38

=0 (114)

- ' .. m .
mn '
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a=) ) A__ cos BIX g DX (116)
m n

BQZZB .. mTX nrx 117

= mnp &0 —5— €0s =% (117)
m n

each term of which satisfies the boundary conditions of equation (107).
Substitute equations (113), (116), and (117) into equation (114},
then

2 2 2 242
LR R AN &N @ [,

A xEmn]

: 2.2 2_2
2 [ - mmT ntmo2 mT
K K + 25 )Y K ()

*: 1=V

Y a2 b

2 P 2
»*Ky(%ﬂ) ]} _]_)}_c_ '(%E) Yinn

Hence the critical load is

2
_,a.\®. PA |
P &) " BBTBC He
where ,
9 9 2 252
PA = D[l + KX(Eg) + Ky(ma:-) ]I:() + (‘%) ]
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nTtr 2 mT 2

2 mTr
For fundamental mode, set m = n =1 in equation (118) and calculate

P_.
X



CHAPTER VI
SUMMARY AND CONCLUSIONS

6.1 Summary and Conclusions

A theory defining the stability of multilayer sandwich plates
has been developed in this thesis. The development of the theory con-
sists mainly of the formulation of an auxiliary functional, application
of the minimizing principle and the elimination process. The problem
is formulated in a complete Lagrange form with stresses taken as
independent variables and stress resultants as dependent variables.
The elegance of the Lagrange formulation is realized and illustrated
in this study.

The successful selection of a reference surface, the weighted
neutral surface, leads to the governing equations for the stability of
multilayer sandwich plates subjected to assumptions less restricted
than most previous works. This weighted neutral surface has not
appeared previously in any available literature.

A set of five nonlinear differential equations governing the sta-
bility of multilayer sandwich plates is obtained. When specialization
for equal Poisson's ratios is made, the governingequation is a sixth
order partial differential equation. For isotropic core layers, the
governing differential equation becomes a fourth order equation.

Though the mathematical model used is a five-layer sandwich

plate, the approach is perfectly general. For sandwich plates composed

41



of more than five layers, the governing equations are also valid,

42

provided that the indices of property coefficients are adjusted ac- ..

cordingly.,

6.2 Comparison of Results

Equation (96) is the governing differential equation for the
stability of multilayer sandwich plates with equal Poisson's ratios
for all facing membrane layers and orthotropic core layers. For

pure bending, replace R by P, then equation (98) reduces to

2 2~

2K, 52 K, 52 KK ,op
- [1 -1 +Ky)aX2 - By +1-v)ay2 Tyt Y ]TD"
(119)

(4)

which is the same as given by B. D. Liaw‘"’,

For fche bending of a three-layer sandwich plate with iden=
tical facing layers and an orthotropic core, the equation given by
S. Cheng(S) is a special case of equation (119),

For the buckling of three-layer sandwich plates with iso-
tropic core, the equation developed by E. Reissner(S) is a special

case of equation (102).
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