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CHAPTER I

INTRODUCTION

1,1 General Discussion of the Problem. A large volume of infor-

mation about the synthesis of electrical networks has been developed
during the last thirty years. However, it is now clearly recognized
that classical techniques have ignored the topological properties of
the design. Seshu (1) in an early paper discussing topology and syn-
thesis stated that there are "... several methods of synthesizing
driving-point functions known at the present time and they are prac-
tically satisfactory. Esthetically, however, they are unsatisfactory
in that one of the most important characteristics of a network,
namely its topology, has been neglected."

Interest in this aspect of circuit synthesis is a natural result
of the advanced state of classical procedures and the development of
topological methods of analysis. Since the time of Seshu's first paper
in 1955, the requirements of circuit designers have changed. There is,
for example, a need to control the topology when designing a network
to be constructed by integrated circuit techniques. As topological
studies continue, it appears that other important synthesis problems,
such as specifying several functions to be realized by a single net-
work, may be solved, Thus the study seems to have far-reaching prac-
tical, as well as esthetic, value.

The circuit designer is directly cdoncerned with three attributes



of the network: the specified function, the topology, and the element
values. Classical synthesis procedures begin with a specified network
function and, by one of several different techniques, derive both the
topology and the element values. In certain cases, especially the
two-element.kind network, there is a limited choice of topology, i. e.
parallel, series, or ladder circuits. Such a choice falls far short
of being topological design. Thus the general problem at hand is to
develop circuit synthesis procedures which allow the circuit designer

to control the topology.

1.2 Review of Literature. Seshu's paper, quoted previously,

derived the fundamental circuit matrix and the incidence matrix of the
network from the specified driving-point function and certain elemen-
tary functions. These represent the resistors, capacitors, and in- .
ductors of the network and their values. Seshu did not present a pro-
cedure to obtain the elementary functions from the specified network
function but declared that such a procedure would be necessary before
the method could be practical,

In 1960, Onodera (2) developed a method for the topological syn-
thesis of networks from the transfer admittance matrix. His procedure
derived the incidence matrix and the branch impedance matrix. This
paper differs from our present objective, however, as the specified
funection is a matrix function of the network. No general procedure is
known to obtain the matrix from a specified network function.

Iterative methods for finding the element values of a network
with a specified function and topology are proposed by Bellert (3) and

Calahan (4)., Bellert®'s algorithm for topological synthesis generates



a sequence of networks, and he suggests that each one be tested by it-
erative numerical methods to see whether it will realize the specified
function or not. Calahan has prepared a computer program to determine
the element values of a network from a specified function and topology.
If the iteration process does not converge to a solutiony, Calahan's
program automatically adds an element to the network and attempts to
solve it again. The difficulty is that the user must make an *approp-
riate' choice of starting values for the iteration. If it fails to
converge, either the network cannot be realized in the specified top-
ology or a bad starting point has been chosen. Experience indicates
that this situation occurs frequently in all but simple examples.

The work of Seshu presents quite a contrast to that of Bellert
and Calahan, The former attempts to derive the network topology,
while the latter are suggesting that it be tested., Thus it is reason-
able to question whether or not one should look for a procedure to de-
rive a topology from a specified function. An uncountable number of
networks can realize a specified function (if it can be realized at
all). Thus if a topology is to be derived, it appears necessary to
make additional specifications. For example, Seshu specified the
elemer;t values while Onodera specified a system matrix. In accordance
with our general objective, any additional specifications should re-
late specifically to the topology. Now the original question is
rephrased, What properties of the topology are determined by the
specified function, and how are these related to the element values?
Once an answer is found, one may look for a topological synthesis

procedure,



1.3 Delineation of the Problem. The present objective is to

study the driving.point impedance function of passive linear networks.
Mutual inductance is excluded to further limit the scope of the prob.
lem, It is assumed that this function is realizable, that is, it is
positive real and hence satisfies the classical test for realizabil-
ity. Principles developed for the impedance function can be applied
in a similar manner to driving-point admittance functions. 'Perhaps
such an investigation might be extended to other network functions,
such as the transfer impedance function.

The two questions propvsed in Section 1.2 are applied specifi-
cally in this thesis to the driving-point impedance. Topics for con.
sideration are:

(2) What is the nature of the relationship between the form of

the driving-point impedance and the network topclogy?

(b) Can a given network topology realize a specified driving-

point impedance?

(¢) What are the network element values?

In addition, a classification of networks is suggested as the basis

of a topological synthesis procedure.

1.4 Organization of the Thesis. The topics involving only top-

ology are discussed in Chapter II. Relations between the form of the
driving-point impedance function and the network topology are derived
and presented in a table, and network classification is discussed,
Questions (b) and (e¢) are, as in some classical synthesis methods,
allied, A general discussion will be presented in Chapter III relating

the driving.point impedance to the network topology by sums of tree



admittance products. Chapter IV describes a method for solving these
sums to determine the element values and the realizability of the net-

work topology. Several examples are presented,



CHAPTER II

RELATIONS BETWEEN THE DRIVING-POINT IMPEDANCE
FORM AND THE NETWORK TOPOLOGY

2.1 Introduction and Objective., The objective of this chapter

is to make explicit the relations between the form of the driving-
point impedance function (to be abbreviated ZDP) and the network
topology. Several papers are of special interest in this discussion
because they deal with the ZDP form. Hakimi and Mayeda (5) have
shown that a necessary and sufficient condition for a network func-
tion polynomial to be even or odd is that the number of resistors in
all trees of the network be constant. Brown and Reed (6) have devel-
oped detailed conditions on the ZDP form based on classical positive
real conditions.

Networks with two kinds of elements have been studied by Hakimi
(7), and their topological properties are related to the number of
poles and zeros of network functions. His work is also extended to
include networks with three kinds of elements. Similar results have

been obtained independently by others, Seshu and Reed (8).

2,2 Driving-point Impedance Forms. Two forms of driving-point

impedances are of interest. The determinant or improper form represent-

ing the most general function is defined by Equation 2.2.1.
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This form represents the arbitrary fashion in which a ZDP specifica-

tion may be prepared., It is assumed that
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and that the zero coefficients are specified. The numerical values
of the non-zero cpefficients remain unspecified.
As an aild to generalization, a normal or proper form is defined

by Equation 2.2.2,

m
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It is obtained from the determinant form by multiplying both numera.

tor and denominator by & o where x = max(l,q). Note that a_ and

m
b, # 0 3 however, eilther ag or by may be zerc. Ihe zero coeffi-
clents are also specified here, while the wvalue of the non-zerc coef.
ficlents is unspecified.
A normal form has six attributes. They ares

(a) the value of m

(b) ag specification (zero or non-zero)

(e) alternating numerator (even or odd polynomial)

(d) the value of n

(e) b, specification (zero or non-zero)

(f) alternating denominator (even or odd polynomial)

Extensive use of these attributes will be made in the following sec-



tions, It is clear that an uncountable number of determinant forms
reduce to a single normal form.

Relations between several of the attributes are presented in
various texts on classical synthesis; the reader is referred to Wein-
berg (9) for one such development. The integer values m and n can
be shown, for example, to differ by not more than one. These condi-
tions are deduced from the positive real test for realizability and

are only implicitly involved in the development presented here.

2,3 Graph-Theoretic Principles, The following is a unified

graph-theoretic presentation of definitions and theorems required for
this discussion of topological synthesis. A comprehensive treatment
of linear graph theory and the analysis of electrical networks can be
found in the standard text by Seshu and Reed (8).

It is necessary to differentiate between the linear graph de-
scribing the topology of a network and the network electrical compo-

nentss the basic definitiens reflect this distinection.

Definition 2,3,1 (Edge): An edge is a line segment with distinct

end points,

Definition 2.3.2 (Element): A network element is an edge identified

with a resistor, capacitor, or inductor.

An edge is later identified with a color. However, this is not
to be thought of as a property of the edge but simply an aid to visual-
izing a classification. The number of edges or elements will be de-

noted by E with an appropriate subscript if necessary.



Definition 2,3.3 (Vertex): The end points of an edge or element are

called vertices,

The term node is frequently used in the literature as another

name for vertex, V will designate the number of vertices,

Definition 2.3.4 (Graph): A graph is a set of edges coinciding only

at vertices.

Definition 2.3.5 (Network): A network is a set of elements coincid-

ing only at vertices.

Here again there is a distinction between the topological arrange-
ment and the network, The terms subgraph and subnetwork will be used
to denote graphs and networks containing subsets of edges and elements
respectively. Unless stated otherwise, the theorems will remain valid
when the graph edges are identified with electrical components. In
certain cases it will be necessary to discuss graphs having one or
more isolated vertices, 1. e. vertices not touched by an edge.

Several properties of a graph are now considered,

Definition 2,3.6 (Nonseparable): A graph G is nonseparable if

every subgraph of G has at least two vertices in common with its

eomplementoi All other graphs are separableo1

In order to designate clearly the separable subgraphs of a .

graph, & related term is defined below.

1A definition given by Seshu and Reed (8), this conveys precise=
1y the concept of interest here.
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Definition 2,3.7 (Component): A maximal nonseparable subgraph of a

graph G is a component of G .

Special emphasis is placed on another class of subgraphs dise

tinguished by the following propertyf

Definition 2.3.8 (Connected): A graph is said to be connected if

there exists a path or sequence of edges between any two vertices.

Definition 2.3.9 (Part): A part of G is a maximal connected sub-

graph of G »

The number of parts of a graph will be denoted by P . It is clear
that a part of G will always be a component or perhaps more than
one component, On the other hand, if G is connected and nonsep-

arable, it will be regarded as a component of itself.,

Definition 2.3,10 (Rank): The rank of G is R = V . P,

This term will be used fregquently in the discussien.

The tree concept defined below is the vehicle for developing
the relations between the ZDP form and the network topology. To
utilize this important graphical concept to the full extent, the def.

inition here differs from that commonly used in electrical engineering,

Definition 2.3.11 (Tree Graph): A tree graph of a graph G of rank

R 1is a subgraph of rank R having R edges.

This definition may be shown to be equivalent te the conventional one

if the graph is connected,
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Definition 2.3.,12 (Tree): A set of edges which form a tree graph is

called a tree.

This second definition is provided to distinguish the tree graph from
the set of symbols corresponding to the edges of the tree graph, It

will frequently be necessary to refer to the tree ti and its edge

'tai o {eil, ei29 coo eiR}

To represent conveniently the complete set of trees of a graph, the

S S

set,

tree set

is defined,

Definition 2,3.13 (Tree set): The tree set of G is the set of all

trees of G »

These definitions are now illustrated by referring to the graph
in Figure 2.3.1, .This graph is composed of three components dencted
by the edge sets {A} 9 {§9 Cs Dy ﬁ} and {?9 é} o The subgraphs
{Ag By Cy Dy E} and {F,, (‘E} are by definitien parts of the graph.
The tree set is also shown in the figure.

The theorems to be developed can be conveniently stated and

proved in terms of operations on a graph.

Operation 2,3.1 (Fdge deleting): A specified edge is removed from

G . If an isolated vertex is created by an edge-deleting operation,

it is also removed,
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B E
)
“ O,
D G
Tree Set

ABCF ABDF ABEF ACEF ADEF
ABCG ABDG ABEG ACEG ADEG

Figure 2.3.,1, Example for Graph Definitions

The edge deleting dperation is extended to the subgraph.

Operation 2.3.2 (Subgraph deleting): An edge-~deleting operation is

performed on each édge of a specified subgraph.

Operation 2,3.3 (Vertex shorting)s Two specified vertices v, and

Vj are superimposed. Edges with both endpoints on the new vertex,

self-loops, are deleted,

As'most vertex-shorting operations are designated by an edge, it is

convenient to make the following definition.

Operation 2,3,4 (Edge shorting)s A vertex-shorting operation is per-

formed on the vertices denoting the endpoints of a designated edge.

Note that self-loops are again removed. This operation is also ex-



tended to subgraphs,.

Operation 2,3.5 (Subgraph shorting): An edge-shorting operation is

performed on each edge of the specified subgraph.

The theorems that fellow develop the necessary and sufficient

conditions relating the form of the ZDP and the network. They are in-

tended to be constructive in naj_:ure9 that is, they are stated and

proved in a fashion suitable for use in an algorithmic process. For

an example of such an applidation the reader is referred to (10).
The first five theorems prescribe the effect of the correspond-

ing five operations on the tree list of a graph.

Theorem 2,3.1 (Deleted edge theorem): A graph G' is formed by an

edge-deleting operation on eq °
(a) If the rank of G' is equal to the rank of G ,
(1) every tree of G' is a tree of G , and
(2) every tree of G which does not contain ey is in
the tree set of G* .
(b) If the rank of G' is not equal to the rank of G ,
(1) R* =R =1 , where the ranks of G' and G are Rf
and R respectively, and
(2) every tree of G' will be a tree of G if ey is
added.
Proof ga23 .Since the rank has not changed and G! is a subgraph ofjé 9
its tfees are trees of G . In addition, a tree graph of G which
does not contain ey 1is a subgraph of G* . This subgraph of G’

has appropriate rank and number of edges to be a tree of G' .
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Proof §b23 Deleting an edge does not change the number of vertices,
but may increase the number of maximal connected subgraphs by one.

Thus if the rank of G' 1is not equal to the rank of G ,
RR=(V-P)=-1 = Rat

Note that a tree graph of G' will be a subgraph of G of rank R-1
with R-1 edges., Since deleting eq in G divided a maximal connec-
ted subgraph into two parts, adding ej; to a tree graph of G° will
connect the corresponding parts of the tree graph., This newly formed
graph will be a2 subgraph of G having rank R and R edges; thus it

is a tree.

Theorem 2,3.,2 (Shorted vertex theorem): A graph G° of rank R' is

formed from graph G of rank R by a vertex-shorting operation on
vy and vy .
(a) If and only if vy and vy are in separate parts of G,
(1) R=R" , and
(2) the tree set corresponding to G 1is identical to
that of G .
(b) If and only if vy and V3 are in the same part of the
graph G , R' =R =1,
Proof g%lé The number of vertices and parts of G are both reduced
by onej thus the rank is unchanged. Every iree of G is by defini-
tion a tree graph of G° after a vertex reduction is performed on
vy and Vj o In a similar way separating the reduced Vertex of any

tree graph of GY , while maintaining the vertex-edge incidence rela-

tion of G , will produce a tree graph of G . Thus the tree sets are
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identisal,
Proof gbzg In this case the number of parts of G and G° is the
sams, while the number of vertices of GY is one less than that of G.

Thus the rank of G° is one less than G .

Theorem 2,3.3 {(Shorted edge theorem)s One edge of a graph G is

selected and designated e, . A graph G* is formed by an edge-

shorting operation on e, . The tree set of GY is designated
L4

TV = {%019 t929 v oo tan}_ R

A second set of edge setls

T = {tlg t29 soo tn} ?

is formed by adding eg to each t“i to form %5 .
{a) Every set of edges t, 1s a tree of G .
(b) Every tree of G that contains e, 1s included in the tree
set T .
Proof (a)s Each t° 4is a subgraph of G of rank R-1 having R-1
edges, The vertices shorted by the edge-~shorting operation are separ-
ated while maintaining the vertex-.edge incidsnce relation of G
When the edge eg 1is added between the separated vertices, a subgraph
ofb G with rank R and R edges is formed,
Proof gbgi Considering any tree graph of G which contains ey o an

edge=shorting operation on e_, produces a subgraph of G* of rank

s

R-1 with R-1 edgeso- This subgraph is by definition a tree of G? .

Theorem 2.3.4 (Shorted graph theorem)s A set of edges shorted one by

one (no edge is removed as a result of shorting a previous edge) reduces
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a graph G to zero rank if and only if the edge set is a tree of G 51
Proofg Each edge of the set of N shorted edges is designated ey
and the graph formed, G; . The tree of Gy is the null set of edges.
According to the shorted edge theorem (2.3.3), ey is a tree of GNQI o
Continuing to apply this reasoning, {éle . eﬁ} is a tree of GN=2 s
etec, Finally, {[319 €59 coo eﬁ} is a tree of G ,

Assuming that shorting a set of edges corresponding to a tree in
G did not preduce the graph to rank zero, then an additional set of
edges could be shorted to reduce the rank to zero., As described above,
the union of this second set of edges with the tree set would be a
tree., This contradicits the assumption, since the nsw tree would have

more edges than the assumed ftree., Thus shorting the edges of a tree

reduces. G to rank zero,

A discussion of the interrelation of the tree and the ZDP is pre-
sented in Section 2.4, The following theorems provide the desired
association between the properties of the graph and the tree set,
Several of them correspond tc theorems by Hakimi (7). However, the
present discussion is entirsly graph-theoretic and unified. In addi-
tion, the theorems here stated are in a form suitable to apply to
graphs of more than one part.

Colors will be used to denote classes of edges, The subscripts
w and b will denote subgraphs of white and black elements. The
black subgraph is the complement of the white, and vice versa, The

s subscript designates a graph that is formed by shorting the sub-

IThis theorem corresponds to part of an algorithm for listing all
of the trees of a graph described by Minty (11).
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graph which is the complement of the designated edge set. For example,
Gws is derived by shorting the non.white edges., In a similar fashion
d indicates that the graph is produced by a subgraph-deleting opera-
tion on the complement of the indicated edge set, Thus Gnq 1is ob-
tained by deleting all non-black edges.

In some applications of the theorems below the graph will be com-
posed of three classes of edges. When this occurs, two of the classes
are treated as a single class. For example, the edges of a graph are
clasgified as red, blue, or green., If the red edges are of particular
interest, they are assigned to the white class, while the blue and
green are assigned to the black class,

The following thecrem presents the basic relation between the

derived graphs G

s and de and a tree,

Theorem 2.3.5 {(Composite tree thecrem): If

(a) G is a graph with derived graphs G_. and Gy o

() t, is a tree of G »
(e) t, 1is a tree of Gyg »

then t= {t U *@b} is a tree of G .

Proofs To prove the theorem the edges of the tree t, are shorted in

Gpg and G . Since, according to the shorted graph theorem (2.3.4),

de is now reduced to zero rank, all of its black edges have been re-

moved, Thus all black edges in G have also been removed and Gy

remains., Shorting the tree tw in GWS reduces G %o rank zero.

The shorted graph theorem is again applied to identify the set of edges

{tw U té} that reduce G to rank zero as a tree of G

As will be seen later in this chapter, the maximum and minimum
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numbers of edges of a particular class in any tree are of primary im-

portance. They are determined by the ranks of derived graphs,

Theorem 2,3.6 (Minimal tree theorem): If the graph G,y derived from

G has rank Rbs , every tree of G contains at least Rys black edges.
Proofs By the composite tree theorem (2.3.5), a tree with Ry, black
edges existsov Assuming that a tree with fewer than R, black edges
exists, then shorting the non~black edges of this tree in G would
produce a derived graph G' of rank R' less than Rbs s wWhich must
contain a black edge tree. This is a contradiection of the hypothesis
since the rank of a graph formed by shorting any subset of non.black
edges must be greater than or equal to R, . OShorting the remaining

non-black edges can only reduce the rank.

Theorem 2,3.7 (Maximal tree theorem): If the graph GWd derived from

G has rank Rwd9

(a) at least one tree of G contains RWd white edges, and

(b) no tree contains a gréater number of white edges.,
Proof ga)g The non-white elements of G are identified as black ele-
ments., The ranks of Gpg and Gy are Ryg and Ry Tespectively,
If tb is a tree of Gbs and tw is a tree of Gog o then, according
to the composite tree thecrem (2.3.6), t = {%b U tﬁ} is a tree of
G . Note that tw contains Rwd white edges; thus t contains _Rde
white edges.,
Proof (b): Assuming a tree graph exists with R® > RWd white edges,
this tree must be a subgraph of G . In addition, the R? white
edges must be a subgraph of G 4 . However, the GWd graph has rank

R, @and no subgraph can have greater rank, = This is verified by con-
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sidering that Gg has V vertices and Pwd paris.  Any subgraph GU

of Gy with V¢ wvertices and P' parts must have

AR/
and P 2 Pwd o
Thus VP o Pt =R SRSV . Py o

Having thus specified the extreme characteristics of the tree set,
the next requirement of the development deals with the properties of the

set between these extremes,

Theorem 2,3,8 (Tree sequence theorem)s The tree set of a graph conhw

tains trees with K white edges for all K such that R, < K ¢ Ryg -
Proof: The minimal tree theorem (2.3.6) states that at least one tree
contains R,y edges, while the maximal tree theorem (2.3.7) verifies
that a tree contains Rwd edges., A graph G corresponding to the tree
set is formed, FEach node corresponds to a tree of the set and each
edge to an elementary tree transformation. This transformation in-
volves replacing one edge of a tree with another edge forming a dif-
ferent tree of the set, R, L. Cummins (12) has shown that a Hamilton
circuitl exists in a graph of trees, ".,.,, the set of trees of a network
(graph) can be ordered in such a manner that suceessive trees are re-
lated by elementary tree transformations." Note that an elementary
tree transformation can remove at most cne white element from iree Ty
Thus there exists a tree with K white elements for all K such that
Rys € K S Ry - The meximum and minimum values of K are given by

Theorems 2.3.6 and 2.3.7.
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In certain special cases the maximum and minimum are identical.

The component graph property is associated with such a condition.

Theorem 2.,3.9 (Component graph theorem): A necessary and sufficient

condition for the white elements of G to form a component or set of
components of G 1s that Ro . = R4

Proofs Note that the G . graph can be obtained from Gy by short.
ing the vertices which were commsoted by non.white edges in G . If
the white edges of G form a component or set of components, the pro.
cess of deriving g from Gq does not change the rank, The rank
is now assumed to be changed by a shorting operation. Thus, ascording
to the shorted vertex theorem (2.3.,2), the two vertices must be in the
same part of the graph, Since the only connected subgraph of twe or
more vertices in Gwd is a white edge subgraph, a non=white edge
exists between two vertices in a white subgraph of G ., Such a white
subgraph has at least two vertices in common with its complement and
by definition is nonseparable, i. e. not a component. This contradicts

the hypothesiss thus the rank is unchanged in the process of deriving

G

S from Gwd °

Now it is assumed that G, 15 obtained from Gy and the rank
is not changed in the process, From the shorted vertex theorem (2,3.2)
it is known that the vertices which were shorted must have been in
separate parts of the graph. Extending this reasoning, no sequence
of shorting operations used to obtain G, from G, will involve
shorting two vertices which are common to a one-part subgraph. Thus,
there exists no white one-part subgraph in G which has two or more

vertices in common with a non-white subgraph; hence by definition,
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all white subgraphs are components,

An additional short theorem will prove useful,

Theorem 2.3,10 (Component tree theorem): Every tree in the tree set of

a graph G has the same number of white edges if and only if the white
edges form a component or set of compeonents of G .

Proofs This theorem follows directly from the tree sequence theorem
(2,3,8) and the component graph theorem (2,3.9). The number of white
edges K din each tree of G 1is bounded by R, <& K £ R_. . But

Rys = B » and the number of white edges in each tree is the same,

2.4 Network Forms, Figure 2.4,1 represents a one-port network

with the two input terminals identified,

Figure 2.4.1. One-Port Network

The driving-point impedance is defined to be

N
1
de tfzw_
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and can be written as

7. = ~ZQSII

dp AN
where /N andécsii are the determinant and y44 cofactor respectively
of the node-admittance matrix,

Symbols associated with the graph and topological properties of
the one-port networklwill be denoted by a 0O Subscripto A derived
graph, formed by shorting the input terminals of Gy s is of special
importance and its symbols will be designated by the subscript 1 ,

Percival (13) formalized the early work of Maxwell (14) to develop
equations giving the determinants above in terms of the trees of G
and Gy . These are stated without proof; for further detail the reader

is referred to Seshu and Reed (8).

Definition 2.4,1 (Tree-admittance product): The tree-admittance pro-

duct 14 1s the product of the admittances: ¢f the elements correspond-

ing to the edges in t, .

Theorem 2.4,1s If Gy is a graph corresponding to a connected passive

network without mutuwal inductance, the node-admittance matrix deter-

minant of the network is

VAN :é(tree=admittance preduct of ty ) 2.4.1

tree
set

Theorem 2,4.2; If G; 1is a graph derived from a G, satisfying the
hypothesis of Theorem 2.4.1, the cofactorlf&ll of the node-admittance

matrix is
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= (tree-admittance product of t;) 2.4,2
11 1
tree
set
of Gy
As the eofactor.élll is the determinant of a network derived from the
original by shorting the input, it will be convenient to refer to both
Zl.andlf&li as determinants. Representing each element of the network

by its transform admittance, the determinants become polynomials in s.

Theorem 2.4,3 (Alternating.term theorem): A network determinant has

alternating terms if and only if the R element subgraph is a compo-
nent or éet of compenents,

Proofs A network determinant has alternating terms if and only if each
tree has the same number of resistors,

If each tree has the same number of resistors, every elementary
tree transformation in a Hamilton circuit through the graph of trees
will change the exponent of s by 0 or 2 ., Thus only alternating
terms exist in the polynomial.

It is now assumed that an alternating polynomial gan be formed
by trees not having the same number of resistors., Then from the tree
sequence theorem (2,3.8) it follows that there must be a tree with an
even number of resistors and one with an odd number, a tree with an
even number of reactive elements and one with an odd number. This
contradicts the hypothesis sinee such a polynomial would not be alter
nating. Hence, the alternating polynomial trees must have the same
mumber of resistors. The preceding corresponds te the hypothesis of
the component tree theorem (2.3.10), and by its conclusion the R

element subgraph must be a component or a set of components.,
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Theorem 2.4,3 specifies the ZDP-network relation involving two of
the six attributes of the normal ZDP form. The remaining four are
associated with the exponents of the determinant form ky, 1, p, q »

For example, p is the exponent of s associated with the tree-admit.
tance products for trees containing the maximum number of capacitors

and the minimum number of inductors in the network. According fo the
maximal tree theorem (2,3.7), RCdO is the maximum number of capacitors
in such a tree. If the resistors and inductors in this tree are de-
noted by X , the Gygo graph has rank Ryso - - There are Rpgo in-
ductors in the trees of Gy, that minimize this number (Theorem 2,3.6) .

This is the minimum number of inductors in any tree, and p becomes
P= RCdO - RLSO 2.4.3

In a2 similsar manner q 1is determined., Here, however, the roles of
capacitor and inductor are reversed as the minimal exponent of s is

required, The result is
q = Rldo = RCSO 20“’0“’

Applying this same reasoning to the shorted network with graph

Gy 5 equations for k and 1 are obtained,
k = Rcdl = RLSI 20“’05
1= Brgq = Rest 2olob

Finally, the exponents k, 1, p and q determine the value of
the exponents m and n by the reduction process described in Section

2,2, This yields
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8
i

k + max (lg q) 20“’07

ja]
it

p + max (1, q) 2olt,8

2,5 Nature of the Relationship Between the Network Form and

the ZDP Form, The necessary and sufficlient conditions for a network

fofm to realize a specified driving-point impedance form are new de-
rived, The first step is to classify the ZDP form in terms of its six
normal form attributes listed on page 7. The major classification

shown in Table 2.5.1 is based on the value (zero or non-zero) of the

ag o bo attribute, Note that the corresponding determinant condition
is listed in the adjacent column. The fact that ¢q and 1 differ by
at most one can be shown by considering the rank relation in the shorted

vertex theorem (2,3.2) and Equations 2.4.4 and 2.4.6. Thus since

q - 1= (Rqo - Brg1) - (Rgso = Rpst)

and from the theorem
0
Rqo = Bra1 = (4

0
Reso = Rost = {1

+1
g = 1= 0
-1

For each class, the first equation in column three of Table 2.5.1

the difference becomes

is obtained by substituting Equations 2.4.4 and 2.4.6 into the equation
of column two, This result is the necessary and sufficlent condition

for a network form to correspond to the function class. The q and 1



TABLE 2.5.1

DRIVING-POINT IMPEDANCE CLASSES

Class Normal Form Determinant Form Necessary and Sufficient
Attribute Attribute Graph Conditions
R140 = Rgso ™ Rra1 = Rost
1 o % 0 q=1 m = Ragy = Brgt + Brgr = Rost
0
n = Rogo = Brso * Rrao = Beso
ag = 0 | R140 = Boso = Rrat - Rest *1
o=
2 o # 0 qg=1+1 m = Rogt = Rrst * RBrao = Rgso
0 _.
n = Rogo = Brso * Brao - Reso
Bra0 = Boso ™ Brar = Rgsr - 1
ao 75 0
3 q=1=1 m = Raogy = Brgr + Rpgy - Rggy -
bo = 0
n = Rogo = RBreo * Brat - Rest

9z



TABLE 2.5.2
DRIVING-POINT IMPEDANCE SUBCLASSES

Class Attribute Necessary and Sufficient
Graph Conditions
no

0.0 alternating Rpgqo # Rgso

polynomials
Rpar 7 Res1

denominator R = R

0.1 alternating RdO RsO
polynomial Rpat ¥ Rpst
numerator Rpgo # B

0.2 alternating Rd Rs0
polynomial Bra1 = Rps1
denominator
and numerator = R,

0.3 alternating RRdO Rs0
polynomial RRdI = Rps1

e
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attributes determine the maximum required in Equations 2.4.7 and 2.4.3.
Again substituting for k; 1, p, qs these equations are the necessary
and sufficient conditions for the network form to realize specific values
of m and n,

Four subclasses shown in Table 2.5.2 are defined by the alternating
polynomial attributes., This property of the polynomial is associated
with the R element subgraph as explained in the alternating.term
theorem {2.4,3). The rank equalities and inequalities are convenient

tests for the component property of the R subgraph,

2,6 Classification of Network Forms., Example 3 in Chapter IV

illustrates a network form realizing a specified function form. How=
ever, it is shown that a positive real function having the required
ZDP. form cannot be realized by this network form,. In genérals then,
the form of the ZDP determines a set of network formsgvat least cone
of which will satisfy a ZDP function. The nﬁmber of network forms in
this set is uncountable. However, as the objective here is to syn-
thesize a topology with specific properties, only certain forms of
this set are of interest. Hence, a classification is presented, the
objective being to assist the designer determine network forms, at
least one of which is realigzable, satisfying the specified topological
properties, Such a classification is not unique and, in fact, a dif-
ferent one may be desirable in some cases,

Table 2,6,1 shows the hierarchy of classes, That is, each row in
the table defines the classification of subsets of each of the pre
ceding sets, The symbols DA and DA have been used to denote an

alternating and non-alternating polynomial in the dencminator,



TABLE 2.6.1

CLASSIFICATION OF NEIWORK FORMS

Classification Definition of (Class Parameters
Determined
vertex class Cy = {yIV 2 1 4 max (m, n)}' Ro
g class Gq = {?lq intege#} 1, k;, p
Id0 class CI.dO = {RLdOl max (q, O) < RLdO £ RO} RCSO
Ldl class CLdI = {RMIIRLdI = [RLdO or RLdO - ﬂ and RC51> O} RCSI
Cd0 class CCdO = {RCdO,RCdO = R140 if DA,
Cdt class Coat = {Roat|Roar = Bpar if Na,
Rear = [Rogo o Rego = 1] and Rpgp 2 0 if 5-‘\} Rpst

6



TABLE 2.6.1 (Continued)

LCdO class cLCdO z[RLCdO‘RLCdO rank of GLCdO formed from RRsO
Grqo and Gcao}

LCdl cless Croat = {an] Ricq1 = Rreqo 1f NA and DA, Rpot
Rroas = [RLCdO or Ryoqo - 1:] if WA or DA}

LCsO class CLCsO = {RLCsolRLCSQ = RLCdO if DA, RRdQ
RLCsO rank of GLCsO formed from

Lost class | Cpoer = {Rpget|Rrcst = Proar 1 A Rrat

Rpgst = [Rrcso oF Rpcso - i] if ‘ﬁi}

0f
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Similarly, NA and NA represent the numerator conditions.

The first classification of sets is based en the number of ver-

tices. The minimum number is determined by the minimum rank of Gy -
V2 1+max (m n)

There is, of course, no theoretical upper limit to.the number V.  Within
each vertex class a division of function forms based on the integer ¢
is made., This g corresponds to the exponent in the determinant

form of the ZDP and can have any positive or negative value, The para-
meters 1, k, p are determined by the g class, that is, they are the
same for all netwbrks in one set of the gq class.

The LJd0 class designates the rank of GLdO o It can never be
zero and by Equation 2.4.4, not less than q . Since Grqo 1s formed
by deleting edges from Gjy , the rdnk Rygqo 1s not greater than Ry ,
previously determined by the vertei class. The rank Raso is deter-
mined from Equation 2.4,4. The Ldl and capacitor classes are de-
veloped in a similar fashion.

The ILdO class is formulated to designate the sets resulting
from all possible combinations of the Gpgo and Ggogo graphs having
the same rank. As these may contain differing numbers of vertices,
there are in general many possible GLCdO graphs, This classification
procedure is similarly carried out for the other LC graphs, In each
case the rank of a resistor graph is determined,

The subsets are further divided by the numbers of elements, Seva
eral relations are involved here, For example, if NL;Q Ny 9 Ng rep-
resent the number of inductors;, capacitors, and resistors, the defini-

tion of rank (2.3.10) yields
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N;, > Brao
Ne 2 Rego

Nz > Bryo

Other parameters may be chosen to distinguish the network class=
es. Hence, a network designer could develop a network classification

based on the topological properties of particular interest to him.



CHAPTER III

REALIZATION OF A SPECIFIED
DRIVING-POINT IMPEDANCE

3,1 Relation of the Network Form and Element Values. The term
realization réfers to the process of determining the element values of
a network to satisfy a prescribed driving-point impedance. According
to the discussion in Section 1.3, the first concern of the network
designer is this. Can the network form realize a specified driving.
point impedance? It 1s assumed here that the network topelogy satis-
fies the conditions-specified in the:tables: in. Chapter II.. Now the
actual coefficlient values of the ZDP are considered and the synthesis
procedure must test the network form for realizability.

If the network form will realize the ZDP, the next step is to de-
termine the element values, When the realization test fails, another
network form satisfying the specified topological properties is sought.
More than one set of element values‘may realize the specified ZDP.

The ideal synthesis progedure would make all such values available to
the designer,

As was previously stated, Bellert (3) and Calahan (4) suggest
iteration methods to realize the ZDP. Thus, the realizability test
is combined with the determination of element values. Calahan's

computer program utilizes the Newton-Raphson method of iteration.

33
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There are several difficulties with this solution technique. It is not
actually a test for realization since, if the iteration fails to con-
verge, the designer is not assured that the network will not satisfy
the ZDP specified. Initial estimates of the element values must be
entered; thus an a priori knowledge of the approximate solution is
required. Only one solution set is preduced and a second set, if one
is known to exist, may require a new iteration on a second initial
estimate of the element values., The author's experience with such an
iteration method indicates thal the process frequently fails to con-
verge, This is especially true of the non-standard network forms, i. e.
those not composed of ladder, series, or parallel elements.

The author has also investigated realization by a transformation
technique., In this approach, the desired network form is transformed
to one of the standard or canonical forms, which is then realized by
the standard techniques, The inverse transformation would then be
applied to obtain the realization in the desired topology. Guillemin
(15) has obtained a method for transforming networks with two kinds of
elements, and in which the values are known, to an equivalent canonical
form, the Foster networks. In general, however, the transformations
are not known., Such a transformation and its inverse are not unique
and thus probably are difficult to obtain.

A method of direct solution for the element values involving nei-

ther iteration nor transformation is presented in Chapter IV,

3.2 Solution of the Tree-sum BEguations., The network form and
the ZDP are explicitly related by the sum of tree admittance products

defined by Bquations 2.4.1 and 2.4.2. To illustrate this, the network
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shown in Figure 3.2.1 is considered.

§<
=
_ <
TR

A J
[

1
Yi = ﬁ; =X
= ==l = x s"1
yz LI 2
S S
37 Rp T3
1 1 -1

[}
Q
| e
®
|
]
1)

Figure 3,2.1, Nétwark Illustrating Tree-sum Functions

A computer program for listing all of the trees of such a network has
been developed (10). The trees of Gy and Gy are listed in Tables

3.2.1 and 3.2.2.



TABLE 3.2.1

TREES OF Gy, IN FIGURE 3.2.1

Yy Y, I3y
RPN PR

N RPRITRL

Yy Yy Iy Y5 Y4 ¥y V5 g
Yy Y4 V5 Vg Vo Iy Vs Vg
Yo I3 9, Y5 V37,5V
TABLE 3.2.2

TREES OF Gy IN FIGURE 3.2.1

Yy Y Vg
M RIRLD
Yy Y, Vs

PR LR

’y2 y3y5

7 yé Yﬁ y6
Yz Y5 y6 |

y4 y5 y6

Substituting the admittance of each element, the determinants are

A = (___,__L__,,_,);z + ( Co Cq Co
Cq Cy Ct C1Co
+
R{R,L; RyR,Ly RiRoL, Lyl
C1C2 C1C2 C102 \ 2
( ) )
R,L, R,L, RiR,

=1
)s

36



37

-+

oy + +
R T TR

1 C’I Cz -1 1 -2
N (— + ) 5 +( )s
( RyRoly LI, Ll RyLiLy

Thus the driving-point impedance has the form

a.as2 + a38 + a, + ais"'t + aos“'2

ez

ZdP - b;_,,s‘i + bBS + b2 + bls"‘L + bos“‘d

Now equating corresponding coefficients in the ZDP and determinant
expressions and substituting the x's for the ‘element value' part

of the admittance, the following set of equations is obtained,

3.4 xle5x6

337X X3 X5 VX Ky Xg F Xy X5 X

Gy TXy Xp Xy F X X3 Xy T Xy Xy Xg Xy X Xy
3 TR Xy Xy T XX Xy T Xy X X

20 T X X Xy

Dy =Xy Xy X5 Xg

by = Xy X X5 Xg F Xy Xy, Xg X T Xy Xy X5 Xg

o
[

2 x1x2x3x5 +x1x2x3x6 +x1x3x4x5 +x2x4x5x6
bllexthxé +x2x3x4x5a+x2x3x4x6

bO = Xy X, x3 X,

The realization and element value problem is solved by finding a solu-

tion to this set of equations., If the solution is composed of real
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positive values, the ZDP is realizable in the specified network form.

These equations will be called the tree-.sum equations and some of
their properties are considered below., The admittance of element i
will be denoted by Yy o0 while the 'element value® part of the admit-
tance is designated =x, . For example, the ‘element value® part of
y5 is C4 and is denoted by x. . Having removed the complex fre-
quency variable s , X, must be real and positive for a network of
passive elements. |

The tree-sum equations may be arranged in the form of a first
degree polynomial in any one variable., Each equation is linear in
each of the variables. Hence, the term multilinear is sometimes used
to designate equations of this type.

The tree-sum portion (right-hand side in the example) of each
squation is a homogeneous function. In particular, the ay funections
are homogeneous of degree V.2 while the bi functions are homogen-
eous of degree V=1, where V is the number of vertices in the network.
These functions are continuous and have partial derivatives of all
orders,

The number M of tree-sum equations associated with a netwoerk is
determined by the six atiributes of the normal ZDP form. Tablie 3.2.3
illustrates this relation in terms of the ZDP class and the attributes
m and n , Nn and Nd dencte the number of numerator and denomina-
tor equations, respectively;, while M is the total. They are deter
mined by counting the number of coefficients in the corresponding
normal ferm of the ZDP.

The number E of variables in the tree-sum equations (the number

of elements in the network) is a more difficult subject. A general



TABLE 3.2.3

NUMBER OF TREE-SUM EQUATIONS

Subclass Class 1 Class 2 Class 3
Nn=m+1 N, =m Nn=m+1
0,0 Ng=n+1 Ng=n+1 Ng=n
M=m+n+ 2 M=m+n+1 M=m+n+1
Nn=m+1 Nn"m Nn=m
=D =1 n+1
0.1 Nd §+1 Nd 2+1 Nd= >
n . n - n+1
M-—m+-§+2 M*m+-2-+1 M=m+=73
F At = TR
Nn 5+ Nn > Nn 2+1
0.2 Nd=n+1 Nd=n+1 Ny =
M=g+'n+2 = 2 1-i'n-i'I Mzg’+n+1
N =2+ 1 y =2t1 =241
n 2 n 2 Ny T3
n +
003 Ny =3+ 1 Nyg=3+1 N, =23
_m_n .m+1 n n_n+1
M=3+3+2 M==s=+>+1 M=%+ =1

6€



statement can be made about the minimum number. As there must be at
least one tree in a connected network and this tree consists of V.1

elements, it is known that

E 3 Val

The relation between M and E is of special interest here, as

in linear algebra. The four cases to be discussed are:

(a) M < E
(b) M = E
(¢) M = B + 1
(d) M > E + 1

Figure 3.2.2 shows a network and its driving.point impedance form for

case (a),

I

Y i
71
I

o

—r—

a252 + a4s + ag M=7

=

Z
d; 3 p

Figure 3.2.2. Network Illustrating Case (a)
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It should be peinted out that there is a large number of trivial exam- .
ples of this case, since any number of elements of the same type could
be connected in series or parallel, each one being treated as a separ-
ate element,

An example of case (b) is given in Figure 3.2.3. This will later
be called the definite coefficient case, as the coefficients of the ZDP

are either realized exactly as specified or not at all,

—l
—

azsz + als + &

Z =
dp 1935J + bys“ + bys

Figure 3.2.3. Network Illustrating Case (b)

Case (c) is given special attention here because of its importance
in classical synthesis techniques. An example is shown in Figure 3.2.4.
This network is an R-C ladder which would be obtained by a continued
fraction expansion synthesis procedure, The element values for such a
network having been obtained by a classical method, tree-sum equations
would net in general be satisfied, That is, the coefficients of the ZDP

are not precisely realized. Rather, each coefficient in the set is
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multiplied by a constant., If the constant is moved to the right hand

side of the equations and represented by =x; , the coefficients become

ay = X5 X3 X
a4 = X, Xy X, + Xy %5 x3 + Xg X5 Xy
R I
1 = Xy Xy x3 Xy, + Xy %5 x3 %X,

b2 = X5 Xy X, x3
By introducing the auxiliary multiplier the set now contains five
equations in five variableé and corresponds to case (b). It iS showm
in classical synthesis texts (9) that the minimum number of elements
required to realize a ZDP with a two~elementwkind network is one less
than the number of coefficients and that canonical networks always

have the minimum number of elements, Thus case (¢) includes a large

class of problems.

e
11T

]
=

3252 + a4s f ag

=
]
W

Z

Figure 3.2.4. Network Illustrating Case (e¢)
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Not all networks in case (c¢) are canonical, however. One such example

is shown in Figure 3.2.5.

—AAAA | ¢
— S——
E = 5
2 |
a,s <+ ays + a
- 2 1 0 M= 6

Z
dp V4
bys™ + bys + by

Figure 3.2.5. A Second Example of Case (c)

An example of the last condition, case (d), is Figure 3.2.6.

Here, as in case (c), an arbitrary multiplier could also be introduced.

TI | B = 4

_ a353 + azsz + ais +\a0

de et

b333 + bls

Figure 3.2.6., Network Illustraﬁing Case (d)



Tt will be shown in Chapter IV that a solution for the tree-sum
equations can be obtained for each case above, Examples will be pre-

sented.

3.3 Non-unique Solutions of the Tree-sum Equations, While the

elimination procedure to be presénted will yield all of the solution
sets, some special cases are now considered. These are applications
of the theory of substitutions as described by Netto (16). The form
of an equation is usually altered by an interchange of the variables.,
The process of changing the variables is known as substitution, a
subjeet of mathematical interest since the early 1700's, There are
some cases, however, in which a substitution leaves the equation in-
variant or unchanged. These are of particular interest here. The

network shown in Figure 3.3.1 is used as an example,

yq Y3
—AAA- A
Ty

Ja Ty

Figure 3.3.1, Network Illustrating Substitution

The tree~sum equations for this network are:
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ao = x1+x3

b0 = Xy xs
b1 = x1 xu + x, xs
b2 = X, X

They are invariant with respect to the substitution of xq for x4y
and X, for Xy e Such a substitution is clearly a result of re=
labeling the elements in the network. More complicated equations,
however, do not yield to inspection. An algorithm for finding all
substitutions that leave the tree.sum equations invariant could be

programmed for the computer,



CHAPIER IV

SOLUTION OF TREE-SUM EQUATIONS

BY ELIMINATION

4,1 Background., Electrical engineers have determined the

general solution to a number of circuit design problems. For exam-
ple, the equations and the prdcedure for the design of a cathode fol-
lower amplifier are well known. To obtain such a design technique,
the engineer writes the equations or relations between the variables
of the problem and then maznipulates them by trial and error until the
elements to be determined are explicit in terms of the specified
quantities. In the driving-point impedance synthesis problem dis
cussed here the tree-sum equations relate the specified ZDP coeffi~
cients to the elements of the network, and the elimination procedure
to be described is a formal method for solving these equations,

The procedure is illustrated for the elementary circuit in
Figure 4,1,1, and the concept of elimination is introduced. The ZDP

is represented by the form

ass + a
! 0 .
Zap =TT bo1.1
18 0
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Figure 4.1.1., Elementary Cirsuit to Illustrate Elimination

and the tree-sum equations are

ag = Xg Xy * Xy X, 4,1,2
al = XO XB 4,193
by = xg X4 Xp 4ol.4
by = x5 x4 Xoy 4,1.5

The auxiliary variable x5 1is eliminated by solving 4,1.3 and substi-
tuting into the other equations. The reduced set of three equations

in three unknowns is

~ ag X3 +ay Xy hay X, = 0 4,1,6
= bo XB + a4 Xj Xo = L}olo?
- by +xy o8y = 0 5.1.8

Equation 4,1.8 is now solved for X4 and this variable is eliminated

from the remaining two equations.

= 2Q X3 + by + aq Xo = 4,1.9

= bo X3 + bi XZ = ( 14».1,10
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Upon substituting x, from Equation 4.1.10 into 4,1.9, an equation

in the variable x3 is obtained,
2 .
= bi + a.o bl X3 - al bo X3 =0 I"’oioll

By eliminating one variable in each step, four sets of equations result.
Note that the last equation contains a single variable X3 s while the
next to the last set contains Xy and Xq etc, Since Equation
4,1.11 was obtained by solving 4.1.10 for Xp  and substituting inte
4.1.9, the same value of x, will satisfy both equations. A corres-
pqnding statement is true for x; and %9 a.

If the ZDP to be realized is specified as

7. = 3s + 7

dp s + 2
Equation 4.1.11 becomes

1 = 7 x3 = 6 X3
and X5 = 1.0

Now substituting into the other equations, the other element values
are found.,

Xy = 2.0

xy = 0,333

X = 3,0

This procedure is quite general. Each equation in the reduced set

is called an eliminant of the previous set.
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4,2 The Eliminant., The eliminant was studied by mathematicians

in the early 1700%s., Buler first described the eliminant in terms of

o

symmebtric functions in his Berlin Memodirs in 1748, This is foundation
Lor the discugsion to follow. Boih Bezout and Buler developed easier

for determining the eliminant and some of iis prqpertles.

Sulmon (17) has published a review of this early work which can be

aonsulted for more historiec detail.

7

Befinition 4.2.1 (Fliminant): The eliminant of two eguations is a

netion F such that if F = 0 , the two sguations have at least

one common root.

The term resultant is used To mean the same thing as eliminant.

It is always possible to obtain the eliminant of two polynomials.

is shown by nsidering the following two equations.
. n N 1
Glx) ®=a, x 4+ a, 4 X t aee ag = 0 4o2,1
n Tiew L
- — m L’T.Jl N -
H(X) e t.)“nj I + tJ,l j X T e QO == O L"5232

1t the coefficients

ot

b will be assumed Throughout This discussion ©

r ke functions of other wvariables., G(z) i identified as the tool

squation and its n roots denoted Ly %y 4 X5 5 eoo X, o If at least

wns of these roobts, for example %, , solves H{x) ,

H(xi) = 0

= H(xq) H(xy) ... H{x,) = € 4.2.3
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must also be zero., In fact, by definition, the product is zerc only
if at least one x; is a root of H(x).

This preoduct is a symmetric polynomial of the wvariables Xi s
Xo 5 eo00 Xy since the form of the equation is not chaﬁged by inter«
changing any two variables (Theorem A.1.1). A brief discussion of
symmetric polynomials is presented in Appendix A. Note that the funec-
tion F is a polynomial in the coefficients of H(x) and the roots,
Aceording to the fundamental thecrem of symmetric polynomials (A.3.1),
this equation can be expressed as a polynomial in the elementary

symetric functions. However, these are ratios of coefficients of the

polynomial with roots Ky 9 Ky 9 ooo Ky o Thus F is a polynomial of
the coefficients of G(x) and H(x) and is by definitien the elimi-
nant,

The eliminant can be computed for two eguations using the prin.
ciples outlined asbove and in the appendix. If m and n are greater
than 2 ; however, the computation is very tedious. Sylvester has de-
seribed a method to obtain the eliminant from a determinant. The
suthor has implemented this procedure on a digital computer and used

it to solve the examples to follow,

4,3 Solving 2 System of Polynomials by Elimination. 4 tree-sum

squation is a special type of polynomial equation in n wvariables,

This discussion will deal with a system of polynomial equations,

Definition #.3.1 (Pclynomial): 4 polynomial in n variables is de-

fined to be an equation of the form

P\(xi (} Xz 9 0o CQ xﬂ) = ‘.E Gj ﬁj
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whers Qj is 2 constant {real or complex) and gfj is the product

The elimination procedure is now applied o a system of m equa-

tiona in n unknowns te determine a reduced system of equations. A

tool equation is selected from the m equations, The equation of low.
est non.zero degree in the variable to be eliminated, called the
Tobliect? varisble, should be chosen to allow the caleculation to pro-
cesd with minimum effort, m-1 eliminanis sre now formed between the
tool equation and each of the other m-1 equations. The eliminants

are called the reducsd systems.

Theorem 4.3,1: A reduced system of equations in n=1 variables is

satisfied if and only if an ‘object’ variable solution to the system
(if one exists) is a root of the tool equation.

Proofs By definition the eliminant is zero if and only if there is a
comron root between the tool equabtion and one of the remaining m-l

equations, Thus if a value of the Yobject’ varisble is a solution to

sach of the m equations, 1t must be a root of the tool equation.

The theorem doss nolt guarantes thalt any or sll of the roots of the
tool equations are solutionsg but if a solution exists, it is a root

of the tool egquation.

Theorem 4,3,2¢3 If the reduced system is satisfied and the tool equa-

tion is of first degres in the Yobject?® variable, it has one recot and

this root is a selutlon for the system.



Proofs Since the m-1 eliminants are all satisfied, a common root
exists between the tool equation and each of the other equations in the
original set. But the tool equation has only one root., Thus it is a

root of each equation in the system.

If the tool eguation is of degree greater than one, each root is
a possible solution and is checked by substituting into each of the
other equations of the set, If none of the roots satisfy all of the
equations, the original set is inconsistent, That is, no value of the
tobject? variable solves all of the equations. More than one root may
satisfy them all, Then the solution of the system is not unique. This
condition is illustrated in a later section,.

The foregoing discussion is now applied to find the complete solu-
tion to a set of equations., The case in which n equations in n

variables are to be solved is considered first,

P191 (Xig ng 000 Jﬁn) = 0

i
o

P192 (Xig) qu 200 %)

°
o

-4

Pisn (Xig XZQ 000 %) = O

The variable xy 1is to be eliminated. A tool equation is selected
and the reduced system containing n-1 equations in n-i variables

is formed,
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sti (%59 X35 ooo x,) = 0

Pz()z (X29 X39 s0e }(I'I) = 0

[

o

Pzgnml (XZS x3<) oo0o0 Xn) = Q

A reduced system is again determined and so on until a system of two

equations in two unknowns is obtained,

2}
o

anigi (xnc19 Xn>

i
o

Po1,2 (B0 %)

The last reduced system is a. single polynomial in the unknown X, o
Pn91 (xn) = Q0

The roots of this equation are determined. Each one is a pos-
sible solution for the system, If the degree of the equation is k ,
there are potentially k or more solutions t@‘the system, Each of the
roots is substituted into the (n-1)th system. Thus, each equation
becomes a polynomial in the single variable X,.1 o The roots of the
tool equation are calculated and checked in the other equations of the
system. Those which satisfy it are paired with the corresponding X
values to form a partial solution. The substitubtion now continues to
the (n-2)th system and so on until the x4 values from the first
tool eguation are obtained., This is a complete set of solutions, as
can be reasoned from Thecrem 4.3.1., In each case the m values of *y

which satisfy the i-th system asre joined with the wvalues
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(Rigq o Kygp s eoe %) to form & partial solution. Note that there
may be more than one set, (Xi+1 s Kyjo o ooo xn)9 and the number of
partial solutions may be muliiplied by the degree of the i-th tool
equation at each step. The Gauss reductlion method for solving linear

yotems of equations is a special case of this procedure.

4

7]

If the number of variables n 1is greater than the number of
equations m , the solution is not unique. This is dus to the faect thai
the last reduced system (one equation) containg n - m + 1 variables.

For exsmple, & system of [ive equations in elght varisbles would have

th

®

variable and equation count shown in Teble 4,3.1,

TABLE %4,3.1
EQUATION SETS FOR 6 VARIABLES

AND 5 EQUATIONS

Byuation set Number of equatlions Variables
1 5 8
2 4 7
3 3 6
4 2 5
5 1 i

o

Clearly n-m of these variables can be assigned arbilrary values and
the remaining varisble determined from the roots of the last polyno-
mial. The remaining m-1 varisbles are determined by substituting

back into the reduced sets of equatlons as in the previcus case,
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The remaining case to be ceonsidered iz m>»n . A reduction pro-
cess proceeds as in the previous cases until all n variables are
eliminated. The last reduced set contains m-n equations which must
be identically zero if the system is consistent (Thecrem 4.3.1). If a
solution exists, 1t is obtained by solving for the variable X, in
the (m = n + 1)th set of equations and substituting into successive
sets as previously described.,

During the process of eliminating one variable from a system of
equations, one or more other variasbles may be eliminated. This implies
that an arbitrary value may be assigned to these when solving for the
tobject?® variable in the tool equation.

This process of solving sets of polynomial equations is superior
to iteration methods in that no estimate of the solution is required to
start the procedure, and that all solutions are obtained or, im the case
of m<n , are placed in evidence., A test for consistency is an aute-

matic part of the process,

i 4 Bxample. Several exsmples are now presented to illustrate
the elimination method for solving the tree-sum equations of a network,
The sets of equations associated with the solution are presénted in
Appendix B, They are written in a form sultable for computer proces-
sing. Each equation is understood to be a pelynomial and thus equal
to zero, Since the eguations invglvé a number of multiplications,
the product cperator is not printed. It is understood to be present
between two operands not otherwise connected by an operator. The
aﬁterisk denotes exponentistion. In each equation terms of like powers

of the object varisble are collected, enclosed by parentheses, and
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printed on the line immediately following the variable and its power,
Each polynomial is delimited by the words BEGIN and END.

‘ An example illustrating case (a) of Section 3.2 is shown in
Figure 4.4,1, This is a non-canonical form of six elements, having a
driving-point impedance of the form

a4s +.ag
pd

Z, = ‘
dp bzs o+ bls + b

0

——d

12

Figure 4.,4.1, Network Form for Example 1

The Gy and Gy graphs of this network and their tree lists are

shown in Figure 4.4.2,



QTaph GO

Y1 Yo Yy
¥y Y, Vs
I
Yy Y3 9
Yy Y3 Vs
IRERL
Yo T3 Ty
Ty g y'5
Y, V3 Vg
Yy ¥, Vg
Yy Vs Vg
Y, Iy Vs
R
V3 Iy I
Yy Vs g
Yo ¥s Vg

Figure 4.4.2,

Graphs and Tree List for Example 1

57
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Thus, representing the value of the i-th element by X5 o9 the tree-

sum equations are

ag = Xy Xg * X5 Xg

aq = Xo X + X xs P Xy X4 + x3 Xy + x3 X5 + x3 Xg

bO =Xy, x5 X4

b1 =X Xy X4 + Xy 15 X4 + % Xy, XS + Xo x5 X + x3 Xy, x5
+ x3 X), Xg

b2 = Xy Xp X + Xy %o x5 +_x1 Xy Xg + x11x3«xu + Xq x3 x5
3 Xi XB XB + xz x3 xu + x2 x3 x5 + x2 x3 x6

It is convenient to multiply each coefficient by the variable Xg
as in the canonical case discussed in Section 3.2. Table B.l.l shows
the five tree-sum equations factored in the first object variable Xy o
Equation 01,01 is chosen as the toel equation and the reduced system
in Table B.1.2 e¢btained. Note that two of these do net involve the
second object variable Xq{ o Thus 02.03 is used as the tool squation
to derive 03,03 from 02,04, while 02,01 and 02,02 are factored in the
third object variable x, to obtain 03,01 and 03,02, In the next re-
duetion 03.01 does not contain X, and is thus shiftéd to the reduced
set without elimination. 03,02 is used as the tool and Xo eliminat-
ed in Equation 03.03. X, is the object variable in the reduced set
shown in Table B.1l.4, and Equation 04,01 is the tool since it is a
first degree equation in x, . Either x, or X5 mist be eliminated
in this step since no other variable appears in both equations. The
single equation shown in Tsble B.1.5 contains three variables X3 5

X5 o and xg and terminates the reduction sequence.
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The driving-point impedance to be realized is chosen as

s <+ 171
Zp = =
P 0,0433 s° + 8,42 s + 163

o

Choosing 1.2 and 5.8 for the element value part of Xg and Xg o

respectively, Equation 05,01 in Table B.1.5 is

2
0,2024 105 X3 - 0.1416 103 Xgq + 0,1219 = 0

Its roots are

0,00100

0.00599
Since both are positive real numbers, there are potentially two
realizable solutions for the network form. The tool equations are now

solved for the remaining x%s . The solutions are shown in Table 4.4.1,

TABLE 4.4.1

SOLUTIONS FOR EXAMPLE 1

Variable Solution 1 Solution 2

xQ 0,19791 0,19791
xq 0.03941 0,04235
Xp 0,01101 0,01601
x3 0,00599 0,00100
XN 4,63507 4,63507

1,20000 1,20000

Xg
xZ 5.80000 5.80000
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Thus two networks with the specified form realize the ZDP. The element
values are shown in Table 4.4.2, A different choice of X5 and x4
could yield a non-realizable set of elements. Hence, proving that a
specified ZDP cannot be realized by a particular network is more diffi-
cult when M<K E ,

TABLE 4.4,.2

ELEMENT VALUES FOR EXAMPLE 1

Element Value 1 _ Value 2
Cq 0,0341 £ 0.,04235 £
Cs 0,01101 £ 0,01601 £
CB ‘ 0,00599 0,00100 £
R, 0,21600 0,21600 o
R5 0.83333 n 0.83333
Ry 0,17250 0,17250 n.

As explained in Chapter III the same solution technique applies
in both cases (b) and (e). This is illustrated by realization of the

network form shown in Figure 4.4,3,

I
- —
¥ J5 S
I3
r
Ty
— T

~

Figure &4.4.3. Network Form for Example 2
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The graphs and tree lists for this network are presented in Figure 4.4.4,

" W
4 33
Graph Gy Graph Gy
Ty Yy ¥y Yy Y,
Yy Yo Uy, Vi Vg
Yi Y3 YS Yz y4

Yy 9y Vs

Figure 4.4.4. Graphs and Tree List for Example 2

The tree-sum equations are
ang = X4 Xp +x1x3
a1 =X Xg + x5 x) + Xq Xy
ap = Xy Xg
b0 =Xy X X
b1 =X X X, + xq xg x, t x4 X3 Xg + X, X3 Xy

An arbitrary specification of the coefficients could produce an
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inconsistent system. Thus in accordance with the discussion in Section
3.3, each coefficient is multiplied by x; . The system of equations
factored in the first cbject? variable Xy 1s shown in Table B.2.1.
The next variable to be eliminated is =xy ; Equation 02.03 is the tool
equation, Since x; is the variable of lowest degree in the system
of equations in Table B.2.3, it is the °@bjeet° variable in this set.
X, and Xz are eliminated in the next two sets of equations.

The ZDP to be realized is chosen as

2
2 2s +9.55 5 4 6,2
dp 2.2 85 + 2.5 5 + 0.6

Substituting the coefficient values, Equation 06,01 becomes

- 0,7623 106x36 + 0,1207 107x35 = 0.4796 106x34

5 3 b 2
+ 0.8639 10 X3 = 0.8072 10 X3
3 ey
+ 003831 10 XB = 70333? = O
The recots of this equation are

0,095 ~ j 0,0066
0,095 + 3§ 0,0066
0,103 = 3§ 0,0043
0,103 + j 0,0043
0,100

1,097

All are pessible solutions but only the last two are positive real

numbers and thus realizable by passive elements., BEach of these Latter
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is substituted inte Equations 05,02 and 05.01 to determine X5 o

Both roots of Equation 05,01 are checked in 05,02 and only one is
found to satisfy the set. Thus for xq = 0,1 and 1.97 the solution
for X is 4,0 and 0,3, respectively. The other toocl equations are
all first degree and the solution straight.forward. The two solutions

are shown in Table &4.4.3.

TABLE 4.4,3

SOLUTIONS FOR EXAMFLE 2

Variable Solution 1 Solution 2

X4 1,00 0,003
5 3,00 0,106
X3 0,10 1.097
X, G.25 0,004
x5 4,00 0,300

The element values for the network are easily obtained from the solu-
tion.

A network illustrating case {d) is now considered, The ZDP form

3,383 + 3254 + 5’1,15 P ao

Z
dp bBSj + bzsg + bis * bo

is realized by the network form shown in Figure 4.4.5, The Gy and Gy

graphs and associated tree lists are shown in Figure 4.4.6,



— To. e
.YL,_ y3

Figure 4.4.5, Network Form for Example 3

Graph GO Graph Gi
R YB ¥y 95
MRIRE RE
Iq YB Ty Yy Ty
MRERL Yo I3
Iy Iy I Yo Iy
Io y3 Ty Ts ;Y’5
Yo Ty Y5 ERL
Y3 Yy ;Y’5 Yy Y5

Figure 4.4,6, Graphs and Tree List for Example 3



The itree-sum equations are

aq = Xq x3 + x2 X4 + x2 x5
a2 = Xi Xﬁ_ + XB XS

a3 = Xh x5

bO = Xy Xy x3

b1 =Xy Xo X + X, Xq X

b3 = X Xy x5 + XB Xy XS

In this case there are eight equations and five varisbles, A4s dis-
cussed in Section 4.3, eliminating the five variables will yield a
set of three equations in the coefficients which must be satisfied
identically if the system is consistent. This means that the eight
coefficients of the ZDP form camnot be specified independently. In
this example the fonr denominator coefficlents and ag sre specified
and the others are left to be determined by the network form. By do-
ing this, the possibility of specifying an inconsistent set of coeffi-
gients is avoided.

The five equations to be solved are shown in Table B.3.1 explieit
in the first *object? variable x4y . The elimination proceeds as in
the previous examples,

The specified ecoefficients are now sssigned values,

ag = 6,0
bo = 705

b1 = 30,0
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b2 = 37u5
b3 = 15,0

The first Equation 05.01 to be solved becomes

+ 0,91125 108x510 = 0,18225 1O?x59 + (.10320 108x58

9 5

f 6 10
+ 0.29046 108:1c5'7 - 0,50260 10 x5 + 0.,19259 10 Xg

10 & 10 3 10 2
- 0,30156 10 x5 + 0.10456 10" x5~ + 0,22291 10 x4

10 9
- 0,23620 10 Xg + 0,70859 10 =0
The ten roots of this equation are

0,62815 = J 0.274kk4
0,62815 + j Co27kil
8,02083 - J 3.50436
8.02083 + j 3.50436
=0,93392
=6 o 42452
1.89635
2,00000
3. 16394
3.00000

Only the last four values can be realized by passive elemesnts, Thus
the other possible solutlons are ignored. Each rool to be considered
is substituted into Equation 04,02 and a corresponding value for Ry
determined. The second order Equation 03.02 was used as the tool in

Table B.3.3. Its roots must be checked in BEguation 03.01, and in each
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case, one of the roots fails the test. The remaining x's are deter.
mined by direct solution of the tool equations, The four realizable
solutions are shown in Table &4.4.4, The unspecified coefficients are
caleulated from the appropriate tree-sum form and alsc displayed in this
table,

This network form is now used to demonstrate the test for realiza-
bility. The ZDP shown below has a form which is realized by the network
topology, and it is a positive real function.

53 + 232 + 8+ 0,2

—

de =

53 + 5s2 + 98 + 5

To test the possibility of realizing the coefficients of this‘functi@n
by the network form, the four denominator coefficients and ay are
substituted into Equation 05,01, All ten of the roots are found to be
complex. Thus the specified ZDP cannot be realized by this network

form.,



1.896

2,000

3.164

3,000

Xy
3,164

3,000

1.896

2,000

*3
1,170
1,012
1,250
1,000
1.487
1.329
1.500

1. 250‘

TABLE 40 40 LP

SOLUTIONS FOR EXAMPFLE 3

X, Xy
(does not satisfy
4,979 1,487
(does not satisfy
5.000 1,500
4,979 1,012
(does not satisfy
5,000 1.000

(does not satisfy

20
03,01)
12,449
03.01)
12,500
12,449
03,01)
12.500

03,01)

a4

26,706

26,500

26.705

26,500

a2

6,626

6,500
6.626

60500

89



CHAPTER V
SUMMARY AND CONCLUSIONS

5.1 Summary. The subject of this thesis is to make the topolo-

gical properties of the network one of the specifications for a syn-
thesis procedure, Experience has shown that there are realizability
conditions on the topology Jjust as there are on the coefficients of
a network function. These conditions are known to be related to the
form of the driving-point impedance function as well as the value of
the coefficients., Thus two separate aspects of the topologicsl synthe-
sis of driving-point impedances are considered,

The relations between the form of the ZDP and the topology are
"examined by considering two questions:

(a) What are the conditions relating the form of the driving-

point impedance and the network topology?

(b) How may these conditions be used in topologicael synthesis?
The network topology is represented by the linear graph. As the trees
of the graph are known to determine the form of the ZDP, they are the
foundation of the discussion. The ZDP form is characterized by six
attributes; and the conditions relating the form of the ZDP and the
network topology are specified in terms of these attributes. ' Table
2+:5.1 presents the conditions by classifying the @etWQrk in terms of

its attributes.

69
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The relations in Table 2.5.1 are used to develop a classification
Qf the uncountable number of networks realizing a specified funection.
Using Table 2.6.1, the designer may determine network forms realizing
a specified ZDP form. This classification is not unique and could be
altered to include topological parameters of specific interest.

The relation between the value of the ZDP and the topology are
studied by developing & procedure for answering the following questionss
(a) Can a specified network form realize a specified function

value?

(b) What are the network element values?

The tree-sum equations contain the information sought.,

A procedure for selving the tree-sum equations of any network is
develgpeda It is shown that by a process of elimination the value of
each element in the network can be determined for a specified ZDP
value., Several classes are considered and examples presented to illus.-

trate them,

5.2 Conclusions. A procedure for synthesis of a driving-point

impedance with specific topological properties is discussed. The meth-
od involves testing for realizability the network forms having the de-
sired properties, and thus is basically 2 Ycut and try? progedure;

This appears to be characieristic of the problem, The author con
Jectures that any test for realization will involve solving the tree.
sum equations, either directly or indirectly. Since the form of the
network must be known before the equations can be determined, a topol-
ogy must be assumed and tested,

Qther network functions can be related to the network form by
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tree~sum equations. Thus the realization technigue described here can

be readily extended.,

5.3 Suggestions for Further Study and Development. The use of

the table classifying all networks realizing a given ZDP is a subject
for future study. In particular, the known relations between the ranks
Rig » RLs s Reg o Ros o Rypq are unsatisfactory. An algofithm might
be found for determining all of the three-element-kind networks having
deleted and shorted graphs with specified rank; such an algorithm
would be useful here, and would also be significant in the general
theory of linear graphs,

The author has developed two computer programs for use in the elim-
ination process, As these were to be used for solving the examples,
they are elementary, but they have shown that such programs can be use-
ful, A detailed study of the algorithm to determine efficient proce-
dures and data structures would be challenging, The final step would
be to implement a complete computer program for solving a system of
polynomials, Such a program would be valuable in other fields of en-
gineering and science., For example, equations of the type solved here
occur in mechanical design problems,

The relation of the network forms and functien forms for other
types of network functions (transfer admittance, voltage gasim, ete,) is
a subject for investigation. As these functions involve both the addi.-
tion and subtraction of tree admittance products, the necessary and
sufficient conditions developed here for the ZDP will not apply. Equa-
tions similar to the tree-sum equations have been devel@péd for active

networks. Thus a logical extension would be to the synthesis of this
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class of networks,

Of particular interest is the possibility of realizing several
specified functions by a single synthesis procedure. For example,
using the elimination procedure describeds equations relating the co-
efficients of the driving-point impedance, voltage gain, and output
impedance of a network can be derived. Thus if a circuit designer
wished to specify several functions to be realized, he could test a
particular network form, then solve for the element values, Investi-
gation of this topig, h@wevergbwill require a sophisticated computer
system to solve the equations,

The author is quite intrigued with the‘possibility of statisti-
cal circuit design using the realization techniques described here,

If a circuit designer can specify the distributions of the coefficients
of a network function or some property from which these can be obtained,
it may be possible to determine the distribution of the element values

by a Monte Carle methed.
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AFPENDIX A
SYMMETRIC POLYNOMIALS

A,1 Definition of a Symmetric Polynomial. There are several

excellent references on symmetric polynomials and symmetrie funetions,
as this has been a subject of mathematical investigation szince the
1700°s, Texts by Uspensky (18) and Bocher (19) are modern reviews of

this work., The pertinent parts of the theory are discussed below,

Definition A.1.1 (Symmetrie P@lyn@mials) A polynomlial is said to be

symmetric in the variables x¢, Xog ooo Xy Lf 4% Is unchenged by every

substitution.

Thus the study of symmetric polynomials is & part of the general
theory of substitutions. An easisr test for a symmetric polynomial is

desirable,

Theorem A.1.1: A polyromial is symmetrie if an interchange of every

pair of variables leaves its form unchanged.
Proofs All substitutions can be cbtained from (xi9 Eo ooqun) by
a sequence of interchanges of two variables. Thus if every interchange

leaves the form unaltered, any substiiution could be made.

75
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A.2 Special Symmetrig Functions.

Definition A.2.1 (Sigma funetions) The sigma function denoted by

olm

*m is the sum of the term x;' xgz oo Xy

. e o
2 Xl‘ Xza oo }cm

and all similar terms.

For example, if there are four varisbles,

s ~

2 _ 2 - L2 2
éxixz =X Xp FXg X3 F X Ky

- 7] ~

2 2 2

2

2 Z
X4 Xi 4 XL} X22 + X4 X3

As background for the fundamental theorem, the sigma functions are now

related to a symmetric polynomial.

Theorem A,2,1: A symmetric polynomial is a linear combination of sigms

functions,

Proof g Any typical term of the polynomisal is considered. As the poly-
nomial is symmetric, all similar terms must be present and preceded by

the same gonstant. These may be replaced by the sigma function of the

term multiplied by the constant., Such a procedurs is extended to every

term,

A second symmetric function is defined and related to the symmetirie

polynomial by the sigma funciion.

Definition A.2,2 (Sum of Powers) The sum of powers function S, is

defined by the equation
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x ° £x

Theorem A.2.2: A symmetric polynomial can be expressed as a polynomial

in the sum of powers function 3.

Proof: It will be shown that the sigma functions can be expressed as a
polynomial in S. This theorem is then proved utilizing its counterpart
for sigma functions, Theorem A.2.1.

The two func‘bions. of n variables
o
s x{ xé" ooox;g (k < n)
and S, = éxf"

are multiplied together., The result is the symmetric form

o+ 2

o 8 = X
S7\ {Exl XZ 0oo ]?cj "“Gi Exi X2 oo 'Xk

o B+A K
+ Gy 23{1 Xp R

+ ooo Gkéx; xg ooo x;”‘

% A
* Ot £ X0 XL 000 X x12+1

The constants result from sums of terms and are positive integers,
Rearranging the equation, a recurrence formila for a sigma function of

higher order is obtained,
8 A ! a
< K . %}
ixl XZ oo Xk xk+i = k_jki:m ( 2 Xl XZ soo xf'é )" Sa'

“tA A o 8+ X
-~ Cy $ x4 x5 ooox{g - Cyp $%y X5 oo Xg

£ 8 K+2A
Qoa = Ckixl XZ ooo)%{
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Note that the lowest order sigma funection, é_x% o 1is by definition
S« . Thuns by induction all sigma functions can be written as a polyno-

mial in S,

The coefficients of a polynomial are symmetric functions of the

roots, called elementary symmetric functions.

Definition A.2.3 (Elementary symmetric functions) The elementary sym-

metric function fk of n wvariables is

fk = ixl XZ 000 xk

The nth order polynomial is represented by the product of its n

factors,

n n-1
a, x +a, qx + 000 @y = an(x - xl)(x = Xp)ooolX = xn)

When these factors are multiplied, the equation becomes

n n=1

a, X + a, 1 X + s00 ay =

n - -
an {% -(xy + X5 + o00 xn)xp L (x4x + Xixq * ooo)xp 2

n
+ 00 (mi) Xixz 000 %}
and upon substituting the elementary functions

n n-1 .
a, X + a, 1 X + so0 ag =

n n-1 n-2 n
a, {x - fy x + £, X = ooo (=1) fn}
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Thus

a

R AoZo1
)
n-1

f2 = -
n

£ o= el

n an

A.3 Fundamental Theorem of Symmetric Pdlynomialso

Theorem A.3,1: A symmetric polynomial can be expressed as a polynomial

in the elementary symmetric functions.

Proof:s It will be shown that the sums of powers function S, can be
written as a polynomial in the elementary symmetric funetions. The
theorem, then, follows directly from Theorem A.2.2,

A polynomial

G=(x=x ) %o %) ooo (x=x))

of n+ 1 wvariables is defferentiated with respect to x and re-

arranged in the form

26 _ G . c . G pas
DX (x =%} (x = x,) (x = xn§ + 3o

G is now written in elementary function form

. .n n-1 N2
G"'x mflx +f2X Qooofn

and divided by (x - xi) to obtain

G nrn

_ 1 =2 2 N3
W—-x + (Hgfl)x + (H mfiﬁ*'fz)x + Q00 AOBOZ
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Differentiation of the elementary function form yields

2 G - = :
5% nx 1 - (n < 1)f1 o 2 + ooo £ A.3:3

Now replacing each term in A.3.1 by an appropriate form of A.3.2

G N

a X = nX 1 +(SI = nfi )XQZ + (Sz = fi S2 + I!fz)XnaB + 000 AoBoh’

Equating like terms in A.3.3 and A.3.4 yields
51 = nf1 = m(n = 1)f1

S, = £1 8 +nf, = (n - 2)f,

° |

o

N1 - n-i
Snni a flsn‘nz + fZSHwB = ooo (=-1> nfnni = (:»1) fn«:i

or upon rearranging
81 - fi =0

S, - f48¢ + 2f, =0

o
a

o

=1
Snul = f1Sn=2 + f28n=3 = aoo (-:-1) (n = I)fnc.i = 0

An additional general equation involving sums of powers greater than

order n - 1 is obtained by muitiplying each identity

2

n n=1 Ne n .
Xy - Dyxg 0 T+ foxg = ooo (=1)f, =0 (i =1,2, coon)

k-
by X 1 and adding. The result, upon substituting S, is
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n
Sk = fiSkai + f28k=2 = o000 + <\=1> Skmn = 0 (k > n)

The equations derived above are known as Newton’s formulas., When they

are solved, S is written as a polynomial in the elementary symmetric

functions.

Thus the theorem is proved.

The coefficients of the polynomial of elementary symmetriec func-
tions in the theorem above are rational integer functions of the coef-
fieients of the original symmetric polynomial, This results from the
fact that the multipliers of the sigma functions (Theorem A.2.1) are

coefficients of the symmetric polynomial.



APPENDIX B

EQUATIONS FOR EXAMPLES

Bel EQUATIONS FOR EXAMPLE 1.

BEGIN
XO%]1
(-Al)
X0*0
(+X4 X6
END

BEGIN
X0*]1
(=AQ})
X0*0
(+X2 X4
END

BEGIN
XO#*]1
(-B2)
XO*0
(+X4 X5
END

BEGIN
XO#*1
{-Bl)
X0*Q
(+X1 X4
END

BEGIN
X0O#*1
(-B0O)
X0*Q
(+X1 A2
+X2 X3
END

+X5 X6 )}

TABLE Belel

EXAMPLE 1
EQUATION SET 1

+X2 X5 +X2 X6 +X3 X4 +X3 X5 +X3 X6 )

X6 )

X6 +X1 X5 X6 +X2 X4 X5 +X2 X5 X6 +X3 X4 X5 +X3 X4 X6

X4 +X1 X2 X5 +X1 X2 X6 +X1 X3 X4 +X1 X3 X5 +X1 X3 X6 +X2 X3 X4

X9 +X2 X3 X6 )

82

}

01.01

" 01.02

0l.03

01,04

01.05
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TABLE Bel,2

EXAMPLE 1
EQUATION SET 2

BEGIN 02,01

(+#B2 X/ +B2 X5 =Al X4 X5 )
END

BEGIN 02402
X1#0 -

(+B2 X2 X4 +B2 X2 X5 +B2 X2 X6 +B2 X3 X4 +B2 X3 X5 +B2 X3 X6 ~A0 X& X5 X6)

END

BEGIN ’ 02,03
X1#1 : :

(~-B2 X4 X6 -B2 X5 X6 )

X1%#0 .

(+B1 X4 X5 X6 =-B2 X2 X4 X5 ~B2 X2 X5 X6 -B2 X3 X4 X5 =-B2 X3 X4 X6 }

END : o

BEGIN ' : ' . 02404
X1#1 ~ _ :

(=B2 X2 X& =B2 X2 X5 -B2 X2 X6 -B2 X3 X4 -B2 X3 X5 =-B2 X3 X6 )

X1#0 : ‘

{+BO X4 X5 X6.-B2 X2 X3 X4 =B2 X2 X3 X5 =-B2 X2 X3 X6 )

END . ' :

TABLE Bele3

EXAMPLE 1
EQUATION SET 3

BEGIN ‘ : 03401
X2#0 .

(+B2 X4 +B2 X5 -Al X4 X5 )

END : .

BEGIN : 03402
X2#1 :

(+B2 x4 +B2 X5 +B2 X6 )

X2%0

(+B2 X3 X4 +B2 X3 X5 +B2 X3 X6 ~AO0 X4 X5 X6 )

tND

BEGIN 03,03
X2#2

(B2 X4%2 X5 -B2 X4 X5#2 -2 B2 X4 X5 X6 =B2 X5%#2 X6 ~B2 X5 X6%*2 )

X2#1

(+B1 X4%2 X5 X6 +Bl X4 X5%2 X6 +Bl X4 X5 X6%2 -2 B2 X3 X4%2 X5

-2 B2 X3 X4 X5%2 =2 B2 X3 X4 X5 X6 )

X2#0

(+B1 X3 X4%2 X5 X6 +Bl X3 X4 X5%2 X6 +Bl X3 X4 X5 X6%2 ~B2 X3%2 X4%2 X5
~B2 X3%#2 X4 X5%2 -2 B2 X3#2 X4 X5 X6 -B2 X3%#2 X4%2 X6 ~B2 X3%2 X4 X6%2
~BO X4%2 X5 X6%2 —-BO X4 X5%2 X6%#2 ) : '
END o
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TABLE Beld4

EXAMPLE 1
EQUATION SET 4

BEGIN : 04.01
X4#]1

(+82 ~Al1 X5 )

X4#0

(+82 X5 )

END

BEGIN 04402
Xa*4

(-AO#*2 X5#3 X6 +A0 Bl X5#2 X6 —-B2%2 X3%2 -B0 B2 X5 X6 )

X4%3

(=4 B2%#2 X3%2 X5 +2 AQ B2 X3 X5%2 X6 —~AQ*2 X5%4 X6 =2 AQO*2 Xx5%3 Xo6#2

+2 AO Bl X5#3 X6 +2 A0 Bl X5%2 X6%2 -3 B2%2 X3%2 X6 -3 BO B2 X5%2 X6

-2 BO B2 X5 Xé6%2 )

X4%2

(-6 B2%2 X3%2 X5%2 +4 AO0 B2 X3 X5%3 X6 +4 AQ B2 X3 X5¥%#2 X6%2 ~AQ%2 X5%4 X6%2
~A0%2 X5%3 X6%#3 +A0 Bl X5%4 X6 +2 AQ Bl X5%3 X6%2 +A0 Bl X5%2 X6%3

-9 B2%#2 X3%2 X5 X6 =3 BO B2 X5%3 X6 -3 B2%#2 X3%2 X6%2 ~4 BO B2 X5%2 X6%2

-BO B2 X5 X6%3 )
Xa4#*]

(=9 B2%2 X3%#2 X5%2 X6 =6 B2%2 X3%2 X5 X6#2 +2 AQ B2 X3 X5%4 X6

+4 AO B2 X3 X5%3 X6%2 +2 AO B2 X3 X5%2 X6%3 ~4 B2%2 X3%2 X5%3 -BO B2 X5%4 X6
~2 BO B2 X5%3 X6%2 -B2%2 X3%2 X6%#3 ~BO B2 X5%2 X6%3 )
X4%0

{-B2%2 X3%2 X5%4 —~3 B2%2 X3%2 X5%3 X6 -3 B2¥2 X3%2 X5%#2 X6%2

-B2%#2 X3%2 X5 X6%3 )

" END
TABLE Beleb
EXAMPLE 1
EQUATION SET 5
BEGIN 0501
X3%#2

(~Al¥*4 X5%6 +3 Al%*3 B2 X5#4 X6 =3 Al*4 X5%5 X6 +6 Al*3 B2 X5%3 X6¥*2

-3 Al*4 X5%4 X6%2 +Al B2%3 X6%3 -3 Al#2 B2#2 X5 X6%3 +3 Al#*#3 B2 X5%2 X6%3
~Al¥*4 X5%3 X6%#3 ~3 Al%2 B2#2 X5%2 X6%2 )
X3#]

(=2 A0 Al%¥2 B2 X5#5 X6 +2 AO Al%*3 X5%6 X6 +4 AO Al B2#2 X5%3 X6%2

-8 AD Al#2 B2 X5%4 X6%2 +4 AQ Al*3 X5%5 X6#2 -2 A0 B2#*#3 X5 X6#3

+6 AQ Al B2#2 X5%2 X6#%3 -6 A0 Al%#2 B2 X5#%#3 X6#3 +2 A0 Al#3 X5#4 X6%3 )
X3%0

(~A1%3 BO X5%6 X6 +2 Al*2 BO B2 X5#4 X6%2 -2 Al%3 BO X5%5 X6%2

-Al BO B2%2 X5%2 X6#3 +2 Al#2 BO B2 X5%3 X6%3 -Al*3 BO X5%4 X6%3

+A0%2 B2#2 X5#4 X6%#2 —AQ%2 Al*2 X5#6 X6#2 ~AQ%2 B2#2 X5%#3 X6%3

+2 AO*2 Al B2 X5%4 X6%3 —AQ*2 Al*2 X5#5 X6%3 +A0 Al*2 Bl X5%#6 X6

-2 A0 Al Bl B2 X5%4 X6%2 +2 AQ Al*2 Bl X5%5 X6%2 +A0 Bl B2%2 X5%2 X6%3
-2 AJ -Al Bl B2 X5%3 X6%3 +A0 Al#*2 Bl X5#%#4 X6#3 ~A0*2 Al B2 X5#6 X6 )
END



Bs2 EQUATIONS FOR EXAMPLE 2.
“ ) TABLE Be2e1

EXAMPLE 2
EQUATION SET 1

BEGIN

X0'1l

(-AO)

X0'0

(+X1 X2 +X1 X3)
END

BEGIN

X011

(~Al)

X0'0

(+X1 X5 +X& X2 +x4 X3)
END

BEGIN

© X001
(=A2)
X010
(+X4 X5)
END

BEGIN

X011

(-B0o)

X0'0

(+X1 X2 x3)
END

BEGIN

X0l

(-B1)

X0l ‘
(+X1 X2 X4 +X1 X3 X4 +X1 X3 X5 +X2 X3 X&)
t'ND

BEGIN

X011

(-B2)

X010

(+X1 X4 X5 +X3 X4 X5)
END )

0l.01

0l.02

0l.03

01.04

01.05

01.06
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TABLE Be262

EXAMPLE 2
EQUATION SET 2

BEGIN 02,01
X111 -

(~A2 X2 =A2 X3 )

X1t0

{+A0 X4 X5 )

END

REGIN ' 02,02
%101
(-A2 X3
X110
(+Al X4 X5 =A2 X2 X4 —A2 X3 X4 )
END

-~

BEGIN - 02603
X101

(-A2 X2 X3 )

X110

(+B0 X4 X5 )

END

BEGIN : 02.04
X1'1 :

(~A2 X2 X4 —=A2 X3 X4 =A2 X3 X5 )

X1+0

(+Bl X4 X5 =A2 X2 X3 X4 )

END

BEGIN 02405
X101

(~A2 )

X110

(+B2 ~A2 X3 )

END
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TABLE Be2.3

EXAMPLE 2
EQUATION SET 5

BEGIN ' ' 03401
X410 . .

{#B0 X2 +BO0 X3 =A0 X2 X3 )

END

BEGIN : 03.02 .
X440 ‘

(+B0 X5'2 =Al X2 X3 X5 +A2 X2'2 X3 +A2 X2 X312 )

END

BEGIN _ _ 03.03
X401

(+BO X2 X5 +BO X3 X5 )

X410

(+B0 X3 X5'2 =Bl X2 X3 X5 +A2 X242 Xx3'2 )

END

BEGIN ) 03.04
X401 : :

(+B0 X5 )

Y410 :

(-B2 X2 X3 4+A2 X2 X312 )

END

TABLE Be2.4

EXAMPLE 2
EQUATION SET 4

BEGIN ' 04401
X2'1 '

(+B0 =A0 X3 )

X210

{(+B0 X3 )

END

BEGIN - : 04402
X242

(+A2 X3 )

x2'1

(=Al X3 X5 +A2 X312 )

X210

(+BO X5'2 )

END

BEGIN " . 04.03
X212 . .
(=82 )

x2t1 '

(+B1 X5 =-B2 X3 +A2 X312 )

X210

{(-B0 X592 )

END
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TABLE Be245

EXAMPLE 2
EQUATION SET 5

BEGIN e N » ) ‘05,01 °
X502

(+B0'2 ~2 A0 BD X3 +A0'2 X312 )’
X511

(+Al BO X3'2 ~A0 Al X3'3 )

X510

(+A0 A2 X3'4 )

END

BEGIN . B 05402
X512

(-BO'2 +2 A0 BO X3 -A0'2 X312 )

X511

{-BO Bl X3 +A0 Bl X312 )

X510

(-A2 BO X3'3 -A0 BZ X313 +A0 A2 X314 )

END

TABLE Be2,6

EXAMPLE 2
EQUATION SET 6
BEGIN ‘ 06401
X316 : '
(+4 AD'6 A212 ~AQ'S Al'2 A2 )
X315

(-20 AO'5 A2'2 BO -4 AO*'6 A2 B2 +5 AO'4 Al'2 A2 BO +A0'S5 Al1?'2 B2 )
X314

(+41 AO'4 A2'2 BO'2 +18 AO'5 A2 BO B2 —-AOt4 Al A2 BO Bl -10 AOt3 Alt2 A2 BO'Z
-4 AOY4 A1t2 BO B2 +A0'S5 A2 B112 -A0'S Al Bl B2 +A0'6 B2t2 )
2313

(=44 A3 A2'2 BO'3 -32 AOt'4 A2 BO'2 B2 +4 AQ'3 Al A2 BO'2 B}

+10 AO'2 A1'2 A2 BO'3 +6 A0*3 Al*2 BO'2 B2 -4 AO'4 A2 BO B1+2

+4 AOt4 Al BO B1 B2 -4 AO'S BO B2'2 )
X312

(+26 AQ'2 A2t2 BO'4 +28 AO*3 A2 BO'3 B2 -6 AQ'2 Al A2 B0O'3 Bl

~5 A0 Al'2 A2 BO'4 -4 AQ'2 Al1'2 BO*'3 B2 +6 AO'3 A2 BOt2 Bl'2

-6 A0'3 Al BO'2 Bl B2 +6 AQ'4 BO'2 B2'2 ) -
X3¢l

(-8 A0 A2'2 BO'5 =12 A0'2 A2 BO'4 B2 +4 A0 Al A2 BO'4 Bl +Al'2 A2 BO'S
+A0 Al1'2 BO'4 B2 -4 AQ*2 A2 BO*3 B1'2 +4 AO0'2 Al BO'3 Bl B2

-4 A0'3 BO'3 B2'2 )

X310

(+A0 A2 80'4 81'2 ~Al A2 BO'5 Bl —~AO0 Al BO'4 Bl B2 +A2'2 BO'6

+2 A0 A2 BO'S B2 +A0'2 BO'4 B212 )
END



Be3 EQUATIONS FOR EXAMPLE 3.

BEGIN
X1#1

(+X2 X3 )
>1%0

(~B0O )
END

BEGIN

X1l

(+X2 X5 )

X1%0

(=Bl +X2 X3 X4 )
END

BEGIN

X1l

(+X3 X4 +X3 X5 )
X1#0

(-B2 +X2 X4 X5 )
END :

BEGIN

X1#%]1

(+X4 X5 )

X1%0 .
(-~B3 +X3 X4 X5 )
END

BEGIN
( -A3 +X4 X5 )
END

TABLE Be3.1

EXAMPLE 3
~EQUATION SET 1

89

01,01

0l.02

01.03

0l.04

0l.05
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TABLE Be3,2

EXAMPLE 3
EQUATION SET 2

BEGIN : : 02.01
X2#1 :
(+X3%2 X4 )

X2#0

(+80 X5 =Bl X3 )

END

BEGIN i ' 02.02
X2%2

(+X4 X5 )

X2#]1

(-B2 )

X2%0Q

(+B0 X4 +BO X5 )

END

REGIN C ‘ . 02403
2%l

(=B3 X3 +X3%2 X4 X5 )

X2%0

(+B0 X4 X5 )

END

BEGIN ' 02.04
{ ~A3 +X4 X5 )
END

TABLE Be3:3

EXAMPLE 3
EQUATION SET 3

BEGIN : 03.01
X3%#4

(+B0 X4%2 +BO X4 X5 )
X3#3

(-Bl B2 )

X3%2

(+B1*2 X5 +B0 B2 X5 )
X3#%1

(~2 BO Bl X5%2 )

X3%0 '

(+BO*2 X5%3 )

END

BEGIN : : 03.02
X3%2 )

(+B1 X4 X5 )

X3%1

{(~BO X4 X5%2 -Bl B3 +B0O X4%2 X5 )

X3%0

(+B0 B3 X5 )

END .

REGIN - ' - L 03.03
( -A3 +X4 X5 ) ' ‘ :
END
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‘TABLE Ba3.4

EXAMPLE 3
EQUATION SET 4

BEGIN . . 04401
X4%8 ’ : ‘ : :
(+BO*3. X5%3 )

X4*7

{=3 BO*3 X5%4 )

X4%6

(+2 BO*3 X5%5 -2 BO*2 Bl B3 X5%2 )

X4%5

(+B0 B1*2 B2 X5%3 +2 BO*3 X5%6 )

X4 %4

(+4 BO¥2 Bl B3 X5%4 +B1l*4 X5%4 -2 BO BL¥2 B2 X5%4 =3 BO*3 X5%7

+BO B1¥2 B3*2 X5 +BOX2 B2 B3¥2 X5 )

X4%3 :

(+B0 B1¥2 B2 X5%5 -B1*3 B2 B3 X5%2 +BO*3 X5%8 +B0 Bl¥%2 B3x2 Xx5%2

-BO%*2 B2 B3%#2 X5%2 )

X4 %2

(~B1%#3 B2 B3 X5%3 +B0 B1l#2 B3%#2 X5%3 -2 BO*2 Bl B3 X5%6 ~BO*2 B2 B3%2 X5%3
~BO Bl B2 B3%3 +B0O*2 B3#%4 )

X4*1

(-2 BO Bl B2 B3*3 X5 +B1%2 B2%2 B3*2 X5 +BO Blx2 B3*2 X5%4 +B0%2 B2 B3*2 X5%4
+2 BO*2 B3#4 X5 )
X4 %0 _

(=BO Bl B2 B3%3 Xx5%2 +B0%2 B3*4 X5%2 )
END

BEGIN 04402
X4*] -

(+X5 )

X4%0

(=A3 )

END
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TABLE Be345

EXAMPLE 3
EQUATION SET 5

BEGIN 05.01
X5#10 T .

(+B0%3 A3%3 )

X5%9

(-2 BO*2 Bl B3 A3*2 )

X5%8

(-3 BO*3 A3%4 +BO Bl¥2 B3%2 A3 +BO%2 B2 B3%*2 A3 )

X5%7

(+BO Bl#2 B2 A3%3 -BO Bl B2 B3%3 +BO%*2 B3%4 '}

X5%6

(+2 BOt3 A3%5 -Bl%*3 B2 B3 A3%2 +B0 B1l%2 B3%#2 A3%2 -BO%2 B2 B3%*2 A3#2 )
X5%5 :

(+4 BO%2 Bl B3 A3%4 +Blx4 A3%4 -2 BO B1l%2 B2 A3#4 -2 BO Bl B2 B3%3 A3
+B1%2 B2%2 B3%2 A3 +2 BO*2 B3%*4 A3 )

X5%4

(+2 BO*3 A3%#6 —-Bl#3 B2 B3 A3%#3 +B0 B1l%2 B3%#2 A3%3 ~-BO*2 B2 B3*2 A3x%3 )
X5%3

(+BO Bl#2 B2 A3%5 —~B0O Bl B2 B3%3 A3%#2 +BO%*2 B3%4 A3%2 )

X5%2 .

(-3 BO#3 A3%#7 +BO Bl¥2 B3%2 A3%4 +B0%2 B2 B3%2 A3#%4 )
X5%1

(-2 BO*2 Bl B3 A3%6 )

X5#0

(+BO*3 A3%g )
END
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