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CHAPTER I 

INTRODUCTION 

The equilibrium phase behavior of complex hydrocarbon systems i s 

of both theoretical and practical interest; theoretical because of the 

need for the development of better correlations for the thermodynamic 

properties of coexisting gas-liquid phases, and practical because of 

the need for vapor-liquid equilibrium ratios and phase densities for 

design calculations and economic studies. 

The vapor-liquid equilibrium ratio for a component in a fluid mix-

ture is defined as the ratio of the mole fraction of the component in 

the vapor phase, y., to the mole fraction of the component in the 
l. 

liquid phase, 

Symbolically, 
, 

x.' l. 
with which the vapor phase is in equilibrium. 

• K. = y./x. 
l. J. l. 

(I-1) 

This equilibrium ratio is generally referred to as the 'K-value'. 

K-values were first evaluated by using a combination of Raoult 1 s 

and Dalton's laws which state respectively that the partial pressure 

of any component in a mixture will equal the vapor pressure of that 

component in the pure state multiplied by its mole fraction in the 

liquid mixture and that the total pressure, P, of a mixture is equal 

to the sum of partial pressures of the components present. 
0 

y. = p. x./P 
l. l. l. 

(I-2) 

1 
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where P = the system pressure 

0 pi= the pure component vapor pressure 

Combining Equations I-1 and I-2 

(I-3) 

There are relatively few systems whose equilibrium relations can 

be calculated from Raoult's and Dalton's laws; and there are a large 

number of industrially important systems whose equilibrium relations 

cannot be predicted from purely theoretical and empirical considerations 

and which must be obtained by direct experimental investigationo 

The experimental determination of a series of vapor-liquid equi-

librium ratios can be carried out either along an isotherm or along an 

isobar. The isobaric data are particularly important in separations 

calculations while the isothermal data are important in petroleum reser-

voir studies. The experimental determination of K-values involves ob-

taining samples of the coexisting liquid and vapor phases which are in 

true equilibrium and the measurement of the concentration of the com-

ponents in each phaseo If useful equilibrium measurements are to be 

made, it is necessary not only to have perfect control of temperature 

and pressure but also an accurate method for the composition assay of 

the equilibirum phaseso 

The increasing importance of natural gas has made the accurate pre-

diction of the phase behavior and composition of produced natural gas 

streams an economic necessity. The work reported here was undertaken 

to develop certain equipment and methods for obtaining accurate K-values 

and phase densities for the components of complex hydrocarbon systemso 

In the following chapters, the prior work in vapor- liquid equilibria 
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of complex systems is reviewed. This review covers experimental methods 

and previous investigations of complex systems. In Chapter III, vapor­

liquid equilibria theory is discussed, especially as it pertains to the 

present work. The experimental apparatus and procedure are described 

next. Chapter VI reports on the development of a gas chromatography 

technique which provides a rapid and economical method for obtaining 

the composition data needed in vapor-liquid equilibrium ratio determi= 

nationso Finally, the experimental data are analyzed and the results 

of correlation work are discussed. 



CHAPTER II 

PRIOR INVESTIGATIONS 

During the past three decades much effort has been devoted to the 

study of the volumetric and phase behavior of pure paraffin hydro­

carbons and of binary and ternary mixtures of these compounds. Many 

of these studies were carried out with the objective of using this 

binary and ternary data to predict the behavior of more complex hydro­

carbon mixtures. The behavior of the simple systems served at one time 

as a qualitative illustration of the probable characteristics of the 

more complex systems found in nature, however, it fell far short of 

requirements for quantitative predictions. 

Concurrently with the study of binary and ternary systems,investi­

gations were made of natural hydrocarbon systems. Many of these 

studies were made in the laboratories of private oil companies. Only 

a few of these studies have been reported in the literature. These 

reported studies will be reviewed chronologically in this chapter 

together with the various experimental methods used in vapor-liquid 

equilibrium studies. Table I lists the references and conditions at 

which measurements were.made of equilibrium phase compositions for 

complex systems including natural gas. 

Experimental Investigations 

In the early 19001 s when the petroleum industry first became 

4 



TABLE I 

EXPERIMENTAL VAPOR-LIClUID E·.;;UILIBRIUM INVESTIGATIONS 

System 

Light Hydrocarbon-Absorber Oil 
Natural Gas-Crude Oil 
Natural Gas-Crude Oil 
Natural Gas-Natural Gasoline 
Natural Gas-Absorber Oil 
Nai;11ral Gas-Distillate 
Gas-Distillate 
Natural Gas-Absorber Oil 
Natural Gas-Crude Oil 
Natural Gas-Hexane 
Natural Gas-Crude Oil 
co2 - Natural Gas-Condensate 
Methane - Kensol 16 
co_ - Natural Gas-Crude Oil c: 
CO - Hz3 - Natural Gas 

6rude and Absorber Oils 
Light Gas-Absorber Oil 
Gas Condensate 
CO ,H2s - Crude Oil 
Na~ural Gas-Crude Oil 
Natural Gas-Natural Gasoline 

OF COMPLEX HYDROCARBON MIXTURES 

Temperature, °F Pressure, psia Reference 

77 
100 

40-300 
85-212 
33-180 
40-200 

300-820 
85 

35-250 
100 

120,200 
100-250 
60-260 
38-202 

100-200 

100-220 
200 
154 
190 
214 

15-3000 
15-3000 

1300-2600 
100-500 
200-4000 
50-700 

125-3100 
1000-8220 

500-1800 
1000-10,000 

500-2900 
10,000-25,000 

600-8500 
200-5000 

500,1000 
500-3000 
700-2500 

1000-6000 
1130-3192 

30 
57 
24 
25 
70 
51 
72 
27 
63 
19 
52 
41 
54 
43 
21 

61 
23 
69 
14 
26 

Year 

1933 
1934 
1937 
1940 
1941 
1941 
1942 
1943 
1944 
1945 
1945 
1946 
1950 
1951 
1952 

1952 
1953 
1954 
1956 
1963 

Investigators 

Matheson, Cummings 
Sage, Kircher 
Katz, Hachmuth 
Katz, Vink, David 
:fobber 
Roland, Smith, Kaveler 
v!hi te, Brown 
Kirkbride, Bertetti 
Standing, Katz 
Hanson, Brown 
Roland 
Poettmann, Katz 
Rzasa 
Poettmann 
Jacoby, Rzasa 

Solomon 
Hoffman, Crump, Hocutt 
Vagtborg 
Evans, Harris 
Kehn 

\.Jl 
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interested in natural gasoline and the 'front end' components of crude 

oil, it became apparent that the design of processing equipment re­

quired some quantitative expression for the composition of a vapor in 

equilibrium with a liquid. Such an expression was available in a com­

bination of Raoult 1 s and Dalton's laws which state respectively that 

the partial pressure of any component in a mixture will equal the vapor 

pressure of that component in the pure state multiplied by its mole 

fraction in the liquid mixture and that the total pressure, P, of a 

mixture is equal to the sum of the partial pressures of the components 

present. 

In 1933 Matheson and Cummings (30) determined experimentally the 

vapor pressures of n-butane, n-pentane, isopentane and n-hexane at 

various concentrations in absorber oil at 25°C. The experimental 

vapor pressures were compared to those calculated by Raoult's law. 

The data showed an appreciable positive deviation from the calculated 

values. 

Sage and Kircher (57) presented values of the solubility of 

natural gas in several different crude oils at 100°F. and at pres­

sures from atmospheric to 3000 psi. These investigations concluded 

that the assumption of a simple dissolving process occuring when a 

gas is brought to equilibrium with a liquid in complex hydrocarbon 

systems is valid only when the system is far enough below the 

critical temperature of the solvent and the critical pressure of the 

mixture that there is no appreciable transfer of the components of 

the original liquid phase into the gas phase. 

In the 1937 work of Katz and Hachmuth (24) experimental K-values 

for methane through hexane in a natural gas-crude oil mixture were 
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presented. These data were observed over a pressure range from atmos­

pheric to 3000 psi and temperatures from 40 to 300°F. The rise of the 

equilibrium constants at high pressures approaching the critical pres­

sure of the mixtures was shown for the first time in complex mixtures 

of this wide a range of volatility. 

By cross-plotting and extrapolation Katz and Hachmuth were able 

to develop K-charts for methane through hexane in Mid-Continent oil 

over the range of temperature -30 to 270°F. and pressures 5 to 3000 

psi. The outstanding feature of the data is the convergence of the 

equilibrium constant toward a critical pressure. Sage, Lacey and 

Schaafsma (58) had noted this convergence previously, but this was 

the first time that the position of the critical and the behavior of 

the several constituents was shown. 

A phase diagram showing the boundary curve and the quantity of 

liquid in the two phase region was determined for a mixture of natural 

gas and natural gasoline in the region of the critical by Katz, Vink 

and David (25). The temperatures and pressures of the phase measure­

ments were in the range of 85-212°F. and 1300 to 2600 psi with 

critical conditions at 169°F and 2615 psi. The approximate densities 

of the single and two phase regions were determined. 

A striking colorphenomenonaccompanying the measurements near the 

critical temperature has been noted. At pressures considerably above 

the two phase region the system was colorless. At the pressure was 

lowered toward the bubble or dew point, the single phase took on a 

reddish color. At temperatures near the critical this color was a 

bright mahogany red. The single phase grew in color over a range of 

about 5-10 psi above the phase boundary and reached its greatest depth 



just prior to the formation of two phases. A gradual increase in 

maximum intensity of color occurred as the isotherms approached the 

critical temperature. 

8 

Webber (70) determined the equilibrium distribution of the hydro­

carbons, methane through hexane, between natural gas and a typical 

absorber oil. The ranges of temperature and pressure chosen were from 

33-180°F. from 100-5000 psi. The absorber oil had an initial boiling 

poiri.t of 300°:F. and an average molecular weight of 183. 

Webber's data are characterized by the fact that he used a fresh 

charge of absorber oil for each vapor-liquid equilibria determination. 

Webber noted that when the K-values for the components were plotted 

that the K-values for all components approached unity at the higher 

pressures but that there was a significant reduction in the rate of· 

approach to unity at 5000 psi. 

'I1hedataof Webber check very well with the dataofKatz and 

Hachmuth (24) at pressures up to the minimum K-values. As the pres­

sure was increased above this point, the disagreement became pronounced. 

This disagreement can be attributed to composition effects. 

Roland, Smith and Kaveler (51) present data for a typical Gulf 

Coast gas-distillate system in the range of 200-4000 psi and 40-200°F. 

The earlier data of Katz and Hachmuth (24) and Webber (70) on absorber 

oil-natural gas indicated that the numerical value of K for any com­

ponent varies not only with pressure but also with the composite com­

position of the system and with inherent characteristics of the in­

dividual components present in the mixture. Roland, Smith and Kaveler 

felt that the agreement of their data for the 50, 75, 85 and 90 mole 

per cent methane composites for methane through hexane was sufficiently 



good to prove that variations in composite composition have little 

effect on the equilibrium constants for the natural gas-distillate 

system studiedo 

In 1942 White and Brown (72) obtained experimental vapor-liquid 

equilibria data for petroleum fractions boiling from 95-750°F. at 

temperatures from 300 to 820°F. at pressures from 50-700 psi. These 

data were used to extend the estimated ideal K-values to hydrocarbons 

having boiling points up to 925°F. at temperatures from 0° to l000°F. 

at pressures from 1 atm. to 1000 psio The data were further used to 

develop a relation for estimating K-values in the critical and retro­

grade regions of complex hydrocarbon mixtures. 

9 

White and Brown found that the K-values for components of complex 

mixtures are generally the same for the same components in different 

mixtures except as they are influenced by the approach to the critical 

conditions. 

Kirkbride and Bertetti (27) reported K-values for methane, ethane 1 

propane 9 n=butane and n=pentane in three types of absorber oilo The 

range of pressure was 125 to 3100 psi and the average temperature 

about 85°F. The three types of absorber oil were paraffinic, aromatic 

and naphthenic:o The K=values at a given temperature and pressure were 

found to be dependent on the type of lean oil used. 

In 1944 Standing and Katz (63) reported on the composition and 

densities of coexisting vapor and liquid phases as a function of pres­

sure and temperature for four hydrocarbon systems prepared from crude 

oil and natural gas. The data were observed over a range of pressures 

from 1000 to 8220 psi and at temperatures ranging from 35 to 250°F. 

The compositions of the hydrocarbon systems were such that the 
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critical temperatures of the mixtures were lower than the range of in­

vestigation. Under these conditions it was shown that the composition 

of the system has a marked effect on both the absolute value of the 

equilibrium constants and the change of the constants with pressure 

for the several components comprising the system. At pressures above 

1000 psi the effect of the composition of the system on the equilibrium 

constant-pressure relationship becomes very important. Also it was 

shown that the heptanes and heavier fraction K-values do not approach 

unity in the same manner as the lighter components. 

Hanson and Brown (19) prepared two five-component mixtures of 

volatile paraffin hydrocarbons having critical temperatures of approxi­

mately 100°F. and critical pressures of about 2000 psi. K-value 

determinations were made on these mixtures at 100°F. at pressures up 

to that of the single phase. The results indicated that the K-values 

of the volatile paraffin hydrocarbons in binary or complex mixtures of 

paraffins may be defined by specifying the temperature, pressure and 

convergence pressure corresponding td the equilibrium temperatureo 

Roland (52) obtained K-values for a natural gas-crude oil mixture 

at pressures from 1000 to 10,000 psi and temperatures of 120 and 200°F. 

An analysis of the experimental data showed that variables other than 

temperature, pressure and the gener~l type of system are important in 

determining the K-values. These variables are the relative amount of 

each component present in the mixture. The word 'component• refers 

to each individual chemical component. 

Roland also noticed the appearance of colored hydrocarbons in all 

the high pressure vapor-phase samples. The degree of color shown was 

roughly an indication of the pressure of the equilibrium, the higher 



the pressure the darker the liquid. 

K-values for carbon dioxide in a natural gas-condensate system 

were determined by Poettman and Katz (41) over the range of 1-10 mole 

per cent carbon dioxideo The densities and molecular weights were 

determined for saturated vapor and liquid phases for 24 hydrocarbon 

mixtures containing carbon dioxide at temperatures from 100 to 250°F. 

and pressures from 500 to 2900 psi. 
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The data showed that the lower the molecular weight of the hydro­

carbon in the binary carbon dioxide systems, the greater the deviation 

from ideal behavioro The K-values for carbon dioxide in the carbon 

dioxide-natural gas-condensate 3ystetn deviate the most from ideal·. 

K-valueso 

Rzasa (54) used a windowed cell to study a methane-Kensol 16 

system at pressures to 25,000 psi and temperatures to 260°F. It was 

shown that for the temperature range 60 to 260°F. that this particular 

system exists in two phases to a pressure of approximately 14,000 psi. 

Data are presented giving the relative amounts of liquid and vapor 

phases coexisting under these conditions. 

Poettmann (43) studied the vaporization characteristics of carbon 

dioxide in a natural gas-crude oil system at 38, 120 and 202°F. at 

pressures from 600 to 8500 psio A variation of carbon dioxide up to 

12 mole per cent in the composite showed no effect on the K-values of 

the hydrocarbon constituents or on the K-value of the carbon dioxide 

itself. It was shown that carbon dioxide is more soluble in crudes 

than in distillates which is contrary to the behavior of methane. 

Jacoby and Rzasa (21) obtained K-values for nitrogen, methane, 

ethane, hydrogen sulfide and carbon dioxide in two natural gas-absorber 
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oil mixtures and in two natural gas-crude oil mixtureso 

For each mixture of constant over-all composition,data were 

obtained at 100, 150 and 200° F. and at various pressures in the 

range of 200-5000 psio Some effects of composition on the K-values 

were obtained to serve as a guide in choosing K-values for engineer-

ing calculations on other mixtureso The effects of composition were 

so mingled with pressure effects that it was impossible to segregate 

the effectso 

Solomon (61) obtained vapor-liquid equilibrium data on mixtures 

of methane-ethylene=isobutane with the following absorber oils: 

n-hexadecane 9 dicyclohexyli methylnaphthalene 9 Mid-Continent virgin 

gas oil and hyd.roformer still bottomso The data were taken at 100 

and 220° Fo and at 500 and 1000 psiao 

Solomon was interested in correlating his experiment<i.l data 

with the Kellogg K-value charts (6)0 In order to do this, he found 

that it was necessary to characterize the liquid phase by some prop-

erty indicating paraffinicity or aromaticityo This was in addition 

to the characterization of both the liquid and vapor phase by molal 

average boiling pointso Solomon introduced the quantity 'a' defined 

as follows: 

a = 
K observed 

~ellogg charts 
(II-1) 

The values of vav were found to be correlatable with the Watson 

characterization°factors (60) for the equilibrium liquid phases. This 

relationship was shown to be essentially independent of temperature 

and pressureo 

Hoffmann 9 Crump and Hocutt (23) obtained equilibrium constants 



for a gas-condensate system by first obtaining field samples from two 

different wells 9 one completed in the oil zone and the other in the 
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gas capo Portable test equipment 9 consisting of several high pressure 

separators 9 was used in the field to make the equilibrium measurementso 

There was great scatter in the experimental data, probably due to the 

field conditions of the measurementso 

Vagtborg (69) obtained K=values for nitrogen 9 carbon dioxide 

and hydrogen sulfide in a reservoir fluid containing 35 mole percent 

hydrogen sulfide at 154° Fo in the pressure range of 700-2500 psiao 

Vagtborg found that when large amounts of hydrogen sulfide are 

present~ the K-values for ethane and the heavier hydrocarbons are 

greater than the values in systems containing little or no hydrogen 

sulfideo Large amounts of hydrogen sulfide have the reverse effect 

on the K=values for methaneo 

Evans and Harris (14) reported K-values for methane through 

heptanes=plus in two natural gas-crude oil mixtures from a common 

sourceo The experimental data were obtained at 190° Fo and 1000-

6000 psio 

The primary objective of this work was to show the effect of 

varying the amount of the heptanes=plus while holding the relative 

amounts of the other components constanto Most previous investi­

gators varied the composition by changing the gas-oil ratioo If the 

fluids used to make up the mixtures contained components which were 

common to both fluids 9 the relative amounts of these components would 

not remain constant in the resulting mixtures. In this investigation 

the mixtures were recom'bined in such a manner that this effect would 

be elim:Lnatedo 
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Evans and Harris concluded from the experimental data that for 

the systems investigated, the equilibrium ratios for methane and the 

heptanes=plus fraction remain reasonably constant when the concen­

tration of the heptanes=plus is decreased by a factor of twoo The 

effect of a decrease in the heptanes=plus served mainly to extend the 

pressure region over which these ratios were definedo Decreasing the 

amount of the heptanes=plus does have a slight effect on the K-values 

of the intermediate componentsi ethane through the hexanes; the net 

effect being a small increase at the higher pressures., 

Experimental Methods 

Experimental vapor=liquid equilibrium measurements have occupied 

many investigators over the last 75 yearso Few scientific fields 

have produced so many devices and modifications of these devices for 

the measurement of a single propertyo Yet there is not agreement 

today on which apparatus and technique is best for making vapor=liquid 

equilibrium determinationso 

The experimental techniques and apparatus used in obtaining 

vapor=liquid equilibrium data have been reviewed in some detail by 

Barr=David (5)~ Robinson and Gilliland (49) and Hipkin (20)o A brief 

word picture of the experimental devices and techniques used will now 

be presented. 

Constant Volume Apparatus 

The simple bomb appears at first glance to be the simplest 

apparatus for making vapor-liquid equilibrium measurements. In the 

bomb method the sample is placed in a closed evacuated vessel. The 



vessel is then agitated by rocking or by internal mixing at constant 

temperature until the two phases are at equilibrium. Theoretically, 

equilibrium is attained after sufficient time has elapsed. 
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The main difficulty with the constant volume apparatus is that the 

mass of material in the gas phase is small at low pressures and with­

drawing enough sample for analysis upsets the equilibrium appreciably. 

For this reason the constant volume bomb is used mostly for measure­

ments where the pressure is high enough that the vapor sample amounts 

to less than 10% of the gas phase volumeo 

Other problems associated with the constant volume bomb are 

chiefly mechanicalo These include the problems of the design of the 

agitator and thermostato Magnetic agitation is preferable to direct 

mechanical agitation. 

Variable Volume ~ 

During sampling from the constant volume bomb there are pressure 

changes due to the removal of material. These pressure changes can be 

large in magnitude. In order to avoid these pressure changes, one 

adds a confining fluid such as mercury to the system while the samples 

are being taken in order to prevent vaporization or condensationo 

Connolly (9) and Evans and Harris (14) used the variable volume cell in 

recent studies .. 

Sage, Lacey et al.(55) have used the variable volume bomb with 

great success in their work. These investigators were able to determine 

the vapor-liquid K-values for binary mixtures without composition analy­

ses of the phases. This was done by charging a known weight of the 

binary mixture to the bomb and then monitoring the amount of the liquid 

phase with an internal probeo The procedure of Sage and Lacey has the 
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advantage of eliminating the dead volume of sample lines and the 

equilibrium uncertainity caused by the withdrawal of the vapor sample. 

Furthermore, the problem of component analysis, often the weakest 

step in a vapor-liquid equilibrium determination, is eliminated in 

this procedure. 

Bubble~ Dew Point Method 

This technique consists of introducing a mixture of known com­

position into an evacuated equilibrium cell of variable volume. The 

system temperature is held constant. The mixture is pressured with 

mercury, and two pressures are measured - the pressure at which the 

first condensation occurs from the vapor and the pressure at which 

the first bubble of vapor appears in the liquid. 

The dew and bubble point curves of pressure vs. temperature for a 

number of different mixtures are obtained and, by cross-plotting, the 

conditions of phase equilibrium are found by locating points at which 

saturated liquid and saturated vapor exist at the same temperature and 

pressure. 

The pressures at the dew and bubble points are determined in two 

ways. In one method the dew and bubble points are visually observed. 

In the other method the pressure isotherm is measured and plotted 

with the dew and bubble points being observed as discontinuties in the 

curve. The discontinuties are not always well defined,e.g.,wide boil­

ing mixtures and mixtures near the critical. The major limitation to 

this technique is that it is restricted to binary systems. The phase 

rule shows that complex systems are not a unique function of tem­

perature and pressure and hence the dew and bubble points can not by 



themselves define the composition of two equilibrium phases. 

The Dynamic Flow Method 

In the dynamic flow method the vapor is bubbled slowly through 

one or more cells containing liquido The gas should become saturated 

if the liquid and gas have been intimately contacted. Following the 

contacting period vapor and liquid samples are removed and analyzed. 

The major theoretical problem with the dynamic flow method is 

that true equilibrium may be impossiblej since the static head in the 

bubbler requires that the entering gas be at higher pressure than the 

gas leaving the liquid phaseo 
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Entrainment is also possible in the dynamic flow cello Any liquid 

phase mechanically carried over with the gas will change the composition 

of the liquid in subsequent bubblers when more than one bubbler is 

used. Entrainment is minimized by low gas velocities~ but then a 

corollary problem arises in that the gas may not be adequately mixed 

with the liquid. 

Dynamic Distillation Method 

The dynamic distillation method was a popular technique for ob= 

taining vapor=liquid equilibrium data during the period 1875 to 1915. 

The method is no longer used (20) but will be discussed briefly because 

of its long period of use. 

A liquid mixture was boiled batchwise in a still and its vapor 

condensed into a receiver. Since. the composition of both the liquid 

and the condensate changed as the condensate changed while distilla­

tion proceeded 9 a large still charge was used and relatively small 
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condensate samples were taken and analyzedo The condensate composition 

was plotted against the volume of distillate and the curve was extrap­

olated back to zero volume distilledo This zero volume composition 

was assumed to be in equilibrium with the original still chargeo 

The assumption is made that the vapor over a boiling liquid is in 

equilibrium with ito Since the vapor may well be superheated~ this 

assumption is not correcto 

Additional problems must be consideredo Heat leak from the 

vapor through the walls of the still can cause condensation which 

changes the vapor compositionj i.e.,the vapor entering the condenser 

would be of different composition from that leaving the liquid. En­

trainment~ the non=homogeniety of the liquid and temperature control 

are difficulties often encountered in this technique. 

For these reasonsj and because the device never reaches steady 

state~ the dynamic distillation still is no longer used. 

The Liquid Recirculation Method 

The dynamic distillation method can be converted to steady state 

operation by recycling the condensate back to the still. This re­

cycling of the condensate is the essence of the liquid recirculation 

method. 

One assumes that the vapor and liquid phases are in equilibrium 

when the steady state has been reached. This assumption presents the 

most important problem in the liquid :recirculation method~ that is 9 

that the steady state condition is not necessarily a true equilibrium 

condition. As in the dynamic distill~tion method, the question of 

equilibrium can be traced to the still itselfo If the vapor in the 
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still is not in equilibrium with the boiling liquid, then continued 

recirculation will not bring the system closer to equilibrium. This 

follows from the fact that vapor is being continuously generated from 

the liquid 9 and the condensate returning to the still merely maintains 

it at some steady state compositiono 

The fact that many good data have been obtained by this technique 

indicates that the vapor composition is not generally far from the 

true equilibrium compositiono 

The basic liquid recirculation still is that of Othmer. This 

is simple to construct and easy to operate. Because of these ad= 

vantages 9 more atmospheric pressure systems have been run in Othmer 

stills than in any other apparatus. There have bee~. many modifications 

made of the basic Othmer still. Hala et alo (18) list over 49 papers 

which present modifications\) by other authors\) of the basic Othmer 

stilL 

The Othmer still is not restricted to use at atmospheric pressure. 

Williams (71) modified an Othmer still for vacuum work. Othmer (36) 

himself describes an apparatus for superatmospheric determinations. 

~ Vap~ Recirculation Method 

In the vapor recirculation method 9 vapor is continuously removed 

from the top of the equilibrium cell and recirculated to the bottom 

of the cell where it is contacted with the liquid phase. This method 

is\) in fact 9 the dynamic flow method with vapor recirculationo 

The vapor recirculation apparatus does bring the liquid and vapor 

phase into equilibrium as circulation is continued if we ignore the 

static head that causes the gas entering the liquid to be under a 
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different pressure than the gas leaving and, therefore, at a different 

equilibrium condition. Ignoring the static head effect, which we can 

do at high pressures, it can be seen that any differential amount of 

the vapor phase will be subjected to diffusional forces on each pass 

through the liquid, and will change in composition until these dif­

fusional forces become infinitesimalo 

At this point, the vapor is in equilibrium with the liquid and 

additional contacting will not change the composition of either phase. 

It should be pointed out that this is not the case when the vapor is 

returned to the equilibrium cell as condensateo 

In operation, the system must be completely pressure tight 9other­

wise, steady state will never be reached. The quantities of liquid 

and vapor must be kept constant during recirculationo The vapor flow 

rate must be kept constant during recirculation. The vapor flow rate 

must be kept constant in order to maintain a constant pressure drop 

through the system. Finally, condensation of the vapor must not 

occur, since this will change the vapor composition. If the vapor is 

slightly superheated, then no difficulty will be encountered. 

Dodge and Dunbar (10) took the vapor from the equilibrium cell 

from their low temperature bath, passed it through a mercury pump at 

room temperature and then bubbled the vapor through the liquid in the 

equilibrium cello 

The mercury pump varied the enclosed volume of the system causing 

pressure fluctuations. Aroyan and Katz (4) modified this arrangement 

to eliminate the pressure fluctuations during gas circulation by using 

a magnetic pump which maintained a constant volume during the movement 

of the gas phase. This pump has been described in the literature by 
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Exline and En Dean (15)o 

The vapor-liquid equilibrium measurements of Aroyan and Katz were 

made for the most part at sub-ambient temperatures. In obtaining 

equilibrium the vapor was removed from the cell and circulated by a 

pump at room temperatureo The vapor then passed through a cooling 

coil before it was bubbled through the liquid. Vapor circulation was 

continued for two hours before samplingo 

Ro'berts and McKetta (48) u,sed a magnetic pump for vapor recircu= 

lationo Their pump was located inside a constant temperature bath 

with the equilibrium cello These investigators found that a one hour 

circulation time was needed to insure the attainment of equilibrium. 

However 9 in most cases the circulation of the vapor was maintained 

for four hours. The pumping rate used was 20=25 strokes/minute at 

10-15 cc/stroke. At the end of the recirculation at least one hour 

was allowed for the phases to separateo 

The vapor recirculation method is used in this studyo The appa­

ratus us~d is 9 for the most part 9 identical to that used by Michels 

(31)0 The pressure balance 9 pressure bench 9 gas compressor and equi­

librium cell were manufactured by W. C. tuHart and Zn 9 Rotterdam 9 

Holland. Vapor is recirculated by means of a magnetic pump. Cali= 

brated volumetric traps are provided for measuring the densities of 

the equilibrium phases. A detailed description of the apparatus used 

in this study is presented in Chapter IVo This e~perimental procedure 

is discussed in Chapter Vo 



CHAPTER III 

THEORY~ THERMODYNAMIC CONSISTENCY AND CORRELATION METHODS 

The Criteria of Equilibrium 

A system is in the equili'b:rium state if the rates of change i.n 

either direction between the phases are equa.l and if no apparent change 

in the intensive properties with respect to time can be observedo The 

intensive properties themselves~ such as concentration9 par"i:;ial molal 

enthalpy~ density 9 etco 9 however 9 may 9 :in general be different in the 

different phases of the systemo The only requirement for a system to be 

in the equilibrium state is that all of the potentials (driving forces) 

which cause changes be in a well balanced stateo A system is not in 

equilibrium unless the temperature (thermal potential) is the same every= 

whereo Also the pressure (mechanical potential) must be the same every·-

whereo 

Another driving force 9 namely 9 chemical potential~ must be balanced 

in the case of vapor=liquid equilibriao The term 0 chemical potential 0 

originated with Gibbs (16)0 Chemical potential is the driving force 

which causes the, transfer of sub.stances among the coexisting phases o 

We can then summarize the necessary and sufficient conditions for 

equilibrium in an isolated heterogeneous system as 

T' ::: TU g ::, 

pu :::: pu u = 

Tu u u .. 

pv u u ·-

000000000 
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where the primes refer to different phases. 

where 

Gibbs also deduceq the important phase rule 

D=N-m+2 

» = d-egreea.·of. freedom, or the_:ll'Wllber· of ·inciependeat 
inte:asive thermodynamic v-.rtables 

m = the number of phases in. the N-component system ' 

Chemical Potential and the Gibbs - Duh.em EQ.uati~n 

2, 

(III-,) 

(I±I-4) 

Consider a closed system, ioeo, a system in which the 111$.SS is 

constant. The 'First Law·of Thermodyzaamics', a conservation of ener11 

statement, for this closed system is written 

where 

dU = 6Q + 6W 

dU • the change in internal energy of the system, 
energy units 

&Q = an infinitessimal quantity of heat added to the 
system, energy units 

6W = an infinitessimal amount of work performed on the 
system, energy units 

(III.;.;) 

The oQ and 5W terms are not properties of the state of the system 

and are, therefore, not exact differentials. The internal energy term, 

dU, is an exact differential, the value of the internal e:n.er11 being 

fixed for a given state of the system. 

Reversible work is expressed as follows for a system in which 

pressure is the only force acting on the system 

SW = .,. PdV (III-6) 



where P = the total pressure exerted on the system, force/unit area 

V = the system volume 

The 0 Second Law of Thermodynamics 1 deals with energy degradation 

and states the for a reversible process 

where 

SQ = TdS 

T = the absolute temperature of the system 9 degrees 

S"" the entropy of the system 9 energy/degree 

(III-7) 

Combining equations III=5 9 III=6 and III=3 9 one obtains a fundamen= 

tal equation of equilibrium for a one component homogeneous system in 

which only mechanical forces are actingo 

dU "" TdS = PdV (III=8) 

Enthalpy is defined as 

H-U+PV (III-9) 

Differentiating 

dH = dU + PdV + V dP (III-10) 

Combining Equations III=8 and III=lO 

dH = TdS + VdP (III=ll) 

The 0Gibbs free energy 0 of the system is defined as 

G "' H = TS (III=l2) 

Differentiating 

dG "' dH = TdS = SdT (III=l3) 
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Combining Equations III-11 and III-13 

dG = VdP - SdT (III-14) 

Equation III-14 is the equivalent form of Equation III-8, using the 

free=energy function. 

Now let us consider an open system, ioeo, a system of variable 

mass. The Gibbs free energy of this system will not only be a function 

of temperature an.d pressure 9 but also of the amount of each component 

present. 

(III-15) 

where ~ ·- the number of moles of components 
1 9 ...... oo N, respectively 

N = the total number of components in the system 

Differentiating Equation III-15 

where 

dG = (~~ ~ dT 
P~ni 

+ 

N 

L(oG ). + - dn 
oni T 9P i 

(III=l6) 

N 

I= 
i=l 

i=l 

the summation over all components of the system, 

i.e., from 1 to N. The symbol~ will be used in 

following equations for simplicity. 

One obtains from Equation III-14 the following 

( c) G 
oP ) = v 

T,n. 
1 

P9n" 
J. 

(III=l7) 

(III-18) 
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Combining Equations III-16, III-17, and III-18 

dG = -SdT + VdP +'\:1L~ G ) . dn. L \vni T,P 1 
(III-19) 

Following the method of Guggenheim (17), let us consider a system 

at constant temperature and pressureo For this system Equation III-15 

becomes 

dG = (III-20) 

If we allow the quantity of each component in the system to change by 

an amount proportional to itself, ioe~, 

dP = dT = 0 and 

where d£; 1 = the fractional change in the system mass 

then the Gibbs free energy will also change by 

dG = G d<;. 
J. 

Combining Equations III-20, III-21 and III-22 

Di vi ding by d <; i 

G = Lc)G 
- n 
c>ni T,P i 

n.d>i 
T ,P 1 'l 

Chemical potential is defined as 

T,P 

(III-21) . 

(III-22) 

(III-23) 

(III-24) 

(III=25) 
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Therefore 9 

(III-26) 

Equation III=26 was obtained by a special integration but it is general-

ly valido 

Differentiating Equation III=26 

(III-27) 

Equating the right hand side of Equation III-19 and Equation III-27 

~ n. du, = - SdT + V dP 
~ l. r-1. 

(III-28) 

Equation III=28 is the most general form of the Gibbs-Duhem Equationo 

It may be recalled that the mole fraction of a component in a system is 

If we divide Equation III=28 by Ini \) the total moles in the system, 

and then make use of Equation III=29 9 then 

(III=30) 

where the subscript_ indicates the value of the property per moleo 

Equation III-30 is written for the liquid phaseo It is made equally 

applicable to the vapor phase by replacing x. with y.o 
J. 1 

Equation III=28 or III=30 is the basis for thermodynamic consisten-

cy testso Both of these equations involve the use of chemical potentialo 

Fugacity and Vapor=Liquid Equilibrium 

While fundamental 9 chemical potential is not readily suitable for 
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practical applications. For this purpose Lewis (28) invented fugacity 

which is related to chemical potential and bears resemblance to pres­

sure. Lewis defined the fugacity, f, as 

dQ. = RT dln f 

lim P-o (: )= 1.0 

The fugacity of a component in a solution may be defined by 

where 11 denotes the fugacity of component 'i'. 

At constant temperature 

For an ideal gas V = RT/P, hence 

la.p = dG = VdP = RT dln ;i L J T,n 

(III-31) 

(III-32) 

(III-33) 

(III-34) 

(III-35) 

Equations III-34 and III-35 illustrate the resemblance in nature between 

fugacity and pressure. 

In the case of a mixture at very low pressure, the fugacity of 

component 9 i 1 in the mixture equals the partial pressure of component 

'i 9 o Namely, 

(III-36) 

where xi is the mole fraction of component 'i' and xiP is the partial 

pressure of component 'i'. 

At equilibrium, the fugacities of every one of the components in 
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one of the co-existing phases in the system must be equal to that of 
'• 

the corresponding component in the other phase of the systemo 

i = 1 to N (III-37) 

The superscripts V and L represent the vapor and liquid phases, 

respectivelyo 

The Evaluation of Fugacity 

If we subtract RT ln P from boih sides of Equation III-33, we 

obtain 

or 

RT dln (t) = V dP - RT dln P = ( V - R: ) dP 

f 
d ln - = p (.!.. - 1) dP RT P 

(III-38) 

(III=39) 

Integrating at constant temperature from P = 0 to some particular 

* pressure P = P, we obtain 

ln (.!) ,.. - ln 
p P=P 

In view of Equation III-32 
P* 

ln (i)P-P. = J (~ ~ } ) dP 
- 0 

(III=40) 

(III-41) 

Equation III-41 ~ives the fugacity at P and Tin terms of an integrand 

which can be computed either from experimental data or by means of an 

equation of state. 
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The Fugacity of a Component in a Mixture 

At constant temperature and constant composition, the following 

thermodynamic relation exists 

where 

du. = V. dP 
r-1 1 

V, is the partial molal volume of component 'i' 
1 

Combining Equations III~:31 and III-42 

RT dln f. = V. dP 
1 J. 

(III-42) 

(III-43) 

Subtra.ct:ing RT dln P f:rom both sides of the above equation for the 

isothermal case 

Rearranging 

* Integrating at constant temperature from P=O to P=P 

P* 

= f (~ 
0 

- 1n(:1) 
p P=O 

(III-44) 

(III-45) 

one obtains 

(III-46) 

Now if we introduce Equation III-36 as a limiting condition, we obtain 

(III-47) 

Both Equations III=41 and III=47 can be used to calculate the fugacity 
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of vapor (or gas) 9 or liquid provided that PVT dat~ or an equation of 

state ¥or t'he gas or the liquid is availableo The evaluation of the 

partial molal volume from experimental data by graphical means is 

tedious and to a degree inaccu:rateo If an equation of state applica-

ble to the mixture under consideration is available 9 then a more accu.., 

rate evaluation. of the mixture fuga.city can be madeo 

Thermodynamic Consistency Tests 

Vapor=liquid equ.i.lib:ri·um data are generally used either directly 

in process design calculations or in the development of new theories 

and correlations for such datao It is often necessary to know the 

acc:ura©y of the experimen.tal data before it is used. 

There is no procedure available for terming experimental data as 

unquestio:r1tably co:rrecto However~ means are available for detection of 

much of the incorrect datao Certain thermodynamic considerations may 

be employed to deri,te relat:ions whi.ch the data must obey if the data 

are C(Q)rrecto The Gibbs=Duhem equation9 Equation III-28 9 is one such 

relation .. It must be pointed out that compliance .with the Gibbs= 

Duh.em equatio:n is a necessary~ bu'!:; not sufficient condition for vapor-

liquid equi.libriurn data to be correcto Data which do not obey this 

rela.tio:n. are definitely incorrecto Various thermodynamic consistency 

'l::ests have been based on the Gibbe .... Duhem equation and are designed . 

specifically for the testing of vapor-liquid equilibrium data. Robin­

son (50) :reali.zi:ng that there was confusion and often inaccuracies in 

the literature with :regard to applications of the Gibbs-Duhem equation,· 

prepared an excellent review of the subject of thermodynamic consistencyo 

The reader is r·eferred to the work of Robinson for the detailed 
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discussion of these testso The following discussion is supplemental 

to Robinson 9 s work .. 

Thompson (65) in testing his vapor-liquid equilibrium data for 

hydrogen=six carbon hydrocarbon systems was interested in a rigorous 

t.est for thermodynamic consistency in terms of K=values .. The con-

sistency test in the form proposed by Adler and coworkers-(1) appeared 

to be a most useful test since they used experimental a.nd not derived 

quantities in the test., Robinson (50) presented the derivation of 

Adler 0 s isothermal test 

fl) d 1.n P 

where (III ... 49) 

The above equation is thermodynamically rigorous for an isothermal 

system 9 however 9 it does involve the assumption of the Lewis and 

Randall rule" 

Thompson tested his hydrogen=benzene data at 250 °Fo for the 

pressure range of 44067 to 2000 psia using Equation III=48o He found 

a difference of 1206% between the left and right hand sides of Equation 

III=48o This difference indicates a significant lack of agreement 

between Thompson9 s equilibrium composition data and volumetric data 

when the Lewis and Randall rule is assumed in the development of the 

Adler consistency testo 

Thompson and Edmister (12~66~67) derived an isothermal consistency 
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equation omitting the assumption of the Lewis and Randall rule. The 

resulting expression which is similar to Equation III-48 follows 

JI'! -v ( l = Z + ylZl ~ ~) zVJ - - dln p 
K2 

(III-50) 

p 

where c; 1 = 
1J d'ii'l 

RT oY1 
dP (III-51) 

0 

-v PVV 
z = RF (III-52) and 

The right hand side of Equation III-50 can be split into a liquid 

term and a vapor term. This, plus rearrangement, gives 

where 

f x1 (1 + 11<; 1) dln K1 + Jx2 (1 + y1~ 1) dln K2 

= f zL - 1) dln P + f z • dln P (III-53) 

(III-54) 

If the vapor phase is ideal, Z' and the ; 1 terms reduce to zero. 

If the Lewis and Randall rule holds for the vapor phase,<;1 is zero 

and Equation III-52 reduces to Adler's equation. 

Thompson (66) derived a formula for~ 1 using a truncated form 

of' the Berlin form virial equation of state. This derivation has 

been reproduced in Tully's thesis (68) and will not be repeated hereo 

Thompson rechecked his 250 °F. experimental data for the hydrogen-



benzene system using Equation III-5.3.. He found a difference of 0$35% 

between the left and right hand sides of Equation III-53 indicating 

that his data are indeed consistent whereas the data were shown to be 

inconsistent when the Adler thermodynamic consistency test was used~ 

This points up the danger of using the Adler testo 

' Several comments are in order concerning the consistency test 

as given by Equation III=53o First~ the test is difficult to apply 

in that all of the terms in the equation are not directly obtainable 

from the experimental datao The values of the mole fractions, pres-

sure and the K=values are obtained directly from the experimental 

datao Volumetric dataj either experimental data or data obtained 

from equations of state, are required to complete the calculations., 

The evaluation of the liquid compressibility term can often be based 

on the extrapolation of existing volumetl;'ic datao As mentioned 

previously~ the Berlin form of the virial equation can be used to 

evaluate S, o Finally 9 the Leiden form of the virial equation of 

V =V state c:an be used to evaluate Z and z .. 
J. 

Thompson and Edmister (67) found that Equation III=53 is not 

very sensitive to errors in the x-y datao Furthermore, they showed 

that the equation of state chosen to evaluate the compressibility 

factors can have an effect on the results of the test. 

Edmister (12) recently derived a thermodynamic consistency 

test. The derivation of this isothermal test appears below. 

The derivation can be started with Equation III-30, a form of 

the Gibbs=Dub.em equation., 

(III=30) 



Fugacity was defined in Equation III-31 as 

rdp. = RT dln f :-i T L i ~ 'in 
(III-31) 

Substituting Equation III=31 into Equation III=30 and dividing through 

by RT 

VL 
dln !:' RT dP - SdT "" x, 

J. l. 
(III-55) 

At constant temperature 

-SdT = 0 (III-55a) 

and Equation III-55 becomes 

dln ~ Cnr ... 56) 

Equation III=56 is written for the liquid phase and is equally appli-

(Cable to the vapor phase if xi is replaced by Yi• For the vapor phase, 

Equa tio.n nr .... 56 becomes 

(III-57) 

For a binary mixture x2 = l = x1 and y2 = 1 - y1 , then Equation III=56 

becomes 

(III-58) 

and Equation III-57 becomes 



Applying the criterion. of equilibrium 

Then 

and 

-L -.V 
f. ::: f. 

1 1 

ln r.' -N = ln f. 
J. 1 

-L -.v 
dln f. "" dln f. 

1 1 

Subst:i.tuting Equation III=62 into Equation III-58 

-.v 
+ dl.n f~ = 

' 

Now subtracting Equation III-63 from Equation III=59 

dP 

Rearranging 

' 
(III-60) 

(III-62) 

(III-63) 

(III..,64) 

(III-65) 

The fugacity coefficient of component l in the vapor phase mixture of 

a binary is defined as 

(III-66) 



Then = 
v 

ln ¢1 + ln P + ln y1 (III-67) 

and = v ln ¢2 + ln P + ln y2 (III-68) 

Subtracting Equations III=-68 from III=67 

(III-69) 

Subst:itut;:tng Equation III=69 into Equation III=65 

(III-70) 

Equation III=70 is the differential relationship for thermodynamic 

consistency testing of i.sothermal d.atao The integral form of this 

test follows 

J y 
+ dln __L 

Y2 
dP 

Due to the nature of the data taken in this work, the above 

discussion of recent developments in the field of thermodynamic 

consistency tests has been confined to isothermal testso The interested 

reader is referred to a discussion of recent developments in isobaric 

consistency tests by Tully (68) .. 

Correlation, of Vapor-Liquid Equilibrium Data 

Vapor=liquid equilibrium data are normally correlated by using 



the component distribution coefficient, or vapor-liquid equ;i.librium 

ratioo By definition 

K. 
J. 

mol fraction of component 0 i 0 in vapor phase (III-?2) 
mol fraction of component 'i 0 in liquid phase 

Application of the Gibbs phase rule (Equation III-4) to a binary sys-

tern shows that the composition of the equilibrium phases is invariant 

if the system temperature and pressure are specifiedo The K-value is 

also a function of the identity of the component in question and the 

identity of the other component presento Application of the phase 

rule to a N-component system shows that the specification of tempera-

ture and pressure leaves N-2 variables, or relations between variables, 

to be specified in order for the system to be invariant. For any one 

temperature and pressure 9 the K-value of a given component is thus a 

function of the composition of the equilibrium phases. 

Equilibrium ratios can be evaluated by five methods: 

Raoult 0 s and Dalton°s laws 

Ideal equilibrium ratio calculations 

Equations of State 

High pressure activity coe~ficients 

Empirical correlations 

Each method has its advantages and predicts K-values that agree with 

ex.perimental K-values over limited ranges. Each of the above methods 

has been reviewed previously by this writer in great detail (64). 

There is no need to repeat this discussion hereo 

Recen·t Developments in K-Value Correlation Techniques 
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The recent developments in the correlation of vapor-liquid equi-

librium data, not included in the writer's review of this subject (64), 

will now be discussed. 

In 1~09 Prausnitz, Edmister and Chao (44) suggested using the 

following relationship for correlating vapor-liquid equilibrium K-ratios 

L L 

K. 
Yi ~\JJ i 

(III-73) =- = v l. x. ¢ l. i 

where cYL ~ the liquid phase activity coefficient ,::: 

r:'x. ·-i for component vi t 
l. l. 

)) L ~ the liquid phase fugacity coefficient 
i = p = 

for the pure component vi v 

.... v 
¢v 

f. 
J. the vapor phase fugacity coefficient :::: - = i Pyi for component vi v 

The three coefficients, vL J} L V o • 9 • 9 and¢. are evaluated at system 
l. 1. l. 

conditions, i.eo 9 the temperature and pressure of the system. The 

reference state for the liquid activity coefficient is the same pure 

component fugacity that appears in the)}~ term, thus making the 
J. 

numerator terms 9 ~~and))~ compatibleo 
1 J. 

The Redlich-Kwong (46) equation of state was used in the original 

paper to 

used for 

¥ evaluate¢. and 
1 

evaluating '?/ ~ o 

the Scatchard-Hildebrand relationship (59) was 

The Scatchard-Hildebrand 'regular solution 

theoryv equation uses molar liquid volumes and solubility parameters 

in the following equation 

ln 3'~ = RT (III-74) 



~·O 

where L the molar liquid volume of component Iii assumed v .. = 
J.. to be independent of pressure 9 but a function of 

temperature 

$i = the solubili t;y parameter of component Ii 9 

6) = the liquid volume average solubility parameter 
for the entire mixture 

~x.v.&1 1. l. (III-75) 

For light gaseous solutesi for which the pure liquid state would be 

imaginary 9 the v-alues of V1. an.d £ . would be hypothetical and are 
:Ji.. 

evaluated from experimental composition. datao The work of Prausnitz, 

Edmister and Chao demonstrated the following: 

lo The calculation of light hydrocarbon vapor-liquid equilibria 

by use of solubility parameters appears to give correctly 

the liquid phase composition effectso The solubility para-

meter is a useful tool for the correlation and prediction of 

hydrocarbon vapor-liquid equilibriao 

2o Composition-corrected K-values are not convenient to apply 

in practical problems and this method is no exception .. 

3o A simplification can be obtained by taking the solubility 

parameter to be pressure insensitiveo 

Chao and ~eader (8) developed a general K-value correlation using 
I: 

,., I~' 

equation us~d by Prausnitz 9 Edmister a.nd Chao in their work (Equation the 

III=73)o Chao and Seader used the Redlich-Kwong (46) equation of state 

to evaluate¢~ and the Scatchard=Hildebrand equation (59) to evaluate 
1 

vL L o ,o Values of~ . 9 the pure component liquid fugacity coefficient, 
1 1 

were back-calculated from over 3000 sets of experimental x-y data using 



the following equation 

.. .. -
= 

(y./x.) experimental 
1 1 (III-76) 

L An empirical correlation was then developed for)). as a function of 
1 

reduced temperature 9 reduced pressure and the acentric factoro Separate 

))~ equations were derived for hydrogen and methane with all other com-
l. 

ponents being covered by the generalized correlation .. Recently, Erbar 

(12) developed separate )) ~ equa.tions for hydrogen sulfide, carbon 

dioxide and nitrogen .. 

The Chao-Seader K-value correlation has been programmed for a 

number of digital computers by Erbar (12)o These programs were de= 

veloped for the Natural Gas Processors Association .. The equations in 

the Chao-Seader correlation can be solved to get K-values if the 

compositions of the coexisting vapor and liquid phases are known 

(given, assumed or from a previous trial). In applying this method, 

it is nece$sary to check bubble point 1 dew point or flash calculations 

to see if the resulting compositions agree with those used in the 

K=value predictions. 

A second correlation method can be developed by starting again 

with the Prausitz~ Edmister and Chao (44) expression (Equation III-73). 

The fugaci ty coefficient of a pure liquid component ).) .1 , can be 
l. 

written as followp 

)).1 __ ))_o 
1. ]_ p 

where ).) . 0 
1 

f VI. 0 
== i pi -

exp 

1( o v. p - p,) 
J. J. 

RT (III-77) 

the fugacity coefficient of pure component 
'·i I at the saturation or vapor pressure. ;.· 



v.L(P -p.o) 
1 1 exp RT 

~ ~ will be the same for saturated 
li~uid and saturated vapor for a 
pure component 

= the Poynting effect or the ratio of the 
fugacity of the liquid at the system 
pressure to the value at the vapor 
pressure 

)) iL is the liquid phase fugacity coefficient that appears in the 

Chao=Seader equation. An equation of state which is available for 

calculating accurate fugacity coefficients of the vapor phase com-

ponents can be used for the calculation of The analytical 

L o 
equations of Stuckey (64) can be used to evaluate V. and P. • 

1 1 

An expression for predicting K~values can now be obtained by 

combining Equations III-73 and III-77 

0 
p. 

K ,.;.. J. 
i--p- exp 

Le o. v. p - p. ) 
1 1 (III-78) 

RT 

A third K-value correlation method can be developed by substituting 

in.to 

where 

Equation III-78 to 

0 p. 
K. (-1-) -

l p 

,.P 
ii 1 

exp} o i"tT 
p. 

l. 

obtain 

)) . V "?f .L 
J_ l 

¢i 
v exp 

(V~ 
1 

RT 
-p--) dP 

v.L(P- p. 0 ) 
1 J. -----~ 

RT 

(III-79) 

0 p. 
1 

expf g -~r) dP 

p 
(III-80) 

the fugacity coefficient of component 'i' 
as a pure vapor at the system temperature 
and pressure 

The imperfection pressure correction 9 G, was defined to permit 

the evaluation of correction factors to be applied to Raoult° s K-value .. 
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From the definition of fugacity and the criteria for vapor-liquid 

equilibrium~ we can write 

K. 
]. 

where 

But 

and 

-· 

"" 

i,' /x. r.'/r:'x. .i. I o 0 

Yi "" 1 ::!. J. 1 1 fi pi pi 
-v = -.v v lJP p x. 

1 f. /yo fi/fiyi J. 1 J. 

'if~ 0 

J, 1. pi 
(III=81) -~ -

i! G p 
1. 

i~ and r r are activity coefficients expressing departure 
from ideal solutions or mixtures in liquid and 
vapor mixtures 

i IP 
r, 1 
"=' "'----

;?IP~ 
the imperfection pressure correction 

J. 1 

ut / p~) "" the fugaci ty/pressure ratio for pure liquid at 
the system conditions, ioeo, the fugacity at 
P and T divided by the vapor pressure at T 

K Raoultus 

Kideal"" (l/G) KR lt" aou ·• s 

1n (f1/P)p a r (v! - ;T) dP (III=82) 
0 

pi 

1n (~/p~)p ,, 1n (fr/P) p~ + it Io v~ dP 
pi 

We can write the definitions of the imperfection pressure correction in 

loga.rithrn:i.c form 

1:u Go 
J.. (III=84) 



Combining Equations III-82, III-83 and III-84 

p . 

if ln Q. :,:: n\ f O cv: -~) dP - v~ dP 
l. 1 

(III-85) 

pi pi 

Now combining Equations III-80 and III=85 

0 r~ )) I tL 
K. 

pi 1 
1S:deal 

i 
"" =p - ::: 

:!.. Q ¢! ,; ~ 
1 1 

(III-86) 

The imperfection pressure correction, ¢i and V~ can be evaluated 

from an equation of stateo The liquid activity coefficient, i\ can 
J. 

be calculated using the Scatchard=Hildebrand equationo The problem in 

using this method is that of finding an equation of state which will 

give satisfactory values for G, ¢~ and·V~o 
J. 1 



CHAPTER IV 

EXPERIMENTAL APPARATUS 

The vapor recirculation method was used in this work. This method 

is actually the dynamic flow method in closed-circuit form. In this 

chapter the flow diagram of the apparatus is presented and described. 

Details of the equilibrium cell and its supporting apparatus are dis-

cussed. Finally, the reagents used in this study are describedo 

Apparatus 

For convenience the description of the equipment is divided into 

six sections: (1) feed, (2) pressure regulation and measurement, (3) 

equilibrium cell and thermostat, (4) density measurement, (5) vapor 
. 

"recirculation and (6) sampling and analysis. A schematic diagram of 

the experimental apparatus is shown in Figure l. 

~ Section 

Methane was fed from a supply cylinder through a gauge block, dry= 

ing tube, co2 absorption tube and needle valve to the gas compressoro 

The 1/811 o.D. x 1/16" I.D. tubing, the fittings and valves in this 

section were 316 stainless steel. Pressure in this section was limited 

to 10,000 psi by the needle valves used. The drying tube was an 

Autoclave Engineers 30 cc. MD test tube reactor packed with commercial 

Drierite (calcium sulfate). The co2 absorption tube was likewise an 

45 



I 
I 
I 
I 
L ___ ~_J 

LOW TEMPERATURE 
AIR THERMOSTAT 

~·~~~,jOIL 

IZZZ)MERCURY JS~ 
PRESSURE 
BALANCE 

SAMPLING 
APPARATUS 

PRESSURE 
BENCH 

HOT AIR THERMOSTAT ,-----------, 
I 
I 
I 
I 
I 
I 
I 
I VAPOR I PUMPS 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

EQUILIBRIUM I 
CELL 

I 
LIQUID I 

~CHARGE I 
LINE 

L _______ _ ____ J 

VACUUM 
OR 

VENT C02 DRYING 

GAS 
COMPRESSOR 

SCRUBBER TUBE 

METHANE 
SUPPLY 

CYLINDER 

FIGURE 1 

SCHEMATIC DIAGRAM OF APPARATUS 
+ 
O"\ 



47 

Autoclave Engineers 30 cc. MD test tube reactor and was packed with 

Ascarite, a sodium hydrate asbestos material, The maximum working 

pressure of the drying tube and the co2 absorption tube is 10,000 psi. 

Liquid hydrocarbons were fed from a glass flask through a short 

section of 1811 O.D. tubing to a needle valve at the bottom of the 

equilibrium cell, then through capillary tubing into the cell. 

Pressure Regulation !!'!S Measurement Section 

Pressure regulation and measurement were accomplished by the use 

of a Michels pressure balance in conjunction with a gas compressor. 

A pressure bench was used to generate and maintain the system pressure, 

The pressure balance, pressure bench, gas compressor and the equilibrium 

c.ell .were . m~nufae tured by w. c • t I Hart and Zn' Instrumen ten-en 

Apparatenfabriek N. v., Rotterdam, Holland. 

!b,! Michels Pressure Balance. The Michels pressure balance (32) 

is a dead weight teeter distinguished by the use of a differential 

piston. The dead weight tester is one of the principal instruments 

used for measuring pressure. The operation of the dead weight tester 

is based on the use of a piston placed in a cylinder and loaded with a 

known weight. A sectional view of the piston-cylinder, or measuring 

''.•':;·;;1·,oc;y\ti'nflier'•r""'is,,tsnowbi''"!tDiiF&gttx,eJ,,,,a,,rt! :.,,At,cid;:rJ1awitng"of···•·,ibhe,;,,entillie·;··:Michels·.···· ...... , 

balance is shown in Figure 3. 

The complete pressure balance is mounted on a base-plate, P, 

which must be adjusted horizontally with levelling screws fitted under 

the plate. On this base plate are mounted three columns. A middle 

plate, M, and a top plate, N, are attached to these columns. 

The differential piston, A, is connected to the weight axle, B, 
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by a nut and half-ring jointi C. The weight axle has a guide pin, D, 

under the base weight, E. The guide pin runs in a bronze plain-bear­

ing, F, which is also fitted to the base plate and which can be 

centered by four a.q.justment acrews. The guide pin is lubricated with 

oil from the reservoir 9 G. The oil flows from the oil reservoir to 

the guide pin bearing via a copper capillary. 
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The measuring cylinder is placed on the middle plate, R. The top 

axle 9 H9 is screwed onto the differential piston. The position in­

dicator~ I 1 and a. weight pan 9 J 9 are mounted on the top axle. 

A rotating clutch 9 K9 around the top axle is used to lower the 

driving mechanism 9 L, which in turn contacts a claw on the piston. In 

order to rotate the claw, a round leather belt is put on the pulley of 

a 1/3 HP electric motor. This belt runs on two large pulleys fitted on 

the frame. From the shafts of the large pulleys two smaller ones are 

connected by two belts with a two=groove pulley running on ball bear­

ings and a hollow axle. The claw is attached to this two-groove 

pulley. The claw is moved upward with a handle so that for very 

accurate measurements ea.ch vertical component of the driving forces 

can be eliminated. 

The most essential part of the pressure balance is the measuring 

cylindero This contains a pressure chamber which is connected to the 

pressure bench by a steel capil.laryo A hardened steel differential 

piston rotates in this precision cylinder. Pressure is obtained by 

pumping oil into cylinder Mj lifting piston A and all other rotating 

partso 

The piston is kept rotating in order to minimize the friction be­

tween the piston and the wall of the cylinder. The oil supplied by 
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the pressure bench provides a thin lubricating film between the piston 

and the cylinder wall. The piston rotates at about 71 rpm. 

The pressure range of the measuring cylinders depends on the 

effective area of the differential piston and the weight attached to 

the piston. Large weights (1 to 25 Kg) are loaded on the base weight, 

E. Small weights (less than 1 Kg) are placed in the weight pan, J. 

The maximum allowable pressure for the pressure balance is 3~000 

atm. In practice 9 a set of nine piston=cylinders is used to cover the 

entire pressure range. The balance used in this study was equipped 

with eight of the piston=cylinders and could be used to measure pres-

sures from 3-2250 atmospheres. The balance is claimed to be accurate 

to approximately 1 part in 10 9 000 and to have a precision of 1 part in 

100~000. The calibration of the balance and the piston-cylinders is 

described in Appendix A. 

Pressure Bench. A sketch of the pressure bench is presented in 

Figure 4. A hand pump is provided for pumping oil from the oil reser= 

voir i.nto the system. A screw press prmrides a fine control of the 

system volume. A combination of valves and capillary tubing permit 

the pumping of oil to the pressure balance and/or the gas compressor. 

Drain lines 9 each equipped with a filter to remove small particles of 

foreign matter~ are provided for removing oi.l from the system. A 

special petroleum oil having good viscosity=pressure properties was 

used in the system. This oil was filtered before addition to the oil 

reservoir. The pressure bench is rated at a maximum working pressure 

of 3000 atmospheres. 

~~Compressor. A sectional view of the gas compressor is 

shown in Figure 5. The compressor is composed of an upper and lower 
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chamber which are connected by a short tube. Oil from the pressure 

bench flows into the upper end of the lower chamber on the top of 

mercury. The mercury, in turn, flows upward through the connecting 

center tube into the upper compartment. Gas is confined in the upper 

compartment. A trap (not shown) is provided should the mercury flow 

back into the incoming oil line. The gas inlet and outlet valves are 

located at the top of the compressor. 

The position of the mercury meniscus in the upper compartment is 

measured by means of a bridge circuit. One leg of this circuit is a 

platinum wire which extends the length of the upper compartment. The 

calibration of the mercury level in the upper compartment as a function 

of the level indicator reading is described in Appendix D. 

The capicity of the gas compressor is 500 cc. The maximum 

operating pressure is 1500 atmosphereso 

The Equilibrium Cell~ Thermostat 

~ Equilibrium Cell. The cell used is of the Michels design and 

is the cell used by Thompson (65) in his investigation of vapor-liquid 

equilibria for hydrogen-six carbon hydrocarbon binaries. A cross­

sectional view of the equilibrium cell is presented in Figure 6. 

Gas enters the cell through a capillary tube at the bottom of the 

cell. The gas stream is broken up into small streams by Oo05 mm. 

deep grooves in cone E. Further intimate contact of the gas and liquid 

in the cell is provided in a packed section of coarse woven fiberglass 

cloth 2-11/16" deep. Metal distributor plates, drilled with many 

conical-shaped holes,, :::onfine the fiberglass cloth top and bottom. 

The vapor and liquid samples are removed through lines C and D, 
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respectivelyo The liquid dip tube D, extends 1-15/1611 into the cell. 

The vapor outlet extends approximately 3/811 into the cello All of 

the capillary tubing lines are d.6 mm. I.D. 

The total internal capacity of the equilibrium cell is approxi­

mately 150 cc. The cell and its parts are made for the most part 

from stainless steel. The maximum working pressure of the cell is 

1000 atmospheres. 

The Thermostat. A large air thermostat served as a constant 

temperature bath. The air thermostat has outside dimensions: 4811 

high, 4811 wide and 3411 deep. The inside dimensions are: 40%" square 

and 2.53;i-" deep. A large door supported by a piano hinge provided 

access to the equipment in the thermostat. 

The inside walls of Transite were built around a steel frame 

which provided support for the walls of the air bath and a means of 

anchoring the equipment. The inner walls were composed of three 

alternate layers each of 111 Owens Corning PF-615 Fiberglass board 

and 0.001 guage Alcoa No. 5182 aluminum foil. Alternate layers of 

Fiberglass board were overlapped at the corners to eliminate con­

vection currents. The outside of the bath was made of 7411 plywood. 
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Air was circulated by means of a 611 squirrel cage blower located 

in one end of the bath. The blower was driven by a Ya-IP electric motor 

located outside the bath. The intake of the blower was located midway 

the height of the bath. The exhaust was directed across the electric 

strip heaters onto the rear wall of the bath. The capacity of the 

blower was 525 SCFM 1 providing approximately 21.5 captive air changes 

per minute in the bath. Sketches showing the blower and heater 

arrangement are presented in Figures 7 and 8. 
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Heat was supplied by nine 250 watt Chromalox PTF-10 finned air 

heaters. These heaters were mounted in three banks, three high, at 

the blower discharge. Three heaters were controlled by a Superior 

Type 116 Powerstat. Three additional heaters were controlled by a 

similar Powerstat. The remaining three heaters were controlled by a 

Hallikainen Model l053A Thermotrol temperature controller. A finned 

cooling coil 811 x 811 x 1%'1 deep 9 placed directly in front of the blower 

intake~ was used to remove heat from the bath. Ethylene glycol from 

a chilling unit was pumped through this coil at a fixed rate. The use 

of the cooling coil greatly improved the temperature control of the 

air bath. A platinum resistance thermometer mounted at the mid-point 

of the cooling coil served as a sensing element for the Hallikainen 

controller. The resistance thermometer was a Rosemount No. 104-N, 2411 

long with a perforated shield especially designed for air temperature 

sensing. 

Density Measurement 

Samples of the equilibrium vapor and liquid phases were collected 

in calibrated traps located in the large air thermostat directly above 

and outside the equilibrium cello A sketch of the traps is presented 

in Figure 9. The calibration of these traps is discussed in AppendixCo 

The density traps were made from high pressure fittings available 

from Autoclave Engineers, Inc., Erie, Pennsylvania. Basically, the 

traps consisted of a high pressure coned and threaded nipple between 

two Hart valves. The nipple used for the liquid trap was 9/1611 O.D. 

x 3/1611 I.D. x 411 long. The nipple used for the vapor trap was 9/16" 

O.D. x 5/1611 IoD. x 6tt long. The nipples were connected to the valves 
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by the high pressure adapters noted on Figure 9. 

Thermocouples taped to the outside of the traps were used to 

insure that the temperature of the traps was identical to that in the 

cell during sampling. The calibration of these thermocouples is pre­

sented in Appendix B. 

Vapor Recirculation §l_stem 

It will be recalled that in the vapor recirculation method, 

vapor is continuously removed from the top of the equilibrium cell 

and recirculated to the bottom of the cell where it is contacted with 

the liquid phase. A constant volume magnetic pump was built to circu­

late the vapor in this work. The pump was located in the large hot 

air thermostat. 

Figure 1 shows the relation of the pump to the remainder of the 

apparatus. Vapor flows from the vapor zone in the equilibrium cell 

through the vapor density trap to the pump inlet. The flow splits at 

the pump inlet where a portion of the vapor is made available to each 

of the inlet check valves. This pump is actually two pumps in one. 

As one side of the pump is on the intake stroke 9 the other side is on 

the exhaust stroke. Vapor from the outlet check valves is combined at 

a tee and returned to the bottom of the equilibrium cello 

The mechanical details of this pump will be discussed with the 

aid of Figure 10. The portion of the pump in contact with the vapor 

is made of parts available from Autoclave Engineers Inc., Erie, 

Pennsylvaniao 

Vapor enters the pump through a }{,11 high pressure tee and splits 

to two double ball angle check valves. The check valves are a 
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special design covered by Autoclave Engineers Drawing No. 10-3403. 

The two check valves are connected via the pump cylinder. This cylin­

der is 9/16" O.D. by 5/1611 I.D. x 611 long high pressure coned and 

threaded 316 stainless steel nipple. The inside of the nipple was 

polished to make a cylinder of uniform diameter. A 2'' long piston 

was machined from a piece of 5/16 11 O.D. cold drawn 410 stainless steel 

rod. This material, chosen for its magnetic properties, was obtained 

from C. A. Roberts, Inc., Tulsa, Oklahoma. Four grooves 1/1611 apart 

were machined on each end of the piston. As the piston moved back 

and forth in the cylinder, these grooves created areas of turbulence 

around the piston and, therefore, served as piston rings. A machine 

tolerance of 0.0005 inch was maintained betwee.n the outside diameter 

of the piston and the inside diameter of the cylinder. Teflon stops 

W' long were inserted in the ends of the cylinder to keep the piston 

from sticking in the ports of the check valves. The check valve 

outlets were combined into a single stream via a second')/+" high pres­

sure tee. Coned and threaded °}411 O.D. x 0.08311 I.D. tubing was used 

to connect the various components of the pump. 

The pump piston is activated by two magnets. The details of the 

magnet construction will now be discussed. A sketch of one of the 

magnet spools is shown on Figure 11. These spools are made of a 

special silicon steel, Grade M-36, manufactured by the Allegheny 

Ludlum Steel Corporation. The inside of the spools was coated with 

fiberglass electrical tape prior to winding the magnets. The outside 

of the spools was coated with insulating cement. 

The magnets were wound on a slow turning lathe with ex~ctly 800 

turns of No. 20 Single NL magnet wire. This wire is coated with a 
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high temperature insulation which permits operation to a maximum wire 

temperature of 250°C. This wire is available from REA Magnet Wire Co., 

Fort Wayne, Indiana. 

The transistorized electronic control unit for the pump was built 

from the circuit diagram presented in Figure 12. In building this 

circuit it is extremely important to heat sink the power transistors 

and to protect the electronic circuit by fusing the magnets individu­

ally. 

The number of piston oscillations per minute is controlled by 

varying a one megohm pot in the circuit. The displacement of this 

pump was determined with air at 75°F. at various piston cycle rates. 

The flow rate was found to vary from a low of 407 cc/min to a high of 

1200 cc/min. The calibration of the pump is presented in Figure 13. 

Sampling and Analysis Section 

The equilibrium vapor and liquid phase samples were individually 

analyzed by passing each sample through cold traps, freezing out the 

heavier hydrocarbons and finally measuring the volume of light hydro­

carbon gases remaining. 'rhe sample traps were closed, removed and 

weighed to determine the amount of heavy hydrocarbon present. A 

diagram of the sampling and analysis section is given in Figure 14. 

The metal capillary tubing section of the apparatus was connected 

to the glass apparatus by a glass metal seal. The seal was coated 

with Glyptol. The capillary tubing section not in the air thermostat 

was wrapped with flexible heating tape. 

The first and second traps were removable weighing traps. The 

weighing traps were connected to each other and to the remainder of 
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the sampling apparatus by 12/5 ball-and-socket joints. The final 

trap, used to freeze out minute traces of hydrocarbon from the vapor 

stream, was mounted permanently in the apparatus. The weighing and 

final traps were immersed in dry ice-isooctane baths. A 100 gram 

Mettler automatic balance was used to weigh the sampie traps. 

A Toepler pump was used to transfer the uncondensed vapor from 
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the trap side of the apparatus to the volumetric side. The volumetric 

side of the apparatus consisted of capillary tubing to which was 

attached a mercury manometer and four side arms with 12/5 ball-and­

socket joints. Volumetric bulbs of 25 cc, 500 cc, 1 liter, 2 liter 

and 4 liter nominal capicity were attached to the side arms. Three 

of the side arms were used for attaching the volumetric bulbs. The 

particular bulbs attached depended upon the type of sample, i.e., 

liquid or vapor, and the temperature and pressure in the equilibrium 

cell. The fourth side arm could be isolated from the volumetric 

apparatus by a stopcock. This side arm was used to connect a sample 

bomb for collection of a vapor sample for analysis by gas chromatography. 

The volumetric apparatus was calibrated for volume by the tech­

niques described in Appendix C. The volumetric apparatus was evacuated 

through side arms conveniently located along the apparatuso Pressure 

was measured with a Virtis McLeod gauge. Pressure on the vacuum side 

of the U-tube manometer was measured with a larger McLeod gauge. 

The volumetric apparatus was enclosed in a constant temperature 

air bath. The bath had outside dimensions: 4?3)!.11 high, 40%" wide 

and 21~11 deep. The outside of the bath was made of Yz" plywood .. The 

inside of the thermostat was lined with 111 thich styrofoam insulation. 

The volumetric apparatus was mounted in an upper compartment 



measuring 37W' high, 371-"2" wide and 18;Li.11 deep. A lower compartment 

measuring 811 high a<J/2" wide and 203/+" deep housed four light bulbs 

used to supply heat to the thermostat. Air was circulated from the 

upper compartment a.cross the light bulbs in the lower compartment 

and back to the upper compartment by means of a 100 SCEM blowerq A 

Fenwal Model 18021-0 bimetallic temperature controller~ mounted in 

the blower exhausti controlled the temperature by on-off control. A 

Beckman differential thermometer was used to measure the temperature 

of the bath. 

A 2112'' x 47¥,11 door on the front of the thermostat permitted 

access to the interior for changing the volumetric bulbs and taking 

samples. A fluorescent tube provided interior lighting. An optically 

flat glass window 4W1 x 36 11 was located directly in front of the 

U-tube manometer. 

The height of the mercury in both legs of the U-tube manometer 

was measured with a Gaertner M-911 cathetometer placed directly in 

front of the air bath window. The cathetometer scale is made of 

Type 416 stainless steel and has a temperature coefficient of linear 

-6 =l expansion of 9o9 x 10 °C • The scale was standardized at 20°C. 

Materials 

The methane used in this study was Phil.lips Petroleum Company 

Research=Gradeo A sample of the methane was analyzed by Mr. John Wo 

McQuaid of the Esso Research Laboratories~ Baton. Rouge, Louisiana. 

The sample was analyzed by gas chromatography using two different 

columnso The sample was first analyzed using a five foot long column 

of 80=100 mesh 5A molecular sieve which had been heat treated at 400°C 
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for 24 hourso During operation the column was temperature programmed 

to 357°Co A helium rate of 50 cc/min was usedo There was some 

question as to reliability of the carbon dioxide peak, therefore, 

a second column was prepared to check the results of the first 

column. -

This second column was a 40 1 long column of 20 parts hexadecane 

on 100 parts of white 80-100 mesh Chromosorb. The column was 

operated isothermally at 30°C at a helium rate of 50 cc/min. 

The carbon dioxide peak was detected with the second column. 

The carbon dioxide was scrubbed from the methane and a sample reruno 

The carbon dioxide peak was absent in this rerun sample, so it was 

concluded that carbon dioxide is indeed present in the methane. The 

analyses obtained on the molecular sieve and the hexadecane columns 

were in good agreement. The analysis of the methane is presented in 

Table IL 

The natural gas condensate used in this study was obtained 

through the Pan American Petroleum Corporation~ Tulsa, Oklahoma. 

The source of the condensate was a Morrow sand resevoir in Western 

Oklahoma producing at a depth of approximately 8500 feeto Table III 

presents data optained on the primary separator gas and liquid. The 

primary separator was operating at 846 psig and 78°F and at a gas/oil 

ratio of 72?339 SCF primary gas/Bbl. of stock tank oil at the time 

the samples were taken. 

Three condensate liquids were available for vapor-liquid 

equilibrium determinationso 

1. Tagged 'Condensate A0 = A heptanes plus cut prepared 
from the raw stock tank liquid by distillation at 
Pan American°s Tulsa research facility. 



TABLE II 

ANALYSIS OF METHANE REAGENT 

Component Volume % 

Nitrogen o.84 

Methane 98.9 

Oxygen 0.009 

Ethane 0.14 

co2 0.16 

Note~ If propane is present, it is present in quantities less than 
150 ppm. 
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TABLE III 

ANALYSIS OF CONDENSATE FIELD SAMPLES 

Component 

Nitrogen 

Methane 

Carbon Dioxide 

Ethane 

Propane 

I so butane 

n-Butane 

i-Pentane 

n-Pentane 

Hexanes (ll8-l67°F) 

Heptanes plus 

Spo Gr. C?+ 

Primary Separator 
Gas2, Mole % 

2 .. 00 

Ool5 

0 .. 15 . 

Ool2 

Primary Separator 
Oil, Mole % 

Oo09 

27080 

Oo46 

5o04 

5o69 

lo53 

3o9l 

1 .. 67 

3 .. 20 

7o28 

43 .. 33 

120 

007674 

·, 



2o Tagged 'Condensate BV - Raw stock tank oil 

3o Tagged 'Condensate C' - Raw stock tank oil 
obtained simultaneously with 'Condensate B' but 
in a separate container. 

Condensate 'Bv was used in this study. The composition of this 

sample as determined by chromatography is presented in Table IV. 

AS'rM D-86 distillations (2) were run on the condensate sample. 

The result of this distillation is presented in Figure 15. 



TABLE IV 

CHROMATOGRAPHIC ASSAY OF CONDENSATE 

COMPONENT 

METHANE . -
ETHANE 
PROPANE 
ISOBUT.ANE 
N-BUTANE 
2,2-DIMETHYLPROPANE 
ISOPENTANE 
N-PENTANE 
2,2-DIMETHYLBUTANE 
CYCLOPENTANE 
2-METHYLPENTANE 
3-METHYLPENTANE 
N-HEXANE 
METHYLCYCLOPENTANE 
2,3-0JMETHYLPENTANE 
CYCLOHEXANE 
3--METHYLHEXANE 
I SOHEPTANE 
2~2,4-TRIMETHYLPENTANE 
N-HEPTANE 
METHYLCYCLOHEXANE 
TOLUENE 
2,3,4-TRIMETHYLPENTANE 
OCTANE ISOMERS 
N-OCTANE 
ETHYLBENZENE 
MIXED XYLENES 
258-303F FRACTION 
N-NONANE . 
304-3.5F FRACTI-ON 
N-DECANE 
346-384F FRACTION 
N-UNDECANE 
385-421F FRACTION 
N-DODECANE 
422-455F FRACTtON 
N-TRIDECANE 
456-488F FRACTION 
N-TETRADECANE 
489-519F FRACHON 
N-PENTADECANE 
520-548F FRACTION 
N-HEXADECANE 
549-575F FRACTION 
N-HEPTAOECANE 
576-602F FRACTION 
N-OCTADECANE 
603-627F FRACTION 
N-NONADECANE 
628-650F FRACTION 
N-EICOSANE 
651F+ FRACTtON 

TO'fAL 

WEIGHT 
PERCENT 

0.00000 
0.00000 
o.13605 
o.113aa 
1.03993 
0.05393 
2 .• 07303 
2 • 3905.4 
o.232a3 
o.37677 
3.12204 
1.92279 
3.42069 
2·33765 
0.12919 
4.07085 
o.64660 
2•06118 
le83410 
4e64846 
8.82003 
2.09397 
2.65922 

. 5.5279'3 
4.34595 
o.99878 
3.41485 
7~09889 
3e33795 
7.12954 
2e62766 
4·30123 
2.09999 

.2.53585 
1·56478 
2·69268 
1.26042 
le57685 
o.76936 
1.09323 
0 .47227 
o.a9773 
0.37492 
o.48685 
o.16908 
o.39648 
o.11661 
o.169oa 
0.11661 
o.11661 
0.04001 
o.0233z 

100.00000 

MOLE 
PERCENT. 

0.00000 
0.00000 
o. 34617 

·o.33564 
2.00735 
Oe08386 
3·22356 
3. 71729 
0·30312 
0.60212 
4.06458 
2.503.27 
4.45339 
3.11624 
o.14464 
5.42671 
0.12396 
2·30778 
1•80153 
5·20461. 

10.07801 
2.54968 
2•61200 
5e42967 
4e26878 
1.05547 

. 3e60866 
6e20971 
2.91985 
5e6217l 

·2.01i94 
3e08721 

.1.50720 
·1.67023 
1·03063 
1.63859 
0.16101 
Oe89173 
0.43508 
0•57741 
0.24944 
o.44478 
o.1a51s 
0.22114 
o.01aaa 
0.11478 
0.05140 
0.07064 
o.04a12 
0.04630 
0.01620 
o.ooa82 

100.00000 

?5 
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CHAPTER V 

EXPERIMENTAL PROCEDURE 

The discussion of the experimental procedure will be divided 

into the following sections: (1) charging of the components, (2) 

equilibration, (3) sampling, and (4) analysis. 

Charging of Components 

The experimental procedure used consisted of making a series of 

runs at the same temperature, beginning at a pressure of about 100 

psia and increasing the pressure in logarithmic increments to the 

dew point or critical point at this temperature. 

Prior to the first run, the equilibrium cell, the gas compressor 

and the density traps were evacu~ted to three microns pressure for 

approximately one houro The apparatus was pressured to 100 psia 

with methane and reevacuated. The pressuring with methane and evacu­

ation were repeated two additional times o 

The equilibrium cell and density traps were then evacuated via 

the sample outlet line. The cell and traps were 'blocked off' and 

approximately 100 cc of methane-saturated natural gas condensate 

were charged to the equilibrium cell from a glass burette through a 

connection at the bottom of the cell. Care was taken not to break 

the liquid seal between the equilibrium cell and the charging burette 

before the valve in the charge line was closed. This prevented 
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leakage of air into the cell. The equilibrium cell was pressured 

with methane immediately following the charging of the condensate in 

order to pressure the cell and further prevent leakage of air into the 

cell prior to the equilibrium measurements., 

Equilibration 

Following the charging of the methane and condensate to the 

equilibrium cell~ the thermostat was heated to the desired operating 

temperature and the temperature was allowed to stabilize. The Power­

stats and the gylcol coolant rate were adjusted to bring the tempera­

ture to within 5°F of the desired value. The Hallikainen Thermotrol 

coarse and fine controls were adjusted to obtain the proper tempera­

ture. The temperature was checked periodically with the thermo­

couple-potenteometer arrangement described in Appendix B. 

The pressure regulation and measuring system was prepared for 

operation during the temperature equilibration period., The proper 

measuring cylinder was installed in the pressure balance. Six measur­

ing cylinders were needed to cover the 100-15 9 000 psia pressure range 

studied. Cylinders not in use were stored in special cannisters. The 

cylinders were completely immersed in pressure balance oil in these 

cannisters. 

Weights necessary to obtain the desired operating pressure were 

then placed on the balance. The weights and measuring cylinders were 

handled with gloves and Kimwipe towels to prevent corrosion to these 

parts. The valve isolating the pressure balance from the pressure 

bench was then opened. The hand pump was then used to inject oil 

into the system and lift the piston and the rotating parts to their 
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operating height. The weights were set in rotation. Following this 

procedure the pressure regulation and measuring system was concluded 

to be in order. The pressure balance then shut down and isolated from 

the pressure bench. 

The gas compressor level was checked to be sure that it contained 

and adequate supply of methane for the run. If not, methane was added 

to the compressor from the feed cylinder through the co2 and water re­

moval system. 

The gas compressor was isolated from the system. The valve sepa­

rating the pressure bench and the gas compressor was carefully opened. 

With the pressure balance isolated from the system, oil was added at 

the pressure bench until the pressure gauge reading indicated that the 

gas compressor was near the desired operating pressure. The valve 

separating the gas compressor and the equilibrium cell was slowly 

opened and as methane began to flow into the cell, oil was added to 

the system to maintain the pressure on the gauge. After approximately 

10-15 minutes the addition of methane to the equilibrium cell was 

essentially complete and the valve separating the cell and the gas 

compressor was opened completely. 

At the higher operating pressures, it sometimes became necessary 

to recharge the gas compressor during a run. Recharging was necessary 

because the methane feed cylinder pressure of 1500-1800 psig prevented 

the addition ofsufficientmethane to the gas compressor to fill the 

equilibrium cell in one loading. In this case, the gas compressor 

was isolated from the pressure bench and the equilibrium cell was 

'blocked off'. The pressure balance and bench were relieved of pressure. 

The pressure balance was isolated from the system. Then the pressure 
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in the gas compressor was relieved and the gas compressor was recharged 

by the procedure described above. Oil was added through the pressure 

bench to bring the system pressure to the desired value. 

A flow path·was opened up from the equilibrium cell through the 

vapor density trap and the vapor circulating pump back to the bottom 

of the equilibrium cell. Power to the circulating pump was turned on. 

Simultaneously, the continuous power input through the the Powerstats 

was reduced by approximately 100 watts to compensate for the heat 

given off by the pump magnets. 

The system pressure decreased as the circulating vapor went into 

liquid solution. Oil was added to the system at the pressure bench to 

hold the system pressure constant. 

The system pressure became constant after approximately 15 minutes 

of vapor recirculation. The level of the pressure balance piston was 

maintained at the desired level by adding oil to the system or by with­

drawing oil with the screw press. 

The vapor was recirculated at the desired operating temperature 

and pressure for a minimum of four hours. Frequently, vapor recircu­

lation was maintained overnight. In the latter case, the pressure 

regulation and maintenance section was isolated from the system and 

shut down, isolating the compressor, the equilibrium cell and the 

vapor recirculation system. Reconnecting the pressure regulation and 

maintenance system showed little or no change in pressure, as indicated 

by the fact that the pressure balance piston level did not change 

appreciably when the valve to the gas compressor was reopened. 

Following the vapor recirculation period, the vapor pump was shut 

down and isolated from the system. The constant heat input through the 
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Powerstats was increased by approximately 100 watts to compensate for 

the heat previously given off by the magnets. The outlet valves to 

the equilibrium cell were closed and the contents of the cell were 

allowed to settle for one hour. If not already connected, the pres­

sure balance was connected to the system and the weights set in 

rotation. During this settling period the equilibrium cell tempera­

ture and the height of the pressure balance piston were frequently 

checked. The necessary adjustments were made to keep both temperature 

and pressure at their desired valueso 

Sampling 

Preparations for sampling were made next. The liquid sample 

traps were carefully cleaned with ethyl ethero Particular attention 

was paid to the ball-joint connections. The trap stopcocks were 

cleaned and regreased with Apiezon N stopcock grease. The traps were 

evacuated and then weighed immediately on the Mettler balance. The 

weighing procedure consisted of repeating the weighings until consecu­

tive weighings agreed. A difference in consecutive weighings usually 

indicated a leak in one of the stopcocks. In this case, the stopcocks 

were cleaned and regreased and the evacuation and weighing procedure 

was repeated. 

The appropriate gas volumetric bulbs were connected to the volu­

metric side of the apparatus. The three-way stopcock on the Toepler 

pump was removed, cleaned with ether, regreased, and replaced. The 

volumetric side of the apparatus, including the Toepler pump, was 

evacuated and checked for leaks. The low temperature in the air bath 

thermostat was established during this period. 



Both the liquid and vapor sample lines were purged after the one 

hour equilibrium cell settling time and about one-half hour before 

the actual samples were withdrawno The sample line was opened to 

the atmosphere. The vapor sample valve and the vapor density trap 

outlet valve were openedo 'I'he vapor density trap inlet valve was 

opened slightly to purge the vapor sample line. During purging the 

screw press and/or the hand pump were used to maintain the pressure 

balance piston at its operating heigh.to 
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The liquid sample valve and the liquid density trap outlet valve 

were then openedo The liquid density trap inlet valve was opened 

slightly to purge the liquid sample lineo During purging the pressure 

balance piston was maintained at its operating height with the screw 

press and/or the hand pump. 

After the purging procedure the sample trap ball=joint connections 

were greased and two traps were put in place. The two traps which had 

been previously cleaned~ evacuated and weighed were not used at this 

point since the system was being evacuated prior to taking the actual 

vapor and liquid phase samples. 

The vapor and liquid density traps were next evacuated~ leak­

tested9 and then blocked off. The portable Vi.rtis McLeod gauge was 

used in the evacuation and leak=testing procedure. 

Several preliminary measurements were made before the liquid and 

vapor samples were taken. The barometric pressure was read. The U­

tube manometer located in the low temperature air thermostat was 

used to make this measurement for the 150°F runs. A calibrated barome= 

ter was not available for these runso The use of the U-tube manometer 

was considered to be more accurate than the use of an uncalibrated 



barometer because no corrections for capillarity, scale expansion, or 

residual vacuum were necessary for the manometer (18). The tempera­

ture of the manometer was assumed to be that of the air bath. The 

pressure on the vacuum side of the manometer was measured with a 

large McLeod gauge to insure that it was negl:igible. 
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A Texas Instruments Model 141A servo-driven fused quartz precision 

pressure gauge, Serial No. 346, with a 0-100 cm Hg bourdon tube, 

Serial No. 599, was used to measure the barometric pressure for the 

250°F runs. In the Texas Instruments gauge, the bourdon tube deflec­

tion is measured optically. An optical transducer is mounted on a 

gear that travels concentrically around the bourdon tube. A small 

mirror is mounted on the quartz bourdon tube. In operation the 

deflection of the pressured bourdon tube is found by rotating the 

gear until the light reflected from the tube mirror falls equally on 

a pair of matched photocells. The deflection of the gauge is converted 

to a digital reading which is then multiplied by a scale factor to 

determine the pressure. 

The pressure balance measuring cylinder data and weights wer~ 

next recorded. The room temperature and temperature of the pres­

sure balance were noted. Also recorded were the height of the oil 

above the bottom of the guide pin on the pressure balance and the 

level of the mercury in the gas compressor. 

A final check w~s made of the equilibrium cell temperature and 

pressure to be sure that these had not deviated from the desired 

values. If either had changed, the run was ~borted. If the tempera­

ture and pressure were at the desired values, sampling of the equi­

librium phases was begun. 
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With the liquid sample valve closed and the liquid density trap 

outlet valve open, the liquid density trap inlet valve was opened 

slightly. The screw press was used to maintain the pressure balance 

piston at the desired operating level during sampling. The gas com­

pressor mercury level was checked throughout the sampling period. 

Weights were added to the weight pan on the pressure balance to compen­

sate for the level change in the gas compressor. 

The liquid density trap inlet valve was opened gradually until 

this valve was completely open. The liquid density trap inlet and 

outlet valves were closed when the pressure balance indicated that the 

system pressure had completely stabilized. The gas compressor level 

and the weights added during the liquid phase sampling were recorded. 

Sampling of the vapor phase was begun immediately after comple­

tion of the liquid phase sampling. With the vapor sample valve 

closed and the vapor density trap outlet valve open, the vapor 

density trap inlet was opened slightly. The screw press and hand 

pump were used to maintain the pressure balance at the desired 

operating level. Weights were again added to compensate for the 

level change in the gas compressor. The vapor density trap inlet 

valve was opened gradually until this valve was completely open. The 

vapor density trap inlet and outlet valves were closed when the system 

pressure had completely stabilized. The gas compressor level and the 

weights added during sampling were recorded. The barometric pressure 

and the temperature of the equilibrium cell were measured and recorded. 

The sampling of the equilibrium phases was now considered to be 

complete. 



Liquid Sample Transfer 

The density trap outlet valves were checked to be sure that they 

were tightly closedo The liquid and vapor sample valves were opened 

and the material trapped between these valves and the density trap 

outlet valves wa.s ventedo This section of the apparatus was then 

evacuatedo 

The two liquid traps which had been previously cleaned 9 evacuated 

and weighed were put in place o The li.quid sample valve was openedo 

The trap side of the apparatus was evacuated to less than 25 microns 

with a leak rate not to exceed Ool mm Hg per houro The portable 

McLeod gauge was used in the leak testing procedureo 

Dry ice-isooctane baths in small Dewar flasks were applied to the 

two sample traps and the final catch trapo It will be recalled that 

the appropriate gas volumetric bulbs had been earlier connected to 

the volumetric side of the apparatus and evacuated. The volumetric 

apparatus was next opened to the liquid trap section. The entire 

sampling a.pparatus was checked for a vacuum to be less than 25 microns 

with leak rate not to exceed Ool mm Hg per houro 

The three=way cock on the Toepler pump was turned so as to con­

nect the liquid trap side of the sampling apparatus with the volumetric 

sideo The U~tube manometer was checked with the cathetometer to be 

sure that there was no difference in height between the two legso 

The liquid sample valve and the vapor sample valve were closedo 

'l1he outlet valve on the liquid density trap was openedo The sampling 

apparatus was isolated from t.he vacuum systemo The liquid sample 

valve was opened slowly to allow the trapped sample to pass into the 
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sampling apparatus. The heavier hydrocarbons were condensed and/or 

frozen out in the liquid traps. The lighter hydrocarbons passed on 

into the volumetric apparatus. The heating tape on the small metal 

sample line was used to prevent condensation of light hydrocarbons in 

this section of line and to facilitate evaporation into the liquid 

traps. 

The three-way cock on the Toepler was turned to isolate the 

pump. The dry ice-isooctane bath was removed from the final trap and 

the latter trap was warmed quickly to distill any residual hydrocarbon 

back into the second trap. There was seldom any observable hydro­

carbon in the final trap. This trap was used a a precaution against 

passage of condensed hydrocarbons into the volumetric side. 

The outlet stopcock on the second liquid trap was closed and the 

dry ice-isooctane bath removed from this trap. This trap was then 

warmed to distill hydrocarbons in this trap back into the first trap, 

This procedure eliminated the necessity of sampling liquid from the 

second trap. The Dewar flasks were filled with warm water and placed 

under the second and final liquid traps. 

The light hydrocarbons in the sample were transferred to the 

volumetric side by means of the Toepler pump. Vacuum was applied to 

the lower compartment of the pump to pull down the mercury level in 

the upper compartment. The three-way cock on the pump was turned to 

allow the light hydrocarbons to expand from the trap side into the 

upper compartment. Vacuum was again applied to the lower compartment 

to allow the upper compartment to be filled with hydrocarbon. The 

three-way cock was turned to allow the hydrocarbon to pass into the 

volumetric side. The upper compartment and three-way cock passage 



were filled with mercury to displace the hydrocarbon. 

The Toepler pump transfer was repeated until the level of the 

mercury in the U-tube manometer in the volumetric side did not change 

on three successive pumpings. 

The liquid trap stopcocks were closed, the traps were removed, 

and the ball-joint connections were cleaned carefully. The traps 

were allowed to reach the temperature of the balance and were then 

weighed. The liquid in the first trap was chilled in the dry ice­

isooctane bath. Then the liquid in the first trap was transferred to 

a pre-cooled serum vial and stored in the freezing compartment of the 

refrigerator awaiting analysis on the chromatograph. 
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The hydrocarbons in the volumetric side of the sampling apparatus 

were allowed to attain the temperature of the low temperature thermostat 

as indicated by constancy of the mercury levels in the U-tube manometer. 

One-half hour was sufficient for this temperature equillibrium. The 

vacuum side of the U-tube manometer was evacuated to less than 20 

microns. The U-tube mercury levels and the height of a reference 

mark on the manometer were recorded, along with the size of the 

attached volumetric bulbs and the position (open or closed) of their 

stopcocks. 

A sample bomb was next prepared for taking of a sample from the 

volume·tric apparatus for chromatograph assay. The bomb was first 

cleaned with dichromate cleaning solution. Following a distilled 

water rinse, the bomb was flushed with acetone and ethyl ether. The 

bomb stopcocks were removed, cleaned with ether, regreased and replaced. 

The bomb was next evacuated. 

The evacuated bomb was attached to the volumetric apparatus at a 
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ball-joint provided for this purpose. The stopcock on the bomb was 

opened and a corresponding stopcock on the volumetric apparatus was 

opened to permit entry of the hydrocarbon sample into the sample bomb. 

The stopcocks were closed and the bomb was removed from the apparatus. 

The long leg of the sample bomb was inserted into a flask of clean 

mercury and the mercury allowed to enter the sample bomb to bring the 

pressure in the bomb to near atmospheric pressure. Pressuring with 

mercury facilitated later removal of samples for the chromatographic 

assay. 

A sample was iµunediately injected into the chromatograph to be 

sure that a sample had been recovered in the sample bomb. This 

completed the transfer of the liquid phase sample. 

Vapor Sample Transfer 

The procedure used for transferring the vapor phase density trap 

sample to the volumetric apparatus was essentially that used for the 

liquid phase sample. The only difference occurred in the use of the 

dry ice-isooctane baths for the liquid traps. The difference in pro­

cedure will be amplified in the discussion below. 

Prior to the transfer of the sample 1 the dry ice-isooctane baths 

were applied to the liquid sample traps and to the final trap. The 

transfer of the vapor phase sample was begun in the same manner as the 

transfer of the liquid sample. 

The three-way cock on the Toepler pump was turned to isolate the 

pump. The dry ice-isooctane trap was removed from the final trap and 

the latter trap was warmed quickly to distill any residual hydrocarbon 

back into the second trap,, 1rhe outlet stopcock on the second liquid 
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trap was closed and the dry ice-isooctane bath removed from this trap. 

The trap was warmed to distill hydrocarbons in this trap back into 

the first trap. 

The outlet stopcock on the first liquid trap was closed and the 

dry ice-isooctane bath removed from this trap. The trap was examined 

for condensed hydrocarbons. If enough condensed hydrocarbon was 

present to warrant sampling for the chromatograph, the dry ice-isooctane 

bath was replaced and the procedure described for the liquid phase 

transfer was continued. 

If there was not enough liquid sample for analysis by chromatog­

raphy, the dry ice-isooctane bath was replaced with a warm water bath 

and the liquid phase sampling procedure was continued. When this pro­

cedure was followed, there was no hydrocarbon left in the trap side of 

the sampling apparatus, i.ea 9 all of the hydrocarbon was transferred 

to the volumetric side of the sampling apparatus. 



CHAPTER VI 

CHROMATOGRAPHIC ASSAY OF THE EQUILIBRIUM VAPOR-LIQUID PHASES 

The direct experimental determination of vapor-liquid equilibrium 

ratios requires not only the measurement of temperature and pressure 9 

but also the determination of the concentrations of the individual 

components in both phases. 

The following methods are available for the separation and 

identification of components of petroleum mixtures: 

Methods based on distillation and extraction, 

Spectroscopic methods, notably ultraviolet, 
infrared and mass spectroscopy 

Chromatographic methods 

These methods supplement rather than replace each other. Distillation 

methods have the disadvantages of requiring large samples and long 

analysis times. Spectroscopic procedures offer an improvement over 

those based on distillation and extraction in ease of identification 

and speed. However, the use of spectroscopic methods is necessarily 

restriced to larger laboratories because of the high initial equipment 

and maintenance costs. Gas chromatography, the analytical tool chosen 

for this work, provides a rapid and economical method for obtaining the 

compositi·on data needed in vapor-liquid ratio determinations. 

Gas chromatography was first worked out by A. To James and 

A. J.P. Martin (22), the 1952 Nobel Prize winner for chemistryo 

They used the method to effect a biochemical separation. The great 

90 



91 

versatility of gas chromatography was soon confirmed by Ray (45), 

who applied the technique to the separation of hydrocarbons. In the 

decade following this pioneering work, gas chromatography has developed 

into a major analytical tool in the petroleum industry, even to the 

point that the American Society for Testing and Materials has accepted 

gas chromatography for certain routine analyses of petroleum fractions 

(3). 

Kehn (26) recently used two chromatographs to analyze the vapor 

and liquid phases of a condensate system containing components from 

methane to c20 • A chromatograph equipped with a thermal conductivity 

detector was used for analysis of the methane-through-pentane fraction. 

A chromatograph consisting of a capillary column and a hydrogen flame 

ionization detector was used to analyze the pentane-plus fraction. 

Kehn chose to use two chromatographs because experience gained in his 

laboratory and reported by other workers in the field of chromatography 

indicated that the use of a single chromatograph to analyze all the 

components from methane to c20 was impractical. 

There are certain advantages to using a single chromatograph to 

analyze a c1 to c20 mixture. The need for elaborate sampling and 

sample preparation equipment is eliminated. Less attention of the 

analyst is required to operate the single instrument. These ad­

vantages offered enough incentive to develop an analytical technique 

using a single chromatograph. 

Equipment and Operation 

It was originally planned in this work to obtain the multicom­

ponent analyses of the equilibrium phases on an F & M Scientific 
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Corporation (hereafter called F & M) Model 609 single column, flame 

ionization chromatograph equipped for temperature programmingo Two 

problems arose in use of this chromatograph: (a) the unstable 

baseline which became acute with the use of temperature programming 

and (b) the non-reproducibility of the temperature programming system 

of this particular chromatograph. It was possible, however, to use 

this chromatograph to screen column sizes, column supports and 

operating conditions to obtain the best analysis of the field conden­

sate sampleo The three most promising substrates found were Carbowax 

20 1 Apiezon Land SE 30 methyl silicone polymer. One-eighth inch 

columns were found to be far superior in performance to Y411 columns. 

The field condensate sample was assayed on a Micro-Tek 2500R 

dual co1.umn 1 temperature programmed chromatograph equipped with 

thermal conductivity detectors. One-eighth inch columns packed with 

Carbowax 20 9 Apiezon Land SE 30 coated supports were evaluated at 

the same operating conditions as those used on the F & M Model 609 

chromatograph. The degree of component separation obtained with the 

thermal conductivity unit was not as good as that obtained with the 

flame ionization unit. 

The problems associated with the F & M Model 609 chromatograph 

coupled with the better analyses obtained with flame ionization led 

to the purchase of an F & M Model 810 research chromatographo This 

chromatograph has dual column flame ionization and thermal conduc­

tivity detectors. This chromatograph is equipped not only for 

programmed temperature operation but also for an automatic analysis 

cycle that completely eliminates the need for manual resetting during 

duplicate runso This automatic feature coupled with a gear driven 



temperature programmer ensures almost perfect reproducibility of 

duplicate runs. While it is possible to evaluate a sample simul­

taneously using both flame and thermal conductivity detectors, tests 

indicated that flame ionization would provide an optimum analysis of 

the mixtures encountered in this work. 

The hydrogen flame ionization detector has the sensitivity, 

linearity of. response and rapidity of response for complete analysis 

of the c1 to c20 system. Operation of this detector is based on the 

measurement of electrical conductivity between two electrodes placed 

in a hydrogen flame. With pure hydrogen, the conductivity is very 
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low. Addition of small amounts of organic material produces a large 

increase in the conductivity of the flame. According to McNair 9 et al. 

(20) the linearity of response for varying concentrations is valid for 

a sample-size range of several orders of magnitude. This linearity 

of response was verified in the calibrations described below. 

The columns used in the Model 810 chromatograph are twenty feet 

long and are made of 1/811 copper tubing. The packing is 10";6 SE 30 

silicone rubber on 60=80 mesh non-acid-washed Johns-Manville Chromo­

sorb P. The silicone rubber was dissolved in chloroform and then 

mixed thoroughly with the Chromosorb P. The chloroform was evaporated 

by heating the support in a beaker over a steam heater. A forty foot 

section of 1/811 copper tubing was filled by gravity with the prepared 

support. Previous experience in preparing 1/811 columns indicated that 

vibration of the column during filling produced a column with excessive 

pressure drop. Two twenty foot columns were prepared by simply cutting 

the forty foot column in half. 

A drifting recorder base line becomes a problem when an integrator 



is used to measure the areas under the individual component peaks. 

The drifting of the base line increases with increasing temperature 
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as the substrate vaporizes and increases the conductivity of the hydro­

gen flame. The tendency of the base line to drift can be compensated 

for by adding a second flame detector. The bias potential supplied to 

each detector is equal in value but opposite in polarity. While t~e 

substrate bleeding off one column is causing a voltage drop in one 

direction') the bleeding substrate of the second column is causing an 

equal voltage drop in the opposite direction. The net result of the 

opposing voltages is cancellation. In order for the second column to 

cancel the bleed effect of the first, the columns must be balanced. 

This is done by heating the columns to the desired upper limit tempera­

ture value with the desired helium flow rate through the analytical 

column and regulating the reference column helium flow rate to return 

the recorder pen to the zero baseline level. When a sample component 

passes through the flame and the columns are balanced, the current 

through the analytical flame (helium+ sample+ substrate bleed) will 

be.greater than the current through the reference flame (helium+ 

substrate bleed). The difference in currents will be the net change 

caused by the presence of the sample. The end result is a peak 

representing the sample on a flat baseline. 

The helium rate through the analytical column was 9 cc/min and 

11 cc/min through the reference column. Additional helium was added 

after each column to bring the total helium flow rate to 50 cc/min. 

This additional helium resulted in a cooler hydrogen flame and better 

detector performance., 

The Model 810 chromatograph can normally be temperature programmed 
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from room temperature to 500°C. The lower temperature limit of room 

temperature was too high for adequate separation of the components, 

methane through normal butane. Consequently, the chromatograph was 

modified to operate from a lower temperature of 0°C. This temperature 

was obtained by charging dry ice to the oven five minutes before 

sample injection. The syring~s used for vapor sample injection and 

the vapor sample bombwere.heated prior to sample injection. Follow-

ing sample injection, the chromatograph was programmed at a rate of 

2°C/min. to an upper limit of 260°C. The conditions chosen as 

standard for the vapor and liquid sample analyses are presented in 

Table V. 

Calibration 

The chromatograph must be calibrated for each of the equilibrium 

phase mixture components. In order to obtain meaningful results, 

these calibrations must be made at the same chromatograph operating 

conditions as those used in the composition analyses of the equi-

libri~ phases. Calibration of the chromatograph is necessary in 
' 

order t6 convert the area percent obtained from the chromatogram to 

weight or mole percent. 

A number of calibration standards containing four or more liquid 

components were prepared from research grade hydrocarbons obtained 

from the Phillips Petroleum Company and the American Petroleum 

Institute Hydrocarbon Depository. The desired hydrocarbon mixture 

components were injected one at a time into stoppered serum vials with 

the net weight of each component being determined from weighings on 

the Mettler B-6 balance. The compositions of these standards were 
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calculated from this weight data. Where possible, three different 

standards, containing the same components, were prepared with a given 

component present in a different concentration in each of the mixtures. 

The calibration standards for the light gases were obtained 
.~,i 

directly from the Phillips Petroleum Company. Laboratory analyses 

accompanied these samples. The compositions of the various standards 

are presented in Appendix F. 

The calibration of the chromatograph for a large number of 

compounds is necessarily a longandtedious process. Samples of the 

calibration standards were analyzed a minimum of eight times at the 

predetermined standard conditions (Table V). The resulting 

chromatograms were then evaluated as follows. 

The chromatograph strip chart recorder was equipped with a Disc 

integrator. This integrator provides a trace readout which is 

continuously recorded on the side of the chromatogram~ The integrator 

trace is directly proportional to the peak areas on the chromatogram 

and can be converted to_a numerical value. The area percent under a 

given peak is calculated simply as the trace value for that peak 

divided by the total trace area value. 

The pure component calibration data for the Model 810 

chromatograph were evaluated using multiple regression techniques. 

The reader is referred to the text of Natrella (33) for the calcu-

lation procedures used. This data analysis was done on the IBM 1410 

digital computer using a program developed by the writer and R. c. Lee. 

This computer program permitted the estimation of the coefficients of, 

and the answering of various questions about, an mlli degree polynomial 

relationship. 



TABLE V 

STANDARD CHROMATOGRAPH OPERATING CONDITIONS 

Column: 1/811 copper tubing x 20' long 

Substrate: 10% SE 30 silicone rubber 

Support: 60-80 mesh Chromosorb P 

Helium Rate-Analytical Column: 9 cc/min 

Helium Bate-Reference Column: 15 cc/min 

Auxillary Helium Rate: 41 cc/min 

Hydrogen Cylinder Pressure: 20 psig 

Helium Cylinder Pressure: 80 psig 

Air Cylinder Pressure: 33 psig 

Initial Temperature:0°C 

Final Temperature: 260°C 

Detector Temperature: 350°C 

Temperature Programming Rate: 2°C/min 

Detector: Flame 

Injection Port Temperature: 255°C 

Vapor Sample Size: 3 cc 

Liquid Sample Size: 'lo6 pl 
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between a dependent variable Y and single independent variable X. 

Four models representing the calibration data were studied. These 

are summarized in Table VI. 

Model 2 was chosen as the one which best represented the data. 
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The coefficients for this model were determined for each of the 

calibration hydrocarbons. The standard deviations of these coef­

ficients were determined and an analysis of variance was made. 

Finally~ the standard deviations of the points regressed were 

determined. It is possible to estimate the accuracy of the chromato­

graph calibrations from this statistical analysis. The results of 

the statistical treatment of the chromatograph calibration data 

are presented and discussed in Appendix G. 

TABLE VI 

REGRESSION MODELS OF CHROMATOGRAPH CALIBRATION DATA 

Model LLJ)ependent Variable X - Independent Variable 

1 Component Weight Percent Component Area Percent 

2 Component Area Percent Component Weight Percent 

3 Component Mole Percent Component Area Percent 

4 Component Area Percent Component Mole Percent 

Analysis of the Coexisting Equilibrium Phases 

Figure 16 shows a typical chromatogram obtained from the 

analysis of a naturally occurring condensate system. Methane was 

added to this condensate in order to show the point on the 
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chromatogram where methane is eluted. The elution time for the 

individual pure hydrocarbons was noted during each of the 

chromatograph calibration runso These elution times permitted rapid 

identification of the components in the equilibrium phase sampleso 

The elution time for methane was 2.8 minutes and the elution time 

for c20 was 134 minuteso It was not possible to identify each 

individual hydrocarbon in the heavy fraction of the condensateo 

The identified normal paraffins in this region served as convenient 

markers for dividing this heavy material into fractions. The 

individual fractions were then designated by boiling point ~ange and 

for calculation purposes the fractions were assumed to behave as 

isoparaffins. 

A chromatographic assay of the condensate used in this study 

was presented in Chapter IV, Table IV. The procedure for sampling 

the equilibrium phases was discussed in Chapter V while the pro­

cedure used in operating the chromatograph was discussed earlier 

in this chaptero 



CHAPTER VII 

DISCUSSION OF RESULTS 

Experimental Results 

Composition and density data were taken for the equilibrium 

coexisting phases of a methane-Morrow condensate system at 150°F 

and 250°F and pressures from 100 psia to the dew or critical points 

of the system at these temperatures. The temperatures were selected 

on the basis of the temperature range encountered in producing 

natural gas condensate reservoirs and the limitations of the 

experimental apparatus. The experimental apparatus can be operated 

at temperatures up to and including 250°F. Attempts were made to 

operate the apparatus at temperatures greater than 250°F. These 

attempts failed due to difficulties experienced with high pressure 

valves exposed to these higher temperatures. 

Pressure limitations involved operating characteristics rather 

than the physical limitations of the apparatus. The operating range 

of the apparatus is 45 - 15,000 psia and is limited by the equi­

librium cell. At pressures below 100 psia insufficient methane is 

dissolved in the liquid phase for accurate composition analysis 

with the sampling techniques and apparatus used here. The upper 

pressure limit was dictated by the dew or critical point of the 

system at the temperatures studied. The particular values of pres­

sure selected were based on approximately equal logarithmic 
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increments of pressure. 

The experimental data were converted to P-T-x-y data in the 

following manner. Pressures in the equilibrium phases were calcu­

lated from the weights and piston area used on the pressure balance. 

Corrections were applied for the buoyancy of air, and the hydro­

static heads of hydraulic oil, mercury and hydrocarbon. Barometric 

pressure was added to obtain absolute pressureo 
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Two samples were taken for chromatographic assay for each of the 

equilibrium phases: (1) a sample of the heavy hydrocarbon fraction 

frozen out in the cold traps and (2) a sample of the light hydrot· 

carbons transferred to the volumetric apparatus. The moles of each 

component in the heavy fraction were obtained from the chromatographic 

assay and the cold trap weight data. The moles of the light hydro­

carbon components were calculated from the gas law, using compressi­

bility factors evaluated from the virial equation of state terminated 

after the second virial coefficient. The generalized second virial 

coefficients of Pitzer (40) were used in this calculation. The moles 

of each component in the equilibrium phase were then calculated by 

material balance. The K-values were calculated directly from the 

mole fraction data and the phase densities were calculated from the 

knowledge of the number of moles of each component present in each 

phase and the volumetric calibration data for the density traps. 

The calculation of P-T-x-y data from the raw experimental data 

is illustrated by sample calculations in Appendix E. The raw 

experimental data are tabulated_in Appendix H. The experimental 

results in the form of P-T-x-y data are tabulated in Appendix I. 

The equilibrium phase densities are also tabulated in Appendix I. The 



equilibrium phase densities are presented graphically in Figures 17 

and 18 in units gm/cc and in Figures 19 and 20 as molar volumes in 

cc/g mole. A portion of the experimental K-data is presented 

graphically in Figures 21 and 22. The experimental data points are 

designated on these figures. 

Experimental Errors 
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In discussing experimental errors it is important to differentiate 

between precision and accuracy. Accuracy refers to the magnitude of 

the error between the observed and the true behavior, irrespective 

of precision. Accuracy is determined by the agreement of measurements 

made by different methods. Thermodynamic consistency tests could be 

used to establish the accuracy of vapor-liquid equilibrium data. 

Precision, on the other hand, refers to the magnitude of the variations 

of observations in direct measurements. The precision, or variability 

of the data can be studied by the method of propagation of errors, 

as was done by Thompson (65) and/or by comparing a few repetitions 

in measurements. 

Duplicate runs were made at a given temperature and pressure in 

this work in order to determine the precision of the experimental 

measurements. These duplicate runs will be discussed and,in addition, 

certain known sources of error in the experimental measurements will 

be reported. 

It will be recalled that the number of moles.of light hydrocarbons 

in each equilibrium phase sample was determined from measurements of 

the pressure, volume and temperature of the hydrocarbon sample and the 

gas law. 



(.) 
(.) 

' e 
Ct 
I 

>-..... -en 
z 
lJJ 
0 

104 

0.6 

0.5 

0.4 0 LIQUID PHASE 
l!I VAPOR PHASE 

0.3 

0.2 

OJ 

900 · 200 500 1000 2000 5oootopoo 

PRESSURE-PS I A 

FIGURE 17 

EQUILIBRIUM PHASE DENSITY 
AT 15.0° F. 



0.7-.......... ------------

0.5 

(J 
(J 

, 0.4 
e 
0 
I 

>-
!:: . 0.3 
Cl) 
z 
LLJ 
c 

0.2 

0 LIQUID PHASE 
C:J VAPOR PHASE 

105 

o~·~~~:...U.1---J-.J-L..~~ 
100 200 500 1000 2000 500010,000 

PRESSURE- PS I A 

FIGURE 18 
EQUILIBRIUM P.HASE DENSITY 

AT 250° F. 



180 

160 
Cl) -0 

I= 
~ 140 
0 
0 
I w 

·~ 120 _. 
~ 
a:: 
:J 100 
0 
~ 

80 

60-----------......._.. _______________ _ 

106 

100 200 500 1000 2000 5000 10,000 

PRESSURE- PS I A 

FIGURE 19 -
CEQUILIBRIUM LIQUID PHASE MOLAR. 

VOLUMES AT 150° F. 



Q) -0 
f= 
~ 
0 
0 
I 

lJJ 
~1000. 
::, 
...J 
0 
> 
0:: 
<( 
...J 
0 
~ 

107 

150° F 

500 JOOO 2000 5000 

PRESSURE - PSI A 

FIGURE 20 
EQUILIBRIUM 'VAPOR PHASE MOLAR 

VOLUMES AT 150° F AND 250°F. 



10 

0 RAW EXPERIMENTAL 
DATA 

001..__ ___ --.......-.._....-_ __ __.__.__....____. 
100 1000 .. 10,000 

PRESSURE - PS I A 

FIGURE 21 · · 

K-VALUES AT 150° F. 

108 



· y 
K=­x 

0RAW EXPERIMENTAL 
DATA 

· 0 .0, _____________ ............ ____ ..___...__ ....... 
I 00 I 000 10,000 

PRESSURE - PSI A 

FIGURE 22 
· K-VALUES AT 250° F. 

109 



110 

The temperature in the air bath housing the volumetric sampling 

apparatus was measured with a Beckman differential thermometer which 

was calibrated against a platinum resistance thermometer. The air 

bath temperature was controlled to+ 0.1°F. The temperature of the 

gas sample was taken to be that of the bath. Readings taken during 

a run indicated that the temperature varied a maximum of 0.2°F during 

the run. 

The U-tube manometer mercury levels were measured with a 

cathetometerthat could be read to 0.05 mm. Repetitions of measure­

ments indicated that observational errors rarely exceeded 0.05 mm Hg. 

The maximum error in pressure measurement was estimated to be 0.2 mm 

Hg. Volumetric errors are discussed in Appendix C. 

The thermocouple in the equilibrium cell was calibrated against 

a N.B.S. calibrated platimum resistance thermometer. The error in 

this calibration is approximately 0.05°F. Temperature in the equi­

librium cell was controlled to+ 0.1°F from the start of the vapor 

recirculation to the end of sampling. 

The pressure in the cell was measured to within+ 0.2% of the 

pressure measured. Errors in pressure and temperature of the 

magnitude reported should have little or no effect on the compositions 

of the equilibrium phases. 

The errors in the composition assay of the equilibrium phases by 

chromatography are considered to be the largest experimental errors. 

The manufacturer of the chromatograph states that an accuracy 

of 1.5% of the true composition value is the best that the analyst 

can expect for non-routine analyses. The statistical analysis of the 

chromatographic calibration data indicated that the accuracy of the 
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the composition data is on the order of 1.5-2.5% of the true value. 

Runs 127 and 128 were made at 250°F and 713 psia for duplicate 

run comparison. The methane K-values were 6.77 and 6.52 respectively, 

a difference of 4%. The equilibrium vapor and liquid densities 

differed by 2 and 5% respectively. 

'rhermodyn.amic Consistency Test 

'rully (68) applied three different thermodynamic consistency 

tests to his experimental vapor-liquid equilibria data for the methane-

ethylene system. The tests used were (1) the Thompson-Edmister (67) 

test, (2) the Edmister (12) test, and (3) a modified form of the 

Thompson-Edmister test. These tests were discussed in Chapter III 

of this thesis. 

Of the consistency tests evaluated~ Tully (68) found that the 

Edmister (12) test is the besto The Edmister integral form consistency 

test was chosen for use in this work on the basis of Tully's recommen-

dations. 

The Edmister test circumvents the two principal difficulties 

encountered in the Thompson-Edmister test. These difficulties are 

the determinations of ~i and the different forms of data required for 

the integral test. 

Thompson (67) used a truncated Berlin form virial equation of 

state to evaluate~i· This truncated form does not adequately describe 

the complex behavior of gas mixtures. Any errors in~i are directly 

reflected in the consistency test, due to the important role which t; i 

plays in the test. 

The derivation of the Edmister isothermal thermodynamic consistency 
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test was presented in Chapter III. The integral form of this test 

follows 

= dP (III-71) 

This consistency tes·t was derived for a binary system. In order to 

apply the test to the methane-condensate dataof this work, it was 

necessary to consider the system as a binary, one component being 

methane and the other component being the condensate. The evaluation 

of the various terms in Equation III-71 will now be discussed. 

The fugacity coefficients of vapor mixture components, ¢i, and 

the mean fugacity coefficient for the total vapor mixture, ¢m, can 

be calculated from the critical constants of the components and 

combinations of them by means of the Redlich-Kwong equation of state 

(46). The logarithm of the fugacity coefficient for a mixture 

component is calculated from the following equation (46). 

B. 
ln ¢i = (Z - 1) Bi -

A2 r A. B.J 
ln (Z = BP) - i3' L2 ;::- - rr"" ln(l + BP) 

(VII-1) 

where subscripts denote component values; no subscripts denote 
mixture values 

A. = 0.6541/T l.25p 0.5 (VII-2) 
J. r c 

B. = 0.0867/T P (VII-3) 
J. r c 

A2/B = 4.933/T l.5 
r (VII-4) 

A = Ly.A. 
J. J. 

(VII-5) 
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B = \'y.B. L 11 
(VII-6) 

The value of Z must be determined by successive approximations of the 

original Redlich-Kwong (46) equation in Z form. Equation VII-1 

reduces to the following equation for the logarithm of the fugacity 

coefficient for the total vapor mixture 

A2 
ln ¢m = (Z - 1) - ln (Z - BP) - ~ ln (1 + BP) (VII-7) 

The mean fugacity coefficient for a mixture, ¢m, is defined by (47) 

ln ¢ = \' y. ln ¢. 
m L 1 1 

(VII-8) 

If the fugacity coefficient for one component of a binary mixture is 

known and the mean fugacity coefficient is also known, then the 

fugacity coefficient for the second component can be calculated from 

Equation VII-3 as follows 

(VII-9) 

Equation VII-9 was used to evaluate the fugacity coefficient for the 

condensate. 

The critical constants for methane used in Equation VII-1 were 

obtained from the API 44 tabulation (53). The critical constants for 

the condensate were evaluated as follows 

Tc = Iyi 
pc= Iyi 

T 
c. 

1 

p 
c. 

1 

(VII-10) 

(VII-11) 

The compositions used in Equations VII-10 and VII-11 were obtained 

from the chromatographic assay of the condensate reported in Table IV. 



The critical constants used were also from the API 44 tabulation (53) 

and are presented in Appendix K. 

The quantities, A a~d B, used in Equation VII-7 to evaluate the 

mixture fugacity coefficient were evaluated via Equations VII-5 and 

VII-6. The compositions used were obtained from the chromatographic 

assay of the vapor mixture for which the mean fugacity coefficient 

was being evaluated. The critical constants used were those tabulated 

in Appendix K. 

The quantity y_V - VL in Equation III-71 was evaluated from the 

experimental molar vapor and liquid volumes. The values of ln (¢1/¢2), 

ln(y1/y2) and Y..V- y_1/RT calculated from experimental data are tab­

ulated in Table VII. These quantities are plotted as a function of 

pressure in Figures 23 through 30. 

The integration of Equation III-71 is facilitated by rearranging 

follows 
p2 

IY1-"i) 
pl 

dP (VII-12) 

The two left hand terms are now in a form which can be readily 

integrated according to the following relationshipo 

= uv- Jvdu (VII-13) 

The first term of Equation VII-12 would then be integrated as follows: 

dP 

(VII-14) 



TABLE VII 

CALCULATED QUANTITIES FOR CONSISTENCY TEST 

Pressure 2 psia 

152.56 
214.46 
313.76 
513.51 
71LOO 

1034.45 
1510.73 
2012.43 
3010.10 
5009.31 

' 

218.56 
314.74 
513.39 
712.98 

1013.31 
1512.99 
2012.38 
3011.43 

Temperature - 150°F 

0.93925 2.45162 
0.96171 2.71885 
0.98817 3.13716 
1.01124 3.50193 
1.03329 3.71398 
1.05831 3.99695 
1.08914 3.91035 
1.11756 3.89358 
1.17006 3.35291 
1.16964 2.36140 

Temperature - 250°F 

0.86825 1.65399 
0.90553 2.13311 
0.9573 2.41907 
0.98718 2.70113 
1.00450 2.93271 
1.03046 2.97042 
1.05136 2.95799 
1.09075 2.70890 

115 

0.00472 
0.00378 
0.00244 
0.00133 
0.00091 
0.00052 
0.00024 
0.00010 
0.00000 
0.00019 

0.00390 
0.00247 
0.00143 
0.00113 
0.00064 
0.00034 
0.00014 
0.00007 
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The integration of the second term would be handled in a similar 

manner. An analytical expression for (y1 - x1) vs. pressure was re­

quired to perform the integral test of Equation VII-12. This 

expression was obtained by fitting a fourth degree polynomial to the 

experimental (y1 - x1) values. The coefficients for this polynomial 

are presented in Table VIII. 

The results of the Edmister consistency test are summarized in 

Table IX. The results of the test of the methane-condensate data of 

this work indicate that the 150°F data are consistent in the range 

150-1500 psia while the 250°F data are consistent in the range 218-

2000 psia. It is not safe to conclude that the high pressure data 

are not consistent. The vapor fugacity coefficients were calculated 

via the Redlich-Kwong equation of state. The reduced pressure for 

the condensate at 3000 psia was 7.25 increasing to 16.8 at 7000 psia. 

The accuracy of the Redlich equation is questionable .in this high 

reduced pressure range. 

Data and Correlation Comparisons 

124 

The comparison of experimental vapor-liquid equilibrium data for 

complex hydrocarbon systems is difficult unless the data compared are 

at the same temperature and pressure and for identical systems. Data 

have not been published for a methane-condensate system at temperatures 

and pressures corresponding to those investigated in this work. 

Katz and Hachmuth (24) did study a natural gas-crude oil system 

at 150 and 250°F. The techniques used in their work were discussed in 

Chapter II. The methane K-values obtained in this work are compared 

in Table X with those obtained by Katz and Hachmuth. There is 



TABLE VIII 

COEFFICIENTS FOR POLYNOMIAL FIT OF 

Temperature - 150°F 

B1 = 0. 91256117 

B2 = 0021167821 x 10-3 

B3 = 0.84530336 x 10-7 

8 -10 B4 = -.2 757997 x 10 

B5 = 0030905587 x 10-14 

Temperature - 250°F 

B1 = 0 .. 85955146 

8 -4 B2 = 0 .. 957 5730 x 10 

B3 = 0 .. 35206084 x 10-7 

-11 B4 = 0 .. 5609912 x 10 

B5 = 0,0 
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TABLE IX 

RESULTS OF EDMISTER·ISOTHERMAL INTEGRAL 

Upper · Lower 
Limits of 

Integration, psia 

313.7 
513.5 

· 1034.5. 
1510.7 
2012.4 
3010.1 

712.9 
2012.4 
301:t..4 

152.6. 
152.6 
152.6 
152.6 
152.6 

. 152.6 

218.5 
218.5 
218.5 

Areal (1) 
First Term 
Left Side 

Equation VII-12 

0.62409 
1.00923 
1.58577 
1.96155 
2.60085 
3.15524 

0.95055 
2.04787 
2.66284 

· (l). See Equation VII-12 

THERMODYNAMIC CONSISTENCY.TEST 

Area 2 
Second Term 
Left Side 

Equation VII...:12 

Area 1 
Plus· 

Area 2 

Temperature= 150°F 

-0.05329 
-0.10024 
-0.19733 
-0.34954 
-0.55597 
-0.83600 . 

0.57079 
0.90899 
1~38844. 
1.61128 
2.04487 
2.31923 

Temperature= 250°F 

0.13863 
-0.52139. 
-o.8o474 

0.81191 
1.52647 
1.85805 

(2) % Diff. = ( Right si~e - left side) 1 RJ.ght side · OO 

Area 3 
Third Term 
Right Side 

Equation VII-12 

0 .. 57189 
0.94842 
1.43029 
1.61200 
1 .• 69657 
1.74645 

--
o. 94917 
1.57966 
1 .. 68456 

% 
Diff •.. (2) 

0.19 
4.15 
3.20 

· 0.04 
-20~70 
-32.74 

14.46 
3.36 

-10.29 

(-A 
N 
O'\ 



Tem,,Eera ture, °F 

150 

250 

TABLE X 

COMPARISON OF EXPERIMENTAL K-VALUES 

FOR METHANE IN COMPLEX SYSTEMS 

Values of K = y/x 
Pressure, psia Katz-Hachmuth (25) This Work 

200 
500 
700 

1000 
2000 
3000 

200 
500 

1000 
2000 
3000 

21.0 
8.3 
6.2 
4.6 
2.8 
2.2 

20.5 
8.7 
4.5 
2.8 
2.1 

18.9 
8.5 
6.6 
4.6 
2.9 
2.1. 

17.2 
8.3 
4.3 
2.5 
1.7 
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favorable agreement between these two sets of data. The differences 

in the K-values compared can be attributed to the composition effects 

of the different solvents. 

The data obtained in this work were next compared with the NGSMA 

Correlation (34). This graphical correlation published in 1955 was 

constructed by the Fluor Corporation from data compiled by Dr. G. G. 

Brown and Fluor. The interested reader is referred elsewhere (64) for 

a discussion of this widely used correlation. 

The 150°F experimental methane K-values were compared with the 

10,000 psi convergence pressure NGSMA K-values. The 250°F experimental 

data were compared with the 5000 psi convergence pressure K-values. 

These comparisons are presented in Table XI. The experimental values 

are 1376 higher than the NGSMA values at 150°F and 16% higher a. t 250°F. 

The regular solution correlation method of Chao and Seader (8) 

was applied to a 16 component system made up from components in the 

experimental system. The first 15 components corresponded to the 15 

components in the experimental system lighter than normal heptane. The 

16!:h component was a heptanes-plus fraction. 

The Chao-Seader method is a composition dependent correlation. 

The equations in the Chao-Seader correlation can be solved to get K­

values if the compositions of the coexisting vapor and liquid phases 

are known (given or assumed from a previous trial). If the compositions 

are assumed, then it is necessary. to check bubble point, dew point or 

flash calculations to see if the resulting compositions agree with 

those used in the K-value predictions. 

The experimental vapor and liquid compositions obtained in this 

work were used directly in the Chao-Seader equations to predict 
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TABLE XI 
·t, 

COMPARISON OF EXPERIMENTAL AND NGSMA 

K-VALUES FOR METHANE 

TemJ2!:ra ture , OF · Pressure NGSMA (34) Th~s Work 

150 100 32.0 31.9 
150 21 .. 2 23.8 
200 16.2 18.9· 
300 11.5 12 .. 8 
500 7.4 9.,0 
700 5.5 6 .. 6 

1000 4 .. 15 5 .. 1 
2000 2.5 2.95 
3000 1,.95 2 .. 11 
5000 1.1+5 1.45 

250 200 15.5 17 .. 2 
500 6.7 8.3 

1000 3.8 4.3 
2000 2.3 2.5 
3000 1.65 1.7 
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K-values. Comparisons of the calculated and experimental K-values for 

the 16-component system described above are presented in Tables XII 

and XIII. Data was tested up to the 2000 psia limit of the Chao­

Seader correlation. The average difference between the experimental 

and calculated methane K-values was 1207% at 150°F and 3.3% at 250°F. 

The difference between the experimental and calculated methane K­

values can be reduced by using a solubility parameter of 5.5 for 

methane rather than the value of 5068 recommended in Chao-Seader 

publication. 



· TABLE XII 

COMPARISON OF CHAO-SEADER AND EXPERIMENTAL K-IJALUES AT ·uo Fo. 

TEMPERATURE, Fo 
PRESSURE, PSIA 

METHANE 
ETHANE 
PROPANE 
ISOBUTANE 
N-BUTANE 
i,2-DIMETHYLPROPANE 
ISOPENTANE 
N-PENTANE 
2,2-DIMETHYLBUTANE 
CYCLOPENTANE 
2-METHYLPENTANE 
3-METHYLPENTANE 
N-HEXANE 
METHYLCVCLOPENTANE 
CYCLOHEXIINE 
HEPTANE PLUS FRACTION 

TEMPERATURE, Fo 
PRESSURE, PSIA 

METHANE 
ETHANE 
PROPANE 
ISOBUTANE 
N-IIUTANE 
2,~-DIMETHYLPROPANE 
ISOPENTAHE 
N-PENTANE 
2,2-DIMETHYLBUTANE 
CYCLOPENTANE 
2-METHYLPENTANE 
3-METHYLPENTANE 
N-HEXANE 
METHYLCYCLOPENTANE 
CYCLOHEXANE 
HEPTANE PLUS FRACTION 

150,0!i 
.1!'12,56. 

~ 
220839 

60327 
20174 

0994 
0774 
0610 
0352 
0289 
o211t' 
0181 
o 146 
0130 
, 108 
o09!i 
~076 
0001 

-.W!.L.. 
· 230 765 

· 2, 09 l 
·0118 
,463 
,!i5!i 
,202 
,162 
,064 
, 111 
,09!i 
,089 
,078 
,064 
,049 
,007 

l!i0o06 
7llo.OO. 

-'.:.L u.e.... 
50490 50700 
1,585 

0677 ,552 
o3!i4 .• ;l) 
0283 .2:31 
0241 .261 
0145 ,175 
,120 ,159 
0096 0066 
,073 ,067 
,067 ,058 
,059 ,049 
,050 ,045 
,042 ,034. 
,035 ,024 
,000 ,005 

l!'I0,06 
214,47 

K.:.yALyE 
~ 
16,450 
4,579 
l,61!i 

,7!i0 
,!i86 
,466 
,270 
,223· 
,166 
,138 
o 114 
,101 
,084 
0074 
,059 
,001 

.9.f..!... 
18,860 

1,124 
,532 
,392 
0406 
o 190 
,162 
o 116 
,156 
0168 
,170 
o08!i 
0068 
,O!i7 
,008 

l!>Oo04 
1034,45 
. K-VALVE 

-'=A- ue.,_ 
3,920 4,377 
lol!i7 

o5!i3 0493 
0310 0293 
,2!il 0268 
,220 0222 
,137 ,143 
, 114 ,135 
,092 ,072 
,010 ,070 
,066 ,u46 
,059 ,043 
.-050 0040 
,043 .-026 
,036 ,018 
.ooo ,003 

150,07 
313, 77 

• YO!. 
c-s . ..lle..!... 

iT:m 12,807 
3,214 · 
1,179 

,!i62 
• 441 
,356 
,208 
,172 
,130 
,106 · 
,089 
0079 
,066 
,O!i8 
0046 
,000 

,756 
,373 
,279 
o 146 
,160 
,120 
,096 
,086 
,106 
,089 
•066 
,06!i 
,046 
0007 

150,04 
1.510073 

• Yll! 
..c.:s..: ·ua.. 
2,956 3,484 

0920 
o5l!i ,!i22 
,317 ,438 
0260 0468 
.240 ,421 
,153 0832 
,129 1,03;3 
,109 ,520 
,()78 ,329 
,079 ,152 
.010 , 111 
,061 ,078 
,051 ,054 
,043 ,034 
,000 ,031 

UO,O!ii 
!113,50 

C-S· 
7,36!'1 

. 20083 
,822 
,409. 
,324 
,269 
,159 
,131 
.102 
,079 
0070 
,063 
o.053 
,045 
,036 
.o.oo 

150,06 
201.Z 043 

,996 
o!i49 
,53!i 
,203 
,184 
,168 
,076 
,081 
,O!i2 
,044 
,039 
,029 
0016 
0002 

~ ..u.e..... 
20349 20953 

0766 
0495 ,4!i!i 
,329 ,294 
,274 0343 
,258 , l!i9 
,171 ,155 
,145 , 141 
,124 ,074 
,092 ,085 
,091 ,077 
0082 ·,065 
0072 0060 
,06.2 ,049 
o05!i ,035 
,ODO ,009 

131 
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TABLE XIII 

COMPARISON OF CHAO-SEADER AND EXPERIMENTAL K-VALUES AT 250 Fe 

TEMPERATURE, F. 249.98 250.00 250.00 250.00 
PRESSURE, PSIA 113. 86 213.41 314,74 513.39 

K-VALUE "VIX 
~ ..lle..L.. ~ ..ue..._ __&=L ...ilf.a.._ ~ ...ilb. 

METHANE 33.979 31.476 18.518 20.183 12.748 12 • 71.9 7.944 8.178 
ETHANE 14.920 7.931 5.316 3.184 
PROPANE 5.845 4.408 3.244 2.784 2.267 2,034 1,483 1.491 
ISOBUTANE 3,090 3.305 1,756 1.982 1,254 1,386 .862 l .139 
N-BUTANE 2.586 2,899 1,478 1,707 1,062 1,400 ,739 1. 080 
2,2-DIMETHYLPROPANE 2.103 1.731 1,214 .730 ,880 .475 , 62 5 .489 
ISOPENTANE 1.360 1.394 .794 .857 .582 ,532 .423 e467 
N-PENTANE 1.199 1.231 .102 .787 .515 .602 .376 .417 
2,2-0IMETHYLBUTANE 1936 0628 1553 .415 .410 , 377 ,305 .239 
CYCLOPENTANE 1820 ,894 1481 .468 .354 .349 .260 .213 
2-METHYLPENTANE 1711 .624 1422 .359 .314 .291 .237 ,207 
3-METHYLPENTANE 1646 .579 ·384 .340 ,286 .267 ,216 .178 
N-HEXANE 1565 .515 ,337 1314 .252 ,112 .192 .140 
METHYLCYCLOPENTANE 1490 1 391 .291 ,245 .211 .1 e2 .164 , 135 
CYCLOHEXANE 1395 ,313 ,236 ,190 ,177 .135 .136 1104 
HEPTANE PLUS FRACTION 1017 1067 1010 ,037 1004 ,026 ,000 1024 

TEMPERATURE, F, 250.00 250100 250,00 250000 
PRESSURE, PSIA 712198 1013.31 1512,99 2012.38 

IS.-ll!LUf ~ ~lll 
~ llf..t.... c-s Uf.!._ ~ f.Xe..L- ~ _ue..... 

METHANE 5.042 . 6, 775 4.181 4.271 2,929 3.228 2.289 2.490 
ETt<ANE 11911 1,508 .985 , 722 
PR< PANE 1971 l,374 ,854 1.163 ,675 .890 ,583 1822 
ISOBUTAN!:: 1600 1.015 ,550 .735 ,481 1641 1451 ,513 
N-BUTANE ,521 . ,861 ,484 ,601 ,432 .570 ,411 1460 
2,2-DIMETHYLPROPANE .430 ,600 ,424 ,619 ,395 ,085 ,386 ,105 
ISOPENTANE ,320 • 31,6 ,302 ,294 ,293 ,306 .295 ,317 
N-PENTANE ,286 ,293 ,271 ,263 ,265 .266 ,268 ,293 
2,2-DIMETHYLBUTANE .219 .1.39. ,227 ,148 •229 .121 ,235 .189 
CYCLOPENTANE ,241 ,155 ,193 ,142 ,191 ,192 .198 .191 
2-METHYLPENTANE ,181 , 136 ,180 ,128 ,185 ,147 .193 ,188 
3-METHYLPENTANE ,170 ,120 ,165 ,126 ,171 ,138 ,179 .164 
N-HEXANE ,156 , 108 ,149 ,113 ,156 ,127 .164 .157 
METHYLCYCLOPENTANE .151 ,079 .128 ,087 ,134 .098 ,143 ,256 
CYCLOHEXANE .134 .061 ,109 ,060 , 117 ,080 ,128 ,102 
HEPTANE PLUS FRACTION ,000 .008 ,000 ,015 ,000 ,006 .ooo ,025 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this study was to develop certain techniques and 

equipment for obtaining vapor-liquid equilibrium ratios and phase 

densities for components of complex hydrocarbon systems. Experimental 

P-T-x-y and density data were obtained for a methane-natural gas 

condensate system at 150°F and 250°F at pressures from 100 psia to the 

dew or critical point of the system at these temperatures. 

The theoretical aspects of this work were primarily concerned 

with the evaluation and correlation testing of the experimental vapor-

liquid equilibrium data. 

The major conclusions for the experimental part of the work are 

as follows: 

1. The variability of the experimental composition data is 

approximately~ 2.5 percent. 

2. The dynamic type equilibrium cell used in this work is 

satisfactory for obtaining vapor-liquid equilibria data for 

complex systems. Sampling from this cell is blind, however, 

and one cannot tell whether or not two phases are present 

until the samples have been collected and analyzed. 

3. Vapor recirculation is considered a must in experimental 

vapor-liquid equilibrium determinations. The circulation 

time of four hours is more than adequate. This time can be 

safely reduced to two hours. 
~3 



4. Hydrocarbon samples containing components from methane (c1) 

through eicosane (c20) can be analyzed quantitatively using 

a single column, temperature programmed chromatograph. 

5. The chromatographic assay technique for composition 

determination of the equilibrium phases can be coupled with 

conventional experimental techniques to give vapor-liquid 

K-values for components of complex hydrocarbon systems 

which agree with those obtained by more complicated procedures. 

6. Valuable by-products of the chromatographic assay technique 

are densities of the equilibrium phases and K-values for 

individual components and fractions in the heptanes-pl.us 

fraction. 

Major conclusions based on the theoretical part of the work are: 

1. The Edmister isothermal integral consistency test indicates 

that the experimental data obtained in this work are 

consistent in the pressure range 100-2000 psia. 

2. The Edmister isothermal integral consistency test can be 

applied to multicomponent vapor-liquid equilibrium data 

if the multicomponent system is treated as a binary. 

3. The Edmister consistency test indicated that the experimental 

data obtained at pressures greater than 2000 psia are not 

consistent. However, an equation of state was used to 

calculate fugacity coefficients at these pressures. The 

data inconsistency at the higher pressures may be attributed, 

in part, to a break down of this equation of state at the 

higher pressure saturated vapor states. 

4. The Chao-Seader regular solution theory K-value correlation 
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provides a convenient semi-empirical method for the corre-

lation of experimental multicomponent vapor-liquid equi-

librium data. 

The following recommendations are made: 

l. The Michels-type equilibrium cell should be replaced with 

a windowed cell to permit observation of· the dew and bubble 

points of the mixtures studied. Consideration should be 

given to the design of a variable volume cell wit~ internal 

vapor and liquid recirculation. 

2. The accuracy of the K-values obtained is limited by the 

resolution of the chromatograph used in the sample analysis. 

A natural gas condensate has a large number of components 

which makes complete resolution of each-of the higher 

boiling components difficult, if not impossible. This 

incomplete resolution results in K-values of limited 

accuracY,particularly if the components are present in 

concentrations less than 0.5 mole percent. The accuracy 

of these K-values can be improved by either the use of an 

automatic integrator for the chromatograph qr the use of 

a simulated natural gas condensate. 

3. If a simulated natural gas condensate is used, it should 

be co~posed of 7-10 components whose identity and magnitude 

are determined from analyses of producing condensa~e reser-

voirs. 

4. In this work, the equilibrium vapor and liquid phase samples 

are removed from the density traps and split into two phases 

by freezing out the heavy components. This necessitates 



making separate analyses of these fractions as well as a 

material balance to obtain K-values and equilibrium phase 

densities. The largest portion of the experimental error 

arises from this technique. The development of a system 

for the direct sampling of the equilibrium phases into the 

chromatograph is urged as a means of reducing this error. 
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APPENDIX A 

CALIBRATION OF THE PRF.SSURE BALANCE 

AND MEASURING CYLINDERS 

The Michels pressure balance and measuring cylinders used in this 

investigation were calibrated by the Meetinstituut Bemetel - T.N.O. 

(the Dutch equivalent of the Pressure Standards Section of the U.So 

National Bureau of Standards~ located at the van der Waals Laboratory 

in Amsterdam, Hollando The technique used in this calibration is 

reviewed briefly below (38). 

In practice, a master ba~ance is calibrated and periodically 

checked by a careful calibration procedureo At all pressures the 

effective area of a piston is determined by back-calculation using the 

following equation. 

where 

A= the effective piston area 

F = the force acting on the effective piston area 

P = the pressure acting against the piston 

(A-1) 

The force acting on the effective piston area is determined from 

the calibrated weights used on the balance. The pressure is determined 

at low pressures by measuring the height of mercury in an open column 

that is connected to the pressure balance through a pressure bencho 

.A:ctithehigher pressures a 22 meter mercury column is used in 
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conjunction with a piezometer. The piezometer is filled with nitrogen 

to a pressure at which the effective area has been determined previously. 

The weights on the balance are adjusted until the mercury in the 

piezometer just touches an electrical contacto The mercury column is 

then interposed between the balance and the piezometer. Weights are 

added until the mercury in the piezometer again touches the electrical 

contact. '.I'he new pressure is calculated and the effective areas are 

obtainedo In all the above measurements the mercury column and 

piezometer temperatures are carefully measured and regulated, and 

corrections are made for the oil heights. 

The effective area of each standard Hart piston-cylinder was 

determined at several pressures and was found to be accur~te to! 1 

part in 12~500 for the low pressure piston-cylinders to! 1 part in 

25,000 for the higher pressure piston-cylinderso 

The effective areas of the piston-cylinders used in this investi­

gation were determined by calibration against the •master piston­

cylinders1 discussed aboveo 

Table A=I lists the calibrated masses of the various rotating 

parts of the pressure balanceo Table A=II lists the effective area and 

masses for each of the measuring cylinders. In addition to these data, 

Bemetel-T.N.O. determined that the area of the guide pin is 1 .. 76 sq. cm. 

and that the height of oil above the bottom of the guide pin is equal 

to the oil reservoir height plus L6 cm. All measurements refer to 

operation at 20°C. with the piston height indicator at 10 on the scale. 

'rhe pressures are referred to the center line of the oil outlet on the 

measuring cylinder. 

Comparison tests have been made between the Ha.rt differential 
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TABLE A-I 

PRESSURE BALANCE WEIGHT CALIBRATIONS 

Item 

Indicator axis plus indicator 

Cone 

Oil Shield 

Weight Pan 

· Lowest Weight with the axis of suspension 

Weight Noo 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Mass 

0.9957 Kgrn 

0.2468 

1 .. 6542 

0.6090 

29 .. 7729 

25 .. 0131 
25.0120 
25 .. 0151 
25.0138 
25.0139 
25.0166 
25.0141 
25.0161 
10.0053 
5.0005 
5.0061 
0.9974 
lo0036 
1.0042 
1..0046 
1.0044 
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Range of Cylinder 

2 3-20 Kg /cm m 

20=50 

50-125 

125-300 

300-600 

600-1000 

1000-1600 

TABLE A-II 

MEASURING CYLINDER CALIBRATIONS 

Effective Area 

2 12.512 ±. 0.,001 cm 

5.0058 :!: 0.004 

2.0004 + 0 .. 0001 

0.83393 ! 0 .. 00004 

O.Li.1938 .:!:, 0.00002 

0.24461 + 0.00001 

0.15930* 

Mass of piston, claw, 
nut and half-rings 

1.4095 Kg m 

0.8817 

006719 

0.5913 

0.,5598 

0 .. 5173 

0.5075 

* The effective area of this piston changes with the load. A 
distortion correction is applied according to the following 
equation~ 

( 2 -6) ( ) Area cm) = 0.15932 - (.11900 x 10 load, kg 



piston pressure balance and two Ruska dead-weight piston guages (13). 

The results of these tests showed the Hart to be 2 to 3 parts in 10,000 

higher at 500 psi than the Ruska and 5 parts higher in 10,000 at 12,000 

ps:i. Using the Ruska dead weight piston guage, the vapor pressure of 

co2 at 0°C was found to be 26,139.6 mm Hg, which value agrees well with 

the mean of four observations by Meyers and Van Dusen, (13) i.e. 

26 1139.5 •. · From the comparison test data, it is estimated that the 

Hart balance would have given a co2 vapor pressure at 0°C of about 

26,145 mm Hg. This is in good.agreement with the mean of four obser­

vations by Bridgeman, (13) i.e., 26,144.7 mm Hg. The difference 

between the Hart and Ruska have not been completely resolved. Further 

comparison tests are planned in the future. 

The interested reader is directed to the paper of Edmister, McMath · 

and Lee (13) for the details of these comparison tests. 



APPENDIX B 

CALIBRATION OF THERMOCOUPLES AND BECKMAN THERMOMETER 

Three chromel-constantan and one iron constantan thermocouples 

were used in this investigation. The chromel-constantan thermocouples 

were used to measure the outside metal temperatures of the vapor 

density trap, the liquid density trap and the circulating pump 

cylinder, respectively. The iron-constantan thermocouple was a 0.06211 

O.D. mineral insulated thermocouple with the hot junction welded to 

the ti.p of its stainless steel sheath. This thermocouple was placed 

inside the equilibrium cell at a distance of 3W' from the top of the 

cell. As a point of reference, the liquid dip tube extends 3" into 

the cell from the cell top. This thermocouple extends approximately 

2-3/16 11 into the cello The thermocouple is in the center of the cell 

radially about 'V811 to }4" above the top liquid distributor pl.ate. 

The four thermocouples used in this work were calibrated against 

a Leeds and Northrup platinum resistance thermometer, Model 8163i 

Serial No. 1576919. The thermometer was calibrated by the National 

Bureau of Standards on May 7, 1964. The NBS calibration data were 

furnished in both tabular and equation form with temperature being 

presented as a function of a resistance ratio R/R. R is the 
0 0 

resistance of the thermometer at the ice point while R is the ther-

mometer resistance at the unknown temperature. The approximate value 

of R was given as 25.5168 ohms at a thermometer current of 2.0 
0 

milliamps. 
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The thermometer resistance was determined on a calibrated Leeds 

and Northrup Model 8069-B Mueller bridge, Serial No. 1550042. Leeds 

and Northrup calibrated this Mueller bridge and furnished calibration 

tables for use in the laboratory. A Leeds and Northrup Model 2284-D 

ballistic type galvanometer with a sensitivity of Q.2 microvolt/mm 

was used in conjunction with the Mueller bridge. A Leeds and Northrup 

Model 2170 reading scale was used with the galvanometer. The galva-

nometer was placed on a pedestal that was sunk approximately four 

feet into the earth to isolate the galvanometer from the building to 

minimize vibrations. 

The thermocouples and platinum resistance thermometer were placed 

in a silicone oil reservoir in the large air thermostat. Each day 

the calibrations were performed, the resistance of the platinum 

thermometer was checked at the ice point to determine R. 
0 

The thermocouple emf was measured with a Leeds and Northrup Type 

K-3 potentiometer, Serial No. 1553853. The null-detecting device was 

a Leeds and Northrup Model 2430 galvanometer. The reference junctions 

were inserted in an ice bath in a Dewar flask. Figure B-1 shows the 

thermocouple measuring circuit. The emf of the thermocouples could 

be measured to+ 0.0002 mv. 

The calibrations were carried out at apporximately 150 and 250°F. 

The thermocouples were calibrated separately. One man read the 

resistance of the thermometer on the Mueller bridge while another 

determined the thermocouple emf simultaneously on the K-3 potentiometer. 

A minimum of twenty points were taken at each temperature for each 

thermocouple. 

A plot was made for each thermocouple of emf vs. the temperature 
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obtained from the resistance thermometer calibration equation. A 

straight line, having the same slope as a theoretically ideal thermo.­

couple, was fitted to the emf-temperature data. The result was an 

equation for temperature as a function of emf for each thermocouple at 

150j 250 and 3.50°F. The coefficients for these equations are presented 

in Table B-I. 

The Beckman differential thermometer was calibrated at 85°F. in 

a manner similar to that of the thermocouples. The thermometer was 

placed in the low temperature air thermostat adjacent to the platinum 

resistance thermometer. One man read the Beckman thermometer scale 

while another read the resistance of the platinum thermometer simul­

taneously on the Mueller bridge. The twenty data points taken were 

fitted in equation form with temperature being expressed as a function 

of the Beckman thermometer scale reading. The coefficients for this 

equation are presented below. 

where 

T ~ °C 

T, °F 

2 = 30.422 - 0.71976R - 0.24944 R 
2 

= 86. 744 - l.2168R - 0 .. 54448 R 

R = the Beckman thermometer reading 

(B-1) 

(B-2) 
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TABLE B-I 

THERMOCOUPLE CALIBRATION EQUATIONS 

Thermocouple Equation Form: T; A+ B (potentiometer reading, mv) 

Thermocou;ele Temperature Ran6e, OF A B -
1 150 36.14255 33.333 

250 35.60839 33.333 
350 3lo74235 33.333 

2 150 36053416 28.000 
250 32.50143 28.000 
350 21o66691 28.000 

3 150 36.51006 28.000 
250 32.46713 28.000 
350 21.99185 28.000 

4 150 36.53950 28.000 
250 32.26328 28.000 
350 21.57831 28.000 



APPENDIX C 

CALIBRATION OF VOLUMETRIC APPARATUS 

The quantity of light hydrocarbon gases collected in the sampling 

apparatus (Figure 14) was calculated from the pressure, volume, tempera­

ture and composition of the gases collected. The pressure was read on 

a U-tube manometer by observing the height in each leg with a cathe­

tometer. The temperature was read on a calibrated Beckman differential 

thermometer (Appendix B). The volume was computed by summing the in­

dividual volumes of the component parts of the volumetric apparatus. 

The calibration of the volumetric apparatus will now be discussed. 

Analytical Balance Weight Calibrations 

Two analytical balances were used in the volumetric calibrations. 

A Mettler Type B6 balance (Serial Noo 63592 with 100 gm. capacity) was 

used for the small weights. A Voland and Sons Balance No. B-125 

with a capacity of 6 kg. was used for the large weights. 

The Mettler balance was operated on a standard reinforced concrete 

balance table. This b~lance was serviced by a Mettler representative 

in this position. The Mettler has a stated accuracy of 0.02 mg and a 

sensitivity of 0.02 mg. 

The calibration of weights up to the 100 gm weights were carried 

out on the Mettler which had class S weights. Weights heavier than 

100 gm were calibrated on the Voland balance. 
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Two sets of weights were used in the laboratory in conjunction 

with the pressure balance. These weights are identified as Set No. 5 

and Set No. 4775. For the small set of weights(No. 5)the nominal 

weights and the listed weights were identical to the nearest milligram. 

The calibration of the larger weights (No. 4475) is given in Table C-I. 

Volumetric Calibrations 

Small Volumetric~ 

The 25 cc volumetric bulb was calibrated by filling with water 

and again by filling with mercury. In each case, the bulb was 

evacuated and weighed and then filled with water. Care was exercised 

to remove all bubbles of air from the bulb. The bulb was then placed 

in the air bath. After a few hours at constant temperature, the stop-

cock on the bulb was closed. The excess water in the neck of the bulb 

was removed and the water-filled bomb was reweighed. 

At 76°:F'. Evacuated weight == 48.16957 gm. 

Filled weight = 73.57268 gm. 

Weight of water = 25.40311 gm. 

Density of water = 0.997171 gm/cc 
at 76° 

Volume of Bulb 25.40311 
25.475179 cc = 0.997171 

::: 

A similar calibration was carried out using mercury instead of 

water. The volume of the 25 cc bulb was determined to be 25.48 cc. 

From these two calibrations, the volume of the 2.5 cc bulb is 

determined to be 25.48 cc including the stopcock passage. The volumes 

of the 500 cc, 1 liter and 2 liter bulbs were determined in a similar 

manner except that water was used as the calibration fluid. 1'he results 



TABLE C-I 

CALIBRATIONS FOR WEIGHT SET 4775 

Nominal Weight 1 gm 

1 
2A 
2B 

5 
lOA 
lOB 
20 
50 
lOOA 
lOOB 
200 
500 
1000 
2000 

Calibrated Weight, gm 

0.9971 
200069 
2.0062 
4.9914 

10.0010 
10.0035 
19.9923 
L~9.9806 
99.9755 
99.9728 

200.0333 
500.0406 
999.8841 

2000.1353 



of the calibrations are presented in Table C-II. 

U-tube Manometer 

The right leg of the U-tube manometer was calibrated for volume, 

since it was an integral part of the volumetric apparatus. The 

calibration data were obtained prior to fabrication of the U-tube. 

A reference mark was first baked onto a four foot section of 

precision bore glass tubing. A stopcock was attached to one end of 

the glass tubing and the tube was filled with triple-distilled mercury. 

Care was exercised during filling of the tube to avoid entrapped air 

bubbles. 

A series of measurements were made in which the heights of the 

mercury and the reference mark were measured before and after draining 

a small amount of mercury into a weighing bottle. The heights were 

measured with the Gaertner cathetometer and the weighings were ~ade on 

the Mettler balance. The weight and density of the mercury gave the 

volume of the height increment measured. Data indicated the tube 

diameter to be constant. The data were fitted by least squares to 

obtain 

v - 0.2718 (h - h) (C-1) 
r 

where v ;::; volume below the reference mark, cc 

h = height of the reference mark, cm 
r 

h :::: height of the mercury, cm 

Following the calibration, the right leg was joined with the left 

leg of the manometer and the U-joint was formed. 

Capillar~ Tubing Manifold 
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TABLE C-II 

CALIBRATED VOLUMES OF VOLUMETRIC APPARATUS 

Item Volume, cc Maximum Estimated 
Error 2 cc(±) 

25 cc bulb 25.48 0.02 
neck 0.25 

500 cc bulb No. 1 445.23 0.06 
neck 0.52 

500 cc bulb No. 2 458.63 0.09 
neck .63 

1 liter bulb 946.63 0.12 
neck 0.38 

2 liter bulb 2048.36 0,.24 
neck .98 

4 liter bulb 4555.98 o.64 
neck L86 

U-tube manometer Eqn. C-1 o.o4 
below reference mark 

Manifold above 22.25 0.05 
reference mark 
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The capillary tubing manifold in the low temperature thermostat 

includes the manometer leg above the bottom reference mark and the 

manifold to the Toepler pump stopcock~ The 25 cc, 500 cc and 1 liter 

volumetric bulbs were attached to the side arm ball-joints. The 

stopcocks were closed on the two larger bulbs. The low temperature 

air bath was equilibrated at 85°F. The barometric pressure was de-

termined on the U-tube manometer and the 25 cc gas bulb stopcock was 

closed. The remainder of the volumetric side of the apparatus was 

then evacuated. The air in the 25 cc bulb was allowed to expand into 

the evacuated manifold. The final pressure was observed on the U-tube 

manometer. A sample calculation follows: 

Initial Barometric Pressure, P1 = 746.50 mm Hg 

Initial Volume of Air, 

Pressure A.fter Expansion 

Assuming ideal behavior, 

= 25 .. ~-8 

v1 = 25.48 cc 

p2 = 350.78 cc 

= 54.22 cc 

Mercury Level in Right Leg of Manometer= 42.53 cm 

Height of Reference Mark= 62.015 cm 

Volume in manometer leg below 
reference mark 

= 0.2718 (62.015) - 42.5315 = 
= 5.29 cc 

Volume of Necks of Attached Bulbs= 1.15 cc 

Volume of sampling apparatus to side 
arms and reference mark 

= 54.22 - 25.48 - 5.29 - 1.15 
= 22.30 cc 

Eight runs were madeo. The average of these runs is taken as the 

volume of the manifold. The average is 22.25 cc. 
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Necks of Volumetric Bulbs 
~~- -- ---~ 

The volume of the necks of the volumetric bulbs was determined by 

mercury calibrationo The necks of the bulbs were filled with mercury. 

The mercury was then removed carefully into a weighing bottle, weighed 

on the Mettler balance~ and the volume calculated from the mercury mass 

and density. The neck volumes are tabulated in Table C-2. 

Four Liter Volumetric Bulb 

The volume of the 4-liter bulb was determined by expansion of air 

in much the same manner as for the manifold~· lour expansions were 

made with the 2-liter bulb being used as the air reservoir. The aver-

age volume from the four trials was 4555.98 cc with an absolute aver-

age deviation of 0.64 CCo 

Density Traps 

The vapor and liquid density traps were calibrated with mercury 

at room temperature and with nitrogen at 150 and 250°]'. The procedure 

for calibrating both traps was identical. A sample calculation for 

the vapor density trap will be presented. 

The density trap was first evacuated and weighed on the 6 kg 

balance. Two trials were made on separate days and were in exact agree-

ment. The tare weight for the vapor trap was 1137.8112 grams. 

One end of the vapor density trap was connected to a vacuum trap 

and then to a vacuum pump. The other end was immersed in triple 

distilled mercury. The vacuum pump was started and mercury ~as admitted 

to the bottom of the trap until mercury flowed into the vacuum trap. 

The density trap was vibrated with a hand yibrator during filling to 
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remove entrapped air bubbles. The valves on each end of the vapor 

density trap were closed and the mercury in the valve ports was removed. 

The temperature of the mercury was recorded and the trap weighed. A 

sample calculation follows: 

Weight filled with mercury = 1270.4703 gm 

Evacuated weight = 1137.8112 gm 

Net weight of mercury = 132.6591 grams 

Mercury temperature = 76.0°F 

Density of mercury = 13.53524 gm/cc 

. _ 132.6591 Volume of trap - 13 •53524 = 9.soi cc 

Six determinations of the volume of the vapor density trap were 

made. The average of these determinations was 9 .. 7993 cc and will be 

taken as the volume of the trap. The absolute average deviation of 

the six determinations was 0.051%. 

Six determinations of the volume of the liquid density trap were 

made. The average of these determinations was 2.3261 cc and will be 

taken as the volume of the trap. The absolute average deviation of 

the six determinations was 0.032%. 

The vapor and liquid density traps were calibrated at 150 and 250".F 

as follows. The traps were filled with nitrogen through the equilibrium 

cell and held at the desired temperature and pressure:for one hour • 

•. During this hour the traps floated on the gas compressor and pressure 

balance. The individual traps were isolated and their contents were 

transferred to the volumetric apparatus using the procedure in Chapter 

V. The pressure in the traps was calculated using the procedure out-

lined in Appendix E. For the 150°F determination, this pressure was 

found to be 677.06 psia. The amount of gas in the traps was found by 



160 

the procedure outlined in Appendix E. 

The volume of the vapor density trap at 150°F vta the nitrogen 

calibration was 9.7892 cc, a difference of -0.16% from the mercury 

calibration. The volume of the liquid density trap at 150°F was 

2.3327 cc, a difference of 0.28%. The volumes of the vapor and liquid 

traps at 250°F were 9.7937 cc and 2.3254 cc, respectively, differences 

of -0.06% and -0.12% from the mercury calibration. 



APPENDIX D 

CALIBRATION OF GAS COMPRESSOR 

The pressure in the gas compressor is different from that at the 

centerline of the measuring cylinder oil outlet due to differences in 

the oil and mercury heado The gas compressor level indicator was 

calibrated as a function of the mercury height in the compressor. 

This work was done by Thompson (65) and is reported in his thesis. 

Since the gas compressor, pressure bench and pressure balance had not 

been moved since the completion of Thompson's work, there was no need 

to recalibrate the compressor. The gas compressor calibration p:,ro-

cedure and data will be repeated for the convenience of the reader. 

The apparatus shown in Figure D ... 1 was used for the calibration. 

A manometer was connected to the pressure bench to indicate the 

mercury position inside the gas compressor. The upper compartment 

of the gas compressor and one leg of the manometer were left open to 

the atmosphere. Oil was pumped from the pressure bench into the lower 

compartment o_f the gas compressor. Then the levels in the manometer 

were read with a cathetometer. The data obtained by Thompson (65) 

are presented in Table D-I. 

The pressure at the surface of the mercury in the gas compressor 

is seen from Figure D-1 to be 

p3 ::: pl+ (H -Ff· ) f' 1 2 oil - (H3-H2) Y' Hg (D-1) 

or p3 = p - ~ p 
1 

(D-2) 
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Gas Compressor 
Level Indicator 

Reading 

17.4 
25.8 
33ol 
4o.8 
49.4 
57.6 
66.2 
72~4 
79.0 
83.0 
89.8 
95.2 

100.2 
19.9 
18.2 
23.,3 
37,.7 
61.9 

TABLED-I 

EXPERIMENTAL DATA FOR CALIBRATION 

OF GAS COMPRESSOR LEVEL 

Room Temp. 22.5Qc 

Low Side 

28.08 
25.92 
23 .. 98 
21.95 
19.81 
17.79 
15.60 
14.10 
12.39 
11.31 
9.67 
8.30 
7.08 

27.53 
28.07 
26.58 
22.90 
16.80 

Manometer Heights 
in cm 

Centerline of measuring cylinder oil outlet, 82.40 cm. 

High Side 

52.73 
54.99 
57.02 
59.12 
61.37 
63.48 
65.70 
67.30 
69.01 
70.10 
71.78 
73.17 
74.38 
53.40 
52.87 
54.38 
58.19 
64.50 



where H = height of interface 

J'= specific weight of fluid 

A plot of the data showed a linear relation betweenthe mercury 

levels and the level indicator reading. The data were fitted by 

least squares to obtain 

where 

H2 = 32047 - 002536 h,cm 

H3 = 48.31 - 0.2611 h,cm 

h :::: gas compressor level indicator reading 

(D-3) 

(D-4) 

The density of the pressure balance oil is 0.876 gm/cm3 .. The mercury 

density is 13.54 gm/cm3 at 22.5°c. 
gmf 3 

then ? ' oil = 0 .. 876 ~ x 0.9991 ~ = 0.875 gf/cm 
'cm3 m 

2 The 6P term must multiplied by 0.01422 to convert from gf/cm to psia. 

Thus combining Equation D-1,2,3 and 4 

p = (b2.47 - 0.2536 h) - a2.~G.s7~ 

+ ~48.31 + 0.2611 h) - 32.47 - 0.25336 h~ 

~-53 (o.01422J)= 2.427 + 0.09587 h psia (D-5) 

Equation D-5 is used to calculate the pressure correction from the 

gas compressor level. 



APPENDIX E 

SAMPLE CALCULATION OF EXPERIMENTAL DATA 

A sample calculation of P-T-x-y data from the experimental 

measurements is presented in this appendix. The actual calculations 

were made with the use of the IBM 1620 and 1410 digital computers. 

The data used in the sample calculations below are those from Run 111. 

All constants and conversion factors were taken from the API Project 44 

compilations (53). 

Temperature 

The temperature in the equilibrium cell was determined from the 

potentimeter reading for the iron-constantan thermocouple located in 

the liquid phase inside the equilibrium cell. The calibration for the 

thermocouple appears in Appendix B. In the 150°F range the cali-

bration equation for this thermocouple is as follows: 

T °F = 36.14255 + 33.3333 R 

where R is the potentiometer reading in millivolts 

The emf reading at the start of sampling in Run 111 was 3.4175. The 

temperature corresponding to this reading is 

T = 36.14255 + (33.333)(3.4175) = 150.06°F s 

The emf reading at the end of sampling was 3.4185. This reading 

corresponds to a temperature of 150.09°F. 

The temperature for the run is taken as the average of these two 
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readings 

T = (150.06 + 150.09)/2 

= 150.07°F 

Pressure 

The pressure in the equilibrium cell was determined from the 

pressure balance pressure, corrected for differences in the hydro-

static head of oil, mercury and hydrocarbon. The pressure at the 

balance was corrected for the buoyancy of air, the thermal expansion 

of the measuring cylinder, and the hydrostatic head of oil acting 

against the pressure balance guide pino The barometric pressure was 

added to this corrected pressure to obtain the absolute pressure. 

The pressure at the pressure balance outlet is represented by 

the following equation 

pbal = (Mg/Ag ) + Pb - p oil (E-1) c ar 

where pbal ::::: pressure at pressure balance outlet 

g ::: local acceleration due to gravity 

980.665 2 
gc :::: conversion factor, (kgm)(cm)/Kgf)(sec) 

M = mass of all rotating parts, corrected for buoyancy 

A = effective area of piston, corrected for thermal 
expansion 

Pbar = barometric pressure 

P . 1 = pressure correction due to head of oil on guide pin 
OJ. 
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Local Acceleration Due l2. Gravity 

The local acceleration due to gravity was calculate~ from the 

following equation (7) 

g = 978.0524 ~ + 0.005297 sin2x - 0.0000059 sin2 2x 

+0.0000276 cos2 x cos 2 ( 'l\.. + 25°j- 0.000060 h (E-2) 

where x = latitude 

/\=longitude (positive east of Greenwich) 

h = feet above sea level 

At Stillwater, x = 36° 7' N., A= 97° 4 1 W., h = 930 ft. 

Substituting the Stillwater data in Equation E-2, 

g = 979.777 cm/sec2 

Barometric Pressure 

The U-tube manometer was used in Run 111 to obrain the barometric 

pressure. One side of the manometer was evacuated to a negligible 

pressure while the other side was open to the atmosphere. In Run 111 

the barometric pressure readings were 733.55 mm Hg at a Beckman 

thermometer reading of 1.00 before the run and 733.58 mm Hg at a 

Beckman reading of 1.02 after the run. 

The Beckman thermometer readings are converted to °F by Equation 

B-2. 

T,°F = 86.744 - l.2168R - 0.54448 R2 (B-2) 

R = the Beckman thermometer reading 

T(before run)= 84.98°F 

T(after run) = 84.95°F 

The density of the mercury in the manometer must be determined 
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at the above temperatures. The mercury density is a linear fµnction of 

temperature between 68 and 86°F. The data in Perry (39) w~re put in 

the following equation form by Thompson (65) 

f = 13.6383 - 0.001361 t 

where t = temperature, °F 

Be fore the run 

where 

f = 1306383 - 0.001361 (84.98) 

= 1305227 gm/cm3 

p - h .P g/g barometric - c 

9 = density of mercury at the temperature of reading, 
gm/cm3 

h = observed barometric pressure, mm Hg 

Pbar= 733.55 mm x ~~ mm x 13.5237 .5EL.3 
cm 

x 1000 gm x 0.99909 
Kgf -Kg m 

Similarly, after the run 

The average barometric pressure for Run 111 was 

p 
bar =lo.9910 + 0.99111/2 

0.9911 Kgf/cm 2 = 

p 0.9911 Kg/cm 2 
x 0 .. 9675 atm 

= 2 bar Kg/cm 

= 0.959 atm 

(E-3) 

(E-4) 
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Buoyancy Correction 

The experimental procedure was to take the liquid sample first. 

The balance weights to be used in the calculation for the liqui~ phase 

pressure are the weights on the balance at the start of the liquid 

samplingo The 125-300 Kg/cm2 piston was used in Run 111 with weights 

Noo 1,2,3,4,5,9,10,12, and 13 plus 535 grams in the weight pan. Using 

the weight calibration data from Table A-I, the total weight, 

uncorrected for buoyancy is summed belowo 

Base Weight 
Piston, etc. 
Weight No. l 

2 
3 
4 
5 
9 

10 
12 
13 

Extra weights 

Total weight 

33.2816 Kg 
0.5913 m 

25.0131 
25.0120 
25.0151 
25.0138 
25.0139 
10.0053 
5.0005 
0.9974 
1.0036 

0.5350 

176.4826 K~ 

Let V = the volume of a steel weight of in vacuo mass M. 
0 

Then 

d = the density of steel= 7.8 gr.n/cm2 

density of air at temperature T1 and pressure P1 

density of air at 20°C and l atm 

effective mass of M0 in air at T1 and P1 

M'= effective mass of M in air at 20°C and 1 atm 
0 

M = V (d-r1) = M0 (l-(f1/d)) 

M9 = V (d-~2 ) = M0 (1- 9 2/d)) 

(E-5) 
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M = M' . l ~ M' d - f ) f2 -f\ 
l+--- (E-6) 

d -f2 d 

where 
f 2 - ~l 

1 + d = the buoyancy correction to M' 

M' = the total weight calculated above 

If one uses the ideal gas law to evaluate the air density, then 

Equation E-4 becomes 

(E-7) 

In Run 111, T1 = 301.05°K and P1 = barometric pressure= 0.9589 atm. 

Substituting in Equation E-6 

M = 176.4826 (l.0000104) 

= 176.4844 Kg 

Mea~uring C,Y;,J.inder Thermal ~xpansion Correction 

The linear expansion coefficient of the steel in the measuring 

cylinder is 11 .x 10-600-1• The area expansio;n coefficient is twice 

the linear coefficient. 

A = A' ~ + 0.000022 (T1 - 293~ (E-8) 

where A'= the effective piston area at 20°0 

A= the effective piston area at T1 

The area of the 125-300 Kg/cm2 piston from Table A-2 is 0.83393 cm2• 

The balance temperature for Run 111 was 28.54°0. 

Then A= 0.83393 [1 + 0.000022 (301.7 - 293J= 0.83409 cm2 



Correction !2£ Oil~ Above Bottom Guide~ 

The height of the oil above the bottom of the guide pin on the 

pressure balance is equal to the height of the oil in the guide pin 

reservoir plus 1.6 cm. (Appendix A). The force transmitted to the 

rotating shaft is 
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F . l = h f A ( g/ gc) 
OJ. 0 gp 

(E-9) 

h "'reservoir oil level reading+ 1.6 cm 
0 

where 

5' 0 = the density of the.balance oil, 0.876 gm/cm3 

A = cross sectional area of the guide pin, 1.76 cm2 
gp 

The pressure correction due to the oil level is, then., 

where 

P . l = F . 1/A = h f 
OJ. 01 0 0 

A 
gp 

A 

A= the corrected piston area 

The oil level reading for Run 111 was 24.5.h thep is i4.5 +'L6 
0 

= 26ol 

p 26.1 cm x Oo876 ~ = oil cm 

x 0.99909 
Kgf 
Kg = 

m 

Corrected Balance Pressure 

Kg . m 
x -1000 gm m 

Kgf 
.04820 ~ 

cm 

176.4844 Kg 
m 

2 
x 1.76 cm . 

0.83409 cm 2 

Kgf Kgf 
+ 0.9911 ~ - 0.04820 ~ = 211.3975 + 0.9911 

cm cm 

(E-10) 

2 - 0.048203 = 212.3404 Kgrfcm at the centerline of the 

cylinder outlet 
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= 3020.2024 psia (E-11) 

Correction f2.!: Q!1. ~ Mercury Heads !a~ Compressor 

The gas compressor mercury height for the liquid phase sample is 

the height at the start of sampling. In Run 111 the gas compressor 

level indicator read 79.4 at the start of liquid sampling. 

The correction for the oil and mercury heads in the gas com-

pressor was presented in Appendix D. The equation for this 

correction i.s 

where 

.6P = 0.09587 h + 2.427 psia go gc 

h = the gas compressor level indicator reading gc 

In Run 111 the gas compressor level indicator read 79.4. 

p = (0.09587)(79.4) + 2.427 = 10.039 psia gc 

then p = Pbal - .6P gc gc 

p = 3020.20 - 10.04 go 

= 3010 .. 163 psia in the gas compressor over the 
mercury surface 

Correction .f2! Hidrocarbon ~ ~ Eguilibrium ~ 

In Run 111 the experimental liquid phase density was 0.5725 gm/cc. 

The height of the liquid in the equilibrium cell is known only 
,· 

approximately. An assumed value of 3 inches should be correct to+ 

0.5 in. 
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= h g g/g (E-12) 

where 

c 

h = liquid height in cell, in. 

density of liquid phase , gm/cc 
ft lbm 

.3 in x l2in x 005725 x 62048 ft3 

lb 
x 00999094 __!_ 

lbm 

1 ft 2 
x 

144 in2 
(E-13) 

then PL= Pgc - Ph= 30100163 - 0.06155 = 3010.10 psia, the liquid 
phase pressure 

This correction is the final one necessary for the calculation of the 

liquid phase pressureo 

Vapo~ ~ Calculations 

The above calculations were carried out for the liquid phaseo 

Calculations for the vapor phase are identical to those for the liquid 

phase with the exceptions noted below. 

In the calculation of the total weights on the pressure balance 

an average of the weights at the start and end of the vapor phase 

sampling was used. Similarly, the average of the gas compressor 

level indicator readings at the start and end of sampling was used in 

the calculation of the pressure· correction due to the oil and mercury 

heads in the gas compressor. 

A correction was made to the equilibrium cell pressure for the 

head of hydorcarbon vapor in the cell. This correction was made using 

Equation E-12 with J.3/+" being used as the height of the vapor zoneo 



Composition 

The liquid and vapor phase calculations were made in the same 

mannero Only the liquid phase calculations for Run 111 will be shown. 

Chromatographic Assay 

. . . 

The chromatographic assay of the equilibrium ph.a.ses was discussed 

in Chapter VI while the procedures for sampling the equilibrium phases 

was discussed in Chapter V. 

Duplicate chromatographic analyses were made for the light and 

heavy hydrocarbon fraction samples taken from the sampling apparatus. 

The amount.of each hydrocarbon present.in a sample was obtained in 

terms of area 16 from the chromatogram. The area %'s from the duplicate 
. . . 

analyses were then simply averaged. Next, these area % vaJ.ues w.ere 

comrerted to weight % using the calibration equations presented in· 

Appendix Go These weight% values were then converted to mole%. The 

result of these calculations, which will not be illustrated here, was 

a tabulation of mole% for a given hydrocarbon in the light hydrocarbon. 

fraction and in the heavy hydrocarbon fraction. 

Light_liydrocarbons 

The light hydrocarbons were collected in the volumetric part .of 

the apparatus. The following volumes were filled with light hydro-

carbons in the Run 111 liquid phase transfer. From the volumetric 

calibrations in Appendix C 

500 cc bulb 

neck 

458.63 cc 

0.63 



1 1. neck 

2 1. neck 

Sampling lines to 
reference mark 

22.25 

Ic volume in lines and bulbs) = 482.87 cc 

To this must be added the volume above the right-hand mercury level, 

up to the reference mark. From Appendix C 

D.= 0.02718 (Ref. mark ht., mm - Right side manometer 
level, mm) 

The reference mark and manometer heights were 619.75 and 413.85 mm, 

respectively. 

D. = 0.02718 (619.75 - 413.85) = 5.59 cc 

The pressure is given by the difference in levels of the manometer 

legs which were 758.25 and 413.85 mm Hg. ··The Beckman thermometer 

reading was 0.59. The temperature in the air bath thermostat is 

obtained by substituting this thermometer reading into Equation B-2. 

T = 86. 71+4 - (L2168) (0.59) "" (0.5448) (0.59)2 = 85.84°F 

1?5 

p = h.f.__s 
(E-13) 

and 

where h = 758.25 - 413.85 = 344.4 mm Hg= 34.44 cm Hg 

The density of mercury at 85.84°F is found by substituting temperature 

into Equation E-3 

9 = 13.6383 - 0.001361 (85.84) = 13.5215 gm/cm3 

then P = (34.44 cm) (13.5215 . gm3) (0.99909 g:f.' ) ( 0.73556 mm Hg) 
cm gm gf/cm3 
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= 342.22 mm Hg at 0°C 

The gram moles of light hydrocarbons are calculated from the gas law 

PV 
n= ~ (E-14) 

where R = gas constant 

Z = mixture compressibility factor 

= 'l:_y.Z., the molar average compressibility factor 
J. 1 

The compressibility factor for the individual components was calculated 

from a 

where 

truncated virial equation of state 

BP p 
z. c r 

= 1 + m-- -
J. ZT c r 

B = the second virial coefficient 

P = reduced pressure 
r 

T = reduced temperature 
r 

(E-15) 

Equation E-15 must be solved by successive approximations since the 

equation is not explicit in z. The second virial coefficients used 

in these calculations were those of Pitzer (40) 
BP 

where RT c = (0.1445 + 0.073 w ) - (0 .. 330 - o.46 w )Tr -l 
c 

-(0 .. 1385 + 0.50 uJ )T - 2-(0.0121 + 0 .. 097 W )T - 3 
r r 

-(0 .. 0073 w )T - 8 (E-16) 
r 

The compositions used in calculating the molar average compressibility 

factor were the mole fractions obtained via the chromatographic assay 

of the light hydrocarbon fraction collected in the volumetric apparatus. 

The molar average compressibility factor for the light hydrocarbon 

fraction of the equilibrium liquid phase in Run 111 was 0.99806. The 
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moles of light hydrocarbons can now be evaluated from Equation E-14. 

Gram-moles light hydrocarbon (344-.22) (488.46) 

The weight of this sample= (Oo00956)(Molecular weight) 

Heavy Hydrocarbons 

The heavy hydrocarbons were frozen out into two traps. The light 

hydrocarbons were removed .from these traps by means of the Toepler 

pump. The amount of heavy hydrocarbon was determined by the difference 

in the weights of the traps~ before and after sampling. The trap 

weights were determined by weighing on the Mettler balance. The trap 

weights for the liquid phase transfer in Run 111 follow. 

Tare Gross Net -
Trap No. l 87.28655 g. 88.58664 g. L30009 g. 

Traip No. 2 85.58300 85.58000 .00300 

Total 1.30309 

'I'he weight % of each component in the heavy hydrocarbon fraction 

was obtained from the chromatogram for this sample and the chromatograph 

calibration equations. These weight% values were readily converted to 

mole%. The moles of each component were determined and summed to 

determine the total moles in the heavy hydrocarbon fraction. The total 

moles in th:is fraction in Run 111 = 0.1066. 

Phase Material Balance 

The moles and mole fraction for a particular component in the 

.. equilibrium liquid phase sample were obtained by a material balance of 



the light and heavy hydrocarbon fractions. The total weight of the 

sample was similarly determined. For Run 111, 

Total moles= Moles light hydrocarbons+ moles heavy 
hydrocarbons 

= 0.00956 + 0.01066 

= 0.02022 

Total weight= 0.17083 + 1.30309 

= 1.47392 grams 

Phase DensiJ.y 

The equilibrium phase density was determined by dividing the 

weight or number of moles by the density trap volume. At 150°F the 

liquid density trap volume (Appendix C) was 203327 cc~ 

K-Values 

= 0 •02022 = 0.0866 moles/cc 203327 

= 1 •47392 = 0.63185 g/cc 
2.3327 

The individual component K-values were calculated from the mole 

178 

fraction data for the vapor and liquid phases. In Run 111 the methane 

vapor mole fraction= 0.96620 and the liquid mole fraction= o.45590. 

Therefore, 

K = y/x 0.96620 
= o.45.590 = 2.12 
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COMPOSITION OF CHROMATOGRAPH CALIBRATION STANDARDS 
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TABLE F-I 

COMPOSITION OF CHROMATOGRAPH CALIBRATION STANDARDS 

MIXTURES NG-1 AND NG-2 

Component Composition - Weight Percent 

Mixture NG-1 Mixture NG-2 

Methane 79081 52057 

Ethane 6.87 12.58 

Propane 4.08 12 .. 29 

Butenes .92 7.82 

Butanes 2 .. 53 8.11 

Pentenes 3~82 3.26 

Pentanes 1.96 3.36 

TABLE F-II 

COMPOSITION OF CHROMATOGRAPH STANDARDS 

MIXTURES 31, 32 AND 38 

Component 

Propane 

I so butane 

n-Butane 

Isopentane 

n-Pentane 

Composition - Weight Percent 

Mixture 31 Mixture 32 Mixture 

30 .. 63 2.30 8.46 

17.74 24.40 14.17 

48.94 73.30 29.47 

2 .. 69 .. - - 14.12 

33078 
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TABLE F-III 

COMPOSITION OF CHROMATOGRAPH STANDARDS 

MIXTURES 90, 103 AND 105 

Component Composition - Weight Percent 

Mixture 90 Mixture 103 

2o2 - Dimethylbutane 17039 11.94 

2 - Methylpentane 17.30 12.65 

Meth~lcyclopentane 19084 37.88 

2,3,4 - Trimethylpentane 28.29 25053 

n-Decane 19.18 12.00 

TABLE F-IV 

COMPOSITION OF CHROMATOGRAPH STANDARDS 

MIXTURES 55, 73 AND 84 

Mixture 

24.97 

24080 

11.26 

11.52 

27.44 

Component Composition - Weight Percent 

10.z 

Mixture 22 Mixture 72 Mixture 84 

3-Methylpentane 10.05 12050 9.69 

2,4 - Dimethylpentane 29.66 20.16 8.22 

Cyclohexane l3ol9 22.23 44.77 

Methylcyclohexane 32.84 22.86 8.62 

Ethyl benzene 14.26 22.24 28070 



TABLE: F-V 

COMPOSITION OF CALIBRATION STANDARDS 

·· -MIXTURES 3, 14, AND 65 

Compon~n.,l Composition - Weight Percent 

Mixture 3 Mixture 14 Mixture 

n-Hexane 15022 22.47 7.99 

n-Octa.ne 16.43 8.79 23.38 

n-Decane 16.39 24.31 8.63 

62 

n-Dodecane 17006 7.94 25.01 

n-Tetradecane 17.52 26.62 9.50 

n-Hexadecane 17.37 9.86 25.49 

TABLE F-VI 

COMPOSITION OF CALIBRATION STANDARDS 

MIXTURES 19, 20 AND 29 

Component Composition - Weight Percent 

Mixture 19 Mixture 20 Mixture 29 

n-Heptane 23.42 35.56 11.85 

n-Nonane 25.39 13.35 36.70 

n-Undecane 25.75 37025 13.26 

n-Tridecane 25.44 13.84 13.19 



TABLE F-VII 

COMPOSITION OF CALIBRATION STANDARDS 

MIXTURES 2, 5 AND 30 

Component Composition - Weight Percent 

Mixture 2 Mixture 5 Mixture 30 

Cyclopentane 140869 8.009 23.832 

Benzene 18 .. 511 27.124 10.300 

Isooctane 14.817 7.591 21.599 

Toulene 17.846 26.783 9.866 

m-Xylene 17.966 8.469 25.949 

n-Decane 15.988 22.022 80450 



APPENDIX G 

LEAST SQUARES ANALYSIS OF CHROMATOGRAPH 

CALIBRATION DATA 

A least squares analysis of the chromatograph calibration data 

was made because 

A series of equations expressing weight percent 
for a specific hydrocarbon as a function of 
chromatogram area percent was needed, and 

Information on the accuracy of the chromatograph 
calibrations was desired 

For this data the relationship between the dependent variable 

Y and the independent variable X was approximated by 

(G-1) 

where the f: . represent deviations from the model. The dependent 
J. 

variable Y corresponds to the chromatogram area percent and the 

dependent variable X corresponds to the weight percent of a specific 

hydrocarbon in the calibration standardo 

In using a polynomial as an approximation to some unknown 

function, the correct degree for the polynomial usually is not known. 

One usually fits a high degree polynomial and then deletes those 

coefficients which are not judged significanto This might lead, for 

instance, to 

3 4 8 Y = B1 + B2 X + B4 X + B5 X + B9 X (G-2) 

1.8L~ 



Such was the procedure applied in the analysis of the chromatograph 

calibration data presented in Table G-I. The correlation coefficients, 

B., for use in Equation G-1 are presented in Table G-II for each of 
1 

the hydrocarbons encountered in this worko 

The values of these coefficients are tabulated for convenience 

in IBM E-format (35). A number expressed in E-format is of the form 

~ .XXXXXXXX E ~ n n (G-3) 

where XXXXXXXX are the integers in the numerical field 

n n is the power of 10 to which the number is raised 

For example + ol23456789E + 04 is interpreted as 0.123456789 X 104• 

Note in Table G-I that multiple measurements were made at 

different values of the independent variable, weight percent .. When 

more than one measurement is made at a given composition value, then 

the error, E., of equation G-1 can be divided into two components -
1 

one component associated with the deviation of the assumed model 

from the true model and the other component associated with the 

variation of repeat determinl3.tions .. The jtl:! measurement at the illi 

point can be represented as 

It is possible to calculate the quantity, -y;. .• It must be 
I liJ 

(G-4) 

realized that such a quantity is not a truly meaningful statistical 

concept since '~the lack of fit" is not a random error. The 71 .. 'hJ 
0 

value when compared with E. can be used, however, as a guide in 
1 

making decisions about future work. 

In this study the ''standard deviation due to the lack of fit" 
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was on the average one-tenth that of the standard deviation associated 

with the repeat determinations. From this one concludes that the 

polynomial provides an excellent model for the chromatogr~ph cali-

bration data. If improvement is desired in the chromatograph cali-

bration equations, then effort should be expended in the area of 

experimental technique rather than in seeking a new mathematical model 

for the calibration data. 

Corresponding to any assigned value of the independent variable 

X in Equation G-1, there is a predicted value of Y. This value of Y 

is subject to an uncertainty, since it is obtained by using coefficients 

which are themselves subject to uncertainty. 

In reporting a certain composition analysis, we would like to 

know the magnitude of the uncertainty associated with this com-

position. We find the uncertainty by setting a confidence interval on 

a predicted point. This confidence interval is calculated as follows: 

"-
y = (G-5) 

where Y = true value 
I\ 
Y = value estimated via Equation G-1 

t 005 = studentVs distribution value at the 95% confidence level 

df = degrees of freedom used in evaluating t 

s = the estimated standard deviation of Y 

(X - X) 2 

~ (X - x)2 

The uncertainty in a given composition is 

(G-6) 

The uucertainties in the reported composition analyses for the 



condensate components were evaluated at four different composition 

levels for each component via Equation G-6. These values are 

tabulated in Table G-II. 

187 



. Weight% 

79.81 , · 

Weie;ht % 

2.301 

14.172 

.A"f'e<;J. % 

2.o67 
2.321 
2.173 
2.148 
2.149 
2.149 
2.120 
2.076 
2.139 
2.097 

14.113 
13.898 
i3.889 
13.958 
14.262 
13,847 

TABLE G·I 

. . . 

CHROMATOG;RAPH,CALIBRATION.DATA 

·Area% 

79.71 
· 79.76 
·79.85 
79.79. 
79.91 
79.79 
79.90 .. 

Wei@t % 

8.457 

17.738 

· Methane· 

Wt.% 
~ 

. 52.57 .·. 

Propane 

Area, % . !£eight % 

?.893 30.625 
7.624 
7.768 
7.579 
7.903 
7.840, 
7.67? 
?.667 
7.814 
7.859 

I so butane 

17.1+4 24.397 
17.139 

.11.015 
16.984 
17.228 
.i?.304 

.Area% 

;2.56 
;2.63. 
52.41 

.,2.60 · 
5a.72. 
5~.49 

. 52.68 

A~ea % 

29.301 
29.747 
29~323 
29.290 
z9.345 
29.752 
29.910 
29.414 
29.701 
29,456 

24~o43 
24.067 
24'.438 
2:,.797 
24.727 
2;.zt.727 
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TABLE G-1 (cont'd) 

CHROMATOGRAPH CALIBRATION DATA 

I so butane (cont'd) 

Wei5ht % Area% Wei~ht % . Area.% Wei5ht % Area% 

14.172 14.116 17 .. 738 l.7~138 2i, .• 397 24.552 
14.189 17.414 24.813 
13.818 17.450 24.526 

17.281 .24.328 

n-Buta.ne 

29.466 30.468 48.944 51.381 73.301 73.890 
30.032 50.979 73.613 
30.030 51.559 73,389 
30.074 5i.650 · 74.055 
30.130 51.435 73.298 
30.388 50'!503 73.038 
30.708 50.478 73.355 
29.815 51.218· 73.,938 
30.664 50.718 73.132 

50.904 73.575 

Iso;pent.i;i.ne 

tleight % Are&% Wei~t % Are~% 

2.691 2.204 14.122 14.113 
2.135 14.211 
2.103 14.199 
2.0?4 14.295 
2.082 14.101 
2.33+ 14.089 
2.161 13.937 
2.139 13.865 
2.277 14.095 
2.359 '.J.lt.144. 

· ~ ,~.;.Dimethyl butane 

Wei.ght % (l.rea % WeiS;t % · Area% Weisnt 5~ Area% --~ 
11~940 10.962 17.392 115.176 24.974 23.773 
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TABLE G-! (cont'd) 

CHROMATOGRAPH CALIBRATION PATA 

2;2-Dimethylbutane (cont'd) 

Weight% Area .96 Weight% Area% Weight% Area% 

10.764 16.600 23.998 
10.489 16.296 24.263 
10.683 16.259 24e609 
10.761 16.334 24.110 
10.773 16.064 24.445 
10.689 15.773 23.868 
11.186 16.211 23~868 

£le lopentane 

8.009 7.750 14.869 13.290 23.832 23.758 
8.289 14.404 23.652 
7.934 14.189 ·23.632 
7.770 14.248 23~076 
7.230 14.104 22.869 
7.388 13.8o6 24.095 
7.340 14.532 

2-Methylpentane 

12.649 12.622 17.303 17.711 24.795 24.793 
12.000 17.514 23.568 
12.299 17.889 24.912 
12.415 17.548 25.509 
12.322 17.672 24.950 
12.315 17.854 25.430 
12.453 17.598 25.489 
12.349 17.624 25.285 

l'(.824 

Normal Hexane 

7.991 8.301 15.220 .i5.955 22.468 22.839 
8.841 15.291 23.310. 
e.118 15.552 23.552 
8.919 16.61+5 22.938 
7.915 151.478 22.432 
8.602 14.46§ .. 23.346 
8.830 14.50 22.432 I 

7.975 16.486 22.344 



. . . . 

11.266. · 10.753 
. 11.:544 

. 8.215. 

13.190. 

9.687. 

. ll.080 . 
11.152 
10.969 
10.950 
il.497 

. 11.487 
. ·. ll.022 

7.,907 . 
7.904 
7.757 
8.016 
'7//07 
8.016 
7 "875 
7.788 

13.225 
12.697 
12.575· 
l3oP'74 
13,044 
1i.1+:i1 
12.92:, 
ll-097 . 
13~909 

. 1,~o:i.6 

. . : . ' . . :'. . . . ~ ... 
' ' 

TABLE G~:C.(c<>nt'.d) . 

. CHROMATOG~PH CALitmATION' DATA. 

Methylcyclo2entane .·· .···. 

19.840 · .. ·. ~0~542 ·.·. ' j7~881 
·. t' 20;538 

20.635 . 
. 20.460 

20.800 
'•, ,, . 20.342 · 
, .·.· .....•.. · 20.2ll. . · 

.· . .. . . 29.112 .. 

20~16J .. ··. 

20.678 

· 19.982: , 29~658 .. 
20.074 
19.984 . ' ,, 

. 20.176. 
· .. · 20a62 

20~359 .. 
,· ~0.069. • · 
. l.9.985 · . 

20.a1s . 

. . ... 

.. cycl6h~xe,ue;•••····•· 
;··. ·'. 

·. . ... 

' i2~.488 . 44.,771 ... · .. · 

' ~~:5e.g. 
.. · ~2· .· C:,·l. . ,.. .)~ .·· 
. 2~.¢87 .· 

2?.,i88 
·.·. 2.2.521 . ·. · .·. j;:~sg ... 

' ' :;-~t~tbJl.h~~~ 

·.· 10 •. 053, ' .· • ' : 9/?~ .·· · .•... ~-503 ° ' 

30.138 
30.636 
30.545 
30.169 .· 
29.952 

.· 29.998 
.··. 30.092 . 

30.3oa 
30.157 

. . ··.··. 

. ll.364. 
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.. . .. ·.·· 

1· ... · 

' .· ' . 

. . CHROMA'l'OGAAPH CALIBRATION D~TA ·. ·.··.· 

·· .. 9;21.7 . 

· .. 9.048 .· 
· ·. . 9.119. . 

· · .. 9,127 · 
· 9.0!9 
9.182 

.. · .. · 9~025 

? ~591 . . . . 17,.6,6 ..••. ·· . 14.8i7 ·' 
8.011 . 
?.934 

. 7~24i 
·7.0?6· ... 

-~t::;; ·. 
·. 7~2~ 

11 .. 84.5 

·22.864 

•···· 1i~585 ···1l.6o6 
11.625. 
u.862 ·.· .. 

. 11.805 .· 
·11.65()' 
1i.700 

. ( 

•. ,3;6$ 
11.10, ,,~eol · ·. 1,.on 
~i~629 · .. · 
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TABIE G-I (cont'd) 

CHROMATOGRAPH CALIBRATION DATA 

Methylcyclohexane (cont'd) 

W ei5ht % Area% Wei~ht % Area ?~ Wei5ht 16 Area% 

s.183 22.965 33.143 
23.289 33.120 
23.066 33.775 

Toluene 

9.866 9.896 17.846 18.954 26.783 27.328 
9.799 18.727 27.168 
9.944 18.742 27.586 
9.768 18.705 28.024 
9.894 19.048 28 • .;46 

18.521 28.255 
18.204 28.200 

28.036 
;•) 

2,3,4-Trimethylpentane 

11.521 11.603 25.528 25.122 28.285 28.528 
11.732 25.305 28.807 

,, 

11.707 25.998 27.971 
ll.o68 25.843 28.528 
12.342 26.161 28.460 
11.252 25.681 28.364 
11.206 25.883 28.688 
11.632 25.373 28.170 
11.287 26.142 

Normal Octane 

8.793 8.737 16.427 17.140 23.379 24.765 
8.916 16.828 25.000 
9.cn6 17.481 24.775 
9.649 16.726 25.ill 
9.139 16.699 24.012 
8.934 16.471 24.215 
8.915 16.271 24.699 

. ___ 9_.052 17.380 24.279 



Weight% Area% 

14.255 14.261 

8.469 

13.907 
13.862 

.13.911 
14.246 
14.206 
14.082· 
140020 
13.821 

8.130 
8.,246 

. 8.109 
8.258 
8.124 
8.316 

TABLE G-1 (cont I d) 

CHROMATOGRAPH CALIB~TION DATA 

Ethyl benzene 

Weight.% 

22.240 

Area .% . Weight··% 

22 .. 917 28.706 
22.734 
21.745 
22.6~9 
21 .. 937 

. 22 .. 460 
. 22.637 
22.543 

·22 .. 310 

18.769 25.949 
18.291 
·18.643 
18.623 
18.222 

. 18.802 · 
18.6?1 

13. 214 25 /589 25!'529 36.696 
. 25.,806 

8.627 

l:h222 
l.3.126 .. 
13.274 
13,224 
'l,3e363 

8.701 
8.,;'$4?. 
8,.77l 
8 .. ?40 
8.931+ 

16.392. 

2J5.;2?0 
· 25.436 

25t537 
25.458 

. 2.5 .. ~22 

;16.632 24,308 
),6.708 
16.?26 
16~610. 
:J.7,154-

Area% 

29.316 
29.105. 
29.104 
29.031 

· 28.981 
28.,921 

27.375 
. 27.551 
27,,597 
26.858 · 
26.492 · 
27.623 
27.217 

24.684 
.25.309 

. 24.741 
24d77 
25.297 



Wei5ht % 

12.000 

13.264 

TABLE a ... 1 (cont'd) 

CHROMATOGRAPH CALIBRATION DATA. 

Normal Decane-Mixtur.es 3, 14 and. 6; (cont'd) · 

Area ro· Wei5bt % Area% Wei5ht % . 

8.868. 16.761 
8.715 . 16.749 

Normal Decane ... Mj.xtures 90J 103 and 10:z 

12.457 
12.121 
11.897 
i.z.329 
ll..992 
J.?.427 
l.2.392 
12~351. 
l.Z,56? 
12.2.34 

13.351 
1,3.140 
13~310 
13.359 
13.p54 
13·-'?l 

25.?4'7 

17 .371+ · 27.,442 
11.n1 
17.J.38 
17.117 
l7.QL1l 
17.208 
17.203 

26.165 
26.257 

. 26~292 
26.19c\ 
~~201 
26.094 

37.248 

)l;6.&3? 25.012 
;f.6~947 . 
16~464 
;i.q.l;t55 
:i,7;2i,1 
16,85'1+ 
17.319 
17,43;0 

. !7.206 

Area% 

24.770 
24.797 

28.958 
28.059 
29.039 
28.912 
28$361 
27.786 
27.520 
27.682 
27.393 

36.1t93 
36.8.,, 
37.593 
38.412 
38.219 

ia!;l.llO 
24.50p. 
~~ 1;;.276 
;~11.520 
~l;i.29'7 
24//67 
ait.?!:6 
~5.430 
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TABLE G~:r <cont• d) 

. ' 

CHROMATOGRAPH CALIBRATION DATA 

Weight% Area% Area .. % . Weight % . 

13.841 , · 12.547 . 25.442 
12.003 

25.o68 38.193 
25 .. 498 

9.860 

13.098 
13.641 
13,540 

9.390 
. 9.313 · 
9.295 
9.331 
9.655 
9.601 
9.497 
9.422 

9.077 
·8i656 

· 8 .• 815 
9,05'7 
8.183 . 
9.}21 
8.971 · 
9,1('.)# . 

. 8.348 

· 26~098 
2:5.642 
25.702 
25.739 
25.414 

Nt;>rntal Tetradeo~ne. 

17.370. 

l?.J45 26.624 
. 17.768 

16.792 
l?.668 
l?.,686 
17.595 
1$i(?59 .. 
;t.8.218 . 

' 16. '772 

· ),:6.088 . . 25.492 
16.45!5 
3.5.4+4 

· !~ .. $92 
,·19 .. J0:3' 
16i621 
16~.92~ 
16.841 

26.783 
26.1+69 
2~.232 
25.86? 
2-6.297 
26.5(:;6 
26.181 

· 26.865 · 
21.2(?8 

23~?31 
23~991 

. 23.~?62 
2J.3?4 
2~Ii8,4 

. 2$.884 
aj.364 
24.l.?6·· 
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TABLE G-II 

ANALYSIS 0]" CHROMATOGRAPH CALIBRATION DATA 

Methane 

B Coefficient B Value Weight % 95% Confidence Interval, + % 

l -.50000000E-05 o.oo 0.027 
2 .. l.0006594E+Ol 52.57 0.056 
3 -.,73659812E-05 79.81 0.058 
4 .OOOOOOOOE+OO 0.058 

Pro:eane 

l -.13160000E-03 80.00 0.071 
2 .940ll553E+OO 2.30 0.051 
3 -.39478088E-02 8.46 0.080 
4 .15442743E-03 30.63 0.083 

Isobutane 

1 .50000000E-04 o.oo 0.064 
2 .12893287E+Ol 14.20 0.134 
3 -.34043318E-Ol 17.73 0.128 
4 .90452975E-03 24.39 0.128 

Normal Butane 

1 -.60000000E-04 o.oo 0.098 
2 .91809120E+OO 29.46 0.206 
3 .53920850E-02 48.94 0.197 
4 -.57738922E-04 73.30 0.197 

2 22-Dimethylpropane 

1 .OOOOOOOOE+OO 
2 .lOOOOOOOE+Ol 
3 .OOOOOOOOE+OO 
4 .OOOOOOOOE+OO 



. TABLE G-II (eQnt;'d'.,1 

ANALYSIS.OF CHROMATOGRAPH CALIBB/i.i'ION DATA (cQnt 1 d) 

B CQefficient 

l 
2 
3 
4 

l 
2 
3 
4 

·l 
2 
3 
4 

l 
·2 

3 
4 

l 
2 
3 
4 

l 
2 
3. 

··4. 

N()rmal Pentane 

B .Value Weight % 95% CQnf'idence Interval, .t% 
.OOOOQOOOE+OO 
"'lOOOOOOOE+Ol 
.OOOOOOOOE+OO 
.OOOOOOOOE+OO 

~· - ' 

2,2-Dimethylbutane 

•.18000000E-04 
.83909938E+OO 
.55363843E ... 02 

-.15483413E·04 

o.oo 
11.94 
17.39 
24.97 

Cycloperttane 

-,;32QOObOOE-04 
.99919549E+OO 

- ,.84495490E-02 
.33244857E-03 

-.ZOOOOOOE-05 
, .63518160E+OO 

.39365751,E·Ol 
-.98132516E .. 63 

-.20000000E--05 
ii35J,.8160E+OO 
.3936575:t:l!J ... Ql 

.... 98132516E-03 

. .. .,310QOOOOE~Olt 
• 11296016+01 

-.l1564393E•Ol 
.293i9650E-03 

o.oo 
8.01 

14.87 
23.83 

o.bQ 
.12.64 
17.30 
.24~79 

o.oo 
12.64 
17.30 
24.7, 

o .. oo 
7.99 

15 .. 22 
22.4'7 

o.O{j7 
0.135 
0.135 

. 0.143 
\ __ ,Y-\ 

0.026 
0.188 
C>ol98 
0.286 

0~023 
0.212 
0.181 
Oe230 

0~023 
0.212 
Ool8l 
c.2:,0 

o.05a · · 
b.17-J . 
0.127 
0.221 
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T~u: a~JJ {cont'dl.· 

· j. AtlALtSIS OF CHROMA!OOGRAPH. CALUR4TXON ·DATA.. (cont'd) ... 

· < M~t~11ctcio:eentaJi'.t · .. 

·15 qoetficie~l -. .B Value. . ·. Wei~~:~ .·22iCMfidenctt ~nh~al, 4i 3' 

· ...•. ! ·.~··.' 
3 . .· 4 

1 
2 
l. 

.· .· 4-

l a .. 
·:, 

4 

l .., .. 
. .... 
j 

. 4 '. 

. . .ft 
· ..•. t. 

·.l. 
.4 

:,.. 
·2 

3 
4 

. · .• ,,oooooo:a:-04· 0~00 · <o.068 .· .. · .. · 
·. .90!501670:t+oo ).i.27 .• 0,150 I ' 

~ 95i3.541t5:Ji:.02 · . 19.84 0.160 · 
··.· ·~169,2oa:t,7E ... 03. · · ... <!l! .88 Oe'.1-59 

.. .· .. . . 

~,3 ~d 214~B~met),tJ.;11)_$~t~e~ 

.<. ,45000000E-Q/+ .. Q,OQ. 
,92317810ll!+OQ ·.· 8~21. 
•. 46.4B0711E.;.oa ·· · ··.· .~.-.o·9·~· .. ·.• .. ,:.l6···.·~-· .. _ ... · +.47$059~~ . 4 Qi(! 

:· . ·, -

· · •·· Cl(llo~e~~ 

> ~.a()OOOOOm~, ... 
·. ~-' -·.:9l5?l5ZQ~OO 

~52321863E~ • 
~.71'727496lll..Q4 : 

· · ·-.358oooci$~ ·.· -~"oo· 
· .,i:t.854<>\E+ot ·· 9.59, . 
...,4Q?lOl64E+OQ ' · 16.00 

.·. . /L8572.574E..O:i . 12 ••5¢ 

·.· .·· ... ~~·.·· 

.• 92000000~~.. · · •···· ni·QCJ··. · ·. .·.· ..• a0?76519S+Ql ·.. 11.;8# 
. ..;66104,6olll-o• . . · 2i.4t . 

~18042664'.FJ-,Qj ·. )$.~ 

..... <~~ 
• 110000001\J.;-04 · .··. • o.oo · · · 

. . .$!9952338E+OO . ·· .· , ? .,~. : 
·• .... ;121¢04.,;:e:-oa · · i4~ef •. 
· ... · ,l..226i294E...03 · ... · . 21,60 · 

0.0,1. · 
.n.·oc:.7 ·"'· ·"'- .. · 0.001·· 

.. · Oft.18. ·. 
' .... · ... 
-!:,.:.·,: . 

. · ... 

·· irm ... · ... · .. · 
.0,1,a·· 
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TABLE G-II (cont ad) 

. . 

ANAYLSIS OF CHROMATOGRAPH CALIBRA,ION DATA (cont'd) 

B Coefficient 

l 
2 
3 
4 

l 
2 
3 
4 

l 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

l 
2 
3 
4 

Normal.Heptane 

B Value 

.92000000E-04 
,10276519E+Ol 

-.66104360E-02 
.18042664E-03 

Weight% 

o.oo 
11~84 
23.42 
35 • .56 

Methylcyclohe::x:ane 

-.16000000E-04 
.89420850E+OO 
.83349778E-02 

•.l3762256E-03 

... 50000000E-04 
.86?85260E+OO 
,l7355546E..;()1 

-.40731272E ... Q) 

... 46oooooom-o4 
.987065?0~00 
,ll$465151E..O? 

.;. e.352l0996E..;QI+ 

o.oo 
8.61 

22.86 
32 .81+ 

Toluene 

o.oo 
9.86 

17.84 
26 .• ?8 

o.oo 
11&52 
25.52 
28q28 

?5?6 Con!idence 'Interval, ±. %. · 

0.051 
0.057 · 
0.061 
0.118 · 

0.061 
0.112 
0.116 · 
Ool3'7 

0.046 
0.098 
0.111 
0.121 

o.o63 
0.097 

·. 0.09'+ 
0.081 

2zl-258°F F~~ction 
.... - ,,. '- ....... -·-, 

.,41000000E-04 
,J..0582207E+OJ.;:, 

-.57652380E-02 
.2361738lE-03 

• 4 l.OOOOOOE ... Q!i. 
.10582207E+Ol 

... .57652380E..-02 
.. 2.3617381E-,03 

0,00 
· s .. 79 
16 .. 43 
23.38 

o.oo 
8~79 ' 

16.43 
23.38 

0.076 . 
0 .. 106 
0.111 
0.168 

0.076 
(1,106 
0.111 
0.1@ 



. TABLE G-Il (cont'd) 

ANAYLSIS OF CHROMATOGRAPH CALLIBRATION DATA (cont'd) 
'i. 

B Coef:t'ic;ieftt 

l 
2 
3 
4· ' 

1 
2. 

·, 3 
4 

l 
' 2. 

3 
4 

Eth:t;lberizene ,,, . ·. . · · 

B Value Weight.%:) 22?§ Confidence Interval, ±.% 

.... 18000000E·04 
.,8887037ot+oo 
• 90923977E ... Q2 

', .... 16602160E--0.3. 

't'· .. 

• 23QOOOOOE-o4 
.86611070E+OO · 
• 1440904~..;01 · .. 

. ..:.2822889aE...03 

o.oo 
··14.25 . 
22.24 
as.70 

o.oo' 
8.47 .', · 

17~96 . 
25.94. 

252:~gjCIJ!'.Frac$ioll, 

.44300000E~03 · 0,00 

.95057030E+OO · 1:,,35 
· .• 40366?94E--02 · . 25.39. 
... 72207295i-04 36. 95 .· · 

• Normal Nonaiie · 
' ' 

,44300000E~03. · .. 
• 950570:,om+QO · 
.4036£5794~02 

-.722Q7295E ... 04 

', 

• l3000000!l.i-04 . 
,98174660:E+PO 
.48831020E ... 02 

... l2985997E•03 

,l30000QOE ... 04 ·. 
.981746601!:+00 

,· .• 48831020:m--02. 
·. · .... l.298599?S~o, · 

0,00 ' 
l),35 •· .. · 

·.· 25,39 
,,' 36.95 

'o.oo ,, 
· 8.9a 
16.39 
24,3;1. 

0.051 
0.105 
0.135 . 
0.167 

o.o?? 
'' o.oao 

0.098 
· .o.~9 .. •· · 

', 0~094 
o.134 
0~101 

· 0.132 . 

0,094 
0,134 . 
0.101 
0.,],?2 

0.053 
· 0.071 

O,U5 
0.14<:> 

o,o,;, 
· o.on 

Q,ll-5. ,'' 
· . o.i46 
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TABU:-G-II -(cont'd) 

ANALYSIS OF CHROMATOGRAPH C~IBRATION DATA (cont(.d) 

B Coefficient 

l 
2 
3 
4 

1 
2 
3 
4 

l 
2 
3 
4 

1 
2 
3 
4 

l 
2 

·. }' 

. 4. 

l 
2 
3 
4 

· ~46-384°F Fraction 
. . " - . 

. . . . 

B Value Weit5ht .2' . 95% Confiden~e Ititerva1 2 .± %. 

· .27oooocioE-04 
.95607740E+OO 
.46~12524E ... Q2 

-.8895078E-04 

.o~oo·· · 
;l.3.26 
25 .. ?4 
4? .. 24· 

Norm~l.Untiecane 

.27oooo6ot..04 · 
,9.5607740E+OO 
.4681.2524E-02 

.... 8895Q784E...o4 

-.41000000E-04 
.96429268E+OO 
.,j2387o4oE-Qa 

-.r;1;872i31E .. 04 

I 

o.oo 
13.26 
25.74 
37.24 

o.oo. 
7.94 

17,b6 
25.01 . 

.. . 

·.·· f{ormal Dade<ia:M 

.... 41000CiOOE,;_04 
.96429268:E+QO 
.32:,87q40E ... (ra 

.... ?587Zl31E'.~4 

.i3000000E...o4 

.?6i?8540E+OQ 
. .. 16281150E ... Q1 · 
... ~-26292:i.12E .. o, 

·0~00 
?,94 

· 17.66 
~5.0l · 

·-o.oo. ·· 
l3,84 
2.5,44 . 
j8.:i.9 

. Nl!>.~rnal 'lt,tU.et~~ .. ·· 
·. ,'" .' .. ·-: . 

·• 1300000bll-04 
. o?;6i?-854-0E+OO 
.1628+150:tn-01 

. ... ~~6292;Ll.2ll-.OJ · 

o.oo 
:t.,.84 
-a;.44 
)8~19 . 

0.011-
0.139 
Oel5l 
0 .. 165 

0~071 
0.139 
0.,151 
0.165 

·O.o61 
• 0.080 

0.146 ·. 
0.170 

· ... 0.061 · 
o.b8o · 
0.146 
o,17c, 

.0:,076 
0.153 

· 0.209 
0.16)· 

.· o~d?? .... 
0.1;3 
o.ao9 · 
o .. 163 
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TABLE G-II (cont'd) 

ANALYSIS OF CHROMATOGRAPH CALIBRATION DATA (cont'd) 

B Coefficient 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

456-488°F Fraction 

B Value Weight% 95% Confidence Interval,±% 

•• 22000000E-OL~ 
.96972093E+OO 
.34093199E-02 

- • 9209~·988E-04 

o.oo 
9,49 

17.62 
26.62 

Normal Tetradecane 

-.22000000E-04 
.96972093E+OO 
o34093199E-02 

-.92094988E-04 

o.oo 
9.49 

17052 
26062 

489-519°F Fraction 

oOOOOOOOOE+OO 
.lOOOOOOOE+Ol 
.OOOOOOOOE+OO 
.OOOOOOOOE+OO 

Normal Pentadecane 

-,15000000E-04 
.77667881.E+OO 
.17001274E-Ol 

-.42491224E-03 

o.oo 
9086 

17037 
25.49 

Normal Hexadecane 

-,15000000E-04 
.77667991E+OO 
,17001274E-Ol 

-.42491224E-03 

o.oo 
9086 

17.37 
25.49 

549-575°F Fraction 

.OOOOOOOOE+OO 
,lOOOOOOOE+Ol 
,OOOOOOOOE+OO 
.OOOOOOOOE+OO 

0.080 
0.108 
0.114 
0.106 

0.080 
Ool08 
0.114 
0.106 

0.084 
0.118 
0.090 
0.103 

0.084 
0.118 
0.090 
0.103 



TAl3U) G·II (cont'd) 

ANALYSIS OF.CHROMA'OOGRAPFI .CALIBRATION DATA (c;ont'd) 

B Coefficient 

1 
. 2 

3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

l 
2 
3 
4 

l 
2 
3 
4 

N or111al He;etadeoane 

B Value 

.OOOOOOOOE+OO . .. • 

.lOOOOOOOE+Ol • ... 
· · .OOOOOOOOE+QO 

.OOOoOOOOE+OO 

576...60~0 :F Ftaction 

.OOOOOOOOE+OO - ... 
"lQOOOOOOE+Ol. - .,.. 
eOOOOOOQOE+.00 · - ... 
.. OOOOOOOOE+OO .., .. · • 

.ooooooooE+OO 

.lOOOOOOOE+Ol 

.,OQOOOQOOE+OO 

.,OOOQOQOOE+OQ 

·""· -
- -

.;,,.· 

60J--627°F :Fraction · 
.· ... ,.- ' . . -fl-- ' 

• OOOOOOOOE+OO .... .. 
.. lOOOOOOOE+Ol ~ ... 
eOOOOOOOOE+OO ... ... 
eOOOOOOQOE+OO .,. ... 

~OOOOOOOOE+OO ...... 
olOOOOQOOE+Ol. .. '1" 

.,OOOOOOOOE+OO. . ... .... 
. , OOOOOdOOE+OO ~ ... 

~oooooodoE+OO 
~10000000E+01 
eQOOOOOOOE+OO - •• 
• ooooooooE+oo .. -

. -
... -

.. .... 

- ... 

........ 

., .... -... 

•. -

..... -
... -- .. 
... -

204 



TABLE G-II (cont'd) 

ANALYSIS OF CHROMATOGRAPH CALIBRATION DATA (cont'd) 

Normal Eicosane 

B Coefficient B Value w,ei5ht % 95% Confidence Interval .± % 

l oOOOOOOOOE+OO 
2 olOOOOOOOE+Ol 
3 .ooooooooE+oo 
I+ o OOOOOOOOJ£+00 

Iso:eentane 

1 o33000000E-05 o.oo 0.058 
2 .?6867000E+OO 2.69 0.058 
3 .16295079E-Ol lLt .12 0.058 
4 .OOOOOOOOE+OO - - -



APPENDIX H 

RAW EXPERIMENTAL DATA 
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TABLE 'H-1 .. · 
" 

RA~ EXPERIMENT.AL DA"r'A 

CELL . . ,, TOTAL Wh ON OIL GA~ COMPR• BAL. ROOM . 
RUN. TEMP. MEASo CVL~ BALANCE, KGo LEVE.L LEVEL TEMPo .TEMPo 
$.... -L:._. ~ ·. RAN~E,;,ATM.o. ...l1il!.· FINAL ~ ll.il! .f.!!i&. -L...;' F ··.._;....._. 

101 150005 LIQUID 20-so 6001806 60,2206, 20.3 .5908 60o5 75.7 73o3 
101 l50o05 VAPOR 20..:.50 6002006 .· 6002556 20,3 60•5 62oO 75o7 73o3 .· 
102 150005 LIQUID 20-50 52.8243 520844'+ · 21.1 92.2 93.0 78.4 76o5 
102 150005 VAPOR 20-so. ·52~8444 5209194 2lol 93o0 95o0 7El.4 76,5 · 
103 150006 LIQUID 20.-50 7504596' 75.5896 .ZQ,3 120.5 124.4 1s.8 ·14.0 
103 150,06 VAPOR. 20-,50 .. 7505896 750854:6 20o3 124,4 132,2 750$ 74.0 
104 · uooo1 1-1Giuio 20 ... 50 107~4l55 10704655 · 29~5 28·2 29.2 8006 a3o5 

· 104. 150007 VAPOR 20-50 10704655 l07,53S5 29•5 29.2 · 31.3 80,6 ·· .. 83~5 
1.05 150.os LIQUID 20-50 l78o06U 178.0772 26,4: i+o.2 . 4006 74ol .71,0 
105 1sooos VAPOR 20-so naoon2 17801422 26·4· 40.,6 .42 ... 4 74~1. 7l•Q 
106 'l.50006 'l,.IQUID 20-so· 24804430 248,45130 25;9 61,5 62,0 77,4· 11;.o 
106 150,06 VAPOR .· 20-'50 24804580· 248 .. 5180 2!io9 · fl.2•0. 6308 77.4 · 7'Jo0 
107 150,004 LIQUID so-us .144,4628 144,4728 2.2•8 29,2 29,9 so.a 79,.5 
107 150004 VAPOR · 50-125 144,4728 144,4878 22.a 29,9 . :Uot ao.:, 79o5 

" 
10.9 1SOo04 LIQUID 50:...1.as 2llti51:!3i :Ule563.l. 25.~ . '33,2 34•0 83•1 . 91·2 
109 150 .• 04 VAPOR sp...:12s: Ul,.5631 211,5831' 25o9 )4,0 ·.u.s _83.7 81.2 
110 150,06 l,.IQUlD 125-300 11706538 117,65~8 i3o5 32.8 33~1 80.7 79o5' 
110 150.,06 VAPOR i2s .. 300 11706538 ip,6638 23,S :n.1 '35 .• ·6 8Qo7 79o5 
111 iso.01 l:.lQUH> 125-300 17604826' l76o4876 24o5 79,4 80,0 83.4 ez.2 
lll 150,07 VAPOR i2s ... 300. 17604876 176 .• 4926 24,i5 eooo u.2 n;i+ Ql!o2 
1u·· 1500,04 LIQVID · 300..,600 l4h8409 14708409 20,9 106.0 1()6.; 7 79..-.0 77,5· 
n2· lS0o04 VAPOR 300 .. 600 14708409 147;8459 20.o9 106,7 105.1.19,0 77,5 
lU 1s.o,os LIQUIP 300,:-(>00 206,1688 206.7688' 2'hl B7ol 87o4 8206 ai~o 
1n 150,05 VAPOR 3().0-600 206,7688 2.06. 7738 27ol· 87.4. ·ea .2 82;,6 a Ho 
114 15->o04 1-IQUlO 60()-1000 1720.2523 172.2523 2soo 106,0 106,3 79.l 79,4. 
114 lS0,04 VAPOR 600-1000 l l2•2U3 172,2!>73 28·0 106.3 107 06 79.l 79o4 
115 150005 l.lQl,IIO . 1 OOC:k l 6·00 Po,2091 17002097 25.6 92.2 92.9 82.2 79,5 
qs .150.os ··vAl;'QR ·iooo . .;i6oQ· n<>.209_1 l70,2097 25·6 92.9 94,S 82 •. 2 79o5 
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TABLE H-1 I CONT I NUEDI· 

RAW EXPERIMENTAL DATA 

CELL TOTAL WT. ON OIL GAS COMPR, BAL ROOM 
RUN TEMP. MEAS, CYL, BALANCE, KG, LEVEL LEVEL TEMP, TEMP, 

.l!.2.!.. ...L_ .f.!:1W. AANGE-ATMo !fil.!. FINAL ....QL_ INIT FINAL _F_ _F_ 

118 249,98 LIQUID 20-50 38,0185 38.0385 23,6 59,4 60,0 7608 7'(} • 2 
118 249e98 VAPOR 20-50 38.,0385 38.0885 23.6 60.0' 61,5 7608 79o2 
120 249099 LIQUID 20-50 37,3684 37.3884 23o5 41,0 41.7 70.2 10.1 
120 249,99 VAPOR 20-50 3103884 37.4384 23,5 41,7 43ol 70o2 70ol 
121 250.00 LIQUID 20-50 7207369 7207669 21.2 54.5 55,2 77,5 11.0 
121 250.00 VAPOR 20--50 72.7669 72.8069 21,2 55.2 55,6 77,5 11.0 
122 250e00 LIQUID 20-50 3703684 37.3934 20.1 26,5 21.2 81,8 82e0 
122 250.00 VAPOR 20-50 37.3934 37.4284 20o7 27,2 28.3 81.8 a2.o 
123 250000 LIQUID 20-50 7204768 72.4968 20,2 40.6 4lo2 81,9 83o4 
123 250000 VAPOR 20-50 7204968 72,5818 20.2 4l e2 43.7 81,,9 83o4 
124 250000 LIQUID 20-50 7300119 73.0369 21.0 50.7 51o4 8108 82o3 
124 250000 VAPOR 20-50 7300369 73.0819 27o0 5l o4 52.9 8108 82e3 
125 250,00 LIQUID 20-50 10706705 107.6855 23,5 26e8 27.3 76,2 76e2 
125 250,00 VAPOR 20-50 10706885 10707555 23e5 27.3 29o4 76.2 76.2 
126 250·00 LIQUID 20-50 17708922 17709172 2lo3 33o0 33e7 7806 7808 
126 250,00 VAPOR 20-50 177.9172 17709662 21,3 33e7 35o0 7806 78.8 
127 250000 LIQUID 20-50 24805231 248.5481 25o9 37·. 0 37o7 83o4 82o5 
127 250000 VAPOR 20-50 24805481 248.5931 25o9 37o7 39,l 83.4 s2.5 
128 250000 LIQUID 50-125 9902444 99,2544 2606 36,0 3606 73.5 74,0 
128 250.00 VAPOR 50-125 9902544 99.2694 26,6 36.6 37,9 73o5 14o0 
129 250000 LIQUID 50-125 99.4944 99,504'4 22.0 48,2 48.8 78o5 ao.o 
129 250.00 VAPOR 50-125 99.5044 99.5194 22.8 4808 49,9 78.5 BOoO 
130 250000 LIQUID S0-125 141,6440 141,6540 21.3 44,2 44.8 7908 8lol 
130 250·00 VAPOR 50-125 14106540 141.6690 2lo3 4408 46.0 19.8 8lel 
132 2 5 ..l • o.o LIQUID 50-125 212.0723 212.0823 28.4 so.a 51.4 74.4 75.1 
132 250.00 VAPOR 50-125 21200823 21200973 28o4 51.4 52.6 74.4 75el 
133 250·00 LIQUID 125--300 117.9234 117.9284 21.4 80.2 80,9 74.7 74.5 
133 250~00 VAPOR 125-300 117.9284 117.9334 27.4 80,9 82 .• 4 74. 7 74.5 
134 250,00 LIQUID 125-300 117.6439 117.6489 26.4 47.0 47e7 80o3 ao.5 
134 250.00 VAPOR 125-300 117.6489 117,6539 26,4 47,7 49.l 80e3 80o5 
135 250.00 LIQUID 125-300 17605476 1.76,5526 25o9 80.4 81.l 76.5 77,3 
135 250.00 VAPOR 125-300 17605526 176.5576 25o9 81,l 82.5 76,5 77.3 
136 250.00 LIQUID 300-600 14706559 147.6559 24o9 92,l 9208 76.7 77o3 
136 250.00 VAPOR 300-600 14706559 147,6659 24,9 92,8 95.3 76.7 77;,3 
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TABLE H-II 

LOW TEMPERATURE THERMOSTAT DATA 

BAR. PRESS., MM HG AIR BATH U-TUBE MANOMETER READINGS 
RUN rnn. FINAL FIRST COLLECTION SECOND COLLECT. BECK VOL• 'BULBS 

Ji9...!_ ...Mfu. ...£..!.... ....11M!... ~ LEFT, RIGHT~· ..!:.fil:1 RIGHT RFoMK READ ATTACHED 

lOll 74508 80ol 74603 85.8 691.9 45605 62003 o.oo 25,SOOX,lX 
lOlV 745oa eo.1 746.3 as.a 62805 522ol 620·3 lol3 25X,500,1X 
102L 73204 85o7 732.3 85.6 soo.o 34202 62002 650.7 498~9 620.2 l'o6 l 25,SOOX,lX 
102v 732.4 85.7 732.3 85.6 660.l 49802 620e2 lo58 25X,500,1X 
l03L 750.7 83.4 75006 83o3 648.0 50lol 62002 4e07 25X,500,1X 
~03V 750.7 83o4 750.6 83o3 694.8 48008 620.2 1 .. 01 2sx,soo,1x 
104L 73706 8603 73706 8606 67207 50308 62002 lo08 2sx,soo,1x 
104V 73706 8603 73706 8606 744.7 434el 62002 lo60 2SX,S00,1X 
lOSL 756.l 83e4 7~6.l 83.5 622.9 554.7 61909 1.so 25X,S00,1X 
105V 756.l 83o4 756.l 83.5 813.5 357.7 61909 1.77 25X,S00,1X 
106L 745.3 84.1 74503 84ol 63200 54Sos 620.0 Ool4 25X,500tlX 
106V 745.3 84ol 745.3 84ol 76302 40906 620.0 1.10 25X,500X,l 
107L 725.0 85o7 12s.o 85o7 66.603 S09o3 61905 lo62 25X,500tlX 
107V 725.0 85o7 125.0 85o7 818.5 35205 620ol 645.7 53105 620.l lo39 25X,500X,l 
109L 737.3 86.7 737.3 8606 681.3 49400 61906 Oo34 500,1X,2X 
109V 737.3 86.7 737.3 8606 76908 40205 61907 Oe93 soox,1x,2 
llOL 739.l 84.0 739.1 04.0 70004 47403 61908 1.53 500,1X,2X 
llOV 739.1 84o0 739ol 84o0 790.4 381.3 61908 lo54 500,1Xt2 
lllL 733.6 85.0 73306 84.9 75803 413e9 61908 4e59 soo,1x,2x 
lllV 733.6 85oO 73306 84.0 80808 36200 619·8 lo29 500,1,2 
112L 741.9 0.0.8 74lo9 ao.1 698.4 476•1 61908 Oo79 500,l,2X 
112V 741.9 8008 741.9 60o7 70606 47403 61907 lo39 1X,2X,4 
113L 740.2 8206 74002 82o5 76602 392·1 61908 2eS6 500Xolt2X 
113V 7400?. 8206 74002 82.6 662.9 520ol 61908 1.19 lX,2,4 
114L 74506 84.3 74506 64~2 67205 50909 61908 lo94 b2,4X 
ll4V 745.6 84.3 74506 84o2 789.4 389·0 619.7 1.20 l,2X,4 
115L 738.9 86.3 73809 8602 68506 soa.s 61909 lo46 l,2,4X 
ll5V 738.9 86.3 7_38.9 8602 742.2 43609 61904 Oo34 1,2,4 



TABLE H-II !CONTINUED> 

LOW TEMPERATURE THERMOSTAT DATA 

BAR. PRESS., MM HG AIR BATH U-TUBE MANOMETER READINGS 
RUN !NIT. FINAL FIRST COLLECTION SECOND COLLECT. BECK VOL. BULBS 
NO. MM•. _£:_ _fili:_. _!:j_ LEFT RIGHT RF.-MK. LEFT RIGHT RF.MK READ ATTACHED - --.-- -
118L 747.6 79.0 747.6 79.0 705.9 492e6 619.8 ---- --- ---- OeOO 25,SOOX,1 
118V 747e6 79.0 747.6 79.0 649.l 556•2 619.8 ---- ----- ----- lel4 
120L 749.5 70.2 749.7 70.2 705e7 492e6 619•9 ----- ----- ----- OeOO 25,500X,1X 
120V 749e5 70.2 749.7 70.2 654.7 564el 619.8 ----- ----- --- le80.25X,500,1X 
121L 753.5 78.0 753.4 77.8 799.9 412•1 620e0 ----- ----- ---- -.50 25,SOOX,l 
121V 753.5 78.0 753.4 77.8 ----- ----- ---- ----- ----- ---- ---- 25X,500,1X 
122L 745.6 82.0 745.5 82.0 660.5 543~2 619.7 ----- ----- ----- OelO 25,500X,1X 
122V 745.6 82.0 745.5 82.0 640.1 564•7 620e0 ----- ----- ----- l-07 25X,500,1X 
123L 743.4 83.2 743.5 83.2 703.l 521·1 619e8 ----- ---- ---- 2•88 25t500X,1X 
123V 743.4 83.2 743e5 83.2 ----- ---- ----- ----- -----,. -:---- ---- 25X,500,1X 
124L 740.0 86.l 739.5 85.0 709.3 514•5 619.7 ----- ---- ----- 4e67 25,500X,1X 
124V 740.0 86.1 739.5 80.0 702e4 521•8 619e6 ----- ----- ---- 2e94 25X,500,1X 
125l 750e4 76.2 750.4 76.2 755.2 468•2 619e6 ----- ----- ----- 3e76 25,SOOX,lX 
125\" 750.4 76.2 750.4 76.2 744.3 478.2 619.7 ---- ---- --- 4e46 25X,500,1X 
126L 745e7 7808 745.7 78.8 813.3 408.7 619e6 ----- ---- ----- 5e17 25,500.X,lX 
126V 745.7 78.8 745.7 78.8 717.9 506.5 619~6 ----- ----- ---- 4e95 2SX,500X,l 
121L 141.0 82.5747.o s2.s ----- _;.., ___ ---*- ---- ---- ---- ---- 2sx,soo,1x 
127V 747.0 82.5 747.0 82.5 761.8 461..9 619e6 --- ---- --- leOl 25X,500X,1 
128L 748.5 74.0 748.5 74.0 640.2 569.l 619•6 ----- ----- ----- 4e72 2SX,500,1X 
128V 748.5 74.0 748.5 74.0 703e2 504e2 619.6 ----- ---- ----- 3e98 25X,500X,1 
129L 752.3 so.a 752.3 so.a 645.6 513.2 619·6 ----- --- ---- 1.s1.2sx,500,1x 
129v 752.3 so.a 1s2.3 ao.o 751.9 453.5 619·6 ---- ----- ----- 3.00 25x,5oox,1 
130L 745.3 82.5 745.3 s2.5 665·9 sos.a 619.6 ----- ----- ----- 0.20 2sx,soo,1x 
130V 745.3 82.5 745.3 82.5 754.3 46lel 6l9e6 ----- ----- ---- 0•94 25X,500,l 
132L 749.0 76el 748.6 75.0 663.2 555.2 619.8 ----- ---- ---- 4e82 500X,l,2X 

.132V 749.0 76el 748.{> 75.Q 760.{> 454e8 619.7 ----- ----- ----- 1-76 500XtlX,2 
133L 739.o 11.2 739.o 11.s ----- ----- ----- ---- ---- ---- ---- 25x.50.o,1x 
133V 739.0 77.2 739.0 77.5 784.5 430.5 {>l9e8 ----- ----- ---- 2e2l 500,1X•2 
134L 749.4 78el 749.4 78.1 66{>.6 53{>•9 619•8 ----- ----- ----- 4e43 500X,1,2X 
134V 749.4 78el 749e4 78.1 767e7 432e3 619.8 ... ---- ---- ----- 4•47 500,lX,2 
l35L 745.1 82e0 745.1 82.0 712.0 489.6 619.8 ---- ---- ---- 4e29 500X,l,2X 
135V 745 .. 1 82.0 745.1 82.0 779,.7 419.9 619e8 ----- ----- ----- 4e50 500,l,2 
136L 748.2 80.8 748.2 so.a 803•{> 421•5 {>l9e5 ----- ---- --- 0.24 l,2X,4X N 

136V 748.2 80.8 74802 8008 741.{> 484e9 619.5 ---- ----- ----- 3o2l 1X,2X•4 i-' 
0 



TABLE H-III 

LIQUID SAMPLE TRAP WEIGHT Dk\TA 

Run Tra.::p No. l Trap No. 2 
!!2.:. Tare Wt. 1 g Gross Wt. 1 _g Tar.a Wt. 2 g Gross. Wt., g 

101-v 8?.43744 87.434216 95.01215 95.01210 
101-L 95.19085 96.77249 94.96019 95.09570 
102-V 95.17501 95.17589 94.97224 94.97217 
102-L 95.17861 96,.09140 91 •• 98715 94.98736 
103-V 87.31162 87.30812 85.63832 85.64143 
103-L 87.23819 88.36016 85.62322 85.62886 
104-V 87.26675 87.26804 85.614-36 85.61552 
104-L 87.30129 88.38526 85.60857 85.60862 
105...;v 95.19518 95.19836 94.93720 94.93380 
105-L 95.i7200 96.70888 94.94943 94.95286 
106-V 95.17854 95.18429 94.95124 · 94.95612 
106-1 95.18104 96.D8146 94.92138 94.91954 
107 ... -v 95.18629 95.19145 94.97538 94.97638 
107-L 95-11035 96.57936 94.93516 94.93638 
109-V 87.33347 87.33319 94.91662 94.91600 
109-L 87.31311 88.72298 94.90029 94.90086 
110-V 87.24963 87.25122 94.98492 94.98260 
110-L 87.37115 88.66504 94.89116 94.89990 
111-V 87.25556 87.25563 85.59652 85.59743 
111-L 87.28655 88.58664 85.58300 85.58000 
112-L 87.30957 87.31590 85.53086 85.53290 
112-L 87.31261 88.20822 85.55259 85.55418 
113-V 87.34572 91.05060 85.51961 85.525o6 
113-L 87.27719 88.02465 85.60552 85.65507 
114-V 87.27176 88.14492 85.60995 85.61304 
114-L 87.32950 87.83371 85.53682 85.53617 
115-V 87.24094 88.57574 85.62266 85.65781 
116-V 87.21662 87.23077 85.56331 85.56293 
118-V 87.21472 87.21452 85.57504 85.57546 
118-L 87.26180 87.27168 85.61608 85.61565. 
119-V 87.33298 87.33308 85,59648 85.59641 
120-V 95.11909 95.11913 94.94326 94.94338 
120-L 87.36337 87.36917 85.55957 85.55904 
121-V 95.14689 95.14$79 94.94818 94.94812 
121...;L 87e31961 87.31968 85.60900 85.60835 
122-V 87.22973 87.23384 85.60233 85.60049 
122-L 95.09380 96.49;;96 94.94405 94.94204 
123-V 87.23889 87.23896 85.55953 85.55946 
123-L 87.23889 88.63992 85.55953 85.56291 
124-V 95.08572 95.08854 94.93326 94.93714 
124-L 87.23012 88.53686 85.56761 85.56080 
125-V 87.22823 87.22684 85.57510 85.57282 
125-L 95.o6865 96.46285 94.90689 94.90770 
126-V 95.07581 95.07576 · ... 94.90917 94.90824 

. 126-L 95.07576 96.42711 94.90828 94.90959 
127-V 95.13507 95.13811 94.89366 94.89509 



Run 
No., -
128-V 
128-L 
129-V 
129-L 
130-V 
130-L 
131-V 
132-V 
132-L 
133-V 
133-L 
134-V 
134-L 
135-V 
135-L 
136-V. 
136-L . 
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TABLE H-HI (cont 0d) 

LIQU!D SAMPLE TRAP WEIGHT·PATA 

Trap No. 1 Trap No. 2 
Tare Wt. 9 g Gross Wt., g Tare Wt., g Gross Wt., g 

95.11484· 
87.31773 
87.28489 
87.28532 
95.19680 
87.29777 
95.08973 
95.11089 
87.25671 
95,09308 
95.07873 
87.25911 
95.06864 
87.24888 
87.24056 
87.26796 
95.07936 

95.11476 
. 88.65767 
87.~8lH3!n 
88.67188 
95.19685 
88.75941 
95.08970 
95.11470 
88.68661 
95.09466 
96.26488 
87.26134 
96.25479 
87.26869 
88.28587 
90.21144 
95.99386 

·J 

94.90629 
85.46740 
85.4665J 
85.48142 
94.85743 
85.47413 
94.85477 
85.46287 
85.45229 .· 
94.54653 
94.84559 
85.44946 
94.85286 
94.83029 
94.83057 
85.46541 
94.86213 

94.90638 
85.46871 . 
~5!146659 
85.48312 
94 .. 85857 
85.47773 
94.85483 
85.46ae~ 
85.45426 
94.54803 
94.84959 
85.45048 
94.85629 
94.83363 
94.84464 
85.50094 
94.91040 



APPENDIX I 

CALCULATED DATA 
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TAB-Jc£ J-.I 

VAPOR PHAS£ MOLE FRACTION DATA 

RUN NO• 101 102 103 104 106 107 109 110 111 
TEMPERATURE• F • 150.05 150.05 150.06 150.07 150.06 150.04 150.04 150006 150.07 
PRESSURE, PSIA 114.56 152. 56 214.46 313.77 711.00 1034045 1510.73 2012.44 3010.11 

METHANE .87766 .92068 093813 095840 .97620 .98196 ·098036 .97895 .96620 
PROPANE 001742 .01138 000759 000468 • 00223 • 00153 .00129 .00087 .oono 
ISOBUTANE .• oor,32 .00418 .00277 .00183 .00092 .00069 000061 .00048 .00067 
N-BUTANE .02549 001731 001187 000781 .00404 • 00320 000280 .00250 .·00339 
2,2-0IMETHYLPROPAN£ ,00075 000045 00002·6 000017 .00012 .00010 000005 .00007 .00009 
ISOPENTANE .01690 .01146 ·000809 .00561 ·00322 .00275 .00254 .00258 .00374 
N-PENTANE .01590 001043 .00741 .00537 000305 • 00261 .00247 .00261 000385 
2,2-DIMETHYLBUTANE ,000075 .00056 000036 ,00028 000016 .00015 .00013 .00015 .00025 
CYCLOPENTANE .00179 ,00ll8 .00105 .00064 000032 .00025 .00029 .00032 .00052 
2-METHYLPENTANE .00715 · 000480 ,00629 .00284 .00180 .00134 .00155 .00188 .00304 
3-METHYLPENTANE .00405 .00271 .00369 ,00160 ,00097 ,00076 .00084 .00104 .00169 
N-HEXANE ,00621 .00390 .00303 ,00244 ,00145 ,00113 .00132 .0016,. .00279 
METHYLCYCLOPENTANE .00353 .00214 000169 000148 • 00085 .00059 .00076 .00100 .00160 
2,3-DIMETHYLPENTANE .00011 000003 .00002 .00004 ,00006 .00003 .00005 .00007 .00005 
CYCLOHEXANE 000429 ,00258 .00221 .00112 ,00107 .00011 .00100 .00126 .002u. 
3-METHYLHEXANE .00043 ,00025 .00023 000017 ,00028 • 00008 .oo.i12 .00015 .00021 
ISOHEPTANE ,00162 .00092 .00010 .00061 .• 00046 .00037 .00043 .00051 .00095 
2,2,4-TRIMETHYLPENTANE .00101 .00053 .00046 • 00039 .00029 .oooi9 .00021 .00033 .00059 
N-HEPTANE .00207 .00119 000106 ,00092 ,00059 ,00040 .00069 .00086 ··00163 
METHYLCYCLOHEXANE .00352 .00190 .00178 000154 • 00096 ,00059 ,00106 .00132 .00246 
TOLUENE .00039 .00051 •. 00001 .00002 000002 .OOOOQ ·.00002 .00002 .00016 
2,3•4-TRIMETHYLPENTANE .00033 .00002 000039 .00031 .00001 ,00008 ,00028 .00034 .00064 
OCTANE ISOMERS .00111 .00051 000041 ,00051 000048 .00026 000043 .00048 .00091 
N-(.CTANE .00042 ;00017 000018 .00020 • 00011 .00006 000019 .00022 .00023 
ETHYLBENZ.ENE .00002 .00000 .00000 .00001 .00000 .00000 .00001 .00001 ..00005 
MIXED XYLENES 000003 .00000 .00002 000002 .00001 ·• 00000 .00003 .00002 .00009 
258-303F FRACTION 000035 000005 -.00010 .00015 .00010 .00003 .00020 .00011 .00064 
N-NONANE .00005 .00001 .00001 .00001 .00002 .00000 000002 .00001 .00006 
304-345F FRACTION .000'.3 000000 000000 .• 00000 ,. 00003 .00000 000002 .00000 .00003 
N-DECANE 000005 .00000 .00000 .00000 .00000 .00000 0000')0 .00000 .00000 
346-384F FRACTION 000000 .00000 000000 .00000 .00000 .00000 .00000 .00000 .00000 
N-UNDECANE 000..ioo 000000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 
385-421F FRACTION 000000 · .00000 .00000 .00000 ,00000 .00000 .00000 .0001!0 .00000 
N-DODECANE 000000 000000 000000 .00000 .00000 .00000 .00000 .00000 .00000 
422-455F FRACTION 000000 000000 000000 ,00000 .00000 • 000.00 .00000 .00000 .00000 
N,-TRIDECANE 000000 .00000 000000 ,00000 .00000 .00000 .00000 .00000 .00000 
456~488F FRACTION .00000 000000 ,00000 000000 • 00000 ,00000 .00000 . .00000 .00000 
N-TETRAOECANE 000000 000000 000000 000000 .00000 .00000 .00000 .00000 .00000 
489-519F FRACTION 000000 000000 000000 000000 ,00000 .00000 .00000 .00000 .00000 
N-PENTADECANE 000000 000000 000000 0000·00 .00000 .00000 . .00000 .00000 .00000 
520-548F FRACTION ,00000 .00000 000000 000000 000000 000000 000000 .00000 .00000 
N-HEXADECANE .00000 000000 000000 000000 .00000 .00000 .00000· .00000 .00000 
549-575F FRACTION 000000 .00000 .00000 .00000 .00000 • 00000 000000 .00000 .00000 
N-HEPT ADE CANE .00000 000000 000000 .00000 000000 000000 000000· .00000 .00000 
576-602F FRACTION 000000 000000 000000 .00000 000000 ,00000 .00000 .00000 .00000 
N-OCTADECANE .ooo,)o 000000 000000 000000 000000 • 00000 . .00000 .00000 .00000 
603-627F FRACTION · ,00000 000000 000000 .00000 .00000 .00000 .00000 .00000 .00000 
N-NONAOECANE • 000000 ,00000 000000 .00000 000000 .00000 000000 .00000 .00000 
628-650F FRACTION 000000 000000 .00000 .00000 000000 000000 000000 .00000 .00000 
N-EICOSANE .00000 .00000 .00000 ,00000 000000 o 00000 000000 ,00000 .00000 f\.) 
651F-> FRACTION 000000 .00000 .00000 000000 000000 000000 o,00000 .00000 .00000 I-' +·· 



TABLE 1-1 !CONTINUED> 

VAPOR PHASE MOLE FRACTION DATA 

RUN NO• 112 113 118 124 125 126 127 128 
TEMPERATURE, F. 150.04 150.05 249.98 250000 250000 250000 250000 250-00 
PRESSURE, PSIA 5009034 7006094 113.86 218.56 314.74 513040 713046 712.98 

METHANE 097699 .57734 .73214 083943 .91000 .91827 095312 091696_ 
PROPANE • 00126 .00013 001812 001150 000000 000516 .oo4o8 000'387 . 
ISOBUTANE .00066 .00042 oOOa66 000567 .00000 .00269 .002]2 .00222 
N-BUTANE 000315 000257 003949 .02546 001000 001246 -!gi'Wa--- -- :~Io · 2,2-DIMETHYLPROPANE 000009 000019 000116 000038 000000 000023 
ISOPENTANE 000285 000753 003325 002077 0000·00 .01028 000633 .00809 
N-PENTANE .00278 000876 003324 002093 001000 .01061 ·000637 · .01207 
2,2-DIMETHYLBUTANE 000015 000099 000188 .00108 .00000 000056 '00'0033 000064 
CYCLOPE!tTANE o00034 000212 .00465 .00244 000000 000114 000070 .00139 
2-METHYLPENTANE 000178 001249· .02115 001202 000000 .00602 000411 000706 
3-.. ETHYLPENTANE 000098 000817 001209 .00695 .00000 000330 000225 000403 
N-~EXANE 000158 001507 001905 .01108 000000 000499 000361 .00416 
METHYLCYCLOPENTANE o00088 .01151 001065 .00633 .00000 .00339 000198 000347 
2,3-DIMETHYLPENTANE 000005 000046 000111 000014 000000 000012 000013 000011 
CYCLOHEXANE 000123 002053 001484 .00873 000000 000466 000265 .00455 
3-METHYLHEXANE .00014 000306 000163 .00093 .00000 .00054· o0003l .00048 
lSOHEPTANE 000053 000994 .00629 .00302 .00000 000192 .00118 000186 
2,2,4-TRIMETHYLPENTANE 000035 ·00754 000373 • 00201 .00000 .00111 000073 000108 
N-HEPTANE .00091 .02123 000945 .00504 000000 .00302 000179 .00265 
METHYLCYCLOHEXANE 000156 004125 001448 .00798 000000 .00480· 000266 .00419 
TOLUENE 000002 000868 000087 .00105 .00000 .00003 000002 000016 
2,3,4-TRIMETHYLPENTANE 000027 001164 000295 000160 000000 .00130 000043 000090 
OCTANE ISOMERS .00065 002518 000482 000267 .00000 000160 000097 000117 
N-OCTANE .00029 001897 .00206 000109 .00000 000082 000026 .00051 
ETHYLBENZENE .00002 000431 oooooe 000005 .00000 .00003 000000 .00001 
MIXED XYLENES 000004 001396 .00023 000017 000000 .00011 .00000 .00004 
258-303F FRACTION .00026 002617 000157 .00104 000000 000059 .00018 .00029 
N,-NONANE 000003 001191 000015 .ooooe .00000 000006 -000000 000001 
304-345F FRACTION .00002 002180 oooooe .00011 000000 .00002 .00000 .00002 
N-DECANE 000000 000817 .00001 .00010 000000 .00000 000000 000000 
346-384F FRACTION 000000 001153 000000 .00000 000000 • 00000 .• 00000 .00000 
N-UNDECANE .00000 .00530 .00000 000000 .00000 .00000 .00000 .00000 
385-421F FRACTION 000000 000645 000000 000000 .00000 000000 000000 .00000 
N-DODECANE 000000 000348 000000 .00000 000000 .00000 000000 000000 
422-455F FRACTION .00000 000593 .00000 000000 000000 000000 .00000 .00000 
N-TRIDECANE .00000 000284 000000 .00000 .00000 .00000 000000 .00000 
456-488F FRACTION 000000 000324 .00000 .00000 000000 000000 000000 .00000 
N-TETRADECANE 000000 000147 000000 .00000· .00000 .00000 000000 000000 
489-519F FRACTION 000000 000214 0000()0 000000 000000 oOOQOO 000000 .00000 
N-PENTADECANE 000000 000093 000000 000000 .00000 .00000 000000 .00000 
520-548F FRACTION 000000 000150 000000 .00000 000000 000000 000000 000000 
N-HEXADECANE .00000 000071 oOOJOO 000000 000000 000000 000000 000000 
549-575F FRACTION 000000 000041 000000 .00000 .00000 000000 000000 .00000 
N-HEPTAOECANE 000000 000029 000000 .00000 .00000 .00000 .00000 .00000 
576-602F FRACTION .00000 .00051 .00000 000000 .00000 .00000 .00000 .00000 
N-OCTADECANE .00000 000019 .00000 000000 000000 000000 000000 .00000 
603-627F FRACTION 000000 000026 .00000 000000 .00000 .00000 000000 .00000 
N-NONAOECANE 000000 .ooooe .00000 .00000 000000 000000 .00000 000000 
628-650F FRACTION .00000 .00008 000000 .00000 .00000 • 00000 000000 000000 
N-FICOSANE .00000 .00005 000000 .00000 .00000 .00000 000000 .00000 
65lF+ FRACTION .00000 000005 000000 .00000 .00000 .00000 .00000 .00000 r0 

...... 
'-,'1 
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TABLE l".'I 'CCONTINUEDI 

VAPOR p~ASE MOLE FRACTION DATA 

RUN NO, 110 · HZ 133 134 13!). 136 
TEMPERATURE, F, 2!Hl,OO 2!l0,00 2!)0,00 2 so.co 2SO,OO 2!lO,OO 
PRFSSURE, PSIA .1013.31 1512,99 2012,38 2010,93 3011,41 · !i004,27 

METHANE ,94944 ,95122 ,95064 ,94303 ,937SS ,6.7800 
PROPANE ,oozes ,00138' ,00102 ,00148 ,00107 .00100 
ISOBUTANE ,00l!l6 ,00095 ,00058 ,00095 , 00077 , 00089 
N-BUTANE . ,00728 , 0051.6 ,00323 ,00493. ,00408 ,00539 
2,2-DiMETHYLPROPANE ,00044 : . ,00004' ,00004 ,00012 ,00023 ,00026 
ISOPENTANE ,00666 ,00539 ,00487 , 00542 ,00517' ,00943 
N-PENTANE ,006 77 100571 ,.00528 ,00581 ,00570 ·,01117 
2,2-DIMETHYLBUTANE ,00034 ,00029 ,00033 000039 ,00045 , 00131 
CYCLOPENTANE ,00069 .00016 ·,o0066 ,00085 • 00081 , ,00208 
2-METHYLPENTANE ,00409 ,0042.l ,00441 .00477 000511 ,01323 
3-METHYLPENTANE ,00256 ,00241 ,00245 ,00276 ,00304 ,00895 
N·HEXANE ,00406 ,00407 ,00407 ,00460 ,00506 .01511 
METHYLCYCLOPENTANE ,00217 .00219 ,00473 ,00250 ,00317 •. 01061 
2,3-DIMETHYLPENTANE .00020 .oqo22 ,00024 ,00042 ,00018 .·00010 
CYCLOHEXANE. .00212 ,00326 ,003~5 ,00393 ,00456 ,01886 
3'.""METHYLHEXANE ,00031· • 00039' ,.0004 l ,00047 ,00058 ,00243 
ISOHEPTANE ,00114 ,00149 ,00156 , 00183 ~00216 ',00828 
2,2,4-TRIMETHYLPENTANE ,00074 ,00091 · ,00095 ,00119 ,00145 .00622 
N-HEPTANE ,00168 .00241 ,00259 ,00297 ,00386 .01798 
METHYLCYCLOHEXANE ,00243 ,00372 ,00409 ,00482 ,00637. ,03514 
TOLUENE ,00005 .00004 ,00006 .00008 ,00010 • 00856 
2,3,4-TRIMETHYLPENTANE ,00020 ,00093 ,00104' ,00128 ,00191 ,00932 
OCTANE ISOMERS ,001()8 ,00141 ,00157 ,00258 ,00288 .01937 
N-OCTANE ,00018 ,00068 ,00078 ,00094 ,00140 ,01517 
ETHYLBENZENE .00000 ,00000 ,00005 ,OQ009 • 00011 • 00331 
MIXED XYLENES ,OOJOO .00002. ,00009 ,00015 .0002s ,01278 
258-303F FRACTION .0002.6 ,00053 ,00065 • 001.09 ,00155 ,02160 
N-NONANE .00000 ,00004 ,00006 ,00014 ,00020 ,00999 
304-345F FRACTION .00000 ,00002 ,00007 .00022 000006 .01835 
N-DECANE . ,00000 ,00000 .00000 ,00001 ,00000 ·, 0063$ 
346-384F FRACTION . ~00000 ,DODOO · ,00000 ,00000 .00000 ·• 00873 
N-UNOECANE .00000 ,00000 ,·QOOUO ,00000 ,00000 ,00380 
38S-421F FRACTION ,00000 ,00000 .00000 .00000 ,00000 ,00388 
N-DODECANE ,00000 .00000 ,QOOOO ,00000 ,00000 ,00186 
422-4S5F FRACTION' .00000 .00000 .00000 ,00000 ,00000 ,00326 
N-TRIDECANE ,00000 ,00000 .00000 ·.00000 ,00000 , 00121 
456-488F FRACTION ,00000 · .00000 ~oooilo .00000 .• 00000 ,00164 
N-TETRAOECANE ,00001) ,00000 .00000· ,00000 ,00000 ,00060 
48~-Sl9F FRACTION. ,00001:l ,00000 ,00000 .00000 .00000 . , 0.0105 
N-PENTAOJ'.:CANE ,OOO•)O ~00000 ,00000 .00000 .• ·00000 • 00037 
520-S48F FRACTION· .00000 ,00000 ,00000 , 00000· .00000 ,00075 
N-HEXADECANE ,00000 ,00000 .00000 .00000 ,00000 ,00026 
549-575F FRAC~ION .00000 ,.00000 .00000 .oooco .00000 • 00024 
N-HEPTAQECANE ,00000 · ,0()000 .00000· ,ouooo " .00000 .ooooe 
576-602F FRACTION · .00000 .00000 .00000 .00000 .00000 ,1)0009 
N-OCTAO~CANE .00000 .;00000 .ooooQ , OOOOQ· eOQOOO , 00001 
603-627F FRACTION ,00000 .• 00000 ,.00000 ,00000 .00000 ,00002 
N-NONADECANE ~00000 .00000 .00000 .00000 .00000 .00000 
62B-650F FRACTION .00000 ,00000 ,ociooo , 00000· ,00000 , 00001 
N-:-EICOSANE ·,00000. ,00000 .00009 ,00000 ~00000 .00000 
651F+ FRACTI.ON • 00000 .00000 . .00000 ,00000 .00000 ,00000 



TABLE 1-JJ 

LIQUID PHASE MOLE FRACTION DATA 

RUN NO• 101 102 103 104 106 107 109 110 
TEMPERATURE• F. 150.05 150.05 150.06 150.07 150.06 150·04 150.04 150.06 
PRESSURE• PSIA 114.56 152.56 214,46 313,77 111.00 1034.45 1510.73 2012.44 

METHANE .02753 .03874 .04974 .07483 ,1-7112 .22430 ,28138 .33142 
PROPANE .00788 ,00544 ,00675 ,00619 ,004o2 .00310 .00247 .00191 
JSOBUTANE .00452 .00582 .00520 .00490 .00294 • 00235 .00139 .00163 
N-BUTANE .01825 ,03738 ,03022 ,02794 .01750 ,01192 ,00598 ,00727 
2•2-0IMETHYLPROPANE .00075 ,00081 ,00064 ,00116 .00046 ,00045 ,000!.9 ,00044 
ISOPENTANE ,02480 .05651 004240 ,03485 ·01831 ,01922 ,00305 ,01664 
N-PENTANE ,02255 .06426 .04555 .04473 ,01907 ,01929 ,00239 ,01840 
2,2-0IMETHYLBUTANE .00288 ,00864 ,00308 ,00290 ,00240 ,00208 ,OOJ25 ,00201 
CYCLOPENTANE ,00565 ,01058 ,00672 ,00742 ,00476 ,00353 ,00088 ,00373 
2-METHYLPENTANE ,03370 ,05035 .03722 ,02659 003074 ,02893 ,01018 ,02413 
3-METHYLPENTANE .02145 ,03036 .02168 001796 001978 ,01767 ,00754 ,01582 
N-HEX.ANE ,03191 ,04950 .03564 ,03669 003161 ,02801 ,01681 ,02715 
METHYLCYCLOPENTANE ,02636 ,03327 .02477 ,02247 002475 .02209 ,01383 .02039 
2,3-DIMETHYLPENTANE .00225 .00104 .00176 .00103 000126 , 00115 ,00044 ,00091 
CYCLOHEXANE .04717 ,05250 ,03953 ,03667 ,04375 ,03910 ,02878 ,03569 
3-METHYLHElCANE ,00671 ,00765 ,00371 .00555 000611 ,00548 ,00526 ,00557 
lSOHEPTANE .02337 ,02523 ,01900 ,01778 ,02117 ,01855 ,01733 ,01733 
2,2,4-TRIMETHYLPENTANE ,02008 ,01955 ,01488 ,01338 ,01640 , 01443 .01296 ,01332 
ff-HEPTANE ,04536 ,05114 o040U3 ,04222 ,04222 ,03924 ,04117 ,03627 
METHYLCYCLOHEXANE .098'l8 ,10077 .07785 ·07764 ,08896 ,07895 ,08125 ,06950 
TOLUENE ,01450 .01810 ,01344 .01486 ,01618 ,01600 ,01725 ,01433 
2,3•4-TRIMETHYLPENTANE ,02817 ,03068 ,02700 ,02745 ,02541 ,02177 ,02595 ,02047 
OCTANE ISOMERS ,06J74 ,06459 ,05552 ,05500 ,05401 ,04712 ,05215 ,04399 
N-OCTAN':: ,04482 ,05075 ,04508 ,04583 ,04077 ,03583 ,04391 ,03361 
ETHYLBENZENE ,01145 ,01235 ,01039 ,01132 ,00992 ,00834 ,00752 ,00819 
Mil'ED XYLENES ,03540 ,C,4106 ,03740 .03884 ,03519 ,03112 ,02863 ,02701 
25~-303F FRACTION .06926 ,07342 ,06795 ,07027 ,06331 ,05518 ,06354 ,04953 
N-KONANE ,03 .. 83 ,03683 ,03433 .03402 ,03057 .02611 ,03213 ,02364 
304-345F FRACTION ,06842 ,07190 ,06700 ~06535 , 06128 ,05296· ,06268 ,0-+667 
N-DECANE ,02651 ,02552 ,02271 ,02101 ,02254 ,01910 ,02294 ,01635 
346-384F FRACTION ,03773 .03718 ,03604 ,03117 ,03293 , 02857 ,03299 ,02326 
N-UffDECANE ,01625 ,01597 .01286 ,02274 ,01316 ,01193 ,01439 ,00892 
385-421F FRACTION .011!06 ,01901 ,01725 001423 ,01663 ,01385 - .01434 ,00958 
ff-DODECAttE ,00999 ,01162 .00121 ,00567 ,00717 , 00705 ,00733 ,00376 
"22-455F FRACTION ,01584 ,02044 ,01247 .01106 ,01217 .01229 ,01173 ,00619 
N-TRIDECANE .00689 ,01252 .00527 .00452 .00522 ,00620 ,00529 ,00245 
456-488F FRACTION ,00795 .01195 ,00537 ,00504 ,00588 , 00624 ,00491 .00304 
N-TETRAl>ECANE ,00359 ,00657 ,00271 ,00243 ,00297 .00342 ,00283 ,00128 
489-519F FRACT[Off ,00527 ,00853 ,00333 ,00354 ,00400 • 00415 ,00388 .00212 
N-PENTADECANE .00221 ,00440 .00110 .00165 ·00181 • 00224 ,00175 ,00080 
520-548F FRACTION ,00386 ,00607 .00258 ,00298 ,00320 • 00297 ,00284 ,00149 
N-HElCADECANE ,00170 ,00348 ,00123 ,00146 000173 • 00170 ,00143 ,00056 
549-575F FRACTION ,00151 ,00314 , 00111 • 00140 ,00149 , 00149 ,00158 ,00106 
N-HEPTADECANE ,00066 .00122 ,00051 .00010 .00054 , 00071 ,00063 ,00026 
576-602F FRACTION .00102 ,00243 , 00071 ,00104 ,00098 .00113 ,00103 ,00029 
N-OCTADECANE ,00041 ,00070 ,00032 ,00054 .00042 .00040 .00035 ,00019 
603-627F FRACTION ,00040 ,00119 ,00086 ,00087 .00131 • 00067 ,OOJ50 ,00044 
N-NONAOECANE ,00042 .00052 ,00009 .00020 ,00025 , 00027 ,00024 .00025 
628-650F FRACTION ,0004_6 , 00087 ,00006 ,00058 • 00106 .00035 ,00048 .00020 
N-EICOSAME .ooou .00029 .00016 .00021 000040 ,00027 .00011 .00011 
651F+ FRACTION ,00003 .00177 .00011 ,00078 ,00154 • 00048 ,00086 .00020 r0 

1--' ·-~ 



TABLE 1-11 !CONTINUED I 

LIQUID PHASE MOLE FRACTION DATA 

RUN NOo 111 112 113 118 124 125 126 127 
TEMPERATURE, Fo 150.07 150.04 150005 249.98 250.00 250000 2·50.00 250.QO 
PRESSURE• PSIA 3010. ll 5009034 7006094 113.86 218.56 314.74 513040 713 •. 46 

METHANE 045590 067248 074323 .02326 .04834 007029 .11228 ol4!)68 
PROPANE .00183 .00123 .00093 .00411 .00380 .00377 .00346 000297 
ISOBUTANE .00051 000087 o00065 000262 000296 .00287 .00236 000219 
N-BUTANE .00347 000411 ·00335 001'%2 001456 .01368 .01153 o0ll72 
2,2-DIMETHYLPROPANE .00009 .00024 .00020 .00067 .00087 000040 000047 .00030 
ISOPENTANE .00184 .00793 000654 .02384 002487 001515 002199 001727 
N-PENTANE .00112 .00775 .00101 .02700 .02788 002594 002543 .02111 
2,2-DIMETHYLBUTANE .00018 .00097 000081 .00299 .00263 .00228 000234 000236 
CYCLOPENTANE .00011 000188 000162 .00520 000615 000524 000534 000451 
2-METHYLPENTANE .00755 001166 ·00964 .03387 .03498 003264 002902 003018 
3-METHYLPEN.To\N'E .00543 000755 000608 002088 .02150 002044 001849 001864 
N-HEXANE .01262 .01157 001031 .03694 .03733 .03576 .03551 • 03333 
METHYLCYCLOPENTANE 001049 000936 000782 .02719 002721 002569 .02494 002505 
2,3-DlMETHYLPENTANE 000083 .00049 ·00034 .00128 .00132 .00164 .00191 000108 
CYC LOHEXANE 002175 001669 ·013-64 .04733 .04831 004621 004441 004312 
3-METHYLHEXANE .00392 000241 000191 .00671 .00648 000634 000654 000591 
ISOHEPTANE .01329 .00823 ·00670 .02220 .02296 002161 002142 .02001 
2,2,4-TRIMETHYLPENTANE 000983 .00629 000499 .01688 .01726 001632 001590 ·01519 
N-HEPTANE 003165 .01640 ·01363 .04956 .04980 004714 004686 004519 
METHYLCYCLOHEXANE .06296 003434 002813 .10001 010214 • 09762 008951 008854 . 
TOLUENE .01412 .00537 000465 .02084 .02151 002314 002161 ·02195 
2,3,4-TRIMETHYLPENTANE 001854 001000 000804 .02896 .02928 002639 002565 002520 
OCTANE ISOMERS 003881 002102 001641 .05928 005932 005632 .05593 005308 
N-OCTANE .03282 .01607 001298 .04743 004822 004600 004479 o.04383 
ETHYL BENZ.ENE 000712 000393 o 00300 .Oll 79 .01158 001091 001034 001017 
MIXED XYLENES 002825 001287 001033 004080 .04173 004113 003734 ·03827 
258-303F FRACTION 004733 002400 001888 .07090 .07188 006867 006529 006525 
N-NONANE .02352 001195 000931 .03512· •. 03520 003363 .03182 003134 
304-345F FRACTION 004515 002309 001758 .06907 .06773 006608 .06141 006190 
N-DECANE .01621 .00848 ·00626 .025<>9 002377 002370 .02111 002235 
346-384F FRACTION .02279 001185 ·00831 003772 .03212 003402 003032 ·03242 
N-UNDECANE .00882 000487 000336 .01644 .01238 001361 .Qll50 ·01328 
385-421F FRACTION .01075 .00470 000330 ~01805 .01314 .01574 001432 ·01519 
N-DODECANE .00519 000250 000169 .00832 .00535 .00111 .00667 000708 
422-455F FRACTION .00918 .00422 000281 001450 .00967 001257 oOll40 .01117 
N-TRIDECANE .00410 .00203 .00110 .00570 .00330 .00543 000490 000471 
456-488F FRACTION .00504 .00233 000126 .00683 .00416 000642 000634 000585 
N-TETRAOF.:CANE .00242 000121 000054 000294 000143 000287 000266 . 000229 
4B9-519F FRACTION .00337 .00161 000078 .00425 .• 00223 000432 000435 000404 
N-PENTADECANE .00151 .00078 000030 .00152 000075 000177 000179 000150 
520-548F FRACTION 000279 .00132 000055 .00276 .00135 000323 000282 000274 
N-HEXADECANE .00115 000073 000025 o00ll2 .00079 000128 .00154 000127 
549-575F FRACTION 000129 .00010 000028 .00103 .00066 000157 000139 000135 
N-HEPTADECANE .00056 000027 .00010 000036 .00024 000052 000061 000049 
576-602F FRACTION 000091 000054 000008 000055 .00030 000044 • 00168 .00110 
N-OCTADECANE 000031 .00011 000004 .00015 .00010 000035 000043 000035. 
603-627F FRACTION 000032 .00035 - .-00001 .00025 .00011 000021 000042 000056 
N-NONADECANE 000019 .00010 .00001 .00012 .00006 000018 .00039 .00025 
628-650F FRACTION .00012 .00005 .00000 .00011 .00001 000009 • 00037 .0002e 
N-EICOSANE oooooe .00007 000000 .00004 000001 000009 000015 .00015 
65lF+ FRACTION 000009 .00013 .00000 .00002 .00000 .00004 000012 .00012 rv 

I-' co 
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TABLE 1-11 ICONTINUEOI 

LIQUID PHASE MOLE FRACTION DATA 

RUN NO• 128 130 132 133 134 135 136 
TEMPERATURE, Fo 250000 250.00 250.00 250.00 250000 250.00 250000 
PRESSURE, PSIA 712.98 1013031 1512099 2012038 2010093 3011041 5004027 

METHANE o 141)68 ,22225 029459 038163 038163 053248 066690 
PROPANE ,00297 000245 000155 000124 000124 000127 000104 
I SOBUTANE ,00219 000212 000148 000113 000113 000106 000078 
N-BUTANE ,01172 001210 000904 000702 000702 000631 000442 
2,2-DIMETHYLPROPANE o 0003 0 000071 000047 000038 000038 000028 o 00030 
ISOPENTANE 001727 002263 001761 001534 001534 001221 000853 
N-PENTANE o 02171 002572 002145 001796 001796 001469 001039 
2,,-DIMETHYLBUTANE 000236 000229 000239 o 00174 ,00174 , 00154 ,00108 
CYCLOPENTANE , 00451 ,00485 ,00395 ,00345 ,00345 o 00291 , 00211 
2-METHYLPENTANE 003018 ,03179 ,02845 ,02334 ,02334 001884 001360 
3-METHYLPENTANE ,01864 ,02022 ,01745 001487 ,01487 ,01167 o 00851 
N-HEXANE 003333 0035~1 003181 002589 ,02589 ,02109 ,01526 
METHYLCYCLOPENTANE 002505 ,02493 ,02230 001844 ,01844 ,01493 001074 
2,3-0IMETHYLPENTANE ,00108 ,00149 ,00128 000110 ,00110 000096 o 00071 
CYCLOHEXANE 004312 ,04'+77 o 04034 ,03269 ,03269 ,02673 ,01931 
3-METHYLHEXANE ,00591 ,00587 ,00535 ,00430 000430 ,00352 o 00252 
ISOHEPTANE 002007 001999 001804 001498 001498 ,01211 o 00900 
2,2,4-TRIMETHYLPENTANE 001519 001260 001382 ,01127 ,01127 ,00904 , 0064 7 
N-HEPTANE ,04519 ,04407 004068 ,03310 003310 002693 o O 1960 
METHYLCYCLOHEXANE ,08854 ,08851 ,08157 ,06518 ,06518 .05325 ,03864 
TOLUENE ,02195 ,02100 ,01958 ,01538 001538 ,01235 ,00857 
2,3,4-TRIMETHYLPENTANE , 02520 ,02350 ,02135 ,01751 ,01751 ,01415 ,01018 
OCTANE I SOMERS ,05308 ,04815 ,04521 ,03621 ,03621 ,02954 , 02087 
N-OCTANE , 04383 ,03915 ,03616 ,02865 ,02865 002341 ,01617 
ETHYLBENZENE ,01017 ,00~71 ,00784 000692 ,00692 , 00524 000351 
MIXED XYLENES ,03827 ,03316 ,03137 ,02416 ,02416 ,01926 001256 
258-303F FRACTION 006525 005517 005195 ,04250 004250 ,03318 ,02211 
N-NONANE ,03134 ,02525 ,02364 ,020U2 ,02002 001486 000955 
304-345F FRACTION ,06190 ,0471+2 ,04333 ,03911 ,03911 002752 001757 
N-DECANE , 02235 ,01526 ,01387 001451 ,014'H ,00875 o 00613 
346-384F FRACTION ,03242 ,01145 , 01764 ,02070 ,02070 ,Oll92 000842 
N-UNOECANE ,01328 ,00826 ,00616 ,00939 ,00939 ,00488 000379 
385-421F FRACTION ,01519 ,00954 ,00730 001057 ,01057 , 005 63 , 00461 
N-DODEC.\NE ,00708 ,00457 000316 ,00552 ,00552 000278 o 0026 7 
422-455F FRACTION , 01177 000788 ,00566 ,00986 ,00986 ,00486 ,00453 
N-TRIDECANE ,00471 000343 000219 000446 o 00448 ,00200 o 00215 
456-488F FRACTION , 00585 ,00406 ,00304 ,00533 ,00533 ,00239 o 00224 
N-TETRAOECANE o 00229 000176 , 00119 ,00228 000220 ,00096 o 00090 
489-519F FRACTION , 00404 ,00245 , 00178 ,00349 ,00349 ,00150 000125 
N-PENTADECANE ,00150 ,00094 ,00074 ,00137 ,00137 ,00048 , 00044 
520-548F FRACTION ,00274 ,00149 ,00079 ,00251 ,00251 ,00109 o 0006 7 
N-HEXAOECANE , oo 12 7 ,00068 ,00054 ,00118 , 00118 ,00035 ,00027 
549-575F FRACTION ,00135 ,00045 000069 ,00107 ,00107 ,00026 0000'•1 
N-HEPTAl)ECANE o 00049 ,00020 ,00015 000040 , 0001,0 ,00009 ,00009 
576-602F FRACTION , 00110 ,00053 ,00024 ,00098 ,00098 ,00016 000009 
N-flCTAOECANE ,00035 ,00008 ,00016 ,00022 000022 ,00008 000004 
60:-627F FRACTION , 00056 ,00003 ,00013 ,00018 ,00018 ,00014 ,00002 
N-NONADE•:ANE , 00025 ,00001 ,00024 ,00009 ,00009 ,00005 , 0000 l 
628-650F FRACTION , 00028 ,00001 ,00000 ,00008 ,00008 ,00002 ,00000 
N-EICOSANE ,00015 ,00000 ,00000 ,00001 000001 ,00001 000000 
651F+ FRACTION , 00012 ,000110 ,00002 ,00001 ,00001 ,00000 , 00001 



RUM NO• 
TEMPERATURE. F. 
PRESSURE• PSIA 

METHANE 
PROPANE 
ISOBUTANE 
N-BUTANE 
2•2-0IMETHTLPROPANE 
ISOPENTAME 
N-PENTANE 
2.2-0IMETHYLBUTANE 
CYCLDPEMTANE 
2-METHYLPENTANE 
3-METHYLPENTANE 

- N-HEXANE 
METHYLCYCLOPENTANE 
2.3-DIMETHYLPENTANE 
CYCLOHEXANE 
3-METHYLHEXANE 
ISOHEPTANE 
2.2,4-TRIMETHYLPENTANE 
N-HEPTANE 
METHYLCYCLOHEXANE 
TOI UENE 
2•:•4-TRIMETHYLPENTANE 
OCTANE ISOMERS 
N-OCTANE 
ETHYLBENZENE 
MIXED XYLENES 
258-303F FRACTION 
N--IIIONANE 
304-345F FRACTION 
N-DECAltE 
346-384F FRACTION 
i.-UNDECANE 
385-421F FRACTION 
N-DOOECANE 
422-455F FRACTION 
N-TRIDECANE 
456-4118F FRACTION 
N-TETRAOECANE 
489-519F FRACTION 
N-PENTAOECANE 
520-548F FRACTION 
N-HEXAOECANE 
549-575F FRACTION 
N-HEPTAOECANE 
576-602F FRACTION 
N-OCTADECANE 
603-627F FRACTION 
N-NONAOlcCANE 
628-650F FRACTION 
N-EICOSANE 
651F+ FRACTION 

101 
150.05 
114.56 

31088013 
2021065 
1039823 
lo39671 
loOOOOO 

068145 
070509 
026041 
031681 
021216 
o l 8881 
o 19460 
013391 
004888 
009094 
006408 
006931 
005029 
004563 
003588 
002689 
001171 
001827 
000937 
,00174 
,00084 
,00505 
,00143 
,00190 
,00188 

TABLE 1-111 

EXPERIMENTAL K-VALUES 

102 103 104 
150.05 150,06 150,07 
152056 214,46 313,77 

23076561 18,86067 12080769 
2009191 lol2444 075605 

o 71821 .53269 037346 ' 
.46308 ,39278 ,27952 
.55555 ,40625 ,14655 
.20279 .19080 ,16097 
016230 , 16267 , 12005 
006481 .11688 ,09655 
.11153 ,15625 ,08625 
009533 .16899 ,10680 
008926 .1 7020 - ,08908 
007878 .08501 ,06650 
006432 ,06822 .06586 
.02884 ,01136 .03883 
004914 ,05742 ,04690 
003267 ,06199 ,03063 
003646 ,03684 .03768 
002710 .03091 .02914 
.02326 ,02648 ,02179 
001885 ,02286 ,01983 
002817 ,00074 ,00134 
000065 .01444 ,01129 
000789 ,00738 ,00927 
000334 ,00399 ,00436 

------ ,00088 
000053 ,00051 

,00068 ,00147 ,00213 
,00027 ,00029 ,00029 

106 107 
150,06 150,04 
711,00 1034045 

5.70000 4037788 
.55239 049354 
.31301 029361 
.23105 .26845 
.26101 .22222 
ol 7586 014308 
015993 013530 
006666 .01211 
006722 007082 
005855 004631 
004903 004301 
004587 004034 
00343 .. 002670 
004761 002608 
002445 001815 
004582 oOl .. 59 
002172 001994 
,01768 ,01316 
,01397 ,01019 
,01079 ,00747 
,00123 ---·--
.00275 ,00367 
,00888 ,00551 
,00269 .00167 ------ -----
,00028 --·----
,00157 ,00054 
.00065 ------
,00048 ---

109 
150,04 

1510,73 

3.484}1 
052226 
043884 
.46822 
042105 
,83278 

1003347 
052000 
032954 
015225 
olll40 
007852 
005495 
o l 1363 
003 .. 74 
002281 
.02•111 
,02083 
,01675 
,01304 
000115 
,01078 
,00824 
,00432 
,00132 
.0010• 
000314 
,00062 
000031 

110 
150.06 

2012044 

2·95380 
o45S.9 
.29447 
,34387 
,15909 
015504 
014184 
007462 
,011579 
007791 
006573 
006040 
o0.,904 
,07692 
003530 
002692 
,02942 
.02477 
,02371 
,01899 
,00139 
,01660 
,01091 
,00654 
000122 
.00074 
000343 
.000•2 

f\.) 
[\) 
0 
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TABLE 1-111 {CONTINUEDI 

·EXPERIMENTAL K-VALUES 

RUN NOo 111 112 118 124 126 127 
TEMPERATIJRE, Fo 150,07 150004 249098 250,00 250000 250000 
PRESSURE, PS!A 30l0oll 5009034 113;86 218056 513,40 713 o 46 

METHANE 2,11932 lo4528l 31047635 17036512 8,17839 6,77509 
PROPANE 060109 1,02439 4,40875 3,02631 1,49132 1,37400 ISOBUTANE , 77011 ,75862 3,30534 1091554 l ol 3983 1,01500 
N-BUTANE ,97694 ,76642 2,89941 l .74862 l,08065 ,86103 
2,2-DIMETHYLPROPANE 1,00000 ,37500 1,73134 043678 ,48936 ,60000· 
ISOPENTANE 2,03260 ,35939 l,39471 083514 ,46748 ,36653 
N-PENTANE 2,23837 ,35870 1,23111 ,75071 ,41722 ,29341 
2,2-DIMETHYLBUTANE l,38888 ,15463 ,62876 ,41064 ,23931 ,13983 
CYCLOPENTANE ,73239 ,18085 ,89423 ,39674 021348 ,15521 
2-METHYLPENTANE 040264 ,15265 ,62444 ,34362 ,20744 ,13618 
3-METHYLPENTANE ,31123 ,12980 ,57902 ,32325 017847 ,12070 
N-HEXANE 022107 ,13656 ,51570 ,29681 ,14052 ,10831 
METHYLCYCLOPENTANE ,15252 ,09401 ,39168 , 2 3263 ,13592 007904 
2,3-DIMETHYLPENTANE ,06024 ,10204 ,86718 ,10606 ,06282 ,12037 
CYCLOHEXANE ,09931 ,07369 ,31354 ,18070 ,10493 006145 
3-METHYLHEXANE • 0688 7 ,05809 ,24292 ,14351 ,08256 ,05245 
ISOHEPTANE , 0 7148 006439 ,28333 ,13153 ,08963 005879 
2,2,4-TRIMETHYLPENTANE ,06002 ,05564 ,22097 ,11645 ,07358 •04805 
N-HEPTANE ,05150 ,05548 ,19067 010120 ,06444 ,03961 
METHYLCYr.LOHEXANE ,03907 ,04542 ,14478 ,07812 ,05362 ,03004 
TOLUENE o O 1133 000372 ,04174 004881 ,00138 ,00091 
2,3,4-TRIMETHYLPENTANE ,03451 ,02700 olOl86 ,05464 ,05068 ,01706 
OCTANE ISOMERS ,02344 003092 ,08130 ,04501 ,02860 ,01827 
N-OCTANE ,00700 ,01804 ,04343 ,02260 ,01830 ,00593 
ETHYLBENZENE ,00702 ,00508 ,00678 ,00431 ,00290 
MIXED XYLENES ,00318 ,00310 ,00563 ,00407 ,00294 
258-303F FRACTION ,01352 ,01083 ,02214 ,01446 ,00903 ,00275 
N-NONANE ,00255 ,00251 ,00419 ,00227 ,00188 
304-345F FRACTION ,00066 ,00086 ,00115 ,00162 ,00032 
N-DECANE ,00038 ,00420 
346-384F FRACTION 
N-UNDECANE 
385-421F FRACTION 
N-DODECANE 
427-455F FRACTION 
N-1R!DECANE 
456-488F FRACTION 
N-TETRADECANE 
489-5l9F FRACTION 
N-PENTAOECANE 
520-548F FRACTION 
N-HEXADECANE 
549-575F FRACTION 
N-HEPTAOECANE 
576-602F FRACTION 
N-OCTAOECANE 
603-627F FRACTION ------N-NONADECANE 

___ , .. __ 
628-650F FRACTION 
N-EICOSANE 
651F+ FRACTION 
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TABLE 1-111 ICONTINUEDI 

EXPERIMENTAL K-VALUES. 

RUN NO• 128 130 132 133 134 135 136 
TEMPERATURE, Fo 250.00 250,00 250000 250,UO 250000 .250000 .250,00 
PRESSURE, PSIA 712098 . 1013031 1512.99 2012038 2010,93 3011041 5004027 

METHANE 6051805 4027194 3022896 2049099 2,47105 1076072 1001664 
PROPANE i.4ol}} lol"326 089032 082258 lol9354 084251 .96153 
ISOBUTANE .99987 073584 064189 .51327 084070 ,72641 lol4102 
N-f!UTANE :~mi6 

060165 057079 046011 070227 064659 1021945 
2,2-DIMETHYLPROPANE 061971 008510 010526 031578 082142 086666 
ISOPENTANE 046844 029429 030607 • 31747 035332 042342 lol0550 
N-PENTANE 055596 026321 026620 .29398 032349 038801 1.07507 
2,2-DIMErHYLBUTANE 02711.8 .14847 o 12133· o 18965 •22413 029220 lo21296 
CYCLOPENTANE 030820 014226 o 19240 019130 024637 .27835 098578 
2-METHYLPENTANE 023392 ol2865 o 14797 018894 020437 027123 .97279 
3-METHYLPENTANE 021620 012660 013810 ~ 16476 018560 026049 lo05170 
N-HEXANE 012481 011337 012794 o 15720 o l 776 l 023992 099017 
METHYLCYCLOPENTANE ol3852 008704 009820 025650 013557 021232 o 98789 
2,3-DJMETHYLPENTANE 010185 013422 o l 7187 .21818 038181 ,18750 ,98591 
CYCLOHEXANE o l05!H o0b075 008081 ol0247 .12022 017059 097669 
3-METHYLHEXANE 008121 005281 007289 009534 ol0930 o 16477 096428 
ISOHEPTANE 009267 005702 008259 010413 012216 017836 092000 
2,2,4-TRIMETHYLPENTANE 007109 005873 006584 008429 010559 016039 096136 
N-HEPTANE 005864· 003812 ,05924 007824 008972 o 14333 091734 
METHYLCYCLOHEXANE 004732 ,02745 004560 006274 007394 . 011962 ,90942 
TOLUENE 000728 ,00238 000204 000390 000520 0008()9 099883' 
2,3,4-TRIMETHYLPENTANE 003571 000851 004355 005939 ,07310 013498 091552 
OCTANE ISOMERS 002204 002242 003118 ,04335 007125 009749 ,92812 
N-lCTANE 001163 000459 001880 .02122 003280 005980 093815 
ETHYLBENZENE 000098 000722 ,01300 ,02099 ,94301 
MIXED XYLENES ,00104 ,00063 ,00372 ,00620 ,01298 l,01751 
258-303F FRACTION ,00444 000471 001020 ,01529 ,02564 ,04671 ,97693 

N-NONANE ,00031 ,00169 000299 ,00699 ,01345 1,04607 
304-345F FRACTION ,00032 ,00046 ,00178 ,00562 ,00218 lo04439 
tj-DECANE 000068 1,0.4078 
346-384F FRACTION lo03681 
N-UNDECANE l,00263 
385-421F FRACTION ' ~84164. 
N-DODECANE ------ ,69662 
422-455F FRACTION o719l!,4 
N-TRIDECANE 056279 
456-488F FRACTION 073214 
N-TETRADECANE 

_.;.. ___ "'!" 066666 
489-5l9F FRACTION 084000 
N-PENTAOECANE --.. ~-- ------ ,84090 
520-S48F FRACTION lo 11940 
N-HEXADECANE 096296 
549-575F FRACTION ,58536 
N-HEPTAOECANE 088888 
576-602F FRACTION 1.00000 
N-OCTADECANE 025000 
603-627F FRACTION 1.00000 
N-NONADECANE 
628-650f FRACTION 
N-E I COS.\NE. 

.,, _____ 
651F+ FRACTION 



TABLE I-IV 

EXP:ERIM1"'NTAL LI~1UID PHASE DENSITY DATA 

Den.sity 
Run ~emp~rature 1 OF. !:£essure 2 psia gm/cc cc/g mole -
101 150.05 114.56 0.69478 0.00620 
102 150.05 152.5? 0.69315 0.00613 
103 150.06 214.47 0.59714 0.00561 
104 150.07 313.77 0.59266 0.00565 
105 150.05 513.50 0.,67724 0.00646 
106 1.50.06 7llo01 0.65963 0.00651 
107 150.01+ 1034.45 0.66863 0.00721 
109 150.04 1510.74 o.64733 0.00708 
110 150.06 2012.47 0.60559 0.00756 
111 150.07 3010.10 0.60185 0.00866 
112 150.04 5009.31 0.51236 0.,01061 
113 150.05 7006.96 o.47844 0.01181 
118 249.98 113;86 0.60762 0.00545 
120 249.99 113.81 0.60742 0.00554 
122 250.00 115.37 0.60762 0.00545 
123 250.00 213.40 0.61259 0.00556 
124 250.00 218.61 0.57080 0.00537 
125 250.00 314.75 0.61243 0.00572 
126 250.00 513.39 0.59754 0.00582 
127 250.00 713.46 0.59137 0.00589 
128 250.00 712.97 0.59121 0.00585 
129 250.00 713.66 0.61465 0.00609 
130 250.00 1013.30 0.59614 0.00757 
132 250.00 1512.99 0.58311 0.00813 
133 250.00 2012.45 0.57057 0.00746 
134 250.00 2010.95 0.57057 0.00746 
135 250 .. 00 301L43 0.55350 0.00928 
136 250.00 5004.31 o.43811 0.01233 
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TABLE I-V 

EXPERIMENTAL VAPOR PHASE DENSITY DATA 

Density 
Run Temperature, oF. Pressure, psia ~ cc/g mole -
101 150.05 114.56 0.00642 0.00028 
102 150.05 152.56 0.00925 0.00045 !' 

103 150.06 214.47 0.01142 0.00058 
104 150.07 131.76 0.01574 0.00085 
105 150.05 513.51 0.02491 0.00143 
106 150.06 711.00 0.03318 0.00190 
107 150.04 1034.45 0.04842 0.00283 
109 150.04 1510.73 0.07176 0.00415 
110 150.06 2012.44 0.09849 0.00565 
111 150.07 3010.10 0.15488 0.00846 
112 150.04 5009.35 0.10112 0.00577 
113 150.05 7006.95 o.46994 0.01057 
118 249.98 113.86 0.00825 0.00025 
120 249.99 113.81 0.00844 0.00041 
122 250.00 115.37 o.oo632 0.00020 
123 250.00 213.41 0.01289 0.00049 
124 250.00 218.56 0.01289 0.00049 
125 250.00 314.74 0.01684 0.00074 
126 250.00 513.40 0.02477 0.00117 
127 250.00 713.44 0.03058 0.00161 
128 250.00 712.98 0.02296 0.00109 
129 250.00 713.67 0.03234 0.00162 
130 250.00 1013.31 0.04402 0.00229 
132 250.00 1512.99 0.06703 0.00347 
133 250.00 2012.38 0.09568 0.00491 
134 250.00 2010.93 0.09527 0.00476 
135 250.00 30llo41 0.14385 0.00700 
136 250.00 5004.27 o.42283 0.00922 



APPENDIX J 

NOMENCLATURE 

A parameter in the Redl:ich-Kwong equation of state 

area 

a parameter in the Redlich-Kwong equation of state 

B second virial coefficient, volume/mole 

parameter in the Redlich-Kwong equation of state 

coefficient in statistical model 

b generalized second virial coefficient 

parameter in the Redlich-Kwong equation of state 

C third virial coefficient 

Centigrade 

F Fahrenheit 

f fugacityy force/area 

G H = TS, Gibbs free energy, energy 

g acceleration due to gravity 

K vapor-liquid equilibrium phase distribution ratio~ y/x 

Kelvin 

M molecular weight 

mass 

N number of components in a mixture 

P pressure 

p 0 vapor pressure 

R Rankine 
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S entropy 

T temperature 

U internal energy 

V volume 

x liquid mole fraction 

y vapor mole fraction 

Z compressibility factor, PV/RT 

Greek Symbols 

f activity coefficientj f/xf 

t; parameter in Adler consistency test 

fractional change in system mass 

6. change in a property 

gj (t:i.U/V) 00 \ solubility parameter, (energy/mole-volume) 0 •5 

E deviation from statistical model 

UJ acentric factor 

'it system pressure 

lJ f/P, pure component fugacity coefficient 

.P density 

f f/Py, fugacity coefficient 

8 imperfection pressure correction 

L summation over all N components in a mixture 

Subscripts 

1 component 1 in a mixture (lighter component) 

2 component 2 in a mixture (heavier component) 

c critical property 



H 

HV 

i,j -

k 

L 

LV 

m 

r 

heavy component 

heavy component in the vapor phase 

component i or j, respectively 

convergence property 

light component 

light component in the vapor phase 

mixture property 

reduced property 

property at infinite dilution 

T property evaluated at system temperature 

0 

Superscripts 

reference state 

simple fluid property, uJ = 0 

superbar, partial molar quantity 

volume average property for mixture 

E excess quantity 

L liquid phase 

V vapor phase 

exp -

log -

ln 

R-K -

correction to simple fluid property 

Berlin form of virial equation 

Abbreviations 

exponential, ioeo, e to the power 

logarithm to the base 10 

logarithm to the base e 

Redlich-Kwong 
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APPENDIX K 

PHYSICAL CONSTANTS 
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tABt.E K.-1 

CAl.CULATION CONSTANTS FOR PURE COMPONENTS 
-··--

CRITICAi. CRITICAL ACENTRIC SOLUBILITY MOLECULAR 
COMPONENT TEMPERATURE-R PRESSURE-II TM_: FACTOR P-ARAMETER WEIGHT 

METHANE 343091 45080 0013 5o45 160043 
ETHANE 550001 48030 0105 5o2B 300070 
PROPANE 665095 42oOl .152 6.oo 44.097 
lSOBUTANE 734.65 -36.00 .1918 6025 58·124 -
rt-BUTANE 765031 37047 02010 6.070 580124 
2,2-0IMETHYLP-ROi>ANE. 7800 77 3lo57 _02020 6065 720151 
ISOPENTANE 8290 8.0 32.90 02060 6.75 720151 
-N-PENTANE 845060 33031 .2.520 7o05 12.151 
2-, 2-DI METHYi.BUT ANE 880-090 30067 .2041 1.00 86.178 
'CYCLOPENTANE - 921020 44055 02050 8.10 70.134 
2-_METHYLPENTANE 896050 29095 02816 '7o2l 86.178 
3-MET-HYLPENTANE 907090 ·30083 03678 6035 860178 
N-HEXANE 914020 29.94 02900 7.30 - 6601-78 
METHYLCVCLOPENTANE 959000 37036 02350 7o85 84.163 
2,3-0lMETHYLf>ENTANE 968000 29020 03037 7o5l 1000206 
CYCLOHEXANE 997070' 36.17 ·2030. 8019 84·163' 
3-METHYLHEXANE 964.00 28.10 03288 7 .. 46 1000206 
ISOHEPTANE 98.20 IO 27036 o324B 7,48 l_Q0.206 
2 ,2 ,4-TR!METHYi..PENTAN-E 979076 25050 03058 -- 7.;49 1140223 -
N-HEPTANE - - 972.31 27000 03520 7o45 1000206 
METHYLCYCLOHEXANE _ 10'30020 - 34032 02420 7o83 . 980190 
TOLUENE 1069•20 40.15 02520 8090 920142 
2_, 3 ,,._ TR l METHYLPENT ANE 1022000 27060 _03180 7.66 1140223 
OCTANE I SOMERS 1033040 25000 03760 7o6l 1140223 
N-9CTANE 1024.31 24064 o,992 7055-· 114-.223 
ETHYi.BENZENE 1115080 36074 o3l70 8079 1060169 
-MIXED XYLENES 1114.;00 34.37 03110 8079 106··169 
258-303F FRACTION 1079020 22.96 04240 706-9 1280260 
N-NONANE 1073000 22060 ,44.39 7o65 1280260 
304-345F FRACTION -1122,50 21035 04674 1.18· 1420287 
N-OECANE 11140 70 20070 ,4869 7o75 1'420287-
346-384F FRACTION 1157 o 20 l9o69 ,5118 7o82 .156o3l4 
N-UNDECANE 1153; 70 19,20 05009 7079- 1560314 
38~-421F FRACTION 1190010 18.33 ,5519 7o85 1700341 
N-[- ODE CANE 11870 70 l 7o80 o.5394 7o84 170.341 
422--,455F -F'RACt ION 1222040 l7ol9 05878 7e90 l8l· 0368 
N-TRJDECANE 12200 70 l7o00 05818 7o89 1-84.368 
4·56-488F FRACTION 1-252020 lf,.12 06202 -7093- 198 .• 395 
N-TETRADECANE 12500 70 16,00 ,6165 7.92 '198-,395 
489-519F FRACT_ION 1280000 -15,10 o.6487 7o-70 212.422 
N-PENTADECANE 1277,00 14,97 ,6494 7o96 2120422 
520-548F FRACTION 1305,50 14007 ,6726 8000 2260449 
N-HEXADECANE 1303,0_0 14002 ,6748 1o99 226•449 
549-575F FRACTiON 1329,lO 13~07 _ ,6928 8003 2400476 
N-HEPTADECANE 1328,00 13·,oo .686-6 ·5003 2400476 
576-602F _FRACTION 1351~00 12015 o7i32 - 8,05 2.540504 

.N-OCTAOECANE 1349,70 11,98 ,6959 8004 254,504 
603-627F FRACTION 1370080 11,35 07382 8008· 268,531 
N~NONADECANE 1369~80 11.21- ,7318 8,07 268,531 
628-650F F-RACT.ION 1388.fO 10.77 ,7778 -5.10 282·S58 
N-E I COS_ANE 1387-40 10069 ,7703 8009 2820558 
651F+ FRACTION l4o2,60 10,49 ,8423 8011 [\) 

[\) 
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