DRIVING-POINT IMPEDANCE SYNTHESIS

WITH TOPOLOGICAL SPECIFICATIONS

By
LOUIS CHARLES THOMASON \becauseBachelor of ScienceOklahoma State UniversityStillwater, Oklahoma1961
Master of Science
Oklahoma State UniversityStillwater, Oklahoma
1961

Submitted to the faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May, 1966

DRIVING-POINT IMPEDANCE SYNTHESIS

 WITH TOPOLOGICAL SPECIFICATIONS

ACKNOWLEDGEMENTS

The general subject of this thesis was suggested by $D r$. $R_{0} L_{\text {。 }}$ Cummins, my Thesis Adviser. I wish to express my appreciation to him for his counsel and guidance during its preparation.

The interest and encouragement of Dr. W. L. Hughes, Head of the School of Electrical Engineering and Chairman of my advisory committee is gratefully acknowledged.

For their advice and the challenge they have provided in the classroom, I wish to thank the other members of my advisory committee, Drs. H. T. Fristoe, E. K. McLachlan, and W. J. Leivo.

The contribution of my wife and two daughters to my graduate studies was immeasurable. Particular recognition is due my wife, Karen, for typing the thesis.

TABLE OF CONTENTS

Chapter Page
I。 INTRODUCTION 1
General Discussion of the Problem 1
Review of Literature 2
Delineation of the Problem 4
Organization of the Thesis 4
II. RELATIONS BETWEEN THE DRIVING-POINT IMPEDANCE FORM AND THE NETWORK TOPOLOGY 6
Introduction and Objective 6
Driving-Point Impedance Forms 6
Graph-Theoretic Principles 8
Network Forms 21
Nature of the Relationship Between the Network Form and 2DP Form 25
Classification of Network Forms 28
III. REALIZATION OF A SPECIFIED DRIVING-POINT IMPEDANCE 33
Relation of the Network Form and Element Values 33
Solution of the Tree-sum Equations 34
Non-unique Solutions of the Tree-sum Equations 44
IV. SOLUTIONS OF TREE-SUM EQUATIONS BY ELIMINATION 46
Background 46
The Eliminant 49
Solving a System of Polynomials by Elimination 50
Examples 55
V. SUMMARY AND CONCLUSIONS 69
Summary 69
Conclusions 70
Suggestions for Further Study and Development 71
BIBLIOGRAPHY 73
Chapter Page
APPENDIX A. SYMMETRIC POLYNOMIALS 75
Definition of a Symmetric Polynomial 75
Special Symmetric Functions 76
Fundamental Theorem of Symmetric Polynomials 79
APPENDIX B。 EQUATIONS FOR EXAMPLES 82
Equations for Example 1 82
Equations for Example 85
Equations for Example 3 89

LIST OF TABLES

Table Page
2.5.1 Driving-Point Impedance Classes 26
2.5.2 DrivingoPoint Impedance Subclasses 27
2.6.1 Classification of Network Forms 29
3.2.1 Trees of G_{0} in Figure 3.2.1 36
3.2.2 Trees of G_{1} in Figure 3.2.1 36
3.2.3 Number of TreemSum Equations 39
4.3.1 Equation Sets for 8 Variables and 5 Equations 54
4.4.1 Solutions for Example 1 59
4.4.2 Element Values for Example 1 60
4.4.3 Solutions for Example 2 63
4.4.4 Solutions for Example 3 68
B.1.1 Example 1 Equation Set 1 82
B.1.2 Example 1 Equation Set 2 83
B.1.3 Example 1 Equation Set 3 83
B.1.4 Example 1 Equation Set 4 84
B.1.5 Example 1 Equation Set 5 84
B.2.1 Example 2 Equation Set 1 85
B.2.2 Example 2 Equation Set 2 86
B.2.3 Example 2 Equation Set 3 86
B. 2.4 Example 2 Equation Set 4 87
B.2.5 Example 2 Equation Set 5 87
Table Page
B.2.6 Example 2 Equation Set 6 88
B. 3.1 Example 3 Equation Set 1 89
B.3.2 Example 3 Equation Set 2 90
B. 3.3 Example 3 Equation Set 3 90
B. 3.4 Example 3 Equation Set 4 91
B. 3.5 Example 3 Equation Set 5 92

LIST OF FIGURES

Figure Page
2.3.1 Example for Graph Definitions 12
2.4.1 One-Port Network 21
3.2.1 Network Illustrating Treessum Functions 35
3.2.2 Network Illustrating Case (a) 40
3.2.3 Network Illustrating Case (b) 41
3.2.4 Network Illustrating Case (c) 42
3.2.5 A Second Example of Case (c) 43
3.2.6 Network Illustrating Case (d) 43
3.3.1 Network Illustrating Substitution 44
4.1.1 Elementary Circuit to Illustrate Elimination 47
4.4. 1 Network Form for Example 1 56
4.4.2 Graphs and Tree List for Example 1 57
4.4.3 Network Form for Example 2 60
4.4.4 Graphs and Tree List for Example 2 61
4.4.5 Network Form for Example 3 64
4.4.6 Graphs and Tree List for Example 3 64

CHAPTER I

INTRODUCTION

1.1 General Discussion of the Problem. A large volume of information about the synthesis of electrical networks has been developed during the last thirty years. However, it is now clearly recognized that classical techniques have ignored the topological properties of the design. Seshu (1) in an early paper discussing topology and synthesis stated that there are "... several methods of synthesizing driving-point functions known at the present time and they are practically satisfactory. Esthetically, however, they are unsatisfactory in that one of the most important characteristics of a network, namely its topology, has been neglected."

Interest in this aspect of circuit synthesis is a natural result of the advanced state of classical procedures and the development of topological methods of analysis. Since the time of Seshu's first paper in 1955, the requirements of circuit designers have changed. There is, for example, a need to control the topology when designing a network to be constructed by integrated circuit techniques. As topological studies continue, it appears that other important synthesis problems, such as specifying several functions to be realized by a single network, may be solved. Thus the study seems to have far-reaching practical, as well as esthetic, value.

The circuit designer is directly concerned with three attributes
of the network: the specified function, the topology, and the element values. Classical synthesis procedures begin with a specified network function and, by one of several different techniques, derive both the topology and the element values. In certain cases, especially the two-element-kind network, there is a limited choice of topology, i. e. parallel, series, or ladder circuits. Such a choice falls far short of being topological design. Thus the general problem at hand is to develop circuit synthesis procedures which allow the circuit designer to control the topology.
1.2 Review of Literature. Seshu's paper, quoted previously, derived the fundamental circuit matrix and the incidence matrix of the network from the specified driving-point function and certain elementary functions. These represent the resistors, capacitors, and inductors of the network and their values. Seshu did not present a procedure to obtain the elementary functions from the specified network function but declared that such a procedure would be necessary before the method could be practical.

In 1960, Onodera (2) developed a method for the topological synthesis of networks from the transfer admittance matrix. His procedure derived the incidence matrix and the branch impedance matrix. This paper differs from our present objective, however, as the specified function is a matrix function of the network. No general procedure is known to obtain the matrix from a specified network function.

Iterative methods for finding the element values of a network with a specified function and topology are proposed by Bellert (3) and Calahan (4). Bellert's algorithm for topological synthesis generates
a sequence of networks, and he suggests that each one be tested by it erative numerical methods to see whether it will realize the specified function or not. Calahan has prepared a computer program to determine the element values of a network from a specified function and topology. If the iteration process does not converge to a solution, Calahan's program automatically adds an element to the network and attempts to solve it again. The difficulty is that the user must make an 'appropriate choice of starting values for the iteration. If it fails to converge, either the network cannot be realized in the specified topology or a bad starting point has been chosen. Experience indicates that this situation occurs frequently in all but simple examples. The work of Seshu presents quite a contrast to that of Bellert and Calahan. The former attempts to derive the network topology, while the latter are suggesting that it be tested. Thus it is reasonable to question whether or not one should look for a procedure to de= rive a topology from a specified function. An uncountable number of networks can realize a specified function (if it can be realized at all). Thus if a topology is to be derived, it appears necessary to make additional specifications. For example, Seshu specified the element values while Onodera specified a system matrix. In accordance with our general objective, any additional specifications should relate specifically to the topology. Now the original question is rephrased. What properties of the topology are determined by the specified function, and how are these related to the element values? Once an answer is found, one may look for a topological synthesis procedure.
1.3 Delineation of the Problem. The present objective is to study the driving-point impedance function of passive linear networks. Mutual inductance is excluded to further limit the scope of the probe lem. It is assumed that this function is realizable, that is, it is positive real and hence satisfies the classical test for realizability. Principles developed for the impedance function can be applied in a similar manner to driving-point admittance functions. Perhaps such an investigation might be extended to other network functions, such as the transfer impedance function.

The two questions proposed in Section 1.2 are applied specifically in this thesis to the driving-point impedance. Topics for consideration are:
(a) What is the nature of the relationship between the form of the driving-point impedance and the network topology?
(b) Can a given network topology realize a specified drivingpoint impedance?
(c) What are the network element values?

In addition, a classification of networks is suggested as the basis of a topological synthesis procedure.
1.4 Organization of the Thesis. The topics involving only tops ology are discussed in Chapter II. Relations between the form of the driving-point impedance function and the network topology are derived and presented in a table, and network classification is discussed.

Questions (b) and (c) are, as in some classical synthesis methods, allied. A general discussion will be presented in Chapter III relating the drivingepoint impedance to the network topology by sums of tree
admittance products. Chapter IV describes a method for solving these sums to determine the element values and the realizability of the nete work topology. Several examples are presented.

CHAPTER II

RELATIONS BETWEEN THE DRIVING-POINT IMPEDANCE
 FORM AND THE NETWORK TOPOLOGY

2.1 Introduction and Objective. The objective of this chapter is to make explicit the relations between the form of the drivingpoint impedance function (to be abbreviated ZDP) and the network topology. Several papers are of special interest in this discussion because they deal with the ZDP form. Hakimi and Mayeda (5) have shown that a necessary and sufficient condition for a network function polynomial to be even or odd is that the number of resistors in all trees of the network be constant. Brown and Reed (6) have developed detailed conditions on the ZDP form based on classical positive real conditions.

Networks with two kinds of elements have been studied by Hakimi (7), and their topological properties are related to the number of poles and zeros of network functions. His work is also extended to include networks with three kinds of elements. Similar results have been obtained independently by others, Seshu and Reed (8)。
2. 2 Driving-point Impedance Forms. Two forms of driving-point impedances are of interest. The determinant or improper form represent ing the most general function is defined by Equation 2.2.1.

$$
Z_{d p}=\frac{c_{k} s^{k}+c_{k-1} s^{k-1}+\ldots c_{0}+\ldots c_{m} s^{\infty}}{d_{p} s^{p}+d_{p-1} s^{p-1}+\ldots d_{0}+\ldots d_{\infty q} s^{-q}}
$$

This form represents the arbitrary fashion in which a ZDP specificae tion may be prepared. It is assumed that

$$
e_{k^{2}} e_{-1}, d_{p,} d_{\infty-q} \neq 0
$$

and that the zero coefficients are specified. The numerical values of the nonazero coefficients remain unspecified.

As an aid to generalization, a normal or proper form is defined by Equation 2.2.2.

$$
z_{d p}=\frac{a_{m} s^{m}+\ldots a_{1} s+2_{0}}{b_{n} s^{n}+\ldots b_{1} s+b_{0}}
$$

It is obtained from the determinant form by multiplying both numera. tor and denominator by s^{x}, where $x=\max (1, q)$. Note that a_{m} and $b_{n} \neq 0$; however, either a_{0} or b_{0} may be zero. The zero coeffio cients are also specified here, while the value of the nonezero coefo ficients is unspecified.

A normal form has six attributes. They are:
(a) the value of m
(b) a specification (zero or non-zero)
(c) alternating numerator (even or odd polynomial)
(d) the value of n
(e) b_{0} specification (zero or nonazero)
(f) alternating denominator (even or odd polynomial)

Extensive use of these attributes will be made in the following seco
tions. It is clear that an uncountable number of determinant forms reduce to a single normal form.

Relations between several of the attributes are presented in various texts on classical synthesis; the reader is referred to Weinberg (9) for one such development. The integer values m and n can be shown, for example, to differ by not more than one. These conditions are deduced from the positive real test for realizability and are only implicitly involved in the development presented here.
2.3 Graph Theoretic Principles. The following is a unified graphetheoretic presentation of definitions and theorems required for this discussion of topological synthesis. A comprehensive treatment of linear graph theory and the analysis of electrical networks can be found in the standard text by Seshu and Reed (8).

It is necessary to differentiate between the linear graph de. scribing the topology of a network and the network electrical components; the basic definitions reflect this distinction.

Definition 2.3.1 (Edge): An edge is a line segment with distinct end points.

Definition 2.3.2 (Element): A network element is an edge identified with a resistor, capacitor, or inductor.

An edge is later identified with a color. However, this is not to be thought of as a property of the edge but simply an aid to visual. izing a classification. The number of edges or elements will be denoted by E with an appropriate subscript if necessary.

Definition 2.3.3 (Vertex): The end points of an edge or element are called vertices.

The term node is frequently used in the literature as another name for vertex. V will designate the number of vertices.

Definition 2.3.4 (Graph): A graph is a set of edges coinciding only at vertices.

Definition 2.305 (Network): A network is a set of elements coincid. ing only at vertices.

Here again there is a distinction between the topological arrangea ment and the network. The terms subgraph and subnetwork will be used to denote graphs and networks containing subsets of edges and elements respectively. Unless stated otherwiseg the theorems will remain valid when the graph edges are identified with electrical components. In certain cases it will be necessary to discuss graphs having one or mose isolated vertices, io eo vertices not touched by an edge。

Several properties of a graph are now considered.

Definition 2.3.6 (Nonseparable): A graph G is nonseparable if every subgraph of G has at least two vertices in common with its complement.'All other graphs are separable. ${ }^{1}$

In order to designate clearly the separable subgraphs of a graph, a related term is defined belowa

[^0]Definition 2.3.7 (Component): A maximal nonseparable subgraph of a graph G is 2 component of G 。

Special emphasis is placed on another class of subgraphs dise tinguished by the following property.

Definition 2.3.8 (Connected): A graph is said to be connected if there exists a path or sequence of edges between any two vertices. Definition 2.3.9 (Part): A part of G is a maximal connected sub graph of G。

The number of parts of a graph will be denoted by P. It is clear that a part of G will always be a component or perhaps more than one component. On the other hand, if G is connected and nonsep. arable, it will be regarded as a component of itself.

Definition 2.3.10 (Rank): The rank of G is $R=V-P$.

This term will be used frequently in the discussion.
The tree concept defined below is the vehicle for developing the relations between the 2DP form and the network topology. To utilize this important graphical concept to the full extente the def. inition here differs from that commonly used in electrical engineering.

Definition 2.3.11. (Tree Graph): A tree graph of a graph G of rank R is a subgraph of rank R having R edges.

This definition may be shown to be equivalent to the conventional one if the graph is connected.

Definition 2．3．12（Tree）：A set of edges which form a tree graph is called a tree．

This second definition is provided to distinguish the tree graph from the set of symbols corresponding to the edges of the tree graph．It will frequently be necessary to refer to the tree t_{i} and its edge set，

$$
t_{i}=\left\{e_{i_{1}}, e_{i_{2}}, \ldots e_{i_{R}}\right\}
$$

To represent conveniently the complete set of trees of a graph，the tree set

$$
T=\left\{t_{1}, t_{2}, \ldots t_{N}\right\}
$$

is defined．

Definition 2．3．13（Tree set）：The tree set of G is the set of all trees of G 。

These definitions are now illustrated by referring to the graph in Figure 2．3．1．This graph is composed of three components denoted by the edge sets $\{A\},\{B, C, D, E\}$ and $\{F, G\}$ ．The subgraphs $\left\{A_{9} B_{2} G_{9} D_{2} E\right\}$ and $\left\{F_{9} G\right\}$ are by definition parts of the graph。 The tree set is also shown in the figure。

The theorems to be developed can be conveniently stated and proved in terms of operations on a graph．

Operation 2．3．1（Edge deleting）：A specified edge is removed from G．If an isolated vertex is created by an edgemdeleting operation， it is also removed．

Tree Set

$A B C F$	$A B D F$	$A B E F$	$A C E F$	$A D E F$
$A B C G$	$A B D G$	$A B E G$	$A C E G$	$A D E G$

Figure 2.3.1. Example for Graph Definitions

The edge deleting operation is extended to the subgraph.

Operation 2.3.2 (Subgraph deleting): An edgemdeleting operation is performed on each edge of a specified subgraph.

Operation 2.3.3 (Vertex shorting): Two specified vertices v_{i} and v_{j} ase superimposed. Edges with both endpoints on the new vertex ${ }_{9}$ selfaloops g $_{2}$ are deleted.

As most vertexeshorting operations are designated by an edge it is convenient to make the following definition.

Operation 2.3.4 (Edge shorting): A vertex-shorting operation is pero foxmed on the vertices denoting the endpoints of a designated edge.

Note that selfoloops are again removed. This operation is also ex
tended to subgraphs.

Operation 2.3.5 (Subgraph shorting): An edge-shorting operation is performed on each edge of the specified subgraph.

The theorems that follow develop the necessary and sufficient conditions relating the form of the 2DP and the network. They are intended to be constructive in nature, that is, they are stated and proved in a fashion suitable for use in an algorithmic process. For an example of such an application the reader is referred to (10).

The first five theorems prescribe the effect of the correspond. ing five operations on the tree list of a graph.

Theorem 2.3.1 (Deleted edge theorem): A graph G is formed by an edgeadeleting operation on θ_{d} 。
(a) If the rank of G^{0} is equal to the rank of G,
(1) every tree of G is a tree of G, and
(2) every tree of G which does not contain e_{d} is in the tree set of G° 。
(b) If the rank of G^{\prime} is not equal to the rank of G,
(1) $R^{0}=R-1$, where the ranks of G^{0} and G are R^{a} and R respectively y_{9} and
(2) every tree of G° will be a tree of G if e_{d} is added.

Proof (a): Since the rank has not changed and G is a subgraph of G, its trees are trees of G. In addition, a tree graph of G which does not contain e_{d} is a subgraph of G^{0}. This subgraph of $G^{\text {© }}$ has appropriate rank and number of edges to be a tree of G.

Froof（b）：Deleting an edge does not change the number of vertices， but may increase the number of maximal connected subgraphs by one． Thus if the rank of G is not equal to the rank of G ，

$$
R^{0}=(V-P)-1=R-1
$$

Note that a tree graph of G^{0} will be a subgraph of G of rank Ro1 with $R=1$ edges．Since deleting e_{d} in G divided a maximal connec． ted subgraph into two parts，adding e_{d} to a tree graph of G^{0} will connect the corresponding parts of the tree graph．This newly formed graph will be a subgraph of G having rank R and R edges；thus it is a bree．

Theorem 2．3．2（Shorted vertex theorem）：A graph G^{i} of rank $R^{\text {e }}$ is formed from graph G of rank R by a vertex shorting operation on v_{i} and v_{j} 。
（a）If and only if ∇_{i} and V_{j} are in separate parts of G ，
（1）$R=R^{0}$ ，and
（2）the tree set corresponding to G^{0} is identical to thet of G 。
（b）If and only if v_{i} and v_{j} are in the same part of the graph $G, R^{0}=R=1 。$

Proof（a）：The number of vertices and parts of G are both reduced by one，thus the rank is unchanged．Every tree of G is by defini． tion a tree graph of G^{9} after a vertex reduction is performed on v_{i} and v_{j} ．In a similar way separating the reduced vertex of any tree graph of G° ，while maintaining the vertex－edge incidence rela－ tion of G s will produce a tree graph of G ．Thus the tree sets are

identical．

Proof（b）：In this case the number of parts of G and G is the same，while the number of vertices of G° is one less than that of G 。 Thus the rank of G^{0} is one less than G 。

Theorem 2．3．3（Shorted edge theorem）：One edge of a graph G is selected and designated e_{S} ．A graph G is formed by an edge． shorting operation on e_{s} ．The tree set of G^{θ} is designated

$$
T^{y}=\left\{t^{0} 1_{10} t^{0} 2^{9} \ldots t_{n}^{8}\right\}
$$

A secomd set of edge sets

$$
T=\left\{t_{1}, t_{2}, \ldots t_{n}\right\}
$$

is formed by adding e_{s} to each t_{i} to form t_{i} ．
（a）Every set of edges t_{i} is a tree of G 。
（b）Every tree of G that contains e_{S} is included in the tree set T

Proof（2）Each to is a subgraph of G^{0} of rank ReI having Roi edges．The vertices shorted by the edgeoshorting operation are separa ated while maintaining the vertex edge incidence relation of G ． When the edge e_{S} is added between the separated vertices，a subgraph of G with rank R and R edges is formed．

Proof（b）：Considering any tree graph of G which contains e_{S} ，an edgesshorting operation on e_{s} produces a subgraph of G^{θ} of rank Ro1 with Ro1 edges．This subgraph is by definition a tree of G^{9} 。

Theorem 2．3．4（Shorted graph theorem）：A set of edges shorted one by one（no edge is removed as a result of shorting a previous edge）reduces
a graph G to zero rank if and only if the edge set is a tree of $G 0^{1}$ Proof: Each edge of the set of N shorted edges is designated e_{i} and the graph formed, G_{i}. The tree of G_{N} is the null set of edges. According to the shorted edge theorem (2.3.3), e_{N} is a tree of G_{N-1}. Continuing to apply this reasoning, $\left\{e_{N-1}, e_{N}\right\}$ is a tree of $G_{N_{\Omega} 2}$. etc. Finally, $\left\{e_{1}, \quad e_{2}, \ldots e_{N}\right\}$ is a tree of G.

Assuming that shorting a set of edges corresponding to a tree in G did not feduce the graph to rank zero, then an additional set of edges could be shorted to reduce the rank to zero. As described above, the union of this second set of edges with the tree set would be a tree. This contradicts the assumption, since the now tree would have more edges than the assumed tree. Thus shorting the edges of a tree reduces. G to rank zero.

A discussion of the interrelation of the tree and the ZDP is prea sented in Section 2.4. The following theorems provide the desired association between the properties of the graph and the tree set. Several of them correspond to theorems by Hakimi (7)。 However, the present discussion is entirely graphetheoretic and unified. In addio tion, the theorems here stated are in a form suitable to apply to graphs of more than one part.

Colors will be used to denote classes of edges. The subscripts w and b will denote subgraphs of white and black elements. The black subgraph is the complement of the white, and vice versa. The s subscript designates a graph that is formed by shorting the sub.

[^1]graph which is the complement of the designated edge seto For example， $G_{\text {ws }}$ is derived by shorting the non－white edges．In a similar fashion d indicates that the graph is produced by a subgraph－deleting operae tion on the complement of the indicated edge set．Thus $G_{b d}$ is obom tained by deleting all nonoblack edges．

In some applications of the theorems below the graph will be com－ posed of three classes of edges．When this occurs，two of the classes are treated as a single class．For example，the edges of a graph are classified as red，blue，or green．If the red edges are of particular interest，they are assigned to the white class，while the blue and green are assigned to the black class．

The following theorem presents the basic relation between the derived graphs $G_{\text {ws }}$ and $G_{b d}$ and 2 tree。

Theorem 2．3．5（Composite tree theorem）：If
（a）G is a graph with derived graphs $G_{\text {ws }}$ and G bd
（b）t_{W} is a tree of $G_{W S}$ ．
（c）t_{b} is a tree of God．
then $t=\left\{t_{W} \cup t_{b}\right\}$ is a tree of G 。
Proof：To prove the theorem the edges of the tree to are shorted in $G_{\text {bd }}$ and G o Since，according to the shorted graph theorem（2．3．4） $G_{b d}$ is now reduced to zero sonk，all of its black edges have been reo moved．Thus all black edges in G have also been removed and $G_{\text {ws }}$ remains．Shorting the tree t_{W} in $G_{w s}$ reduces G to rank zero． The shorted graph theorem is again applied to identify the set of edges $\left\{t_{w} \cup t_{b}\right\}$ that reduce G to rank zero as a tree of G 。

As will be seen later in this chapter，the maximum and minimum
numbers of edges of a particular class in any tree are of primary ime portance. They are determined by the ranks of derived graphs.

Theorem 2.3.6 (Minimal tree theorem): If the graph $G_{b s}$ derived from G has rank $R_{b s}$, every tree of G contains at least $R_{b s}$ black edges. Proof: By the composite tree theorem (2.3.5), a tree with $R_{b s}$ black edges exists. Assuming that a tree with fewer than $R_{\text {bs }}$ black edges exists, then shorting the non-black edges of this tree in G would produce a derived graph G^{\prime} of rank R^{\prime} less than $R_{b s}$, which must contain a black edge tree. This is a contradiction of the hypothesis since the rank of a graph formed by shorting any subset of nonablack edges must be greater than or equal to $R_{b s}$. Shorting the remaining non-black edges can only reduce the rank.

Theorem 2.3.7 (Maximal troe theorem): If the graph $G_{w d}$ derived from G has rank $R_{\text {wd }}$
(a) at least one tree of G contains $R_{w d}$ white edges, and
(b) no tree contains a greater number of white edges.

Proof (a): The nonowhite elements of G are identified as black eles ments. The ranks of $G_{b s}$ and $G_{w d}$ are $R_{b s}$ and $R_{\text {wd }}$ respectively. If t_{b} is a tree of $G_{b s}$ and t_{w} is a tree of $G_{w d}$, theng 2ccording to the composite tree theorem $(2.3 .6), t=\left\{t_{b} \cup t_{w}\right\}$ is a tree of G. Note that t_{w} contains $R_{w d}$ white edges; thus t contains $R_{w d}$ white edges.

Proof (b): Assuming a tree graph exists with $R^{v}>R_{w d}$ white edges, this tree must be a subgraph of G 。 In addition, the R^{9} white edges must be a subgraph of $G_{w d}$. However, the $G_{\text {wd }}$ graph has rank $R_{\text {wd }}$ and no subgraph can have greater rank. This is verified by con-
sidering that $G_{w d}$ has V vertices and $P_{w d}$ parts。 Any subgraph G^{v} of $G_{w d}$ with V^{0} vertices and P^{\prime} parts must have

$$
\begin{array}{cc}
& V^{\otimes} \leqslant V \\
\text { and } & P^{\theta} \geqslant P_{W d} \circ \\
\text { Thus } & V^{\otimes}-P^{\theta}=R^{9} \leqslant R^{e}{ }_{w d}=V \propto P_{w d} .
\end{array}
$$

Having thus specified the extreme characteristios of the tree set， the next requirement of the development deals with the properties of the set between these extremes．

Theorem 2．3．8（Tree sequence theorem）：The tree set of a graph con tains trees with K white edges for $211 K$ such that $R_{\text {ws }} \leqslant K \leqslant R_{\text {wd }}$ 。 Proof：The minimal tree theorem（2．3．6）states that at least one tree contains $R_{\text {ws }}$ edges，while the maximal tree theorem（2．3．7）verifies that a tree contains $R_{w d}$ edges．A graph G corresponding to the tree set is formed．Each node corresponds to a tree of the set and each edge to an elementary tree transformation．This transformation in． volves replacing one edge of a tree with another edge forming a difo ferent tree of the set． $\mathrm{R}_{0} \mathrm{~L}_{\text {。 Cummins（12）has shown that a Hamilton }}$ circuit exists in a graph of trees．＂oo．the set of trees of a network （graph）can be ordered in such a manner that successive trees are rew lated by elementary tree transformations．＂Note that an elementary tree transformation can remove at most one white element from tree t_{i} ． Thus there exists a tree with K white elements for all K such that $R_{\text {ws }} \leqslant K \leqslant R_{\text {wd }}$ 。 The maximum and minimum values of K are given by Theorems 2．3．6 and 2．3．7．

In certain special cases the maximum and minimum are identical. The component graph property is associated with such a condition.

Theorem 2. 3.9 (Component graph theorem): A necessary and sufficient Condition for the white elements of G to form a component or set of components of G is that $R_{W S}=R_{\text {wd }}$ 。

Proof: Note that the $G_{w s}$ graph can be obtained from $G_{w d}$ by shortm ing the veritices which were connected by nonewhite edges in G. If the white edges of G form a component or set of components, the prow cess of deriving $G_{\text {ws }}$ from G does not change the rank. The rank is now assumed to be changed by a shorting operation. Thus, acoording to the shorted vertex theorem $(2.3 .2)$, the two vertices must be in the same part of the graph. Since the only connected subgraph of two or more vertices in $G_{w d}$ is a white edge subgraph a nonwwite edge exists between two vertices in a white subgraph of G o Such a white subgraph has at least two vertices in common with its complement and by definition is nonseparable $y_{\text {}}$ i. θ. not a component. This contradicts the hypothesis; thus the rank is unchanged in the process of deriving $G_{\text {ws }}$ from $G_{w d}$ 。

Now it is assumed that $G_{\text {WS }}$ is obtained from $G_{\text {wd }}$ and the rank is not changed in the process. From the shorted vertex theorem (2.3.2) it is known that the verthices which were shorted must have been in separate parts of the graph. Extending this reasoning, no sequence of shorting operations used to obtain $G_{\text {ws }}$ from $G_{w d}$ will involve shorting two vertices which are common to a oneapart subgraph. Thus. there exists no white oneapart subgraph in G which has two or more vertices in common with a nonowhite subgraph; hence by definition.

211 white subgraphs are components.

An additional short theorem will prove useful.

Theorem 2.3.10 (Component tree theorem): Every tree in the tree set of
a graph G has the same number of white edges if and only if the white edges form a component or set of components of G.

Proof: This theorem follows directly from the tree sequence theorem (2.3.8) and the component graph theorem (2.3.9). The number of white edges K in each tree of G is bounded by $R_{\text {ws }} \leqslant K \leqslant R_{\text {wd }}$ 。 But $R_{\text {ws }}=R_{\text {wd }}$, and the number of white edges in each tree is the same。
2. 4 Network Forms. Figure 2.4.1 represents a oneoport network with the two input terminals identified.

Figure 2.4.1. One Port Network

The driving point impedance is defined to be

$$
\mathrm{Z}_{\mathrm{dp}}=\frac{\mathrm{V}_{1}}{I_{1}}
$$

and can be written as

$$
\mathrm{z}_{\mathrm{dp}}=\frac{\Delta_{11}}{\triangle}
$$

where \triangle and \triangle_{11} are the determinant and y_{11} cofactor respectively of the nodeadmittance matrix.

Symbols associated with the graph and topological properties of the one-port network will be denoted by a 0 subscript. A derived graph, formed by shorting the input terminals of G_{0} g is of special importance and its symbols will be designated by the subscript 1 .

Percival (13) formalized the early work of Maxwell (14) to develop equations giving the determinants above in terms of the trees of G_{0} and G_{1}. These are stated without proof; for further detail the reader is referred to Seshu and Reed (8).

Definition 2.4.1 (Treeadmittance product): The treeadmittance pros duct t_{i} is the product of the admittances of the elements corresponde ing to the edges in t_{i} 。

Theorem 2.4.1: If G_{0} is a graph corresponding to a conneated passive network without mutual inductance, the nodeadmittance matrix detera minant of the network is

Theorem 2.4.2: If G_{1} is a graph derived from a G_{0} satisfying the hypothesis of Theorem 2.4.1, the cofactor \triangle_{11} of the nodemadmittance matrix is

$$
\Delta_{11}=\sum_{\substack{\text { tree } \\ \text { set } \\ \text { of } G_{1}}}\left(\text { tree-admittance product of } t_{i}\right)
$$

As the cofactor Δ_{11} is the determinant of a network derived from the original by shorting the input, it will be convenient to refer to both \triangle and \triangle_{11} as determinants. Representing each element of the network by its transform admittance, the determinants become polynomials in s. Theorem 2. 4.3 (Alternating-term theorem): A network determinant has alternating terms if and only if the R element subgraph is a component or set of components.

Proof: A network determinant has alternating terms if and only if each tree has the same number of resistors.

If each tree has the same number of resistors, every elementary tree transformation in a Hamilton circuit through the graph of trees will change the exponent of s by 0 or 2 . Thus only alternating terms exist in the polynomial.

It is now assumed that an alternating polynomial can be formed by trees not having the same number of resistors. Then from the tree sequence theorem (2.3.8) it follows that there must be a tree with an even number of resistors and one with an odd number, a tree with an even number of reactive elements and one with an odd number. This contradicts the hypothesis since such a polynomial would not be alter. nating. Hence, the alternating polynomial trees must have the same number of resistors. The preceding corresponds to the hypothesis of the component tree theorem (2.3.10), and by its conclusion the R element subgraph must be a component or a set of components.

Theorem 2.4.3 specifies the ZDPanetwork relation involving two of the six attributes of the normal ZDP form. The remaining four are associated with the exponents of the determinant form $k_{9} l_{9} p_{9} q$. For example, p is the exponent of s associated with the treemadmiti tance products for trees containing the maximum number of capacitors and the minimum number of inductors in the network. According to the maximal tree theorem $(2.3 .7), R_{\text {CdO }}$ is the maximum number of capacitors in such a tree. If the resistors and inductors in this tree are dea noted by X, the $G_{X s 0}$ graph has rank $R_{\text {Xs0 }}$. There are $R_{\text {Ls0 }}$ in ductors in the trees of $G_{\text {Xso }}$ that minimize this number (Theorem 2.3.6). This is the minimum number of inductors in any tree, and p becomes

$$
p=R_{C d 0}-R_{L s} 0
$$

In a similar manner q is determined, Here, however, the roles of capacitor and inductor are reversed as the minimal exponent of s is required. The result is

$$
q=R_{I d 0}=R_{C s 0}
$$

Applying this same reasoning to the shorted network with graph G_{1}, equations for k and I are obtained.

$$
\begin{array}{ll}
k=R_{C d I}-R_{\text {Ls } 1} & 2.4 .5 \\
I=R_{\text {Ld1 }} \propto R_{C s I} & 2.4 .6
\end{array}
$$

Finally, the exponents $k, l_{9} p$ and q determine the value of the exponents m and n by the reduction process described in Section 2.2. This yields

$$
\begin{array}{ll}
m=k+\max (1, q) & 2.4 . ? \\
n=p+\max (1, q) & 2.4 .8
\end{array}
$$

2.5 Nature of the Relationship Between the Network Form and

the ZDF Form. The necessary and sufficient conditions for a network form to realize a specified driving-point impedance form are now dea rived. The first step is to classify the ZDP form in terms of its six normal form atriibutes listed on page 7. The major classification shown in Table 2.5 .1 is based on the value (zero or nonazero) of the a_{0}, b_{0} attribute. Note that the corresponding determinant condition is listed in the adjacent column. The fact that q and l differ by at most one can be shown by considering the rank relation in the shorted vertex theorem (2.3.2) and Equations 2.4.4 and 2.4.6. Thus sinee

$$
q-I=\left(R_{L d 0}-R_{L d 1}\right)-\left(R_{C s 0}-R_{C s 1}\right)
$$

and from the theorem

$$
\begin{aligned}
& R_{\text {IdO }}-R_{\text {Ld } 1}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right. \\
& R_{\mathrm{Cs} 0}-R_{\mathrm{Cs} 1}=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
\end{aligned}
$$

the difference becomes

$$
q-I=\left\{\begin{array}{r}
+1 \\
0 \\
-1
\end{array}\right.
$$

For each classs the first equation in column three of Table 2.5.1 is obtained by substituting Equations 2.4 .4 and 2.4 .6 into the equation of column two. This result is the necessary and sufficient condition for a network form to correspond to the function class. The q and 1

TABLE 2.5.1
DRIVING-POINT IMPEDANCE CLASSES

Class	Normal Form Attribute	Determinant Form Attribute	Necessary and Sufficient Graph Conditions
1	$\begin{aligned} & a_{0} \neq 0 \\ & b_{0} \neq 0 \end{aligned}$	$q=1$	$\begin{array}{r} R_{L d O}-R_{C s 0}=R_{L d I}-R_{C s 1} \\ m=R_{C d I}-R_{L s 1}+R_{I d I}-R_{C s 1} \\ n=R_{C d O}-R_{L s O}+R_{I d O}-R_{C s 0} \end{array}$
2	$\begin{aligned} & a_{0}=0 \\ & b_{0} \neq 0 \end{aligned}$	$q=1+1$	$\begin{aligned} & R_{I d O}-R_{C s 0}=R_{L d I}-R_{C s 1}+1 \\ m= & R_{C d I}-R_{L s I}+R_{L d O}-R_{C s O} \\ n= & R_{C d O}-R_{L s O}+R_{L d O}-R_{C s O} \end{aligned}$
3	$\begin{aligned} & a_{0} \neq 0 \\ & b_{0}=0 \end{aligned}$	$q=1-1$	$\begin{aligned} & R_{I d O}-R_{C s 0}=R_{L d I}-R_{C s I}-1 \\ m= & R_{C d I}-R_{L s I}+R_{L d I}-R_{C s 1} \\ n= & R_{C d O}-R_{L s 0}+R_{I d I}-R_{C s I} \end{aligned}$

TABLE 2.5 .2
DRIVING POINT IMPEDANCE SUBCLASSES

Class	Attribute	Necessary and Sufficient Graph Conditions
0.0	no alternating polynomials	$\begin{aligned} & \mathrm{R}_{\mathrm{RdO}} \neq \mathrm{R}_{\mathrm{Rs} 0} \\ & \mathrm{R}_{\mathrm{RdI}} \neq \mathrm{R}_{\mathrm{Rs} 1} \end{aligned}$
0.1	denominator alternating polynomial	$\begin{aligned} & R_{R d 0}=R_{R s 0} \\ & R_{R d 1} \neq R_{R s} 1 \end{aligned}$
0.2	numerator alternating polynomial	$\begin{aligned} & R_{R d O} \neq R_{R s 0} \\ & R_{R d I}=R_{R s} \end{aligned}$
0.3	denominator and numerator alternating polynomial.	$\begin{aligned} & R_{R d O}=R_{R s 0} \\ & R_{R d I}=R_{R s I} \end{aligned}$

attributes determine the maximum required in Equations 2.4.7 and 2.4.8. Again substituting for $k_{9} l_{9} p_{9} q_{9}$ these equations are the necessary and sufficient conditions for the network form to realize specific values of m and n 。

Four subclasses shown in Table 2.5.2 are defined by the alternating polynomial attributes. This property of the polynomial is associated with the R element subgraph as explained in the alternatingoterm theorem (2.4.3). The rank equalities and inequalities are convenient tests for the component property of the R subgraph.
2.6 Classification of Network Forms. Example 3 in Chapter IV illustrates a network form realizing a specified function form. How. ever, it is shown that a positive real function having the required ZDP form cannot be realized by this network form. In general, then, the form of the ZDP determines a set of network forms at least one of which will satisfy a 2DP function. The number of network forms in this set is uncountable. However, as the objective here is to syne thesize a topology with specific properties, only certain forms of this set are of interest. Hence, a classification is presented, the objective being to assist the designer determine network forms ${ }_{8}$ at least one of which is realizable, satisfying the specified topological properties. Such a classification is not unique and, in fact, 2 difo ferent one may be desirable in some cases.

Table 2.6 .1 shows the hierarchy of classes. That is, each row in the table defines the classification of subsets of each of the prea ceding sets. The symbols $D A$ and $\overline{D A}$ have been used to denote an alternating and nonalternating polynomial in the denominator.

TABLE 2.6.1
CLASSIFICATION OF NETWORK FORMS

Classification	Definition of Class	Parameters Determined
vertex class	$C_{V}=\{v \mid v \geqslant 1+\max (m, n)\}$	R_{0}
q class	$C_{q}=\{q \mid q$ integer $\}$	$\mathrm{l}_{9} \mathrm{k} \mathrm{s}_{\mathrm{g}} \mathrm{p}$
LdO class	$\dot{C}_{\text {Ld } 0}=\left\{\mathrm{R}_{\mathrm{Ld} 0} \mid \max (\mathrm{q}, 0) \leqslant \mathrm{R}_{\mathrm{Ld} 0} \leqslant \mathrm{R}_{0}\right\}$	$\mathrm{R}_{\mathrm{Cs} 0}$
Ld1 class	$C_{\text {LdI }}=\left\{R_{\text {Ld } 1} / \mathrm{R}_{\text {LdI }}=\left[\mathrm{R}_{\text {Ld } 0}\right.\right.$ or $\left.\mathrm{R}_{\text {LdO }}-1\right]$ and $\left.\mathrm{R}_{\mathrm{Cs} 1} \geqslant 0\right\}$	$\mathrm{R}_{\mathrm{CsI} 1}$
CdO class	$\begin{aligned} C_{C d O} \approx & \left\{R_{\mathrm{CdO}} \mid R_{\mathrm{CdO}}=R_{\mathrm{LdO}} \text { if } \mathrm{DA},\right. \\ & \left.\max \left(R_{\mathrm{Cs} 0^{\circ}} P\right) \leqslant R_{\mathrm{CdO}} \leqslant R_{0} \text { if } \overline{\mathrm{DA}}\right\} \end{aligned}$	$\mathrm{R}_{\text {Ls0 }}$
CdI class	$\left.\begin{array}{rl} { }_{C C d 1}= & \left\{R_{C d 1} \mid R_{C d 1}=R_{\text {Ld } 1} \text { if } N A_{s}\right. \\ & \left.R_{C d 1}=\left[R_{C d 0} \text { or } R_{C d 0}-1\right] \text { and } R_{\text {Ls1 }} \geqslant 0 \text { if } \overline{\mathrm{DA}}\right\} \end{array}\right\}$	$\mathrm{R}_{\text {Ls } 1}$

TABLE 2.6.1 (Continued)

LCdO class	$\begin{aligned} C_{\text {LCdO }}= & \left\{R_{\text {LCdO }} \mid R_{\text {LCdO }} \text { rank of } G_{\text {LCdO }}\right. \text { formed from } \\ & \left.G_{\text {IdO }} \text { and } G_{C d O}\right\} \end{aligned}$	$\mathrm{R}_{\mathrm{Rs} 0}$
LCdI cless	$\begin{aligned} C_{L C d 1}= & \left\{R_{L C d 1} \mid R_{L C d 1}=R_{\text {LCdO }} \text { if } N A \text { and } D A_{9}\right. \\ & \left.R_{\text {LCd1 }}=\left[R_{L C d 0} \text { or } R_{L C d O}-1\right] \text { if } \overline{N A} \text { or } \overline{D A}\right\} \end{aligned}$	$\mathrm{R}_{\mathrm{Rs} 1}$
LCs0 class	$\begin{aligned} C_{\text {LCs } 0}= & \left\{R_{\text {LCs } 0} \mid R_{L C s O}=R_{\text {LCdO }} \text { if } D A,\right. \\ & R_{\text {LCsO }} \text { rank of } G_{\text {LCs } 0} \text { formed from } \\ & \left.G_{\text {Ls } 0} \text { and } G_{C s O} \text { if } \overline{D A}\right\} \end{aligned}$	$\mathrm{R}_{\mathrm{Rd} 0}$
LCs1 class	$\begin{aligned} C_{\text {LCs } 1}= & \left\{R_{\text {LCs } 1} \mid R_{\text {LCs } 1}=R_{\text {LCd } 1} \text { if } N A_{s}\right. \\ & \left.R_{\text {LCs } 1}=\left[R_{\text {LCs } 0} \text { or } R_{L C s 0}-1\right] \quad \text { if } \overline{\mathrm{NA}}\right\} \end{aligned}$	$\mathrm{R}_{\text {Rd1 }}$

Similarly, NA and $\overline{\mathrm{NA}}$ represent the numerator conditions.
The first classification of sets is based on the number of ver. tices. The minimum number is determined by the minimum rank of G_{0}.

$$
V \geqslant 1+\max (m, n)
$$

There is, of course, no theoretical upper limit to the number Vo Within each vertex class a division of function forms based on the integer q is made. This q corresponds to the exponent in the determinant form of the ZDP and can have any positive or negative value. The paraw meters $1, k, p$ are determined by the q class, that is, they are the same for all networks in one set of the q class.

The LdO class designates the rank of $G_{\text {LdO }}$. It can never be zero and by Equation 2.4.4, not less than q 。 Since $G_{\text {LdO }}$ is formed by deleting edges from G_{0}, the rank $R_{\text {LdO }}$ is not greater than R_{0} g previously determined by the vertex class. The rank $R_{\text {Cs0 }}$ is deter. mined from Equation 2.4.4. The Ld1 and capacitor classes are de. veloped in a similar fashion.

The LdO class is formulated to designate the sets resulting from all possible combinations of the $G_{\text {LdO }}$ and $G_{C d O}$ graphs having the same rank. As these may contain differing numbers of vertices, there are in general many possible $G_{\text {LCdO }}$ graphs. This classification procedure is similarly carried out for the other LC graphs. In each case the rank of a resistor graph is determined.

The subsets are further divided by the numbers of elements. Sev. eral relations are involved here. For example, if N_{L}, N_{C}, N_{R} rep. resent the number of inductors, capacitors, and resistors, the definis tion of rank (2.3.10) yields

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{L}} \geqslant \mathrm{R}_{\mathrm{Ld} 0} \\
& \mathrm{~N}_{\mathrm{C}} \geqslant \mathrm{R}_{\mathrm{CdO}} \\
& \mathrm{~N}_{\mathrm{R}} \geqslant \mathrm{R}_{\mathrm{Rd} 0}
\end{aligned}
$$

Other parameters may be chosen to distinguish the network class es. Hence, a network designer could develop a network classification based on the topological properties of particular interest to kim.

CHAPTER III

REALIZATION OF A SPECIFIED

DRIVING POINT IMPEDANCE

3.1 Relation of the Network Form and Element Values. The term

 realization refers to the process of determining the element values of 2 network to satisfy a prescribed driving-point impedance. According to the discussion in Section 1.3, the first concern of the network designer is this. Can the network form realize a speaified drivingpoint impedance? It is assumed here that the network topology satis. fies the conditions specified in the tables in. Chapter II. Now the actual coefficient values of the ZDP are considered and the synthesis procedure must test the network form for realizability.If the network form will realize the 2 DP , the next step is to dew termine the element values. When the realization test fails, another network form satisfying the specified topological properties is soughto More than one set of element values may realize the specified 2DP。 The ideal synthesis procedure would make all such values available to the designer.

As was previously stated, Bellert (3) and Calahan (4) suggest iteration methods to realize the ZDP. Thus, the realizability test is combined with the determination of element values. Calahan's computer program utilizes the NewtonaRaphson method of iteration.

There are several difficulties with this solution technique。 It is not actually a test for realization since, if the iteration fails to con verge, the designer is not assured that the network will not satisfy the ZDP specified. Initial estimates of the element values must be entered; thus an a priori knowledge of the approximato solution is required. Only one solution set is produced and a second set if $_{9}$ one is known to existy may require a new iteration on a second initial estimate of the element values. The author's experience with such an iteration method indicates that the process frequently fails to cone verge. This is especially true of the nonastandard network forms, i. e. those not composed of ladder, series, or parallel elements.

The author has also investigated realization by a transformation technique. In this approach, the desired network form is transformed to one of the standard or canonical forms, which is then realized by the standard techniques. The inverse transformation would then be applied to obtain the realization in the desired topology. Guillemin (15) has obtained a method for transforming networks with two kinds of elements, and in which the values are known. to an equivalent canonical form, the Foster networks. In general, however, the transformations are not known. Such a transformation and its inverse are not unique and thus probably are difficult to obtain.

A method of direct solution for the element values involving neio ther iteration nor transformation is presented in Chapter IV.
3.2 Solution of the Tree sum Equations. The network form and the ZDP are explicitly related by the sum of tree admittance products defined by Equations 2.4.1 and 2.4.2. To illustrate this, the network
shown in Figure 3.2 .1 is considered.

Figure 3.2.1。 Network Illustrating Treensum Functions

A computer program for listing all of the trees of such a network has been developed (10). The trees of G_{0} and G_{1} are listed in Tables 3.2 .1 and 3.2.2.

TABLE 3.2.1
TREES OF G G_{0} IN FIGURE 3.2 .1

$$
\begin{array}{lll}
\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{4} & \mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{5} \mathrm{y}_{6} & \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{4} \mathrm{y}_{6} \\
\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{5} & \mathrm{y}_{1} \mathrm{y}_{3} \mathrm{y}_{4} \mathrm{y}_{5} & \mathrm{y}_{1} \mathrm{y}_{4} \mathrm{y}_{5} \mathrm{y}_{6} \\
\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{6} & \mathrm{y}_{1} \mathrm{y}_{3} \mathrm{y}_{5} \mathrm{y}_{6} & \mathrm{y}_{2} \mathrm{y}_{4} \mathrm{y}_{5} \mathrm{y}_{6} \\
\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{4} \mathrm{y}_{6} & \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{4} \mathrm{y}_{5} & \mathrm{y}_{3} \mathrm{y}_{4} \mathrm{y}_{5} \mathrm{y}_{6}
\end{array}
$$

TABLE 3.2.2
TREES OF G_{\perp} IN FIGURE 3.2 .1

$$
\begin{array}{lll}
\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} & \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{5} & \mathrm{y}_{2} \mathrm{y}_{4} \mathrm{y}_{6} \\
\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{4} & \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{6} & \mathrm{y}_{2} \mathrm{y}_{5} \mathrm{y}_{6} \\
\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{5} & \mathrm{y}_{1} \mathrm{y}_{4} \mathrm{y}_{5} & \mathrm{y}_{3} \mathrm{y}_{5} \mathrm{y}_{6} \\
\mathrm{y}_{1} \mathrm{y}_{3} \mathrm{y}_{5} & \mathrm{y}_{2} \mathrm{y}_{4} \mathrm{y}_{5} & \mathrm{y}_{4} \mathrm{y}_{5} \mathrm{y}_{6}
\end{array}
$$

Substituting the admittance of each element, the determinants are

$$
\begin{aligned}
\Delta & =\left(\frac{1}{R_{1} R_{2} L_{1} I_{2}}\right) s^{-2}+\left(\frac{C_{2}}{R_{1} I_{1} I_{2}}+\frac{C_{1}}{R_{2} I_{1} I_{2}}+\frac{C_{2}}{R_{2} I_{1} I_{2}}\right) s^{-1} \\
& +\frac{C_{1}}{R_{1} R_{2} I_{1}}+\frac{C_{2}}{R_{1} R_{2} L_{1}}+\frac{C_{1}}{R_{1} R_{2} L_{2}}+\frac{C_{1} C_{2}}{L_{1} I_{2}} \\
& +\left(\frac{C_{1} C_{2}}{R_{1} L_{2}}+\frac{C_{1} C_{2}}{R_{2} L_{2}}\right) s+\left(\frac{C_{1} C_{2}}{R_{1} R_{2}}\right) s^{2}
\end{aligned}
$$

$$
\begin{aligned}
\triangle_{11} & =\left(\frac{C_{1} C_{2}}{R_{2}}\right) s^{2}+\left(\frac{C_{1} C_{2}}{L_{1}}+\frac{C_{1} C_{2}}{L_{2}}\right) s \\
& +\frac{C_{1}}{R_{1} L_{1}}+\frac{C_{1}}{R_{2} L_{1}}+\frac{C_{2}}{R_{2} L_{1}}+\frac{C_{1}}{R_{1} L_{2}} \\
& +\left(\frac{1}{R_{1} R_{2} I_{1}}+\frac{C_{1}}{L_{1} L_{2}}+\frac{C_{2}}{L_{1} I_{2}}\right) s^{-1}+\left(\frac{1}{R_{1} I_{1} I_{2}}\right) s^{-2}
\end{aligned}
$$

Thus the driving point impedance has the form

$$
z_{d p}=\frac{a_{4} s^{2}+a_{3} s+a_{2}+a_{1} s^{-1}+a_{0} s^{-2}}{b_{4} s^{2}+b_{3} s+b_{2}+b_{1} s^{-1}+b_{0} s^{-2}}
$$

Now equating corresponding coefficients in the 2DP and determinant expressions and substituting the x 's for the 'element value' part of the admittance, the following set of equations is obtained.

$$
\begin{aligned}
& a_{4}=x_{3} x_{5} x_{6} \\
& a_{3}=x_{1} x_{3} x_{5}+x_{2} x_{5} x_{6}+x_{4} x_{5} x_{6} \\
& a_{2}=x_{1} x_{2} x_{5}+x_{2} x_{3} x_{5}+x_{2} x_{3} x_{6}+x_{1} x_{4} x_{5} \\
& a_{1}=x_{1} x_{2} x_{3}+x_{2} x_{4} x_{5}+x_{2} x_{4} x_{6} \\
& a_{0}=x_{1} x_{2} x_{4} \\
& b_{4}=x_{1} x_{3} x_{5} x_{6} \\
& b_{3}=x_{1} x_{4} x_{5} x_{6}+x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{5} x_{6} \\
& b_{2}=x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{3} x_{6}+x_{1} x_{3} x_{4} x_{5}+x_{2} x_{4} x_{5} x_{6} \\
& b_{1}=x_{1} x_{2} x_{4} x_{6}+x_{2} x_{3} x_{4} x_{5}+x_{2} x_{3} x_{4} x_{6} \\
& b_{0}=x_{1} x_{2} x_{3} x_{4}
\end{aligned}
$$

The realization and element value problem is solved by finding a solution to this set of equations. If the solution is composed of real
positive values, the ZDP is realizable in the specified network form. These equations will be called the tree-sum equations and some of their properties are considered below. The admittance of element i will be denoted by y_{i}, while the "element value" part of the admits tance is designated X_{i}. For example, the ${ }^{\text {e element value }}$ part of y_{5} is C_{1} and is denoted by x_{5}. Having removed the complex frem quency variable s, x_{i} must be real and positive for a network of passive elements.

The treemsum equations may be arranged in the form of 2 first degree polynomial in any one variable. Each equation is linear in each of the variables. Hence, the term multilinear is sometimes used to designate equations of this type.

The treeasum portion (right-hand side in the example) of. each equation is a homogeneous function. In particular, the $\mathbf{a}_{\mathbf{i}}$ functions are homogeneous of degree $V_{\infty} 2$ while the b_{i} functions are homogeno eous of degree $V=1$, where V is the number of vertices in the network. These functions are continuous and have partial derivatives of all orders.

The number M of treessum equations associated with 2 network is determined by the six attributes of the normal 2DP form. Table 3.2.3 illustrates this relation in terms of the $2 D P$ class and the attributes m and $n 。 N_{n}$ and N_{d} denote the number of numerator and denomina tor equations, respectively, while M is the total. They are deter mined by counting the number of coefficients in the corresponding normal form of the ZDP.

The number E of variables in the treessum equations (the number of elements in the network) is a more difficult subject. A general

TABLE 3.2 .3
NUMBER OF TREE-SUM EQUATIONS

Subclass	Class 1	Class 2	Class 3
0.0	$\begin{aligned} & N_{n}=m+1 \\ & N_{d}=n+1 \\ & M=m+n+2 \end{aligned}$	$\begin{aligned} & N_{n}=m \\ & N_{d}=n+1 \\ & M=m+n+1 \end{aligned}$	$\begin{aligned} & N_{n}=m+1 \\ & N_{d}=n \\ & M=m+n+1 \end{aligned}$
0.1	$\begin{aligned} & N_{n}=m+1 \\ & N_{d}=\frac{n}{2}+1 \\ & M=m+\frac{n}{2}+2 \end{aligned}$	$\begin{aligned} & N_{n}=m \\ & N_{d}=\frac{n}{2}+1 \\ & M=m+\frac{n}{2}+1 \end{aligned}$	$\begin{aligned} & N_{n}=m \\ & N_{d}=\frac{n+1}{2} \\ & M=m+\frac{n+1}{2} \end{aligned}$
0.2	$\begin{aligned} & N_{n}=\frac{m}{2}+1 \\ & N_{d}=n+1 \\ & M=\frac{m}{2}+n+2 \end{aligned}$	$\begin{aligned} & N_{n}=\frac{m+1}{2} \\ & N_{d}=n+1 \\ & M=\frac{m+1}{2}+n+1 \end{aligned}$	$\begin{aligned} & N_{n}=\frac{m}{2}+1 \\ & N_{d}=n \\ & M=\frac{m}{2}+n+1 \end{aligned}$
0.3	$\begin{aligned} & N_{n}=\frac{m}{2}+1 \\ & N_{d}=\frac{n}{2}+1 \\ & M=\frac{m}{2}+\frac{n}{2}+2 \end{aligned}$	$\begin{aligned} & N_{n}=\frac{m+1}{2} \\ & N_{d}=\frac{n}{2}+1 \\ & M=\frac{m+1}{2}+\frac{n}{2}+1 \end{aligned}$	$\begin{aligned} & N_{n}=\frac{m}{2}+1 \\ & N_{d}=\frac{n+1}{2} \\ & M=\frac{m}{2}+\frac{n+1}{2}+1 \end{aligned}$

statement can be made about the minimum number. As there must be at Least one tree in a connected network and this tree consists of $V_{a} 1$ elements, it is known that

$$
E \geqslant V-1
$$

The relation between M and E is of special interest here, as In linear algebra. The four cases to be discussed are:
(a) $M<E$
(b) $M=E$
(c) $M=E+1$
(d) $\mathrm{M}>\mathrm{E}+1$

Figure 3.2 .2 shows a network and its driving-point impedance form for case (a).

$$
E=8
$$

$$
Z_{d p}=\frac{a_{2} s^{2}+a_{1} s+a_{0}}{b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}} \quad M=7
$$

Figure 3.2.2. Network Illustrating Case (a)

It should be pointed out that there is a large number of trivial exam. ples of this case, since any number of elements of the same type could be connected in series or parallel, each one being treated as a separ. ate element.

An example of case (b) is given in Figure 3.2.3. This will later be called the definite coefficient case, as the coefficients of the ZDP are either realized exactly as specified or not at all.

Figure 3.2.3. Network Illustrating Case (b)

Case (c) is given special attention here because of its importance in classical synthesis techniques. An example is shown in Figure 3.2.4. This network is an $\mathrm{R} \sim \mathrm{C}$ ladder which would be obtained by a continued fraction expansion synthesis procedure. The element values for such a network having been obtained by a classical method, treessum equations would not in general be satisfied. That is, the coefficients of the ZDP are not precisely realized. Rather, each coefficient in the set is
multiplied by a constant. If the constant is moved to the right hand side of the equations and represented by x_{0}, the coefficients become

$$
\begin{aligned}
& a_{0}=x_{0} x_{3} x_{4} \\
& a_{1}=x_{0} x_{1} x_{4}+x_{0} x_{2} x_{3}+x_{0} x_{2} x_{4} \\
& a_{2}=x_{0} x_{1} x_{2} \\
& b_{1}=x_{0} x_{1} x_{3} x_{4}+x_{0} x_{2} x_{3} x_{4} \\
& b_{2}=x_{0} x_{1} x_{2} x_{3}
\end{aligned}
$$

By introducing the auxiliary multiplier the set now contains five equations in five variables and corresponds to case (b). It is shown in classical synthesis texts (9) that the minimum number of elements required to realize a 2 DP with a two-element-kind network is one less than the number of coefficients and that canonical networks always have the minimum number of elements. Thus case (c) includes a large class of problems.

Figure 3.2.4. Network Illustrating Case (c)

Not all networks in case (c) are canonical, however. One such example is shown in Figure 3.2.5.

$$
Z_{d p}=\frac{a_{2} s^{2}+a_{1} s+a_{0}^{\prime}}{b_{2} s^{2}+b_{1} s+b_{0}} \quad M=6
$$

Figure 3.2.5. A Second Example of Case (c)

An example of the last condition, case (d), is Figure 3.2.6. Here, as in case (c), an arbitrary multiplier could also be introduced.

Figure 3.2.6. Network Illustrating Case (d)

It will be shown in Chapter IV that a solution for the treessum equations can be obtained for each case above. Examples will be pre. sented.
3.3 Non-unique Solutions of the Treensum Equations. While the elimination procedure to be presented will yield all of the solution sets, some special cases are now considered. These are applications of the theory of substitutions as described by Netto (16). The form of an equation is usually altered by an interchange of the variables. The process of changing the variables is known as substitution, a subject of mathematical interest since the early 1700's. There are some cases, however, in which a substitution leaves the equation invariant or unchanged. These are of particular interest here. The network shown in Figure 3.3 .1 is used as an example.

Figure 3.3.1. Network Illustrating Substitution

$$
\begin{aligned}
& a_{0}=x_{1}+x_{3} \\
& a_{1}=x_{2}+x_{4} \\
& b_{0}=x_{1} x_{3} \\
& b_{1}=x_{1} x_{4}+x_{2} x_{3} \\
& b_{2}=x_{2} x_{4}
\end{aligned}
$$

They are invariant with respect to the substitution of x_{3} for x_{1} and x_{4} for x_{2}. Such 2 substitution is clearly a result of rem labeling the elements in the network. More complicated equations, however, do not yield to inspection. An algorithm for finding all substitutions that leave the treensum equations invariant could be programmed for the computer.

CHAPTER IV

SOLUTION OF TREEmSUM EQUATIONS
BY ELIMINATION
4. 1 Background. Electrical engineers have determined the general solution to a number of circuit design problems. For example, the equations and the procedure for the design of a cathode fol lower amplifier are well known. To obtain such a design technique, the engineer writes the equations or relations between the variables of the problem and then manipulates them by trial and error until the elements to be determined are explicit in terms of the specified quantities. In the driving-point impedance synthesis problem dise cussed here the treemsum equations relate the specified 2DP coeffic cients to the elements of the network, and the elimination procedure to be described is a formal method for solving these equations.

The procedure is illustrated for the elementary circuit in Figure 4.1 .1, and the concept of elimination is introduced. The ZDP is represented by the form

$$
z_{d p}=\frac{a_{1} s+a_{0}}{b_{1} s+b_{0}}
$$

4.1 .1

Figure 4.1.1. Elementary Circuit to Illustrate Elimination
and the treeasum equations are

$$
\begin{array}{ll}
a_{0}=x_{0} x_{1}+x_{0} x_{2} & 4.1 .2 \\
a_{1}=x_{0} x_{3} & 4.1 .3 \\
b_{0}=x_{0} x_{1} x_{2} & 4.1 .4 \\
b_{1}=x_{0} x_{1} x_{3} & 4.1 .5
\end{array}
$$

The auxiliary variable x_{0} is eliminated by solving 4.1 .3 and substithting into the other equations. The reduced set of three equations in three unknown is

$$
\begin{array}{cl}
-a_{0} x_{3}+a_{1} x_{1}+a_{1} x_{2}=0 & 4.1 .6 \\
-b_{0} x_{3}+a_{1} x_{1} x_{2}=0 & 4.1 .7 \\
-b_{1}+x_{1} a_{1}=0 & 4.1 .8
\end{array}
$$

Equation 4.1 .8 is now solved for x_{1} and this variable is eliminated from the remaining two equations.

$$
\begin{array}{cc}
-a_{0} x_{3}+b_{1}+a_{1} x_{2}=0 & 4.1 .9 \\
-b_{0} x_{3}+b_{1} x_{2}=0 & 4.1 .10
\end{array}
$$

Upon substituting x_{2} from Equation 4.1.10 into 4.1.9, an equation in the variable x_{3} is obtained.

$$
-b_{1}^{2}+a_{0} b_{1} x_{3}-a_{1} b_{0} x_{3}=0 \quad 4.1 .11
$$

By eliminating one variable in each step, four sets of equations result. Note that the last equation contains a single variable x_{3}, while the next to the last set contains x_{2} and x_{3}, etc. Since Equation 4.1.11 was obtained by solving 4.1 .10 for x_{2} and substituting into 4.1 .9 , the same value of x_{2} will satisfy both equations. A correso ponding statement is true for x_{1} and x_{0} 。

If the ZDP to be realized is specified as

$$
z_{d p}=\frac{3 s+7}{s+2}
$$

Equation 4.1 .11 becomes

$$
\begin{gathered}
1=7 x_{3}-6 x_{3} \\
x_{3}=1.0
\end{gathered}
$$

and

Now substituting into the other equations, the other element values are found.

$$
\begin{aligned}
& x_{2}=2.0 \\
& x_{1}=0.333 \\
& x_{0}=3.0
\end{aligned}
$$

This procedure is quite general. Each equation in the reduced set is called an eliminant of the previous set.
4. 2 The Eliminazt. The eliminant was studied by mathematicians La the early 1700°. Euler first described the eliminant in terms of symetric functions in his Berion Memoirs in 1748. This is foundation Gor the discussion to follow. Both Berout and Eller developed easier nothods for detemining the eliminant and sone of its properties. Salmon (17) has published a review of this earily work which can be consulted for more historic detail.

Befinition 4.2.1 (Eliminant): The eliminant of two equations is a furction F such thet $2 f F=0$, the two oquations have at least. one common root.

The term resultant is used to mean the same thing as eliminant. It is always possible to obtain the eliminant of two polynomials. Whis hs shown by considering the frollowing two equations.

$$
\begin{array}{ll}
G(x)=a_{n} x^{n}+a_{n-1} x^{n+1}+\ldots a_{0}=0 & 4.2 .1 \\
H(x)=b_{m} x^{m}+a_{m-1} x^{n-1}+\ldots b_{0}=0 & 4.2 .2
\end{array}
$$

Wt will be assumed throughont thi discussion that the coefficients may be funotions of other variables. $G(x)$ is identrifed as the tool equation and its n poots denoted by $x_{1}, x_{2}, \ldots x_{n}$. If at least wo of these roots, for example x_{i}, wolves $H(x)$,

$$
H\left(x_{1}\right)=0
$$

The product

$$
F=H\left(x_{1}\right) H\left(x_{2}\right) \ldots H\left(x_{n}\right)=0 \quad 4.2 .3
$$

must also be zero. In fact, by definition, the product is zero only if at least one x_{i} is a root of $H(x)$ 。

This product is a symmetric polynomial of the variables x_{i}, $x_{2}, \ldots x_{n}$ since the form of the equation is not changed by inter changing any two variables (Theorem A.1.1). A brief discussion of symmetric polynomials is presented in Appendix A. Note that the funco tion F is a polynomial in the coefficients of $H(x)$ and the roots. According to the fundamental theorem of symmetric polynomials (A.3.1), this equation can be expressed as a polynomial in the elementary symmetric functions. However, these are ratios of coefficients of the polynomial with roots $x_{1}, x_{2}, \ldots x_{n}$. Thus F is a polynomial of the coefficients of $G(x)$ and $H(x)$ and is by definition the eliminant.

The eliminant can be cornputed for two equations using the prino ciples outlined above and in the appendix. If m and n are greater than 2 , however, the computation is very tedious. Sylvester has dea scribed a method to obtain the eliminant from a determinant. The avthor has implemented this procedure on a digital computer and used it to solve the examples to follow.
4.3 Solving a System of Polynomíils by Elimination. A treesum equation is a special type of polynomial aquation in n variables. This discussion will deal with a system of polynomial equations.

Definition 4.3.1 (PCImomial): A polynomial in n variables is deo fined to be an equation of the form

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\sum_{j=1}^{N} c_{j} \phi_{j}
$$

where C_{j} is a constant (real or complex) and ϕ_{j} is the product

$$
\varnothing_{j}=\prod_{k=1}^{M_{j}} x_{\beta_{k}}^{\alpha_{k}}
$$

The elimination procedure is now applied to a system of m equam tions in n unknowns to determine a reduced system of equations. A tool equation is selected from the m equations. The equation of low est non-zero degree in the variable to be eliminated, called the Pobjecte variable, should be chosen to allow the alculation to pro ceed with minimum efforto mol eliminants are now formed between the tool equation and each of the other mol equations. The eliminants are called the reduced systems.

Theorem 4.3.1: A redueed systern of equations in not variables is satisfied if and only if an "object" variable sclution to the system (if one exists) is a root of the tool equation.

Proof: By definition the eliminant is zero if and only if there is a common root between the tool equation and one of the remaining mol equations. Thus if a value of the objecte vareable is a solution to ouch of the equations, it must be a root of the tool equation. The theorem does not grarantee that axy or gll of the roots of the Eool equations $2 r e$ solutions; but if a solution exists, it is a root of the tool equatron.

Theorem 40 3.2: If the reduced systern is satisfied and the tool equa tion is of first degree in the robject vachable, it has one root and this root is a solution for the system.

Proof: Since the mol eliminants are all satisfied, a common root exists between the tool equation and each of the other equations in the originall set. But the tool equation has only one root. Thus it is a root of each equation in the system.

If the tool equation is of degree greater than one, each root is a possible solution and is checked by substituting into each of the other equations of the seto If none of the roots satisfy $2 l l$ of the equations, the original set is inconsistento That is, no value of the ${ }^{\circ}$ object variable solves all of the equations. More than one root may satisfy them 211. Then the solution of the system is not unique. This condition is illustrated in a later section.

The foregoing discussion is now applied to find the complete soluo tion to set of equations. The gase in which n equations in n variables are to be solved is considered first.

$$
\begin{gathered}
P_{1_{9} 1}\left(x_{1}, x_{2,} \ldots x_{n}\right)=0 \\
P_{1_{9}, 2}\left(x_{1,} x_{2}, \ldots 0 x_{n}\right)=0 \\
0 \\
0 \\
P_{1_{9}, n}\left(x_{1}, x_{2,} \ldots 0 x_{n}\right)=0
\end{gathered}
$$

The vaxiable x_{1} is to be eliminted. A tool equation is seleated and the reduced system containing $n-1$ equations in $n-1$ variables is formed.

$$
\begin{gathered}
P_{2,1}\left(x_{2}, x_{3}, \ldots x_{n}\right)=0 \\
P_{2,2}\left(x_{2,}, x_{3}, \ldots x_{n}\right)=0 \\
0 \\
0 \\
P_{2, n-1}\left(x_{2,}, x_{3,} \ldots x_{n}\right)=0
\end{gathered}
$$

A reduced system is again determined and so on until a system of two equations in two unknowns is obtained.

$$
\begin{aligned}
& P_{n-1,1}\left(x_{n-10} x_{n}\right)=0 \\
& P_{n-1,2}\left(x_{n-1}, x_{n}\right)=0
\end{aligned}
$$

The last reduced system is a single polynomial in the unknown X_{n}.

$$
P_{n_{0} 1}\left(x_{n}\right)=0
$$

The roots of this equation are determined. Each one is a posa sible solution for the system. If the degree of the equation is k, there are potentially k or more solutions to the system. Each of the roots is substituted into the (no1)th system. Thus, each equation becomes a polynomial in the single variable x_{n-1}. The roots of the tool equation are calculated and checked in the other equations of the system. Those which satisfy it are paired with the corresponding x_{n} values to form a partial solution. The substitation now continues to the ($n-2$) th system and so on until the x_{1} values from the firste tool equation are obtained. This is a complete set of solutions, as can be reasoned from Theorem 40301 . In each case the m walues of x_{1} which satisfy the ioth system are joined with the values
$\left(x_{1+1}, x_{1+2}, \ldots x_{n}\right)$ to fomm partial solution. Note that there may be more than one set, $\left(x_{i+1}, x_{i+2}, \ldots x_{n}\right)$, and the number of partial solutions may be multiplied by the degree of the iath tool equation at each step. The Gauss reduation method for solving linearo systems of equations his apocial arse of this procedure.

If the number of varjables n is greater then the number of equations m, the solution is not wnique, This iss due to the factothe the lest reduced system (one equation) contans $n-m+1$ variables. For exmple, a system of five equatons in eight variables would hove the variable and equation count shown in Teble 4.3.1.

TABLE 4. 3.1
EQUATION SETS FOR 8 VARIABLES
AND 5 EQUATIONS

Equation set	Number of equations	Variables
1	5	8
2	4	7
3	3	6
4	2	5
5	1	4

Clearly nom of these variables can be assigned arbitmary values and the remaining variable determined from the roots of the last polynow mial. The remaining mol variables are determined by substitating back into the reduced sets of equations as in tro previous case.

The remaining case to be considered is $m>n$. A reduction prom cess proceeds as in the previous cases until all n variables are eliminated. The last reduced set contains man equations which must be identically zero if the system is consistent (Theorem 4.3.1). If a solution exists, it is obtained by solving for the variabie x_{n} in the $(m-n+1)$ th set of equations and substituting into successive sets as previously described.

Draring the process of eliminating one variable from a system of equations, one or more other variables may be eliminated. This implies that an arbitrary value may be assigned to these when solving for the 'object' variable in the tool equation.

This process of solving sets of polynomial equations is superior to iteration methods in that no estimate of the solution is required to start the procedure, and that all solutions are obtained ore in the case of $\mathrm{m}<\mathrm{n}$, are placed in evidence. A test for consistency is an autow matic part of the process.
4.4 Example. Several examples are now presented to illustrate the elimination method for solving the treecsum equations of a network. The sets of equations associated with the solution are presented in Appendix B. They are wrotten in a form suitdble for computer procesco sing. Each equation is understood to be a polynomial and thus equal to zero. Since the equations involve a number of multiplicetions, the product operator is not printed. It is understond to be present between two operands not otherwise connected by an operator. The astexisk denotes exponentiation. In each equation terms of like powers of the object variable are collected, enclosed by parentheses, and
printed on the line immediately following the variable and its power. Each polynomial is delimited by the words BEGIN and END。 An example illustrating case (a) of Section 3.2 is shown in Figure 4.4.1. This is a nonecanonical form of six elements, having 2 drivingepoint impedance of the form

$$
z_{d p}=\frac{a_{1} s+a_{0}}{b_{2} s^{2}+b_{1} s+b_{0}}
$$

Figure 4.4.1. Network Form for Example 1

The G_{0} and G_{1} graphs of this network and their tree lists are shown in Figure 4.4.2.

$$
\begin{aligned}
& \text { Graph } G_{0} \\
& y_{1} y_{2} y_{4} \\
& y_{1} y_{2} y_{5} \\
& y_{1} y_{2} y_{6} \\
& y_{1} y_{3} y_{4} \\
& y_{1}, y_{3} y_{5} \\
& y_{1} y_{3} y_{6} \\
& y_{2} y_{3} y_{4} \\
& y_{2} y_{3} y_{5} \\
& y_{2} y_{3} y_{6} \\
& y_{1} y_{4} y_{6} \\
& y_{1} y_{5} y_{6} \\
& y_{2} y_{4} y_{5} \\
& y_{3} y_{4} y_{5} \\
& y_{3} y_{4} y_{6} \\
& y_{4} y_{5} y_{6} \\
& y_{2} y_{5} y_{6}
\end{aligned}
$$

Figure 4.4.2. Graphs and Tree List for Example 1

Thus, representing the value of the inth element by X_{i}, the treem sum equations are

$$
\begin{aligned}
a_{0}= & x_{4} x_{6}+x_{5} x_{6} \\
a_{1}= & x_{2} x_{4}+x_{2} x_{5}+x_{2} x_{6}+x_{3} x_{4}+x_{3} x_{5}+x_{3} x_{6} \\
b_{0}= & x_{4} x_{5} x_{6} \\
b_{1}= & x_{1} x_{4} x_{6}+x_{1} x_{5} x_{6}+x_{2} x_{4} x_{5}+x_{2} x_{5} x_{6}+x_{3} x_{4} x_{5} \\
& +x_{3} x_{4} x_{6} \\
b_{2}= & x_{1} x_{2} x_{4}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{6}+x_{1} x_{3} x_{4}+x_{1} x_{3} x_{5} \\
& +x_{1} x_{3} x_{6}+x_{2} x_{3} x_{4}+x_{2} x_{3} x_{5}+x_{2} x_{3} x_{6}
\end{aligned}
$$

It is convenient to multiply each coefficient by the variable x_{0} as in the canonical case discussed in Section 3.2. Table B.1.1 shows the five treessum equations factored in the first object variable x_{0}. Equation 01.01 is chosen as the tool equation and the reduced system in Table B. 1.2 obtained. Note that two of these do not involve the second object variable x_{1}. Thus 02.03 is used as the tool equation to derive 03.03 from 02.04 , while 02.01 and 02.02 are factored in the third object variable x_{2} to obtain 03.01 and 03.02. In the next reo duction 03.01 does not contain x_{2} and is thus shifted to the reduced set without elimination。 03.02 is used as the tool and x_{2} eliminato ed in Equation 03.03. x_{4} is the object variable in the reduced set shown in Table B.1.4, and Equation 04.01 is the tool since it is a first degree equation in x_{4}. Either x_{4} or x_{5} must be eliminated in this step since no other variable appears in both equations. The single equation shown in Table Bo 1.5 contains three variables x_{3}, x_{5}, and x_{6} and terminates the reduction sequence.

The drivingopoint impedance to be realized is chosen as

$$
\mathrm{Z}_{\mathrm{dp}}=\frac{\mathrm{s}+171}{0.0433 \mathrm{~s}^{2}+8.42 \mathrm{~s}+163}
$$

Choosing 1.2 and 5.8 for the element value part of x_{5} and x_{6} respectively, Equation 05.01 in Table B. 1.5 is

$$
0.202410^{5} x_{3}^{2}-0.141610^{3} x_{3}+0.1219=0
$$

Its roots are

$$
\begin{aligned}
& 0.00100 \\
& 0.00599
\end{aligned}
$$

Since both are positive real numbers, there are potentially two realizable solutions for the network form. The tool equations are now solved for the remaining x^{9} s. The solutions are shown in Table 4.4.1.

TABLE 4.4.1
SOLUTIONS FOR EXAMPLE 1

Variable	Solution 1	Solution 2
x_{0}	0.19791	0.19791
x_{1}	0.03941	0.04235
x_{2}	0.01101	0.01601
x_{3}	0.00599	0.00100
x_{4}	4.63507	4.63507
x_{5}	1.20000	1.20000
x_{6}	5.80000	5.80000

Thus two networks with the specified form realize the ZDP. The element values are shown in Table 4.4.2. A different choice of x_{5} and x_{6} could yield a nonorealizable set of elements. Hence, proving that a specified ZDP cannot be realized by a particular network is more diffic cult when $M<E$ 。

TABLE 4.4 .2
ELEMENT VALUES FOR EXAMPLE 1

Element	Value 1	Value 2
C_{1}	0.03941 f	0.04235 f
C_{2}	0.01101 f	0.01601 f
C_{3}	0.00599 f	0.00100 f
R_{4}	0.21600Ω	0.21600Ω
R_{5}	0.83333Ω	0.83333Ω
R_{6}	0.17250Ω	0.17250Ω

As explained in Chapter III the same solution technique applies in both cases (b) and (c). This is illustrated by realization of the network form shown in Figure 4.4.3.

Figure 4.4.3. Network Form for Example 2

The graphs and tree lists for this network are presented in Figure 4.4.4.

$$
\text { Graph } G_{0}
$$

$$
y_{1} y_{2} y_{3}
$$

$$
\mathrm{y}_{1} \mathrm{y}_{2}
$$

$$
y_{1} y_{2} y_{4}
$$

$$
y_{1} y_{3}
$$

$$
y_{1} y_{3} y_{4}
$$

$$
y_{1} y_{5}
$$

$$
y_{1} y_{3} y_{5}
$$

$$
y_{2} y_{4}
$$

$$
y_{1} y_{4} y_{5}
$$

$$
y_{3} y_{4}
$$

$$
y_{2} y_{3} y_{4}
$$

$$
y_{4} y_{5}
$$

$$
y_{3} y_{4} y_{5}
$$

Figure 4.4.4. Graphs and Tree List for Example 2

The treeasum equations are

$$
\begin{aligned}
& a_{0}=x_{1} x_{2}+x_{1} x_{3} \\
& a_{1}=x_{1} x_{5}+x_{2} x_{4}+x_{3} x_{4} \\
& a_{2}=x_{4} x_{5} \\
& b_{0}=x_{1} x_{2} x_{3} \\
& b_{1}=x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{1} x_{3} x_{5}+x_{2} x_{3} x_{4} \\
& b_{2}=x_{1} x_{4} x_{5}+x_{3} x_{4} x_{5}
\end{aligned}
$$

An arbitrary specification of the coefficients could produce an
inconsistent system. Thus in accordance with the discussion in Section 3.3, each coefficient is multiplied by x_{0}. The system of equations factored in the first object variable x_{0} is shown in Table Bo 2. 1_{0} The next variable to be eliminated is x_{1}; Equation 02.03 is the tool equation. Since x_{4} is the variable of lowest degree in the system of equations in Table B.2.3, it is the ${ }^{0}$ objecte variable in this set。 x_{2} and x_{5} are eliminated in the next two sets of equations. The ZDP to be realized is chosen as

$$
Z_{d p}=\frac{2 s^{2}+9.55 s+6.2}{2.2 s^{2}+2.5 s+0.6}
$$

Substifuting the coefficient values, Equation 06.01 becomes

$$
\begin{gathered}
-0.762310^{6} x_{3}^{6}+0.120710^{7} x_{3}^{5}-0.479610^{6} x_{3}^{4} \\
+0.863910^{5} x_{3}{ }^{3}=0.807210^{4} x_{3}{ }^{2} \\
+0.383110^{3} x_{3}-7.3327=0
\end{gathered}
$$

The roots of this equation are

$$
\begin{aligned}
& 0.095=j 0.0066 \\
& 0.095+j 0.0066 \\
& 0.103-j 0.0043 \\
& 0.103+j 0.0043 \\
& 0.100 \\
& 1.097
\end{aligned}
$$

All are possible solutions but only the last two are positive real numbers and thus realizable by passive elements. Each of these latter
is substituted into Equations 05.02 and 05.01 to determine x_{5}. Both roots of Equation 05.01 are checked in 05.02 and only one is found to satisfy the set. Thus for $x_{3}=0.1$ and $1_{0} 97$ the solution for x_{5} is 4.0 and 0.3 , respectively. The other tool equations are $a 11$ first degree and the solution straightoforward. The two solutions are shown in Table 4.4.3.

TABLE 4.4 .3
SOLUTIONS FOR EXAMPLE 2

Variable	Solution 1	Solution 2
\mathbf{x}_{1}	1.00	0.003
\mathbf{x}_{2}	3.00	0.106
x_{3}	0.10	1.097
\mathbf{x}_{4}	0.25	0.004
\mathbf{x}_{5}	4.00	0.300

The element values for the network are easily obtained from the solu tion.

A network illustrating case (d) is now considered. The $2 D P$ iomm

$$
z_{d p}=\frac{a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}{b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}
$$

is realized by the network form shown in Figure 4.4 .5 . The G_{0} and G_{1} graphs and associated tree lists are shown in Figure 4.406 o

Figure 4.4.5. Network Form for Example 3

Figure 4.4.6. Graphs and Tree List for Example 3

The treessum equations are

$$
\begin{aligned}
& a_{0}=x_{1} x_{2}+x_{2} x_{3} \\
& a_{1}=x_{1} x_{3}+x_{2} x_{4}+x_{2} x_{5} \\
& a_{2}=x_{1} x_{4}+x_{3} x_{5} \\
& a_{3}=x_{4} x_{5} \\
& b_{0}=x_{1} x_{2} x_{3} \\
& b_{1}=x_{1} x_{2} x_{5}+x_{2} x_{3} x_{4} \\
& b_{2}=x_{1} x_{3} x_{4}+x_{1} x_{3} x_{5}+x_{2} x_{4} x_{5} \\
& b_{3}=x_{1} x_{4} x_{5}+x_{3} x_{4} x_{5}
\end{aligned}
$$

In this case there are eight equations and five variables. As diss cussed in Section 4.3, eliminating the five variables will yield a set of three equations in the coefficients which must be satisfied identically if the system is consistent. This means that the eight coefficients of the ZDP form cannot be specified independently. In this example the four denominator coefficients and a_{3} are specified and the others are left to be determined by the network form. By dom ing this, the possibility of specifying an inconsistent set of coefis cients is avoided.

The five equations to be solved are shown in table $\mathrm{B}_{0} 3.1$ explicit, in the first "object variable X_{1}. The elimination proceeds as in the previous examples.

The specified coefficients are now assigned values.

$$
\begin{aligned}
& a_{3}=6.0 \\
& b_{0}=7.5 \\
& b_{1}=30.0
\end{aligned}
$$

$$
\begin{aligned}
& b_{2}=37.5 \\
& b_{3}=15.0
\end{aligned}
$$

The first Equation 05.01 to be solved becomes

$$
\begin{aligned}
& +0.9112510^{8} x_{5}{ }^{10}-0.1822510^{7} x_{5}{ }^{9}+0.1032010^{8} x_{5}^{8} \\
& +0.2904610^{8} x_{5}{ }^{7}-0.5026010^{9} x_{5}^{6}+0.1925910^{10} x_{5}{ }^{5} \\
& -0.301 .5610^{10} x_{5}{ }^{4}+0.1045610^{10} x_{5}{ }^{3}+0.2229110^{10} x_{5}{ }^{2} \\
& -0.2362010^{10} x_{5}+0.7085910^{9}=0
\end{aligned}
$$

The ten roots of this equation are

$$
\begin{aligned}
& 0.62815=j 0.27444 \\
& 0.62815+j 0.27444 \\
& 8.02083-j 3.50436 \\
& 8.02083+j 3.50436 \\
& -0.93392 \\
& -6.42452 \\
& 1.89635 \\
& 2.00000 \\
& 3.16394 \\
& 3.00000
\end{aligned}
$$

Only the last four values can be realized by passive elements. Thus the other possible solutions are ignored. Each root to be considered is substituted into Equation 04,02 and a corresponding value for x_{4} determined. The second order Equation 03.02 was used as the tool in Table B.3.3. Its roots must be checked in Equation 03.01, and in each
case, one of the roots fails the testo The remaining $\mathrm{x}^{6} \mathrm{~s}$ are detero mined by direct solution of the tool equations. The four realizable solutions are shown in Table 4.4.4. The unspecified coefficients are calculated from the appropriate treewsum form and also displayed in this table.

This network form is now used to demonstrate the test for realizability. The ZDP shown below has a form which is realized by the network topology, and it is a positive real function.

$$
Z_{d p}=\frac{s^{3}+2 s^{2}+s+0.2}{s^{3}+5 s^{2}+9 s+5}
$$

To test the possibility of realizing the coefficients of this function by the network form, the four denominator coefficients and 2_{3} are substituted into Equation 05.01. All ten of the roots are found to be complex. Thus the specified ZDP eannot be realized by this network form.

TABLE 4.4 .4

SOLUTIONS FOR EXAMPLE 3

x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	a_{0}	a_{1}	a_{2}
1.896	3.164	1.170	(d.oes not satisfy 03.01)				
		1.012	4.979	1.487	12.449	26.706	6.626
2.000	3.000	1.250	(does not satisfy 03.01)				
		1.000	5.000	1.500	12.500	26.500	6.500
3.164	1.896	1.487	4.979	1.012	12.449	26.705	6.626
		1.329	(does not satisfy 03.01)				
3.000	2.000	1.500	5.000	1.000	12.500	26.500	6.500
		1.250	(does not satisfy 03.01)				

CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary. The subject of this thesis is to make the topoloo gical properties of the network one of the specifications for a sync thesis procedure. Experience has shown that there are realizability conditions on the topology just as there are on the coefficients of a network function. These conditions are known to be related to the form of the driving-point impedance function as well as the value of the coefficients. Thus two separate aspects of the topological syncheo sis of drivingepoint impedances are considered.

The relations between the form of the $2 D P$ and the topology are examined by considering two questions:
(a) What are the conditions relating the form of the driving point impedance and the network topology?
(b) How may these conditions be used in topological synthesis? The network topology is represented by the Iinear graph. As the trees of the graph are known to determine the form of the ZDP_{9} they are the foundation of the discussion. The ZDP form is characterized by six attributes, and the conditions relating the form of the $Z D P$ and the network topology are specified in terms of these attributes. Table 2.5.1 presents the conditions by classifying the network in terms of its attributes.

The relations in Table 2.5 .1 are ased to develop a classifioation of the uncountable number of networks realizing a specified function. Using Table 2.6 .1, the dosigner may detormine network forms realiming a specified ZDP form. This olassification is not unique and could be altered to include topological parameters of specific interesto

The relation between the value of the ZDP and the topology are studied by developing a procedure for answering the following questions:
(a) Can a specified notwork form realize a specified function value?
(b) What are the network element values? The treeesum equations contain the information soughto

A procedure for solving the treessum equations of any network is developed. It is shown that by process of elimination the value of each element in the network can be determined for a specified $2 D P$ value Several classes are considered and examples presented to illias. trate them.
5.2 Conclusionsa A procedure for synthesis oi a drovingopoint impedance with specific topological properties is discussed the metho od involves testing for realimabidty the network forms hawing the dec sired properties, and thus is basically ${ }^{0}$ cut and tryo proeadure。 This appears to be characteristic of the problem. The author con jectures that any test for realiwation will hnvolve solving the tree. sum equations, either directly or indirectly. since the form of the network must be known before the equations can be determined a topolo ogy must be assumed and tested.

Other network functions can be related to the network form by
treessum equations. Thus the realization technique described here can be readily extended.
5.3 Suggestions for Further Study and Development. The use of the table classifying all networks realizing a given 2DP is a subject for future study. In particular, the known relations between the ranks $R_{\text {Ld }}, R_{\text {Ls }}, R_{\text {Cd }}, R_{\text {Cs }}, R_{\text {LCd }}$ are unsatisfactory。An algorithm might be found for determining all of the threecelementakind networks having deleted and shorted graphs with specified rank; such an algorithm would be useful here, and would also be significant in the general theory of linear graphs.

The author has developed two computer programs for use in the elim= ination process. As these were to be used for solving the examples, they are elementary, but they have shown that such programs can be useo ful. A detailed study of the algorithm to determine efficient proceo dures and data structures would be challenging. The final step would be to implement 2 complete computer program for solving 2 system of polynomials. Such a program would be valuable in other fields of enco gineering and science. For example, equations of the type solved here occur in mechanical design problems.

The relation of the network forms and function forms for other types of network functions (transfer admittance, voltage gaing etco) is a subject for investigation. As these functions involve both the addo tion and subtraction of tree admittance productss the necessary and sufficient conditions developed here for the 2DP will not apply. Equac tions similar to the tree.sum equations have been developed for active networks. Thus a logical extension would be to the synthesis of this
class of networks.
Of particular interest is the possibility of realizing several specified functions by a single synthesis procedure. For example, using the elimination procedure described, equations relating the con efficients of the drivingopoint impedance, voltage gaing and output impedance of 2 network can be derived. Thus if a circuit designer wished to specify several functions to be realized, he could test a particular network form, then solve for the elenent values. Investigation of this topic, however, will require a sophisticated computer system to solve the equations.

The author is quite intrigued with the possibility of statisti. cal circuit design using the realization techniques described here. If a circuit designer can specify the distributions of the coofficients of a network function or some property from which these can be obtained, it may be possible to determine the distribution of the element values by a Monte Carlo method.

A SELECTED BIBLIOGRAPHY

1．Seshu，S．＂Topological Considerations in the Design of Driving－ Point Functions．＂IoRoEo Transactions on Circuit Theory Vol．CT－2．No． 4 （December，1955）3 356－367。

2．Onodera，R_{0}＂Topological Synthesis of Transfer－Admittance Matrices．＂ I．R．E．Transactions on Circuit Theory，Volo Cio7．No． 2 （June 1960） $112=120$ 。

3．Bellert，So＂Topological Analysis and Synthesis of Linear Systems．＂ Journal of the Franklin Institutes Vol． 274 ，No． 6 （December． 1962）．225－243．

4．Calahan，D．A．＂Computer Solution of the Network Realization Frobo lem．＂Proceedings of the Second Allerton Conference on Circuft and System Theory，（1964），175－193．

5．Hakimi，SoLo and W．Mayeda．＂On Coefficients of Folynomials in Network Functions＂IoRoE Transactions on Cireuit Theory， Vol．CIm 7，No． 1 （March．1960），40．．44．

6．Brown，D。Po and MoB．Reed．＂On the shaper of One－Pomty Droiving Functions．＂Journal of the Franklin Institute，Vol． 277. No． 6 （June， 1964 ） 566,573 ．

7．Hakimi，So L．＂Graphs with Two Kinds of Elementso＂Journall of the Franklin Institute，Vol． 270 ，No． 12 （December， 1950 ） 4510 467.

8．Seshu，So and M．B．Reed．Linear Graphs and Ellectrical Networks． Reading，Massachusettwo AdưsorsWes Iey，1961．

9．Weinberg，I Network Analysis and Synthesis．New York：McGraww Hill．1962。

10．Cummins，R。L。and $L_{\text {。 }}$ ．．Thomason。＂An Effictent Treewisiting Algorithmo＂presented at the Southwestern IoE．E．E．Conferences Dallas，Texas（April．1964）．

11．Minty，G。J。＂A Simple Algorithm for Listing All the Trees of a Graph．＂I．E．E．E．Transactions on Cipouit Theory，Vol．Gris， No． 1 （March，1965），120．

12．Cummins，Ro L_{0}＂Hamilton Circuits in Tree Graphso＂IoEoEoE。 Transactions on Circuit Theory，Vol．CT－13．No．I （March ${ }^{(1966)}$ ）58－65．

13．Percival，W．S．＂Solution of Passive Electrical Network by Means of Mathematical Trees．＂Journal of the Institute of Electrical Engineers（London），Vol．100，Part III（1953），143－150．

14．Maxwell，J．Go Electricity and Magnetismo Oxiord：Clarerdon Pross， 1892．

15．Guillemin，E．A．Synthesis of Passive Networks．New Yorks John Wiley，1957。

16．Netto，E．The Theory of Substitutions．New York：Chelsea，1964。
17．Salmon，G。D．Do Modern Higher Algebra．New Yoxk：Chelsea，1964．
18．Uspensky J J V 2 Theory of Equations New York：McGraw Hilin，1948．
19．Bocher，Mo Introduction to Higher Algebra．New York：Macmillan， 1938。

APPENDIX A

SYMMETRIC POLYNOMIALS

A. 1 Definition of a Symetric Polymomal. There are several

 excellent references on symmetric polynomials and symmetric functions, as this has been a subject of mathematical investagation since the 1700° s. Texts by Uspensky (18) and Bocher (19) are modern reviews of this work. The pertinent parts of the theory are discussed below.Definition A.1.1 (Symmetric Polynomials) A polysomial is suid to be symmetric in the variables $x_{10} X_{2} \ldots 0 X_{n}$ if it ins unchanged by overy substitution.

Thus the study of symmetric polynomids is a part of the general theory of substitutions. An easiex test for a symmetrie polynomid is desirable.

Theorem Ao1.1: A polynomial is symmetric if an interohange of every pair of variables leaves its form unchanged.

Proof: All substitutions can be obtwined from $\left(x_{4}, x_{2}, 00 x_{0}\right)$ by a sequence of interehanges of two rainables. Thus if grery interchange leaves the form unaltered, any substitution could be made。

A. 2 Special Symmetric Functions.

Definition A.2.1 (Sigma functions) The sigma function denoted by $\sum x_{1}^{\alpha_{1}} \quad x_{2}^{\alpha_{2}} \ldots x_{m}^{\alpha_{m}} \quad$ is the sum of the term $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{m}^{\alpha_{m}}$ and all similar terms.

For example, if there are four variables,

$$
\begin{aligned}
\sum x_{1} x_{2}^{2}= & x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{1} x_{4}^{2} \\
& x_{2} x_{1}^{2}+x_{2} x_{3}^{2}+x_{2} x_{4}^{2} \\
& x_{3} x_{1}^{2}+x_{3} x_{2}^{2}+x_{3} x_{4}^{2} \\
& x_{4} x_{1}^{2}+x_{4} x_{2}^{2}+x_{4} x_{3}^{2}
\end{aligned}
$$

As background for the fundamental theoremg the sigma functions are now related to a symmetric polynomial.

Theorem A.2.1: A symmetric polynomilis a linear combination of sigma functions.

Proof: Any typical term of the polynomial is considered. As the poly nomial is symmetric, all similar terms mast be present and preceded by the same constant. These may be replaced by the sigma function of the texm multiplied by the constant. Such a procedure is extenced to every term.

A second symmetric function is defined and related to the symmetric polynomial by the sigma function。

Definition A.2.2 (Sum of Powers) The sum of powers function S_{k} i.s defined by the equation

$$
s_{k}=\sum x_{1}^{k}
$$

Theorem A.2.2: A symmetric polynomial can be expressed as a polynomial in the sum of powers function S 。

Proof: It will be shown that the sigma functions can be expressed as a polynomial in S. This theorem is then proved utilizing its counterpart for sigma functions, Theorem A_{0} 2. $_{0}$.

The two functions of n variables

$$
\sum x_{1}^{\alpha} x_{2}^{A} \ldots x_{k}^{\alpha} \quad(k<n)
$$

and

$$
S_{\lambda}=\sum x_{1}^{\lambda}
$$

are multiplied together. The result is the symmetric form

$$
\begin{aligned}
S_{\lambda}\left\{\sum x_{1}^{\alpha} x_{2}^{\beta} \ldots x_{k}^{\alpha}\right\} & =c_{1} \sum x_{1}^{\alpha+\lambda} x_{2}^{\beta} \ldots x_{k}^{\alpha} \\
& +c_{2} \sum x_{1}^{\alpha} x_{2}^{\beta+\lambda} \ldots x_{k}^{\alpha} \\
& +\ldots c_{k} \sum x_{1}^{\alpha} x_{2}^{\beta} \ldots x_{k}^{\alpha+\lambda} \\
& +c_{k+1} \sum x_{1}^{\alpha} x_{2}^{\beta} \ldots x_{k}^{\alpha} x_{k+1}^{\alpha}
\end{aligned}
$$

The constants result from sums of terms and re positive integers. Rearranging the equation, a recurrence formula for sigma function of higher order is obtained.

$$
\begin{aligned}
& \leqslant x_{1}^{\alpha} x_{2}^{\beta} \ldots x_{k}^{\alpha} x_{k+1}^{\lambda}=\frac{1}{C_{k+1}}\left\{\left(\sum x_{1}^{\alpha} x_{2}^{\beta} \ldots x_{k}^{\alpha}\right) \circ s_{\lambda}\right. \\
& \quad C_{1} \leqslant x_{1}^{\alpha+\lambda} x_{2}^{\beta} \ldots x_{k}^{k}-C_{2} \sum x_{1}^{\alpha} x_{2}^{\beta+\lambda} \ldots x_{k}^{\alpha} \\
& \ldots c_{k} \sum x_{1}^{\alpha} x_{2}^{\beta} \ldots x_{k}^{\alpha+\lambda}
\end{aligned}
$$

Note that the lowest order sigma function, Σx_{1}^{α}, is by definition S_{α}. Thus by induction $2 l l$ sigma functions can be written as a polynom missal in. S.

The coefficients of a polynomial are symmetric functions of the roots, called elementary symmetric functions.

Definition $A_{0} 2.3$ (Elementary symmetric functions) The elementary sym metric function f_{k} of n variables is

$$
f_{k}=\sum x_{1} x_{2} \ldots x_{k}
$$

The nth order polynomial is represented by the product of its n factors.

$$
2_{n} x^{n}+2_{n \infty 1} x^{n_{\infty} 1}+\ldots 2_{0}=a_{n}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)
$$

When these factors are multiplied, the equation becomes

$$
\begin{aligned}
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{0} & = \\
a_{n}\left\{x^{n}-\left(x_{1}+x_{2}+\ldots x_{n}\right) x^{n_{\infty} 1}\right. & +\left(x_{1} x_{2}+x_{1} x_{3}+\ldots\right)^{n-2} \\
& \left.+\ldots 0(\infty 1)^{n} x_{1} x_{2} \ldots x_{n}\right\}
\end{aligned}
$$

and upon substituting the elementary functions

$$
\begin{aligned}
& a_{n} x^{n}+a_{n-1} x^{n_{\infty} 1}+\ldots a_{0}= \\
& \quad a_{n}\left\{x^{n}-f_{1} x^{n_{-1} 1}+f_{2} x^{n_{\infty} 2} \ldots \ldots(\infty 1)^{n} f_{n}\right\}
\end{aligned}
$$

Thus

$$
\begin{aligned}
f_{1} & =-\frac{a_{n-1}}{a_{n}} \\
f_{2} & =\frac{a_{n-1}}{a_{n}} \\
& \therefore \\
& \therefore \\
f_{n} & =\frac{a_{0}}{a_{n}}
\end{aligned}
$$

A. 2.1

A. 3 Fundamental Theorem of Symmetric Polynomials.

Theorem A.3.1: A symmetric polynomial can be expressed as a polynomial in the elementary symetric functions.

Proof: It will be shown that the sums of powers function S_{k} can be written as a polynomial in the elementary symmetric functions. The theorem, theng. follows directily from Theorem $A_{0} 2.20$

A polynomial

$$
G=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)
$$

of $n+1$ variables is defferentiated with respect to x and red arranged in the form

$$
\frac{\partial G}{\partial x}=\frac{G}{\left(x-x_{1}\right)}+\frac{G}{\left(x-x_{2}\right)}+00 \frac{G}{\left(x-x_{Q}\right)} \quad \text { A. } 301
$$

G is now written in elementary function form

$$
G=x^{n} \ldots f_{1} x^{n-1}+f_{2} x^{n-2} \ldots \ldots f_{n}
$$

and divided by $\left(x-x_{i}\right)$ to obtain

$$
\frac{G}{\left(x \infty x_{i}\right)}=x^{n_{\infty} 1}+\left(x_{i}-f_{1}\right) x^{n_{-2}}+\left(x_{i}^{2}-f_{1} x_{i}+f_{2}\right) x^{n_{m} 3}+\ldots 0 A_{0} 3_{0} 2
$$

Differentiation of the elementary function form yields

$$
\begin{equation*}
\frac{\partial G}{\partial X}=n x^{n-1}-(n-1) f_{1} x^{n-2}+\ldots f_{n} \tag{A. 3.3}
\end{equation*}
$$

Now replacing each term in $A_{0} 3.1$ by an appropriate form of $A_{0} 3.2$
$\frac{\partial G}{\partial X}=n x^{n_{\infty} 1}+\left(S_{1}-n f_{1}\right) x^{n_{-2}}+\left(S_{2}-f_{1} S_{2}+n f_{2}\right) x^{n_{-3}}+\ldots \quad$ A. 3.4

Equating like terms in A. 3.3 and Ao 3.4 yields

$$
\begin{aligned}
& S_{1}=n f_{1}=-(n-1) f_{1} \\
& S_{2}=f_{1} S_{1}+n f_{2}=(n-2) f_{2} \\
& 0 \\
& \vdots \\
& S_{n=1}-f_{1} S_{n \infty 2}+f_{2} S_{n=3}-\ldots(-1)^{n=1} n_{n-1}=(-1)^{n-1} f_{n o 1}
\end{aligned}
$$

or upon rearranging

$$
\begin{aligned}
& S_{1}-f_{1}=0 \\
& S_{2}-f_{1} S_{1}+2 f_{2}=0 \\
& 0 \\
& \vdots \\
& S_{n-1}-f_{1} S_{n-2}+f_{2} S_{n-3}-\ldots 0(\infty 1)^{n-1}(n-1) f_{n-1}=0
\end{aligned}
$$

An additional general equation involving sums of powers greater than order $n-1$ is obtained by multiplying each identity

$$
x_{i}^{n}-f_{1} x_{i}^{n-1}+f_{2} x_{i}^{n-2} \Rightarrow \ldots(-1)^{n_{i}} f_{n}=0 \quad\left(i=1_{9} 2_{9} \ldots 0 n\right)
$$

by $x_{i}^{k=n}$ and adding. The resvilt, upon substituting S_{9} is

$$
S_{k}-f_{1} S_{k-1}+f_{2} S_{k-2}-0.0+(-1)^{n} S_{k \circ n}=0 \quad(k>n)
$$

The equations derived above are known as Newton ${ }^{\circ}$ s formulas. When they are solved, S is written as a polynomial in the elementary symmetric functions.

$$
\begin{aligned}
S_{1} & =f_{1} \\
S_{2} & =f_{ \pm}^{2}-2 f_{2} \\
& \circ \\
&
\end{aligned}
$$

Thus the theorem is proved.

The coefficients of the polynomial of elementary symmetric functions in the theorem above are rational integer functions of the coefe ficients of the original symmetric polymomial. This results from the fact that the multipliers of the sigma functions (Theorem Ao2.1) are coefficients of the symmetric polynomial.

APPENDIX B

EQUATIONS FOR EXAMPLES

```
B.1 EQUATIONS FOR EXAMPLE 1.
            TABLE B.l.l
                    EXAMPLE 1
                EQUATION SET 1
BEGIN (-AL)
E.ND
BEGIN 01.02
XO*1
(-AO)
XO*0
1+x2 x4 +x2 x5 +x2 x6 +x3 x4 +x3 x5 +x3 x6 )
END
BEGIN (1)
XO*1
(-BO)
XO*0
```



```
    +x2 x3 X5 +x2 x3 x6 1
END
```


table B.1.2

EXAMPLE 1
EQUATION SET 2

```
BEGIN 02.01
\therefore1*0
(+B2 X4 +B2 X5 -A1 X4 X5 )
END
BEGIN 02.02
Xl*0
(+B2 X2 X4 +B2 X2 X5 +B2 X2 X6 +B2 X3 X4 +B2 X3 X5 +B2 X3 X6 -AO X4 X5 X6)
END
BEGIN
X1*1
(-82 X4 X6 -82 X5 X6 )
x1*0
1+B1 X4 X5 X6 -B2 X2 X4 X5 -82 X2 X5 X6 -82 X3 X4 X5 -B2 X3 X4 X6 )
END
BEGIN
Xl*1
(-B2 x2 x4 - 82 x2 x5 - 82 x2 x6 -82 x3 x4 - B2 x3 x5 - B2 x3 x6 )
x1*0
(+80 X4 x5 x6 -82 x2 x3 X4 -82 x2 x3 x5 -82 x2 x3 x6 1
END
```

TABLE B.1.3
EXAMPLE 1
EQUATION SET 3

```
BEGIN
                                    03.01
X2*0
(+82 <4 +B2 <5 -A1 <4 <5 )
END
BEGIN
03.02
X2*1
(+82 \times4 +82 \times5 +82 X6 )
<2*0
```



```
IND
BEGIN
03.03
<2*2
```



```
<2*1
```



```
<2*0
1+B1 X3 X4*2 X5 X6 +B1 X3 X4 X5*2 X6 +B1 X3 X4 X5 X6*2 - B2 X3*2 X4*2 X5
```



```
    -B0 X4*2 X5 X6*2 -80 X4 X5*2 X6*2 1
END
```

TABLE B. 1.4
EXAMPLE 1
EQUATION SET 4

```
BEGIN
X4*1
(+82 -A1 X5 )
X4*0
1+82 <5 1
END
BEGIN
    04.02
X4*4
(-AO*2 X5*3 X6 +AO B1 X5*2 X6 -B2*2 X3*2 -BO B2 X5 X6 )
X4*3
1~4 B2*2 X 3*2 X5 +2 AO B2 X3 X5*2 X6 -AO*2 X5*4 X6 -2 AO*2 X5*3 X6*2
    +2 AO B1 X5*3 X6 +2 AO B1 X5*2 X6*2 -3 B2*2 X3*2 X6 -3 BO B2 X5*2 X6
    -2 B0 B2 X5 X6*2 )
X4*2
1-6 B2*2 X **2 X5*2 +4 AO B2 X3 X5*3 X6 +4 AO B2 X3 X5*2 X6*2 -AO*2 X5*4 X6*2
    -A0*2 X5*3 X6*3 +AO B1 X5*4 X6 +2 AO B1 X5*3 X6*2 +AO B1 X5*2 X6*3
    -9 B2*2 X3*2 X5 X6-3 BO B2 X5*3 X6-3 B2*2 X3*2 X6*2-4 BO B2 X5*2 X6*2
    -80 B2 X5 X6*3)
*4*1
```



```
    +4 A0 B2 X3 X5*3 X6*2 +2 AO B2 X3 X5*2 X6*3 -4 B2*2 X3*2 X5*3 -BO B2 X5*4 X6
    -2 ВО В2 X5*3 X6*2 - B2*2 X3*2 x6*3 - BO B2 X5*2 X6*3 ,
\4*0
8-82*2 X3*2 X5*4-3 B2*2 X3*2 X5*3 X6 -3 B2*2 X3*2 X5*2 X6*2
    -B2*2 X3*2 X5 X6*3 )
END
```

TABLE B. 1.5
EXAMPLE 1
EQUATION SET 5

B:2 EQUATIONS FOR EXAMPLE 2.

TABLE B. 2.1
EXAMPLE 2
EQUATION SET 1

```
XO.11 01.01
X0.1
(-AO)
XO'O
(+x1 x2 +x1 X3)
END
BEGIN 01.02
```

XOII
(-A1)
$\times 0.0$
$(+\times 1 \times 5+\times 4 \times 2+\times 4 \times 3)$
END
BEGIN 01.03
XO'1
(-A2)
$\times 0.0$
(+X4 X5)
END
BEGIN . 01.04
XO'1
(-BO)
$\times 010$
$(+\times 1 \times 2 \times 3)$
END
BEGIN
$\times 011$
01.05
(-81)
$\times 011$
$\left(+x 1 \times 2 \times 4+x 1 \times 3 \times 4+x 1 \times 3 \times 5+x_{2} \times 3 \times 4\right)$
! ND
BEGIN 01.06
XO'l
(-B2)
$\times 010$
$1+\times 1 \times 4 \times 5+\times 3 \times 4 \times 51$
END

TABLE B. 2.2

EXAMPLE 2 EQUATION SET 2

TABLE B. 2.3
EXAMPLE 2
EQUATION SET 5

```
BEGIN 03.01
X4'0
1+B0\times2 +BO <3-AO <2 <3 1
END
BEGIN 03.02
X4.0
```



```
END
BEGIN 03.03
X4'1
(+B0 X2 X5 +80 <3 X5)
<410
(+B0 <3 X5'2 -B1 X2 X3 X5 +A2 X2'2 X3'2)
END
BEGIN 03.04
<411
(+80 X5)
8.40
(-B2 X2 X3 +A2 X2 X3'2)
END
```

TABLE B. 2.4
EXAMPLE 2 EQUATION SET 4

```
BEGIN 04.01
X2!1
(+BO -AO X3 )
X2'0
(+B0 <3)
END
BEGIN 04.02
X2'2
1+A2 X3 1
<2!1
1-A1 X3 X5 +A2 X312 )
X2:0
(+B0 X','2)
END
BEGIN .04.03
X2!2
(-82 )
<2:1
1+B1 X5 -B2 X3 +A2 X3:2)
X2'0
(-80 <5.2)
END
```

TABLE B. 2.5
EXAMPLE 2
EQUATION SET 5

```
BEGIN M512 05,01
(+BO'2 -2 AO BO X3 +AO'2 X3'2 1
<511
1+A1 BO X3:2 -AO A1 X3:3)
X510
(+AO A? <314)
END
BEGIN 05.02
X512
(-BO'2 +2 AO BO X3-AO'2 X3.2)
<511
(-BO B1 X3 +AO B1 X312)
<510
(-A2 BO X313 -AO B2 X313 +AO A2 X314),
END
```

TABLE B. 2.6
EXAMPLE 2
EQUATION SET 6

```
BEGIN 06.01
X3'6
(+4 AO'6 A2'2 -AO'5 Al'2 A2)
\times3.5
(-20 AO:5 A2'2 BO -4 AO:6 A2 B2 +5 AO'4 A1:2 A2 BO +AO:5 A1:2 B2 )
X3'4
1+41 AO'4 A2,2 BO'2 +18 AO:5 A2 BO B2 -AO14 A1 A2 BO B1 -10 AO:3 A1'2 A2 BO'2
    -4 AO14 A1'2 BO B2 +AOI5 A2 B1:2 -AO!5 A1 B1 B2 +AO'6 B2:2 1
>.313
(-44 A)'3 A2'2 BO'3 -32 AO:4 A2 BO'2 B2 +4 AO'3 Al A2 BO'2 Bl
    +10 AOI2 A1'2 A2 BO:3 +6 AOI3 A1:2 BOI? R2 -4 AOI4 A2 BO BI'2
    +4 AO14 Al BO B1 B2 -4 AO,5 BO B2,2)
\times312
1+26 AO:2 A2:2 BO:4 +2B AO:3 A2 BO:3 B2 -6 AO:2 A1 A2 BO:3 B1
    -5 AO A1,2 A2 BO:4 -4 AO!2 Al'2 BOI3 B2 +6 AO!3. A2 BO!2 B1'2
    -6 AO13 AI BO'2 B1 B2 +6 AO'4 BO'2 B2!2 )
\times3.1
1-8 AO A2'2 BO'5 -12 AO'2 A2 BO'4 B2 +4 AO A1 A2 BO'4 Bl +Al'2 A2 BO'5
    +AO Al'2 BOI4 B2 -4 AO'2 A2 BO:3 Bl'2 +4 AOI2 Al BO'3 Bl B2
    -4 AO:3 BO'3 B2:2)
<310
1+AO A? BO14 B1:2 -Al A2 BO:5 B1 -AO Al BO'4 B1 B2 +A2'2 BO:6
    +2 AO A2 BOI5 B2 +AOI2 BOI4 B2I2 )
END
```


8. 3 EQUATIONS FOR EXAMPLE 3.

> TABLE B.3.1
> EXAMPLE 3
> EQUATION SET

TABLE B. 3.4

EXAMPLE 3 EQUATION SET 4

```
BEGIN
X4*8
1+80*3 X5*3 1
<4*7
(-3 BO*3 X5*4 )
x4*6
(+2,BO*3 X5*5 -2 BO*2 B1 B3 X5*2 )
X4*5
(+BO B1*2 B2 X5*3 +2 B0*3 X5*6)
X4*4
1+4 BO*2 B1 B3 X5*4 +B1*4 X5*4-2 BO B1*2 B2 X5*4 -3 B0*3 X5*7
    +BO Bl*2 B3*2 X5 +BO*2 B2 B3*2 X5 1
X4*3
1+BO B1*2 B2 X5*5 -Bl*3 B2 B3 X5*2 +B0*3 X5*8 +BO Bl*2 B3*2 X5*2
    -BO*2 B2 B3*2 X5*2 )
X4*2
(-Bl*3 B2 B3 X5*3 +BO Bl*2 B3*2 X5*3 -2 BO*2 Bl B3 X5*6 -B0*2 B2 B3*2 X5*3
    -BO B1 B2 B3*3 +BO*2 B3*4)
X4*1
(-2 BO B1 B2 B3*3 X5 +Bl*2 B2*2 B3*2 X5 +BO Bl*2 B3*2 X5*4 +BO*2 B2 B3*2 X5*4
    +2 BO*2 B3*4 X5.)
<4*0
(-BO Bl B2 B3*3 X5*2 +BO*2 83*4 X5*2 )
END
BEGIN 04.02
X4*1
(+X5)
<4*0
(-A3)
END
```


TABLE B.3.5

EXAMPLE 3
EQUATION SET 5

```
BEGIN
05.01
X5*10
1+BO*3 A3*3 1
x5*9
(-2 BO*2 B1 B3 A3*2)
X5*8
(-3 BO*3 A3*4 +BO B1*2 B3*2 A3 +B0*2 B2 B3*2 A3 )
X5*7
(+BO B1*2 B2 A3*3 -BO B1 B2 B3*3 +BO*2 B3*4)
X5*6
1+2 BO*3 A3*5 -B1*3 B2 B3 A3*2 +BO B1*2 B3*2 A3*2 -BO*2 B2 B3*2 A3*2 )
X5*5
1+4 BO*2 B1 B3 A3*4 +Bl*4 A3*4 -2 BO Bl*2 B2 A3*4 -2 BO Bl B2 B3*3 A3
+B1*2 B2*2 B3*2 A3 +2 BO*2 B3*4 A3)
X5*4
1+2 BO*3 A3*6 -Bl*3 B2 B3 A3*3 +BO Bl*2 B3*2 A3*3 -B0*2 B2 B3*2 A3*3 ।
<5*3
(+BO Bl*2 B2 A3*5 -B0 Bl B2 B3*3 A3*2 +B0*2 B3*4 A3*2 )
X5*2
(-3.BO*3 A3*7 +BO Bl*2 B3*2 A3*4 +BO*2 B2 B3*2 A3*4)
<5*1
(-2 BO*2 B1 B3 A3*6)
x5*0
(+BO*3 A3*B )
END
```

VITA
Louis Charles Thomason
Candidate for the Degree of
Doctor of Philosophy

Thesis: DRIVING-POINT IMPEDANCE SYNTHESIS WITH TOPOLOGICAL SPECIFICATIONS
Major Field: Electrical Engineering
Biographical:
Personal Data: Born on November 26, 1938, in Oklahoma City, Oklahoma, the son of Louis C . and Ada B. Thomason.

Education: Attended primary and secondary schools in Enid ${ }_{9}$ Oklahoma, and graduated from Enid High School in May, 1956; received the Bachelor of Science degree from the Oklahoma State University, with a major in Electrical Engineering, in January, 1961; received the Master of Science degree from the Oklahoma State University, with 2 major in Electrical Engineering, in August, 1961; completed requirements for the Doctor of Philosophy degree in May, 1966.

Professional Experience: Employed by General Electric Company, Louisville, Kentucky, as a Summer Engineer, May to September, 1960, specific assignment included specification of components for the power supply of a microwave oven. Employed as an Instructor in the School of Electrical Engineering, Oklahoma State University, September, 1961 to Mays 1965.

Professional Organizations: Member of the Association for Computo ing Machinery, Member of the Institute of Electroical and Electronics Engineers, Associate Member of Sigma Xi。

[^0]: ${ }^{1}$ A definition given by Seshu and Reed (8), this conveys precise. ly the concept of interest here。

[^1]: ${ }^{1}$ This theorem corresponds to part of an algorithm for listing all of the trees of a graph described by Minty (11)。

