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CHAPTER I 

INTRODUCTION 

1.1 General Discussion of the Problem. A large volume of infor­

mation about the synthesis of electrical networks has been developed 

during the last thirty years. However, it is now clearly recognized 

that classical techniques have ignored the topological properties of 

the design. Seshu (1) in an early paper discussing topology and syn­

thesis s tated that there are"••• several methods of synthesizing 

driving- point functions known at the present time and they are prac­

tically satisfactory. Esthetically, however, they are unsatisfactory 

in that one of the most important characteristics of a network, 

namely its topology, has been neglected." 

Interest in this aspect of circuit synthesis is a natural result 

of the advanced state of classical proced:ares and the development of 

topological methods of analysis. Since the time of Seshu's first paper 

in 19559 the requirements of circuit designers have changed. There is, 

for example, a need to control the topology when designing a network 

to be constructed by integrated circuit techniques. As topological 

studies continue, it appears that other important synthesis problems, 

such as specifying several functions to be realized by a single net­

work, may be solved. Thus the study seems to have far-reaching prac.. 

ticalj as well as esthetic, value. 

The circuit designer is directly concerned with three attributes 

1 
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of the network: the specified function, the topology, and the element 

values. Classical synthesis procedures begin with a specified network 

function and, by one of several different techniques, derive both the 

topology and the element values. In certain oases, especially the 

two-element-kind network, there is a limited choice of topology, i.e. 

parallel, series, or ladder circuits. Such a choice falls far short 

of being topological design. Thus the general problem at hand is to 

develop circuit synthesis procedures which allow the circuit designer 

to control the topologyo 

1.2 Review of Literature. Seshu's paper, quoted previously, 

derived the fundamental circuit matrix and the inoidenoe matrix of the 

network from the specified driving-point function and certain elemen­

tary functions. These represent the resistors, capacitors, and in,.. L. 

ductors of the network and their values. Seshu did not present a pro­

cedure to obtain the elementary functions from the specified network 

function but declared that such a procedure would be necessary before 

the method could be practical. 

In 1960, Onodera (2) developed a method for the topological syn... 

thesis of networks from the transfer admittance matrixo His procedure 

derived the incidence matrix and the branch impedance matrix. This 

paper differs from our present objective, however, as the specified 

function is a matrix function of the network. No general procedure is 

known to obtain the matrix from a specified network function. 

Iterative methods for finding the element values of a network 

with a specified function and topology are proposed by Bellert (3) and 

Calahan (4). Bellert0 s algorithm for topological synthesis generates 



a sequence of networks, and he suggests that each one be tested by it.. 

erative numerical methods to see whether it will realize the specified 

function or not. Calahan has prepared a computer program to determine 

the element values of a network from a specified function and topology. 

If the iteration process does not converge to a solution, Calahan's 

program automatically adds an element to the network and attempts to 

solve it again. The difficulty is that the user must make an •approp­

riate ' choice of starting values for the iteration. If it fails to 

converge, either the network cannot be realized in the specified top.. 

ology or a bad starting point has been chosen. Experience indicates 

that this situation occurs frequently in all but simple examples. 

The work of Seshu presents quite a contrast to that of Bellert 

and Calahan. The former attempts to derive the network topology, 

while the latter are suggesting that it be tested. Thus it is reason­

able to question whether or not one should look for a procedure to de­

rive a topology from a specified function. An uncountable number of 

networks can realize a specified function (if it can be realized at 

all) . Thus if a topology is to be derived, it appears necessary to 

make additional specifications. For example , Seshu specified the 

element values while Onodera specified a system matrix. In accordance 

with our general objective, any additional specifications should re­

late specifically to the topology. Now the original question is 

~ephrased. What properties of the topology are determined by the 

specified function, and how are these related to the element values? 

Once an answer is found, one may look for a topological synthesis 

procedure. 
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1.J Delineat ion of the Problemo The present objective is to 

study the driving-point impedance function of passive linear networks. 

Mutual inductance is excluded to further limit the scope of the prob­

lem. It is assumed that this function is realizable, that is, it is 

positive real and hence s&tisfies the classical test for realizabil­

ity. Principles developed for the impedance function can be applied 

in a similar manner to driving-point admittance functions. 'Perhaps 

such an investigation might be extended to other network functions, 

such as the transfer impedance function. 

The two questions proposed in Section 1.2 are applied specifi­

cally in this thesis to the driving-point impedance. Topics for con­

sideration are: 

(a) What is the nature of the relationship between the form of 

the driving~point impedance and the network topology? 

(b) Can a given network topology realize a specified driving­

point impedance? 

( c ) What are the network element values? 

In addit ion~ a classification of networks is suggested as t he basis 

of a topological synthesis procedure. 

1.4 Org~nization of the Thesis . The topics involvi ng only top.,. 

ology are discussed i.n Chapter II. Relations between the form of the 

driving-point impedance function and t he net work topology are derived 

and presented in a tabl e~ and network classification is discussed. 

Questions (b) and ( c ) are, as in some classical synthesis methods , 

allied. A general discussion will be presented in Chapter III relating 

the driving=point impedance to the network topology by sums of tree 
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adm:tttance productso Chapter IT describes a method for solving these 

sums t© determine the element values and the realizability of the net­

work tr))p©logyo Several examples are presentedo 



CHAPTER II 

RELATIONS BETWEEN THE DRIVING- POINT IMPEDANCE 

FORM AND THE NETWORK TOPOLOGY 

2.1 Introduction and Objective. The objective of this chapter 

is to make explicit the relations between the form of the driving­

point impedance function (to be abbreviated ZDP) and the network 

topologyo Several papers are of special interest in this discussion 

because they deal with the ZDP form. Hakimi and Mayeda (5) have 

shown that a necessary and sufficient condition for a network func­

tion polynomial to be even or odd is that the number of resistors in 

all trees of the network be constant. Brown and Reed (6) have devel­

oped detailed conditions on the ZDP form based on classical positive 

real conditions. 

Networks with two kinds of elements have been studied by Hakimi 

(7) 9 and their topological properties are related to the number of 

poles and zeros of network functions. His work is also extended to 

include networks with three kinds of elementso Simil ar results have 

been obtained independently by others, Seshu and Reed (8)0 

2o2 Driving- point Impedance Formso Two forms of driving- point 

impedances are of interest. The determinant or improper form represent.. 

ing the most general function is defined by Equation 2.2.1. 

6 
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k k=1 ... l 
+ 

zdp 
cks + ck=1s 0 0 0 CO+ 0 0 O c=1s 

""' 2o2o1 
dpsP + ~=1sP=1 + 0 0 0 do+ 0 0 0 

d =q 
-qs 

This form represents the arbitrary fashion in which a ZDP specifica-

tion may be preparedo It is assumed that 

and that the zero coefficients are specified. The numerioal values 

of the non=zero coefficients remain unspecifiedo 

As an a.id to generalization~ a normal or proper form is defined 

by Equation 2o2o2o 

0 0 0 

2.2 .. 2 
o e o 

It i.s obtained from the determinant form by multi plying both numera, .. 

tor and denominator by sx ~ where x = max(l 9 q)o Note that am and 

bn r O; however, either ao or bo may be zeroo The zero coeffi~ 

c,ients are al.so specified heres while the value of the non .. zero coef-

ficients is unspecified. 

A normal form has six attributeso They are& 

(a) the value of m 

(b) a0 specification (zero or non=zero) 

(c) alternating numerator (even or odd polynomial) 

(d) the value of n 

(e) b0 specification (zero or non=zero) 

(f) alternating denominator (even or odd polynomial) 

Extensive use of these attributes will be made in the following sec= 



tionso It is clear that an uncountable number of determinant forms 

reduce to a single normal form. 
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Relations between several of the attributes are presented in 

various texts on classical synthesis; the reader is referred to Wein­

berg (9) for one such developmento The integer values m and n can 

be shown9 !or example9 to differ by not more than oneo These condi­

tions are deduced from the positive real test for realizability and 

are only implicitly involved in the development presented here. 

2.J Graph...Theoretic Principles. The following is a unified 

graph-theoretic presentat ion of definitions and theorems required for 

this discussion of topological synthesiso A comprehensive treatment 

of linear graph theory and the analysis of electrical networks can be 

found in the standard text by Seshu and Reed (8). 

It is necessary to differentiate between the linear graph de­

scribing the topology of a network and the network electrical compo­

nents; the basic definitions reflect this distinction. 

Definition 2o)o1 (Edge) g An edge is a line segment with distinct 

end points. 

Definition 2o Jo2 (Element): A network el ement is an edge identified 

with a resistor 9 capacitor9 or inductor. 

An edge is later identified with a color. However, this is not 

to be thought of as a property of the edge but simply an aid to visual­

izing a classification. The number of edges or el ements will be de~ 

noted by E with an appropriate subscript if necessary. 



Definition 2oJo3 (Vertex): The end points of an edge or element are 

oalled verticeso 

The term node is frequently used in the literature as another 

name for vertexo V will designate the number of vertioeso 

Definition 2oJo4 (Graph): A graph is a set of edges coinciding only 

at verticeso 

Definition 2o3o5 (Network}~ A network is a set of elements coincid­

ing only at verticeso 

9 

Here again there is a distinction between the topological arrange-

ment and the networko The terms subgraph and subnetwork will be used 

to denote graphs and networks containing subsets of edges and elements 

respectivelyo Unless stated otherwisei the theorems will remain valid 

when the graph edges are identified with electrical componentso In 

certain cases it will be necessary to discuss graphs having one or 

more isolated vertices 9 io eo vertices not touched by an edgeo 

Several properties of a graph are now oonsideredo 

Definition 20306 (Nonseparable)~ A graph G is nonseparable if 

every subgraph of G has at least two vertices in common with its 

oomplemento 1 All other graphs are separableo 

In order to designate oleal"ly th~- ,s,eparable subgraph~ of a, 

gra.ph9 ,a related term is defined below o 

1A definition given by Seshu and Reed (8) 9 this conveys precise­
ly the concept of interest hereo 



De~inition 2.3.7 (Component): A maximal nonseparable subgraph of a 

graph G is a component of Go 

Special emphasis is plaoed on another class of subgraphs dis~ 

tinguished by the following property. 
( 

Definition 2oJo8 (Connected): A graph is said to be connected if 

there exists a path or sequence of edges between any two vertices. 

Definition 2o)o9 (Part)~ A part of G is a maximal connected sub... 

graph of G o 

The number of parts of a graph will be denoted by P .. It is clear 

that a part of G will always be a component or perhaps :more than 

one component .. On the other hand, if G is connected and nonsep.... 

arable9 it will be regarded as a component of itself .. 

Definition 2oJo10 (Rank): The rank of G is R = V ... P o 

Tb.is term will be used frequently in the discussion .. 

The tree concept defined below is the vehiale for developing 

10 

the relations between the ZDP form and the network topologyo To 

utilize this important graphical concept to the full extent9 the def.,. 

inition here differs from that oomm.only used in electrical engineeringo 

Definition 20)011 (Tree Graph): A tree graph of a graph G of rank 

R is a subgraph of rank R having R edges. 

This definition may be shown to be equivalent to the conventional one 

if the graph is connected .. 
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Definition 2o3o12 (Tree)z A set of edges which form a tree graph is 

called a treeo 

This second definition is provided to distinguish the tree graph from 

the set of symbols corresponding to the edges of the tree graph. It 

will frequently be necessary to refer to the tree ti and its edge 

set11 

To represent conveniently the complete set of trees of a graph, the 

tree set 

is defined .. 

Definition 2o3o13 (Tree set): The tree set of G is the set of all 

trees of G .. 

These definitions are now illustrated by referring to the graph 

in Figure 2 .. 3.1. This graph is composed of three components denoted 

{A} 11 {B, C, D, E} and • The subgraphs by the edge sets 

{As, B9 C, D9 E} and f\ a} are by definitien parts of the grapho 

The tree set is also shown in the figure .. 

The theorems to be developed can be conveniently stated and 

proved in terms of operations on a grapho 

Operation 2e3o1 (Edge deletip.g): A specified edge is removed from 

G .. If an isolated vertex is created by an edge-deleting operation, 

it is also removedo 



F 
A C> 

D 

Tree Set 

ABCF ABDF ABEF ACEF ADEF 
ABCG ABDG ABEG ACEG ADEG 

G 

Figure 2oJo1o Ex.ample for Graph Definitions 

The edge deleting operation is extended to the subgrapho 

Operation 2o3o2 (Subgraph deleting): 
I ' 

An edge-deleting operation is 

performed on each edge of a specified subgrapho· 

Operation 2o3o3 (Vertex shorting): Two specified vertices vi and 

vj are superimposedo Edges with both endpoints on the new vertex9 

self-loops 9 a.re deletedo 

As:m.ost verte:x;,.shorting operations a.re designated by an edge9 it is 

convenient to make the f~llowing definitiono 

12 

Operation 2o'.3o4 (Fdge shorting): A vertex...shorting operation is per­

formed on the vertices denoting the endpoints of a designated edgeo 

Note that self=loops are again removedo This operation is also ex.,. 



tended to subgraphs. 

Oper~tion 2.3o5 (Subgraph shorting).: An edge-shorting operation is 

performed on each edge .of the specified subgraph. 

The theorems that follow develop the necessary and sufficient 

1.3 

conditions relating the form of the ZDP and the network. They are in-

tended to be constructive in na~ure, that is, they are stated and 

proved in a fashion suitable for use in ·an algorithmic process. For 

an example of suah an application the reader is referred. to (10). 

The first five theorems prescribe the effect of the correspond... 

ing five operations on the tree list of a graph. 

Theorem 2.3.1 (Deleted edge theorem):. A graph G' is formed by an 

edge-deleting pperation on ed. 

(a) If the rank of G0 is equal to the rank of G, 

(1) every tree of G' is a tree of G, and 

(2) every tree of G which does not contain ed is in 

the tree set of G' • 

(b) If the rank of G' is not equal to the rank of G, 

(1) R9 = R ... 1, where the ranks of ow and. G are R' 

and R respectively9 and 

(2) every tree of G' will be a tree of G if ed is 

a.ddedo 

Proof (ah Since the rank has not changed and G' is a subgraph of G , 

its trees are trees of G. In addition, a tree graph of G which 

does not contain ed is a subgraph of G' • This subgraph of G' 

has appropriate rank and number of edges to be a tree of G' • 

-·--­
.......... ~--



PrdlCJf j_b li Deleting an edge does not change the nU111ber of vertices 9 

but may in©rease the number of maximal connected subgraphs by one. 

Thus if the rank of GV is not equal to the rank of G ~ 

RU - (V - P) - 1 = R - 1 

14 

Note that a tree graph of Gu will be a subgraph of G of rank R~1 

with R=1 edgesa Since deleting ed in G divided a maximal connec~ 

ted subgraph into two parts 9 adding ed to a tree graph of G0 will 

connect the correspom.ding parts of the tree graph.. This newly formed 

graph will be a subgraph of G having rank R and R edges; thus it 

is a tree. 

Theorem 2.3.2 (Shorted vertex theorem); A graph G~ of rank R' is 

formed from graph G of rank R by a verteX,.shorting operation on 

v1 and vj • 

(a) If and only if vi and vj a.re in separate parts of G 9 

(1) R ~ RG 9 and 

(2) the tree set carresponding to G0 is identical t,o, 

that of Ga 

(b) If and only if v1 and vj are in the same part of the 

graph G 9 R0 ~ R = 1 o 

froo.f_l.~ The number of vertices and parts of G are both reduced 

by one, thus the rank is unchangedo Every tree of G is by defini= 

tion a tree graph of G0 after a vertex reduction is performed on 

vi and vj • In a similar way separating the reduced vertex of any 

tree graph of GV 9 while maintaining the vertex=edge incidence rel.i.= . 

ti01n of G 9 will produce a tree graph of Go Thus the tree sets are 



1.5 

identicalo 

Proof (bL,t In this «::lase the number of parts of G and G~ is the 

same 9 while the number of vertices of G' is one less than that of G. 

Thus the rank of G0 is one lass than G ~ 

,Theorem 2olo3 ( Shrm-rted edge t1l~rem ~ g One edge of a graph G is 

selected and designated es 0 A graph GV is formed by an edge= 

shroirti11g operati©>n !Qln es 0 The tree set of G~ is designated 

A se©:1QJnd set of edge sets 

is formed by adding to each to form t 1 o 

(a) Every set of edges t 1 is a tree of Go 

(b) Every tree of G that contains e5 is included in the tree 

set T o 

f!:2_of (au Each t 0 is a subgraph of G0 of rank Rc-1 having &-1 

edgeso The vertices shorted by the edge=shorting operation are separ= 

ated while maintaining the verte:x,..,edge incidence relation of Go 

When the edge e5 is added between the separated vertices 9 a subgraph 

of G with rank R and R edges is formedo 

Proof 0?_2,t Considering any tree graph of G which contains es 9 an 

edge=shorting operation on e 5 produces a subgraph of G8 of rank 

R=1 with R.~1 edges" This subgraph is by definition a tree of Ga ., 

1h,eoreI/Lg_oJ,_o4 {ShlJlI""ted graph theorem)g A set of edges shorted one by 

one (no edge is removed as a result of shorting a previous edge) reduces 



a graph G t~ zero rank if and only if the edge set is a tree of 

Proofg Each edge of the set of N shorted edges is designated ei 

16 

1 
G o 

and the graph formed 9 G1 o The tree of GN is the null set of edgeso 

According to the shorted edge theorem (2o3o3)~ eN is a tree of GN=! o 

Continuing to apply this reasoning!> {eN-! , eN} is a tree of GN=2 , 

etc:o Finally9 { 01 9 e29 o a o eN} is a tree of G o 

Assuming that shorting a set of edges corresponding to a tree in 

G did not ;r-educie the graph to rank zero, then a.n additional set of 

edges oou.ld be shorted to reduce the rank to zeroo As described above~ 

the union of this se~ond set of edges with the tree set would be a 

tree o This contradicts the ,:a.sswnption9 since the new tree would have 

more edges than the assumed treeo Thus shorting the edges of a tree 

reduces G to rank zero$ 

A discussion of the interrelation of the tree and the ZDP is pre= 

sented in Section 2o4o The following theorems provide the desired 

association between the properties of the graph and the tree seto 

Sever.al of them correspond to theorems by Hakimi (7) o However 9 the 

present discussion is entirely graph-theoretic and unified. In addi= 

tion9 the theorems here stai,ted a.re in a form suitable to apply to 

graphs of more than one part. 

Colors will be used to denote classes of ~dges. The subscripts 

w and b will denote subgraphs of white and black elements. The 

black subgraph is the complement of the white 9 and vice versa. The 

s subscript designates a graph that is formed by shorting the sub= 

1This theorem corresponds to part of an algorithm for listing all 
of the trees of a graph described by Minty (11). 
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graph which is the complement of the designated edge seto For example9 

Gws is derived by shorting the non=white edgeso In a similar fashion 

d indicates that the graph is produced by a subgraph-deleting opera= 

ticm on the complement of the indicated edge seto Thus Gbd is oh.. 

tained by deleting all non=blaok edgeso 

In some applications of the theorems below the graph will be com.. 

posed of three classes of edgeso When this occurs, two of the classes 

are treated as a single classo For example9 the edges of a graph are 

classified as red 9 blue9 or greeno If the red edges are of particular 

1nterest9 they are assigned to the white class 9 while the blue and 

green are assigned to the black classo 

The following theorem presents the basic relation between the 

derived graphs Gws and ~d and a treeo 

Theorem 2o3o5 (Composite t,;:_ee theorem): If 

(a) G is a graph with derived graphs °ws and Gbd 11 

(b) tw is a tree of °ws 9 

(c) ~ is a tree of ~9 

then t = [tw U ~} is a tree of G o 

Proofg To pre)Jve the theorem the edges of the tree ~ are shorted in 

°'bd and Go Since9 according t~ the shorted graph theorem (2oJo4)~ 

Gbd is now reduced tc» zero rank 9 all of its blaok edges have been re= 

movedo Thus all bla.clc edges in G have also been removed and °'ws 

remainso Shorting the tree tw in Gws reduces G to rank zeroo 

The shorted graph theorem is again applied to identify the set of edges 

{ tw U ~} that reduce G to rank zero as a tree of G o 

As will be seen later in this chapter9 the maxim.um. and minimum 
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numbers of edges of a particular class in any tree are of primary im,.. 

portance .. They are determined by the ranks of derived graphs. 

Theorem 2.3.6 (Minimal tree theorem): If the graph °'bs derived from 

G has rank ~s 9 every tree of G oontains at least Rbs black edges. 

Proof: By the composite tree theorem (2 .. 3.5), a tree with Rbs black 

edges exists .. Assuming that a tree with fewer than Rbs black edges 

existsp then shorting the non-black edges of this tree in G would 

produce a derived graph G' of rank R' less than ~s !ii which must 

contain a black edge tree. This is a contradiction of the hypothesis 

since the rank of a graph formed by shorting any subset of non-black 

edges must be greater than or equal to Rbs. Shorting the remaining 

non-black edges can only reduce the rank. 

Theorem 2o3o7 (Maximal tree theorem): If the graph Gwd. derived from 

G has rank Rwd, 

(a) at least one tree of G contains Rwd white edges_!il and 

(b) no tree oontains a greater number of white edges., 

Proof (a): The non-white elements of G are identified as black ele-

men ts .. The ranks of ~s and °wd are Rbs and l\ro. respectively. 

If ~ is a tree of °t>s and t w is a tree of Gwd. I) then9 according 

to the composite tree theorem (2 .. 3.6)!il t = {~ u t} W· is a tree of 

Go Note that tw contains ~ white edges; thus t contains Rwd. 

white edges .. 

Proof (b): Assuming a tree graph exists with Ru > Rwd white edges 9 

this tree must be a subgraph of G. In additionll the R11 white 

edges must be a subgraph of Gwd. However9 the ~ graph has rank 

-~ and no subgraph can have greater rank. This is verified by con-
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sidering that Gwd has V vertices and Pwd partso Any subgraph ov 

of Gwd with v0 vertices and P' parts must have 

and 

Thus 

Having thus specified the extreme characteristics of the tree seti 

the next requirement of the development deals with the properties of the 

set between these extremeso 

Theorem 2oJo8 (Tree seguenoe theorem)g The tree set of a graph con,,.. 

tains trees with K white edges for all K such that Rws ~ K, ~. 

Proof~ The minimal tree theorem (2oJo6) states that at least one tree 

contains Rws edges 9 while the maximal tree theorem (2oJo7) verifies 

that a tree contains Rwa. edgeso A graph G corresponding to the tree 

set is formedo Each node corresponds to a tree of the set and each 

edge to an elementary tree transformationo This transformation in,.. 

volves replacing one edge of a tree with another edge forming a dif­

ferent tree Olf the seto Ro Lo Cu.rr.rrnins (12) has shown that a Hamilton 

circuit exists in a graph of treeso "ooo the set of trees of a network 

(graph) can be ordered in such a manner that successive trees are re= 

lated by elementary tree transformationso" Note that an elementary 

tree transformation can remove at most one white element from tree t 1 o 

Thus there exists a tree with K white elements for all K such that 

Rws ~ K ~ ~ o The maximum and minimum values of K are given by 

Theorems 20306 and 2o3o7o 



In certain special cases the maximum and minimum are identicalo 

The component graph property is associated with such a conditiono 
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Theore.!11 2o3o9 (Co,!1lponent graph theorem)g A necessary and sufficient 

condition for the white elements of G to form a oomponent or set of 

oornpon.ents of G is: "that Rws '= Rwd O 

~ Nol'te -tha,t the Gws graph oan be obtained from Gwd by short"' 

ing the vertices: which were C(onneoted by non"'white edges in G ~ If 

the white edges of G form a component or set of components 9 the pro­

cess of deriving Gws from Gwd does not change the rank~ The rank 

is now assumed t© be changed by a shorting opera't,iono Thus 9 according 

to the sh(,j)rted vertex theorem (2o:3o2) 9 the two v·ertioes must be in the 

same part of the grapho Sinoe the only connected subgraph of two or 

more vertioes in Gwd i:s a, white edge subgraph 0 a non, .. whi te edge 

exists between two vertices in a white subgraph of Go Such a white 

subgraph has at least two vertices in common with its complement and 

by definition is nonseparable 9 i. eo not a oomponento This contradicts 

the hypothesis; thus the rank is unchanged in the process of deriving 

Gws from Gwd. 

Now it is assumed that Gws is obtained from Gwd and the rank 

is not e;hanged in the proe2ess. Frl())m the shorted vertex theoirem (2.Jo2) 

it is k:n((J)wn that t,he vertices which were shorted must have been in 

separate parts of the graph. Extending this reasoning9 no sequen~e 

of shorting operations used to obtain Gws from Gwd will involve 

shorting two verti©es which are common to a one=part subgrapho Thus 9 

there exists no white one=part subgraph in G whie;h has two or more 

vertices in commcm with a non=white subgraph~ hence by definition 9 
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all white subgraphs are eomponentso 

An additional short theorem will prove usefulo 

Theorem 2o3o10 (Cc::l!Inp9nent tree theorem)~ Every tree in the tree set of 

a graph G has the same number of white edges if .and only if the white 

edges form a component or set of components of Go 

Proofg This theorem follows directly from the tree sequence theorem 

(2oJo8) and the component graph theorem (2oJo9)o The number of white 

edges K in each 'b:-ee of G is bounded by Rws , K , ~ o But· 

Rws = Rwa. 9 and th~.number of white edges in each tree is the sameo 

2o4 Network Form.so Figure 2o4o1 represents a one-port network 

with the two input terminals identified .. 

Figure 2o4o1o One-Port Network 

The driving~point impedance is defined to be 

v z = 1 
dp I1 



and can be written as 

·~11 

ZS: 
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where 6. and611 are the determinant and Ytt cofactor respectively 

of the n~de=admittance mat~ixo 

Symbols associated with the graph and topological properties of 

the one-port network will be denoted by a O subscripto A derived 

graph9 formed by shorting the input terminals of Go 9 is of special 

importance and its symbols will be designated by the subscript 1 o 

Percival (13) formalized the early work of Maxwell (14) to develop 

equations giving the determinants above in terms of the trees of Go 

and G1 • These are stated without proof'; for further detail the reader 

is referred to Seshu and Reed (8). 

Definition 2o4o1 ('l'ree~admittanoe product)g The tree...admittanoe pro~ 

duct t 1 is the product of the admittances,:. of the elements correspond,.. 

ing to the edges in t 1 o 

Theorem 2o4o1: If' Go is a graph corresponding to a connected passive 

network without mutual induotanoe9 the node~admittanoe matrix deter= 

minant of the network is 

6 = 2 ( tree=admi ttance product of t 1 ) 

tree 
set 
of Go 

Theorem 2o4o2: If· G1 is a grap~ derived from. a G0 satisfying the 

hypothesis of Theorem 2o4o1 9 the cofactor 611 of the node ... admittanoe 

matrix is 
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A = '(tree-admittance product of ~11 ~ 2.4.2 
tree 
set 

of G1 

As the cofactor 611 is the determinant of a network derived from the 

original by shorting the input, it will be convenient to refer to both 

6. and 611 as determinants. Representing each element of the network 

by its transform admittanee9 the determinants become polynomials in s. 

Theorem 2.4oJ (Alternating~term theorem): A network determinant has 

alternating terms if and only if the R element subgraph is a compo-

nent or set of componentso 

Proof: A network determinant has alternating terms if and only if each 

tree has the same number of resistors. 

If each tree has the same number of resistors, every elementary 

tree transforI!lation in a Hamilton circuit through the graph of trees 

will change the exponent of s by O or 2. Thus only alternating 

terms exist in the polynomial. 

It is now assumed that an alternating polynomial can be formed 

by trees not having the same number of resistors. Then from the tree 

sequence theorem (2.3.8) it follows that there must be a tree with an 

even number of resistors and one with an odd number, a tree with an 

even number of reactive elements and one with an odd numbero This 

contradicts the hypothesis since such a polynomial would not be alter~ 

mating& Hence 9 the alternating polynomial trees must have the same 

number of resistorso The preceding corresponds to the hypothesis of 

the component tree theorem (2.Ja10), and by its conclusion the R 

element subgraph must be a component or a set of componentso 
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Theorem 2~4o3 specifies the ZDP ... network relation involving two of 

the six attributes of the normal ZDP form. The remaining four are 

associated with the exponents of the determinant form k9 1 11 p 11 q. 

For example, p is the exponent of s associated with the tree-.admi"t­

tanoe preducts for trees containing the maximum number of capacitors 

and the minimum number of inductors in the networko According to the 

maximal tree theorem (2.3.7) 9 Redo is the maximum number of capacitors 

in such a tree. If the resistors and inductors in this tree are de­

noted by Xi, the GXsO graph has rank Rxso •. There are RLsO in­

ductors in the trees of Gxso that minimize this number (Theorem 2.J.6). 

This is the minimum number of inductors in any treei, and p becomes 

P = RCd.0 - RLsO 2.4.J 

In a similar manner q is determined. Here9 howeveri, the roles of 

capacitor and inductor are reversed as the minimal exponent of s is 

requiredo The result is 

q = RLdo"" RcsO 

Applying this same reasoning to the shorted network with graph 

G1, equat.ions for k and 1 are obtained. 

l = R1c11 ... Rcs1 

Finally9 the exponents k, 1 9 p and q determine the value of 

the exponents m and n by the reduction process described in Section 

2o2o This yields 
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m = k + max (19 q) 

n = p + max (19 q) 

2o5 Nature of the Relationship Between the Network Form.and 

The necessary and sufficient conditions for a network 

form to realize a specified driving=point impedance form are now de-

rivedo The first step is to classify the ZDP form in terms of its six 

normal form attributes listed on page 7 o The major classification 

shown in Table 2o5o1 is based on the value (zero or non-zero) of the 

a0 9 b0 attributeo Note that the corresponding determinant condition 

is listed in the adjacent columno The fact that q and 1 differ by 

at most one can be shown by considering the rank relation in the shorted 

vertex theorem (2o3o2) and Equations 2o4o4 and 204060 Thus sinee 

and from the theorem 

RLd.0 = RLd.1 = {~ 
RcsO = Rest = [~ 

the difference becomes 

For each c1ass 9 the first equation in column three of Table 2o.5o1 

is obtained by substituting Equations 2o4o4 and 20406 into the equation 

of column twoo This result is the necessary and sufficient condition 

for a network form to correspond to the function classo The q and 1 



Class 

1 

2 

3 

TABLE 2.5.1 

DRIVING-POINT IMPEDANCE CLASSES 

Normal Form Determinant Form Necessary and Sufficient 
Attribute Attribute Graph Conditions 

a.o ;: o 
RLd.0 - RcsO = RLd.1 - Rest 

q = 1 m = ROdt - Rts1 + RLdt - Rest 
b0 ':f: o 

n = Redo - Rriso + Ri,a_o - Rcso 

a.o = o Rrido - Rcso = RLd.1 - Rest+ 1 

q = 1 + 1 m = RCd1 - ~st + Rrido - Rcso 
b0 :f: o 

n = RCdO - Rr,so + RLdO..; Rcso 

a.0 rf: o Rwo - Rcso = Rridr - Rest - 1 

q = 1 ..... 1 m = RCdt - RLs1 + Rtdt - Rest ~-
b0 = o 

n = RCdO - Rtso + RLdt - Res! 

!\), 

°" 



Class 

0.,0 

o.t 

0.2 

0.3 

TABLE 2.5.2 

DRIVING .. PO:INT,IMPED.A:NCE SUBCLASSES 

Attribute Necessary and Sufficient 
Graph Conditions 

no 
alternating RRdO 'f Raso 
polynomials 

Rad! 'f RRs! 

denominator RRdO::; RRsO 
alternating 
polynomial Rad! 'f RRs! 

numerator RRdO :f: RRsO 
alternating 
polynomial Raci.:t = Rast 

denominator 
and numerator Rado= RRsO 
alternating 
polynomial RRd1 = RRs1 

!\). 
-.J 
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attributes determine the maximum required in Equations 2o4o7 and 204080 

Again substituting for k, 19 p9 q, these equations are the necessary 

and sufficient conditions for the network form to realize specific values 

of m and no 

Four subclasses shown. in Table 2o5o2 are defined by the alternating 

polynomial attributeso This property of the polynomial is associated 

with the R element subgraph as explained in the alternating-term 

theorem (2o4oJ)o The rank equalities and inequalities are convenient 

tests for the component property of the R subgrapho 

206 Classification of Network Formso Example 3 in Chapter rl 

illustrates a network form realizing a specified function formo How-

ever~ it is shown that a positive real function having the required 

ZDP form cannot be realized by this network formo In general~ then, 

the form of the ZDP determines a set of network forms, ~t least one 
l 

of which will satisfy a ZDP functiono The number of network forms in 

this set is uncountableo However, as the objective here is to syn-

thesize a topology with specific properties 9 only certain forms of 

this set are of interesto Hence, a classification is presentedj the 

objective being to assist the designer determine network forms, at 

least one of which is realizable, satisfying the specified topological 

propertieso Sucll a classification is not unique and9 in f'aetf> a dif-

ferent one may be desirable in some caseso 

Table 20601 shows the hierarchy of classeso That is, each row in 

the table defines the classification of subsets of each @f the pre­

ceding setso The symbols DA and DA have been used to denote an 

alternating and non.,.alternating polynomial in the denominatoro 



Classification 

vertex class 

q class 

Lcl.0 class 

Ld! class 

CdO class 

Cdt class 

TABLE 20601 

CLASSIFICATION OF NETWORK FORMS 

Definition of Class 

Cv = (vlv ~ 1 + max (m, n)} 

cq = {:qlq integer} 

Cwo = { l\d.o I max (q, o) ~ RLdo ~ Ro} 

CLdl == (RLdt I Rx.cit = [ Rwo or Ri.cio - ~ and Res 1 ~ ~} 

0cdo li;;J [ RCdo I RCdo = RLdo if DA, 

max (RcsO!il P) ~ RCdO -' Ro if DA} 

Ccdt ~ {RCd1IRcdt = RLdt if NA, 

Rcdt = [ RCdo or RCdo '... ~ and Rts1 ~ O if DA} 
-. 

Parameters 
Determined. 

Ro 

l, k, p 

RcsO 

Rest 

R1so 

Rtsl 

'b.) 

'° 



LCdO class 

LCd.1 class 

LCsO class 

LCs 1 .alas s 

TABLE 20601 (Continued) 

Cr.Cdo = (Ri.Cdo \ Ri,Cdo rank of GLCdO formed from 

GLdO and GCdo} 

CLCd.1 = { Ri.oul Rr.cdt = 11.Cdo if NA and DAi 

Rx.Cd! = [ Ri.Cdo or Ri.cdo - ~ if NA or DA} 

CLcso = (l\csoll\cso = lli.Cdo if DA, 

Ri.cso rank of GLCsO formed from 

GLsO and Gcso . if DA} 
Cr.cs! = {Ri.es1I Rx.est = 11i.Cd1 if NA, 

llwsl = [ ~CsO or &r,cso - ~ if NA} 

Raso 

Rast 

Rado 

lladt 

~ 



Similarlyt NA and NA represent the numerator oonditionso 

The first classification of sets is based on the number of verQ 

tices .. The minimum number is determined by the minimum rank of Go .. 

V ~ 1 + max (m9 n) 

There is, of course9 no theoretical upper limit to .the number·:v o _'.Within 

eaoh vertex class a division of function forms based on the integer q 

is madeo This q corresponds to the exponent in the determinant 

form of the ZDP and can have any positive or negative valueo The para-

meters 1, k, p are determined by the q class~ that is, they are the 

sa.me for all networks in one set of the q classo 

The Ld.0 class designates the rank of GLd.O. It can never be 

zero and by Equation 2o4 .. 4, not less than q o Since GLd.O is formed 

by deleting edges from Go, the r•nk RLdo is not greater than Ro, 
' 

previously determined by the ver~ex class. The rank Rcso is deter-

mined from Equation 2 .. 4 .. 4 .. The Ld.1 and capacitor classes are de= 

veloped in a similar fashion .. 

The Ld.0 class is formulated to designate the sets resulting 

from all possible combinations of the Gr.do and GCdO graphs having 

the same ranko As these may contain differing numbers of vertices 9 

there are in general many possible GLCdO graphs .. This classification 

procedure is similarly carried out for the other LC graphso In each 

case the rank of a resistor graph is determinedo 

The subsets are further divided by the numbers of elements .. Sev ... 

eral relations are involved here., For example9 if NL~ Ne 9 NR rep ... 

resent the number of inductors 9 eapacitors 9 and resistors~ the defini ... 

tion of rank (2o3o10) yields 



NL ) RI,dO 

Ne ~ Redo 

NR '.p ltadO 
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Other parameters may be ohosen to distinguish the network elass­

eso Henoe, a network designer could develop a network olassification 

based on the topological properties of particular interest to himo 



CHAPTER III 

REALIZATION OF A SPECIFIED 

DRIVING-POINT IMPEDANCE 

3o1 Relation or ·the Network Form and Element Values. The term 

realization refers to the process of determining the element values or 

a network to satisfy a prescribed driving.point impedance. According 

to the discussion in Section 1.3, the first concern of the network 

designer is this. Can the network form realize a specified driving. 

point impedance? It is assumed here that the network topology satis­

fies the oondit:l.ons.·.spec:U'ied . .' in: the ·:.tables:., :1:n. Chapter IIo New the 

actual coefficient values of the ZDP are considered and the synthesis 

procedure must test the network form for realizabilityo 

If the network form will realize the ZDP9 the next step is to de­

termine the element valueso When the realization test fails, another 

network form satisfying the specified topological properties is soughto 

More than one set of element values may realize the specified ZDPo 

The ideal synthesis procedure would make all such values available to 

the designero 

As was previously stated, Bellert (3) and Calahan (4) suggest 

iteration methods to realize the.ZDPo Thus, the realizability test 

is combined with the determination of element values. Calahan's 

computer program utilizes the Newton,,.Raphson method of iteration. 
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There are several difficulties with this solution techniqueo It is not 

actually a test for realization since, if the iteration fails to con­

verge9 the designer is not assured that the network will not satisfy 

the ZDP specifiedo Initial estimates of the element values must be 

entered; thus an a priori knowledge of the approximate solution is 

requiredo Only one solution set is produced and a seoond set9 if one 

is known to exist9 may require a new iteration on a second initial 

estimate of the element valueso The author's experience with suoh an 

iteration method indicates that the process frequently fails to oon­

vergeo This is especially true of the non=standard network formsj ic eo 

those not composed of ladder9 series~ or parallel elementso 

The author has also investigated realization by a transformation 

techniqueo In this approach, the desired network form is transformed 

to one of the standard or canonical forms 9 which is then realized by 

the standard teohniqueso The inverse tr.an.s£ol'lil.ation would then be 

applied to obtain the realization in the desired topologyo Guillemin 

(15) has obtained a method for transforming networks with two kinds of 

elements~ and in which the values are known9 to an equivalent canonical 

form9 the Foster networkso In general, however~ the transformations 

are not knowno Such a transformation and its inverse are not unique 

and thus probably are difficult to obtaino 

A method of direct solution for the element values involving nei~ 

ther iteration nor transformation is presented in Chapter IVo 

3o2 Solution of the Tree~sum Eguationso The network form and 

the ZDP a.re explicitly related by the sum of tree admittance products 

defined by Equations 2o4o1 and 2o4o2o To illustrate this 9 the network 



shown in Figure Jo2o1 is considered. 

1 
Y1 = Ri = Xi 

Y2 = t;:s•1 = x2s-1 
1 

1 
y = - = X) 3 R2 

1 -1 -1 y = Ls = X4S 4 2 

y = 
.5 

y = 6 

Figure Jo2o1o Network Illustrating Tree-sum Functions 

A computer program for listing all of the trees of such a network has 

been developed (10). The trees of G0 and G1 are listed in Tables 

3.2 .. 1 and 3.2.2. 

3.5 



TABLE 3o2o1 

TREES OF G0 IN FIGURE J.2.1 

Y1 Yz Y3 'Y',.i, Yt Yz Y5 y6 Yz Y3 Y4 y6 

Y1 Y2 Y3 Y5 Y1 Y3 Y4 Y5 Y1 Y4 Y5 y6 

Y1 Y2 Y3 y6 Y1 Y3 Y5 y6 Y2 Y4 Y5 y6 

Y1Y2Y4Y6 Y2 Y3 Y4 Y5 Y3 Y4 Y5 y6 

TABLE 3.2.2 

TREES OF 01 IN FIGURE 3o2o1 

Y1 Y2 Y3 'Yz Y3 Y5 I Yz Y4 y6 

Y1 Y2 Y4 Y2 Y3 y6 Yz Y5 y6 

Y1 Yz Y5 Y1 Y4 Y5 Y3 Y5 y6 

Y1 Y3 Y5 Yz Y4 Y5 Y4 Y5 y6 

Substituting the admittance of each element~ the determinants are 

+ 



~1 01 Cz C1 

+ R1L1 + R2L1 + Hztt + R1L2 

Thus the driving-point impedance has the form 

Now equating corresponding coefficients in the ZDP and determinant 

expressions and substituting the x•s for the•element value• part 

of the admittanoe9 the following set of equations is obtained. 

a4 = ~ x5 x6 

a3 = x1 x3 XS + Xz x.5 X6 + x4 x.5 X6 

~=~Xz~+Xz~~+:x:z~~+~~~ 
a1 = X1 Xz X3 + :X:2 X4 X.5 + Xz x4 x6 

ao=x1XzX4 

b4 = x1 x3 x5 x6 
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b3 = x1 x4 :x:.5 x6 + :x:3 x4 X.5 x6 + x1 Xz x.5 ~ 

~=~Xz~~+~:x:z~~+~~~~+:x:z~~~ 
b1 = X1 Xz ~ xe; + X2 X3 x4 :x:, ·,+ Xz X3 x4 x6 

bo = X1 X2 X3 x4 

The realization and element value problem is solved by finr,iing a solu.-

tion to this set of equationso If the solution is composed of real 



positive values, the ZDP is realizable in the specified network form., 

These equations will be called the tree-sum equations and some of 

their properties are considered below. The admittance of element i 

will be denoted by yi, while the •element value' part of the admit~ 

ta.nee is designated xi o For example~ the ijelement value 9 part of 

y 5 is c1 and is denoted by x5 • Having r·emoved the complex fre­

quency variable s, ~ must be real and positive for a network of 

passive elements. 

The tree-sum equations may be arranged in the form of a first 

degree polynomial in any one variable. Each equation is linear in 

each of the variables. Henoe~ the term multilinear is sometimes used 

to designate equations of this type. 

The tree-sum portion (right-hand side in the example) of_ each 

equation is a homogeneous function. In partioular9 the a1 functions 

are homogeneous of degree V~2 while the b. functions are homogen~ 
l. 

eous of degree V-1~ where V is the number of vertices in the networke 

These functions are continuous and have partial derivatives of all 

orders. 

'.rhe number M of tree-sum equations associated with a netw~rk is 

determined by the six attributes of the normal ZDP formo Table Jo2o3 

illustrates this relation in terms of the ZDP class and the attributes 

m and n. Nn and Nd denote the number of numerator and denomina= 

tor equations 9 respectively, while ~ is the totalo They are deter-

mined by counting the number of coefficients in the corresponding 

normal form of the ZDPe 

The number E of variables in the tree-sum equations (the number 

of elements in the netw0rk) is a more difficult subjecto A general 



Subclass 

OoO 

Oo1 

Oo2 

OoJ 

TABLE 3.2.3 

NUMBER OF TREE=.SOM EQUATIONS 

Class 1 

Nn = m + 1 

Nd= n + 1 

M=m+n+2 

Nn = m + 1 

Nd=¥+ 1 

M=m+~+2 

m 
N = - + 1 n 2 

Nd= n + 1 

m . 
M= 2 +n+2 

m 
Nn = 2 + 1 

n. 
Nd= 2 + 1 

M m n 
=2+2+2 

Class 2 

N = m n 

Nd= n + 1 

M=m+n+1 

N = m n 

N == ~ + 1 d 2 
n M=m+ 2 +1 

m + 1 
N = n 2 

Nd= n + 1 
m +· 1 

M• 2 +n+t 

N = m + 1 
n 2 

n 
Nd= 2.+ 1 

m + 1 - n 
M= 2 +z+1 

Class 3 

Nn = m + 1 

Nd= n 

M=m+n+1 

Nn = m 

N = n + t 
d - 2 

M=m+n+ 
2 

m 
N =- + 1 

n 2 

Nd= n 
m 

M = 2 + n + 1 

N = .! + 1 n 2 
N = n + 1 

d 2 
m n+t 

M =2 + "} + 1 

~ 



statement oa.n be ma.de about the minimum number. As there must be at 

least one tree in a connected network and this tree consists of V-1 

elements, it is known that 

E ~ V ... 1 

The relation between M and E is of special interest here, as 

in linear algebra. The four cases to be discussed are: 

(a) M (. E 

(b) M = E 

(c) M = E + 1 

(d) M > E + 1 

Figure 3o2o2 shows a network and its driving-point impedance form for 

case (a)o 

zd = p 

Figure 3.2.2. Network Illustrating Case (a) 

E=8 

M=7 

40 
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It should be pointed out that there is a large number of trivial exam;.... 

ples of this case, since a:ny number of elements of the same type could 

be connected in series or parallel, each one being treated as a separ-

ate elementa 

An example of case (b) is given in Figure Jo2aJo This will later 

be called the definite coefficient ease, as the coefficients of the ZDP 

are either realized exactly as specified or not at alla 

M=6 

Figure 3.2.3. Network Illustrating Case (b) 

Case (o) is given special attention here because of its importance 

in classical synthesis techniques. An example is shown in Figure Jo2 0 4 0 

This network is an R,..C ladder which would be obtained by a continued 

fraction expansion synthesis procedure. The element values for such a 

network having been obtained by a classical method, tree-sum equations 

would not in general be satisfied. That is, the coefficients of the ZDP 

are not precisely realized. Rather, each coefficient in the set is 
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multiplied by a constant. If the constant is moved to the right hand 

side of the equations and represented by Xo, the coefficients become 

aQ::: XQ XJ X4 

a1::: XQ X1 X4 + Xo Xz XJ + XQ Xz X4 

a2=XoX1Xz 

b1 = XO X! X3 X4 + XO Xz X3 X4 

b2 = Xo X1 Xz X3 

By introducing the auxiliary multiplier the set now contains five 

equations in five variables and corresponds to case (b). It is shown 

in al.assi.oal synthesis texts (9) that the minimum number of elements 

required to realize a ZDP with a two-element.kind network is one less 

than the number of coefficients and that canonical networks always 

have the minimum number of elements. Thus case (c) includes a large 

class of problems. 

• I T 
2 

a2s + a1s + a0 
Zdp = --------­

b2s. + b1s 

Figure 3.2.4. Network Illustrating Case (c) 

E = 4 

M = .5 
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Not all networks in case (c) are canonical, howevero One such example 

is shown in Figure J.2.5. 

E = 5 

M = 6 

Figure Jo2.5. A Second Example of Case ( c) 

An example of the last condition, case (d), is Figure Jo2.6o 

Here, as in case (c), an arbitrary multiplier could also be introduced. 

I T 
E = 4 

M = 6 

Figure 3.2.6. Network illustrating Case (d) 



It will be shown in Chapter rl that a solution for the tree-sum 

equations ean be obtained for each case above. Examples will be pre­

sented. 

3.3 Non-unique Solutions of the Tree-sum Eguationso While the 

elimination procedure to be presented will yield all of the solution 

sets, some special cases are now considered. These are applications 

of the theory of substitutions as described by Netto (16). The form 

of an equation is usually altered by an interch~ge of the variables. 

The process of changing the variables is known as substitution, a 

subject of mathematical interest since the early 1700•s. There are 

some oases, however, in which a substitution leaves the equation in­

variant or unchanged. These are of particular interest here. The 

network shown in Figure 3.3.1 is used as an example. 

Figure 3.301. Network Illustrating Substitution 

The tree-sum equations for this network are: 
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ao = X1 + X) 

a1 = X2 + X4 

bo = X! X.3 

b1 = X1 X4 + ~ X3 

b2 = X2 X4 

They are invariant with respect to the substitution of x3 for x1 

and ~ for x2 • Such a substitution is el.early a result of re­

labeling the elements in the network. More complicated equations, 

however, do not yield to inspection. An algorithm for finding all 

substitutions that leave the tree.sum equations invariant could be 

programmed for the computer. 

4.5 



CHAPTER r/ 

SOLUTION OF TREE-SUM EQUATIONS 

BY ELIMINATION 

4o1 Backgroundo Electrical engineers have determined the 

gener&l solution to a number of circuit design problemso For exam= 

plej the equations and the procedure for the design of a cathode fol­

lower amplifier are well knowno To obtain such a design technique, 

the engineer writes the equations or relations between the variables 

of the problem and then m,mipuJ.ates them by trial and error until the 

elements to be determined are explicit in terms of the specified 

quantitiesQ In the driving-point impedance synthesis problem dis­

cussed here the tree-sum equations relate the specified ZDP coeffi-

cients to the elements of the network~ and the elimination procedure 

to be described is a formal method for solving these equationso 

The procedure is illustrated for the elementary circuit in 

Figure l+o1o1 9 and the concept of elimination is introducedo The ZDP 

is represented by the form 
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Figure 4o 1o 1o Elementary Cir.cui t to Illustrate Elimination 

and the tree-su..~ equations are 

ao = JCo x1 + XO Xz 

at = XO x.3 

bo = XO x1 X2 

b1:::: XO X1 X3 

47 

4.1., 2 

4.1.3 

4.1 .. 4 

4o1o5 

The auxiliary variable x0 is eliminated by solving 4.1o3 and substi­

tuting into the other equations. The reduced set of three equations 

in three unknowns is 

~ a0 x3 + a 1 x1 + a1 x2 = 0 

= bo X) + a1 Xi X2 = 0 

= b1 + X1 a1 = 0 

4o1.6 

4o1o7 

4.1.8 

Equation 40108 is now solved for x1 and this variable is eliminated 

from the re:nmining two equations. 

= ao x.3 + b1 + a1 x2 = O 

= bo X.3 + b1 X2 = 0 



Upon substituting ~ from Equation 4.lolO into 4o1o9, an equation 

in the variable x3 is obtained. 

By eliminating one variable in each step, four sets of equations resulto 

Note that the last equation contains a single variable x3 9 while the 

next to the last set contains x2 and x3 9 etco Since Equation 

4.1.11 was obtained by solving 4olo10 for x2 and substituting into 

4.1.9j the same value of x2 will satisfy both equations. A corres­

ponding statement is true for x1 and Xo o 

If the ZDP to be realized is specified as 

J s + 7 
s + 2 

Equation 4.1.11 becomes 

and 

Now substituting into the other equations, the other element values 

are found. 

~ = 2o0 

Xt = O.JJJ 

xo = JoO 

This procedure is quite genera.la Each equation in the redueed set 

is called an eliminant of the previous seto 



4.2 'rh~liminaE.b,_ The eliminant was studied by mathematicians 

in the early 1:700~ s. Euler f:lrst described the eli.minant in terms of 

syrr!llletric functions 1.n his Berlin Memoirs in 1748. This is foundation 

for the discussion to follow. Both Bezotit and Euler developed easier 

:.w~rthod.s for determining the eli:minant and some of its properties. 

Salmon (17) has published a review of this early work which oan be 

consulted for more historic detail. 

J2..6§>.f.inition 4.2.1 (Eliminanili The eliminant of two equations is a 

function F such that ii' F = 0 , the two equations have at least 

one common root. 

The term resultant is used to mean the same thing as eliminant. 

:tt is always possible to obtain the elimina.nt of two polynomials. 

'!'his is shown by considering the following two equations. 

G(x) ~·o = o 4.2.1 

m m~1 
H(x) = bm x + b:r11-,1 x + ••• bo = O 4 .. 2.2 

It liid,ll be assumed th..t'oughou.t this discussion that the coefficients 

:rwiy be functions of other variables. G(x) is identified as the tool 

equation and :i:ts n roots denoted by x1 ~ x2 9 • o. ~ • If at least 

ona 1."Jf these roots~ for example xi , solves H(x) 9 

0 

7.'he p:roduct 
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must also be zero. In fact9 by definition, the product is zero only 

if at least one ~ is a root of H(x). 

This product is a symmetric polynomial of the variables x1 , 

x2 , •• e ~ since the form of the equation is not changed by inter­

changing any two variables (Theorem A.1.1). A brief discussion of 

symmetric polynomials is presented in Appendix A. Note that the func~ 

tion F is a polynomial in the coefficients of H(x) and the rootse 

According to the fundamental theorem of symmetric polynomials (A.Je1), 

this equation can be expressed as a polynomial in the elementary 

symmek~2 functions. Howe·ver 9 these are ratios of coefficients of the 

polynomial with roots x1 ~ x2 9 ••• ~. Thus F is a polynomial of 

the coefficients of G(x) and H(x) and is by definition the elimi .. 

nant. 

The elirninant can be computed for two equations using the prin-

ciples outlined above and in the append.ix. If m and n are greater 

than 2 9 however, the computation is very tedious. Sylvester has de~ 

scribed a method to obtain the eliminant from a determinante The 

author has implemented this prooedure on a digital computer and used 

i.t to solve the examples to followo 

equation is a special type of polynomial equation in n variablese 

This discussion will deal with a. system of polynomial equationse 

Definition 4.J.1 (Pclynomial)g A polynomial in n variables is de= 

fined to be an equation of the form 

N 
= ~ 

j=l 
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is a constant (real or complex) and is the product 

M" 

%j :.;:: rr o(k 
x~ 

k=l k 

The elimin'1-tion procedure is now applied t.g a system of m eqwar., 

t:ioms in n un.tmowns to determine a reclue:~9; ~ of equations o A 

tool equation is selected from the m equations. The equation of liYW= 

est nonc,zero degree in the variable to be elimin.ated 9 called the 

ceed with mininm.m efforto m=l eliminants 1...re now formed between the 

equation and each of the other m=i equations. The eliminants 

are called the reduced systems. 

satisfied if and only :if an ~objectY v:ariable solution to the system 

(i.f o:ne exists) is a ri::Dot of the tool equatfono 

fr-92!g By definition the elimirnmt is zero if and only if there is a 

equa U.,;'.))n &rn.d one of the remaining m= 1 

'rl1e theorem does 

equ.a tions are se,»lut:ions, bu.t if a 

is of first degre(=; ix.1 the 0 oibject0 n1.riable9 it has one root and 

this 
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f!:.'29.fl Sin@e the lflp1 eliminants are all satisfied~ a common root 

exists between the tool equation and each of the other equations in the 

original seto But the tool equation has only one rooto Thus it is a 

root of each equation in the systemo 

If the tool equation is of degree greater than one9 each root is 

a possible solution and is checked by substituting into each of the 

other equati(l)ns of the seto If none of the roots satisfy all of the 

equations, the original set is inconsistento That is, no value of the 

Oo,bject 0 variable solves all of the equationso More than one root may 

satisfy them allo Then the solution of the system is not u.niqueo This 

condition is illustrated in a later sectiono 

The foregoing discussion is now applied to find the complete solUc. 

tion to a set of equationsa The case in which n equations in n 

varia,bles are to be solved is considered firsto 

P191 (xp ~~ 0 0 0 ~) = 0 

P192 (X19 X29 00 0 ~) 
:::: 0 

0 

0 

0 

P1 9 n (x19 X20 ooo ~) = 0 

The variable x1 is t4::il be eliminatedo A tool equation is sele©ted 

.rald the redu~ed system c~ntaining n=.1 equations in n=1 variables 

is formedo 
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0 

0 

0 

P2 1 (x? 9 x~9 ooo x~) 
9ll= ~ _,, u 

0 

A reduced system is again determined and so on until a system of two 

equations in two unknowns is obtainedo 

The last reduced system is a single polynomial in the unknown ~ o 

0 

The roots of this equation are determinedo Each one is a pois= 

sible solution for the systemo If the degree of the equation is k 9 

there are potentially k or more SQlutfons to the systemo Each ©Jf the 

roots is subs:J:,ituted into the (n,,,1)th systemo Thus 9 each equation 

becomes a polynomial in the single variable ~=1 o The roots of the 

tool equation are calcu1a.ted and checked in the other equations of the 

systemo Those which satisfy it a,re p@dred with the corresponding ~ 

v.alues to form a partial s:oluti<0>n" The substitution now continues t,,g1 

the (n~2)th system and so on until the x1 values from the first 

tool equation are obtainedo This is a ©omplete set of solutions~ as 

can be reasoned from Theorem 4aJo1o In each c~se the m values of x1 

which satisfy the i=th system are j©ined wi.th the values 
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(x, "'~i , x4 +" , • • • x1,) to form a p,artial solution. Nolte th~.t there 
1, I • .,_ t:_, < 

ma.y be more than one set, (xi+1 9 Xi+2 9 and the number 

pa.rt:ial solutions may be multiplied by the degree of the i~th tyiol 

equation at ea.ch step. The Gauss redtrntion method for solving linear 

If the number of va1"1.ables n is greater than the number of 

equations m !) the solu.tit>n is not u.:nique. 'fnis is due tg the fac:t 

the htst reduced system (one equa:tion) 100:nta:il.ns n - m + 1 variables. 

For e:x:ample 9 a system of f:t;re equ~.tlo:ns in eight variables would have 

the variable .?..:ad equation count shown in Table 4o J., 1. 

EQUATION SETS FOR 8 VARIABLES 

Equat:i.on set 

AND .5 EQUATIONS 

N1.i1mber of equa tioru:i 

5 
4 
3 
2 
:I. 

v.ariables 

8 
7 
6 

Clearly n-m. of these varia.bles can be ,assigned arbitrary v~lu.es and 

the remaining variable determined from the roots f!lf the last p@l;rn0i~ 

rr:d.al. The remaining m=1 variables a.re determined by substituting 

ba.ck in:t.o the reduced sets of equations as in the pr.evil(;l)US c:ase. 
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The remaining case to be considered is m) n • A reduction pro= 

cess proceeds as in the previous cases until all n variables are 

eliminated. The last reduced set contains m..,n equations which must 

be identically zero if the system is consistent (Theorem 4.J.1). If a 

solution exists, it is obtained by solving for the variable ~ in 

the (m - n + 1)th set of equations and substituting into successive 

sets as previously describedo 

During the process of eliminating one variable from a system of 

equations, one or lllOre other variables :may be eliminatedo This implies 

that an arbitrary value may be assigned to these when solving for the 

•object' variable in the tool equation. 

This process of solving sets of polynomial equations ~s superior 

to itera.tion methods in tha.t no estimate of the solution is required to 

st...art the proced1.1re 9 and that all solutions a.re obtained or9 in the c@.se 

of m < n 9 are placed in evidence.. A test for consistency is an aute1= 

matic part of the process. 

!±'!.4 Example. Several examples a.re now presented to illustrate 

the elimination method for solving the tree=sum equations of a networko 

The sets of equations associated with the solution are presented in 

Appendix B. They are written in a form suitable for computer proces­

sing. Each equation is understood to be a polynomial and thus equal 

to zero. Since the equations involve a number of mul.tiplicaticmsll 

the product operator is not printed. It is understood to be present 

between two operands not otherwise connected by an operatoro The 

asterisk denotes exponentiation. In each equation terms of like powers 

of the object variable are colle~ted~ enclosed by parentheses 9 and 
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I 

printed on the line immediately following the variable and its powero 

Each polynomial is delimited by the words BEGIN and ENDo 

An example illustrating case (a) of Section J.2 is shown in 

Figure 4o4.1. This is a non-canonical form of six elements~ having a 

driving ... pcint im.pedanele of the form 

.a1s + ao 

Yt 

The G0 and G1 graphs of this network and their tree lists are 

shown in Figure 4o4o2o 



Graph G0 

. Y1 Yz Y4 

Y1 Y2 Y5 

Y1 Yz y6 

Y1 Y:, Y4 

Y1.Y3 Y5 

Y1 Y:, y6 

Y2 Y:, Y4 

Y2 Y3 Y5 

Y2 Y3 y6 

Y1 Y4 y6 

Y1 Y5 y6 

Y2 Y4 Y5 

Y3 Y4 Y5 

Y3 Y4 y6 

Y4 Y5 y6 

Y2 Y5 Y6 

Figure 4o4o2o Graphs and Tree List for Example 1 

57 



.58 

Thus, representing the v~lue of the i=th element by x1 ~ the tree= 

sum equations are 

a0 = x4 X6 + x.5 x6 

a1 = X2 x4 + Xz X.5 + X2 XE,+ X3 X4 + X3 X.5 + X3 XE, 

b0 = x4 x.5 ~ 

b1 = X1 x4 Xt, + X1 X.5 ~ + X2 x4 X.5 + X2 x.5 X6 + x:, :x:4 X5 

+ x3 x4 x6 

b2 = X1 X2 x4 + Xt X2 x5 + :x1 Xz X6 + x1 X.3,x4 + X1 X3 X.5 

+ x1 X3 x6 + x2 X3 X4 + x2 X3 X5 + Xz X3 x6 

It is convenient to multiply each coefficient by the variable :XO 

as in the canonical case discussed in Section 3~2. Table Bo1o1 shows 

the five tree-sum equations factored in the first object variable Xo o 

Equation 01001 is chosen as the tooil equation and the reduced system 

in Table Bo1o2 obtainedo Note that two of these do not involve the 

second object variable x 1 a Thus 02003 is used as the tool equ.ation 

to derive OJoOJ from 020049 while 02001 and 02002 are factored in the 

third object variable x2 to obtain 0Jo01 and 0Jo02o In the next re= 

duction 0Jo01 does not contain x2 and is thus shifted to the redu~ed 

set without eliminationo 0Jo02 is used as the tool and Xz elimi:nat~ 

ed in Equation OJoOJo x4 is the object variable in the reduced set 

sho-wn in Table Bo1o49 and Equation 04001 is the tool sin~e it is a 

first degree equation in x4 o Either x4 or x5 must be eliminated 

in this step since no other variable appears in both equations,, The 

single equation shown in Table Bo1o5 contains three variables x3 9 

x5 9 and x6 and terminates the reduction sequence" 



The driving~peint impedance to be realized is chosen as 

s + 171 

Choosing 1.2 and .508 for the element value part of x5 and x6 9 

respectively, Equation 05001 in Table Bo1o.5 is 

Its roots are 

Since both are positive real numbers, there are potentially two 
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realizable solutions for the network formo The tool equations are now 

solved for the remaining xvs o The solutions are shown in Table 4o4o1o 

SOLUTIONS FOR EXAMPLE 1 

Variable Solution 1 Solution 2 

xo Oo 19791 0019791 
x1 0003941 000423.5 
x2 0001101 0001601 
x3 0000599 0000100 
X4 4063.507 4063507 
X.5 1020000 1020000 
~ .5080000 5080000 
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Thus two networks with the specified form realize the ZDPo The element 

values are shown in Table 4o4o2o A different choice of x5 and ~ 

could yield a non...realizable set of elementso Hence, proving that a 

specified ZDP cannot be realized by a particular network is more diffi= 

oul t when M < E o 

ELEMENT VALUES FOR EXAMPLE 1 

Element Value 1 Value 2 

C1 0003941 f 0004235 f 
C2 0.01101 f 0001601 f 

C3 0.,00599 f 0.,00100 f 
I R4 0021600 ..n. 0021600 .n. 

R5 0083333 .n. 0083333 .n.. 
R6 Oo.172.50 .n. 0.,17250.n. 

As explained in Chapter III the same solution tecllnique applies 

in both oases (b) and (c)., This is illustrated by realization of the 

network form shown in Figure 4o4o3o 

Figure 4.,4.,30 Network Form for Example 2 
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The graphs and tree lists for this network are presented in Figure 4·,,4.,lJ.o 

Graph Go Graph G1 

Y1 Y2 Y3 Yt Y2 

Y1 Y2 Y4 Y1 Y3 

Y1 Y.3 Y4 Y1 Y.5 

Y1 YJ Y.5 y2 Y4 

Y1 Y4 Y.5 Y3 Y4 

Y2 Y3 Y4 Y4 Y5 

Y3 Y4 Y5 

Figure 4o4.4. Graphs and Tree List for Example 2 

The tree~sum equations are 

aQ:: Xt X2 + X1 X'J 

a1 = x1 x5 + xz x4 + x3 x4 

a2 = x4 x5 

bQ =: Xi X2 X3 

b1 = X1 ~ X4 + X1 X3 x4 + X1 X.3 X.5 + X2 X3 x4 

b2 = X1 x4 X.5 + X3 x4 X.5 

An arbitrary specification of the coefficients could produce an 
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inconsistent systemo Thus in accordance with the discussion in Section 

3o3, each coefficient is multiplied by Xo o The system of equations 

factored in the first 0object6 variable Xo is shown in Table Bo2o1o 

The next variable to be eliminated is x1 ; Equation 02003 is the tool 

equation. Since x4 is the variable of lowest degree in the system 

of equations in Table Bo2o39 it is the 0object0 variable in this seto 

Xz and x5 are eliminated in the next two sets of equationso 

The ZDP to be realized is chosen as 

2 
2 S + 9o55 S + 602 

Substituting the coefficient values, Equation 06o01 becomes 

6 6 7 5 6 4 
- 0.762; 10 XJ + 001207 10 X3 = 004796 10 X3 

5 3 4 2 
+ 008639 10 x3 = 008072 10 x3 

The roots of this equation are 

00095 = j 000066 

00095 + j 000066 

Oo10J = j 000043 

Oo10J + j 000043 

00100 

All are possible solutions but only the last two are positive real 

numbers and thus realizable by passive elementso Each of these latter 
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is substituted into Equations 05002 and 05001 to determine x5 o 

Both roots of Equation 05001 are checked in 05002 and only one is 

found to satisfy the seto Thus for x 3 = Oo1 and 1o97 the solution 

for x5 is 4o0 and Oo3 9 respectivelyo The other tool equations are 

all first degree and the solution straigh"tc.forwardo The two solutions 

are shown in Table 4o4o3o 

TABLE 4o4o3 

SOLUTIONS FOR EXAMPLE 2 

Variable Solution 1 Solution 2 

X1 1o00 OoOOJ 
X2 Jo00 00106 
x3 Oo10 10097 
x4 Oo2.5 00004 
X5 4o00 OoJOO 

The element values for the network are easily obtained from the solu= 

tiono 

A network illustrating case (d) is now <ill©i:nsideredo The ZDP f©>rm 

3 2 a3s + a2s + a1s + a0 
w. J 2 _, 

b3s + bzs + b1s + bo 

is realized by the network form shown in Figure 4o4o5o The Go and G1 

graphs and associated tree lists are shown in Figure 404060 
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Figure 4o4o.5o Network Form for Example 3 

Graph o0 Graph o1 

Y1 Y2 Y3 Y1 Y2 

Y1 Y2 Y5 Y1 Y3 

Y1 Y3 Y4 Y1 Y4 

Y1 Y3 Y5 Y2 Y3 

Y1 Y4 Y.5 Y2 Y4 

Y2 Y3 Y4 Y2 Y.5 

Y2 Y4 Y5 Y3 Y5 

Y3 Y4 Y5 Y4 Y5 

Figure 404060 Graphs and Tree List for Example 3 



The tree-sum equations are 

aQ = X1 Xz + X2 X3 

a1 :: xi X3 + X2 ~ + Xz X5 

a2 := Xi X4 + XJ X5 

a3 ::::: X4 X.5 

bo = X1 Xz X3 

b1::: xi Xz X.5 + Xz X) ~ 

b2 = Xj_ X3 x4 + x1 X3 X.5 + X2 :xq, X.5 

b) ::::: X1 X4 X.5 + XJ X4 X.5 

6.5 

In this case there are eight equations and five variableso As disq 

cussed in Section 4.39 eliminating the five variables will yield a 

set of three equations in the coefficients which must be satisfied 

identically if the system is consistento This means that the eight 

coefficients of the ZDP form cannot be specified independentlyo In 

this example the four denominator coefficients and a3 are specified 

and the others are left to be determined by the network formo By doq 

ing this, the possibility of specifying an inconsistent set of ~oeffi~ 

cients is avoided. 

The five equations to be solved are shown in Table Bo3o1 expli~it 

in the first 9 object~ variable x1 o The elimin~tion pr~~eeds as in 

the previous exampleso 

The specified coefficients are now assigned valueso 

£!'3 = 600 

bo = 7o5 

b1 = JOoO 
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b2""' 37.,5 

b3 = 1.5o0 

The first Equation 05.01 to be solved becomes 

+ 009112.5 108x/0 = Oo 18225 1.07 x,9 + 0.10320 rn8x5 8 

8 7 . . 9 6 10 5 
+ 0.29046 10 X5 - 0050260 10 X5 + 0019259 10 X.5 

10 4 10 3 10 2 
.. 0oJ01.,56 10 X5 + 00104.,56 10 X5 + 0.2229t 1.0 X.5 

10 9 
- 0023620 10 x, + 0070859 10 = 0 

The ten roots of thi.s equation are 

0.62815. j 0.27444 

0.6281.5 + j Oo27444 

8.02083 ,,,. j 3 • .50~-36 

8.02083 + j 3.50436 

... 0.93392 

... 6.42452 

1.896.3.5 

2000000 

3.16394 

3.,00000 

Only the last four values can be realized by passive eleme:ntsa Tl:n1s: 

the other possible solutions are ig:noredo Ea~b. I"QJOJt to be considered 

is substituted into Equation 04a02 and a i:'lorrespcmding value for x4 

determined. The second order Equation 03.02 was used as the tool in 

Table BoJ.3. Its roots must be checked in Equation 0Jo01 9 and in ea~h 
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case, one of the roots fails the testo Tha remaining x 0 s are deter= 

mined by direct solution of the tool equationso The four realizable 

solutions are shown in Table 4o4o4o The unspecified coefficients are 

calculated from the appropriate tre0=sum form and also displayed in this 

table. 

This network form is now used to demonstrate the test for realiza.,. 

bility. The ZDP shown below has a form which is realized by the network 

topology, and it is a positive real functiono 

SJ+ 2s2 + s + Oo2 

Zdp = ==;3 + 5s2 += 9s + .5 

To test the possibility of realizing the coefficients of this function 

by the network form, the four denominator coefficients and a3 are 

substituted into Equation 05o01o All ten of the r0>ots are found to be 

complexo Thus the specified ZDP cannot be realized by this network 

form .. 



X5 ~ x3 

1.896 J.164 1 .. 170 

10012 

2.000 JoOOO 1o250 

1.000 

30164 1o896 1.487 

1o329 

30000 2.000 1.500 

1.250-

TABLE 4.4.4 

SOLUTIONS FOR EXAMPLE 3 

~ X! ao 

(does not satisfy 03.01) 

-40979 10487 12.449 

(does not satisfy 03.01) 

.50000 1 .. .500 120.500 

4 .. 979 1o012 120449 

(does not satisfy 03.01) 

5.000 1.000 12.500 

(does not satisfy OJ.01) 

a1 

26.706 

26 • .500 

26.705 

260.500 

a2 

6.626 

6.500 

60626 

6.500 

°' (X) 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5o1 Summaryo The subject of this thesis is to make the topolo= 

gical properties of the network one of the specifications for a syn= 

thesis procedure" Experience has shown that there are realizability 

conditions on the topology just as there are on the coefficients of 

a network functiono These conditions are known to be related to the 

form of the driving-point impedance function as well as the value of 

the coefficientso Thus two separate aspects of the topological synthe= 

sis of driving=point impedances are consideredo 

The relations between the form of the ZDP and the topology are 

·examined by considering two questions: 

(a) What are the conditions relating the form of the driving= 

point impedance and the network topology? 

(b) How may these conditions be used in topological synthesis? 

The network topology is represented by the linear grapho As the trees 

of the graph are known to determine the form of the ZDP~ they are the 

foundation of the discussiono The ZDP form is charac:terized by six 

attributes, and the ·conditions relating the form of the ZDP and the 

network topology are specified in terms of these attributeso · Table 

2o5o1 presents the conditions by classifying the network in terms of 

its a.ttributeso 
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The relations in Table 2o5o1 are used to develop a classification 

of the uncountable number of networks realizing a specified funotiono 

Using Table 20601 9 the designer may determine network forms realizing 

a specified ZDP formo This olassifioation is not unique and could be 

altered to include topological parameters .of specific interesto 

The relation between the value of the ZDP and the topology are 

studied by developing a procedure for answering the following questionsg 

(a) Can a specified network form realize a specified function 

value? 

(b) What are the network element values? 

The tree-sum equations contain the information soughto 

A procedure for solving the tree-sum equations of any network is 

qeveloped~ It is shown that by a process of eliminati~n the value of 

each element in the network can be determined for a specified ZDP 

valueo Several classes are considered and examples presented to illus= 

trate themo 

5o2 Conclusionso A procedure for synthesis of a driving=point 

impedance with specific topological properties is discmssedo The metkk 

od involves testing for realizability the network forms having the de= 

sired properties, and thus is basically a 0 cut and tryu pro@edureo 

This appears to be characteristic of the problemo The author @on= 

jectures that any test for realization will involve solving the treeQ 

sum equations 9 either directly or indirectlyo Since the form of the 

network must be known before the equations can be determined 9 a topol= 

ogy must be assumed and testedo 

Other network functions can be related to the network form by 
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tree~sum equationso Thus the realization technique described here can 

be readily extendedo 

5o3 Suggestions for Further Stud..y and Developmento The use of 

the table classifying all networks realizing a given ZDP is a subject 

for future study .. In particular9 the known relations between the ranks 

RLd., RLs, RCd 9 Res 9 RLCd are unsatisfactory., An algorithm might 

be found for determining all of the three=element...~ind networks having 

deleted and shorted graphs with specified rank; such an algorithm 

would be useful here 9 and wuld also be significant in the general 

theory of linear graphso 

The author has developed two computer programs for use in the elilll,.. 

ination processo As these were to be used for solving the examples9 

they are elementary l) but they have shown that such programs can be use= 

fulo A detailed study of the algorithm to determine efficient proce= 

dures and data structures would be challengingo The final step would 

be to implement a complete computer program for solving a system of 

polynomialso Such a progr~ would be valuable in other fields of en= 

gineering and science" For example9 equations of the type solved here 

occur in mechanical design problemso 

The relation of the netW(!)rk forms and fun@ti@n f@rms for other 

types of network functions (transfer adm.ittan~ep voltage gain~ et@o) is 

a subject for investigationo As these funoti@ns inv@lve b@th the addi= 

tion and subtraction of tree admittance produots 9 the necessary and 

sufficient conditions developed here for the ZDP will not applyo Equa= 

tions similar to the tree=sum equations have been developed for active 

networkso Thus a logical extension wc»uld be to tpe synthesis of this 
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class of networkso 

Of particular interest is the possibility of realizing several 

specified functions by a single synthesis pr~oedureo For example 9 

using the elimination procedure desoribed9 equations relating the CO= 

efficients of the driving=point impedanoe9 voltage gai!l.9 and output 

impedance of a network can be derivedo Thus if a circuit designer 

wished to specify several funotions to be realized9 he could test a 

particular network form, then solve for the element valueso Investi= 

gation of this topio 9 however9 will require a sophisti~ated ~omputer 

system to solve the equationso 

The author is quite intrigued with the possibility of statisti= 

cal circuit design using the realization techniques desoribed hereo 

If a circuit designer can specify the distributions of the coefficients 

of a network function or some property from which these can be obtained.9 

it may be possible to determine the distribution of the element values 

by a Monte Carlo methode 
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Af!PENDIX A 

SYMMETRIC POLYNOMIALS 

Ao 1 Definition =of..~- Symrn2J,£..~.:t.l~nomiia..:b. There are several 

excellent references on symmetri!Cl polynomidLals and symmetri!Cl fun(Cltic.ms 9 

as this has been a subjeio:t of miitthem.at,ic:al investigatio:n since the 

1700°so Texts by Uspensky (18) and BO>oher (19) are modern reviews of 

this worko The pertinent parts of the theol"'Y ia,re dis~ussed beltll'Wo 

Definition Ao 1.1 ( Symmetric Polynomials) A polyr:1omial is said to be 

symmetric in the variables x1 ~ x29 o o o ~ if ii~ is unc:himged by e'f!ery 

substitutionQ 

Thus the study of symmetric polynomials is a pa.rt of the general 

theory of substitutions. An e~sier test for~ sym.metrilCl polynomial is 

desirableo 

Theorem Ao1o1i A polynomial is symmetri© if an inter~hange of every 

pair of variables leaves its f mrm uruiih~.ngedo 

Proof: All substitutil!;ilns can be obtalned fr01m (x19 ~ 9 ooo '\'ll) by 

a sequence of interi:llhanges of two va:i:•iables o Thus if every inter©h~nge 

leaves the form unaltered9 any substitutitm could be madeo 
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Definition Ao2o1 (Sigma fun1;;tions) The sigma function denoted by 

=Im 
000 X:rn is the sum of the term xi' 

and all similar termso 

For example, if there are four varia,bles 9 

ix1 
2 2 2 

X2 = x1 X2 + :x:i :x3 + x1 x4 

2 2 
X2 X1 + Xz X) + X2 x4 

2 
XJ X1, + X) x 

2 
2 ,t, X) x4 

2 2 
X4 Xi + X4 X2 + X4 X) 

2 

"' t:., 

2 

2 

As background for the fundament.al t.heorem9 the sigma functions a.re n(Jw 

related to a syrametric polynomialo 

Theorem Ao2o 1: A symmetric polynomial i.s a linear combinati,QJn of 5,igma 

functions" 

nomial is symmetric: 9 all similar terms must be present and preceded by 

the same constanto These may be replaced by the sJLgma. 

term. 

A second symmetric function is defined and related tlJJ the syrmuet:ri~ 

polynomial by the sigma functiono 

Definition Ao2o2 (Sum of Powers) The sum of powers function Sk is 

defined by the equation 
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Theorem Ao2o2: A symmetric polynomial can be expressed as a polynorni~l 

in the sum of powers function So 

Proofg It will be shown that the sigma functions can be expressed as a 

polynomial in So This theorem is then prgved utilizing its counterpart 

for sigma functions 9 Theorem Ao2o1o 

and 

The two functions of n variables 

S71. 

x.(9 
2 0 0 0 

x'i< 
k (k < n) 

are multiplied togethero The result is the symmetric form 

0 0 0 4<J 0 0 0 

0 0 O 

The constants result from sums (l).f terms and are p!'.l>sitive integerso 

Rearranging the equation8 a re~urren©e formula for a sigma fum.~ti©n of 

higher order is obtainedo 

~xr x8 1< "' ~ C:.1 {c i xf x.e x; )o SA. 2 o o o xk Xk+1 2 0 0 0 

C ! c/-1-A id 
~ = C2 

2-_ ,,i ie-1-A i( 
1 Xi X2 0 0 0 X1 X2 000 ~ 

X+A 
000 ~ 
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Note that the lowest order sigma function 9 i xi_' ll is by definition 

s~. Thus by induction all sigma functions can be written as a polyno= 

mial in. s. 

The coefficients of a polynomial are symmetric functions of the 

roots, called elementary symmetric functionso 

Definition Ao2o3 (Elementary symmetric functions) The elementary s~ 

metric function fk of n variables is 

The nth order polynomial is represented by the product of its n 

factors. 

When these factors are multiplied9 the equation becomes 

n na.1 
~ x + ~-1 x + 0 0 0 ao ;: 

' i 

~ {x11 -(x1 + x2 + o o o Xn,)x11"'1 + (x1~ + x1x3 + o o o )xn""2 

+ ooo (=1)n XiX2 ooo x.n} 
and upon substituting the elementary fun©tions 

f n f n=1 .JL f n=2 ( 1 )n } ~ l x = 1 x ~ 2 x = ooo = · fn 
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Thus 

f1 = ... ~1 A .. 2 .. 1 
an 

f2 = i.n .. 1 

an 
0 

0 

0 

f = ao 
n an 

A.3 Fundamental Theorem of. Symmetri~ Polynomialso 

Theorem Ao3o1: A symmetric polynomial oan be expressed as a polynomial 

in the elementary symmetric functicms o 

Proof: It will be shown that the sums of powers function 51t can be 

written as a polynomial in the elementary symmetric functionso The 

theorem9 then,. follows directly from Theorem Ao2o2e 

A polynomial 

G = (x - x1) ( x "" x2 ) " o o (x ... ~) 

of n + 1 variables is defferentiated with resp~ct to x and re= 

arranged in the form 

ao 
'c) x 

G is now written in elementary function f~rm. 

and divided by (x - Xi.) to obtain 

G n..1 na.2 2 na.3 
(x _ ~) = x + (~ - f1)x + (Xj_ = ft xt + f2)x + ooo AoJo2 
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Differentiation of the elementary function form yields 

Now replaoing each term in Ao3o1 by an appropriate form of Ao3o2 

a G n-1 ( ) n...2 ( ) n=:3 
O x = nx + .. St ... nf 1 x + s2 = f 1 S2 + nf 2 x + o o o 

Equating like terms in Ao3o3 and Ao3o4 yields 

0 

0 

0 

or upon rearranging 

0 

0 

0 

An additional general equation involving sums of powers greater than 

order n - 1 is obtained by multiplying each identity 

k-n by xi and addingo The result9 upon substituting S9 is 
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(k '> n) 

The equatio.ns derived above are known as NewtGn°~ formulaso When they 

are solved, S is written as a polynomial in the elementary symmetric 

functionso 

0 

0 

0 

Thus the theorem is provedo 

The coefficients of the polynomial of elementary symmetric fun~ 

tions in the theorem above are rational integer functions of the ©oef~ 

ficients of the original symmetric polyn®mialo This results from the 

fact that the multipliers of the sigma functions (Theorem Ao2o1) are 

coefficients of the symmetric polynomialo 



APPENDIX B' 

EQUATIONS FOR EXAMPLES 

Bol EQUATIONS FOR EXAMPLE lo 

BEGIN 
XO*l 
I-All 
XO*O 
l+X4 X6 +XS X6 I 
END 

BEGIN 
XO*l 
1-AOI 
XO*O 

TABLE Bolol 

EXAMPLE 1 
EQUATION SET 1 

(+X2 X4 +X2 XS +X2 X6 +X3 X4 +X3 XS +X3 X6 I 
END 

BEGIN 
XO*l 
1-821 
XO*O 
l+X4 XS X6 I 
END 

BEGIN 
XO*l 
1-Bll 
XO*O 
l+Xl X4 X6 +Xl X5 X6 +X2 X4 XS +X2 XS X6 +X3 X4 XS +X3 X4 X6 I 
END 

BEGIN 
XO*l 
1-BOI 
XO*O 
l+Xl X2 X4 +Xl X2 XS +Xl X2 X6 +Xl X3 X4 +Xl X3 XS +Xl X3 X6 +X2 X3 X4 
+X2 X3 X5 +X2 X3 X6 I 

END 

82 

01.01 

01.02 

Olo03 

01.04 

01.os 



BEGiN 
::1•0 
c+a2·x~ +82 XS -Al X4 XS I 
END 

TABLE B.1.2 

EXAMPLE i 
EQUATION SET 2 
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02.01 

BEGIN 02e02 
Xl*O 
C+B2 X2 X4 +82 X2 XS +82 X2 X6 +82 X3 X4 +82 X3 XS +82 X3 X6 -AO X4 XS X61 
END 

BEGIN 
Xl*l 
(-82 X4 X6 -82 XS X6 
Xl•O 
C+Bl X4 XS X6 -82 X2 X4 XS -82 X2 XS X6 -82 X3 X4 
ENO 

BEGJN 
Xl*l 
C-B2 X2 X4 -82 X2 XS -82 X2 X6 .. 52 )(3 X4 ·B2 )(3 XS 
X}*O 
C+BO X4 XS X6-B2 X2 X3 X4 -02 X2 X3 XS .-62 X2 X3 
END 

6EG1N 
X2*0 
(+62 X4 +62 XS -Al X4 X~ l 
END 

8EGtN 
XZ*l 
11-62 X4 +82 XS +82 X6 I 
X2*0 

TABLE 8.1~3 

EXAMPLE l 
EQUATiON SET 3 

(+62 X3 X4 +62 X3 XS +82 X3 ><6 ~Ao X4 XS X6 l 
IND 

BEGIN 
X.2*2 

XS -B2 X3 X4 X6 

-B2 X3 X6 I 

)(6 I 

t-82 X4*2 XS -B2 X4 xs•2.-2 B2 X4 XS X6 -B2 X5*2 X6 •82 XS X6*2 I 
XZ*l 
C+Bl X4*2 XS X6 +Bl X4 xs,2 )(6 +Bl X4 XS X6*2 -2 B2 X3 X4*2. XS 
-2 B2 X3 X4 XS*2 -z B2 X3 X4 X5 X6 l 

X2*0 

I 

l+Bl X3 X4*2 X5 X6 +Bl X3 X4 X5*2 X6 +Bl X3 X4 X5 X6*2 -82 X3*i! X4*2 XS 
-62 X3*2 X4 X5*2 -2 82 X3*2 X4 XS X6 -82 X3*2 X4*2 X6 -~2 X3*2 X4 X6*2 
-BO X4*2 XS X6*2 -BO X4 X5*2 X6*2 I 

END 

02.04 

03.0l 

03.02 



BEGIN 
X4*1 
1+62 -Al XS 
X4*0 
1+62 XS 
END 

TABLE B.1.4 

EXAMPLE 1 
EQUATION SET 4 
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BEGIN 04.02 
X4*4 
I-A0*2 XS*3 X6 +AO Bl XS*2 X6 -62*2 X3*2 -BO 62 XS X6 I 
X4*3 
1-4 62*2 X3*2 XS +2 AO 62 X3 XS*2 X6 -A0*2 XS*4 X6 -2 A0*2 X5*3 X6*2 
+2 AO Bl X5*3 X6 +2 AO Bl XS*2 X6*2 -3 82*2 X3*2 X6 -3 BO 62 XS*2 X6 
-2 BO 62 XS X6*2 I 

X4*2 
1-6 62*2 X3*2 XS*2 +4 AO 82 X3 XS*3 X6 +4 AO 82 X3 XS*2 X6*2 -A0*2 XS*4 X6*2 
-A0*2 XS~3 X6*3 +AO Bl XS*4 X6 +2 AO Bl X5*3 X6*2 +AO Bl XS*2 X6*3 
-9 62*2 X3*2 XS X6 -3 BO 82 XS*3 X6 -3 B2*2 X3*2 X6*2 -4 BO 62 XS*2 X6*2 
-BO 62 XS X6*3 I 

X4*1 
1-9 Bi*2 X3*2 XS*2 X6 -6 B2*2 X3*2 XS X6*2 +2 AO 62 X3 XS*4 X6 
+4 AO 82 X3 XS*3 X6*2 +2 AO 62 X3 X5*2 X6*3 -4 62*2 X3*2 XS*3 -BO B.2 XS*4 X6 
-2 BO 62 XS*3 X6*2 -62*2 X3*2 X6*3 -BO 62 XS*2 X6*3 I 

X4*0 
1-82*2 X3*2 XS*4 -3 82*2 X3*2 XS*3 X6 -3 82*2 X3*2 X5*2 X6*2 
-82*2 X3*2 X5 X6*3 I 

END 

TABLE a.1.s 

EXAMPLE 1 
EQUATION SET 5 

BEGIN os.01 
X3*2 
I-Al*4 X5*6 +3 Al*3 82 X5*4 X6 -3 Al*4 XS*S X6 +6 Al*3 82 X5*3 X6*2 
-3 Al*4 X5*4 X6*2 +Al 82*3 X6*3 -3 Al*2 82*2 X5 X6*3 +3 Al*3 62 X5*2 X6*3 
-Al*4 X5*3 X6*3 -3 Al*2 B2*2 XS*2 X6*2 l 

X3*1 
1-2 AO Al*2 62 X5*5 X6 +2 AO Al*3 X5*6 X6 +4 AO Al B2*2 X5*3 X6*2 
-8 AO Al*2 62 X5*4 X6*2 +4 AO Al*3 X5*S X6*2 -2 AO 82*3 XS X6*3 
+6 AO Al B2*2 X5*2 X6*3 -6 AO Al*2 82 XS*3 X6*3 +2 AO Al*3 XS*4 X6*3 

X3*0 
C-Al*3 BO X5*6 X6 +2 Al*2 BO 62 X5*4 X6*2 -2 Al*3 BO X5*5 X6*2 
~Al BO 82*2 XS*2 X6*3 +2 Al*2 BO 82 X5*3 X6*3 -Al*3 BO X5*4 X6*3 
+A0*2 62*2 X5*4 X6*2 -A0*2 Al*2 X5*6 X6*2 -A0*2 62*2 XS*3 X6*3 
+2 A0*2 Al 82 XS*4 X6*3 -AQ*2 Al*2 X5*5 X6*3 +AO Al*2 Bl XS*6 X6 
-2 AO Al Bl 82 X5*4 X6*2 +2 AO Al*2 Bl XS*5 X6*2 +AO Bl 62*2 XS*2 X6*3 
-2 AJ Al Bl 82 X5*3 X6*3 +AO Al*2 Bl XS*4 X6*3 -A0*2 Al 82 X5*6 X6 I 

END 



Bo2 EQUATIONS FOR EXAMPLE 2. 

BEGIN 
XO' l. 
1-AOI 
xo•o 
l+Xl· X2 +Xl X31 
END 

BEGIN 
xo•1 
I-Al) 
xo•o 
(+Xl X5 +X4 X2 +X4 X31 
END 

BEGIN 
xo•l 
I-A21 
xo•o 
l+X4 X51 
END 

BEGIN 
XO'l 
1-BOI 
xo•o 
l+Xl X2 X31 
END 

BEGIN 
XO'l 
1-Bll 
XO•l 

TABLE B.2.1. 

. EXAMPLE 2 
EQUATION SET 1 

l+Xl X2 X4 +Xl X3 X4 +Xl X3 XS +X2 X3 X41 
IND 

BEGIN 
X0 1 l 
(-821 
xo•o 
l+Xl X4 XS +X3 X4 X51 
END 

8.5 

01.01 

01.02 

01.03 

Ol.04 

01.os 

Ol.06 



BEGIN 
Xl•l 
I-A2 X2 
Xl•O 
l+AO X4 
END 

REGIN 
>: 1 • 1 
1-A2 X'.J 
Xl•O 
(+Al X4 
END 

BEGIN 
Xl'l 
I-A2 X2 
Xl IQ 

(+BO X4 
END 

BEGIN 
Xl' 1 
I-A2 X2 
Xl'O 
l+Bl X4 
END 

BEGIN 
X 1 I 1 
(-A2 
Xl•O 
(+82 -A2 
END 

-A2 X3 

X5 I 

X5 -A2 X2 X4 -A2 X! X4 

X3 

X5 

X4 -A2 X3 X4 -A2 X3 X5 

X5 -A2 X2 X3 X4 ) 

X3 ) 

, 

, 

TABLE Bo2o2 

EXAMPLE 2 
EQUATION SET 2 

86 

02.01 

02.02 

02.03 

02.04 

02.05 



BEGIN 
X4•0 
(+BO X2 +BO X3 -AO X2 X3 I 
END 

BEGIN 
X4•0 

TABLE Bo2o3 

EXAMPLE 2 
EQUATION SET 5 

(+BO xs•2 -Al X2 X3 X5 +A2 X2•2 X3 +A2 X2 X3•2 I 
END 

BEGIN 
X4'1 
1+80 X2 XS +BO X3 X5 I 
X4•0 
1+80 X3 X5'2 -Bl X2 X3 X5 +A2 X2•2 X3 1 2 I 
END 

BEGIN 
X4'1 
l+BO X5 
>'.410 
(-82 X2 X3 +A2 X2 X3 1 2 I 
END 

BEGIN 
X2 '1 
(+BO -AO X3 
x2•0 
l+BO X3 
END 

BEGIN 
x2•2 
.1+A2 X3 
X2 '1 
I-Al X3 X5 +A2 X3 1 2 I 
x2•0 
l+BO X'i 1 2 
END 

BEGIN 
x2 1 2 
1-82 
x2 1 1 
l+Bl X5 -B2 X3 +A2 X3 1 2 
x2 1 0 
I-BO X5'2 I 
END 

TABLE Bo2o4 

EXAMPLE 2 
EQUATION SET 4 
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03001 

03002 

03003 

03004 

04001 

04.02 

04.03 



BEGIN 
X5t2 
1+80 12 .-2 AO BO X3 .+A0•2 X312 I. 
XS•l 
l+Al BO X3 12 -AO Al X3'3 
xs10 
l+AO A2 X3•4 
END 

BEGIN 
X5•2 
1-80 1 2 +2 AO BO X3 -A0 1 2 X3 1 2 I 
X5•1 
I-BO Bl X3 +AO Bl X3 12 I 
xs•o 

. TABLE B~2.S 

EXAMPLE 2 
EQUATION SET 5 

I-A2 BO X3'3 -AO 82 X3 13 +AO A2 X3 14 I 
END 

TABLE 8.206 

EXAMPLE 2 
EQUATION SET 6 
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os.02 

BEGIN 06001 
X3•6 
1+4 AOt6 A2•2 -A0 1 5 Al•2 A2 I 
x315 
1-20 A0 15 A2•2 BO -4 A0 16 A2 82 +5 A0 1 4 Al 12 A2 BO +A015 A1•2 82 
X3'4 
1+41 A0 1 4 A2•2 eo•2 +18 A015 A2 BO 82 -A014 Al A2 BO Bl -10 A013 Al12 A2 8012 
-4 AOt4 Al 12 BO 82 +A0 15 A2 81 12 -AO•~ Al Bl B~ +A0'6.B212 I 

>.3 I 3 
1-44 AJ 13 A212 80 13 -32 Ao14 A2 80 1 2 82 +4 Ao13 Al A2 Bo12 Bl 
+10 A0 1 2 A1•2 A2 BO•j +6 A0•3 Al12 80•2 82 -4 AQ14 A2 BO 81•2 
+4 A014 Al BO Bl 82 -4 AQ15 BO 82 12 I 

X312 
1+26 A012 A2•2 80 1 4 +28 AQ13 A2 80'3 82 -6 A0•2 Al A2 B0•3 Bl. 
-5 AO Al'2 A2 80 14 -4 A0'2 Al 1 2 BQ13 82 +6 A013. A2 B0•2 B112 
-6 A0•3 Al 80'2 Bl 82 +6 A0 1 4 80 1 2 8212 I 

X31l 
L-B AO A2 12 80'5 -12 ·A0 12 A2 8014 82 +4 AO Al A2 8014 Bl +~1•2 A2 80 1 5 

+AO Al'2 8014 82 -4 A0 1 2 A2 80 13 81 1 2 +4 Ao12 Al 80 1 3 Bl 82 
-4 A0•3 80 1 3 82•2 I . 

X3•0 
l+AO A2 0014 81 12 -Al A2 80 15 Bl -AO Al 80'4 Bl 82 +A2•2 8016 
+2 AO A2 0015·02 +A0•2 0014 82•2 I 

END 
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s.3 EQUATIONS FOR EXAMPLE 3. 

TABLE Bo3ol 

EXAMPLE 3 
EQUATION SET 1 

BEGIN 01.01 
Xl*l 
l+X2 X3 
>'.l*O 
I-BO 
END 

BEGIN 01.02 
Xl*l 
l+X2 XS 
Xl*O 
I-Bl +X2 X3 X4 I 
END 

BEGIN 01.03 
Xl*l 
l+x3 X4 +X3 XS 
Xl*O 
1-82 +X2 X4 XS 
END 

BEGIN Ol.04 
Xl*l 
l+X4 XS 
Xl*O 
(-83 +X3 X4 XS ) 

END 

BEGIN 01.os 
I -.A3 +X4 X5 I 
END 



BEGIN 
X2*1 
l+x3*2 X4 I 
X2*0 
l+BO X5 ·Bl X3 I 
END 

BEGIN 
X2*2 
l+X4 X5 
X2*1 
(-82 
X2*0 
l+BO X4 +BO X5 I 
END 

f\EGIN 
>:2*1 
1-83 X3 +X3*2 X4 X5 I 
X2*0 
l+BO X4 X5 I 
ENO 

BEGIN 
I -A3 +X4 X5 I 
END 

.BEGIN 
X3*4 
l+BO X4*2 +BO X4 X5 I 
X3*3 
I-Bl 82 I 
X3*2 
l+Bl*2 X5 +BO 82 X5 I 
X3*1 
1-2 BO Bl X5*2 
X3*0 
1+80*2 X5*3 I 
END 

BEGIN 
X.3*2. 
l+Bl X4 X5 I 
X3*1 

TABLE B.3.2 

EXAMPLE 3 
EQUATION SET 2 

'·/ 

TABLE Bo3;,3 

EXAMPLE 3 
EQUATION SET 3 

I-BO X4 X5*2 -Bl 83 +BO X4*2 X5 I 
X3*0 
l+BO 83 X5 I 
END 

f\EGIN 
C -A3 +X4 X5 I 
END 
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02.01 

02002 

02003 

02004 

03001 

03002 

03.o03 
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TABLE Bo3o4 

EXAMPLE 3 
EQUATION SET 4 

BEGIN 04001 
X4*8 
1+80*3 X5*3 l 
X4*7. 
t-3 80*3 X5*4 
X4*6 
(+2 ·80*3 X5*5 -2 80*2 Bl 83 X5*2 
X4*5 
l+BO 81*2 82 X5*3 +2 80*3 X5*6 I 
X4*4 
1+4 80*2 Bl 83 X5*4 +81*4 X5*4 -2 BO 81*2 82 X5*4 -3 80*3 X5*7 

+BO ijl*2 83*2 X5 +80*2 82 63*2 X5 
X4*3 
l+BO 61*2 82 X5*5 -81*3 62 83 X5*2 +80*3 X5*8 +BO 81*2 63*2 X5*2 
-80*2 82 83*2 X5*2 I 

X4*2 
1-81*3 82 83 X5*3 +BO 81*2 83*2 X5*3 -2 80*2 Bl 63 X5*6 ~B0*2 82 83*2 X5*3 
-BO Bl 62 83*3 +60*2 63*4 I 

X4*1 
1-2 BO Bl 82 83*3 X5 +81*2 82*2 83*2 X5 +BO 81*2 83*2 X5*4 +80*2 82 83*2 X5*4 
+2 80*2 83*4 X5 I 

X4*0 . 
<-BO Bl 82 83*3 X5*2 +80*2 83*4 X5*2 
END 

BEGIN 
X4*1. 
t+X5 
X4*0 
t-A3 
END 

04.02 



BEGIN 
X5*10 
C+B0*3 A3*3 
X5*9 
c-2 00•2 Bl B3 A3*2 > 
X5*8 

TABLE Bo3e5 

EXAMPLE 3 
EQUATION SET 5 

C-3 80*3 A3*4 +BO 81*2 83*2 A3 +B0*2 82 83*2 A3 
X5*7 
C+BO 81*2 82 A3*3 -BO Bl 82 83*3 +80*2 83*4 I 
X5*6 
1+2 80~3 A3*5 -Bl*3 82 83 A3*2 +BO Bl*2 83*2 A3*2 -B0*2 82 83*2 A3*2 I 
X5*5 
1+4 BO** Bl 83 A3*4 +Bl*4 A3*4 -2 BO 81*2 82 A3*4 -2 BO Bl 82 83*3 A3 
+61*2 B2*2 83*2 A3 +2 60*2 B3*4 A3 l 

X5*4 
1+2 60*3 A3*6 -61*3 62 83 A3*3 +BO 81*2 63*2 A3*3 -B0*2 82 83*2 A3*3 l 
X5*3 
!+BO 81*2 82 A3*5 -BO Bl 82 B3*3 A3*2 +80*2 83*4 A3*2 
X5*2 
1-3 80*3 A3*7 +BO Bl*2 83*2 A3*4 +80*2 82 83*2 A3*4 l 
XS*l 
C-2 80*2 Bl 83 A3*6 I 
XS*O 
(+"80*3 A3*8 
END 
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