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PREFACE

This problem was started at the suggestion of Dr. F. C.
Todd who acted as my adviser and project supervisor. I am
indebted to him for his‘guidance, assistance, patience, and
encouragement during the progress of this work.

The purpose of this research 1s to investigate a plausi-
ble mechanism of hyperveloeclty impact. The incidence of a
10"9.gram aluminum microparticle on a semi-infinite aluminum
target is described in terms of fluld flow in two space‘
dimensions°

Computer time for the actual production of the solution
was made available by Mr. W. Merle Alexander of Goddard Space
Flight Center. I have special thanks for Mr., William Cahill
and his staff of this installation who greatly facilitated
scheduling of computer time dﬁring my visits and who
supervised tﬂe exchange by mail of further computer programs.

The work was carried out under NASA Contract number
NASr-7 administered through the Research Foundation of

Oklahoma State University.
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CHAPTER T
INTRODUCTTION

Micrometeoroids.are defined as particles which have s
mass of less than 10~k grams and velocities that range from
30,000 to 21,0,000 feet per second. When these microvarticles

- -12
011 to 10 grams, the pressure of the

are smaller than 1
radiation from the Sun willl eventually push these particles
outside the orbit of the earth. (1). They are detected by
devices placed on space vehlcles. One device that has been
successfully uéed is a photomultiplier tube with a vapor de-
posited aluminum film covering the face. (2). The micro-
meteoroids 1lmpinging updn the face of the photomultiplier
are known to produce a pulse of current through the_tube°

The NASA project for which this thesis is a confribution
was Initiated as an analytical and limited experimental study
of micrometenroid impact on the coated photomultinlier. The
project 1s concerned with the mechanics of impact which
result in producing light to activate the rhotomultivnlier
tube and which result in producing the craters associated

with hypervelocity impacts.



Proposed Impact Theories

A few published articles have reported methods to pre-
dict and analyze the impact phenomena of small particles with
hypervelocities. The latter term includes all velocities in
excess of the velocity of sound in the target. One article
approaches the problem from the thermal damace theory. (3).
In this theory, the flash of licht accompanyineg the impect
is attributed to incandesence of the target and of the micro-
particle in the immediate vicinity of the impact. In this
concept, the crater is caused by vavorization snd explosion
of some of the target. This model has been criticized for
the following reasons, The crater is found to be lined
with projectfile material. The termal model, however,
of fers no explanation for this lining effect. Conversely,
1t would appear that as the target msterial 1s converted to
a vapor. The succeeding explosion should, therefore, hn rl
both surrounding target material and the projectile nut of
the crater. Another reason for not accepting the entire
thermal damage model has been sugcested by calculations
based on a limited amount of experimental evidence, (L).

It was found that over 50 vercent of the kinetic
energy i1s required to heat and melt the volume of
target material that is removed from the crater., Thils leaves

very little energy for evaporation and rasdiation processes.



Bjork (5) examined the problem of s high-velocity
projectile of cylindrical symmetry impinging upon a semi-
Imfinite solid. Bjork used a hydrodynamié model of iImpact
which suggests that the penetration of a projectile into the
That is, the target and projectile, under the tremendous
forces of impact, both become fluid. The hemispherical
shape of the crater is attributed to a strong rsdial shock
wave that i1s initiated at the point of impact. One defeet of
this model 1s that it does not include a mechanism [for the
production of light. This thesls shares a number of sssump-
tions and procedures with the work of Bjork,

A different theory of impact has been proposed by F. C,
Todd (6), project supervisor. This theory proposes that =
plasma 1s formed by the strong radial shock from the impact.
A plasma is defined as a mixture of ions and electrons, It
will start to form from the application of pressure alone at
a pressure of approximately 100,000 atmospheres. (7). The
radiation that accompanies the impact results from the elec-
trons in the plasma recombing to form neutral atoms. It is
also proposed that a radial shock wave would account for the
nearly hemispherical shape of the crater. The proposed
plasma model partially agrees with the assumption made in
both the thermal damage and hydrodynamic models of impact.
The plasma model includes & radlial shock which was assumed to

accompany the hydrodynamic model and it also assumes that the
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materisl in the Immediate vicinity of the impact regions has
a high energy density»as‘does the thermal model. It differs
from the thermal damage model in that for thermal damageg
the high energy denslity 1s in the form of a high temperature;
wbile, for the plasma model, morse oflthe energy is in the

form of recoverable potential energy.

Statement of the Problem

The subject of this tb681s is the investigation of the
hydrodynamic mechanism inveolved in the plasma theory proposed
by F. C. Todd. It 1s particularly desired to determine
whether it 1s possible to theoretically calculate the
formation and propagation of a shock wave resulting from s
hypervelocity impact.

When a microparticle, traveling at hypersonic velocities,
strikes a target, a crater 1s formed which is many times

larger than the projectile and is centered about the point of

e
ot
[92)

initial contact. The crater may have a small 1lip around

material is ejected from the boundaries of the crater as it
forms. Thils evidence 1s to be contrasted with the more

familiar impact of subsonic projectiles. These leave long,
deep holes invthe targ
the projectile itself,

Reagons for assuming inviscid, hydrodynamic flow in a

hypervelocity impact have been summarized by Charters(8).



His qualitative description of penetration shares a number
of features with the quantitative results of this thesis,
Much of the qualitative discussion that follows is based on
photographs published by Charters., The observation that the
formation of the crater requires many microseconds sugeests
a sustained disturbance, such as from a shock wave, in con-
trast to an explosive reaction., The material is ejected by
hydrodynamic flow along the walls of the crater. From these
comments and the symmetrical shape of the crater, the hydro-
dynamic model appears to provide the best clarification of
the results.

A basic feature of the model to be investigated 1s the
formation'of two shock waves., One strong shock wave radiates
out from the point of impact compressing and acceleratine the
material of the target., This shock wave nrecedes the pene-
trating microparticle into the target. The other shock
wave propagates backward against the motion of the imvacting
microparticle. This shock wave eventually reaches the back
edge of the mlcroparticle and is reflected back into the
direction of motion of the first shock.,

The computer solution does not distinguish between the
aluminum of the incident sphere and the .aluminum of the
semi-infinite target after they come into contact., The
details of the impact are, consequently, a little difficult
to follow and to interpret. Anticipating the zeneral resvlts

of the solution, the impacting microparticle apveers to



compress the target material ghead of and surrocunding 1tself,
This results in the hydrodynamic flow of the target material
vp,; around the entering varticle and out of the target.
According tc the pictures form Charters'! srticle, this
naterial leaves the target as spray.

The model to be studied involves the assumotion of
inviscid fluid behavior of the target and projectile, and it

£5

neglects heat conduction, radiation, snd cther forms of
energy dilssipation. It:will develop that the propossd
program requires a large computer memory. The inclusion of
any of other corrections to the impact problem would reaquire
an extremely large increase in the length of time on the
computef°

The problem for solution is the impact of a spherical,
aluminum particle of mass 10-9 grams. The velocity of impact
is 118,000 feet per second. The target is 2 semi-infinite
block of alumlnum.

The work presented in this thesis may be briefly out-
lined as follows:

(1) The partial differential equations of large-
scale fluid flow are presented and converted
to a dimensionless form.

(2) The dimensionless hydrodynamic equations are
converted to difference eguations for

numerical solution.

(3) The difference equations are prograrmed.



The computer program, using prescribed initial
conditions and boundary ccnditions, gives
solutions describing the initial stages of

shock wave propagation and crater develovrment,



CHAPTER II
FUNDAMENTALS OF THE INVISCID FLUID MODEL

When a microparticle with a2 velocity of 3% kilometers
per second impacts on a target, the nresgsure 1s calcwulated to
be millions of atmospheres. (l4,5). At such extreme condi-
tions, both projectile and target are considered to be
fluids. The necessary mathematical formulas to describe
inviscid flow exist, are well known, and are proven
by experiment. They are the three gquations for the conser-
vation of mass, energy and momentum, Boundary conditions
and equations of state for the materisls of the microparticie
and the target are required to describe conditions on each
gide of the impact, The entropy must also increase across
the shock_front. These equations do not have a closed
solution or a practically useful approximate soluticn. The
mathematics sre generalized as far as possible and prevared
for solution by mumerical_methods which utilize a high

speed electronic computer.
The Equations of Fluid Flow

The basic equations of the hydrodynamic model are

obtained from the application of conservatlion laws to



to a perfect fluid. There are two forms in which these equa-
tions can be tied to a physicel region. The Eulerien refer-
ence frame déals with the values of dependent variables at
fixed points in space and time. The Lagrangean system
describes the motion of a fluid in terms of the trajectories
of individual elements. In most cases and particularly for
two and three dimensional cases, Euler's representation is
preferable. from a mathematical and a physical point of

view, according to Courant and PFriedricks (8). The equations

of conservation, in Bulerian coordinates take the following

form:
JZEZ V7o"4':: @)
ot + ° Vv 2.1
P B2 Ly -0
D¢ - 2.2
,Q:E— — __E, Dpe -0 2.9
Dt 22 Dt -

where “%‘{ = —O%'T,_:: +veV o (17). The independent
variables are the time t, and a set of spatisl coordinates,

The dependent varlables are

P = density

() — L3 : .

v = meaterial velocity

P = DpPressure

I = specific internal energy

An auxilliary equation 1is necessary to relate the

pressure, p, to other fluid varisbles.

p=FrCe,I) ’
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This 1s the equation of state which yields the pressure azs =
function of the density and the specific internal ensrgy,

Previous solutions of large scale fluid motion in two
dimensions have usually employed rectangular or cylindrical
coordinates. An examination of experimental evidence and
of earliler analytic approaches indicates that a radisal, or
polar, coordinate system 1s a better representation for this
particular problem. The shapes of craters from high velocity
impacts are virtually perfect hemispheres. This would
indicate that the transfer of energy from projectile to
target 1s largely accomplished by means of radial flow.
This description complicates the representation of the
impacting sphere, but the desire to'portray the formation
and propagation of the expected shock front is an over-
riding consideration. Since experimental evidence of the
actions of target and projectile shows no azimuthal effects,
symmetry of the solution about an axls normal to the zemi-~
infinite target will be assumed.

According to Rae (2u), the first conservation equation,

in spherical polar coordinates, 1is

0 W 9L P dw % . Lo :
'Jltg 36 T 7 G +ﬁf@%ﬂ6l"”/”a,r "

+ f)fﬁi + 3.£EL = O

where A~ and & are spatial coordinates and u and w

are the corresponding velocity components.



The equation of motion, 2.2, yields two equations.

X du oWy —wr, L dk 5.6
JEtHUGE T FSE Tt g =0
d
dw _oLVZ uw L 2P - O
gt +“‘J} F 96 A‘*P 46 7 .

The equation of conservation of energy is

2L 4L ow JdL
Olt-f‘bla/?‘,’ﬂ—dﬁ

- (dt+u§‘$;+%%)‘:o

N
o

The equation of continuity, 2.5, can be more compactly

written as

dp | 3LrpE) | ) (einGew) .

Using this equation in 2.6 and 2.7, both egquations can be

put into a form more sultable for numerical solution.

O)CEU) C/,r'lga/u) dlamBpwd) gWﬂ‘
ot A oA A on B 3G A

2,10

-+.££E = CD
o

£+ _MM ~ &CM.Q/OWW) -0 2,11

Ao A oen® 48
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A similar form can be obtained for equation 2.8 by using

equations 2.9, 2.10, and 2,11.

2 | arreut) | I enOpw )
)t N Fooh B 46 |
2.12
2> P, 3 (em8 pw)

A% I A bm@ &

where W = I + 5 U* + 2w? is the total enerzy per unit mass.
Since the conservation of momentum requires two
egquations, the three conservation conditions require four
equations, 2.9 to 2.11., Two more relations are required to
solve for the propagation of a shock wave. These are an
equation of state and the condition that the entropy
increase across the shock front. An equation of state is
represented in functional notation by equation 2.Li. This
relation will be discussed in more detall in a following
section., Although the equation of state involves only
three variables, auxiliary relaticns are needed to inter-
relate five unknowns the density, /D'; the Ve'loc.:°Ltn'i¢s,_v u

and W 3 the internal energy Il; and the pressure, p.
A Brief Description of 3Shock Waves

Shock waves are dilatational waves in a non-viscous
fluid medium with a negligible resistance to shear. For
this reason, the flow of highly compressed solids may be

represented by the equations of hydrodynamic flow. In the
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propagation of a shock frgnt, the pressure rises to a high
value in a very thin zone. This infinitesimal region of
rapidly changing pressure, density, and internal energy
appears as a discontinuility in the equations for hydrodynamic
flow,

To obtain solutions, 1t 1s necessary to derive condi--
tions that relate the state of the material on one side of
the shock front to that on the other side. The conditions
are usually called the Rankine - Hugonilot conditions.,

Consider a plane shock front, as illustrated in Figure
1, traveling with a velocity of propagation 2 into station-
ary material at pressure pg, density R and specific
internal energy €, . The encompassed material is acceler-
ated to a perticle velocity 0~ by the passage of the shock
' front‘and is compressed to a density /D > /g . The state
of the shocked portion of the medium is related to the undis-
furbed state by a series ofvconservation equations:®

1

Conservation of mass
/Jai = /O(Z‘Oﬂ
Conservation of momentum

P-po = /220

Conservation of energy

/oo-—_:/%z C@""@O +0'2/9)
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These give the Rankine-Hugoniot energy equation

e-G, = N (%—V)CP*PC’)

where V = | (fﬁp

These equations inveolve five parasmeters of the shocked
state. One more relation, an equation of state,; is required
before the specificaticn of one variable is sufficient to
permit the calculation of the other four., When the equation
of state is given in the form e = e ( p,V), it may be
combined with the Rankine - Hugoniot energy equation to
yield a relation between the pressure and the specific
volume. Such an expression is known as the "Hugoniot
Curve'" or simply as the "Hugoniot." This Hugoniot is
unigque for a given material, as are an isotherm or an adia-
bat., This special pressure volume curve represents the
totallty of the p, V points which may be reached by a

shock transition: from an initial state py, Vg,

A typical préésure prcfile for an one dimensional shock
wave 1s indicated in Figure 2. Ahead of the shock front the
material 1s undisturbed. At the head of the wave the
pressure,p incrseases almost instantaneously to 1ts peak
value and then decreases toward zero behind the shock front.
This jump marks the position of the advancing shock wave
the propagation velocity, 2z s of the shock freont is

supersonic with respsct to the undisturbed material, that 1is



PsP,0,€

-3

pO’ po: eo

FIGURE 1. PLANE SHOCK FRONT



f.—l

where C4& is the velocity of sound in the uncompressed medium
ahead of the shock front., The propagsaion velocity, g, for
disturbances behind the front is greater than the shock

velocity
a +C 7’25

where ¢ 1s the velocity of sound in the medium bhehind the
shock front. The region of decreasing pressure is referred
to a rarefaction wave, or 2 simple expansion wave. The
rarefaction gradually changes the entire profile as the
shock progresses.

One further specification must be included in the

Rankine-Hugoniot conditions for a strong shock wave.

Entropy must increase across the shock front. The passage
of a shock wave reQuires an imcréase in entropy of the sup-
porting medium. This dissipation 1s not yet provided in the
Eulerian flow equations or the Rankine-Hugonlot equations.
Fortunately, this further condition on shock propagation

as well as the Rankine-Hugonilot relations can be put into a

modified set of partial differential equations directly

from the EBulerian flow equations presented above.
The Introduction of Dissipation

Shock surfaces appear 1n the differential equations ss
points where the veloclty, density, internal energy and
other variables of the fluid are discontinuous. The Rankine-

Hugoniot jump conditions relate the tweo sides of the shock



Pressure

» Distance

FIGURE 2. TYPICAL PRESSURE PROFILE OF A ONE DIMENSIONAL SHOCK WAVE



front. The Bulerian flow equations provide sufficient condi-
tions for solutions in regions away from both sides of the
shock (). The process of applying the Rankine-Hugoniot
conditions as boundary conditions on the flow equations; and
thereby, solving the problém of the propagation of a shock
wave 1s known as shock fitting.

J. von Neumann and R. D. Richtmyer (10), in order to
avold the difficulties inherent in solving two sets of
conservation equationsg, devised a method of aubtomatically
handling shock motion in the numerical solution of the
differential eéuations, Their method treats shocks auto-
matically in a digital computer. It is based on the
introduction of an artificial dissipative mechanism which
has some analogy to the viscosity and the heat conduction
which do exist in real flulds. The introduction of this
artificial, dissipative mechanism, or pseudo-viscosity, into
the differential ecquations tends_to smear the shock wave and
change it from a discontinuilty to a short regign in which
the variables change rapidly, but continuously. Lven
though this method does away with explicit application of
the boundary conditions, the Rankine-Hugoniot conditions
8till hold across the shock and the approximation of

L

smearing out the shock can be made to represent a transition

»

zone as accurately as desired by limiting the width of the

ghock.
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The artificial dissilpative mechanism i1s introduced in
the form of a pseudo-viscosity term which can be added to
the pressure. Originally a term proportional tec the sqguare
of the velocity gradient was used. Practical tests and
analyses carried out by Landshoff (11) indicate that a
linear combination of terms proportional to the first and
second powers of the velocity gradient gave better results
in the numerical calculation of shock problems. A similar
expression has been used in the present work. The dissips-

tion 1is designated as g and 1s given by

8’:—0/2 V'-VACCQ#'/V'VI,) 2.1

-
o

where C7 and Cp are disposable constants. Setting Cp =
would give the original von Neumann-Richtmyer equation. In
the polar frame of reference, g 1is

C (2 u) . dCeh & w)

3 D &m@k&@ 2.1
9 (A2 alem® w) o
<" A A * Mé’rr:léj * C;)

The EBEulerian flow equations are easily converted te their
new form by replacing p by the sum of p» and g.

The modified equations describe, not only igentropic
flowy but also allow the description of large fluid motions
such as shock waves. The theoretical formulation of the
hydrodynamic model is complete except for a felatwon

between the pressure and other fluld parameters. A
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thermodynamic equation of state which 1s wvalid at high
pressures will be presented in the next section. This
will allow the statement of the prdblem in a consistent set
of equations which can be solved by ths: numerical method

of finite differences,
The High Pressure Equation of State

The construction of an extended eguation of state in
the relatively low pressure range is based on the evaluation
of the Hugonlot pressure, and the Gruneisen ratio from
experimental information. The best source of data is from
the work at Los Alamos. Walsh, Rice, and McQueen (12) have
performed numerous shock wave experiments with many mate-
rials.

Theoretical consideration is neesded to extend the
equation of state into the multi-megabar regions. It 1is
believed that at pressures greater than spproximately
twenty megabars, the Fermi-Thomas-Divac (13) method yvields
reasonable pressure, volume, temperature relations,

The gap between low and very high pressures 1s filled
by interpcolation. Such a procedure has been used by Tilloet-
son.(16). The form of the equation for density states

L 7 R , where [ is the normal (STP) value, is

ITCpm)+
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{

where _Ib is the specific internal energy corresponding
to o, « The constants a, b, A, énd B are different for
each material,

The existence of an adequate equation of state now
allows the collection of the equations which describe the
proposed iImpact model. These will bs put in a convenient

form for numerical solution.

Dimensionless Differential Eéu;££oﬁs
For convenience in using a computer, all variables
are scaled to prevent production of numbers outside the
capability of the computer. The choice of a reference scals
is the first step in reducing the set of relations to a
dimensionless form. This length, &X , will be related to the

size of the impinging micrometeoroid

X ':'F(n",'v\) 2,16

where A; is the radius of the projectile. Radial distances

are now measured in units of 4/,

R = /% 2;17

Other variables are Similarly‘made dimensionliess.
D= r/p Q= /P
P=FPr/ P P =ysY¢
L = u/co W =w/co
E-I/I,

2,18
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The wvalues of /% Bﬁd,ﬁ% are chosen quite arbitrarily,
The quantities &p, I,, and Q? are related to A and p,
The independent varible, t, 1s changed to the new paramecter,

Ty by the relation,

T = /X 2.19
The angular variable, &, is dimensionless.
The definitions in equations 2.16 ~ 2.19 can be sub-

stiltuted into the fluid equsations that were given previously.

The equation for conservation of mass becomes

9D . _ dCEDY) _ J(amB DWW
dz R* &R on6 B dO

The equations for conservation of momentum are now

written
200 - _ JCP+Q) _ g(Bioub) . DY
&T Q)R R’-’.aR H -
= Jlem& Dwys)
ond RewnE J&
QDWW _ Q(PrG) _ ACRPDWL) _ puw
0T RJE R*d A A
_ d(and Dww)_ 2. 22
Rown & &

These were made dimensionless by choosing Cy so that

C;Q - ;% /7%

The conservation of energy equation can be expressed in
terms of the new variables if L, and ?ﬁ are subject to the

following conditiocn,



IL=¥-= Po//é? = <:§

gngrﬁ§w equation is

DY) _ _a(RPL)  J(RDUFE)

2T T R 4R F*o A
, , 2o23
(RGP R) sin@ W) _ (0O DWZ)
R sing 96 R 2en& 2 &
The equation of state is simply transformed.
63 £
P=L.5+ 5 Emai 5 + 752 (0-) + €50(0-1)* 2.2l

The constants, ~q2, and Cps are chosen empirically to
provide the correct order of magnitude for the‘viscous
pressure term, rather than to fulfill theoretical relations

to other parameters.

QR =-CY ClYl +Ca) 2,25

where QRN _Jlanp w)
Y = TRIJR B aom G o &

With the equations in the desired dimensiosnless form,
it 1s now necessary to convert them to difference eguations,

In the next chapter, the required difference equations will

be obtained,



CHAPTER TII
THE NUMERICAL METHOD

A consistent set of ecuations was obtained in the last
chapter, which govern the space and‘time dependence of.the
material functions in the microparticle and the target. It
is now necessary to solve these simultaneous equations.

There 1s no known analytic solution for this system of
equations, and 1t 1is not:anticipated that one will be found
in the immediate future, (15). The highly developed state
of electronic computers, such as theJIBM - 7090 or IBM =~
709, makes the use of numerical methods feasible for
reasons of both time and relative simplicity of processing.,
A well-posed, initial-value problem in fluid mechanics
may be formulated and the method of finite differences
employed to convert the differential equations to algebraic
difference equations. These differenée equations may be

readily solved on the large computers.
The Two Dimensional Difference Eguations

The problem for solution has spherical symmetry and,
for this reason, the equations for solution were converted
to spherical coordinates. Since the problem has symmetry, o

vertical impact may be followed, after a judicial selection

2,



of coordinates; by plots on only a part of cne guadrant in s
single plane. The coordinates are A and & . For a normal
impact, the axis of R for & = O 1is taken vertically through
the 1nitial polint of contact between the microparticle and
the surfaog of the semi-infinite slab. The origin of
coordinates, at which B = O, is taken at a little more

than twice the diameter of the microparticle above the

point of initial impact. The plot of the entire affected
volume of the impact is obtained by rotating the selected
plane-mentioned above the vertical line A for & = O .

The fegion of impact on the plane is divided into a number

of cells. The equations are differenced for this mesh., In-
dividual cells are designated 1In space by M In R direction

and L in the & direction: so that,

M o= 1,2,350005 Mpipgy = MF

L

i

1,25350005 LEipngl = LF

The time 1s measured in units of N.DT, where DT is a small
but finite increment. The radius at the center of each
cell is gilven by

Ry = RO + DR. (M = .5)
and at the sides of a cell by»

RM—% = DR. (M - 1), Rm+%:: DR-M + RO
The other two boundaries of a cell sre rays of|comstant
angle, which are separated by =a oonstant, D& . The area

of any cell at a distance, Ry, from the orgin is
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AAft = Ry - DR - De
Values of the density, the pressure;, the pseudo-
viscosity, the two components of the material velocity,

and the energy are defined at the center of each cell

within a cell. Each variable is designated as f ﬁs This

identification follows from above and refers to cell
number M along R and the cell number L in the © direction.
These values of the quantities stored for each mesh point
advance by a small, later time, DT.

Forward time differences are used for a8ll time deri-
vatives and all spatial derivatives are Initially written
in terms of central differences. Eguation 2,20 can now

be written as

Ll L N 2LM AL N L~ T N LN oW
b M i M - _— RMH/Z DM HY L-/M-H/'\ - R/gum M=l M-t
DT R,

. Ll N Llrila Ny, A442 W , LAV . LA My gy 2-tr2 N
Sin B pm M WM - Sk 6}4 L1 M{Vl

KM D@ SI'V) 9//7/]

s
i

To compress notation, see Figure 3, guantities at M, T -

aoj-

are designated side one, at M -3, L, side two; at M, L +
side three; and at M + %, L, side four. Using this short-
hand and factoring AAﬁ in the denominator, the finite d4dif-

ference form for the conservation of msss eguation becomes



i+1/2, M o) I/, M
Side 3 Side 1

L, M-1/2
Side 2

FIGURE 3. CELL BOUNDARY NOTATION
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DY = Dy +A4L L D6/R CCRu), = CR0U)y)
£ DR/sin@ (Com@DW)y = (a8 DW)3) ]

3.1

All quantitie; on the right are for time N.DT, If these are
all known, or prescribed, then the density, Dﬁ N+l 5 pop
the time (N+1). DT can be calculated. |

The other conservation equations are treated similarly.

Hadial equation of motions

CD“),: - CDL!),; +-;%[R'DGC(P+@)2 - (P+Q)y)

+ D6&/R ( ( R*DUalds - CR* DLy L)
+ DR/ 2B (( 2m® DW ) Ly = (2 @ WD)2l43)

+ DR-D8 D "W A" ik v ]

N
N

Tangential equation of motions

owa ' = (pw)h + pT/a85 L OR(CP+Q) - (PFrQ)3)
+ DR/2in B (ComB DWW, = (2m@ DW)3 W3)

—DR-DB - DAY LL A M W T
+ D6/R (( R*DU: wa= CR*DL)yWy) |

Conservation of energys
CDZ)S™ = (DZ)5 +DT/44% [ DR/ an@-( LGN
L(Pr@ Wy 2008, = (PrQIsWs @3 +oa) DW)E) 37
+ DB/R (CRDnYa= (R*DUI Yy + RLPHOI L ~RCP+Qy L) T



The two auxiliarly equapiong are independent of time
and are algebraically translated,

The above system of equations is»exp1§¢it and the
solution may be roved forward, continuously, by means of
simple algebra. Equation 3.1 gives a value for the new
density, which is then used to find the new velccities from
equations 3.2 and 3°30 Continuing with ?hese known values,
internal energy 1is found from equation 3.L. At the new
time level, the quantities DNFTL » gEN+1 SYUN+1 s and g+l
enable the additional equafions to be solved for new values
of the pressure, P, and the pseudo~viscosity? Qo The new
profiles (set of values fﬁ N+1) then become the starting
point for the next advance 1in time,

An extensive discussion of means of evaluating differ-
ence expressions is available in a2 previous work. (1h).

The selection of means for evaluating all terms in fthe
modified flow equatlon provides an algebralc procedure

very stralghtforwardly programmed for a digltal computer.
Then the equations will yield a solution for twondimensionaig
fluid motilon, including shock waves and other large-scale

fluild movements,
Finite Difference Mesh Configuration and Cycling

The selection of a’single plane to illustrate_the
solution and to prcvide the net that is required for the

computer solution was dlscussed earlier in this chapter.
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Both the microparticle, bhefore impact, and the free surfece
of the semi-infinite slab must be included in the plane.
The micrcparticle 1s represented by a semicirecle of radius

Ry. The position of the face of the semi-infinite target 1is
R cos® = 3 3.5
where S 1s avconstant distance messured in the sams units
as R, In such a mesh, there are three possible kinds of
cells; cells full of aluminum, empty cells, and mixed cells,
which are partially filled with aluminum and partiaelly
enpty. These mixed cells Qontain a material - vacuum
boundary. Bach mixed cell is marked with a parameter called
the partial area, A& o It is a quantity which signifiss the
amount of area of a cell that is filled by aluminum.

The initial information te the computer preogrem 1g the
free velocity of the microparticle, V., togethgr with the
locaticns and partial areas of the mixed cells,

The circumference of the micrometecroid 1s given hy the
equation of a circle in polar coordinates,

b2 o a2 + Rgrm 2bR cos@ = 0
where a is the radius of the circle with center at ( b, O J.
The partial area of a cell is determined by computing the
points of intersection of this equation with the ccordinate
lines of constant R and constant and then by integrating
between these limits. This process 1is illustrated in

Figure L. The disgram shows a typical mixed cell in the
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Rﬂ_—_——

R!mmmmm =

——_

£1(R, 6) 1s the equation of a semicircle.

Ry, R2,61,62 are cell boundaries,
R', R", 6', 0" are limits of integration,

A =fg:'f:: [Re-fl(ﬂ,a)] dR d@

FIGURE 4. INITIAL PARTIAL AREA CALCULATION
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lower half of the projectile, There is a sign change for
the upper half of the microparticle. These calculations
Were ma&e independently of the méin computer program on
an IBM~-650,

The motion of the microparticle as well as the boundary
of the target is followed by changing the partial areas in
the mixed cells and by the appearance and disaprearance of
mixed cells. The fluid parameters of a mixed cell are cal-
culated in the manner that is outlined, above, for aluminum
cells is that of changing the partial areas in time. Per-
haps the simplest possible method is to use an‘approximate

formula based on the known veloclty components,
L Al L
M = Au - 4A 46 37

where

AR=1Ll, DT
L6 = W/IQDT.

where DT is the elapsed time of one iteration cycle.

The calculation of the new partial areas is the last
step of a calculation cycle, The whole mesh has been moved
forward by a time step, DT. The mixed cells, which may
contain a moving boundary, must be changed from time to time,
A test must be made after the end of each tTime step to ascer-
tain whether any of the mixed cells should be replaced by

gither a full, or an empty cell. Either possibility
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requires the construction of & new mixed cell. The partial
arcea of a mixed cell might be calculated greater than the
actual ares of the cell, or as vanilshingly small. In both
cases, the cell 1s changed.

In summary, the solution is obtained as follows, thse
values of all parameters are found by succegsive apvnlica-
tions of equations 3.1 through 3.l for all full and mixed
cells., The parameters of an empty cell cannot be changed
by these equations. Empty cells are changed only by move-
ments of mixed cells. Then, the new partial areas sre
found and mixed cell changes are made, 1f necessary. This
procedure can then be repeated to gilve 2 numerical solution
for the whole region as time increases with each calculation

cycle.
Quality of Solutions

There are two important gquestions to be asked concerning
the accuracy of a numerical solution to an initial value

problem, (18)3

&0
i}
=3
jon

1. Do both the partial differential eguation
the difference equaticns possess unique
solutions?

2. 1f the answer to 1 is yes,; 1s the sgolution thst
is obtained by solving the difference equa-
tions, step by step, actually a sufficient

approximation to the true solution?
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Full and completely rigorous answers to these guestions are
not available. A unique solution 1is judged to exist if the
physical problem is well defined. It 1is generally belileved
that the compressible fluld equations give rise to a system
of partial diffential equaticns which define as well-posed,
initial~value problem. (19).

The second guestion cecncerns the convergence of the
approximate solution to the true soiutionn The true
golution is not known for comparison. The system of
difference equations 1is examined, somewhat empirically, for
convergence., Different combinations of the incrementss DR,
D&, and DT are used and the resulting solubions are com=-
pered., I these different solutions agree very closely,
then a good solution is probably being obtained.

A more encouraging condition can be suggested from the
Equi%alence Thebrem of Lax (20):

Given a properly posed Initial value problem and a

finite~difference approximation to 1t that satisfiles the
consistency condition, stability is the necessary and suffi-

The consistency condition requires that the resulting
numerical solution depend centinuously on the initial data
and that the difference equations go overﬂto’the differentiel
equations as DT, DR, and D@ approach zero., The first part

0f the condition is satisfied by the mechanism of the finite
difference method by which the solution progresses from the
known to the unknown. The second part of the ccnsistency

condition is satisfied, since this is the usual method of



derving the hydrodynamic flow equations. With the 1idea
established that stability Implies convergence, the concept
of stability will be examined.

Since numerical approximation methods are used, it is
expected that there is a small difference between the true
sblution and the computer solution,

e = £(R,6,T) - £(M.DR, L D& ,V-DT)

The solution is stable if this error remains small or grows
smaller. The solution is unstable if € grows without
limit. When the computer results indicate profiles with
exceptional, oscillatory behavior, the particular solution
can be corrected by the proper choice of the mesh ratio,
A'f/DT. (21). The position vector is X = [ R, 8],

One well-known relation in the fileld of fluild dynamics

is the Courant condition (22),

A?E/DT = cp> e
that is, the mesh speed cp must be greater than the sound
speed which is the greatest velocity at which disturbances
may be propagated from place to place in an elastic medium,
For problems involving shocks and large material velocities,
this restraint is insufficient.

Richtmyer (22) has shown for Bome cases & more suitable
requirement is

om 7 c'i‘li?l
where ? is the material velocity. This condition recognizes

that disturbances mdve with the velocity of sound plus the



velocity of the flowing mediuma

In the problem to be discussed, the medium is usually
highly compressed. The flow velocity and the sound velo=-
city are roughly of the same order.of magnitude. The follow-
ing approximation, then 1s made to the above condition,

4%/oT = o7

In one-dimensional tests, however, this relation prescribedsa -
mesh ratio which was about five times too large. (14).
In practice, DR and D@ are fixed and DT is varied to satisfy
requirements for stability. The actual condition used to

check stability is written

pT = o1 ¥ (DRI +£7CD6I*/C U+ w2) .
where U and W are the maximum flow velocity components

occuring in the solution and Rg is a typical radius of the

finite difference mesh.
Development of Computer Program

The computer ¢dde: for solving theé finite difference
equations was written for an%leM—?O@O computer. The size
of the computer was demandedhby the requirement that an
accurate numerical approximation of the solution be obtained.
In the radial direction, the net was marked‘by fifty cells.
In the angular direction, there were 1nitislly thirty-five

capaclty of approximately 32,000 words. Of this storage,

-



ebout 25,000 words were used.for storage‘of variables for es
gach point of the finite difference mesh. There were eleven
parameters defined a2nd stored for each fluid cell:

s Density in the Qellg

s radial velocity,

tangential velocity.

s internal energy.

A = T~

s pressure.

CU, radial velocity at time N+1.

Cw,‘faﬂgential veleclty at ti‘me.N-&-l°

CE, internal energy at time N+1.

A, partial area (if any). NT, = name tag denoting
the kind of cellsy (+) for a full, 2luminum cell, (~) for a
mixed cell, and (0) for sn empty cell,

CD, density in a cell at time N+1,

The computer code was written in FCRTRAN and in FAP,

FORTRAN is a high level computer language which, with slight
changes, 1s acceptable to a wide assortmemt_of large digital

computers. It 1s not, however, the basic machine langus
of any machine and must, therefore, be translatedfinto the
basic machine language of the computer being used. This is
accomplished generally in two steps; the first being a trans-
lation to a symbolic assembly language, the gsecond being to
assemble the symbolic language program into a basic machine
language program. FAP, FORTRAN, ASSEMBLEY PROGRAM, i1s the

symbolic language associated with Fortran II, The transla-
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tion process required by programs written in FORTRAN is less
efficient, that 1s, produces more instructions, than programs
to conserve storage, part of the computer code 'DRAW!,
developed to solve the modified flow equations, wes written
in the symbolie laﬂguége, The final program occupiled

about 6,500 words of the computer's memory.

To solve the difference equations on a 7090, a loglcal
calculatlon path must be developed for use by the computer.
Figure.E. Calculations are performed for each dependent
varilable in each cell corresponding to the directlions of the
difference equations. Other monitoring 1s required and
performed by the computer code to check the mesh configura-
tion and iImpose boundary condltions.

The cycling of the program would be as follows: one
first calculates the values at time N+1 for the whole mesh
using equdtions 3.1;3,u for all full ond mixed cells.
Equation 3.7 1s used to find the new partial area for all
mixed cellse Boundary cell changes are then made if there
are any. The new value of.pressure is_then found from the
equation of state. After the completion of a cycle, the
results may, or may not, be printed‘out under computer
program control, The new values for the varlables replace

the initial values 8o that the cycle may begin again,



Read in initisl values of variables
and constants of program.,

Compute Density, Radial and Tangential
Velocity Components, and Specific
Internal Energy for each cell for
one time increment later than starting
conditions,

Compute Q-term and Pressure for every
cell,

Compute change in Partial Areas for
each interface cell. Test interface
cells for cell changes

Write all computed values, if desired.

Store computer values in initial value
locations,

Figure 5. Computer Flow Diagram




CHAPTER IV
DEVELOPMENT AND PRESENTATION COF 30LUTIONS

The =set ofﬂdifference equations developed for s
computer solution have sufficlent versatility to yield a
solution for arbitrary initial values and boundary condi-
tions, The basic initial value necessary for a solution
is the free space velogity of the incident micrometeoroid.
The physical properties.of aluminum under normal conditions
supply the further necessary initiél value information.
Boundary ccnditicns must be applied to the modified flow
equaticons to insure the proper representation of material-
vacuummipterfaces and symmetry procoperties assumed in the
problem,

After obtalning the solutions, the numerical data is
Peduced by selective plotting of the space va?iatiom of the
fluid variables at different‘instants of time, This chapter
presents a survey Qf the informaticn obtained by vsing the
hydrodynamic model.

A series of curves illustrating the typical behavior
of the pressure, velocitysJ density, and intermai energy
are shown as functions of space and time. Further analysis

of crater growth and peak pressure decay are also portrayed

10



graphically. The dominant features of the solutions are

the appearance of two shock waves at the point of initial
contact and the formation bf a cavity behind the penetra-
ting projectile. Flow patferns peculiar to the spherical

shape of the incident micrometeoroid are also displayed.

e ®

Initial Values

.Tpe basic operation of the finite difference method
consists of moving from the known to the unknown. 4
completely specified net at one time 1s advanced by a small
step in time. The actlicon 1s then repeated indefinitely to
develop a numerical soluticon. To start the solutions at
time equal zero, a simple configuration is chosen, Just
prior to the beginning of the calculations, the leading
point of the micrometeorcid is in contact with the semi-
infinite target. This is called the point of Impact and
lies on an axils normal to the target, The materisl velccity
of the projectile 1s identical with its free space veloclity,
Vo. The material of the target 1s at rest. Both projectile
and target are considered to be inviseid fluids during the
flow that follows the impapto The density of both bodies
is that of normal aluminum. Other fluid parameters“such as
the internal energy and pressure are initialiyhzeroo
Figure 6 1llustrates the prescribed conditions,

In addition to thesge initilal values, further conditions

must be applied during the running of the computer program,



To Target

Axis Normal

Target Surface
—

Semi-Infinite Aluminum Target
V=0=P=E=0

P/Po=1.0

FIGURE 6. INITIAL VALUE ILLUSTRATION



Boundary Conditions

Several boundaries appear in the formulatiocn of the
impact problem, Each must be subject to specialized
treatment. The region of interest 13 taken as g sector of
one quadrant (see Figurelé)‘of a polar ccordinate system
with the varlsbles R and €. The initial point of contact
is on the axlis. The spplication of this condition 1s
accomplished by requiring that no msss flow across this
axls., A material-vacuum interfact requires specification
of zero pressure on such a line, This 1is accomplished
wiﬁh respect to the finite differenge mesh by setting
the pressure in a cell containing some aluminum material
and some empty space eqgual Lo zero on the side or sides
of the cell adjacent to the vacuum, Apart from this
restriction of no applied forcegvthe aluminum-vacuum bound-
aries are free to move and are moved as indicated by the
velocity of the solid material in the milxed cell. As
materials flows out, density cannot be less than In the
original solid. The computer program also monitors the
differencing schemes to prohibit averaging scross an
interface, Fluld properties are not averaged between

empty and full cells,
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The Solutions

The finite difference method that is described in the
previous chapter, complemented by the necessary initial
conditions and boundary specifications wags used to obtain
sclutions for the hydrodynamic model. The numerical results
evaluate the density, the pressureg, the spécificfinternai
energy, and the two components of the ﬁaterial velocity at
cell centers; that is, these variables as functions of R and
© , at discrete instants of time. The gquantity of numeri-
cal data produced by the computer 1s enormous. The deg-
oripfion provided by the hydrodynamic model is best;sh?ﬂﬁ?*f
in the form of graphs which show the preceeding variables
at selected instants as the impact proceeds in time. The
following sections give 1llustrations of the important

results and the nature of the solutions.
Organization of Solutions

The step by step descrip%ion of the esrly progress of
the hypervelocity impact are first illustrated graphically
by profiles which show the variation of pressure along
the normal axis to the target at different times. Two
dimensional plects are shown in a plane bounded by the axis
of symmetry. The volume distribution of the variables is
obtained by rotatingvthe two dimensional'plots around the

normal axlis. The values at an instant of time are shown by
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lines of constanf density, by 1sobars, by lines of constant
energy, and by arroﬁé that show the magnitude and direction
of the veloclty. Since the volume distributions of all the
varliables 1s symmetric about the axis of symmetry; the . -
veloéity is entirely contained in the two dimensional plot.
The illustrations presented show the initiation of |
shock waves at the point of impact and subsequent decay
patterns for the pressure ahd material velocity are
presented with comments on the chief features. Graphs of

the time history of free surface motion are then presented.
Shock Wave Formation and Decay

The most noticeable features of the hydrodynamic
solutions are the two shock waves which originate from the
point of initial contact. Two compressive waves of approxi-
mately equal strength appear soon after the start of the
calculations. One moves into the target and the other
into the projectile. The shock waeve into the micrometeoroid
1s reflected from the vacuum-material boundsry as an
expansion wave which races to weaken the primary shock wave
traveling into the target° This primary wave alsq‘decays
as the volume 1t affects increases, As the primary front
penetrates greater distances into the target, more and

more material 1s compressed which decreases the energy



Pressure Profiles

)
The processes of ghock wave formation and subsequent
decay are 1llustrated in the first series bf graphs, in
Pigures 7, 8, and 9. To ampl?fy the points of discussion,
shock profiles, which are curves of function values versus
dlstance, are presented for several different times along a
line near an axis normal to fhe target, The motion of
the fluid is very.nearly‘one dimmensional aleng such a line.
On the axis, variables are functions of the radial distance,
Each Figure 1is marked along the distance scale in units of
the micrometeoroid radius, RM° The distance is marked from
the point of iInitial cbntactg S. In those graphs 1in which
the back edge of the micrometsoroid or back edge of the
fluid material is contained, the position 1is labeled with

the letter B, The pressure 1is given in units of megabars,

Each megabar 1s spproximately one million atmospheres,
Plots of the pressure 1llustrate graphically the.gfowth

of thé affected volume which occurs after impact. An
initial peak, slightly displaced below the roint of first
coﬁ%acts indicates the start of shock wave formatiomo.
Approximate wave profiles show the establishment of Hwo
shock waves, Reflectlon and propagation of expansion waves
from the vacuum-aluminum boundary, where the pressure is
equal to zero, are again seen to. contribute to the decay

of the primary shock wave,
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FIGURE 7. PRESSURE PROFILES ALONG NORMAL AX1S
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Barly stages of pressure development are illustrated in
Figure 7. The first results given by the finite difference
scheme are for only a few cells of the mesh and must be
interpreted as containing oscillations.

Reflection of a strong pressure front from the free
surface will begin soon after the timé profile shown in
Figure 8-A. This release wave combined with declining
peak pressures at the head of the disturbance can be seen
in Figures 8-B and 9. In the pressure curves, there secems
to be a spurious peak at the front of the shock wave: that
is higher pressures than would be expected. This iz due
in part to the effect of the pseudo Viscosity in the numerim
cal calculation., The value of the coefficlents in the
expression for the pseudo viscosity were kept at very small

being obtained from the stucture of‘the finite_difference
equations. This was done to avoid losses igimoving the
particle through the cells of the finite difference mesh, -
The reductlon in value of the pseudo viscosity results iIin
larger oscillations in the vériablesg pérticularly the
pressure and the specific_intermal energy, than in previous
hydrodynamic calculations. (l.,1h).

Full two dimension resul?s of the hydrodynamiec model

are shown in the next section.



Two Dimensional Distributions

The hypervelocity impact of a micrometeoroid on a

W

seml=-infinite target puts the material of the target in
motlon and produces a large scale disturbance of the flow=
ing aluminum. A series of two dimensional maps showing the
fluld pressure and material velocity distribution drawn from
the numerical solutions of the hydrodynamic model are pre=-
gented in this section.

A qualitative survey of the features associated with
hypervelocity impsct has been given by Charters (8).
This description will be discussed now since the present
sclution embodies a number of observed effects.

The impact is accompanied by a flash of 1ight.
Radiation can be observed form the Immediate vicinity of
the Impact. This 13 not shown by the hydrodynamic squations
since they contain no rsdiation producing mechanism, I
the governing equations werevsupplemented by an equation
of state which includes ionization and radiation energy, and
changes in the conservation equations, it is believed that .
the plasma state formed by the impact would give rsdiation,

The shock wsves discussed are observed in high speed
gxperiments. One, referred to as the primary shock wave,
radiates out form the point of impact, compressing and
accelerating the material 5f the target ahead of the on-

rushing sphere., Another wave moves back into the projectile
i



oppogite to the motion of the projectile. The resuwlt of
these two movements 1s an approximately stationsry shock
front moving very slowly beyond the point of initial contact,

As the back edge of the micrometeoroilid passes the
position of the original target, a depression or crater
starts to form. Most of the flow 1s in a radial direction,
but scme material moves around the crater edge and 1s
ejected. These features seen in the laboratory are also
evident in the numerical solution., The opening of a cavity
and the movement of target material above the original
target surface are both very striking in.the golutions
presented.

The shock wave which 1s reflected from the free surface
as a rarefaction wave eventually overtakes the primary shdck
wave. This latter wave penetrates great distances into
the target. The expanding crater follows at a distance.
Between the two, a shell of highly energetic matter,
compressed by the shock and stretched by the rarefaction,
i1s found. The strength of the shock wave decreases as its
volume of action increases, and as 1t 1s overtaken by rare~
faction waves originating at the free surface of the materi-
al, . These features of hypervelocity impact are displayed in
the hydrodynamic solutilons,

Ultimately, the plastic and elastic properties of the
target material voild the perfect fluid =ssumptions and the

finsl size sand shrape of the crater cannot be fixed. This
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difficulty can be remedied by consideration of the chance
from fluid to elastic flow,

Distributions of the pressure and materisl velscity are
shown for different instants of time. The velocity 1is
portrayed by sca}ed vectors representing the velocity of
material at the»?gjl of the vector. A velsccity seale is
given on each 1llustration. Pressure contour maps are
obtained by connecting points of equal pressure on different

radigl lines. Distances are shown on the normal axis in

units of the micrometeoroid radius, Ry- The times shown

for the typical 10'9 gm, micrometeoroid,
Pressure and Material Velocity Distributions

The micrometeoroid enters the target quite rapidly.
Two early velocity distributions are shown in Figure 10,
Most of the velocity vectors are parallel to the axis
and represent the free velocity of the micrometeoroid. The
vectors near the original surface and below are reduced in
magnitude and oscillate,

The pressure distribution in Figure 10-B shows the high-
est pressure attained in this pvarticular impact casze. Two
approximately equal shocks will be formed from the pressure
peak shown. There is some assymetry anparent in Figure 10-
B and subsequent plots due to the ge5metry of the entering
projectile and the initisl division of material velscity.

The materisl of the micrometeosroid has initially
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high velocity while the material of the tarcget is at rest,
Some general undulations are seen in the contour maps and
may also be discerned by careful inspection of the velocity
distributions. This 1s caused by the varticular choice of
times and points included in the results and by the nature
of numerical solutions.

The velocity distribution in Figure 10-B gives the
start of the expansion period of the disturbance. Materizal
moving from the stralight 1line path of the onrushing micro-
meteoroid has been put in motion by the primary shock wave
rather than by direct contact with the projectile, Thse
maximum pressure developed is twelve megabars. The extent
of this peak pressure is shown in Ficure 10-B., In an
idealized treatment of this impact, the peak pressure would

extend to the surface. In the numerical scheme, the motion

Fa

of fluid particles is ecommunicated from cell to cell in
the mesh covering the region of interest. The model chosen
probably depicts the physical situation rather well; The
peak pressure occurs near the normal axis under the imping-
ing sphere,

The continued growth of the disturbanced is shown in
Figure 10. The primary shock wave propagstes rapidly into
the target. This material velocity imparted by the pnrimary

front slightly exceeds one-half the original free svace

velocity of the impinging particle, An impacting



flat plate of aluminum on a semi-infinite slab of aluminum
would give exactly one-half the velocity. (23). Further
illustrations of full two dimensional material velocity
vectors depicting the gross motions to target and sphere
will be presented and discussed.

The behavior of the material velocity ig unique
compared to the other fluid model parameters. At the start
of the calculatiops, all aluminum material is in its normal
undisturbed state. The micrometeoroid has initially a very
large material velocity which represents the free space
velocity of the particle. This leads to the distinctive
velocity distributions at initial stages of the impact.

At slightly later times, as shown in Figure 12, the
radial character of the fluid disturbance can be seen. The
material of the target has a strong tendency to expand away
from the regions of direct impact with a material velocity
of magnitude approximately one-half the free space velocity
. of the micrometeoroid. The shape of the ﬁisturbed portion
of the target material, and the micrometeoroid, can be seen
from the pressure distribution in Figure 12. It 1s near
this time that free surface effects begin to influence the
solution.

In time, the shock wave traveling to the rear of the
micrometeoroild reaches the back edge. It is reflected as
a rarefaction wave. The modification of the primary shock

wave caused by material expansion is shown in Figure 13.



If the target and projectile had been of different medis
this first reflection could result in a tension wave
proceeding from the free surface., Since the impact
process started with aluminum on sluminum, no negative
pressures occur.

In one of the later time plots, Figure 1, the radial
character of the cavity and disturbance ig evident. This
shape 1s a result of the geometry of the Impinging micro-
particle. Upward motion near the target surface can bs
seen in Figure 1lb.

Further propagation of the shock wave provides an
illustration of the decay of the primary shock wave as
amcunts of previcusly undisturbed aluminum are engulfed.
Ultimately, this shock front will reduce to a scund wave of
vanishingly small amplitude. The hydrodynamic model does
not apply to such late stages of the 1mpact snd the
solution must be terminated before material properties
such as yleld strength play an ilmportant role., The last
results obtalned in the computer program sre presented in
Figure 15, The two distributions are terminal only in an
arbitrary sense., They do not and cannot, represent the
final stages of cratér formaetion. The deepest part of the
cavity 1s centered about the impact point.

The densitﬁ behavior of the fluild model is closely
related to the pressure of the fluld. Plots of constant

density lines for various times will be discussed in the
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next section.
Density Distributions

A slightly different view of the impsct ig given by
a series of graphs of constant density contcocurs. These
illust:ations were drawn in the same manner as thevpressure
distributions. Constant density contours are shown in
Figures 16, 17, and 18. The density value 1s given as the
ratio of material density at s point to that of normal
aluminum. Lines marked 1.0 indicate a return to normal
cenditions,

Density values result from solutions of the continuity
of mass equation. Such values together with the internsl
enérgy determine the pressure 1n the hydrodynamic model.

At peak pressure and peak density points, however, a shock
process 1s occuring and the equation of state applicable is
the Hugoniot curve. Such a relaticn 1s apparent at early
times in the numerical solution where all disturbsances are
esgentially by shock compression,

In the first stages of micrometecoroid penetration, the
density behaves much like the pressure. A peak is formed
slightly below the original point of contact. This veak iz
then Lroadened into two.approximately equal shock waves.
The propagation and relection of these two fronts proceeds
as discussed previously. Illustrations of the density

variation are found in Figure 16.
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FIGURE 18. CONSTANT DENSITY CONTOURS
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further results of the numerical solutions are given
in Figure 17. The dissipation, as with the pressure, is due
to rerefaction waves and the ever-increasing volume of
action.

Material is seen above the target surface in Figure 18,

a fine spray. The average density of this spray, composed
of some material clusters sand some vacuum between, 1is
undoubtedly less than that of normal aluminum. In falling
to adequately describe such states, which would have a
negative pressure, the equation of state prevents some
motion of the shock wave 1in the direction perpendicular to

the axis of i1mpact.
Internal Energy Distributions

The internal energy is calculated from the total energy
which 1s conserved 1In the solution of the problem. Contours
of constant internal energy are shown in three Filgures, 19,
20, and 21. The values of internal energy are gilven in terms
of a reference energy which eqguals L.h x 1012 ergs/gm. The
three maps shown are called 1llustrative rather than
exhaustive.

The energy distributlon shown in Figure 19 1s very

similar In shape to the pressure contours at the same time,
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in Figure 20, That 1s, the internal energy does not propa-
gate as rapidly as other fluid paraméters.

The shape of the free surface in Figure 21 shows the
approximéte radial character of the dJdisturbznce at this time.
The decay, ss8 1in other varasiables 18, of ‘course, evident

in the values of the constant internal energy lines.
Cavity Formation

The purpose of the study of hypervelccity impact
studies 1s to predict micrometeoroid damage to space
vehicles. The assessment of such impacts 1s quite often done
in terms of peﬁetration or crater size related to initial
impact velocity values. The numerical solution presented for
the hydrodynamic model shows the initilal and middle stages of
cavity development.

In order to observe the formation of the depression, a
series of penetration versus time curves are shown in
Figures 22 and 23. Such illustration also give an overall
view of the nature of the solution obtained.

The mean veloclty of free space micrometeoroids in the
vicinity of the earth is about 36 km/sec, (2)°> Solutions
were obtained for an impsact of this velocity. Positions of
the material surfacé are shown for various times in Figurecs
22 and 23. The times for each curve is given in each

figure,
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The progress of the solution describes the "swallowing"
of the incident particle. The momentum and energy trans-
ferred from the micrometeorold to the target compress the
aluminum and cause the materilial to move into the targgt
forming depression.

The initial motions of target and micrometeoroid are
followed in Figure 22. At ‘the latest time shown, material
from the target is squeezed out by the disturbsnce of the
micrometeoroids entrance. The cavity formation and ejection
of material proceed in Figure 23.

The shape of the cavity assumes a radlal symmetry about
the point of contact. The curves shown bear out this
statement,  with the deepest portions of the cavity are
on a radial arc about 5. As seen from the numerical
solution there 1s a strong tendency, evident in the graphs,
for some target materlial to flow away from the entrance path
of the micrometeoroid. This activity corresponds to the
spray observed 1n hypervelocity cratering experiments, It
is probabls thaﬁ the material expands to such states in
which the density i1s less than that of normal aluminum,

The equatilion of state, however, only allows states of
compression or, at least, zero pressure, The density is
required to be eQual to or greater than normsl density,
This provision leads to an impasse near the distorted
portion of the surface where it 1ls probable that densities

less than normal would be seen. The shock wave moving in



the lateral direction cannot propagate as freely as the

pressure front penetrating along the normal axils,
Dissipation of the Peak Pressure

A " plot of pressure decay has been prepared and 1s
presented in Figure 2. This 1s shown in order to 1llustrate
the rapid decay of thé peak pressure. These peak value
dissipation trhces also permit correlation with experimental
data and other theoretical calculations.

The curves are drawn using the avproximate peak
pressure along the normal axis versus the position of this
function on the normal axis. There 1s some uncertainty
concerning the exact point to point comparison, but the
average curves yleld a,;atisfactory indicatlion of the decay
rate. Distance along the axils 1s measured in units of
the micrometeoroid radius, Ry, from the point of impact,

S. As R increases, there 1s some uncertalnty in interpreting
the peak pressure and the large scale of the drawings seems
to indicate a decay to a constant state, This 1s not
observed in the results as can be verified by reference to
full pressure distributions.

For the case of an impact velocity of 36 km/sec, ,
sufficient information was obtained from the numerical
solution to indicate the growth to a pesk pressure of 12

megabars and the subsequent decay. This valuve is found
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in other shock propagation calculations (L, 1h).

Such a curve gives an indication of the t ransient nature
of the peak pressure which occurs in an impacf Process.,
This vpeak pressureg?bpweveg,_determihés the subsequent
sﬁates of the affectéd target material and perhaps ultimately

the crater size snd termlinal mechanlisms.
Diszscusgion of Results

The most interesting feature of thils data is the
production of two distinct shock waves at the point of
initial contact. DBoth shock waves sre of approximately
equal strength traveling in opposite directions. There is
some asymmetry in the forward direction, however; the
primary shock front 1s. somewhat stronger since it moves
into undisturbed material. The progress of such waves is
followed until free boundary reflection of one wave and
considereble decay of the primary shock front modify the
flow patterns. The start and growth of the cratering process
have been fully depicted. A complete description must be
found in other material regimes, such as the plastic and
elastic, The radial character of the cavity becomes apparent

target,



CHAPTER V
SUMMARY AND SUGGESTICHNS FOR FUTURE WORK

Calculations for the impact of a spherical aluminum
microparticle on a semi-infinite aluminum target have been
presented. A numerical method was developed and tested for
the solution of a set of Bulerian, dimensionlezs, squations.
These equations include shock wave propagetion and target
motion., A FCRTRAN IV computer program has been used to
obtain solutions for all cases up to a Time when the decay
of the primary shock front is significant,

A basic feature of these solutions is the formation of
two shock waves at the position of initial contact of micro-
particle and target. One shock front, The primary shock
wave, travels into the target compressing material of the
target, Tﬁe other, moving into the projectlle, is reflected
at the material-vacuum boundary. The resulting rarefaction
wave eventually overtakes the primary wave and weakens it.
Another feature noted in the curves depicts the start of a
crater and the‘ejection of material above the‘originai_

target surface. The impacting microparticle appears to
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itself. This results in the flow of the tsrget material up,
around the entering particle and out of the target.

As the disturbance engulfs more target material, the
nydrodynamic pressures become comparable to yield stresses,
It is then inappropriate to neglect material strength and
the hydrodynamic model becomes inapplicable. This same
difficulty occurs earlier near the free surfaces involved
in the problem. Consideration of necessary descriptive
equations of the plastic and elastic states in addition to
the hydrodynemic state Will give a more complete description
of micrometeoroild impact.

It is believed thathinclusion of plasma properties in
the equaion of state, and addition of plasma conservation
equations to the modified Eulerian set, Wéuld exnlain the
radiation observed in the impact process,

These extensions, the refinement of the hydrodynamic
model to include plasma, plastic, and elastic material
should lead to 2 better understanding of the hypervelocity

impact problem,
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