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PREFACE 

The motivation for this study was provided by a strong personal 

conviction that the analysis and/or design of large physical systems is 

almost hopeless without the aid of a digital computer. Without such 

aidi the system must be idealized to such an extent that the final 

results are of questionable value. As our technology develops, the 

complexity of the systems we create will increase so that this problem 

becomes more serious. 

I will readily admit to a bias in my viewpoint on the importance 

of digital computing in modern technology. It is my personal 

conviction that the role of computers in engineering today is limit ed 

more by our lack of understanding of how to use them than by shortcomings 

in the computers themselves. Rapid developments in computer hardware 

and so~ware now in progress will increase their versatility far 

beyond our ability to use them unless considerable study and research 

improve our capabilities by orders of magnitude. It is my hope that 9 

in some small way 9 this study will help us in our use and understanding 

of this powerful tool. 

The original ideas for this study were developed when I attended 

the 1963 Summer Session on "Analysis and Design of Discrete Physical 

Systems" at Michigan State University 9 sponsored by the National Science 

Foundation. I wish to express my gratitude for the opportunity to 

attend this session. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation. The high-speed digital computer is exerting an 

ever-increasing influence on every phase of engineering and science . Its 

utilization has become a matter of paramount concern for every engineer. 

The early applications of the digital computer in science and 

engineering were in the areas of most obvious benefit. The reduction 

and treatment of large amounts of data and the solution of mathematical 

functions to an accuracy never before possible received first attention . 

As the use and understanding of the digital computer developed 9 

the areas of application broadened. Numerical computation techniques 

improved, and the solution of broader and broader classes of mathematical 

systems became possible and practical. Concurrently, our technology 

developed and the systems of interconnected and interrelated components 

became more complex. As the size of interconnected systems of all 

kinds--electrical, mechanical; electromechanical• hydraulic 9 and 

pneumatic--increased • the conventional techniques for analyzing their 

characteristics and performance became inadequate. The sheer size of 

systems made pencil-and-paper solution impractical. 

Of even greater importance was the inability of the conventional 

analysis techniques to predict observed phenomena of instabilityj surges• 

and breakdowns. It became increasingly apparent that the idealizing of 

elements into linear equivalents in system models was the source of 
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many of the analysis problems. The whole world of analysis was built 

on linear models• so that a very real and awesome enigma presented 

itself--how can the analysis of nonlinear systems be carried out when 

the systems are so complicated that even the linear analysis is 

impractical? 

The answer may well lie in proper and efficient use of the digital 

computer. In this area. the known techniques are rudimentary, and the 

known applications are limited. But the prospects are encouraging in 

the light of present computer capacities and presently known numerical 

methods. The adaptation of many efficient and orderly linear analysis 

techniques may be possible. Transformation methods for the solution of 

the differential equations of linear systems has been highly developed . 

Brown ( l) has developed a method for the application of the LaPlace 

transform to some nonlinear systems. 

2 

The development of numerical methods for the approximate integration 

of differential equations has been highly developed, and many efficient 

and highly accurate algorithms for this purpose are generally known 

(2 - 10). The solution of nonlinear algebraic equations has received 

much attention• and many methods are also generally known. Application 

of these methods for the direct numerical solution of the equations of 

a mathematical model by digital computer offers great promiseo However~ 

for practical use by the engineer, this approach involves several 

serious problems: (a) how can the equations of the mathematical model 

be determined in an efficient and orderly way, (b) how can the solution 

be implemented on a computer, and (c) how can the results of this 

solution process--a column of numbers--be interpreted and understood? 

The motivation for this study lies in the first two of these=- a desire 



to study and develop techniques for utilizing the digital computer in 

both the formulation and solution of nonlinear systems o The answer to 

the last problem--how to understand and interpret the results-•can only 

come from experience and familiarity. Until the first two have been 

answered, this is impossible. 

3 

l. 2 Scope of This Study. The direct objectives of this study have 

been fourfold: (a) to develop an algorithm suitable for direct 

programming on a digital computer for the formulation of the equations 

of a suitable mathematical system model 9 (b) to explore methods of 

introducing and including in this model some nonlinear elements ~ (c) to 

develop suitable mathematical models for the description of a selected 

class of nonlinear elements, (d) to explore some of the w~ll- known 

numerical techniques and their applicability in the solution of the 

models that have been developed. 

The state-space model was selected as the basis for this studyo 

This requires the determination of an independent set of normal form 

(first-order) differential equations and an accompanying set of 

algebraic equations. For convenience in the manipulation of these 

equation sets 9 they are developed in matrix notation; and• wherever 

possible 9 the methods of matrix algebra are utilized . This is an 

advantage not only in compactness and efficiency of notat ion 9 but in 

direct utilization of the operations in computer programming . Published 

works by Koenigi Tokad, and Kesavan (11) 1 Koenig and Blackwell (12)~ 

and Zadeh and Desoer ( 13) provide an adequate background in st ate= 

space and modeling 9 particularly for linear systems . 

The techniques of linear graph theory and topology developed by 



Seshu and Reed (14) were selected as the method of formulation of the 

equations of the systemo The efficiency and power of these techniques 

make possible a truly methodical process for the formulation of the 

necessa,:,y equations. 

4 

A necessary part of the work connected with this study was the 

writing of a computer program to test and evaluate the ideas and 

methods. This program has been written entirely in the Fortran language 

for use on a medium-sized computero 

The development of equations describing the nonlinear elements was 

accompanied by additional computer programming to evaluate the 

coefficients of the model for actual physical deviceso 



CHAPTER II 

BACKGROUND OF COMPUTER SYSTEM ANALYSIS 

2.1 Linear Systems. Undoubtedly 9 many workers in various parts 

of the country in research laboratories. universities, and computer 

centers have developed digital computer programs for the analysis of 

linear electrical and/or mechanical systemso However 9 very little of 

this work is published and available to other workers. Among the 

published works in this area, two are particularly valuable for 

reference, They represent two entirely different approaches--one 

through the s-domain (complex frequency) and the other through the time 

domain and direct integration of the differential equations . 

Typical of work in the s-domain is the analysis program developed 

by Calahan (15) at the University of Illinois. The program is set up 

for the solution of linear electrical circuits containing passive 

elements, time-dependent sources, and linear voltage- dependent current 

sources. Topological methods based on tree-products for creation of 

the s-domain transfer functions are utilized. The poles and zeroes of 

this transfer function are obtained by a polynomial factoring routine . 

From these, the unit-step and unit-impulse response ~an be obtained. 

Provisions for direct integration of a set of differential equations 

deduced from the transfer function is provided. Similar work has also 

been done by Cummins and Thomason ( 16) at Oklahoma State University o 

Their work includes implementation of an improved tree- listing 
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algorithm developed by Minty (17). Transfer function analysis met hods 

are very efficient for linear systems, but their usefulness in the 

treatment of nonlinear systems is questionable and relatively unknown. 

6 

Typical of work directly in the time domain is a program (MISSAP) 

developed by Reid at Michigan State University. Unfortunately, the 

sponsor of this project has not allowed publication of the work, and 

little is known about it. The program is based on solution of the 

state-space model and is intended to handle only linear passive elements. 

time-dependent sources, and internally-dependent linear sources . 

Provisions for non-ideal transformers and long transmission lines are 

also incorporated. Topological methods are employed in the determination 

of the state-space equations. Matrix row and column manipulations 

coupled with matrix rank evaluation are employed to determine a tree 

of the linear graph. The program is designed with a simple and 

convenient input data format to encourage use by the widest possible 

class of users. 

A program similar to MISSAP has been implemented by IBM for various 

models of their computers and is distributed under the program name 

ECAP. ECAP has some additional features for the study of worst-case 

analysis and power supply failure analysis. 

2.2 Systems with Nonlinear Elements. Programs for the analysis 

of nonlinear systems have dealt primarily with the analysis of transistor 

switching circuits, in which the only nonlinear elements are transistors 

or diodes. 

Most of these programs have been based on work done by Branin (20) 

at the IBM Product Development Laboratory under the program name 
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DCAP- PET AP. Further development has been carried on by Malmberg ( 21) 

at the Los Al amos Scienti fic Labor atory of the University of California 

under the program name NET. The b.asic algorithm uses topological and 

matrix methods. The matr ix manipulations are carried out as a variation 

of Kron's method of matrix tearing (22). The nonlinear transistor 

model in the program includes voltage-dependent current sources based 

on the Ebers-Moll equations for the transistor (23) and nonlinear 

voltage- and current-dependent capaci~ors. Provisions for evaluation 

of the variation of a 9 the forward-current transfer ratlo, under 

dynamic conditions are included. 

The differential equations of the system are divided into two 

sets in both programs. One of the sets contains the nonlinea,r equations 

of the transistors only. The .other set contains the linear equations 

associated with the remainder of the circuit--that is, all components 

except the transistors themselves. Integration of the equations 

alternates between these two sets. While one set is being integrated 9 

all of the variables defined by the other set are assumed to remain 

constant. Because of the entirely different characteristics of the 

two sets of equations, entirely different integration routines are 

utilized for their solution. It is frequently necessary to make many 

small integration steps in the solution of the nonlinear equations 

between much larger steps in integration of the linear equations . IBM 

has apparently stopped any further development on the DCAP- PETAP program~ 

but Malmberg has continued his work and has several versions of the 

program for different computers. 

A very powerful program for the analysis of linear and / or nonlinear 

mechanical systems has been developed by Hart ( 19) and c0=workers at 
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the General Motors Research Center under the program name DYANA. This . 
program is intended for the solution of a wide range of mechanical 

systems (translational and/or rotational) with a wide variety of linear 

or nonlinear constraints. 

Two basic versions of the program have been developed--one for 

transient-time response and the other for steady-state sinusoidal 

response. The program is written in IBM 704 Symbolic Language so that 

it is usable only on that model of computer. The output of the program 

is novel in that it is not directly a solution to the system. Rather 9 

it is a set of statements which comprise a Fortran Source program, 

which is then compiled and executed by a standard Fortran Compiler to 

obtain the actual soluti~. Thus, the DYANA program, in itselfr, is not 

a solution program, but a compiler to assemble a program which can 

solve the particular system specified. 

The DYANA program sets up the solution of a system of differential 

equations which are not in normal form, which are integrated by 

standard integration subroutines incorporated in the Fortran System 

itself. The constraints on the system, either linear or nonlinearfl 

are incorporated by the formulation of a system of side equations in 

the form of Lagrangian-multiplier equations of constraint . From these 

constraint equations, various parameters of the system are evaluated 

after each step in the integration. 

The program is able to solve electrical or mixed electrical-

mechanical systems only by analogy with mechanical components . This 

restricts its usefulness for an engineer interested in electrical or 

mixed systems. However, this program is one of the most powerful and 

versatile programs yet develope?• 



CHAPTER III 

DEVELOPMENT OF THE ALGORITHM FOR 

COMPUTER ANALYSIS 

The state-space model is a set of normal-form differential 

equations and a set of algebraic equations. For any given system it 

may be possible to obtain a number of different state-space models . 

The differences lie in the choice of the state variables. There is 

usually considerable latitude possible in this choice• and the final 

selection may be determined by a variety of factors. One of the most 

common restrictions placed on this choice, for instance, is that the 

variables selected shall represent physically measurable quantities . 

For the purposes of this study, it was necessary to develop an 

algorithm suitable for computer implementation. The realization of 

this aim, in itself, imposes restrictions on the choice of state 

variables. The particular form of the model is such as to implement 

the application of the method to the analysis of systems containing 

some nonlinear elements. This, too, imposed further restrictions on 

the choice of variables. 

3.1 Theoretical Background: State-Space Models and Topological 

Methods. The state-space model, in its most general form 11 appears as 

a set of differential equations which, in matrix notation 11 appear as 

9 
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where lj, is the vector of s.tate variab l es• and!, is t he ve ct or of 

forcing functioos. Also a part of the state-space model is the algebraic 

matrix equation 

( 3.1.2) 

where W is the vector of variables associated with non- storage 

(memoryless) elements of the system. Zadeh and Desoer (13) have 

established the existence of such a model for a time- invariant , linear 

system• wh i ch will be accepted without proof here. For such a system 9 

all of the entries in the matrices A, B, c. and D of Equations 3.1. l and - - -
3.1.2 are real constants or zero. 

In the establishment of a specific state model for a system , it is 

necessary to select one specific set of variables for lj, before the entries 

in the matrices can be determined. In the analysis of physical syst ems , 

it is usually convenient and desirable to choose state variables which 

directly represent physically measurable quantities, if this is 

possible. Koenig• Tok ad• and Kesavan ( 11) have established that this 

is possible in a restricted class of systems. For the purposes of t his 

study 9 only such systems will be considered. This restrict i on will 

be considered in more detail. 

In any linear, time- invariant system• the passive elements 

comprising the system can be represented mathematically in one of the 

following forms : 

(3.1.4) 
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In these equations• x and y are functions of time; and the dot notation 

is used to represent differentiation with respect to timeo The 

parameters r, g, R., and c are constants. 

xis known as an across variable• and y is known as a throush 

variable. Typically• voltage in electrical systems and translational 

or rotational velocity in mechanical systems are across variableso 

Electric current, translational force• and rotational torque are 

through variableso Equation 3.1.3 represents the dissipation or non= 

storage (memoryless) elements 0 · and Equations 3. lo 4 and 3o lo5 represent 

the energy storage elements. 

In a system comprised of many tw0=terminal passive elements, these 

equations when collected and written in matrix form 9 

!1 = ~ !.1 (or :£1 = ~ Xl) ( 3 o lo 6) 

x2 = • 
l~ (3olo7) 

• 
y 3 : £. X3 (3olo8) 

serve to descI'ibe the terminal relations for all of the passive elementso 

In these equations 9 the X's are vectors of across variables, the Y9 s .... .... 
are vectors of through variables r. and I• ,b .£9 and G are square 

diagonal matrices. 

Also a part of an active system are drivers, which establish 

specific conditions for either the across or through variable at 

their terminals. They are grouped according to which variable is 

specified at their terminals. Thus 9 in association with the 
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equations of the system are two additional vectors of time functions 

F (t), the across drivers, x (3.1.9) 

FY (t), the through drivers, (3.1.10) 

where the elements of these vectors are specified functions of time 9 

which may be constants. 

The mathematical model of the system is determined by the inter= 

connection scheme of the two-terminal elements described by Equations 

3.1.6 through 3.1.10. The concepts of linear graph theory have been 

applied to the problem of formulating the appropriate equations of the 

system (11, 12, 14) as a convenient and methodical process for the 

development of the model from the pattern of interconnection of the 

elements. 

The application of linear graph theory to the description of the 

interconnection scheme. of a given physical system is simple and 

straightforward. For the reader untrained in this notioni Seshu and 

Reed (14) provide a comprehensive introduction for the treatment of 

electrical networks. References 11 and 12 provide extension of the 

technique to other physical systems. A particular concept of importance 

in this study is that of the directed linear graph, in which the not ion 

of polarity assumptions for the through and across variables is included 

in the graph. 

Since the notion of relative polarity of the through and across 

variable can be based on a number of possible variations, we will 

establish here the assumed scheme for the purposes of this study . The 

arrowhead of the directed graph edge will be assumed to coincide with 
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the direction of positive polarity for the through variableo This same 

arrowhead will indicate polarity of the across variable by the 

assumption that the tail of the arrow will indicate the positive 

terminal of the device for the across variable. From this notation 

system, it is apparent that the simultaneous occurrence of positive 

through and across variables for a given element will imply that the 

element is absorbing energy from the system. This notion is illustrated 

in an example for a two-terminal electrical device in Figure 3. 1. lo 

b 
0 Element 

I 

b a 
o,---<---o 

Figure 3.1. lo Electrical Example of .Polarity Convention for Across 
and Through Variables 

In the application of linear- graph theory 9 the fundamental concept 

of a tree and associated co-tree of the graph are of utmost importance o 

For concise and detailed definitions and properties of the tree and 

co-tree, the reader is referred to Seshu and Reed (14 9 Chapters 2 = 5) . 

A brief description of these concepts is adequate hereo 

A tree of a linear graph can be described by two of its properties g 

( a) A path exists from each node of the graph to every other node 
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of the graph; t raveli ng al ong only edges which are in the 

tree. 

(b ) The edges in the tree f orm no closed paths within the 

graph. 

The edges of the graph which are in a particular tree (there may be many 

trees in any given graph) are called branches of the tree. When the 

word branch is used in referring to an edge of a graph 9 it is understood 

that this edge is in a particular tree, 

The co-tree corresponding to a particular tree of a graph is the 

set of all edges which are not in the tree. These edges are referred 

to as the chord-set. When an element of the graph is referred to as 

being a chord of a tree• it is understood that it is a member of the 

set of edges in the co-tree corresponding to that tree. 

In a general treatment of the properties of the trees and associated 

co-trees of a linear graph, it is necessary to consider the case for 

both nonseparable and separable graphs. By definition (14, p. 35) 9 a 

graph G is nonseparable if every subgraph of G has at least two nodes 

in common with its complement. All other graphs are separable. In the 

interest of clarity and brevity in the development of the formul ation 

algorithm, only the case of the nonseparable graph will be considered 

here. However, nothing in the methods utilized will require that only 

systems represented by nonspearable or one-part graphs can be treat ed. 

For further treatment, the interested reader is referred to references 

14 and 11 for discussion of the more general case . 

The trees and associated co-trees of a graph possess many useful 

properties. However, two are of particular importance in the 

formulation of the state-space model. They may be summarized in the 



15 

following : 

( a ) I f there are n nodes i n a one-part graph, then there are -
(n - 1) edges i n the tree . There is a unique node or super-

node associated with each edge of the treeo For each of these 

nodes or s upernodes. an independent equation can be written 

which states that the sum of the through variables into (or 

out of) that node is zero. Each such equation will, in fact i 

relate the through· variable of one branch ( the branch -
co~responding to that node) in terms of the through variables 

of the chords. Therefore, in a one-to- one relationship with 

the branches of a tree, (n - 1) independent equations can be 

generated relating the through variables. (The above 

statements hold true for a p- part graph if n - pis substituted 

for n - 1.) 

(b) If there are.! edges in a graph, then there are e - (n - 1) = 

e - n +ledges in a co-tree of the graph. There is a unique 

closed path around the edges of the graph associated with each 

chord. This path traverses only that particular chord and 

branches of the tree. For each of these paths, an independent 

equation can be written which states that the sum of the across 

variables around that path is zero. Each such equation will~ 

in fact, relate the across variable of one chord (the chord 

associated with the path) in terms of the across variables of 

the branches. Therefore 9 in a one- to- one relationship with 

the chords of a tree, e - n + l independent equations can be 

generated relating the across variables . (The above statements 

hold t r ue for a p-part graph if e - n +pis substituted for 
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e - n + 1. ) 

These properties of the tree and co-tree provide a powerful method 

for the generation of two sets of independent equations relating t he 

across and through variables. These equations and the terminal 

equations of the elements when properly manipulated yield the state-

space model equations. 

It was stated earlier (pages 9 and 10) that the state model in the 

form of Equations 3olol and 3.1.2 would always exist when certain 

restrictions are placed on the interconnection pattern of the e l ements. 

These restrictions can now be more precisely set down 9 in terms of the 

properties of linear graphs and their trees and associated c<rtrees. 

Theorem 3.1.1. The state- space model of a system will exist in 

the form of Equations 3.1.l and 3. 1. 2 if it is possible to find 

a tree and associated co-tree of the linear graph of the system 

which has the following properties ~ 

(a) All of the across- drivers are contained in the treen 
~ 

(b) All of the elements of the type described by Equation .......... 
3.1.8 are contained in the tree . 

(c) All of the through- drivers are contained in the c<rtree o 

(d) All of the elements of the type described by Equation 

3.1.7 are contained in the co- tree . 

This theorem is stated without proof here, since it is adequately 

developed in the references (14, Chapter 6 and 11 9 Chapters 6 = 8) . 

This restriction has been arbitrarily adopted for the purposes of 

this study and is not a necessary limitation to the general applicability 

of the methodo It is possible to utilize similar topological methods 



in the generation of a state-space model for a system which does not 

meet this restriction• but the model does not have the simple form of 

Equations 3.1.l and 3olo2o It should also be mentioned again that the 

restriction of this discussion to the case of a one-part graph is not 

necessary f-or validity of the method. It has been adopted only for 

purposes of discussion. 
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It is also worth noting at this point that nothing in the procedures 

discussed will limit their application to any particular energy system. 

Terminal equations in the form of Equations 3.1. 6 through 3.1.10 can 

be written for the elements of any linear system--electrical 9 mechanical 9 

hydraulic, mixed, or otherwise. It is always possible to des cribe the 

interconnection of these elements in terms of a linear graph o In the 

case of electrical circuits, the linear graph is immediately obvious from 

the actual physical interconnection of the components . In some other 

systems, this relationship is not so obvious, but it is possib le to 

develop a linear graph which properly describes the system. For further 

details in this area, the reader is referred to references 11 and 12, 

where these matters are treated in considerable detail. For the 

remainder of this study, discussion will be directed to the treatment 

of electrical networks. However, the methods and algorithm remain 

general in nature- -only the terminology will be specialized. 

The restrictions imposed by Theorem 3.1.1 can be stated in terms 

more familiar and meaningful to the electrical engineer . they are g 

( a) All of the volt age drivers must be in the tree . 

(b) All of the capacitors must be in the tree. 

( c) All of the current drivers must be in the co- tree . 

(d) All of the inductors must be in the co-tree . 



The resistors of the network may be arbitrarily allocated to the tree 

or co-tree as desired, 

Stated in yet another way: restrictions ( a) and (b) require that 

no closed path may consist of only capacitors and/or voltage drivers II 
.. 

and (c) and (d) require that no node shall exist to which only current 

drivers and/or inductors are connected. 

At this point• three necessary concepts have been established g 

( a) The fundamental notions of linear graph theory and the_ir 

application in the generation of two sets of independent 

equations relating the through and across variables of the 

system, 

(b) The classification of the elements of the system and the 

terminal equations which describe them, and 

( c) Some restrictions which must be placed upon the allowable 

topology of the system. 

From these• the algorithm for development of the state-space equations 

in the form of Equations 3.1.1 and 3.1. 2 can be implemented. 

3. 2 Development of the Algorithm for Formulation .of the State= 

Space Equations. Before proceeding into the actual development of the 

algorithm, it is necessary to firmly establish a scheme of notation 9 

which will be used henceforth. Wherever possible, standard and 

accepted electrical notation and symbols will be utilized. 

The across variable in electrical networks is electrical vol tage . 

The standard symbol E will be used to denote such quantities. When 

underlined, E will denote a vector of such variables. The through -
variable in electrical networks is current, and the standard symbol I 
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will be usedo A vector of such variables will be .£.o Voltage (across) 

drivers will be symbolized by V, and current (through) drivers by I o 

The role of a particular variable is very largely determined by 

whether it is associated with the branch or chord of a tree 9 so that it 

is important ·that the notation should reflect this property. All 

variables will carry the subscript B or C to denote whether they are 

associated with a branch or chord, respectivelyo Thus, IB will denote 

a current for an element in the tree, and Ee will denote a voltage for 

an element in the co-tree, and so ono 

As a result of the restrictions placed upon the topology of the 

network, it is possible to divide the branches and chords into subsets 

as a further aid. This will be done in the following way : 

Bl - will denote all capacitive elements 

B2 - will denote all resistive elements in the tree 

B3 - will denote all voltage drivers 

Cl - will denote all inductors 

C2 - will denote all resistive elements in the co- tree 

C3 - will denote all current drivers 

With this notation established, and the elements divided into 

subsets as indicated, Equations 3.1.6 to 3.lolO can be written in the 

form: 

~2 = ~ !82 (3 o2ol) 

lc2 = §:: fc2 (3 o2o2) 

0 

E.c1 = L - lei (3 . 2. 3) 

!81 = c 0 

C3 o2o 4) E.a1 
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= v Ct) -
fc3 = .!. ( t) 0 (3o2o6) 

These six equations are commonly referred to as the volt-ampere (VA) 

equations of the elementso These equations hold for the elements 

regardless of their manner of interconnection. From them, by taking into 

account the interconnection pattern• the state=space equations are 

developed. 

Mathematical information concerning the interconnection of the 

network is contained in the two sets of equations obtained from the tree 

and co-tree of the graph • 

. As a result of the way in which the tree is related to the remainder 

of the graph, one, and only onet of the branches of the tree will connect 

to the node or supernode with which it is associatedo Mathematically I) 

this is evidenced by the previously stated property of the equation 

summing the currents at that node to zero (Kirchoff's Current Law)o 

These equations I one-by-one, relate a single branch current in terms of 

the chord currents. There are (n - 1) such equations 9 which can be 

written in matrix form 

Q r = o , -- (3o2o7) 

where Q is a rectangular matrix of (n - 1) rows and e colunms I whose -
only entries are o, +l, or -1. If the entries in I are ordered -
properly, this equation can be stated in the following partitioned form 

[E_ £c] 
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where£ is an (n - 1) x (n - 1) unit matrix,£!; is an (n - 1) x (e = n + 1) 

matrix containing only entries of O 1 +l, or -1, ~ is the vector -of 

branch currents I and .!c is the vector of chord currents. This 

partition is possible because of the basic property of the node equations 

set down above. 

Consider now the (e - n + 1) equations summing voltages around 

closed paths in one-to-one · correspondence with the edges in the chord 

set. Each such closed path involves one, and only one, edge which is 

in the chord set. All other edges traversed are members of the tree 

set. This is again, a consequence of the manner in which the tree (or 

co-tree) of the network was defined. Therefore, each of these equations 

serves to define a single chord voltage in terms of branch voltages . 

The (e - n + 1) equations summing voltages to zero in matrix form 

can be written 

P E = 0 , 

where Pis a rectangular matrix of (e - n + 1) rows and (e) columns• 

whose only entries are 0 1 +l, or -1. If the entries in E are ordered 

properly, this equation can be stated in partitioned form as 

[~ u] -
[ ~] = 0 • 

where .!!, is a unit matrix of order (e - n + 1), ~ is a rectangular 

matrix (e - n + 1) x (n - 1) containing only entries of o, +l~ or - 1 ~ 

fB is the vector of branch voltages, and Ee is the vector of chord 

voltages. At this point, a remarkable property of these matrices must 

be noted--the matrix~ is the negative transpose of the matrix Sc 
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(14 9 Chapter 5). Thus. the two sets of equations summing currents or 

voltages to zero are not independent but are, in fact t completely 

dependent in that knowledge of one completely specifies the othero It 

now becomes apparent that either .!J3 or £c completely state all of the 

necessary mathematical information on the interconnections of the system 

of elements. 

Returning to Equation 3. 2 o 8 9 the indicated matrix multiplication 

can be carried out to obtain 

L3 +£c.!.c = 0' 

which can then be solved for £s to yield 

(3o2ol2) 

Similar operations can be performed on Equation 3.2.10 to obtain 

(3o2ol3) 

At this point 9 it is expeditious to rearrange the entries of the 

four vectors E,B, §c, f.B, and ,!c (with, of course, accompanying row and 

column changes in !J3 and £c) so that the grouping according to type of 

elements contained in Bl, B2 • B3, Cl, C2 9 and C3 is satisfiedo When 

this has been performed, Equation 3.2.12 can be written in the form 

and similarlyt Equation 3.2.13 becomes 

E,., = ST E 
.-.. - -B 

(3o2o15) 

The symbol i denotes the rearranged .9.c matrix, and E.,T is the transpose 
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of s. -
The entries of the four vectors have been properly ordered so that 

Equation 3.2.14 can be written in the following completely partitioned 

form: 

.!a1 ~l .2.J. 2 ~3 .!.c1 

~2 = - ~l ~2 ~3 .!c2 (3o2ol6) 

L33 ,2.31 ,2.32 .2.3 3 
I 
-C3 

Similarly 9 Equation 3. 2 o 15 becomes: 

T T T 
~l .2.11 ~1 .2.31 

E 
-Bl 

Ec2 = ST ST ST E 0 (3o2o17) 
-12 -.Z2 -32 -i32 

T T T 
!c3 .2.13 ~3 §.33 ~3 

From theee two partitioned equations. six matrix equations can be 

written. of which a typical one would be 

[L,l] = - [S . 
--.> -11 

(3o2ol8) 

These six equations I which describe mathematically the interconnection 

of the system, together with the terminal relations expressed by 

Equations 3.2.l through 3.2.6 1 can be manipulated to obtain a state= 

space model of the system. 

Slightly rearranged 9 Equation 3.2.4 can be written 



24 

Writing Equation 3.2.18 in a slightly more convenient form yields 

(3o2o20) 

Substitution of Equation 3o2o20 into Equation 3.2.19 leads to 

• 
£. ~l = -.2.11 .!.c1 - .2.12 .!.c2 - i13 .!.c3 ° 

Using Equations 30 2.2 and 302 0 6 gives 

0 

£. EBl = -.2.11 .!c1 

Rewriting the second line of Equation 3.2.17 

(3o2o23) 

Substituting this into Equation 30 2022 yields 

• 
£. ~l = -i11 .!.c1 

-S G,.. 
-12-... 

T 
~2 ~2 

-ii 3 .!. (t) (3o2o24) 

Substitution of Equation 3.2.5 into Equation 3.2.24 gives 
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• 
£ E.a1 = -.2.11 !c1 

-.2.,12 ~ 
T 

.2.12 E.a1 

.. s ~ 
T 

-12 ~2 §a2 

-.2.12 ~ 
T 

.2.32 .Y. ( t ) 

-i13 l (t) (3o2o25) 

The major problem remaining in obtaining an equation which will lead 

to the state-space form is the elimination of the variable f.82 o 

Writing Equation 3.2.1, for convenience, 

E.a2 = ~ .!a2 ° (3.2.26) 

Rewriting the second row of Equation 3.2.16 yields 

(3.2.27} 

Substituting, Equation 3.2.26 becomes 

~2 = -.& ~ l .!c1 

Substitution of Equation 312.2 into this yields 

-~ ~3 l (t) (3.2.29) 
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Rewriting the second row of Equation 3o2ol7 in the form of Equation 3o2o23 

gives 

Substituting Equation 3o2o30 into Equation 3o2o29 leads to 

~2 = -!a ~l .!c1 

-~ !i2 ~ 
T 

2.-12 ~l 

-~ ~2 Qc 
.· T 
~2 fB2 

-~ S G 
T 

-i2 -c ~2 £a3 

-~ !i3 !. (t) (3o2o31) 

Substituting Equation 3oZo5 into Equation 3.2.31 and collecting the terms 

in E.a2 on the left side results. in 

T 
E.a2 + !l3 ~2 §.c ~2 E.82 = 

T 
2.-32 Y. (t) 

-!a ~3 !. (t) 

The expression premultiplying fa2 can be written as 

(3.2.33) 

Taking the inverse of ,!1 (see Appendix A for proof of existence of this 



inverse) and calling the inverse ! 2• Equation 3o2o32 can be written in 

the form 

~2 = -R ~ ~l lea """'2 

-R 
-2 ~ ~2 £c ST 

-12 ~l 

-R ~ ~2 E.c 
T v (t) -e i32 -

27 

-R .:..e ~ ~3 f. (t) 0 (3o2o34) 

Returning now to Equation 3o2o25, substitution of Equation 3o2o34 

yields 

• 
£~1 = -i11 .!.c1 

-s ~ ST E 
-12 -12 ;;;.e1 

+!12 .9.c 
T 

~2 ~ ~~l !c1 

+s ~ sT R ~~2 ~ ST E 
-12 -22 -2 -12 ;;J:31 

+s ~ 
ST R R S E£ ST v (t) 

-12 -Z2 ""2 -i3 ""22 ~2-

+!12 ~ 
T 

~2 lk ~ §.z3 f. (t) 

"'.2.12 ~ 
ST v (t) 
-32 -

-s 13 I (t) 

At this time it is worthwhile to call attention to the character of the 

variables which appear on the right-hand side of Equation 3o2o35o Note 

that only four vector variables appear. Of these, two are the drivers 

of the system• .L (t) and 2., (t). The other two are the current vector of 
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the inductive elements in the chord set• .!.cl• and the voltage vector of 

the capacitive elements in the tree set• §a1• Note that the derivative 

of ~l appears on the left side of Equation 3.2.35 so that this equation 

is beginning to take the form of the state-space equations. 

Returning to the terminal equations of the elements, Equation 3.2 .3 

can be written in the form 

• 
LI = E,..1 --Cl -... 

( 3 0 2 0 36) 

By a process of substitution and elimination 9 which is exactly parallel 

to the one just completed (which will not be carried out here) s an 

equation in the same form as Equation 3.2.35 can be obtained. It is 

• 
.!! .!.c1 

T R ~~2 ~ ST E 
-~l -2 -12 =Bl 

T 
~ ~ ~2 ~ 

T v (t) -~l ~32 -
T 

-~l ~ ~ ~3 .!. (t) 

T 
+~l .Y. (t) (3.2 .37) 

Note that here, too, the only variables on the right side of the 

equation are the drivers• f. ( t) and .Y. ( t), and the variables, ft31 and 

.!cit as in the case of Equation 3.2 4 35. 

Since the only differential equations of the system were stated 

in Equations 3.2.3 and 3.2.4, and Equations 3. 2.35 and 3. 2. 37 are 

versions of these equations, these two matrix equations are the complete 
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set of differential equations describing the system. Since all 

variables on the right side of both equations are the same, they may be 

adjoined into a single matrix equation. In this equation, the variables 

on the left side are £a1 and fc1 ; and they appear only as the first 

derivative with respect to time. On the right side, the variables are 

Ei31 and .!,c1 and the drivers of the system 9 ;.!. (t) and Y. (tL This 

adjoined set of equations does 9 in fact, become a ~et of differential 

equations in normal form and are the differential· equations of the state-

space model. 

In Equation 3.2 .23 • part of the set of algebraic equations whi ch 

are a part of the state-space model was obtained. The remaining set 

is developed in the process of elimination leading to Equation 3. 2 . 37 . 

These equations are 

T 
= +~ i12 ~l 

G ST R --c ••22 ..fl 

T 
-~ ~2 11i ~ ~3 .f. (t) 

Since again the variables on the right of Equations 3.2.34 and 3.2. 38 

are the same• ~l • lei, Y. ( t), and .f. ( t), these two sets can be 

adjoined into a single matrix equation, which becomes the complete 

set of algebraics which are a part of the state=space model. 



The equations would be far too cumbersome to be meaningful if 

written out in the form in which they have been developed to this 

point I so this will not be attempted. It is sufficient that it has 

been possible to develop the state-space equations, both differential 

and algebraic, by matrix manipulations of the original terminal 

equations and the linear graph equations which represent the 

interconnect ions. 

3.3 Adaptation of the Formulation Algorithm for Co!IlPuter 

Programming. The state-space equations as obtained in the form of 

Equations 3.2.34, 3.2.35 9 3.2.37, and 3.2.38 are not at all well 

adapted for implementation by computer programming, particularly in 

the case of a limited-size computer. The arithmetic operations 

indicated are lengthy and require random access to portions of the S 

matrix. It is expedient to introduce some transformations and 

operations which will reduce this complexity. At the same time, a 

final form of the four equations is obtained which places in evidence 

the true state-space form of the equations. 

The approach selected is to search out repeated combinations of 

two matrices in the equations and to redefine these combinations as 

another single matrix. As a start, it is apparent in the equations 

that the following combinations appear frequently : 

R = R R_ 
-i ~ 

T 
2 = G,., S 

"""'"' """'2 2 

30 



T 
1 = ~ §.32 

Many other combinations could be selected, but it is most useful for 

the present to make step-by-step substitutions and redefine useful 

combinations as they appear, rather than making many substitutions at 
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the beginnin.go If Equations 3o3ol through 3o3o4 are substituted wherever 

possible, the modified equations become 

• T 
1 !.c1 = +111 ~1 

0 

£ E.a1 = 

T 
-~1 ! 

T -S R 
-121 -

~ l .!.c1 

f.i31 

lie2 2 v (t) -

+ST V (t) (3o3o5) 
-31 -

-s lei -11 

-s l 
-12 - Es1 

+§.12 2,. R 
~l 

I 
.::.Cl 

+~12 2 R .§.e2 1 E - .,... -Bl 

+Sl 2 R s 3 Y. (t) 
-2 - -22 -

+i12 Z, R ~3 l {t) 

-.§.12 1 v (t) -
-S I (t) 
-13 -
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E = -R S I 
.!:B2 - """21 .:.Cl 

-RS 1 
- -'22 El31 

v (t) -
-E. ~3 I <t) 

lc2 = +1~1 

-2 R s !c1 """'2. l 

-2 R s 1 ~l '""'2 2 

-2 R s 3 v (t) 
"""'2.2 -

-2 R s 
-23 

I Ct) 

+3 V (t) (3o3o8) -

Recalling also the definition of the matrix R as the inverse of 
-2 

the matrix R 9 which is defined 
-1 

.T 
R = U + S G~ S 
-1 """2 2 _,,., -2 2 

this can be defined in terms of the matrix combinations as 

R = U + ~ 2 2 
-1 -L 

At this point 9 define six new combinations: 

4 = S 1 
- -12 -

5 = S 2 
-12 -

6 = .§.12 3 
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2.. = ~2 ! 0 
( 3, 3o 10) 

Substitution of these into the Equations 3o3o5 through 30308 is routine 

and will not be presented hereo When this is performed, it becomes 

expedient to define four new combinations which appear frequentlyg 

14 = RS 
- --21 

15 = R 7 --
16 = R 9 - --

Following this substitution, further simplification requires the 

definition of a set of twelve matrices: 

18 = ST 14 22 = 5 14 26 = 2 14 - """'21 - - --
19 = ST 15 23 = 5 15 27 = 2 15 - -21 - - -- -
20 = ST 16 24 = 5 16 28 = 2 16 - """'21 - - -- -
21 = T 17 25 5 17 29 2 17 

~l = = - - - -- - -- (3o3ol2) 

Substitution of these combinations into the equations allows the 

definition of one final group of matrices which become the actual 

coefficients of the equations in their simplest formo These matrices 

are: 

34 = - 18 38 = 22 - S - - - - -11 

35 = - 19 + ST 39 = 23 - 4 - - -11 

36. = T 40 24 - 6 - ~ + .2.31 = -
37 = - 21 41 = 25 = S - - - - -13 
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42 = - 14 46 = - 26 - - -
43 = - 15 47 = - 27 + l - - - - -
Lp.1, : - 16 48 = - 28 + 3 - - - - -
45 = - 17 49 = - 29 (3.3.13) - - - -

The Equations 3o 3o 5 through 3o·3. 8 now become, in their simpler form 9 

• 
.£ ~l = ].§. .!c1 + ~ ~l + ~ ! (t) + .!!, .!. (t) il 

~2 = ~ .!c1 + .!!2. ~ l + ~ ! ( t) + ~ l ( t) 0 

The variables on the right of these equations are all the same; and 

similarly ordered, so that the equations can be adjoined into two 

matrix equations, which are the equations of the state-space model. 

The differential equations of the state model thus become 

. I r L I OJ 
[::~-

and the algebraic equation is 
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If the inverse of the LC matrix on the left of Equation 3o3ol5 is 

obtained, the final form of the equations in normal form can be 

developed by premultiplication of the two matrices on the right by this 

inverse. In the most general system this inverse must be obtained by 

regular inversion routines . An almost trivial situation pertains for 

' electrical circuits when there are no mutual inductances or capacitances . 

For this situation, these matrices are diagonal, and the inverse is 

trivial. A similar situation may arise for other energy systems . 

It is worthwhile, at this point, to draw attention to a characteristic 

of the matrices~ through~ of Equations 3.3015 and 3.3 . 16 which will 

be of value later. Review of the procedures utilized to generate these 

matrices reveals that the value of their entries depends only upon the 

entries of the interconnection matrix Sand the resistance values in the 

circuit. Therefore, the matrices on the right of Equations 3o3ol5 and 

3.3.16 remain fixed if the resistance values and topology of the network 

remain unchanged. This characteristic is used to advantage in the 

implementation of the computer program. Values of the capacitors and 

inductors and specifications of the voltage and current drivers can be 

changed without the necessity for regeneration of the model. However 9 

if any resistor, or the topology, is changed, it is necessary to 

regenerate the entire model. 

The system of equations defined in Equations 3o3 ol5 and 3o3ol6 can 

be solved to obtain what can be termed a "complete" solution for the 

system. In this process, a solution for either the across .£!:, through 

variable of every element in the network is obtained . The through 

variable (current) will be defined for every element in the ce=tree and 

the across variable (voltage) for every element in the tree . 
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However, frequently a particular variable of interest is not one 

of this set o It is sometimes possible to select a suitable tree and 

co-tree which will solve this dilemma. For instance, if the voltage 

across a particular resistor is of interest• it should be placed in t he 

tree if this is possible. However, this technique is not generally 

applicable. For instance, if the current through a particular capacitor 

is of interest, a real dilemma is apparent s i nce a capacitor must alway_s 

be placed in the tree, and the voltage across its terminals i s t he 

direct vari able in the state- space equations . 

In order to obtain a solution for the "complementary" vari ab les to 

those defined in the state- space model, it is possible to return t o the 

terminal equations of the elements, Equations 3.2 . 1 through 3o2o4o This 

has several disadvantages. First, Equations 3o2 o3 and 3o2o4 f or the 

storage elements are differential equations . Secondly , t h i s does not 

provi de a complete answer as these equations do not define t he currents 

f or voltage drivers or the voltages for current driverso 

There is a des i rable alternative to thi s process , defined by 

Equations 3. 2.14 and 3. 2.15, whi ch relate chord and bran ch through and 

across variables in terms of the S matri x . The solut i on for the state= 

variables defined by Equations 3. 3. 15 and 3.3 . 16 , toget her with the 

known values of the voltage and current drivers, provide a complete 

solution for all chord currents and branch voltages . Application of 

Equations 3. 2. 14 and 3.2. 15 provides a completely a l gebr aic method to 

obtain a total solution for all variables in the network o Re calling 

that all entries in the S matrix are o, +l, or - 1, thi s obviously is a 

s i mple and strai ght f orwar d process . For t his reason, the computer 

program provides the~ matrix during the soluti on process s o that a 
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total solution to the system can be obtainedo 

3. 4 The Determination of Initial Conditions. In order to obtain 

a definite solution to the differential equation of Equation 3.3.15~ it 

is necessary to specify a complete set of initial conditions . For this 

equation• the initial values of Ic1 and EB! and the t = 0 value of all 

drivers are required . These values will completely define all quantities 

on the right side of Equation 3.3 .15 so that the derivatives of the 

differential variables can be calculated. In the case of an electrical 

circuit 1 it is necessary to know the initial voltages of all capacitors 

and voltage drivers and the initial currents of all inductors and 

current drivers. 

However 1 in the case of many electrical circuits of interest~ this 

manner of specification of initial conditions is inconvenient or 

impossible. A typical example is encountered in the analys is of most 

electronic circuits. For these circuits. it is usually possible to 

specify only the value of all power supplies (which are elements in 

J.. ( t) and 1 ( t) ) and signal sources at t = 0. The assumption is then 

made that the circuit has achieved steady- state with these drivers 

applied. From these specifications, the analysis program should 

generate the steady- state solution for all variables in the network . 

The capacitor voltages and inductor currents from this solution then 

provide the normal set of initial conditions for the differential 

equations. From these initial conditions, the time- solut ion to the 

system can proceed. 

With the knowledge that the network is in steady- state i Equat ion 

3.3.15 can be used to obtain the complete solution. The specificat ion 
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of steady-state implies that the derivatives of all variables must be 

equal to zero. The only derivatives of consequence are those defined 

by Equation 3.3.15, since all others are linear combinations of these. 

Equating the right-hand side of Equation 3.3.15 to zero leads to 

t:~rs-J tI::~ + 
t~s~_a:_j t~ (t~0

-] 
= 0 • (3.4.l) 

38 I 39 EB lo 40 I 41 I (t) 
0 

where the o subscript is used to denote that these are the steady=state -
t = 0 valueso 

The inverse of the matrix composed of submatrices 34 9 35, 38• 39 ..................... 
must exist; since it has previously been established that a solution to 

the system exists. Therefore, Equation 3.4.l can be written in the 

following form: 

-1 

[~:o_l _Ja~r~J 
[EBlo L38 I 39 

u~r~J 
L4o 1 41 

Solution of this equation yields the steady-state value of the inductor 

currents and capacitor voltages from the known values of the voltage 

and current drivers. 

The formulation program provides the matrix on the right of 

Equation 3.4.2 for use when this method for determination of initial 

conditions is required. 



CHAPTER IV 

ADAPTATION OF THE ALGORITHM FOR SYSTEMS 

CONTAINING NONLINEAR ELEMENTS 

The algorithm for formulation of the state-space equations, as 

outlined in Chapter III, is based on a linear system model . Cognizance 

of this must be maintained in any attempt to apply the algorithm to the 

solution of a system containing nonlinear elements. Two basically 

different ways to approach this problem seem worthwhile. 

The first method consists of representation of the nonlinear system 

by a sequence of piecewise linear systems. Step by step, as the 

solution advances, the coefficients of the system equations are re

calculated to conform to the nonlinear constraints. Such a procedure 

assumes that between steps the system is linear and the coefficients 

remain constant. Therefore, it is necessary that step sizes be kept 

small enough that this assumption is not violated. 

A second method consists of representation of the nonlinear elements 

by voltage or current drivers which are functions of variables in the 

system. If all other elements in the system are linear, the coeffi cients 

of the state-space equations, as formulated by the algorithm, remain 

constant. Such a procedure, however, involves more than a simple step=by

step evaluation of the dependent driver. Any change in the value of 

this driver is propagated throughout the entire network and influences 

the value of all variables-- including the one (or more) upon which the 

39 
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driver is dependent. It is, therefore, necessary to utilize an iteration 

process at each step in the solution to arrive at a consistent value 

for the dependent driver. The success of this method hinges entirely 

on the convergence of the iteration process. 

A more useful analysis scheme would include both of these methods 

so that the broadest possible class of nonlinear elements could be 

treated. For this study, a combination of both methods has been explored o 

The procedures involved in the implementation of these analysis 

methods are relatively straightforward. However, in actual use they 

involve a vast amount of repetitive numerical evaluation o For this 

reason, they are completely unsuitable for desk calculation for anything 

but the very simplest networks. However, the procedures involved are 

very methodical so that their implementation by computer programming 

is simplified. This has been the aim of this work--to develop methods 

suitable for computer programming with no consideration given to hand 

calculation. 

'+.l Background. The number of computer analysis programs for 
I 

nonlinear systems has been relatively limited, as noted in earlier 

chapters. Undoubtedly, many people have performed analyses of specific 

nonlinear systems of many types. However, such work has not been 

published to any extent so that little can be learned from these efforts o 

They also tend to be very specialized for a given type of nonlinear 

element. 

The only published nonlinear analysis program of general nature 

appears to be the General Motors DYANA program o In this program the 

models generated are not in state-space equation form, and linear graph 
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concepts are not used. However, the method is based on piecewise linear 

analysis in which the coefficients of the system are recalculated at 

each step to conform to the nonlinear constraints. In this respect, 

the DYANA program lends support to the piecewise-linear method of 

analysis. 

The other well-known analysis programs--PETAP and NET-- are both 

based on the same analytic procedures. In these programs, the system is 

separated into two parts. Each part is represented by a set of 

differential equations--one linear, the other nonlinear. Each set is 

integrated separately. The solution procedure alternates between them 

so that, in effect, the solution for one provides initial conditions 

and forcing functions for the solution of the other. No iteration 

processes are involved• but it is necessary to make many small steps in 

the integration of the nonlinear system for one large step in integration 

of the linear system. This process, in effect, substitutes for the 

iteration process. Because of these methods, the PETAP and NETl programs 

are quite different from the methods proposed for this study . 

However, it is felt that the solution methods of PETAP and NETl do 

support the general technique of the use of driving functions which are 

functions of variables in the system, rather than time alone. Also, 

both programs utilize iteration methods of the general type proposed 

for this study for evaluation- of the initial conditions in the network . 

'+,2 Inclusion of Nonlinear Elements in the State-Space Model. The 

incorporation of nonlinear storage elements--the inductors and capacitors 

in an electrical network--follows the first method outlined in the 

preface to this chapter. The process of recalculation of the coefficients 
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of the system equations is made quite simple because of the form of 

Equation 3.3.15. 

The parameters associated with all storage elements appear as 

entries in the LC matrix premultiplying the left side of Equation 3o3. 15 o ....... 
In the case of a system with only linear storage elements, the entries 

in this matrix are constant. In this case, the matrix inverse can be 

developed once at the beginning of the solution process and will remain 

unchanged. 

In the case of nonlinear storage elements, the entries in the LC 

matrix which correspond to these elements will change o It is then 

necessary to obtain the inverse of this matrix for each step in the 

solution process. 

In either the linear or nonlinear case, if no mutual inductances 

or capacities are involved, this is a trivial matter, since the matrix 

is diagonal. In the more general case, it will be necessary to obtain 

a full inverse. 

The model, as presented in Equations 3.3.15 and 3.3 016 9 is part i cularly 

adapted to inclusion of nonlinear storage elements since the matrices 

on the right of these equations remain unchanged. 

The inclusion of nonlinear resistances is not so straightforward as 

the inclusion of storage elements. Because of the way the model is 

formulated, a change in the value of a resistor will require complete 

recalculation of the matrices on the right of Equations 3.3 . 15 and 

3.3.16. This is a lengthy process, since it involves going back through 

the entire formulation procedure at every step in the solution . 

For this reason, no attempt was made to include nonlinear 

resistances directly into the system equations by direct recalculation 
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of coefficients. Instead• these elements were included by use of the 

second method outlined in the preface to this chapter. Each 

nonlinear resistor is represented by a dependent voltage or current 

driver. The choice of representation is not restricted, and either 

may be used. 

The drivers representing nonlinear resistances become a part of the 

vector of drivers symbolized by V (t) or I (t). It is necessary to - -
implement an accompanying iteration process, as outlined previously. 

Topologically, these drivers are treated like any other drivers. The 

evaluation of the driver is carried out by a nonlinear "side-equation" 

which is a polynomial function of fourth degree. 

The inclusion of active nonlinear elements, such as tubes or 

transistors, is little different from the procedure for nonlinear 

resistances. They are represented in the circuit by dependent drivers 

and are treated the same as those for nonlinear resistances. 

In addition to the polynomial side-equation which is generalized 

to allow any variable to be the controlling variable, other models are 

included. For the representation of a vacuum tube, it is necessary to 

include a driver which is a function of two other variables in the 

network, rather than just one. A transistor is treated in much the 

same way, except that its model is comprised of two dependent driversi 

each of which is a separate function of two variables. A model is 

also included for the semiconductor diode, which is an exponential 

function of one variable. These models are all represented by side 

equations and require the use of suitable iteration processes for the 

determination of a consistent solution. 

In summary, then, nonlinear elements are included in two ways ~ 
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(a) nonlinear storage elements are represented on a piecewise linear 

basis by step-by-step changes in equation coefficients, and (b) nonlinear 

resistors and active elements are represented by dependent drivers 

which require a suitable iteration process to obtain a consistent 

solution. 

4-. 3 Model Specifications for Selected Elements. Having selected a 

basic method of representation for the elements of interest, it was 

necessary to de-termine specific equations for each one. Some guidance 

was provided by the ideal models derived on theoretical grounds . It was 

discovered that most such models are, in fact, poor representations of 

the elements for large-signal (global) conditions. Models which have 

served quite adequately for all small-signal (local) representations 

may fail completely when subjected to a wide range of variation of the 

terminal variables. 

The representation of an iron-core inductor provides a good example . 

It is common to base the representation of such a device on the B-H 

curve, which is directly related to the flux-current curve . Polynomial 

approximation of this curve by curve-fitting with the least- squares 

error criterion is commonly employed. In some cases, it is useful to 

utilize fractional-power representations or an inverse polynomial (Le., 

fit the H-B curve). 

However, for the case at hand, it is necessary to obtain a functional 

relationship between the value of inductance, L, and the current, not 

between flux and current. There is a direct relationship involved, 

evidenced by the following: 

= dA _ dA di _ L 2.!. 
cit - dT cit - dt t 
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so that 

d>. 
L = di (4.3.1) 

It would seem that if a functional approximation for the flux-current 

curve ( >. versus i) could be obtained that it would be possible to 

perform an analytic differentiation with respect to i and obtain a 

suitable representation of the inductance-current relationship. 

A number of trial representations were attempted using the least-

squares criterion for various polynomials, inverse polynomials, and 

fractional power series for the B-H curve of a common magnetic core 

material, From these models the coefficients were substituted into the 

corresponding equation for the inductance-current relationship. The 

results were completely unsatisfactory and yielded very poor 

representations of known L-i relationships. 

Several alternate functional relationships were tested, and one 

was encountered which provides a realistic evaluation of the L-i 

curve from curve-fitting applied to the B-H curve. 

The equation of the useful model is of the form 

>.. = A tan- 1 ( !, 
c 

) + B [tan-l ( !, )]2 
c 

The constant C must be selected by prior inspection of the flux- current 

curve, since it is not possible to determine the argument of a 

tran·s cendent al function by least-squares criterion. However, once C 

is selected, the values of A and B can be determined by curve-fitting. 

The choice of C by inspection is not difficult. Since the 

arctangent approaches ~/2 as the argument approaches infinity 9 ~/2 

(scaled) represents the saturation condition. For argument of 1, the 
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arctangent has value w/4 or 1/2 the saturation valueo Thus, it is 

only necessary to pick C so that (i/C) = 1 for the current required 

to produce 1/2 saturation flux. In those materials where complete 

saturation does not occur, it is suitable to select the value of current 

where downward inflection of the flux-current curve begins, which 

indicates the start of partial saturat'ion. 

Primary interest still lies in the L-i curve; which can be deduced 

by differentiation of Equation 4.3.2: 

d). 
L = '"'!'"I"= di 

C [A + 2B tan- 1 ( 
12 + c2 

i - )] c 

Values of A, B, and C obtained for Equation 4.3.2 and then used in 

Equation 4.3.3 provide a very suitable representation of the L-i 

relationship. Appendix B contains an illustrative example and sample 

curves. 

A second example of the failure of a theoretical model under 

large-signal conditions was encountered in treating the vacuum triodeo 

The ideal model is: 

where K, µ, and n are constants of the model. On theoretical grounds , 

the value of n is 1.5 and should remain constant. However, it is well 

known that the value of n may lie anywhere in the range of 1.2 - 1. 8 

for practical devices. 

This model of the vacuum triode has served for many years as a 

sound and useful basis for small-signal analysis of electronic circuits . 

However, an exhaustive investigation of this equation revealed that it 

failed completely to provide a realistic representation of the 
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large-signal characteristics of the device. It became apparent that 

the exponent• n • is not a constant but is some obscure function of both 

ec and eb• No way was found to determine what this functional relationship 

was or might be. 

A search for an acceptable representation revealed that a two-

variable power series• including all powers and cross-products up to the 

third degree in each variable 1 was adequate. The constant term was 

deliberately omitted from the series so that the plate current would be 

zero when both ec and eb were zero. This model lends itself very 

directly to least-squares curve-fitting, and the results are excellent 

over the entire operating range of the device when an adequate number 

(around 150) of data points are used, 

Some difficulty was experienced with this model when attempts were 

made to extend it to represent the region of positive grid voltage . 

In this region, for low values of plate voltage, the curves of constant 

grid voltage are concave downward. For all other regions 9 the curves 

are concave upwards. It was found that this situation could be 

accounted for by multiplying the entire series representation by a 

factor of the form 

eb 
ib = [power series] E 

eb + 

where E i .s a constant selected by inspection prior to the curve- fitting 

process. The choice of Eis somewhat influenced by knowledge of the 

expected region of operation. Several trial-and-error attempts were 

usually necessary before an acceptable result was obtained. 

Appendix C contains more information on this model and several 

examples of the large-signal characteristics that it yields. 



One additional nonlinear model of considerable interest was 

incorporated. A piecewise linear model consisting of two straight 

lines forced to pass through a specified common point was included. 
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The linear relationship used depends upon whether the argument variable 

is greater or less than common point value. This two-part piecewise 

linear model was included for preliminary test of the concept of piece

wise linear representations in analysis procedures of this kind. It is 

possible that multipart I piecewise linear models can be extremely useful 

in representing devices for which other representations cannot be foundo 

With this idea in mind, the simplest form was included for evaluation. 



CHAPTER V 

PROGRAM IMPLEMENTATION OF FORMULATION ALGORITHM 

AND NONLINEAR ANALYSIS 

In the interest of widest possible distribution and application, 

and the easiest understanding of the programming methods, it was decided 

that the entire program should be implemented in the FORTRAN IV 

language. By this means, none of the techniques or developments would 

be restricted to any one machine, and the programming time and effort 

could be greatly reduced, The price paid is in terms of operating 

efficiency and efficient machine utilization. With the exception of 

the work by Reid at Michigan State (8), all other programs have been 

implemented in symbolic or machine language and distribution and use of 

the ideas and techniques by others is thus seriously restricted. 

In the interest of handling at least a moderately complicated 

system (electrical circuit), it was decided to write the program so that 

sixty elements could be included. Ten elements of each kind as described 

in the six Equations 3.2.1 through 3.2.6 can be included in the circuit o 

For an electrical circuit, ten inductors, ten capacitors, ten resistors 

in the tree, ten resistors in the co-tree (thus twenty resistors, total), 

ten voltage drivers, and ten current drivers are allowed. The nonlinear, 

dependent storage elements are counted as part of these categories; and 

the nonlinear drivers are includ~d as part of the vector of voltage and/or 

current drivers. 
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The restrictions as to the number of elements were determined by 

the available storage in the computer. If implemented on a larger 

machine with more storage. the number of elements can be increased by 

merely altering the appropriate DIMENSION statements in the FORTRAN 

program. 
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5.1 Programming the Formulation Algorithm. The formulation 

algorithm• as developed in Chapter III. is designed for direct computer 

implementation. The operations are carried out in the manner specified 

by the definition of the numbered-matrix combinations. The matrices. 

as defined by these steps. are created one by one in simple matrix 

multiplications or additions; and the result is i~mediately stored on 

tape for later recall as required. While relatively inefficient and 

time consuming• this process was forced by the lack of adequate memory 

storage in the computer. By this technique. during the formulation 

stage. the computer is required to have in memory only three matrices-

the multiplicand• multiplier. and the product. These are 10 x 10 arrays, 

as determined by the desire to handle up to ten of any one of the six 

kinds of elements. 

In order to avoid excessive tape manipulations. the various 

operations are not carried out in the exact order in which they are 

defined in Chapter III. As a preliminary planning aid• a flow chart 

outlining this process. shown in Figure s.1.1. was constructed. This 

chart provides a guide for planning an orderly execution of the various 

processes. It was also necessary to build up a history chart of the 

status of each tape machine at each step in the process so that the read, 

write, backspace. and rewind operations would be completed in proper 
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Figure s.1.1(a). Generation Process, Phase 1, of Formulation Program 
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Figure 5.1.l(b). Generation Process, Phase 2, of Formulation Program 
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order, Experienced programmers are quite aware of the need for such 

planning and record-keeping, and it is mentioned here only as a 

reminder and word of caution to any inexperienced programmers who might 

attempt to write a similar programo 

A serious complication for the orderly execution of the formulation 

process by FORTRAN programming rests on a peculiarity of the Fortran 

system itselfo While the program is intended to be able to handle all 

six types of elements, it is possible that in any given network there 

may be no elements of a given type or types. For instance, a particular 

network may not include any inductorso In the equations of the system 9 

this means that a number of the matrices involved do not exist--i.e., 

they have at least one zero dimension. The operations on all of these 

matrices are handled by DO-loops in the Fortran language. However 9 

because of the particular way in which DO-loops are implemented, entry 

into the loop with a zero upper limit results in one execution of the 

DO-loop. This is a quite erroneous operation, since it is performed 

on an array which does not exist! In order to allow for the absence 

of any one of the particular types of elements, it is necessary to test 

for this condition before entering every operation which involves a sub= 

matrix whose size is determined by the number of such elements. 

This process "cascades" down through the program. For example, 

the lack of inductors in a network reduces the .!.ci vector to zero 

length. This, in turn, implies that there are zero columns in the s11 , 

S21 • and S 31 partitions of the .2. matrix and zero rows in their 

transposes. Thus, any product which involves one of these six sub-

matrices cannot exist. In this particular case 9 the matrices l.!!'., ~· 

19 9 20 9 21, 22 9 26 9 34, 35 9 36 9 .37 9 38, 42 9 and 46 do not exist • ......... _ .... ...., ___ ............. _ ................. 



Similar results occur for other conditions-- and become even more 

complicated when two or three types of elements are missingo 
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It was arbitrarily decided to restrict this condition and require 

that every network have at least one resistor in both the tree and co

tree. This implies that the submatrix ~ 2 will always exist o This is 

not a very desirable restriction and occasionally requires the addit i on 

of an unwanted resistor to a network. The influence of this resist or on 

the solution can be made negligible, since it can be made quite large or 

quite small, depending on whether it is in the co- tree or tree . This 

situation will normally ari se only when the elements are complete ly 

idealized. If losses in the storage elements are accounted for with 

resistors, the need for extra resistors will not arise o 

The formulation program is a single- line program so that a 

conventional functional flow chart has little meaning . The only 

decisions and branching involved are those necessary to bypass operations 

when certain element types are missing, as noted previously . However a 

the order in which the various matrices are created and placed on the 

tapes during the program operation is of interest . An alternative form 

of flow chart to exhibit this process was developed to clarify the 

program manipulations. This flow chart is presented in Appendix D. 

The program makes extensive use of subroutine subprograms t o 

perform the actual matrix manipulations and the numerous read and write 

operations. This is advantageous because of the repetitious nature of 

the operations. However, this technique was not carried to an ext reme j 

and a number of similar subroutines are used with different names f or 

the mnemonic value of those names in clarifying program operat i on o This 

technique results in reduction of the main program to the role of an 
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"executive" routine which calls the subroutines in proper sequence 0 

The main program also performs the tests required for bypassing of the 

appropriate routines when element types are missing from the circuit, as 

mentioned previously. 

Though the extensive use of subroutine subprograms greatly reduced 

the program storage requirements, the large number of operations to be 

performed far exceeded the capabilities of the machine that was available o 

To overcome this, it was necessary to break the formulation program into 

four phases called MAKES, MATRIXl, MATRIX2, and MATRIX4o MAKES is 

specialized and performs the function of reading from cards the entri es 

in the S matrix and writing onto tape the various submatrices required 

in later steps and in the execution phase for the time solution o The 

remainin g three phases perform the actual formulation process, leaving 

the necessary matrices for the system on three tapes, as follows i 

Tape Unit #4 - Matrices 42 through 49 for the solution of 

Equation 3. 3. 16, 

Tape Unit #5 - Matrices 34 through 41 for the solution of 

Equation 303.15, 

Tape Unit #6 - Matrix of Equation 3.4.2 for the development of 

the initial conditions from given t = 0 driver 

values. 

These matrices are adjoined to yield equations in the following form i 

• LC X =AX+ BE --
Y =CX+DE --

= A- l B E 
--o ( 5 0 lo l) 



5 ,2 Pro1ramming ~he Time Solution Including Noniipear Elementso 

With the matrices of the equations of the state-space model formulated 

and written onto tapes• the time'."'solution phases of the program can be 

initiated. Using the techniques outlined in Chapter IV, the following 

nonlinear models are implemented: 

( a) Nonlinear• dependent L and C values described by a polynomial 

equation of fourth degree• 
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(b) Nonlinear L values described by a two-term power series in the 

arctangent, as shown by Equation 4.1.2 1 

(c) Nonlinear R values (dissipation elements) to be described by a 

polynomial equation of fourth degree as a dependent voltage or 

current source• 

(d) Nonlinear dependent sources to be described by a polynomial 

equation of fourth degree with any variable in the system as 

the controlling variable, 

(e) Nonlinear dependent sources to be described by a two-variable 

power series of nine terms for simulation of a vacuum-tube 

triode plate circuit as a dependent-current source, as 

explained in Appendix c, 

(f) Nonlinear dependent sources to be described by the semiconductor 

bV diode equation of the form i = Is (e - 1), where Is and bare 

constants peculiar to each model or device, 

(g) Nonlinear dependent sources to be described by a pair of piece-

wise linear equations, 

y = a1 x + b 1 · 

for x < x 
0 

(5.2.l) 
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with 

Provisions are necessary for the iteration of the initial conditions 

when nonlinear sources are included. These are implemented to allow 

for either the specification of initial conditions on the storage 

elements and time-dependent sources, or the alternative scheme for the 

solution of 'the entire system with only sources specified to their t = 0 

value. 

The most desirable situation would be to have all of these features 

included in one program so that the user could call upon any or all of 

them for any one system or circuit. However, the restrictions of 

limited core memory in the available computer ruled out such a possibility. 

The only alternative was to write several similar integration-iterat ion 

programs with one or more of the models included in each. These programs 

are preceded by a routine which picks the proper program for solution--

or rejects the circuit if an invalid combination is encountered . 

As the program now stands, there are three distinct time-solution 

programs. The polynomial model for nonlinear inductances or capacitances 

and the iron-core inductor model are incorporated into each of these 

three programs. This allows nonlinear storage elements to be present 

in all circuits. 

The first time-solution program has, in addition, the nonlinear 

dependent sources of the polynomial type. Iteration of the nonlinear 

elements is performed by a stepwise progression toward the convergence 

value. The user provides suggested values for this step size as input 

data. At each step in the iteration, the dependent variable is 
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calculated from the value of the control variable. This calculated value 

is compared with the value of that variable in the circuit solution. If 

the circuit value is too low, a step upward is made, and the solution for 

the entire network is reevaluated. The dependent variable is again 

recalculated, compared, and so on. If the step takes the controlled 

variable too far so that the calculated value is on the opposite side 

a~er the step, the step size is reduced by a factor of ten; and a step 

backward is taken. This iteration is continued until the convergence 

test indicates that the percentage change in the length of each of the 

six vectors of variables (the rom.s. value), such as EB2 , is less than 

some specified convergence factor. This terminates the iteration 

process, and the program passes on to the next integration step after 

setting the value of the step size in the iteration process upward by a 

factor of ten. This is necessary in order to force a new iteration to 

convergence a~er the integration step has been taken. Otherwise, the 

steps at the beginning of the next iteration are likely to be so small 

that a false indication of convergence will be obtained. 

This iteration method is obviously almost an "exhaustive search" 

technique. It has a tendency to be rather slow, requiring many 

iteration steps if the changes in the circuit are rapid from step to 

step of the integration. This was improved somewhat by inclusion of a 

routine to increase the step size if more than ten steps are taken in 

one direction without passing through the convergence value . This same 

iteration method was tried with the other nonlinear sources but did not 

perform we 11. 

Most of the shortcomings of this method of iteration lie in the 

convergence test. The r.m.s. sum provides a check of over-all convergence 
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in the whole network. However, it is very insensitive when the elements 

in any one vector have a wide range of magnitudes--the r.m.s. sum of a 

100-unit variable and a 1-unit variable is little influenced by changes 

in the 1-unit variable! 

The failure of this method for the vacuum tube model was caused by 

the large values of resistors common in such circuits. Resistors of a 

million ohms are not uncommon. With such resistance values in the 

circuit, an arbitrary step of 1-10,000-th of an ampere in current through 

this :resistor :results in a 100-volt jump in the voltage across the 

resistor. Such changes frequently resulted in voltage values outside 

the valid region for the vacuum tube model. When this occurred, the 

solution went into violent oscillation or diverged. This could sometimes 

be avoided by putting limits on the allowable range of the model, but 

this became unduly cumbersome and was not fail-safe. For the straight 

polynomial model of dependent sources, this step-by- step iteration 

converges for tremendous ranges of coefficients in the polynomial and 

is quite useful for this reason. 

The second time-solution program includes the two-variable vacuum 

tube model (e) and the piecewise linear model (g), in addition to the 

nonlinear storage elements. The iteration method used in this program 

is called the "modified method of successive approximations" by Ledley 

(3) and McCracken and Dorn (5). The normal method of successive 

approximations• where 

~ + 1 = f (Xn) 

fails to converge for If' (~)! > 1, where f' (Xn) is the slope of the 

function f (x) at xn• The modified method achieves convergence over a 
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much wider range by the process 

(5.2.3) 

where q is given by 

q = m/(m - l) , (S.2.4) 

and mis given by 

x_ - x 
-.i n - 1 

Convergence for this iteration process is tested by evaluating 

error 

and continuing the iteration until this error term is less than some 

specified convergence factor. This iteration method has proved to be 

very useful for the vacuum triode model. The only failures have occurred 

in circuits which are inherently very unstable circuits, such as 

multivibrators. The response of such circuits, when they are idealized~ 

is actually discontinuous. These discontinuities result from ignoring 

small inductances and stray capacities which are present in the 'actual 

circuit. 

The third time-solution program includes the semiconductor exponential 

model (f), along with the nonlinear inductor and capacitor models. The 

iteration method used in this program is an adaptation of the Newton= 

Raphson method for finding the zeroes of a function. This method is 

used in the PETAP and NET programs• but a modification has been developed 

and tested which is worthy of mention here. 
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Shown in Figure 5.2.l is a sketch of the exponential characteri sti c 

curve of a semiconductor diode and the straight line which repr esents 

the terminal characteristics of a linear circuit external to the di ode . 

In the analysis of a system containing more than one semiconductor diode 

or other nonlinear element, the assumption of linearity for the external 

circuit for any one of the diodes is questionable. However, dur ing the 
~ 

iteration for one of the diodes, the remaining nonlinear element s are 

represented by fixed sources. Thus, on a piecewise basis it is val id to 

represent the circuit in this manner. The straight- line r epresentation 

of a complicated linear circuit is based on the Thevenin equival ent 

representation. 

v 

Tangent Line 

Diode Curve 

I '. 

Figure s.2.1. Current-Voltage Curves f or Newton-Raphs on Method, Region 1, 
v > 0 
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The equation defining the semiconductor diode represents the current 

as a function of the voltage across the device so that it is represented 

by a dependent-current driver. However, the iteration process being 

considered seeks to obtain a new value of i, rather than the controlling 

variable v, so that the normal diode equation 

i = I ( ebv - 1) s 

must be written in the inverse form 

1 Is + i 
v = -b ~n ( ) 

Is • 

which is the equation of the diode curve of Figure 5,2,1. 

(5.2.7) 

(5.2.8) 

At then-th step in the iteration, the current for the driver 

representing the diode has been set at in• For this value of current, 

the external circuit yields a voltage v~, as illustrated by the point 

(v', i ). For the diode , this current results from a voltage of vn, as n n 

represented by the point (vn• in)• Obviously, for the case shown, these 

two values are widely different so that additional iteration is required 

to approach the simultaneous solution represented by the point (v0 , i 0 ) 

at the intersection of the two curves. Utilizing the Newton-Raphson 

method of iteration, the tangent to the diode curve is constructed 

through the point (vn, in)• The value of current at the intersection 

of this tangent line and the external circuit line is taken as the value 

for the next step in the iteration. Thus, for the (n + 1) iteration, 

the current generator is set to the value in+ 1 as shown in the figure, 

and the process is then repeated until suitable agreement is achieved 

in the two values of voltage. 

For a truly linear circuit, the slope of the line representing the 
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circuit is constant 1 as all resistors and passive elements in the circuit 

remain fixed. For such a circuit• it is possible to determine at the 

beginning of the analysis the value of this slope and use it throughout 

the analysis. The only variable of the representation of the external 

circuit is then the intercept, E1 with the v-axis. However, the case 

is not so simple when nonlinear elements are included in this external 

circuit, as they introduce changing values of resistance. Thus, at any 

one step in the process I the external circuit can be considered linear 

on a piecewise basis; but, from step to step, allowance must be made for 

change of not only the intercept but the slope of the line. To carry 

out the nonlinear analysis, some method must be devised for determining 

this line at every step in the iteration. 

For this purpose, it is convenient to determine the equation of the 

line by finding two points on it. One point is already known--(v' • i ). n n 

An additional point could be obtained by temporarily setting i to zero 

and recalculating the external circuit to obtain the intercept E. 

However, since it is assumed that the circuit is only piecewise linear, 

it is desirable to change the value of i no more than necessary to 

obtain this point. Thus, the value of i is changed only a small amount, 

Ai• to obtain the second point on the line. With this information II the 

equation of the line can be obtained. · The tangent line to the diode 

curve can be determined, and their intersection then gives the new value 

of i, in + 1• The equations utilized in this iteration process are 

developed in Appendix E. 

The basic Newton-Raphson method just outlined is utilized in the 

PETAP and NET programs• except for the additional feature of reevaluation 

of the slope at each iteration, which is original to this study. 
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The iteration process just presented is valid only for values of 

current and voltage greater than zero. This is graphically illustrated 

by Figure s.2.2, which is the situation for negative voltage applied to 

the diode. 

v 

i 

Figure s.2.2. Voltage-Current Curves for the Newton-Raphson Method, 
Region 2 • v < O 

Again, the new iterate value of i is assumed to be the intersect ion 

point ( vn + l' in + 1), However• for large values of negative voltage 

applied to the diode, the current approaches asymptotically the value 

-I and under no circumstances can exceed this value. It is obvious s 

from the illustration that the value in + 1· represents an impossible 

current for the device. This same failing arises in the iteration 

process utilized in PETAP and NET. The procedure selected by the writers 

of these programs to overcome this failing is to arbitrarily set in+ 1 



65 

to some fraction of -Is and then to,improve this by the method of 

successive approximations. In most realistic situations, this process 

will successfully converge to an acceptable value of i. However, in 

certain cases the convergence is very slow, and in some cases it has 

failed completely. 

For the purposes of this study, another Newton-Raphson type of 

iteration process for this situation was developed, The basis for this 

process is the interchange of the roles of v and i in the iterationo 

This is illustrated in Figure 5,2.3• which is essentially the same as 

Figure s.2.2 except that the v and i axes have been interchanged. In 

this process, a new value of v will be iterated, rather than io However, 

since the element representing the device is a current driver, it is 

necessacy to convert this new iteration of v to an equivalent i, which 

is accomplished by use of the diode equation 

• = I (e bvn + l - l) 
1n + l s 

This process is illustrated in Figure s.2.3, and the equations are 

developed in Appendix E. This iteration method seems to offer con-

vergence as positive and rapid as that for the positive values. 

Theoretically, since there are no inflection points or double inflection 

points in the diode equation, it should converge for all values without 

any trouble. In this respect, it is believed to be superior to the 

method of successive iterations. 

Since there is a complete change of iteration methods as the 

voltage crosses the axis I it is necessacy to perform tests before 

attempting the i terationo A pathological cas-e arises when I for instance 9 

the value of current is still at in• but the time-dependent drivers 
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have changed sufficiently for the voltage across the diode to be of 

opposite sign. Neither iteration method, as implemented• will function 

satisfactorily in this case. This problem was alleviated by setting 

the value of i to zero when this situation i~ detected and restarting 

the iteration. This technique has proved to be satisfactory, but 

further testing may reveal that other measures are necessary. 

v n+l 

Figure 5.,2.,3. Modified Voltage-Current Curves for Newton-Raphson Method© 
Region 2, v < 0 

Convergence for this iteration process is tested by the same method 

as for the method of modified successive approximations, as illustrated 

by Equation s.2.6. 

The over-all logic of the three time-analysis programs is basically 

the same. The differences in them are principally in the iteration 

processes. The flow diagram of the major logic operations is illustrated 



in Figure 5,2,4. 

Each of the analysis programs is actually divided into two 

phases: the first phase loads the data; the second is the actual 

integration-iteration phase. Even so, inadequate memory capacity 

forced the optimization of every process to the absolute minimum of 

data storage and operating instructions. Many desirable features were 

left out because it was impossible to implement them in the available 

memory. 
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No memory is available for other than the bare minimum of output 

writing operations. A complete total solution to the network is 

obtained after every step in the integration-iteration process, and 

this total solution is written in one logical record (in internal 

machine format). This output record is accumulated on tape; and at the 

completion of the analysis phase, a separate output program is called 

into operation to translate this data into acceptable printer output o 

Any part or all of the variables may be written, and other special 

processing may be done at this time since the total solution is 

available. Such special calculations as instantaneous power of any 

element• integration of average powers, and so on, may be incorporated 

into this output phase. It is felt that this is actually a des i rable 

mode of operation. 

One special memory-saving technique which is utilized in this 

program is worthy of mention. The~ matrix, in its direct and transposed 

form, is a necessary part of data required to generate the total 

solution, as outlined in Section 3,3. This matrix is a 30 by 30 matrix 

when the program is implemented for ten elements in each of the six 

categories. However, the contents of the ~ matrix consist only of 



Evaluate LC 

Calculate EBl and Ic1 
Using A· 1s . 

Calculate Total 
Solution 

Iterate One Step 
Dependent Drivers 

Integrate One Step 

No 

Yes 

Error 

Figure 5.2.4, Flow Chart of Time-Solution Programs 
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entries o, 1 9 or -1. This matrix is used in the calculation of 

floating-point numbers. If stored in its entirety with the normal 

eight digits of floating-point precision, it would require 9 9000 di gi ts 

of storage. For computation, the only entries of significance are the 

non-zero entries. A survey was made of the S matrix for some 25 typical 
..... 

circuits, and it was found that the content of non- zero entri es was 50 

percent or less . This is, of course, entirely determined by the 

relative number of nodes and elements in the network. On this basis 9 

considerable memory could be conserved by storing the subscript f or 

each non-zero entry and the +l or - 1 value in integer form o As compiledi 

the program uses an integer- number field size of only three digits so 

that the storage of these three entries requires only nine di git s . At 

the time of computation, the integer number is converted t o floating 

point. The matrix multiplication is performed using the stored sub-

scripts to multiply only the non- zero entries . In addition to savi ng 

considerable core space for data storage , the running time was materially 

improved by the reduced number of arithmeti c operation requir ed. 

Provisions are made in the DIMENSION statements for stori ng 125 non= 

zero entires, which should be adequate for most circuits . 

In general, a philosophy of minimum input data has been followed 

throughout the program. All data storage areas are init i alized to 

zero, and only non- zero entries are read as input data. Thi s technique 

reduces the amount of input data which must be providedo 

The program has been tested by the processing of a vari ety of 

circuits containing many combinations of linear and the nonlinear 

elements. Some of the more i nteresting examples are : 

(1) Steady-state (DC) analysis of an operational amplifi er wi th 



feedback (amplifier gain: 106) 

(2) Steady-state (DC) analysis of a large network containing 41 

elements--3 capacitors, 19 resistors, 7 inductors, 6 current 

drivers, and 6 voltage drivers 

(3) Steady-state analysis of a ladder network of 14 resistors 

excited by a DC source 

(4) Transient analysis of a passive network of four resistors 9 

three capacitors• and two saturating iron-core inductors with 

an initial charge on one capacitor 

(5) Semiconductor diode and saturating iron-core inductor excited 

by sinusoidal voltage driver 

(6) Vacuum triode in a Colpitts oscillator circuit 

(7) Restart of the solution of (6) at an arbitrary point in time 

by entering as initial conditions the capacitor voltages and 

inductor current of the solution that was in progress 

(8) Vacuum triode performance with highly inductive plate-load 

circuit under a variety of excitations 
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(9) Transient analysis of series RLC circuit with 'initial c9pacitor 

charge. Comparison of response for saturating and non

saturating .inductor 

(10) Transient analysis of equivalent circuit of iron=core transformer 

with parallel linear capacitance, illustrating apparent negative= 

resistance region and discontinuous response resulting from 

transformer-core saturation 

( +1) Transient analysis of a two=mass mechanical system with masses 

coupled by nonlinear spring 

(12) Transient analysis of full-wave semiconductor rectifier=filter 



system under varying loads. Two-choke filter with input= 

saturating choke· and output-nonsaturating choke 

Typical data input, outputt and plots for some of these examples 

are presented in Appendix F. 
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CHAPTER VI 

SUMMARY 

6.1 Conclusionso The results of this study have, in general, 

been quite gratifyingo A considerable portion of the work was involved 

with problems directly associated with the computer programmingo Howeveri 

the performance of the formulation algorithm has been satisfactory in 

every respecto Within the limitations imposed by the algorithm as 

developed--that there can be no circuits of capacitors and/or voltage 

drivers and no junctions (nodes) with only inductors and/or current 

sources connected--the matrix coefficients of the equations of the 

systems have been properly generated for all examples. Based on the 

results from the DC analysis of several systems containing 30 to 4-0 

elements• there is some problem of numerical accuracy• but eight digits 

floating-point precision yield results accurate to six digits. There 

is some improvement in accuracy if the smaller resistors are placed in 

the network tree• when this is possible. The exact amount of inf,luence 

this will exert is not known~-this is the result of observation of a 

limited number of cases and is supported by Reid at Michigan State (18). 

In the development of the time-analysis programs and algorithms for 

the nonlinear elements, there have been many problems typical of non

linear analysis. The nonlinear models developed specifically for the 

vacuum triode and iron-core inductor have proved to be excellent models. 

They are far from being complete models of the elements since they 
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ignore many effects such as magnetic hysteresis, thermal hysteresis, 

transit-time effects, and stray inductance and capacitances, which are 

known to be characteristic of the real devices o However, they are a 

significant improvement over previous models and 9 within their limitations , 

allow at least a beginning to be made in their study. 

There has been no attempt to search out an iteration technique 

which will serve for the study of all nonlinear elements as it is fe lt 

that this is not feasible at the present timei with our limited 

experience in the computer analysis of nonlinear systems . This study 9 

rather, has attempted to explore a number of techniques and thei r 

applicability, or failure, for certain model types. No definite 

conclusions have been reached in this area of great consequence, but 

the method of modified successive approximations has unique advantages 

for iteration processes where evaluation of the derivative is difficult 

or impossible. When evaluation of the derivative is straightforward 9 

the Newton-Raphson method of iteration is a powerful technique . 

The general concept of representation of nonlinear element s i n a 

state-space formulation by the incorporation of dependent driver s has 

been successful. The results 9 for the specific element s attempted i n 

this study, have been quite adequate. The implementation of a quite 

large class of nonlinear elements by this technique should be successful== 

within the ability to find a suitable equation of constraint for the 

nonlinear element. The generality of this approach is appealing when 

compared with the previous methods which involve more restrictive 

separation of the system into specific linear and nonlinear equation 

components. 

While the over-all performance of the analysis process has been 
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good, it has failed completely in several instances. An interesting 

class of circuits which cause failure are multivibrators. The dis

continuous nature of their performance as they switch rapidly from one 

state to another has caused failure of the iteration process on every 

trial. Reduction of the size of the integration interval step size 

affects some improvement but not a cure. The rnultivibrator is basically 

a very unstable circuit• and it appears that the circuit model of it 9 

and its numerical solution• is just as unstable as the actual system. 

This is disappointing, and no solution has been found up to this time o 

However, it is felt that the trouble may lie in a circuit model which 

is too ideal and that the introduction of stray capacities and inductances 

as they appear in the actual circuit may reduce the discontinuities of 

the response to the point where the iteration processes can convergeo 

The program is unable to handle enough elements to accomplish this type 

of analysis. 

The program, in its present form, is not practical for everyday 

use as a circuit analysis tool for students and practicing engineers o 

It has been developed as a research tool with little attention directed 

to the details which simplify use. Many unnecessary features have been 

included for testing purposes, and many necessary features have been 

omitted; some deliberately 9 some of necessity, and some out of oversight o 

6 . 2 Recommendations for Further Work. The performance of the 

analytic procedures in this study have been adequate to justify further 

work and development along the same lineso Implementing these 

procedures in a carefully planned and utilitarian program is recommended 

as a worth-while development. Such a program should prove useful t o a 
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variety of people not only in electrical circuit analysis but in general 

systems analysis of other types. 

It should be stressed that the techniques developed, while 

specifically applied to electrical networks in this study, are generally 

useful for any energy system. They are particularly powerful for systems 

of mixed components, containing electromechanical and mechanical-hydraulic 

transducers• where the elements can be represented by dependent drivers o 

An electric motor is an excellent exampleo Its output can be represented 

by a dependent torque (through) driver with the equation describing it 

having an electrical current as the controlling (input) variable . The 

possibilities of such analysis procedures and the utilization of an 

analysis program based on the techniques of this study are apparently 

limitless, requiring only further investigation of their use. 

If the creation of such a utility program is undertaken, the 

following suggestions are offered for useful improvements : 

(1) Addition of an automated tree-finding algorithm preceding the 

present program, which will find a suitable tree of the graph 

from a description of the element interconnection diagramo A 

useful algorithm for this purpose has been developed by Cummins 

and Thomason (16) from a method proposed by Minty (17)o This 

will greatly reduce the work required of the user o 

(2) Consideration should be given to removing the topological 

restrictions imposed by forbidding circuits of capacitors and / 

or voltage drivers or nodes connected only to inductors and /or 

current drivers. This is possible but requires elaboration of 

the model to include derivatives of the drivers in the state= 

space equations . This imposes the restriction that the 



derivatives must ·be known ·and continuouso 

( 3) An iteration routine should be provided which will serve as 

many models as possible. It may be advisable to PJ"OVide some 

composite routine of several methods which sequentially or 

selectively utilizes one or more methods o 

(4) Implement the program on a larger computer which can handle 

most of the data in-core at all times with a very minimum of 

external storage on tape or disc. Reading and writing on 

external storage devices is far too time-consuming for an 

efficient utility programo 
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Several areas of modeling worthy of further study were encountered~ 

(1) Investigation of piecewise-linear models of devices difficult 

to model in other formso The vacuum tube pentode provides a 

good exampleo Since the device, like the triode 9 is a two

variable element, investigation of piecewise-linear character

istics for the plate voltage variations and normal polynomial 

variation with grid voltage should be investigatedo Such 

models could also be extremely useful in the representation of 

devices such as electric motors and other transducerso 

(2) Investigation of the modeling of hysteresis elementso The 

normal-form differential equations of the state-space model 

make the first derivative of all variables available at every 

step in the iteration-integration process. With information on 

the variable and its derivative, it should be possiblei with 

an adequate amount of storage of back-value historyi to 

develop some sort of model for this type of devicea This 

would be an exceedingly useful model in many areas a 
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In conclusion, I believe that the formulation techniques and 

solution methods presented-in this study are powerful and useful 

techniques. · They are worthy of m.uch additional work and development o 

The analysis of large nonlinear· systems is becoming of more importance 

every day• .and the complexity and size of practical systems has reached 

the point where computerized analysis methods offer the only useful 

avenue of approacho The traditional closed-form linear solution, if 

possible, is of limited useo 

It is imperative that engineers should not only change their 

methods of analysis but their entire reasoning processes to fully 

utilize the methods made possible by the general availability of large 

computers. But, one fundamental adorn due to Hamming should always 

be kept in mind--"THE PURPOSE OF COMPUTING IS INSIGHT t NOT NUMBERSo II 
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APPENDIX A 

EXISTENCE or THE INVERS:E OF Rl 

The elimination of the algebraic variables from the differential 

equations of the state-space model is necessary if the differential equations 

are to be put in normal form. This elimination depends upon the existence 

of the inverse of matrix ! 1 , defined by 

T 
R=U+RS GS 
-1 - --B -22 -C -22 

(Aolol) 

This matrix can be put into the form 

[ -1 T ] 
!i = ~ ~ + ~2 Ee ~2 ° 

Since ,Ba is a dia~onal matrix of re~l positive non-zero entries 1 the 

inverse of R1 will exist if the inverse of e as defined by 

-1 ····.·· .·· ·.·• ... T 
£ = ~ + ~2 ~ .§..z2 

exists. RB-l is a diagonal matrix of order n with real positive non=zero 

entries. . Ge is a diagonal matrix of order m with real positive non-zero 

entries. · s22 is a rectangular matrix of order n x m (n !.. m) and rank r 

(r < n). -
Assertion . l. 

T 
The matrix s22 Ge s22 is .either positive definite or 

positive semidefinite. 

Proof: The assertion is established by the application of one of 

the following two theorems, from Reference 11. Appendix A: 
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Theorem AlO. 4. Let B bean x m (n < m) real matrix of rank r -
with r = n • and let D be a diagonal matrix of order m with all -
positive entries. Then the matrix 

A= B D BT 
.... -----

is positive definite and nonsingular. 

Theorem AlOoSo Let D be a real symmetric and positive definite -
matrix of order m and Ba real matrix of order n x m (n < m) and -
rank· r with r < n. Then the matrht · 

is positive semidefinite. 

Since the matrix Ge is diagonal with real positive non-zero entries, 

it is symmetric and positive definite and thus fulfills the hypothesis 

for matrix ,E. of the theorems. The matrix §.e 2 fulfills the hypothesis 

for matrix B. Therefore 9 at least one of the theorems must apply to -
T 

the product s22 Ge s 22 • Theorem Al0.4 is applicable if .§..z 2 is of 

maximum rank; Theorem AlO.S applies if it is not of maximum rank. There-

fore, the product is either positive definite or positive semidefinite 9 

as was asserted. 

Assertion 2. The matrix e of Equation A.1.3 is positive definite. -
Proof: The matrix .Be- 1 is diagonal with real positive non-zero 

entries; therefore 9 it is positive definite. For any non=zero 

vector" x, consider the following product: -
(A.l.4) 
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where A is positive definite and Bis positive semidefinite. This - -
can be put into the form 

c = XT AX+ XT BX - ........ - ..... • (A.1.5) 

or 

c =a+ b (A.1.6) 

Since, by hypothesis A is positive definite, a > o. Also, Since B - -
is positive semidefinite, b > o. Therefore, c > O; and• by definition~ -
the matrix C is positive definite. -
Assertion 3. The matrix C is nonsingular. 

Proof: Since C is positive definite. by definition all leading .... 
principal minors are greater than zero. The determinant of C is a 

. ' .... 
leading principal minor; and, therefore, det C > 0, and C is 

nonsingular. 



APPENDIX B 

IRON·CORE INDUCTOR REPRESENTATION 

Using least-squares error criteria, the function 

). = A tan- 1 ( i ) + B [tan- 1 ( i ) ]2 
c c (B.l.l) 

was fitted to the data represented by the solid curve of Figure B, lo lo 

The value of C was selected as 2.s, which is the value of current at a 

flux of approximately l/2 the saturation flux. The curve is a plot of 

the B-H curve of a typical sample of high-quality transformer-core steel. 

The dotted curve of Figure B.1.1 is a plot of the calculated values 

of flux for A = 55. 8692 and B = 3.9182, as obtained from the curve-

fitting process. 

Figure B. l. 2 is a plot of inductance L versus current with these 

coefficients inserted into the inductance equation 

d c l . .J. = L = __ . _ (A + 2B tan- ( =-c) J 
di 12 + c2 

(B.lo2) 

Comparison of this plot and the slope of the original flux-current curve 

reveals that this is a very realistic representation of the inductance 

that would result for a coil with this material as a core. 
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APPENDIX C 

VACUUM TRIODE TWO=VARIABLE 

REPRESENTATION 

The vacuum triode is represented by a power-series in two variablesa 

A multiplying factor for the entire series is included to facilitate an 

adequate representation of the characteristics for the positive grid 

region. For this condition, the curvature of the constant-grid=voltage 

lines is downward; particularly in the region of low-plate voltagea For 

normal negative grid operation, the curvature is upwardo The choice of 

the factor E in this correction factor must be made arbitrar•ily ft,om 

inspection of the curves and is influenced somewhat by whether the most 

accurate representation is required in the regions of positive= or negative=, 

grid voltage. For normal negative-grid operations this factor is set to 

E = 0 so that the correction term becomes equal to l for a.ll values of 

The power series for this representation is of the form 

Figure C.lal illustrates the representation of the characteristics 

of a type 6J5 vacuum triode. The solid curves represent the normal 
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published characteristic curves of the deviceo The dotted curves 

illustrate the power-series calculated characteristics. The following 

values were obtained for the coefficients of the equation• fitted by a 

least-squares error criteria: 

E = OoO As = 2 o2686E-05 

Al = s·. 4023E·OS A6 = -2.9570E·08 

A2 = 4. 9485E-07 A7 = 2. 3818E-04 

A3 = -6.3400E-10 Aa = -3.0620E-07 

A4 = l.0467E-03 A9 = l. 2 lOOE-0 7 
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Figure c.1.2 illustrates the characteristics for a type 6N7 vacuum 

triode. Normal operation of this tube is in the positive grid region. 

Again• the solid curve represents the published characteristics, the 

dotted curve, the characteristics calculated from the series representation. 
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APPENDIX D 

FUNCTIONAL FLOW CHART OF FORMULATION 

PROGRAM 

The conventional methods of illustrating computer program 
~ 

operations by flow charts do not lend themselves to a suitable 

description of the formulation program operations. Figures D.1. 1 

through D.1.4 present a nonstandard method of flow-charting which has 

been devised to better illustrate program operations. 

The general sequence of operations depicted by these charts is 

from le~ to right and from top to bottom. The standard symbols for 

card and tape units are utilized. The appearance of a tape symbol on 

the le~ side of a page indicates that it is being read and is an 

input unit. The appearance of a tape symbol on the right side of a 

page indicates that it is being written onto. The number inside the 

tape unit symbol indicates the unit in use. 

The square blocks symbolize matrices as they are being retrieved 

from temporary tape storage or as they are created and written onto 

temporary tape storage. The number or alpharneric symbol inside these 

square blocks is the matrix identification as assigned in the algori thm. 

The sequence of these matricesj as read or writtenj is from le~ to 

right and top to bottom. The large circles indicate matrices held in 

temporary storage in core memory. The oval blocks indi cate mathematical 

manipulations, which are illustrated in detail in Figure s . 1. 1. 
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The solid lines indicate the flow of information 9 and the dotted 

lines indicate the appropriate rewind or backspace operations for the 

tape unit with which they are associated. 

For example: The first (top) line of Figure D.1.1 means that the S -
matrix is read from cards (card symbol on left side .of page) into 

temporary core storage (the large circle) ~nd then is written onto tape 

unit 7 (tape symbol on right side of page). This unit is then rewound or 

backspaced (dotted line down and to left), and the matrices ~ 2 • ! 12 , and 

! 32 are read in that order (square blocks) and written onto tape unit 4o 

Comparison of Figures n.1.1 through D.l.4 with Figure s.1.1 will 

reveal that the sequences of matrices written onto any. particular tape 

are the same as the vertical rows of matrices shown in Figure s.1.1. 

This correlation is maintained throughout the presentations so that it 

is possible to identify operations by both the physical manipulations 

and the accompanying mathematical operations. The actual mathematical 

operations at each step are presented in Equations 3.3.l through 3.3.13. 



APPENDIX E 

DEVELOPMENT OF ITERATION EQUATIONS 

The iteration process is based on the Newton-Raphson method" The 

iteration equation is easily developed and is used in several of the 

analysis programs. 

However, for the functional relationship v = f ( i) where f is 

logarithmic• the regular Newton-Raphson process diverges for v < 00 

Since v. the terminal voltage of the device, can be negative, this is 

a very undesirable situation. 

For this study a new iteration process (also based o~ Newton-Raphson) 

was developed for the situation where v < o. 

Consider first the case for v > 0 illustrated by Figure E.lolo 

v 

(v • n 

Tangent to Diode Curve 

Diode Curve 

External Circuit 

i 

Figure Eololo Graph of Diode and External Circuit for v > 0 
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Introduce a change in current tii and calculate the voltage for the 

circuit. V11 From this 

b,V : Vl .. V . n 

Assuming a linear external circuit I the equation representing the 

load line is then 

v = v - (i - i) ~ n n b.i 

The equation of the diode curve is 

i = I (ebv - . 1) 
s 

which may be written in inverse form 

1 . ( i + Is ) • 
v = -b R.n • 

Is 

The tangent to the diode line has slope 

• 

so that t~e equation of the tangent line through (v~. in) is 

(Eolo2) 

(Eolo3) 

The intersection of the load line and tangent line is at (vn + 1 , 

in+ 1). Substituting these values into Equations E.1.2 and Eolo6, the 

right-hand sides can be equated to yield 

(Eolo7} 



Solving for in + 1 in Equation E. l. 7 leads to 

Making substitutions 

h Ai 
= !v 

Equation E. l. 8 can be written 

and + I s 

, , hI [ ( ) (I )] in+ 1 =in+ h + E! hvn - £n I + £n s 

This is the iteration equation for in+ 1 for the case v > o. 
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(E.1.8) 

(E.1.9) 

Consider now the case for v < O illustrated in Figure E.1.2. 

i 

Curv~ 

v 

f:.v 

Tan gent Line External Circuit 

Figure E.1.2. Graph of Diode and External Circuit for v < 0 
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As before• a change in current, ~i, is introduced from which ~v may 

be obtained by calculation of the point (v1 • i 1 )o 

The equation of the load line for the external circuit is 

t.i i = i - (v - v) n n 7w 

The equation of the diode curve is given by Equation E.l.3o 

slope of the tangent to this curve is 

di bv - = b I e dv s 

The equation of the tangent line through the point (vn• i 0 ,) is 

(E.1.10) 

The 

(E.l.ll) 

(E.l.12) 

The load line and tangent line intersect at (vn + 1 , in+ 1). 

Substituting these values into Equations E.l.10 and E.1.12 1 the right= 

hand sides can be equated to obtain 

i -n 
~i I bvn bv 

(vn + 1 - vn) 7:v = b s e (vn + 1 - vn) + Is (e n - 1) 

(E.1.13) 

This equation can be solved for vn + 1 and yields 

(E.1.14) 

Substituting 

and 

into Equation E.1.14 results in 

I - I 1 
=v+---~ n h + b I 1 

(E. 1.15) 
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To obtain the value of i , 1 :required to set the current driver. 
n + 

vn + 1 is used in the diode equation to obtain 

= I (ebvn + l - l) s (E. lo 16) 

Equations E.l.15 and Eol.16 provide the iteration method :for the case 

v < o. 



APPENDIX F 

EXAMPLES OF ANALYSIS 

F .1 T?"ansf o.rmer Equivalent Circuit with Shunt Capac! ty from 

Transmission Line. The circuit of Figure F.l.l(a) is used to represent 

the transformer and line capacity. The corresponding linear graph is 

shown in Figure F.l.l(b). 

R R L 

+ L 
E c 

( a) (b) 

Figure r.1.1. Schematic Diagram and Linear Graph of Transformer 

The load and core losses for the transformer are represented by RL. 

The inductance L represents the saturating iron-core model of the 

transformer and windings. The transmission line losses and capacity 

are represented by R and c. The exciting generator is sinusoidal• 
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represented by the voltage driver E. 

The objective of the analysis is to investigate the effect of the 

nonlinear saturating inductance of the transformer under con.ditions of 

light loading• introduced by small values of RL o 

The linear graph is redrawn in Figure Folo2 with the tree indicated 

by heavy lines. 

R L 

' 

,)'- .. 

Figure Folo2o Linear Graph with Tree Selected 

From the graph the following cutset matrix can be generated 

c I\ E L R 

c l 0 0 I l 

-:1 I 
RL 0 l 0 I -l = p -
E 0 0 l 0 

(Fol.l) 

The rows and columns of this matrix are labeled to show their 

correspondence with edges of the graph. The matrix Pis in the form -
p :: [ u - - s J - • (F.1.2) 

so that the matrix Stakes the form -
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1 -l 

s = -1 - 0 (F.1.3) 

0 1 

This matrix provides all the information required by the algorithm 

concerning the interconnections of the elements of the network. 

The input-data cards required by the formulation program are 

0 (Card 1) 

l 1 l 1 l 0 ( Card 2) 

1 l 1 1.0 (Card 3) 

1 l 2 .. 1.0 (Card 4) 

1 2 1 ... 1. 0 ( Card 5) 

1 3 2 1.0 (Card 6) 

0 (Card 7) 

10.0 (Card 8) 

1.0 ( Card 9) 

The O in card l indicates that the formulation program is to be 

executed. 

The numbers in card 2 indicate• in ord~r, the following itemsg 

( a) The number of capacitors 

(b) The number of resistors in the tree 

( c) The number of voltage drivers 

( d) The number of inductors 

(e) The number of resistors in the co-tree 

(f) The number of current drivers 

Cards 3 through 6 are the non-zero entries in the S matrix. The -
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second and . third numbers are the row and column index of the entry; the 

fourth number is the entry value. The first number in .the card is for 

a·control function. 

The O in the seventh card signals the termination of the S matrix 

entries. 

The numbers in cards 8 and 9 are the values of resistance for Rand 

RL• respectively. 

The inp4t~data cards required by the time solution prog~am are 

0 0 0 0 0 1 0 1 (Card 10) 

6 0 1 25.0 60.0 (Card 11) 

8 1 1 1. 30743 o. 5942 1,5 (Card 12) 

9 1. 30743 (Card 13) 

9 0.00001 (Card 11+) 

0 (Card 15) 

13 l 0 0 (Card 16) 

14 0.025 0.0005 (Card 17) 

15 0 (Card 18) 

1 (Card 19) 

Card 10 specifies which nonlinear drivers and elements are present 

in the circui to 

Card 11 specifies the voltage and frequency of the sinusoidal 

voltage d;r,iver, 

. Card 12 specifies the parameters of the nonlinear inductance 

model, 

Cards 13 and 14 specify the initial values of the inductance and 

capacitance. The inductance value is modified during solution by the 



nonlinear model 1 but the capacitor value remains unchanged. 

Card 15 indicates that there are no non-zero initial values for 

drivers. 

Card 16 specifies several control parameters for the program to 

control test print-outs and other special program operationso 

105 

Card 17 specifies the total time and integration interval for the 

integration routine. 

Card 18 indicates that there are no initial conditions to be 

entered for the capacitor voltage and inductor currento 

Card 19 controls the print-interval for the final printed 

output. 

Figures F.1.3 through r.1.e are plots of typical voltage and 

current solutions obtained on several analysis runs with different 

values of applied voltage. The effect of the saturating inductor is 

clearly evident. The component values in this circuit are typical 

but not related to a particular transformer. The general form of 

the analysis results compare favorably with observed behavior of such 

devices. 
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F62 Vacuum Triode in a Col;eitts-Type Oscillator. The circuit to 

be studied is shown in Figure F.2.lo 

c g 

c1 
'Rg 

Lt 
· Ebb 

c1 

C2 

Figure r.2.1. Diagram and Linear Graph of Colpitts Oscillator 

The S matrix for this graph is~ 

L Rg RK2 ~ i ib c 

C1 l l 0 0 l 0 

c2 -1 0 0 l 0 1 

c 0 -1 0 0 -1 0 g 

ck 0 0 l 0 -1 -1 

RKl 0 0 0 0 -1 -1 

RL -1 0 0 0 0 0 

Ebb 0 0 0 =l 0. 0 

c2 



The current driver ibis specified as a nonlinear model of the 

two-variable vacuum tube triode. The two input variables to this 

model are specified as the voltages across ic and ibo Here is a 

case where it is necessary to have the total solution available• 

including the current-driver voltages. 

Figure r.2.2 indicates a first-solution run on this circuit. 

Inadequate time was allowed for establishment of a limit cycleo The 

capacitor voltages and inductor current were entered as initial 

conditions, and the analysis was continued in a second run. The 

results from this second run are shown in Figure F.2.3. 
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F, 3 . Vacuum Triode with Inductive Plate Load., The circuit to be 

investigated is shown in Figure Fo3ol with the associated linear graph. 

,, R1 

L 
Rl 

El 

R2 
Rb RL 

Ecc Ebb 

Figure F.3.lo Diagram and Linear Graph of Amplifier 

Applied to the gri_d by means of Ei and Ecc are various conditions 

of fixed grid bias and input signals. The following signals were 

applied: 

(1) A constant amplitude sine 

(2) A sine wave of constantly increasing amplitude 

(3) A rectangular pulse train with rise-and-fall times of length 

equal to five integration steps 

( 4) A single rectangular pulse of large negative amplitude and 

rise-and-fall time equal to one integration step 

(5) A single rectangular pulse of large negative amplitude and 



rise•and-fall time of several integration steps 

Figures F.3.2 through F.3.5 illustrate the results of this 

analysis, 
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