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CHAPTER I 

INTRODUCTION 

In this paper a subjective inferential theory of probapility will be 

developed and investigated~ In order to 4evelop this concept of prob­

ability, the philosophical background of probability theory in general 

must pe discussed. 

Sava~e [ 33] discusses thr.ee types of probab~lity: .. relative: frequen­

cy or objective, logical or necessary\ and personal or subjective. 

The relative frequency concept, championed by von Mises [ 35) 1 and 

employed by Fisher [ 10] 1 Neyman [ 25] ~ and .most modern statisti­

cians explains probability as the relative frequency of a particular 

event in a certain type of seq,uence pf events or in a set of events. In 

the logical concept, probability is considered to be basic to the exten­

sion of deductive logic and forms a pasis of inductive logic. As such, 

probability is a rpeasure. of a logical rel~tionship between one propo­

sition regarded as known or given and another. Savage [ 33] attaches 

the title necessary since the probability of proposition a on the evi­

dence bis a logical necessity to be deduced from the logical struc-

ture of the propositions a and b. On~ of the most extensive develop­

ments is that of Carnap [ 5). In his formulation probability is a meas­

ure on the truth set of a proposition. In the developments of Keynes 

[ 18] and Jeffreys [ 15] 1 the probability of a given b is taken as funda­

mental and the theory developed axiomatically. Cox [ 7] )'Vorking with 

l 



~lea;n aigehras also develops a 'logical type ,ofpro-bability. One of 

th-e ,best ·known·exposition's on per·sonal probability is that o~ Savage 

[ 32]. He generalizes a previous formulation due to de Finetti [ 9]. 

Savage and de Finetti interpret probability as a degree of belief of a 

given person concerning the occurrence of some event. De Finetti 

[ 9] gives two developments. One is based on a set of axioms and 

the other on the betting odds one would give on the occurrence of an 

event. One of the first developments of subjective probability is that 

of Ramsey [ 30] who used betting odds and utility in an axiomatic ap-

proach. Koopman [ 20] presents a system of personal probability that 

is somewhat of a compromise between the logical and personal con-

cepts. He employs a conditional probability, that is, the probability 

of a given b but he allows his probability to change as the beliefs of a 

person change. 

The development of these three types of probability has been in­

fluenced by the intended application or use of the probability system. 

The two primary uses of probability are in inference and decisioµ 

making. In the inference viewpoint, probability is used i+s a weight-

ing to be attached to various implications. In the decision viewpoint, 

a person has a set of actions which can be taken and a decision rule 

selects one of these actions. Probability theory is employed to aid 

the decision maker in the choice of a decision rule. Most writers 

on probability have been primarily interested in inference since in-

ductive behavior (decision making) as a serious concept was first put 

forth by Neyman [ 24] in 1938. Statistical decision theory due prima-

rily to Wald was first outlined by him in 1939 (Wald [ 37]) and was only 
I 

fully developed in his book (Wald [ 38]) in 1950 .. Further, decision 
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tlre·ory as related to hypothesis testing was first formulated by Neyman 

and Pearson in L932 (Neyman and Pearson [ 23]). Thus, it is seen that 

decision making as an important concept is relatively young while the 

· problem of inductive inference has been studied since the days of 

Jacob Bernoulli. 

Gertain criticisms can be Leveled against each of the types of prob­

ability either in their use or in their philosophical principles. The ri­

gidity imposed by the logical formulation vitiates its use in practice. 

Logical probabilities may well exist but they are seldom known and 

virtually impossible to estimate. If, as in the case of Carnap 1s sys -

tern, probability is a measure of the truth set of a proposition, then 

the probability is extremely difficult to use in practice since rarely is 

the truth set of a proposition known. The trouble with the relative fre­

quency approach comes in trying to apply it. While van Mises reject­

ed the measure -theoretic concept of probability, H. Geringer in 

van Mises [ 35] has formulated the relative frequency theory of prob­

ability in measure -theoretic terms similar to the theories of Cram:r 

[ 8] and Kolmogorov [ 19] so that the relative frequency viewpoint 

should now be acceptable to the strict theoreticians. However, since 

with certain restrictions the probability is the limit of the proportion 

of occurrences of a given event in an infinite sequence of events, the 

observation of no finite sequence can actually determine the true prob­

ability. This criticism "is excellently put by N. R. Hanson in the in­

troduction to Keynes [ 18] where he discusses the problem of how to 

find the true probability of the ace urrence of a deuce when rolling a 

die. He writes: 



Twuthousand·dice rolls of two thousand deuces may not 
absolutely warrant the ·die 1,s he·ing loaded. Perhaps two 
thousand is an insufficiently short run, in which case it 
i·s hrelevantas anirrdexof·bias .... However, if such 
a run cannot establish that the die is loaded, then a run 
of two thousand rolls out of which 333 are ·deuces can 
have no relevance ·for showing that the die is fair. And 
all the apparatus of convergent and irregular "collectives" 
fail-s to surmount this objection. L 

Thus, in practice the relative frequency concept has serious draw-

backs. 

4 

With the exception of the modern subjective writers, all of the pro-

ponents of the inference viewpoint have employed either relative £re-

quency or logical probability as a basis of their theories. Fisher [ 10] 

gives an excellent discussion ~f inference employing relative frequen-

cy probability and Jeffreys [ 15] does the same while using logical 

probability. Since the logical concept has almost universally been re-

jected and the relative frequency theory is subject to serious philo-

sophical criticisms, it is seen why the study of inductive inference 

gave way to the study of inductive behavior. However, the modern 

subjective writers have ventured into the field of inductive inference 

again but with a formulation somewhat different than that of either 

Fisher or Jeffreys. Since the modern subjective theory of inference 

stems indirectly from Wald's decision theory, (cf. Savage [ 32] who 

draws heavily from Wald) discussion of subjective inference will be 

deferred until an outline of decision theory has been given. It is rea-

sonable to assume, however, that the widespread acceptance by both 

objectivists and subjectivists of Wald's ideas is due to the unfortunate 

1N. R. Hanson, 11 Introduction to the Torchbook Edition, " 
A Treatise~~ Probability, by J. M. Keynes (New York, 1962), p. vi. 



po·sition of inferentialtheory in either·the·relativefrequency ·approach 

or as a partial implication in the Logical approach. 

The review of statistical decision theory will be a brief outline of 

the theory of Wald [ 38]. A comprehensive review of the statistical 

decision problem is given by Stewart [ 34]. In the structure of a sta-

tis tic al decision problem,· a '' decision maker'' is faced with the choice 

among a set of "acts" such that the "consequence" of any act depends 

upon the unknown '' state of nature, '' It is possible to gain knowledge 

about the unknown true state by performing an "experiment." The in-

formation contained in the ''outcome'' of the experiment then is em -

ployed in II selecting" the "best" act. 

In the formal structure, Let the set of acts be denoted by A and a 

. particular act by a. The set of states of nature is designated by Q 

with elements w. A real-valued, bounded Loss function defined on 

Ax Q and denoted by L(a, w) is the value of the consequence resulting 

from taking action a when nature is in state w. This Loss function is 

the negative of the utility. A definition of utility is given by 

von Neumann and Morgenstern [ 36]. Wald's formulation is a special 

case of game theory as introduced by von Neumann and Morgenstern. 

The possible outcomes of the experiment form a set X with elements 

x. The knowledge relating Q and X is given by a conditional objective 

probability measure defined on X l:~. For each w £ n, P (x) denotes . . ~ w 

this conditional probability measure. A function from X into A desig-

nated by d(x) and called the decision function or rule is the mechanism 

by which an act is selected. The set of all decision rules is called D. 

It should be noted that in this formulation P (x) is, in general, an w 



approximation. If P ~('x} is-a ''poor 1-1 approximation, then 'possibly 

many inopportune acts will be taken but that is all that can happen. 

Gne ,of the most important,contributions of Wald's theory is the 

sy-stematic study of 1 'best" decision rules. In comparing decision 

rules the expected loss or "risk" is employed. This risk is given by 

• 
R(d, w) = fx L[ d(x), w] dP w(x), 

6 

and is a function of only the decision rule, d, and the true state of na­

ture, w. Wald's use of risk was arbitrary but van Neumann and 

Morgenstern were able to show that if a decision maker can "order" 

his consequences, then a loss function (negative utility) exists and with 

_ respect to this order he behaves as if he were a minimizer of expect­

ed losses. Thus, it is reasonable to use risk to compare decision 

rules and given two decision rules d 1 and dz to consider d 1 to be at 

least as good as dz if 

for every we: n .. Further, d 1 is "better II than dz if it is at least as 

good as dz and for some we: n, 

R(d1, w) < R(dz, w). 

A decision rule d is called '' admissible 11 if there is no decision rule 

better than d. A class of decision rules is '' complete 11 if for every 

rule outside the class there is one in the class which is better. A 

complete class such that no proper subset is a complete c:lass is 

called a ''minimal" complete class. It is obvious that every com­

plete class of rules includes the class of admissible rules. Further, 



7 

it c-an·,,be proverrtha:t·if a minimal complete class ~xi,st-s, th.en.it is 

identical tothe class of admissible decision rules. The admissible 

class i'S of particular importance since the members of this cla$s are 

rules that cannot he improved. 

In developing his theory Wald employed prior distributions. He 

defined a prior distribution as a probability measure on some Borel 

field of subsets of n. However, a prior distribution was used by Wald 

only in finding complete classes of decision rules and minimax solu-

tions. Wald made no attempt to interpret a prior distribution as re -

fleeting the decision maker's prior beliefs or knowledge. A prior 

distribution will be denoted by P( w). Further, the average over the 

prior of the risk, denoted by B(d, P),. will be called the "Bayes risk. 11 

That is, 

B(d, P) = In R(d, w) dP(w). 

The decision rule d is the 11 Bayes solution relative to P 11 if 
p 

B(d IP) < B(d, P) p ,_ 

for all de: D. The decision rule d 0 is the "minimax solution" if 

Sup R(d0 , w) < Sup R(d, w) 
w w 

for all de: D. Wald 1s chief objective was in finding minimax solutions. 

Unfortunately, a minimax solution is quite often impractical. This re -

sults from the overly pessimistic course of action of a minimax solu-

tion in attempting to insure against the worst that nature can possibly 

do. An excellent example reflecting this pessimism is given in 

Stewart [ 34]. One further definition, is required and it is that of a 
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l:eacgt favorabl:e•di·strihution. · t,.;,·· 11tea:s't·favorabte ·prior 'distribution, 11 

P 0( w), is. a prior distribution such that 

Inf B(d, P 0) ~ Inf B(d, P) 
d ·d 

for all P. 

Under general conditions Wald was able to show 

( l) the existence of Bayes solutions (relative to any prior), 

minimax solutions, and least favorable prior distributions, 

( 2) that a minimax solution is also a Bayes solution relative to a 

least favorable prior distribution, and 

(3) that the class of all Bayes solutions corresponding to all 

possible prior distributions is complete. 

The class in part ( 3) becomes minimal complete when the Bayes solu-

tions which are not admissible are excluded. For a special case Wald 

gave sufficient conditions for the admissibility of a Bayes solution. In 

some practical problems, it turns out that every Bayes solution is also 

admissible (cf. Anderson [ l] page 132). In this case the class of all 

Bayes solutions is then minimal complete. 

It is seen, then, that Wald's general solution to the decision prob-

Lem gives only a class of decision rules. In order to select a specific 

rule, Wald employed minimax theory. As stated previously there are 

serious objections to a minimax solution. Thus, some other proce-

dure must be devised to select a decision rule from the class of (min-

imal) complete decision rules. 

Investigation of methods of selecting decision rules is covered in 

the literature under principles of choice or decision under uncertainty. 

One principle result stands out. In terms of the preceding 
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,devselopments it is this. If there exists a complet!'! order re-1-atiun ihQ-

that ,satisfies certain axio·ms representative of the decision maker 1s 

"rationality'' or "c·oherence, "then there exists~· prior distribution, 

P, on Osuch that the preferred decision rule, if one exists, ii;; also 

the Bayes solution, relative to P... Th~s result is due to Blackwell and 

Girshick [ 4]. In their formulation Q is finite. Several other systems 

of axioms have also been. presented. The best ~own system is the 

one due to Savage [ 32]. In Savage's development, the primary ele-

ments are the set 1 ij, of the states of nature, the set of acts, A, a 

set of consequences,: C, with element~ c, and an assignment to each 

pair (a, w) of Ax n of a consequence from C which is denoted by a(w). 

Further, there exists a complete ordering defined on A which meets 

a set of axioms representing the decision maker '!:l coherence. With 

these definitions and axioms, Savage is able to show the existence of 

a probability measure (finitely additive) defined on n, the existence bf 
I 

a utility fu~ction define~ on C s.uch that ab is preferred to a £ A if and 

only if ab is the Bayes solution (employing the negative of the utility) 

relative to the prior on n~ Thus, .Savage's result is stronger than 

that of Blackwell anq. Girshick. Also, Savage is able to show that in 

finding the Bayes solution, Bayes Theorem may be employed; that is, 

the posterior distri.bution can be computed from the data and the prior 

on Q and this posterior can be used to £:i,nd the decision rqle that min-

imizes the risk. This decision rule is also the Bayes solution. 

Blackwell and Girshick prove the same result in. certain special 

cases. While Savage orders the acts. and Blackwell and Girshick 

order the decision rules, it can be shown that both are equivale:p.t to 
. I 
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· an o·rdering "Of'the 'S"et o-£ all re·al-value'd, bouttded functions·tl-efined on 

n. Thus 1 both orderings are equivalent. Howeve·r, there is one ma­

jor difference between the two formulations. Blackwell and Girshick 

empl-oy utility theory and objective probability in defining the risk and 

then ,develop a subjective probability while Savage develops a sub­

Jective utility and a subjective probability from a single order rela­

tion and associated axioms. 

Some of the other formulations are those of Anscombe and 

Aumann [2], Chernoff [6] ,. Luce and Raiffa [ 22], and Pratt, Raiffa, 

and Schlaifer [ 28]. These formulations are similar to either that of 

Blackwell and Girshick or Savage. Also, the results are similar to 

the "weak" version of Blackwell and Girshick or to the "strong" ver­

sion of Savage. 

Except for the working out of the details in a practical problem, 

the decision problem has been solved to almost any decision maker 1s 

satisfaction. He can follow Wald and find the (minimal) complete 

class of decision rules and then employ the ad~ methods of most 

modern statisticians to select a particular decision rule, If this does 

not suit his inclination, then, provided he has a preference relation on 

the set D, he can follow Blackwell and Girshick. Finally, if neither 

of these courses of action is suitable to the decision maker, then he 

can "go all out" and follow Savage and interpret all probabilities as 

subjective probabilities and use the Bayes solution to his given prob­

lem. 

While the decision problem has been very elegantly solved, the 

inference problem still remains open. Modern subjective writers 
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(cf. Raiffa and Schlaifer ( 29]) following Savage have taken the solution 

to the inference -problem from the·decision problem in the following 

manner. It is possible to interpret the prior distribution on Q as ex-

pressing the decision maker's degree of be lief in the various states 

of nature. One way to do this is to think of P(n 1) as giving the odds 

at which one would bet on the occurrenc~ of the event Q 1c: Q. For 

simplicity, assume that P(w) and P (x) both have densities given by 
w 

g(w) and f(xlw), reS1pectively. From Bayes Theorem it follows that 

where 

f ( Wix) = g( w)f (xi w) 
h(x) 

h(x) = J Q f(xlw)g(w)dw. 

Now f(wlx). 1 called the posterior distribution on w, can be thought of as 

expressing the degree of belief in wafter having observed x. It is true 

that f(wtx) is the conditional distribution of w for given x and that as 

Savage showed, if g(w) and f(xlw) are subjective densities, then the 

Bayes solution d is such that (for the given x) 
p 

J Q L( dp (x) 1 w)f ( w1x)dw 

is a minimum. This is all that is true, however. Even if g(w) repre-

sents the decision maker's degree of belief in the value w, it does not 

follow that f(w1x) should represent his degree of belief in wafter having 

observed x. All that any of the writers on decision making have shown 

(to this author's knowledge) is that f( w1x) may be employed in obtaining 

the Bayes solution to the decision problem. (It should be noted, though, 

that if Jeffreys' logical approach is accepte~> then f(wlx) expresses the 
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,poflterio·r logical·prtrba:'bilitytl:e·nsity o·f w givenx.) Thus, even from 

the subjective viewpoint an inferential theory has not be.en ··successful­

ly <ieve loped. 

There is, however, one use of the posterior distribution on which 

both objectivi·sts and subjectivists agree. If g(w) represents "histor­

ical" data, then f(w1x) represents the distribution of w given the data 

of the present experiment as influenced by the prior historical data, 

The difficulty with this approach is in determining. a g( w) which re­

flects accurately the historical data. One possible solution is to em­

ploy a class of conju~ate prior distributions as Raiffa and Schlaifer 

[ 29] do. 

At this point,. the desirability of an inferential theory, especially 

when the prior is not objective, could be questioned. Might not deci­

sion theory be employed universally? This writer believes that the 

answer to this question is no. In the fields of engineering, manage­

ment, economic analysis, business, and so forth, decision.;theory is 

unquestionably the proper .tool of analysis. In all of these endeavors 

certain decisions must be made and a form of loss is inherent when 

the. "wrong" decision is made. It is true that to analytically order 

· all of the possible decisions in a practical problem is a formidable 

task, but the successful engineer or business man somehow does this. 

However, he more than likely does it in a very inefficient manner 

which could be improved upon if decision theory were circumspectly 

employed. Consider now the scientist. His problems are somewhat 

different from those of the engineer. Broadly, his task is to formu­

late or investigate physical II laws. " These laws should appro~imately 

describe given physical phenomenon mathematically. The scientist's 
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p,r,obl:em can be plac·ea in the de·cision theo·ry framework, however. 

The possib~e decision·s could be accept the hypothesized law, reject 

the hypothesized law, or continue experimentation. This process has 

certain drawbacks, If the hypothesized law is rejected what law does 

the scientist accept? Seldom in scientific research are all alterna­

tives known. If this were the case science would not exist. In order 

to apply decision theory the scientist must have a loss function. It 

does not seem reasonable for the scientist to assume a loss function 

when he does not know all of the purposes for which his theory might 

be used. Thus, serious difficulties are encountered when the scien­

tist tries to use decision theory. 

In selecting a law or formulating a theory, the scientist general­

ly relies on his beliefs about the law and the physical phenomenon it 

is to describe. Through theoretical calculations or experimentation, 

he alters his previous beliefs. It appears that some form of inferen­

tial theory would be of use to the scientist. A suitable theory might 

help the scientist to systematically order his degrees of belief. 

In this paper the concept of a subjective inferential theory of 

probability will be studied. The term plausibility will be used to 

name this form of subjective probability. This use of the word plau­

sibility comes from Polya [ 27] where he uses the phrase plausible 

reasoning. An attempt. will be made to keep a sharp distinction be­

tween the II real world II and a person's beliefs about this real world. 

Objective probability will be denoted by probability and is. assumed 

to exist in the real world. For example, in a coin tossing experiment 

it would be assumed that a limiting relative frequency for the propor­

tion of occurrences of heads exists. Call this limit ·P• Then a person 
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. might "believe" -that the true value of pis one half. The value of this 

belief suitably normed will be the plausibility of the statement that p 

equals one half. Plausibilities wiLl be real numbers in the interval 

[ O, l] and have most of the same properties that probability measures 

have. Carnap [ 5] also considers two forms of probability in his logi­

cal development of probability theory. His probability 1 is similar to 

the plausibility concept considered in this paper and his probability 2 is 

relative frequency probability or what is termed probability in this 

paper .. 

In attempting to develop an inferential theory, three major prob­

lems should be considered. First, there is the problem of how to 

evaluate the prior or original plausibility. This is a vexing problem 

to which no really acceptable solution has been obtained. Jeffreys [ 15], 

Jaynes [ 14] ,· and Raiffa and Schlaifer [ 29] have proposed three differ­

ent techniques that have been used in certain cases to obtain prior 

plausibilities. In this paper this problem is not of primary interest 

and will hot be discussed further. 

The second problem to be considered is that of determining how 

data or II outside 1 ' information should change a prior plausibility to a 

posterior plausibility. This problem is the one to which most writers 

in inference have addressed themselves. As previously stated the 

solution has been obtained by employing Bayes Theorem. However, 

there are objections to the so obtained solution, In this paper this 

problem will be reformulated and the solution obtained as a special 

case of the solution to the third major problem of interest in inference. 

The question of how outside information should change directly the 

plausibilities of a given proposition will not be considered further in 
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this paper. 

The third major problem is this. If the posterior plausibilities of 

certain propositions are given, how should a person change the plausi­

bilities of other propositions? The adjectives prior and posterior will 

not be employed in the developments of this paper, since the process of 

changing plausibilities will be considered as a discrete process in time. 

In general, all plausibilities will be denoted by a lower case p, q, and 

so forth, subscripted by a natural number which will indicate at what 

stage in time the plausibilities are being considered. In general, the 

subscript one will denote the initial plausibilities which will be assumed 

to be known in any problem. Plausibilities will be attached to pro­

positions which are elements of an arbitrary Boolean algebra. These 

propositions will be denoted by lower case letters from the first of 

the alphabet, that is, by a 1s, b 1s, c 1s and so forth. Suppose that 

p 1(a), p 1(b), ... are given. If p 2(a) is given, then how should p 2(b), 

p 2(c), ... be determined? In any reasonable scientific theory the 

propositions are, in general, related to each other. Thus, if it is 

known that the plausibility of the proposition, a, has changed from 

p 1 (a) to p 2(a), then if a person is reasoning in a 11 rational 11 manner 

how should the plausibilities of propositions related to a be changed? 

In this paper this problem will be considered in some detail. A con­

cept of "information" based on the changes in plausibilities will be 

developed axiomatically and then this information will be employed to 

answer the question of how to change plausibilities in certain special 

cases. 

In Chapter II the axioms wh~ch determine the algebra of plausi­

bilities will be given. Certain assumptions concerning the class of 
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propositions, which will b~ made, are also tliscussed, The concept of 

information is developed in Chapter III and in Chapter IV this informa­

tion function is employed in solving the problem of how to change the 

plausibilities of certain propositions given that the plausibilities of 

certain other re lated propositions have changed from one value to an­

other. The solution obtained will be compared to the present solution 

of the inference problem in some special cases. The summary will 

be presented in Chapter V. 



CHAPTER II 

THE ALGEBRA OF PLAUSIBILITIES 

Introduction 

In this chapter the axioms are presented from which the algebra of 

plausibilities is derived. Also, the derivation of this algebra is given. 

Before stating the axioms certain definitions and assumptions must be 

made. Also, the general problem of how to determine plausibilities 

must be discussed. 

The axiomatic approach in this paper is similar in some respects 

to that given by Jeffreys [LS]. Thus, the usefulness of another pre- , 

sentation might be questioned. There is, however, one major differ­

ence between the derivation given in this paper and that of Jeffreys. 

Jeffreys only considers conditional probabilities while in this paper 

the concept of a conditional plausibility as such is not considered di­

rectly. The philosophical principle of conditioning the probability of 

a proposition on all previous known or given knowledge is important. 

However, incorporating the conditioning directly into the probability 

system places serious restrictions on the use of the system. In con­

ditional probabilities the given proposition must be taken as true. In 

general, in scientific experimentation the only things that are known 

are the data observed. Virtually all of scientific theory is formulated 

in terms of unobservables. Relations among these unobservables are 

L7 
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a:ssum·ed to hold and from these re Lations it is deduced that certain ex~ 
K 1' . • 

perimental results should hold. In gen~ral, the experim~ntal results 

that are actually observed do not agree perfectly with the results that 

the theory predicted. Thus, the data observed should only increase 

or decrease a person's previous beliefs in the validity of the theory. 

Further, for the important propositions considered to be, given it is 

not possible to state that these propositions are true. If conditioning 

is considered only indirectly, then it is pas sible to cope with the situa-

tion in which a conditioning proposition is not known to be true. 

In this paper no direct formulation of conditional plausibilities 

will be made. Rather, the process of incorporating outside informa-

tion (either experimental data or further theoretical formulations) will 

be considered to be a discrete process in time. The outside informa-

tion will change the plausibilities of certain known propositions by an 

assumed known amount. The question: of h.ow the plausibilities of pro-

positions related to those whose plausibilities have changed will then 

be investigated. In order to start the process it will always be as-

sumed that an initial set of plausibilities for all propositions under con-

sideration is given. Thus, the only question to be considered is that 

of how to change plausibilities internal to the set of propositions under 

consideration. The answer to this question will be considered in Chap-

ter LV. 

In formulating the axioms it will be assumed that subject to cer-

tain conditions a plausibility (a real number in the interval [ O, 1]) can be 

as signed to any proposition under consideration. This approach will 

be employed sinc:e it avoids the assumptions concerning an order re-

lation made by most modern writers. The order approach will be 
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avoided ·since the ~ntuitiv-e count·erpart of a plausibility is a person 1s 

degree of belief i:n the truth or falsity of. a proposition. It is true that 
. . ' . 

if the plausibilities of two propositions a and b are known, then a and 

b can be ordered by the values of their plausibilities. Hqwever, this 

order in no way ref·lects the preference of either a over b or b over a. 

One further important point should be made. The theory, while 

relying on certain concepts of deductive logic, is not a strictly neces­

sary concept in the terms of Savage [ 33]. The degrees of belief ex-

pressed by plausibilities are personal in the sense that they reflect 

the reasoning process of some 11 ideal'' person who always thinks 

II rationally. 11 Here rationality is expressed by the set of axioms that 

define plausibility. · It is possible to assign to any propos~tion any 

plausibility that is consistent with the axioms. Thus, the theo:i;-y pre-

sented here is a sort of compromise between the logical and personal 

approaches .. 

Pre ltminary Definitions and Theorems 

The assumptions and definitions that affect directly the develop­

ment of the axioms will now be considere.d, To begin with, it will be 

assumed that the set of all propositions under consideration form a 

Boolea.n algebra. In ordinary language, complex sentences are form­

ed from elementary sentences by the opera,tions of disjunction, con-

junction, anci negation. By assuming that the set of all propositions 

under consideration is a Boolean .algebra, it is insured that the ab-

stract operationi; corresponding to disjunction, conjunction, and ne-

gation are defined for all propositions involved in these operations 

and that the result of performing .any of the operations gives again a 
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proposition in the Boolean algebra. The definition of a Boolecil,p. alge-
! 

bra employf:id is q.ue to Birkhoff and MacL~ne [ 3]. A Boolean ~~gebra 
' 

is a set B of elements a, b, c, ; .. with equality that fqr any a, b, c £ B 

has the:i following properties: 

( 1) B has two binary operations . and V which satisfy 

a. a= aVa = a 

a. b = b. a aVb = bVa 

a. (b~ c) = (a. b). c aV(bV c) = (aVl;>)V c 

( 2) These 9perations satisfy the absorption laws: 

a. (aVb) = aV(a. b) = a 

I 

(3) These oper:ations are mutually dist11ibutive, that is,, 

a. (bV c) = (a. b)V(a. c) 

aV(b. c) = (a.Vb). (aVc) 

( 4) B conta:j.ns two distinguished elements O an,d l which satisfy 

0.a = 0 ova= a 

I.. a = a IVa = l 

(5) B has a unary ope.ration a' of negation which obeys the laws 

a. a' = 0 ··aVa'=I 

Using these axioms it is possible to prove (cf. Birkhoff ahd MacLane 

[ 3]) that 

0'· = I 

a 11 = a, and 

(a.b)' = a'Vb' 

I' = O, 

(aVb)' = a'. b'. 

( 2. 1) 

( 2~ 2) 

( 2. 3) 



Further, a Boolean homomorphism (cf. Halmo-s [ 13]) is a map­

ping a. from a Boolean algebra B, say, to a Boolean algebra A, such 

that 

(a. b)a = aa. ba, 

(aVb)a = aa Vba, and 

a 'a = (aa) ', 

( 2. 4) 

( 2. 5) 

( 2. 6) 
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whenever a and b are in B. It is an easy consequence of the definition 

of homomorphism that (cf. Halmos [ 13]) 

Oa = O, ·and 

Ia = I. 

There exists in B a natural order relation defined by 

( 2. 7) 

( 2. 8) 

a < b if and only if a. q = a ( 2. 9) 

This order is a partial order (cf. Halmos [ 13]). This partial order 

is not to be confused with the complete order relation that is postulat­

ed to exist in order to develop a modern subjective theory. The order 

relation a < b is natural in that it is defined in terms of operations in 

the Boolean algebra. The complete order necessary for a subjective 

theory must come from outside of the Boolean algebra and, in general, 

would have no connection with the relation a < b. The importance of 

the order relation a < b is in its connection with logical implication. 

In order to define logical implication the definition of the conditional is 

needed. The conditional is an operation defined for pafrs of proposi..­

tions by 

a--+b = a 'Vb ( 2. 10) 



22 

The condition-al i's read "if a then b. " Proposition a implies b if and 

only if a-b = I. · Any proposition that is equal to I is said to be logical­

ly true or a tautology and any proposition that is equal to O is said to 

be logically false or a self-contradiction.. Therefore, if a-b is a 

tautology, then a implies b. 

It is now possible to prove Theorem 2. 11. As far as this writer 

knows Theorem 2. 11 has no counterpart in other theories. 

Theorem 2. 11. The proposition a implies the proposition b if and 

only if a~ b. 

Proof: (i) Suppose that a~ b. Then a. b = a from ( 2. 9) so that·. 

a·' = (a. b) • = a 'Vb• from ( 2. 3). Therefore, a 'Vb = a 1Vb 'Vb and 

a 'Vb = a iV I = I which impl~es that a-b = I from ( 2, LO) •. 

(ii) Now suppose that a-b = I. Then from ( 2. 10) it follows that 

a 'Vb = I. Thus, a =a.I = a. (a 'Vb) = (a. a ')V(a. b) = 0 V(a. b) and 

a = a. b. Therefore, from ( 2~ 9) a < b. 

In view of Theorem 2. 11, a--b = I will always be written in the shorter 

form a< b. 

In any reasonable scientific theory, each proposition may be 

thought of as being either true or false. This concept of truth or fal­

sity must now be abstracted and defined for the propositions that a!'e 

. elements of a given Boolean algebra. Let U = (o, 1] be the Boolean 

.algebra consisting of only O and I. The algebra U is the smallest 

Boolean algebra in: the sense that U is a subalgebra of any Boolean 

algebra. 

Definition 2. 12. A homomorphism from a Bpolean algebra B onto 
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U :;: fO",·r} is said to be an interpretation of the Boolean algebra B 

where the bar is used to indicate that U is the image Boolean algebra 

under the homomorphism. 

Definition z. 13. If aa. = T, then a is true in the interpretation a 

and if aa = O, then a is false in the interpretation a whenever a £ B. 

In general, for brevity the phrase "a is true in the interpretation a" 

will be shortened'to "a is true" and similarly 11 a is false in the inter-

pretation a II will be shortened to II a is false. " It should be noted that 

being true is not equivalent to being logically true. For a proposition 

a to be true, all that is required is that aa = T. However, a is logical-

ly true only if a = I. Thus, if a is logically true, then in view of ( 2. 8) 

it is true for all interpretations and hence the title tautology. 

The set of all possible interpretations will be denoted by G, that 

is, 

f I onto -1· G=aa:B .. ~u. 

It will be assumed that in any problem that there exists a unique 

a £ G for the Boolean algebra B under consideration. This means 

that for no a in B is both a true and a false and that for every a in B, 

either a is true or a is false. In logic this first condition is called 

consistency and the second is called completeness. For a different 

formulation of these concepts in terms of ideals in B see Halmos [ 12]. 

It is now possible to prove two theorems whose content is not new 

but whose formulation in terms of 'the concepts of this paper is some-

what novel. 

Theorem 2. 14. If a is true, then a' is false and if a' is false. then 



a' is true. 

Proof: It must be shown that if aa = T, then a 'o. = 0 and conversely. 

(i) Assume that aa = T. Then, from ( 2. 6) it follows that 

a 'a = (aa)' = 0. 

(ii) Now assume that aa = 0. Then, again, from ( 2. 6) it follows 

that a 'a = ( aa ) ' = T. 

Theorem 2. LS. Leth be any homomorphism from a Boolean 

algebra B into a Boolean algebra A. Let a, b £ B. Then,. if a< b, 

ah< bh. 

Proof: Suppose a <band Leth be any homomorphism from B into A. 

From (2. 9) it follows that (a. b) = a so that (a, b)h = ah. Thus, from 

( 2. 4) ah. bh = ah and, therefore,, ah _s bh from ( 2. 9). 
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Corollary 2. 15. L. If a £ G and A = U then if a < b, then aa < ba. 

An immediate consequence of Corollary 2. 15. l is that whE;mever a 

implies b then if aa = T, then ba = T since O .'.: a < I for any Boolean 

algebra. The useiutness of implication is in deductive reasoning. 

For, if a implies band a is true, then b must also be true. 

In gen.eral, in any scientific theory it is not known for all pro-

positions whethel;' they are true or not. Thus, the particular inter-

pretation of the theory is unknown. It is the purpose of scientific in-
~ 

quiry to find out the truth value of those propositions whose truth 

value is un.known. One way to do this is to employ implication. That 

is, it is shown that a~b = I or, in other words, it is shown that aim-

plies b. Then a is shown to be true, Normally a is known to be true 

from previous work. Then it follows that b must be true. However, 
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not alway'S can it be·· shown that a implies b. In .this case it is pos -

sible to achieve the same result if it can be shown that just a-b is true. 

That this is so is the content of Theorem 2. 16. It is obvious that as 

propositions are found to be either true or false (but not both) then the 

set G 0 of possible interpretations is a subset of G. To ex;plain G 0 con­

sider an example. Suppose that a is shown to be true. Now G com­

prises all homomorphisms from B onto U. But if a is true, then the 

possible interpretations of B must be such that for any a that is a 

possible interpretation it follows that aa = T. If G 0 denotes the set 

of possible interpretations, then 

G O = { a. I a £ G and aa = T} 

so that G 0 C: G. The ultimate aim of scientific inquiry is t.o ref3trict 

G 0 so that it contains only one a. Suppose now that a-b is also true, 

then 

G 0 ={afa £ G and aa = (a-b)a =TJ. 
It follows, then, that b is also true and if G 1 denotes the set of possible 

interpretations of B when a, b, and a--b are all true, that is, 

G l = { a I a £ G and aa = ha = ( a-b )a ::: r} I 

th.en G 0 = G 1• Thus, in reducing G, to find out that a-bis true is as 

an effective tool as finding out that a implies b. That G 0 = G 1 is a 

consequence of 

Theorem 2. 16. If a· is su~h that (a-b)a = T, then either 

aa = ha = T or aa = 0 and ba = T or aa = ba = Q. 

Proof: Suppose a is such that (a-b)a = T. Then, since a-b = a 'Vb it 
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follows that T = (a 1Vb)o. . But from ( 2. 6) it then follows that 

0 = (a 1Vb) 10.. However, (a 1Vb)' = a. b' and thus, 0 = (a. b')o. = ao.. b'o. 

from ( 2. 4). Therefore, either ao. = 0 or b 'a. = 0 and the conc;:Lusion of 

the theorem follows. 

Since the conclusion of the theorem is that there are only three pos­

sible pairs of truth values for a and b and only one of them has a true, 

then if a is known to be ~rue, b must be true also. This follows since 

the truth pair for which a is true has b also true. 

There is one final definition that must be made and it is that of the 

dependence and independence of two propositions. The definition will 

involve the possible pairs of truth values that two propositions can 

take on. There are four combinations of truth values for a pair of 

propositions a and b. Denoting truth by T and falsity by F the com­

binations. are: 

a b 

T T 

T F 

F T 

F F 

In view of the assumptions made about the Boolean algebra B, one of 

the four combinations must hol.d. Suppose that it is not known which 

pair holds. Then, in intuitive terms, the concept to be defined is this. 

If a is found to be true, does this indicate anything about the truth or 

falsity of b? Obviously, if a implies b, then the answer is in the af­

firmative. Suppose tJ;i..~t a does not imply b. There are still cases 
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in which a -person might be Li eve that finding a is true· would -lead him to 

change his previous beliefs about the truth or falsity of b. For exam­

ple, a person might believe that a-b is true. If it is not known if a-b 

is true or not, then from the viewpoint of deductive logic nothing can 

be said about the truth or falsity of b. However, it is the purpose of 

this paper to develop a theory to deal with a person's be liefs so that 

the definition of dependence must somehow cover this example. 

Before the definitions of dependence and independence can be 

formulated, the definition of logical dependence and independence 

must be given. A pair of propositions are logically dependent if they 

are logically related; otherwise, they are independent. There are two 

kinds of dependence,1 namely,, trivial. and nontrivial which stem from 

the trivial and nontrivial logical relatiohs. As defined by Kemeny, 

Schleifer, Snell, and Thompson [ 17] there are six nontrivial logical 

relations. They are inconsistent, subcontraries, first implies sec­

ond, second implies first, equivalents, and contradictories .. However, 

all of these relations can be defined in terms of implication : 

(cf. Kemeny et al.. [ 17] ). For example, if a_:: band b < a, then a:::; b 

or a and b are equivalent. The trivial relations are when either a or 

b is either logically true or ~ogicaUy false. 

Definition 2.17. Let a and b be elements of Band suppose that 

neither are logically true nor false. Then a and b are said to be de­

pendent if either they are nontrivially logically dependent or if any 

one or combination of the following four cases holds: 

(i) There exists a c 1 £ B such that if c 1 ie true, then a-b' is 

true where· c 1 does not equal a'. b or a. b' or a'. b' or any 



--disjunction of these and c 1. (a': b) f 0, c 1. (a. b') f 0, and 

c 1.(a'. b') F O. 
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(ii) There exists a c 2 £ B such that if c 2 is true, then a-bis true 

where c 2 does not equal a. b or a.'. b or a'. b '. or any disjunction 

of these and c 2. (a. b) F 0, c 2. ~a 1• b) F 0, an~ c 2.·(a 11 .b 1) F 0. 

(iii) There exists a c 3 £ B such that if c 3 is true, then a'-b' is 

true where c 3 does not equal<\• b or a. b' or a'. b' or any dis­

junction of these a~d c 3 . (a. b) f 0, c 3 . (a. b') F O, and 

c 3 . (a'. b') f 0, 

(iv) There exists a c 4 £ B such that if c 4 is true; then a'-b is true 

where c 4 does not equal a. b or a. b' or a'. b or any disjunction 

of these and c 4 . (a. b) fO, c 4 . (a. b') F 0, and c 4 ~ (a'. b) F 0. 

Otherwise, a and b are independent. 

Certain comments are in order. The condition that, for example, in 

part (i) that, say, c 1 F a'. b is necessary sin,ce 

a'.b<(a'.b)V(a.b')V(a'.b'):whichequals a-b'. Thus, ifc 1 =a'.b, 

then c 1 ~ a-b' and if c 1 is true, then a~' is true. However, if 

c 1 = a'~ b is true, then there is no interest in a-b' since the. truth 

values of a and bare known~ Similar comments hold for a.b'; a'. b', 

and any of the disjunctions. A ci, i = 1, 2, 3, 4, that either equals one 

of the four pairs a. b, a. b '; a 1 • b, . a'. b' or any disjunction of these 

pairs will be called a trivial function of a and h. Further, the con-

dition that, say, c 1• (a'. b) F O is necessary. For suppose that ' 

c 1• (a'. b) = 0. Then if c 1 is true, then a'. b is false so that a is true 

and bis false which again leads to an excessively restrictive c 1• Fur­

ther, to show that a and b are independent is not trivial. It must be 
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shown that a and b are not nontrtvially logically dependent and that none 

of the c 's exist that result in one of the four cases stated in the defini­

tion. Finally,. it should be noted that a and b are independent when they 

are trivially logically related. 

In order to demonstrate how the part of the definition that involves 

the four cases can be used, an example will be considered. T4e exam­

ple concerns three propositions denoted by a, b, and c. They are: 

a= Life as it exists on Earth also exists on Mars. 

b = The conditions for life on Earth are also present on Mars. 

c = There is an analogy between Earth and Mars in that the same 

physical and biological processes occur on both. 

Now it is known on Earth from experimentation that if life exists, then 

the conditions for life are present. If the same processes that exist 

on Earth also exist on Mars then if Earth life exists on Mars, the con­

ditions for Earth life must be present on Mars. Now c is not a trivial 

function of a and band c. (a. b) f 0, c. (a'. b) f 0, and c. (a'. b') f 0. 

Thus, the c here plays the role of c 2 in the definition of dependence 

and there exists a c 2 which is not a trivial function of a and b such 

that if c 2 is true, then a-b is true. Therefore, a and b are depend­

ent. This example while possibly trivial in nature has many non­

trivial counterparts in scientific endeavor since the technique of anal­

ogy is employed repeatedly. Further, consider how this example re­

lates to the possible T-F combinations for a and b. If c is true, then 

a-bis true. But from Theorem 2. 16 if a-bis true, then the combina­

tion a true and b false is not possible. However, it is not known that 

c is true. If c is not true, then a-b may or may not be true. A 
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scientist investigating Mars believes very strongly inc and, thus, he 

thinks that a-bis true. He realizes, however, that c could be false 

and that then a-b may not be true. 

Now suppose that the proposition b is replaced by the proposition 

b 1 where 

b 1 : The writer of this paper will eventually graduate. 

May not some of the c 1s in the definition exist? They may. But in 

any reasonable theory relating to Mars there will exist no c 's such 

that any of the four cases hold. Further, a and b 1 are not logically 

related. For example, there exist interpretations in which a is true 

and b 1 is false. But if a_:: b 1,,then the T-F combination cannot occur. 

Similar arguments hold for the other logical relations. Therefore, a 

and b 1 are independent. 

Axioms for Plausibilities 

The axioms that define the algebra of plausibilities will now be 

presented. The axioms will be stated and then a brief discussion of 

each wiLl be given. 

Axiom 2. 18. To any element of a given Boolean algebra B (sat­

isfying the previously stated assumptions in this chapter) that is not 

logically true or false, it is possible to assign any number in the in­

terval [ 0, 1] subject to the restrictions determined by the remaining 

axioms. This number will be called the plausibility of the proposi­

tion and will be denoted by p(a) where a e: B. 

Axiom 2. 19. If a < b, then p(a) .=: p(b) whenever a, b e: B. 



Axiom 2. 20. Ha. b = 0, then p(aVb) = f[ p(a), p(b)] where f(x, y) 

is such that any change in f(x, y) for fixed y £ ( O, l) is proportional to 

the change in x and similarly for y. 
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Axiom 2. 21. H a and b are independent, then p(a. b) = h[ p(a), p(b)] 

where h(x, y) is such that any change in h(x, y) for fixed y £ ( 0, l) is pro­

portional to the change in x and similarly for y, 

Axiom 2. 18 postulates the existence of a number between zero and 

one that represents an ideal person's degree of belief in the truth or 

falsity of a given proposition. This is not completely unreasonable if 

it is remembered that, for any a £ B, a is either true or false. ln­

tuitively, the number assigned to a represents how true a is. Axiom 

2. 19 is perhaps the least innocuous of the axioms. It establishes an 

order in the plausibilities. Intuitively, if a implies b, then the belief 

in a should not be greater than the be lief in b. This is reasonable 

since if a implies b, then it cannot happen that a is true and bis false. 

The assumption of proportionality in Axioms 2. 20 and 2. 21 is quite 

strong. The assumption of proportionality determines the rate at 

which either p(aVb) or p(a. b) will change in certain special cases. 

The only justification of the proportionality assumption is that it 

makes the rate of change simple. ff a. b = 0, then both a and b can­

not be true at the same time. Orie or the other (but not both) is true 

or both are false. Thus, in considering what plausibility to assign to 

aVb it is not unreasonable to assume that it is a function of only p(a) 

and p(b). Finally, if a and b are independent, then the plausibility of 

a. b should only change as the plausibilities of a and b change. This is 

not unreasonable since the intuitive motivation of independence is that 
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kn.owl-edge of the truth or falsity of a does not affect the knowledge of 

the truth or falsity of band conversely. 

Derivation of Plausibility Theory 

Certain theorems that stem from the axioms will now be given. 

As it turns out, plausibilities enjoy most of the same properties that 

elementary (objective) probabilities do. The exception is the proper-

ties of conditional probabilities. Recall that no definition of conditional. 

plausibility will be made and, therefore, no theorems corresponding to 

conditional probabilities can be proven. 

Theorem 2. 22. If a = b, then p(a) = p(b). 

Proof: If a = b, then a < b and b < a. From Axiom 2. 19 it follows 

that p(a) _:s p(b) and p(b) < p(a). Therefore, p(a) = p(b). 

Theorem 2. 23. The function f(x, y) in Axiom 2. 20 is given by 

f(x, y) = x + y + kxy where k is an undetermined (as yet) constant. 

Proof: From the proportionality assumption of Axiom 2. 20 it follows 

that ~£/ax and l>f/by both exist and are given by 

~f ax - g(y) 

bf r- = h(x) 
uy 

Integrating (2. 23.1) with respect to x yields 

f(x, y) = g(y)x + g 1 (y). 

But °cJf/ by = h(x) from ( 2. 23. 2) so that 

( 2. 2 3. 1) 

(2.23.2) 
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ddy[ g(y)~] + :y gl (y) = h(x) 

or 

Thus, ~g/c}y and og/~y are constants and f(x, y) may be written as 

( 2. 23. 3) 

where the k's are constants. Now aVO = a and a.0 = 0 so that 

p(aVO) = p(a) = f[ p(a), p(O)] = f[ p(a), O]. From Axiom 2. L8 if a is 

not Logically true or false it is possible for p(a) to take on any number 

in the interval [ O, L]. Let x e: [ O, L]. Then x = f(x, 0) and from 

( 2. 23. 3) it follows that 

for every x e: [ O, L]. Thus k4 = 0 and k 2 = L. Now aVO = OVa so that 

from Theorem 2. 22 it follows that also k 3 = L and the theorem. is 

proved. 

Theorem 2. 24. If a and b are independent, then p(a. b) = p(a)p(b). 

Proof: The theorem will be proved by proving that h(x, y) = xy. Sim-

ilarly to the first part of the proof 0£ Theorem 2. 23 it can be shown. 

that Axiom 2. 2L implies that 

( 2. 24. L) 

where the k's are constants. Now, a. b = b. a so that from Theorem 

2. 22 p(a. b) = p(b.a) and h(x,y) = h(y,x). Now, a and Oare independent 
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and also, a and I are independent for any a. Since a. 0 = 0 and a. I = a 

and from Axiom 2. 18 if a is not Logically true or false, then p(a) can 

take on any value in the interval [ 0, L], it follows that 

0 = h(x, 0) = h( O, x) and x = h(x, 1) = h( L, x). Then, from ( 2. 24. 1) it fol-' 

lows that 

for every x £ [ 0, L]. Thus, k 2 = k 3 = k4 = 0 and h(x, y) = k 1xy. But 

x = h(x, 1) so that x = k 1x for every x £ [ 0, l] and, therefore, k 1 = l and 

the theorem is proved. 

Theorem 2. 25. If a. b = 0, then p(aVb) = p(a) + p(b). 

Proof: Now a. (bVc) = (a. b)V(a. c) for any a, b, c £ B. Suppose that 

none of a, b, or c are either logically true or false. Further, assume 

that b. c = 0 and that a is independent of both b and c and bVc. From 

Theorem 2. 22 p[ a. (bV c)] = p[ (a. b)V(a. c)]. Consider 

(a.b).(a.c) = a.(b.c) = a.O =0. 

Therefore:, 

p[ (a. b)V(a. c)] = p(a. b) + p(a. c) + kp(a. b)p(a. c) 

from Theorem 2. 23. From Theorem 2. 24 it follows that 

p[ a. (bVc)] =p(a)p(bVc) and applying Theorem 2. 23 to p(bVc) it further 

follows that p(a)p(bVc) = p(a)[ p(b) + p(c) + kp(b)p(c)]. Finally, it is 

deduced that 

p(a)[p(b) + p(c) + kp(b)p(c)] = p(a)p(b) + p(a)p(c) + kp(a)p(b)p(a)p(c) 

or that 

p(a)p(b) + p(a)p(c) + kp(a)p(b)p(c) = p(a)p(b) + p(a)p(c) + kp 2(a)p(b)p(c). 
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2 
Therefore, kp(a) = kp (a)~ But p(a) can take on any value in the inter-

val [ 0, l]. Thus, k = 0 and f(x, y) = x + y and the theorem is proved. 

Theorem 2. 26. p(I) = l and p(O) = 0. 

Proof: Let a e B and suppose that a is not logically true or false. Now 

I and a are independent and I. a = a. Thus, from Theorems 2. 22 and 

2. 24· it follows that p(a) = p(l. a) = p(I)p(a). But from Axiom 2. 18 p(a) 

can be any number in the interval [ O, l] so that{:>(!) = l. Further, 

0. a = 0 and OVa = a so that from Theorems 2. 22 and 2. 25 it follows 

that p(a) = p(OVa) = p(O) + p(a). However, p(a) can take on any value 

in the interval [ O, l]. Thusi p(O) = 0. 

Theorem 2. 27. For any a e B, p(a) + p(a 1) = l. 

Proof: Now a. a 1 = 0 so that p(aVa ') = p(a) + p(a 1). But a Va 1 = I and 

p(aVa ') = l. 

Theorem 2. 28. For any a, b e B, p(aVb) = p(a) + p(b) - p(a. b). 

Proof: Now b = (a. b)V(a '. b) and (a. b). (a'. b) = 0 so that 

p(b) = p(a. b) + p(a'. b) from Theorem 2. 25. Therefore, 

p(a'. b) = p(b) - p(a. b). But aVb = aV(a 1 • b) and a. (a'. b) = 0 so that 

again from Theorem 2. 25 it follows that p(aVb) = p(a) + p(a '. b) and, 

therefore, p(aVb) = p(a) + p(b) - p(a. b). 

Theorem 2. 28 is the last theorem of this chapter~ With the proof 

of Theorem 2. 28 it is seen that plausibilities enjoy aU of the proper-

ties of elementary objective probability except those that involve con-

ditional probabilities. One further comment is in order. The alge-

bra of plausibilities developed herein does not have the property of 

countable additivity. This is a desirable property as advanced theories 
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of probability indicate. However, the subjective systems of Savage 

and de Finetti do not have the countable additivity property either and 

as de Finetti points out it is difficult to conceive of a practical situa­

tion in which countable additivity is needed. 

·~. 



CHAPTER III 

THE INFORMATION FUNCTION 

Introduction 

In this chapter a concept of information will be presented and dis -

cussed. An information function will be developed axiomatically which 

will measure the change in information when the plausibility of a 

changes from, say, pl(a) to p 2(a). The approach is similar to that of 

Good's [ LL] in developing Shannon 1s entropy function. Since the idea 

here is to develop a measure of change in information the resulting in­

formation function differs somewhat in form from that of Shannon's 

entropy function. The axioms are similar to those given by R ~nyi 

[ 3L]. They are, however, much simpler than those of R~nyi and do 

not employ his concept of a generalized probability distribution. Ac­

cording to R~nyi a generalized distribution is a measure function 

whose measure on the whole space is Less than or equal to one. Once 

the concept of information for individual propositions has been develop­

ed then a measure of total information in a special set of propositions 

will be defined. The total information function is the same as the 

mean information given by Kullback [ 2L]. However, Kullback makes 

no attempt to derive axiomatically an information function and his in­

terpretation and use of the total information function is different from 

that made in this paper. 

37 



38 

As pointed out by Luce and Raiffa J 22]., if the purpose of scientific 

investigation is the search of information in some sense, then this in­

formation should be formalized and introduced into the problem. In 

order to do this some concept of what information should be is re­

quired. Since the objects under consideration are abstract proposi­

tions of an arbitrary Boolean algebra, infGrmation as such cannot re­

flect the meaning of these propositions. The only abstract interpreta­

tion a proposition can have is in its truth value. Thus, any formula­

tion of information must of necessity be expressed in terms of the 

truth or falsity of a proposition. The abstract extension of truth or 

falsity is the plausibility of a proposition so that in this paper infor -

rnation will be expressed in terms of plausibilities or rather, in terms 

of changes in plausibilities. Let a be an element of a Boolean algebra 

B and suppose that in going from stage 1 in time to stage 2 in time 

p 1(a) changes to p 2(a). Since these plausibilities are, intuitively, de­

grees of belief, if p 2(a) is greater than p 1(a) it is reasonable to as­

sume that the information has increased and if p 2(a) is less than p 1(a) 

that the information has decreased. That is, if a is now believed 

more strongly, then the knowledge about a has increased and if a is 

now believed less strongly, then the knowledge about a has decreased. 

Following this line of reasoning, the assumption that information is 

some function of plausibilities will be made. 

Information Axioms 

In this section the axioms that lead to the information function will 

be presented. It is assumed that the change in information is a real­

valued function of the respective plausibilities. Consider again p 1 (a) 
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.and p 2(a). The change in information or for brevity the information in 

knowing that pl(a) has changed to p 2(a) will be denoted by 

i[ p 2(a), pl (a)]. This notation will in general be shortened to i(p 2, pl). 

If either pl or p 2 is zero, ,then i(p'2, pl) will not be assumed to exist, 

The reason for this is that if pl (a) = O, then it is possible that a = 0 

and if a = 0, then it should not be possible to change the plausibility of 

a from zero. If a has been assigned a nonzero plausibility, then a f. 0 

and it is unreasonable for the plau,sibility of a to change to zero since 

this could indicate that a = 0. 

Definition 3. L. Let a. E B for j = L, 2, ... , n and suppose that 
J . 

aj' ak = 0 if j f. k. Then the set of propositions is said to be mutually 

exclusive. 

Definition 3. 2. Let a. E B for j = l, 2, ... , n and suppose that 
J 

aLVa 2 V ... Van = I. Then the set of propositions is said to be exhaus-

tive. 

Let a., j = L, 2, •.. , n be a mutually exclusive and exhaustive set of 
J 

propositions, that is, a .. ak· = 0 for j f k and aLV ..• Va = I. Further, 
J n 

Let L denote some stage in time and 2 some Later stage in time and 

put 

Denote by PL the set{pLjjj = L,.2, ... ,nJ and by P 2 the set 

{ p 2j p. = L, 2, .•. , n J. The total information in knowing that plj has 

changed to p 2j for j = L, 2, ••. , n i1;1 then denoted by I(P 21P L). 
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Axiom 3. 3. Let p, q be any elements of the interval (0, t]. Then 

if p ~ q, i(q, p) 2: 0 and if p > q, i(q, p) ~ O. 

Axiom 3. 4, Let p, q, r I s be any elements, of the interval (0, l]. 

Then i(pq, rs)= i(p,.r) + i(q, s). 

Definition 3. 5. Let a. £ B, j = 1, 2, ... , n be a mutually exclusive 
J 

and exhaustive set of propositions. 

Axiom 3. 3 serves to establish an order for the information func-

tion. If p and q refer to a particular proposition, then i(q, p) can be 

interpreted in this manner. If q = p 2 and p = p 1, then if Pz > p1, the 

information is nonnegative and if p 2 .:S. p 1, the information is nonposi.­

tive. Axiom 3. 4 follows from considering independent propositions 

and may be interpreted in this manner. Let p = p 2(a), q = p 2(b), 

r = p 1(a), and s = p 1(b). Then Axiom 3. 4 postulates that the informa­

tion for a.bis given by the sum of ·the information for a and the m-

formation for b. Definition 3. 5 defines the total information as a 

function of the information for the individual propositions when those 

propositions comprise a mutually exclusive a.nd exhaustive set. 

Derivation of the Information .Functions 

The derivation of the information function will be given in a 

series of lemmas that follow from Axioms 3. 3 and 3. 4. Then the 

form of the total information function is given immediately by Defin.i-

tion 3. 5. 

Theorem 3. 6. The function i(q, p) for p, q ~ (0, l] is given by 
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i(q, p) ~· k log ~ 

where k > 0 is an arbitrary constant. 

Proof: The completion of the proof will be deferred until certain lem-

mas which are necessary have been proved, 

Lemma 3. 7. If p = q, then i( q, p) = i(p, p) = 0. 

Proof: Now if p = q, then p < q and p .:'.: q so that from Axiom 3. 3 it 

follows that i( q, p) > 0 and i( q, p) < 0. Therefore, i( q, p) = 0 and the 
- I -

lemma follows. 

Lemma 3. 8. The function i(q, p) may be written as 

i(q, p) = i(l, p) - i(l, q). (3.8.1) 

Proof: Consider Axiom 3. 4 and let p = s = 1 so that 

i{q, r) = i(l, r) + i{q, 1). If q = r = p, then i(q, r) = i(p, p) = i(l, p) + i(p, 1). 

But from Lemma 3. 7 i(p, p) = 0 so that i(p, 1) = -i(l, p). Therefore, 

i( q, r) = i( 1, r) - i{ l; q) and the lemma follows by renaming r. 

Lemma 3.9. If p . .::q, theni(l,p) <i(l,q). 

Proof: Suppose that p > q. Then the re exists an r such tp.at p _: r ·> q. 

Thus, from Axiom 3. 3 it follows that i(r,p) .SO and i(r, q) .:'.: O. Now 

i(r,p) .SO implies i(l 1 p) - i(l,r) .SO from (3.8.1) and i(r,q) > 0 implies 

i(l, q) - i(l, r) .:'.: 0 from (3. 8. 1). Thus, r(l, p) < i(l, r) and 

i( 1, q) > i(l, r) so that i( 1, q) > i( 1, r) > i( 1, p) and the lemma is proved. 

;Lemma 3.10. The following :flormula holds: 

i ( 1, p q) = i (1, p) + i ( 1, q) . (3.10.1) 



Proof: Consider Axiorp 3. 4 and let p :::; q = l. Then 

i(pq, rs) = i(l, rs) = i(l, r) + i(l, s). The lemma follows by renaming r 

ands. 

Lemma 3.11. The function i(l, p) is given by 

l 
i(l, p) = k log -

p 

where k > 0 is an arbitrary constant and p e: ( O, l]. 

(3.11.l) 
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Proof: From Lemma 3. 9, i(i, p) is a monotone decreasing function of 

p e: (0, L]. Since i(p, p) = 0 from Lemma 3. 7 it follows that i(l, l) = 0 

and therefore, i(l, p) > 0 for p e: (0, l]. Now consider Lemma 3. 10 

-x -y 
and let p = e and q = e . Then, 

i(L,rs) = i(l,e-xe-y) = i[l,e-(x+y)], (3.11. 2) 

i( L, r) 
. -x 

= 1(1 1 e ) , and (3. u. 3) 

i( l, s) = i(i, e -y) ( 3. 11. 4) 

where x, y . .: O. Define f(x) as f(x) = i( l, e -x) for x > 0. Then from 

( 3. ll. 2), ( 3. 11. 3), and ( 3. 11. 4) it follows that f(x) is a real-valued func -

tion satisfying 

f(x + y) = f(x) + f(y) (3. 11. 5) 

Since i(l,p) > 0 for p e: (O, l], 'it follows that f(x) >O f6r x :?' O.· The 

relatio.n (.3. ll. 5) defines a functioD.al e;quation whose soluti9n is 

f (x) = kx, x > 0 (3.U.6) 

where k is an arbitrary constanL That ( 3. U. 6) is the solution to 



(3. ll. 5) is shown by Parzen [ 26] page l23. From (3. ll. 6) it ;ollows 

that i(l, e -x) = kx and letting p = e -x it ftirther follows that 

i(l, e-x) = i(l, p) = -k ln p = k ln.!.. 
p 

where p £ (0, l] and ln denotes the natural logarithm. Since 

i(l, p) > 0 it follows that k must be greater than or equal to zero. If 

i( l, p) is to be nontrivial then k f O and the lemma is proved. 

From Lemma 3. ll and Lemma 3. ~ it follows that 

i( q, p) l l 
= k log·- - k log -

p q 

= k[ log .!.. - log .!.. ] 
. p q 

= k log q 
p 

where k is an arbitrary constant greater than zero and the proof of 

Theorem 3. 6 is complete. Notice that i(q;p) is not defined if either 

p or q is zero. In fact, as p-0_, i( q, p)-co and as q-0, i( q, p)- -CO, 

43 

This is reasonable since it should take a "large II amount of informa-

tion to change the plausibility of a 'proposition from zero to some num-

ber greater than zero. Similarly, a ''large" amount of information 

should be lost if a nonzero plausibility ~oes to zero. 

Theorem 3. l2. The total information is given by 

n P2· 
I(P 2 jPl) = k ·.~ p 2 . log _J 

J =l J p lj 

where k > 0 is an arbitrary constant. 

( 3. 12~ l) 

Proof: From Theorem 3. 6, i(p 2j' p 1j) 
P2· 

= k log __ J so that the theorem 
p lj 

follows immediately from Definition 3. 5. 



The proof of Theorem 3. 12 concludes the results that are to be 

presented in this chapter. Reference to Kull back [ 21] is made for 

some interesting results concerning the total information I(P 2jP1). 
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CHAPTER IV 

DETERMINATION OF CHANGES IN PLAUSIBILITIES 

Introduction 

In this chapter the total information function will be used to solve 

the specific problem of how to change the plausibilities of certain pro-

positions given that the plausibilities of certain other related proposi-

tions have changed from one known value to another known value. The 

solution obtained wil.1 be compared to the present solution of the infer-

ence problem in some particular cases. Now I= I(P 2tP 1) is defined to 

within an arbitrary constant k. For use in this chapter it wiU be as -

sumed that k is such that 

n Pz· 
I = :E Pz· ln _J 

j = L J p lj 

where ln denotes the natural logarithm. The general problem to be 

treated is this. Let l denote some stage in time and Z denote some 

later stage in time. Let plj = p 1(aj) and Pzj = p 2(aj) where aj £ B for 

j = l, 2, ..• ,n. Suppose that plj for j = l, 2, ... ,n and certain linear 

combinations of the Pzj are known. Then, how should the Pzj be 

determined? The criterion of minimizing I subject to the linear re-

straints on the Pzj is proposed as a solution; that is, the Pzj' 

j = l, 2, ... , n will be determined such that I is a minimum subject to 

the restraints on the Pzr Since I was only defined for a set of mutu­

ally exclusive and exhaustive propo:;iitions there is one restraint that 

45 
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the Pzj must always meet and that is that the sum of the Pzj over all j 

must equal one. 

Kullback [ 21] also considers minimizing I .subject to side condi-

tions. His treatment of the problem is more general than the treat-

ment given here in that his results hold for any set of dominated prob-

ability measures but less general (for .the discrete case) in another 

sense because he considers only one side condition. The general prob-

lem treated here allows for more than one side condition. Kullback's 

use of the minimization technique is different than that made in this 

paper. The application in this paper is similar to the maximum -

entropy estimates of Jaynes [ 14]. However, Jaynes maximizes the 

entropy in order to obtain a prior distribution. This problem is not 

considered in this paper. 

Two theorems will be proved which will be employed to find solu-

tions for the problems investigated. The first theorem is a special 

case of a theorem proved by Kullback [ 21]. However, the method of 

proof is difforent than that employed by Kullback. The second theo-
' 

rem is (in the discrete case) a generalization of a theorem given by 

Kull back. 

Minimization of the Total Information 

In order to facilitate the proof of the theorems a change in nota-

tion will be made. Thus, Pzj will be written as qi and plj will be 

written as p. where i = 1, 2, •.. , n. Then the total information will be 
1 

n q. 
I = ~ q. ln ...2:.. 

i=l l pi 

for i - 1, 2, ... , n. 
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Theorem 4. l. If the only restrictioq. on the q. is that they 13um to 
l . 

one, then the q. that minimize I are q. = p. for i = l, 2, ... ; n. 
1 1 l 

Proof: The method of Lagrange multipliers will be employed in prov-

ing the theorem. Let the Lagrange multiplier be denoted by 'X. and set 

Then, 

n 
F = I+ >... :E q.· 

i=l. l 

aF qr 
-- - tn - + 1 + >..., r = l, 2, ••. , n. 
~qr pr 

(4.1.1) 

Setting the equations (4.1. 1) equal to zero yields, 

so that 

and 

qr 
ln - = -( X. + 1) 

Pr 

q P e -( X. + l) r = 
r = r ' 1, 2, • , • I n • ( 4 • l, .2) 

n 
But :E q. =land,, therefore, e-(X. + l) =land from the eqµations (4.1. 2) 

i=l l 

qr = Pr' r = l, 2, •.. , n, is a critical point. The second partials are 

and 

2 . 
J F ... l > O :--z--
~q qr 

r 

Since all of the mixed partials are zero and the second partials with 

respect to the same variable are all positive, from the E!econd direc-

tional derivative test (cf. Kaplan [ 16] pp .. 128-129) the critical point is 

a minimum and the theorem is proved. 
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n 
.Theorem 4. 2. Suppose that ~ T .(i) q. = k. 1 j = L, 2, ... , p < n - 1, 

i=l J l J • 
are p linearly independent eq,uations whe.re T/i) is an arbitrary function 

. n 
of i = 1, 2, •.. , n and the J:-:., are given constants. Recall that ~ q. = 1. 

I J i: l 1 

Then,. subject to these p + l restraints the minimum of I is given by 

qr = pre 

p 
-~x_.T.(r)-µ-1 
j =l J J 

where r = 1, 2, ... , n and the x_. and µ are Lagrange multipliers which 
J 

must be solved for by using the restraining equations. 

Proof: Denote by X.j the Lagrange multiplier for the j th restraip.t and 
n 

by µ the Lagrange multiplier for the restraint ~ q. = l and set 
i=l l 

n p n 
F = I + ~ ~ >.,. T .(i) q. + µ ~ q. 

i=l j=l J J l i=l l 

n q. p 
= ~ [ q. ln -2:.. + ~ X.. T . ( i) q. + µ q. ] . 

i=l l ~i j=l J J l l 

Then, 

a F _ qr p 
r- - ln - + l + ~ x_. T .(r) + µ, r = 1, 2, •.. , n. (4. 2. 1) 
O qr . Pr j = l J J 

Setting tl;ie equations (4. 2. 1) equal to zero yields, 

qr p 
ln ·- = - ~ >.,. T .( r) - µ - l 

Pr j=l J J 

so that 
p 

-~ >.,. T .(r) - µ - l 
J. =l J J = e 

and 
p 

-~ X.. T .( r) - µ - 1, 
J. = l J J r = 1, 2, ••. , n. 

qr = pre 
(4. 2. 2) 
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Using the r·e-straining·-equations, the equations (4. 2. 2) may be solved 

for >... andµ to yield the critical point(s). Note, that regardless of the 
J 

, values of the XJ and µ, qr is greater than zero since pr is greater than 

zero for all r. The second partials are 

and 

d2F l ·--=->0 
1 2 ,q 
oq r 

r 

= Q, s f r.. 

Since all of the mixed partials are ?,ero and the second partials with 

respect to the same variable are all poaitive, from the second direc-

tionaL derivative test (cf. Kaplan [ 16] pp. 128-129) the critical point(s) 

is a minimum. Since all critical points are minima there is a unique 

minimum and the theorem is proved. 

Applications 

The situation where n = 4 which arises when two propositions are 

considered will be stud~ed in great detail. This is an application that 

occurs frequently in practice. The situation where n = 8 which arises 

when three propositions are considered will be discussed briefly. The 

appLfoations considered will be presented in a serie1;1 of cases. Before 

considering these cases, the notational scheme that will b~ employed 

for the situation when two propositions are considered will be present-

ed. Diagrammatically the situation is as follows: 



Stage l 

b bl 

a P1 (a. b) p 1(a. b') 

a' Pz(a'. b) P1(a'. b') 

P1 ( b) P1 ( b ') 

pl (a) 

P1(a') 

l 

Change due to 

outside 
information 

The notation will be abbreviated to 

P1(a. b) = P1 

pl(a. b') = Pz 

P1(a'. b) = P3 

P1(a'. b') = P4 

pl(a) = u 

p(a 1)=1-u 
l 

P1(b) = r 

p ( b 1) = l - r l . 

a 

a' 

Stage 2 

b b' 

Pz(a. b) Pz(a.b') 

IPz(a'.b) Pz(a'. b') 

Pz(b) Pz(b ') 

Pz(a. b) = ql 

Pz(a. b') = q2 

Pz(a'. b) = q3 

Pz(a'. b') = q4 

Pz(a) = v 

p (a 1) = l 
2 

- v 

Pz(b) = s 

p (b 1) - l 2 - - s 
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Pz(a) 

Pz(a I 

l 

The outside information will consist of changes in the various margin-

als; that is, for example, it will be given that r changes to s. 

Case I. In this case two propositions are considereq. and no out-

side information is given; that is, neither v nor s are known. There 

are then no linear restrictions on the ~ except that they sum to one. 

Thus, from Theorem 4. l it follows that q. · = p., i = 1, 2, 3, 4. This is 
l l 

a highly reasonable result. There is no outside information and, thus, 

there should be no change .in any of the plausibilities considered. 

Case II. Again, two propositions are considered, In this case, 
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though, one of the marginals will be assumed to change clue to out-

side information. The choice is arbitrary and it will be assumed that 

the plausibility p 1(b) = r changes to p 2(b) = s. The restraining equa-

tions are then 

q 1 + q 3 = s , and (4. 3. 1) 

(4. 3. 2) 

In the notation of Theorem 4. 2, i = 1, 2, 3, 4 and j = 1 with k 1 = s and 

T 1(1) = 1, T 1(2) = O, T 1(3) = 1, and T 1(4) = 0. The T 1(i) are obtained 

from (4. 3. 1). Thus, the minimum is given by (let x.1 = X.) 

-11 - 1 
q = p e r 

4 4 

(4. 4. 1) 

( 4. 4. 2) 

(4. 4. 3) 

(4. 4. 4) 

:From ( 4. 4. 1) and ( 4. 4. 3) it fo11ows that q/ q 3 = p/p3 and from 

(4. 4. 2) and (4. 4. 4) it follows that q 2/q4 = p 2/p4 . But q 1 + q 3 = s 

so that 

and 

Then,, 

s 
= r P1· 
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Also, 

P2 P2 (P2 + P4) (1 - r) 
1 - s = q 2 + q4 = -p 4 q4 + q4 = (-p 4 + l) q4 = __ P_4_.,... q4 = p 4 q4 

and 

Then, 
_ ( 1- s) _ ( l- 8 -p 4) _ ( 1- s) 

q 2 = 1 - s - p4 - 1 - s n:t-1" p4 - (1-,s) (l-r) - rr:rr p 2. 

Now, p 2(a) =vis unknown. However, 

·similarly, it is found that 

Jn terms of the original notation which is, perhaps, more informa-

tive the solution is 

(4. 5. 1) 

, . P2(b') 
P2(a. b ') = P1 (b ') P1 (a. b ') ( 4. 5. 2) 

(4. 5. 3) 

(4.5.4) 

(4.5.5) 

P2(a ') (4.5.6) 



If r = s, that is, p 1(b) = p 2(b), then inspection of equations (4. 5. 1) to 

(4. 5. 6) reveals that the solution reduces to the solution obtained in 

Case I. This is reasonable since if r = s I then the outside informa-

tion has produced no change and, therefore, no plausibilities should 

change. 

If a and b are independent, then the solution becomes 
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p 2(a. b) = p 1(a) p 2(b) 

P2(a. b'} = P1(a) Pz(b•) 

P2(a•. b) = P1(a') P2(b) 

P2(a•. b•) = P1(a•) Pz(b) 

p 2(a) = p 1(a) p 2(b) + p 1(a) p 2(b 1) = pl.(a) 

P (a 1) = p (a 1) p (b) + p (a 1) p (b 1) = p (a') 
2 1 2 1 2 1 

(4. 6. 1) 

( 4. 6. 2) 

(4.6.3) 

(4.6.4) 

(4.6.5) 

(4.6.6) 

The results (4. 6. 5) and (4. 6. 6) are not who11y unexpected in view of 

Axiom 3. 4. They imply that if a and b are independent, then any 

change in the plausibility of b does not produce a change in the p1au-

sibility of a. This is a most pleasing resu1L 

R ecaU that the information function i(q, p) was not defined when 

either p or q ( or both) is zero. However, it is possible to make a 

definition for the total information function that is consistent in a 

certain sense when pis zero. Suppose that a< b; that is, a implies 

b. Then p(a. b 1) = 0 always. If this result is substituted into the equa-

tions (4. 5. 1) through (4. 5. 6) the fo11owing equations are obtained. 

p (a. b 1) = 0 
2 

( 4. 7. 1) 

(4. 7. 2) 
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( 4. 7. 3) 

Pz(a'. b') ( 4. 7. 4) 

(4. 7. 5) 

Now, in the total information if the denominator of any ln term is zero 

set the whole term equal to zero. For the example being considered 

this results in 

The restraints are 

so that the last term of I is not necessary. The resulting problem is 

to minimize 

(4. 8. 1) 

subject to 

(4. 8. 2) 

Diagrammatically the problem is this. 
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Stage l Stage 2 

b b' b bl 

a P1 
0 u a ql 0 v 

r changes to s 
a' P3 P4 1-u a' q3 q4 1-v 

r 1-r 1 s 1-s 1 

It is apparent that v = q 1, q 4 = 1 - s, and that the only undetermined 

quantities are q 1 and q 3 . Since r changes to s the restraining equation 

( 4. 8. 2) obtains. 

Applying Theorem 4. 2 to (4-. 8. 1) and (4. 8. 2) results m 

so that 

Therefore, 

=----

and 

so that 

In terms of the original notation the solution is 
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Thus, the two solutions are equivalent. Inspection of the example 

shows that this is so since p(a, b') = 0 always and the effect of dropping 

q2 
q 2 ln - from the total information is the same as if Pz were not zero 

Pz 
and q 2 were known. Thus, any time a p. is zero that term will be 

l 

dropped from the total information if p. must be zero always. If a p. 
l l 

is zero and the preceding condition is not met, then I is undefined. 

Two examples will now be considered that will indicate how the 

theory developed in this paper can relate to present theories . 

. Example II. 1. In this example proposition a implies proposition 

b so that p 2(a) = (p 2(b)/p1(:b)]p1(a). The example is typical of problems 

treated in statistics and subjective inference. A given physical phe-

nomenon is to be observed. It is assumed that a probability law which 

describes the phenomenon is known except for the value of a constant 

called the parameter. This law will be denoted by P (x) where w is 
w 

the unknown parameter. Then, it is assumed that w = w0 and a sam-

ple of n x's is observed. If w = w0 , then the probability law is com­

pletely specified so that the probability of all possible samples can be 

computed. Note that this probability exists even if the probability law 

is (absolutely) continuous. This is so since an exact real number can 

never be recorded by any measuring device. A given measuring de-

.~. vice always rounds off after some given decimaJ. This accounts for 

the fact that in practice samples are observed that have the same ob-

servation repeated. If the probability law is continuous, then the 

probability of observing any given number is zero and yet samples 

are drawn that have repeats. The obvious way to avoid this dilemma 

is to recognize the fact that an exact real number can never be 



57 

measured. It is typical in statistical practice to ignore this fact and 

deal with the sample likelil+ood or the p:i:-oduct of the probability den-

sity functions governing each observatioq~ The simplifying assump-
.1 r· 

tion is generally made that the probability density is the ~ame for 

each observation. The sample likelihood is employed because to do 

so greatly simplifies the mathematical computations. However, in 

this example likelihood will not be used. The probability law govern-

ing the observation of n x 1s will be denoted by P w(x1, .•• , xn). The 

problem is then this. If w = w0 , then P )x1, •.• , xn) = P WO (x1, •• ·, xn), 

Now, (x11, ••• , xn 1) is observed. Does this support the assumption 

that w = w0 ? In statistics this question is answered by performing a 

test of hypothesis. The subjectivist answers the questio:q. by assum-

ing a subjective probability law on w and ,then uses Bayes Theorem to 

compute 
p (xl1' . • ., x 1) 

w 0 n 

P(x~ 
( 4. 9) 

where P(x 1) = ~ P w(x11 1 ••• , xn')P(w) and it is assumed that the distri-
w 

bution on w is discrete. The value of P(w01x 1) is used by the subjectiv-

ist to answer the question do the observed data support the assump-

tion w = w0 • It is possible to give a solution to the problem in te;rms 

of concepts developed in this paper. Let 

a= The true value of w is w0 • 

b = The probability of observing any sample is given by 

P (x1, •.. , x ) . 
w0 n 

Now, before performing the experiment the be liefs in a and b are 

given by the initial plausibilities p 1(a) and p 1(b). Observe that a implies 
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b. Thus, 

( 4. 10) 

where p 2(a) is the belief in a after having observed (x11, ••• , xn 1). 

The observing of (x1•, ••• , xn') results in p 1(b) changing to p 2(b). It 

is possible to compare (4. 9) and (4-.10). To begin with, both formulas 

are similar in appearance. In fact, p 1(a) corresponds to P(w 0) and 

p 2(a) corresponds to P(w01x'). However, the ratio p 2(b)/p1(b) does not 

correspond to the ratio P (x11, ••• , x 1)/P(x') and it is this fact that w n 

would make the solutions differ in general. To the writer of this paper 

there is more intuitive appeal in using the ratio p 2(b)/p1(b). The value 

of p 1(b) expresses the belief in the probability law before sampling and 

the value of p 2(b) expresses the belief in the probability law after sam-

pling (x11, ••• , xn 1). It seems reasonable for p 2(a) to be related to 

p 1(a) by the ratio p 2(b)/p1(b). Unfortunately, in order to use the theory 

developed in this paper p 1(a) and p 1(b) must be somehow obtained and 

the more vexing problem of how to change p 1(b) to p 2(b) must be solv­

ed. 

Example II. 2. In this example it will be shown that with certain 

assumptions Bayes Theorem holds for plausibilities. Consider 

(4. 5. 5} and suppose that bis found to be true. While the problem is 

not treated in this paper, in any reasonable theory that determines 

how outside information changes plausibilities if it is found that b is 

true, then p 2(b) should be set equal to one. If p 2(b) = 1, then p 2(b 1} = 0 

and (4. 5. 5) becomes 

( 4. 11) 
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Now, (4.11) is the form of the definition of conditional probability 

which is used to derive Bayes Theorem. 

Case III. Two propositions are again considered. However, in 

this case it is assumed that both marginals change; that is, it will be 

assumed that p 1(a) = u changes to pz(a) = v and that p 1(b) = r changes 

to p 2(b) = s. The restraints are then 

(4.12.1) 

(4.l2.2) 

q 1 + q 2 + q 3 t q4 = l (4. 12. 3) 

In the notation of Theorem 4. 2, i = 1, 2, 3, 4 and j = 1, 2 with k 1 = v and 

k 2 = s. The T/i) are obtained from (4. 12. 1) and (4.12. 2) and are 

T 1(1) = T 1(2) = 1, T 1(3) = T 1(4) = 0, T 2(1) = T 2(3) = 1 and 

T 2(2) = T 2(4) = 0. Thus, the minimum is given by 

-µ - 1 
q = p e 4 4 

From ( 4. 13. 1) and ( 4. 13. 2) it follows that 

and from ( 4. 12. 1) it then follows that 

(4.13. 1) 

(4.13.2) 

(4.13. 3) 

(4.13.4) 
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Therefore, 

(4. l4. l) 
- I 

and 

Then, from ( 4. l3. 3) and ( 4. l3. 4) it follows that 

Now~~ q 3 + q4 = l - v so that 

and 

(4. l4. 3) 

By employing ( 4. l2. 2) it follows that from ( 4. l4. 2) and ( 4. l4. 3) that 

By simple algebraic manipulation a quadratic in e >..2 is obtained. It is 

(4.14. 4) 
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The constant term in (4.14. 4) is aly.;;ays gr.eater than zero so that 

(4.14. 4) has a so.lution with one positive and one negative root. The 

positive root is the only permissible one since e}).2 > 0 a,lways. There­

>-. fore, there is a unique solution to (4. 14. 4) for e 2. 

It was previously shown that 

Now, from (4. 13. 1) and (4. 13. 3) it £ollows that 

Thus, 

P1 ->-. P1 ->-. 
·- q e l = - q 2e 2 
P3 3 P2 

or 

and employing ( 4. 14. 1) and ( 4. 14. 3) yields 

(4~ 14. 5) 

->-. ->-. Now, by employing ( 4. 12. 3) and using the solutions for e l and e 2 

it follows that 

(4.14. 6) 

->-. It is now possible to solve £or the q. by using the solutions for e 1, 
1 



62 

e ->..2, and e -µ - 1 and equations (4. 13. 1) through (4. 13. 4). 

Now let r = s and v = v, that is, p 1(b) = p 2(b) and p 1(a) = p 2(a). 

Then (4. 14. 4) becomes 

(4.15.1) 

Set p 1p 3 (l - r) = w so that (4. 15. 1) may be written as 
PzP4 r 

2>,.. >-... 
e 2 + (w - l)e 2 - w = 0 (4.15.2) 

where w > 0. The roots of (4. 15. 2) are -wand 1 and since e>-...2 > 0 

always, the root 1 is the only acceptable one. Thus, e>-...2 = 1 and there-

£ore , A 2 = 0. With >-... 2 = 0 ( 4. 15 . 5) become s 

e - >-...1 _ v ( p 3 + P 4) _ u ( 1 - u) = 
- ( 1 - v) ( p 1 + p 2) - ( 1 - u) u 

so that >-... 1 = 0. Finally (4. 15. 6) becomes 

or µ = -1. It is now possible to solve (4. 13. 1) through (4. 13. 4) for 

the q .. The solution is, obviously, q. = p., i = 1, 2, 3, 4. Thus, again, 
1 1 1 

if there is no change in the marginals, then the re is no change in any 

of the plausibilities and the solution is the same as in Case I. 

Suppose now that a and b are independent. Since no explicit solu-

tion for the q. has been obtained it will be necessary to return to equa­
l 

tions (4. 13. 1) through (4. 13. 4) to obtain a solution when a and bare 

independent. The equations with independence are 



-:,... - :,... 2 - µ. - 1 
q = ure 1 . 1 

-)... - µ. - 1 
q 2 = u( 1 - r) e l 

-)... - µ. -
q 3 = ( 1 - u) re. 2 

- µ. - 1 q4 = ( 1 - u)( 1 - r) e 

From (4.16. l) and (4.16. 2) it follows that 

ql r - X. - =--e 2 q l - r 
2 

and from ( 4. 16. 3) and ( 4. 16. 4) it fo llow·s that 

Thus, 

Now, 

so that 

and, also, 

q3 r -X. ·-=--e 2. q t·- r 
4 

v 
q4 = r-:--v 

(4. 16. l) 

(4. 16. 2) 

(4.16.3) 

(4.16. 4) 



64 

But 

s-o that 

q 3 = s(l - v). (4.17. 1) 

Then, 

= sv. (4.17. 2) 

Now, 

so that 

q 2 = v - q1 = v - sv = (1 - s)v. ( 4. l 7. 3) 

Finally, 

( l - v) q:::; q =(1-s)(l-v). 
4 v 2 

(4.17. 4) 

In terms of the original notation the solution is 

(4.18.1) 

(4.18.2) 

(4.18.3) 

(4,18.4) 

Thus, it turns out that if a and bare independent, then the plausibilities 

of the various conjunctions of a and b are the products of the separate 

plausibilities. Therefore, minimizing I comes up with the correct re-

sult. For if a and b are independent, then p(a. b) = p(a)p(b) always and 

similarly for the other conjun,ctions. 
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Ga-se IV. ·fn this the concluding ca:se, thr0ee propos·itions will be 

considere·d briefly. With thr.ee propositions it is possible to impose· 

three re·straints that expre·s s the plausibilities of the individual pro -

po-sition-s in addition to the restraint that the sum of all q's is one. If 

,eith-er two or three restraints are imposed the solutions are difficult 

to obtain and are not explicit. Therefore, only the case of one addi­

tional restraint will be considered. Assume that the plausibility of a 

changes due to outside infor;mation and denote p 2(a) by s, p 1(a) by r, 

and let the following correspondence of propositions and plausibilities 

hold: 

abc: P1. and ql 

abc 1: Pz and q2 

ab'c: P3 and q3 

ab 1c 1: P4 and q4 

a 'be: Ps and q 5 

a 'be': p6 and q6 

a'b'c': p8 andq8 

The linear restraint is given by 

( 4. 19) 

and from Theorem 4 .. 2 it follows that 



ql = ple 
-\ - µ - l 

- -\ - µ - l 
q2 - Pze 

q3 = ·p3e 
-\ - µ - l 

q4 = P4e 
-\ - µ - l 

q5 = P5e 
-µ - l 

q6 = P6 e 
-µ - l 

q7 = P7e 
-µ - l 

q8 = p8e 
-µ - l 

Summing (4. 20. l) through (4. 20. 4) yields 

s = re -\ - µ - l 

so that 

-\ - µ - l s 
e =-. 

r 

Similarly, working with (4. 20. 5) through (4. 20. 8) yields 

-µ-l_(l-s) 
e - (l - r) · 

Now, solving for p 2(b) results in 

_ s + s + (1 - s) + (1 - s) 
-Plr P2r p5(l-r) p6(1-r) 

_ s (1 - s) 
- (pl + P2) r + (P5 + p6) (1 - r)" 
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(4~20: l) 

(4. 20. 2) 

(4. 20. 3) 

(4.20.4) 

(4.20.5) 

(4.20.6) 

(4.20.7) 

(4. 20. 8) 

( 4. 2 l. l) 

(4.21.2) 
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In terms of the original notation the solution for p 2(b) is 

P2(a) P2(a ') 
p 2(b) = p 1(a. b) ·p1. (a) + p 1(a '. b} ( '). 

P1 a 
( 4. 22) 

Obviously, similar equations hold for p 2(b'), p 2(c), and p 2(c '). Thus, 

with three propositions if only one individual proposition changes plau-

sibilities from outside information, then the solution for the remain-

ing two is identical to the solution with two propositions when one pro -

position changes due to outside information. Again, minimizing I 

works quite well. 



CHAPTER V 

SUMMARY 

In this paper a study of the concept of a subjective inferential the­

ory of probability is made. The term plausibility is used to name this 

form of subjective probability. Intuitively, plausibilities are to be 

thought of as expressing an "ideal" person's degree of belief in the 

truth or falsity of some proposition. The set of propositions under 

study is assumed to form a Boolean algebra and truth or falsity is ex­

pressed by a homomorphism from this Boolean algebra onto the 

Boolean algebra {o, I J. If a proposition maps into I it is true and if 

it maps into O it is false. The difficulty in practice is that seldom is 

the homomorphism known; thus, there is a need for some method of 

expressing degrees of belief about propostions whose truth or falsity 

is not known. This concept of truth or falsity is also employed in de -

fining independent propostions. 

The primary problem investigated is this. If initially the plau­

sibilities of certain of the propositions are given and then some of 

these are known to change by a known amount, then how should the 

plausibilities of the remaining propositions change. In general, in 

any scientific theory the propositions are related. Thus, if the plau­

sibility of one proposition has changed from one value to another, then 

if a person is acting "rationally," the plausibilities of propositions 

related to this proposition should change in some calculable manner. 

68 
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Thi-s problem is a S'pecial case of the general inference problem. 

A solution to this special case of the general inference problem 

is obtained in this paper. The solution is accomplished in two steps. 

First, axiomatically, a theory of plausibilities and a total informa­

tion function for a special set of propositions are derived. The theo­

ry of plausibilities is similar to elementary probability theory with 

the exception that no theory concerning conditional plausibilities is 

derived. This is so since no definition or use is made of the concept 

of a conditional plausibility. The total information function derived 

corresponds to the mean information function extensively investigated 

by Kullback [ 21]. The total information is a function of the plausibil­

ities of the propositions in the special set for which total information 

is defined. The second step is to use plausibilities and information 

in some manner to obtain the desired solution. The technique employ­

ed is to minimize the total information subject to the restrictions im­

posed by knowing the values of the plausibilities of those propositions 

whose plausibilities have changed. 

The use of the minimization principle is investigated for various 

applications. It is found that minimizing total information (subject to 

restraints) gives certain desirable results: 

( 1) If two propositions are considered and the plausibility of 

neither is known to change, then the plausibility of any pro -

position made up from these two by any of the operations of 

disjunction, conjunction, or negation does not change. 

( 2) If two propositions are considered and the plausibility of, 

say, the first changes value, then the plausibility of the 
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s-econd is related to the first by a function that is a general­

ization of Bayes Theorem. This function has the property 

that if the change in the plausibility of the first is zero, then 

there is no change in the plausibility of the second. If the 

two propositions are independent, then the plausibility of the 

second does not change. If the first implies the second, then 

an alternative solution is obtained for the Bayesian inference 

problem. 

( 3) If two propositions are considered and the plausibility of both 

changes,. then it is possible to obtain a solution for the value 

of the plausibility of any proposition obtained from these two 

by any of the operations of disjunction, conjunction, or nega­

tion. If the change in plausibility of both is zero, then the 

plausibility of any proposition made up from these two does 

not change. If the two propositions are independent, then the 

plausibility of the conjunction of the first or its negation and 

the second or its negation is the product of their respective 

plausibilities. 

( 4) If three propositions are considered and the plausibility of, 

say, the first changes value, then the solution for the plau­

sibility of the second and the third is the same as the solu­

tion obtained in part (2). Because of the complexity of the 

solution the case where either two or three of the propositions 

change plausibilities was not considered. 

It is hoped that the the~ies of plausibilities and information 
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-0.eve lope·d in this paper can be employed in a meaningful manner to 

obtain solutions to various special problems of the general inference 

problem. The technique of minimizing the total information gives rea­

sonable results in all of the cases investigated. Two difficulties are, 

however, encountered. First, in considering three or more but at 

most a finite number of propositions the solution for the cases when 

two or more of the propositions change plausibilities is extremely 

complex. Second, there appears to be no reasonable way to extend 

the technique of minimizing the total information to the case when the 

Boolean algebra considered has an infinity 6£ elements. Before this 

problem could even be investigated the algebra of plausibilities would 

somehow have to be extended so that plausibilities are countably addi­

tive. 
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