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PREFACE 

This problem was started at the suggestion of Dr. F. C. 

Todd who acted as my adviser and project supervisor. I am 

indebted to him for his guidance, assistance, patience, and 

encouragement during the pr;ogre·ss of this. work. 

The purpose of t~is research is to investigate a plausi-

ble mechanism of hypervelocity impact. The incidence of a 

10-9 g:ram aluminum microparticle on a semi-infinite aluminum 

target is described in terms of fluid flow in two space 
I 

dimensions. 

Computer time for the actual production of the solution 

was .made· available by Mr .. W. Merle Alexander of Goddard Space 

Flight Center. I have special thanks for Mr .. William Cahill 

and his staff of this installation who greatly facilitated 

scheduling of computer time during my visits and who 

supervised the exchange by .mail of ;further computer programs. 

The wo:rk was carried out under NASA Contract number 
I· 

NASr-7 administered through the Research Foundation of 

Oklahoma State University. 

iii 



Chapter 

I. 

TABLE OF CONTENTS 

Page 

INTRODUCTION AND SURVEY 0Ii1 THE PROBLEM •. • . . . 1 

Proposed Impact Theories • • • • . .. . • 2 
Statement of the Probl~m. • • • • • • • • . 4 

II. FUNDAMENTALS OF THE INVISCID FLUID MODEL . . 8 

III. 

. . .. 
Iv~ 

The Equations of Fluid Flow • • . • . 8 
A Brief Description of Shock Waves ..••. 12 
The Introduction of Dissipation • . • 17 
The High Pressure Equation of State • . • . 20 
Dimensionless Differential Equations •••• 21 

THE NUMERICAL METHOD . . . . . . . . . . . . . . 
I. 

The Two Dimension al E,quat lons .• ,, • . 
Finite Difference Mesh Configuration and 

Cycling, . • . . . . . .. . . . . . .. 
Quality of Solutions •••••••••••• 
Development of Computer Program ••••.• 

DEVELOPMENT AND PRESEN'rATION OF SOLUTIONS . . 

24 
24 

29 
33 
36 

40 
Initial Values . -~ . • • • • • • . . . • 41 
Boundary Conditions • • • • . 43 
The Solutions • • . • • • • • . . . . • . • 44 
Organization of Solutions • • • • • 44 
Shock Wave Format ion and De cay . . . • • . • 1~5 
Pressure Profiles • • • . • • • • • • • 46 
Two Dimensional Distributions . . • • • 51 
Pressure and Material Velocity· 9 .,. 

Distributions . • • • • • • • • • • • • .... 53 
Density Distributions . . • • . • •.• 63 
Internal Energy Distributions • • . • . 67 
Cavity Formation .....•........ 71 
Dissipation of the P~a~ Pressure •.•... 75 
Diseussion of Results · ....••••.•. 77 

V. SUMNIARY AND, SUGGESTIONS FOR FUTURE WORK • 
' ' . 78 

80 BIBLI~pRAPHY ..••..• . . ~ . . . . . . . . 
iv 



LIST OF FIGURES 

Figure Page 

15 1. Plane Shock Front • • • • " • • • • ii • • • • • 

2. Typical Press.ure Profile of a One Dimensiona.l 
Shock Wave • . • • • • . • . • • • 17 

Cell Boundary Notation 

Initial Partial Area Calculation . . . . 
27 

31 

5. Computer Flow Diagram . . . . . . . . 39 

6. Initial Value Illustration •.• • • • I!' . . 
7. 

8. 

9. 

Press1;re Pro.files ~long Normal ~xis (Time = ~0524 x 
10-, .lOS x 10-, .224:x 10- seconds) •.•. L~7 

Pressl?re Profiles Along Normal Axis (Time= .371 x 
10- .517 x io-9 se6onds) • . . . • • . . • • 48 

Pressure ~refiles ~long Normal Axis (Time= .664 x 
10-9, .d84 x 10- seconds) •. , • . • • . 49 

10. Pressure Contijurs and Vel9ij\ty Distributions (Time= 
.0384 ~ 10- ' .105 x 10 seconds) • . . • . . 54 

11. 

12. 

13. 

14. 

15. 

Pressure Contours and Velocity Distribution (Time= 
.172 x 10-9 second~) ••••••••.•••• 

Pressure Con~ovrs and Velocity Distribution (Time = C:b 
.J71 x 10- seconds) •••••.•••.•.• 

Pressure Contours and Velocity Distrib1.1tion ( 'rime = 
.517 x 10-9 seconds) . . . . . . . . . . . . . _57 

Pre ss1.i_re Contours and Velocity Distribution (Time = 
.811 x 10-9 seconds) • . . . . . . . . . . . . 58 

Pressure Con;ours and Velocity Distribution (Time = 
1. 23 x 10-/ seconds) •... . . . . . . . . . 59 

v 



16. 

.17. 

18. 

19. 

20. 

21. 

22. 

Constant Den~ity Contours (Time = .0384 x 10-9, 
10- seconds) .17 2 x • . . • . • • • . . . • • 

Constant Density Contours (Time = . .517 x 
10-9 seconds) • • . . . . . . . . . . • 

Constant Density CoQtours (Time = 1.23 x 10-9 
seconds) . . . . . . • ' • . • . . . . • • . • 

Consta.nt Energy Contours · ( Time = . 105 x 10-9 
seconds) • . • • • •. • • • • . 

Constant Energy Contou:t1s (Time= .371 x 10-9 
seconds) ...... ~ ..... ~ ... . . . 

Constant Energy Contours (T:ime = .811 x 10-9 
s e con d, s ) . • . ~ . . . . . , . . . • . . . • • 

Position of Svrface at Various Times (Time= 
.0384 x 10-~~ .105 x 10-~ .172 x 10-9, 371 x 
10-9 seconds) •••..•......••••• 

64 

65 

66 

68 

69 

70 

72 

23. Posfti.op .of Surface at Va:t1iou.s Times (Time :;::-' 
~371:~·10:i, .517.x 10-9, ·~e11 x 10-9, 
1.23 x 10 seconds) ••••.••• , • • 73 

24. Peak Shock Pressure as a Func,t ion of Maximum 
Shock Penetration ••••••••••••• 

vi 

• • 76 



CHAPTER I 

INTRODUCTION 

Micrometeoroids are defined as pa~ttcles wn.ich have a. 

mass of less than 10-1-~ grams and velocities that rano:e from 

J0,000 to 2L~O,OOO feet per sec,ond. 1AThen these micronarticles 

are smaller than 10-11 to 10-12 grams, the nressure of the 

radiation from the Sun will eventually push these particles 

outside the orbit of the earth. (1). They are detected by 

devices placed on space vehicles. One device that has been 

successfully used is a photo~1ltiplier tube with a vapor de­

posited aluminum film covering the face. (2'). The micro-

meteoroids impingi.ng upon the face of the photomultipli.er 

are known to produce a pulse of current through the tube. 

The NASA project for which this thesis is a contrioution 

was initiated as an analytical and limited experimental study 

of micrometeoroid impact on the coated photomultinlier. The 

project is concerned with the mechan'.i.cs of impact which 

result in producing light to acti.vate the photomulttpli.er 

tube and which result in producing the craters associa.ted 

with hyperveloci.ty impacts. 

1 
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Proposed Impact Theories 

A few published articles have reported methods to pre­

dict and analyze the impact phenomena of small particles with 

hypervelocities. The latter term includes all velocities '.i.n 

excess of the velocity of sound in the tar~et. One article 

approaches the problem from the thermal dama ~e theory. (3)0 

In this theory, the flash of li ght accompanying the 'mpact 

is attributed to incandesence of the tar~et and of the micro­

particle in the immediate vicinity of the i mpact. In this 

concept, the crater is caused by vaporization and explosion 

of some of the target. This model has b e en criticized for 

the following reasons. The crater is found to be lined 

with p r ojec t ile materi.al.. The termal model, however, 

offers no explanation for this lining effect. Conversely, 

it would app e ar that as the target material is converted to 

a vapor. The succeeding explosion should, therefore, h •rl 

both surrounding target material and the projectile out of 

the crater. Another r~ason for not accepting the entire 

thermal damage model has been sugge sted by calculat ions 

based on a limited amount of experimental evi dence. (4). 

It was found t hat over SO percent of the kinetic 

energy is required to heat and melt the volume of 

target material that is removed from the crater. This leaves 

v ery little energy for evaporation and radiation processes. 
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Bjork (5) examined the problem of a high-velocity 

projectile of cylindrical symmetry impinging upon a semi­

imfinite solid. Bjork used a hydrodynamic model of impact 

which suggests that the penetration of a projectile into the 

target is much the same as one fluid penetrating another. 

That is, the target and projectile, under the tremendous 

forces of impact, both be come fluid.. 'I1he heml spherical 

shape of the crater is attributed to a strong radial shock 

wave that is initiated at the point of impact. One defect of 

this model is that it does not include a mechanism /or the 

production of light, This thesis shares a number of assump­

tions and procedures with the work of Bjork. 

A different theory of impact has been proposed by F. C. 

Todd (6), project supervisor. This theory proposes that a 

plasma is formed by the strong radial shock from the impact. 

A plasma is defined as a mixture of ions and electrons~ It 

will start to form from the application of pressure alone at 

a pressure of approximately 100,000 atmospheres. ( 7) . The 

radiation that accompanies the impact results from the e1ec= 

trans in the plasma re combing to form neutral atoms. It 1.s 

also proposed that a radial shock wave would account for the 

nearly hemispherical shape of the crater. The proposed 

plasma model partially agrees with the assumption made in 

both the thermal damage and hydrcdynar::dc models of impact, 

The plasma model includes a radial shock which was assumed to 

accompany the hydrodynamic model and it also assumes that the 
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material in the immediate vicinity of the impacy regions has 

a high energy density as does the thermal modelo It differs 

from the .thermal damage model in that for thermal damage, 

the high energy density is in the form of a high temperature; 

while, for the plasma model, more of the energy is in the 

form of recoverable potential energy. 

Statement of· the Problem 

The subject of this thesis is the investigation of the 

hydrodynamic mechanism involved in the plasma theory proposed 

by F. O. 1:I'odd. It is particularly desired to determine 

whether it is possible to theoretically calculate the 

formation and propagation of a shock wave resulting from a 

hyperve1oc i ty impact. 

When·a microparticle, traveling at hypersonic velocities, 

strikes a t_arget, a crater is formed which i.'.;l many times 

larger than the projectile and is centered about the point of 

iriitial contact. The crat~r may have a small lip around its 

edge. Rapid sequence, pl1,otographs show that a fine spray of 

material is ejected from the boundaries of the crater as it 

forms. This evidence is to be.contrasted with the more 

familiar .impact of subsonic projectiles., These leave long.9 
' 

deep boles ~n yhe target which are only slightly larger than 

the projectile itselfo 

Reasons for assuming inviscid, hydrodynamic flow in a 

hypervelocity impact have been summarized by Charters(8)o 



His qualitative description of penetration shares a mJmber 

of features with the quantitative results of this thesis. 

Much of the qualitative discussion that follows is based on 
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photographs published by Charters. The observation that the 

formation of the crater requires many microseconds sugi;i:ests 

a sustained disturbance, such as from a shock wave, in con-

trast to an explosive reaction. The material is ejected by 

hydrodynamic flow along the walls of the crater. From these 

comments and the symmetrical shape of the crater, the hydro-

dynamic model appears to provide the best clarfficatlon of 

the results. 

A basic feature of the model to be investlgated is the 

formation of two shock waves. One strong shock wave radiates 

out from the point of impact compressing and acceleratin~ the 

material of the target. This shock wave nrecedes the pene-

trating micropafticle into the target. The other shock 

' wave propagates backward against the motion of the imnacting 

microparticle~ This shock wave eventually reaches the back 

edge of the micropartt cle and is reflected back into the 

direction of motion of the first shock. 

The computer solution does not distin~uish between the 

aluminum of the incident sphere and the .aluminum ·of the 

semi-infinite target after they come into contact. The 

details of the impact are, consequently, a little difftcult 

to follow and to interpret. Antictpating the general results 

of the solution, the impacting micronarticle anpeers to 



compress the target material ahead of and surPoUnding itse1fo 

This results in the hydrodynamic flow of the target material 

up, around the entering particle and out of the target, 

According tc the pictures form Char•ters' artic1e, this 

material leaves the target as spray. 

The model to be studied involves the assum~)tion of 

inviscid fluid behavior of the target and projecti1e, and it 

neglects heat conduction 9 radiation, and other forms of 

energy dissipation. It will develop that the proposed 

prograi.11 requires a lar·ge computer memory. 'I1he incl1.1sion of 

any of other corrections to tbe impact problem would require 

an extremely large increase in the length of time on the 

coraputer. 

The problem for solution is the impact of a spherical~ 

aluminum partic1e of mass 10-9 grams. The velocity of' impact 

is 118,000 feet per second. The target is a semi-infinite 

block of aluminumQ 

The work presented in this thesis may be briefly out-

lined as follows: 

(1) The partial differential equations of large-

scale fluid flow are presented and converted 

to a dimensionless form. 

(2) The dimensionless hydrodynamic equations are 

converted to difference equations for 

numerical solution, 

( J) 'rhe difference equations are progranrrne d. 
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{4) The computer program, using prescribed initial 

conditions and boundary conditions, gives 

solutions describing the initial sta~es of 

shock wave propagation and crater development. 



CHAP 1rER II 

FUNDAMENTALS OF 1rHE INVISCID FLUID MODEL 

When a microparticle with a velocity of 36 kilometers 

per second impacts on a target, the pressure is calculated to 

be mill ions of atmospheres o (4, 5) • At such extreme cond i-

tions, both projectile and target are considered to be 

fluids o The necessary matbemat i.cal formulas to de scribe 

inviscid flow exist, are well known, and are proven 

by experiment o They are tbe three equations for the conser= 

vation of mass, energy and momentum. Boundary conditions 

and equations of state for the materials of the microparticle 

and the target a.re i-•equired to de,scribe conditions on each 

side of the im.pact.. The entropy must a.lso increase across 

the shock front .. These equations do not have a closed 

solution or a practically useful approximate solution. The 

mathematics are generalized as far as possible and prepared 

for solution by mumerical methods whj_ch utilize a high 

speed electronic computer. 

'rhe Equations of Fl lJ. id Plow 

The basic equations of the b31drodynamic mode 1 are 

obtained from the application of conservatlon laws to 

u u 



9 

to a perfect fluid. There are two forms in which these equa= 

tions can be tied to a physical region. The Eulerian refer-

ence frame deals with the values of dependent variables at 

fixed points in space and timeo The Lagrangean system 

describes the motion of a fluid in terms of the trajectories 

of individual element&. In most cases and particularly for 

two and three dimensional cases, Euler's representation is 

preferable.from a mathematical and a physical point of 

view, according to Courant and Friedricks (8). The equations 

of conservation, in Eulerian coordinates take the following 

form: 

J21!_ +- (° v. v 
DC 

+ Vp .::: 0 

DI -Dt 

0 

-1L- L where _Dt = c)t:- • (17 ) • The i!Jd.ependent 

2.1 

2.2 

2.3 

variables are the time t, and a set of spatial coordinates~ 

The dependent variabl~s are 

p = density 
~ 

material velocity v = 
p = pressure 

I = specific internal energy 

An au.xilliary equation is necessary to relate the 

pressure, p, to other fluid variables. 

P = P ~F;I) 
/ 
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This is the equation of state which yields the pressure as a 

function of the density and the specific internal ener~y. 

Previous solutions of large scale fluid motion in two 

dimensions have usually employed rectangular or cylindrical 

coordinates. An examination of experimental evj_dence and 

of earlier analytic approaches indicates that a radial, or 

polar, coordinate system is a better representation for this 

particular problem. The shapes of craters from high velocity 

impacts are virtually perfect hemispheres. This would 

indicate that the tran~fer of energy from projectile to 

target is largely accomplished by means of radial flowo 

This description complicates the representation of the 

impacting sphere, but the desire to·,portray the formation 

and propagation of the expected shock front is an over-· 

riding consid.erationo Since experimental evidence of the 

actions of target and projectile shows no azimuthal effects 9 

symmetry of the solution about an axis normal to the semi-

infinite target will be assumed. 

According to Rae (24), the first conservation equatlon.9 

in spherical polar coordinates, is 

~+~~+~~§ +~Qtfe+~jJ 

+f>~+d-8:;l:=0 

where ,I- and e- are spatial coordinates and u 

are the corresponding velocity components. 

and w 



The equation of motion, 2.2, yields two equations. 

The equation of conservation of energy is 

JI JI VV JI 
~ + l,( d'7 + rF -;Jo 

- -fa c St -r ~ ~J. +~ nJ 0 

11 

2.7 

2.8 

The equation of continuity, 2~5, can be more compactly 

written as 

2.9 

Using this equation in 2.6 and 2.7, both equations can be 

put into a form more suitable for nu..merice .. 1 solution. 

J Cpu) + 
r)t 

JC,-ryuu) +- JC,CW)') c9 pwu) 
//"'-:,.. J A- .,,- /.Wt> ~ d 9 

+A.e. - 0 
r).A- -

ol(fwl. + eu W + -t ~I~ 
dt /'/" C7 

. d ((t~P IA w) +- _d- c~ e ewwl. 
4- .,,,.-. tJA- ,,,+-~ e de =O 

2.10 

2.11 



A similar form can be obtained for equation 2.8 b:y using 

equations 2.9, 2.10~ and 2.11. 

d(~ ~f)W lf) 
~~e d-e-

12 

2.12 

where ~ = I +-! U 2 + 1v/2. is the total energy per unit mass. 

Since the c onser·vat ion of momentu...rn requires two 

equations, the three conservation conditions require four 

equations., 2.9 to 2.11. '11wo more relations are req1.,dred to 

solve for the propagation of a shock wave. These are an 

equation of state and the condition that the entropy 

increase across the shock front. An eq1rntion of state is 

represented in functional notation by equation 2.4. This 

relation will be discussed in more detail in a followin~ 

section. Although the equa.tion of state involves on1y 

three variables, auxiliary relations are needed to inter­

relate five unknowns the density, p ; the velocities., u 

and w ; the int erna1 ener I; and the pressure, p. 

A Brief Description of Shock Waves 

Shock waves are di1atational waves in a non-viscous 

fluid medium with a negligible resistance to shear. For 

this reason, the flow of highly compressed solids may be 

represented by the eauations of hydrodynamic flow. In the 
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propagation of a shock front, the pressure rises to a high 

value in a very thin zone. This infinitesimal region of 

rap idly changing pres sure, dens i.ty, and internal energy 

appears as a discontinuity in the equations for hydrodynamic 

flow. 

To obtain solutions, it is necessary to deri1e condi-

tions that relate the state of the material on one side of 

the shock front to that on the other side. The conditions 

are usually called the Rankine - Hugoniot conditionso 

Consider a plane shock front, as illustrated in Figure 

1, traveling with a velocity of propagation 2.. into station= 

ary material at pressure p 0 , density ~ 
(0 

, and specific 

internal energy e 0 • The encompassed material is acceler­

ated to a psrticle velocity 0- by the passage of the shock 

front,and is compressed to a density t° ;;?(#; The state 

of the shocked portion of the medh1m is related to the undis-

turbed state by a series of conservation equations~ 

Conse~vation of mass 

Conservation of momentum 

Conservation of energy 



These give the Rankine-Hurrnniot energy equation 

e-ea = -hCVo-v)Cp+po) 

where V = I Ip o 

These equations involve, five parameters of the shocked 

state e One more re la.t ion, an equation of state j is re quired 

before the specification of one variable is sufficient to 

permit the calculation of the othe J:' fo1n•" ;,Jben the equation 

of state is given in the form e = e ( p., V), it may be 

combined with the Rankine - Hugoniot energy equation to 

yield a relation between the pressure and the specific 

volume~ Such an expression is known as the 11Hugoniot 

Curve" or simply as the 11Hugonioto 11 This Hugoniot is 

unique for a given material, as are an isotherm or an adia­

bat. This special pressure volume curve represents the 

totality of the p, V points which may be reached by a 

shock transition from an initial state p 0 , V0 • 

A typical pressure profile for an one dimensional shock 

wave is indicated in Figure 2. Ahead of the shock front the 

material is undisturbed. At the head of the wave the 

pressure,p increases almost instantaneously to its neak 

value and then decreases toward zero behind the shock front. 

Th is j 1J111p marks the posit ion of the advancing shock wDve 

the propagation velocity, 2- , of the shock front is 

supersonic with respect to the und:1.sturbed mater:tal9 that ls 



P,P,a,e 

-k 

Po, Po, eo 

FIGURE 1. PLANE SHOCK FRONT 



where GI; is the velocity of sound in the uncompressed medium 

ahead of the shock front. The propagaion velocity, U-, for 

disturbances behind the front is greater than the shock 

velocity 
0- +-C 

where c is the velocity of sound in the medium behind the 

shock front. The region of decreasing pressure is referred 

to a rarefaction wave, or a simple expansion wave. 'I1he 

rarefaction gradually changes the entire profile as the 

shock progresses. 

One further specification must be included in the 

Rankine-Hugoniot.conditions for a strong shock wave. 

Entropy must increase across the shock front. The passage 

of a shock wave requires an increase in entropy of the sup­

porting medium. This dissipation is not.yet provided in the 

Eulerian flow equations or the Ra.nkine-Hugoniot equations. 

Fortunately, this further condition on shock propagation 

as well as the Rankine-Hugoniot relations can be put into a 

modified set of partial differential equations directly 

from the Eulerian flow equations presented above. 

The Introduction of Dissipation 

Shock surfaces appear in the differential equations as 

points where the velocity, density., interna.l energy and 

other variables of the fluid are discont:i..nuouso The Rankine­

Hugoniot jump conditions relate the two sldes of the shock 
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FIGURE 2. TYPICAL PRESSURE PROFILE OF A ONE DIMENSIONAL SHOCK WAVE 
-----.1 
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front~ The Eulerian flow equations provide sufficient cond:i.­

tions for solutions in regions away from both sides of the 

shock (9)o The process of applying the Rankine-Hugoniot 

conditions as boundary conditions on the flow equations; and 

thereby, solving the problem of the propagation of a shock 

wave is known as shock fitting. 

J. von Neumann and R. D. Richtmyer (10), in order to 

avoid the difficulties inherent in solving two sets of 

conservation equations, devised a method of automatically 

handling shock motion :i.n the numerical solution of the 

differential equationse Their method treats shocks auto­

matically in a digital computer. It is based on the 

introduction of an artificial dissipative mechanism wbich 

has some analogy to the viscosity and the heat conduction 

which do exist in real fluids. The introduction of this 

artificial, dissipative mechanism, or pseudo~viscosity, into 

the differential equations tends to smear the shock wave and 

change it from a discontinuity to a short region in which 

the variables change rapidly, but continuously. Even 

though this method does away with explicit application of 

the boundary conditions, the Rankine-Hugoniot conditions 

still hold across the shock and the a~proximation of 

smearing out the shock can be made to represent a transition 

zone as accurately as desired by limiting the width of the 

shock .. 
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'The artificial dissipative mechanism is introduced in 

the form of a pseudo viscosity term wbich can be added to 

the pressureo Originally a term proportional to the squa.:ee 

of the velocity gradient was u~ed. Practical tests and 

analyses carried out by Landshoff (11) indicate that a 

linear combination of terms proportlonal to the first and 

second powers of the velocity gradient gave better results 

in the numerical calculation of ahock problems. A similar 

expression has been used in the present work. The dissipa-

tion is designated as q and is given by 

-c/ V· v Cc').+ I v, vi) 

where C1 and C2 are disposable constants. Setting Cz = 0 

would give tbe original von Neumarm-Richtmyer equation. In 

the polar frame of reference, q is 

2.14. 

The Eulerian flow equations are easily converted to their 

new form by replacing p by the sum of p and q. 

The modified equations describe, not only isentropic 

flow; but also allow the description of large fluid motions 

such as shock waves. The theoretical formulat:Lon of the 

hyd1•od.ynamic model is complete except for a relation 

between the pressure and other fluid parameters., IA. 
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thermodynamic equation of state which is valid at high 

pressures will be presented in the next section. This 

will allow the statement of the prdblem in a consistent set 

of equations which can be solved by the. numerical method 

of finite differences. 

The High Pressure Equation of State 

The construction of an ex.tended equation of state in 

the relatively low pressure range is based on the evaluation 

of the Hugoniot pressure, and the Gruneisen ratio from 

experimental information .. The best source of data is from 

the work at Los Alamos. Walsh, Rice, and McQueen (12) have 

performed numerous shock wave experiments with many mate-

rials. 

Theoretical consideration is needed to extend the 

equation of state into the multi-mega.bar regions. It is 

believed that a.t pressures greater than approximately 

twenty mega.bars, the :F"ermi-Thomas-Divac (13) method y5.elds 

reasonable pressure 9 volume, temperature relations. 

The gap between low and very high pressures is filled 

by interpolation. Such a procedure has been used by Til1ot­

son .. (16). The form of the equation for density states 

f 7 Po , where l°o is the normal ( STP) value, is 

p=[CI + __ .:r;._--1,.P--J + A ( f~ -I) + B ( f /;$- Q 'J.. 2 0 15 
IC /0 -,.//a)+ I 



where I 0 j_s the specific internal energy corresponding 

to t°o • The constants a, b, A, and B are different for 

each material9 
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The existence of an adequate equation of state now 

allows the collection of the equations which describe the 

proposed impact model,. These will be put in a convenient 

form for numerical solutiono 

Dimensionless Differential Equations 

For convenience in using a computer, all variables 

are scaled to prevent production of numbers outs1de the 

capability of the computer. '.l.1he choice of a reference scale 

is the first step in reducing the set of relations to a 

dimensionless form.. This length, o<., will be related to the 

size of the impinging micrometeoroid 

o( -: f (~fl\) 2~ 16 

where Ar,11 is the radius of the projectile., Radial dis ta.nee s 

a.re now measured in units of ,t-/o<.., 

R = A-/oJ.. 

Other variables are similarly made dimens1on1ess., 

D-: pl l'o 

P = Pl Po 

Ll=Mlco 
F I/I,., 

Q = Blf'o 

p = t.flfo 
W = wlco 

2.17 
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Tbe values of t°o and Po are chosen quite arbitrarily. 

Tbe quantities Co, ..Lo, ' and !F a.re related to~ and pc, . 
Tbe independent varible, t, is changed to the new pa. rame ter, 

T, by the relation, 

T=Coi/o<. 

The angular variable, e, is dimensionless. 

2.19 

The definitions in equations 2.16 - 2.19 can be sub-

stituted into the fluid equations that were given previously. 

The equation for conservation of mass becomes 

r) D -7F -

The equations for conservation of momentum are now 

written 

J. CD JJ) - _ rd C P+Q) _ &-Cf/DJJL!) 
+-

D w'2. 
- R J T r:) R R?.J R 

J (twn G .D w J.J )_ 

and R~~ r;)G 

_J C-DWl. - _ J. Cf-rQ) - J(f1~DwU) DJJW -JT AJ& R1 JP, p., 

- c,1.cw;,eoww) 
~Mi(;; d- e-

These were made dinensionless by choosing C0 so that 

2.21 

2.22 

The conservation of energy equation can be expressed in 

terms of the new variables if .I0 and fo are sub,ject to the 

following condition, 



i4§j·;n~~ equation is 

JC Df'l __ J( R~ C f-;Ct) LJ2 
. a.I !f 2 JR 

J CRCf+Q) sine W l 
R s/nf) J& 

~(~GDW!Jil 
R /,Wrje cJ. & 

The equation of state is simply transformed ... 

2 ... 23 

2 The constants, -C1 , and ~2' are chosen empi.rically to 

provide the correct order of magnitude for the viscous 

pressure term, rather than to fulfill theoretical relations 

to other parameters. 

Q :::: - c, !2_ Y C I Y l +- c ::>.. ) 

where 

y :: JC~G, wl. 
f1 ~9o>GI-

With the equations in th~ desired dimensionless form, 

it is now necessary to convert them to difference equations. 

In the next chapter, the required di.fference equati.ons w"i.11 

be obtained. 



CHAPTER III 

THE NUMERICAL METHOD 

A consistent set of equations was obtained in the last 

chapter, which govern the space and time dependence of the 

material functions in the microparticle and the targeto It 

is now necessary to solve these simultaneous equations. 

There is no known analytic solution for this system of 

equations., and it is not anticipated that one wi 11 be f01md 

in the immediate future., (15) o The high1y developed state 

of electronic computers, such as the IBM - 7090 or IBM -

7094i. makes the use of numerical methods feasible for 

reasons of both time and relative simplicity of processing. 

A well-posed, initial-valus problem in fluid mechanics 

may be formulated and the method of finite differences 

employed to convert the differential equations to algebraic 

difference equations. These difference equations may be 

readily solved on the large computers. 

The Two Dimension al Difference Equ.at ions 

The problem for solution has spherical synnnetry and. 9 

for this reason, the equations for solution were converted 

to spherical coordinates. Since the problem has symmetry, a 

vertical impact may be followed, after a judicial selection 

24 
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of coordinates 9 by plots on only a part of one qu2drant in a 

single planeo The coordinates are P, and G- o Por 1:1 normal 

impact, the .. axis of A for e = o is taken vertically thr011gh 

the initial point of contact between the microparticle and 

the surface of the semi-infinite slab. ':Phe origin of 

coordinates, at which R = 0 , is taken at a little more 

than twice the diameter of the microparticle above the 

point of initial impact. The plot of the entire affected 

volume of the impact is obtained by rotating the selected 

plane mentioned above the vertical li.ne If for B = 0 ., 

The region of impact on the plane is divided into a number 

of cells o The equations are d if fe renced for th is me sh. In­

dividual cells are designated in space by Min R direction 

and L in the G dil"'ection; so that, 

M = 1,2,3, •.• , Mfinal = MF 

L - 1,2,3, ... , Lfinal = LF 

The time is measured in units of N°DT, where DT is a small 

but finite increment. The radius at the center of each 

cell is given by 

(M - .5) 

and at the sides of a cell by 

RM-?z = DR· (M -· 1), RM+ft = DRd1 + RO 

The other two boundaries of a cell are rays of constant 

angle, which are separated by a constant, De. The area 

of any ce 11 at a distance 9 FtJVf, from the org in is 



AAM = RM O DR OD~ 

Values of the density, the pressure, the pseudo-

viscosity, the two components of the material velocity, 

and the energy are defined at the center of each cell 

and are regarded as average properties of the material 

within a cello Each variable is designated as f ~- This 

identification follows from above and refers to cell 

number M along R and the ce 11 nuYJ1ber L in the G dire ct ion. 

These values of the quantities stored for each mesh point 

advance by a small, later time, DTo 

Forward time differences are used for all time deri-

vatives and all spatial derivatives are initially written 

in terms of central differenceso Equation 2.20 can now 

be written as 

, ri.Lrf/?.HDLt!h/V1All-1//2t,I , ,-.,L-1/1.,N!'i !.-l/'i.N11,;L-JJ::../V 
Stl')CTM __ M YVM - s,n Ut1 /,,,1..M VV,t') 

RM De sJn e~ 

To compress notation 9 see Figure 3.,, quantities at M, L - l 

are designated side one, at M -!, L, side two; at M, L + !, 

side three; and at M + 1 L, side four. Using th is short-2, 

hand and factoring L AAM in the denominator, the fin j_ t e dif-

ference form for the conservation of mass equation becomes 



I 

L+l/2, MI) 

Side 3 

3idc 1J 

L, M+l/2 
-.., 

L, M 
0 

-
L, M-1/2 
Side 2 

I 

1) L-1/2, M 
Side 1 

FIGURE 3. CELL BOUNDARY NOTATION 
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11+1 = [)~ + t~ [09/RCCR~DJ.JJ) - CR 2DJJ)'I) J.l 

f DR/v,,B(( ~&Dw~ - (~80W)3)] 

All quantities on the right are for time N°DT0 If these are 

all known, or prescribed, then the density, DM_ N+l, for 

the time ( N+l) · DT can be ca.lculatedo 

The other conservation equations are treated. similarly. 

Radial equation of motion: 

( OW.)~ N+I-:. ( DW)~ + :A~ [ R. DB(( P+-Q).2 -{_P+ Q)~) 

+- De IR ( ( P/ rn..1)~ I/Jiu. - ( R~ D LJ)y L}y) 

+ oP./Mnr;;. rc~eDw:J 1 W, -r~BWDJgltf3J 

+ oR. oa o ~ Nf/lw ~ 1011 .... w ~ f{+ll'J.. J 

Tangential equation of motion: 

3.2 

(Ow);, Ntl:: (DW)~ +- DTIAAti [_or?(CPrCJ), - (f+-Q)3) 

-1- Of<I/.J;WJ e ( ( 6WJ B Dw), VI, - { ~B DW) ~ WaJ 

- DR· De · DJ;.. p,-12. u:;, f{+m. w):;.. h'+l/'2. 

Conservation of energy: 

CD~)~ I'll' =- C D2") 74 + DT / M~ [ 0 R/ ,d,{/)1G.(-%(iJ/,:&.hJt) 

.f( P+a>, w, ~e, - CPtQJ?:, ws ;,w;,a., +C~e ow,)!lf,) . j :·r~· 
.;. Of!J/{<. (Crr-ou1'A- (f<;..!)LJ)y'f11 + 'ff(P+Ol)-;J.1,.-RCf+Q)i; JJy) J 



The two auxiliarly equations are independent of time 

and are algebraically translated. 
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The above system of equations is explicit and the 

solution may be moved forward, continuously, by means of 

s:imple algebra. E.quation J.l gives a value for the new 

density, which is then used to find the new velocities from 

equations J.2 and J.J. Continuing with these known values, 

internal energy is found. from eq11ation 3.4. At the new 

time level, the quantities nN+l , EN+l , uN+l , and wN+l 

enable the additional equations to be solved for new values 

of the pressure, P, and the pseudo-viscosity, Q. The new 

profiles (set of values fk N+l) then become the starting 

point for the next advance in time. 

An extensive discussion of means of evaluating differ­

ence expressions is available in a previous work~ (14). 

The selection of means for evaluating all terms in the 

mod.if ied flow equation provides an algebraic procedure. 

very stra.tghtforwardly programmed for a digital computer. 

Then the equations will yield a solution for two-dimensional, 

fluid motion 9 including shock waves and other large-scale 

fluid movements. 

Finite Difference Mesh C'onf iguration and Gycling 

The selection of~ single plane to illustrat~ the 

solution and to provide the net that is required for the 

computer solution was discussed earlier in this chaptero 
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Both the micropart icle, before impact 1 and the f:ree s1J.rfs.ce 

of the semi-infinite slab must be included in the plane. 

The microparticle is represented by a semicircle of radius 

RM. The position of the face of the semi-infinite target is 

initially given by 

R cos G, = S 

where S is a constant distance measlired in tb.e same units 

as R. In such a mesh, there are three possible kinds of 

cells; cells full of aluminum, empty cells9 and mixed cel1s 9 

which are partially filled with aluminum and partially 

empty •. '11hese mixed cells contain a matertal - vacuum 

boundary. Each mixed cell is marked vd th a parameter called 

the partial area, Ak It is a quantity which s n ies the 

amount of area of a cell that :'i.s f:'i.lled by aluminum. 

The :i.nitial informat :Lon to tbe computer program :ts the 

free velocity of the microparticle, V0 , togeth~r with the 

locations and partial areas of the mixed cellso 

The cir•cumference of the micrometeoroid is g;Jven the 

equation of a circle in polar coordinates, 

2 b - e 2 + R 2 = 2b R co sG = 0 

where a is the radius of the circle with center at 

The partial .area of a ce11 is determined by com.put tbe 

points of intersection of this equation with the coordinate 

lines of constant Rand constant and then by integrating 

between these limits. This process is illustrated in 

Figure 4. 'rhe diagram shows a typical mlxed cell hi the 
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r 1(R, 8) is the equation of a semicircle. 

R1, R2,e1,e2 are cell boundaries. 

R1 , R", 81 , 811 are limits of integration. 

FIGURE 4. INITIAL PARTIAL AREA CALCULA Tl ON 
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lower half of the projectile9 There is a sign change for 

the upper half of the microparticle. These calculations 

were made independently of the main computer program on 

an IBM-650. 

The motion of the microparticle as well as the bo1,mdary 

of the target is followed by changing the partial areas in 

the mixed cells and by the appearance and disappearance of 

mixed cells. 'l'he fluid parameters of a mixe,d cell are cal-

culated in the manner that is outlined, above, for aluminum. 

cells is that of changing the partial areas in t:ime. Per-

haps the simplest possible method is to use an approximate 

formula based on the known velocity components. 

,Vfl - AL 
- ,v1 

where 

!JA- U~ · OT 

,Lje=w~·DT 

where DT is the elapsed time of one iteration cycle. 

The calculation of the new partial areas is the last 

step of a calculation cycleo The whole mesh has been moved 

forward by a time step, DT. Tbe mixed cells 9 which may 

contain a moving boundary, must be cha.nged from t irne to time. 

A test must be made after the end of each time step to ascer-

tain whether any of the mixed cells should be replaced bv . 1..I 

either a full, or an empty cell. Either possibility 
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re quires the construct ion of a new mix.ed cell. The partial 

area of a mixed cell might be calculated greater than the 

actual area of the cell, or as vanishingly small. In both 

cases, the cell is changed. 

In summary, the solution is obtained as follows, the 

values of all parameters a.re found by successive ap-olica­

tions of equations 3.1 through 3.4 for all full and mixed 

cells. The parameters of an empty cell cannot be changed 

by these equations. Empty cells are changed only by move= 

ments of mixed cells. Then, the new partial areas are 

found and mixed cell changes are made., if necessary. 'I'his 

procedure can then be repeated to give a numerical solution 

for the whole region as time increases with each calculation 

cycle. 

Quality of Solutions 

There are two important questions to be asked concerning 

the accuracy of a numerical solution to an initial value 

problem., ( 18): 

1. Do both the partial differential equations and 

the difference equations possess unique 

so·lutions? 

2. If the answer to 1 is yes, is the solution that 

is obtained by solving the difference equa­

tions, step by step, actually a sufficient 

approximation to the true solutlon? · 
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Full and completely rigorous answers to these questions are 

not available. A unique solution is judged to exist if the 

physical problem is well defined. It is generally believed 

that the compressible fluid equations give rise to a system 

of partial diffential equations which define as well-posed 9 

initial-value problem. (19). 

The second question concerns the convergence of the 

approximate solution to the true solution. The true 

solution is not known for comparisono The system of 

difference equations is e:xamined 9 somewhat emp irlca.lly, for• 

convergence. Different combinations of the increments.,, ffR.,, 

D &, and DT are used and the resulting solu.tions are com-

pared. If these different solutions agree very cJ.ose ly, 

then a good solution is probably being obtained. 

A more encouraging condition can be suggested from the 

Equivalence Theorem of Lax. (20)! 

Given a properly posed initial value problem and a 
finite,-difference approximation to it that satisfies tbe 
consistency condition, stability is the necessary and suffi­
cient condition for convergence. 

The consistency condition requires that tl1e resulting 

numerical solution depend continuously on the jnitial data 

and that the difference equations go over to the differential 

equations as DT, DR.9 and De approa.ch zeroo The first pa1·t 

bf the condition is satisfied by the mechanism of the finite 

difference method by which the solution progresses from the 

known to the unknown" The second ps.rt of the consistency 

condition is satisfied, since this is the usual method of 
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derving the hydrodynamic flow equationso With the idea 

established that stability implies convergence, the concept 

of stability will be examined. 

Since numerical approximation methods are used, it is 

expected that there is a small difference between the true 

solution and the computer solution, 

E = fCR)9)T) - f'CM·D/1.) L·08JN·DT) 

The solution is stable if this error remains small or g rows 

smaller. The solution is unstable if e grows without 

limit. When the computer results indicate profiles with 

exceptional, oscillatory behavior, the particular solution 

can be corrected by .the proper choice of the mesh ratio, 
~ ~ 

AX/DT. (2l)o The position vector is X = [R,9J, 

One well-known relation in the field of fluid dynamics 

is the Courant condition {22), 
_.\ 

~X/DT = Cm~ c 

that is, the mesh speed Cm must be greater than the sound 

speed which is the greatest velo?ity at which dist1:1rbances 

may be propagated from place to place in an elastic mediumo 

For problems involving shocks and large material velocities, 

this restraint is insufficient . 

Richtmyer ( 22) has shown for '~ome cases a more suitable 

requirement is 

~ 

where Vis the material velocity. This condition recognizes 
I 

that disturbances mqve with the velocity of sound plus the 
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velocity of the flowing medium. 

In the problem to be discussed, the medium is usually 

highly compressed. The flow velocity and the sound velo-

city are roughly of the same order," of magnitude o The follow-

ing approximation, then is made to the above condition, 
~ ..... 

,i3 X/DT ?: 2V 

In one-dimensional tests, however, tb is re lat ion presc-·r'i:beq}"a -

mesh ratio which was about five times too large. (14). 

Iri practice, DR and D9 are fixed and DT is varied to satisfy 

requirements for stability. The actual condition used to 

check stability is written 

where U and Ware the maximum flow velocity components 

occuring in the solution and R0 is a typical radius of the 

finite difference mesh. 

Development of Computer Program 

The computer pd.de :-Jtor. so:iving the <finite:· difference 

equations was writter:i,for an'f IBM-7090 computer. The size 
r 

of' the computer was demanded by the requirement that an 

accurate numerical approx:ima.tion of the solution be obtained. 

In the radial direction, the net was marked by f'.i.:t'ty cells .. 

In the angular direction, there were initially thirty-five~ 

cells covering a sector of ~s•. The IBM-7090·has a storage 

capacity of approximately 32, 000 words. Of th is storage, 

/ 



37 

about 25,000 words were used.for storage of vsriables for ea 

each point of the finite difference mesh. There were eleven 

parameters defined and stored for each f1l1id cell: 

D, Density in the cell. 

U, radial velocity. 

W, tangential velocity. 

E, internal energy. 

P, pres sure. 

CU, radial velocity at time N+l • 
.. 

CW, tangential velocity at time N+l. 

CE, internal energy at time N+L 

A t . 1 (1"f a.n~.g). $ par 1a area 1 N'I', a. name tag denoting 

the kind of cell; (+)fora full, aluminum cell, (.-) for B. 

mixed ce 11, and ( 0) for an empty ce 11. 

CD, density in a cell at time N+l. 

The computer code was written in PORTR.1\N and in PAP • 

. FORTRAN is a high le ve 1 computer language wh lch, w:l th sl j __ ght 

changes, is acceptable to a wide assortment of large digital 

comp~ters. It is not, however, the basic machine language 

of any machine and must, therefore, be translated into the 

basic machine language of the computer being used. This is 

accomplished generally in two steps; the first being a trans-

lation to a symbolic assembly language, the secorid being to 

assemble the symbolic language program :Lnto a basic machlne 

language program. FAP, FORTHA.N. ASSEMBLEY PROGRAMJI is the 

symbolic language associated wlth Fortran IL The transl8·-
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tion process required by programs written in FORTRAN is.less 

efficient, that is, produces more instructions, than programs 

written in FAP or a basic binary machine languageo In order 

to conserve storage, part of the computer code 1 DRAW', 

developed to' solve the modified flow equations 9 was written 

in the symbolic language. The final program occupied 

§.bout 6,_500 words of the computer's memory .. 

To solve the difference equations on a 7090, a logical 

calculation p.ath must be developed for use by the comp1..1tero 

This process is illustrated, in a rather general wayi by 

Figure p.. Calculations are performed for each dependent 

variabl~ in each.cell corresponding to the directions of the 

difference equationso Other monitoring is required and 

performe(ii by the c.omputer code to check the me sh conf igura­

t ion and impose boundary conditions. 

1rhe cycling· of the program would be as follows: one 

first calculates the values at tlme N+l for the whole mesh 

using equations J.l-3o4 for all full and mixed cellso 

Equation 3.7 is used to find the new partial area for all 

mixed cells. Boundary cell changes are then made if there 

are any. The new value of pressure is then found from the 

equation of state. After the completion of a cycle, the 

results may, or may not, be printed out under computer 

program control. The new values for the variables replace 

the initial values so that the cycle may begin again. 



Read in initial values of tariables 
and constants of program<> 

Compute Density, Radial and Tangential 
Velocity Gomponents 9 and Specific 
Internal Energy for each cell for 
one time increment later than starting 
conditions., 

Compute Q-term and Pressure for every. 
cello 

Compute change in Pi=irtial Areas for 
each interface cello Test interface 
cells for cell changes 

Write all computed values, if desiredo 

Store computer values in initial value 
locations., 

Figure 5. Computer Flow Diagram 
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CHAPTER IV 

DEVELOPl'F.ENT AND PRESENTATION OF SOLUTIONS 

The set of difference equations developed for a 

computer solution have sufficient versat:1.lity to yield a 

solution for arbitrary initial values and boundary condi­

tionso The basic initial value necessary for a solution 

is the free space velocity of the incident micrometeoroido 

The phy·sical properties of aluminum under normal conditions 

supply the further necessary initial value informationo 

Boundary conditions must be applied to the modified flow 

equations to insure the proper representation of material­

vacuum-interfaces and symmetry properties assumed in the 

problemo 

After obtaining the solutions, the nllmerical data is 

reduced by selective plotting of the space variation of the 

fluid variables at different instants of timeo This chapter 

presents a survey of the information obtained by uslng the 

hydrodynamic modelo 

A series of curves illustrat~ng the typical behavior 

of the pressure,, velocity, densityjj' and internal energy 

are shown as functions of space and timeo Further analysis 

of crater growth and peak pressure 'decay are also portrayed 



graphically" The dominant features of the solutions are 

the. appearance of two shock waves at the point of initial 

contact and the formation of a cavity behind the netra-

ting projectile" Flow patterns peculiar to the spherical 

shape of the incident micrometeoroid are alsb displayedo 

Initial Values 

The basic operation of the finite difference method 

consists of moving from the known to the unknowno A 

completely specified net at one time is advanced by a small 

step in timeo The action is then repeated indefinitely to 

develop a numerical solution. 1l10 start the solution 9 at 

time equal zero 9 a simple configuration is cbosen., Just 

prior to the beginning of the calculations 9 the leading 

point of the micrometeoroid is in contact with the semi-

infinite target. This is called the point of impact and 

lies on an axis normal to the targeto Tbe material velocity 

of the projectile is identical witb its free space velocity, 

V0 o The material of the target is at rest. Both projecti 
. 

and target are considered to be inviscid fluids dur the 

flow that follows the impact. Tbe density of both bod s 

is that of normal aluminu.111. Othe:t:• fluid parameters such a.s 

the internal energy and pressure are initially zeroo 

Figure 6 illustrates the prescribed conditions. 

In addition to these initial values 9 further conditions 

must be applied during the running of tr1e eomputer p 
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FIGURE 6. INITIAL VALUE ILLUSTRATION 
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Boundary Conditions 

Several boundaries appear in the formulation of the 

impact problem.. Each must be subject to specialized 

treatment. The region of interest is taken as a sector of 

one quadrant (see Figure ,6) of a polar coordinate system 

with the variables R and e. The initial point of contact 

is on the axiso The application of this condition is 

accomplished by requiring that no mass flow across this 

axis. A material-vacuum interfact requires specification 

of zero pressure on such a line., This is accomplished 

with respect to the finite difference mesh by setting 

the pressure in a cell containing some aluminum material 

and some empty space equal to zero on the side or sides 

of the cell adjacent to the vacuum. Apart from this 

restriction of no applied force, the aluminum-vacuum bound= 

aries are free to move and are moved as indicated by the 

velocity of,.the solid material in the mixed cell., As 

materials flows out, density cannot be less than in the 

original solido The computer program also monitors the 

differencing schemes to prohibit averaging across an 

interfaceo Fluid properties are not averaged between 

empty and ful.l cells. 



The Solutions 

The finite difference method that is described in the 

previous chapter, complemented by the necessary initial 

conditions and boundary specifications was used to obtain 

solutions for the hydrodynamic modela The numerical results 

evaluate the density, the pressur19 9 ·· the specific· int'ernal 

energ:y,jl and thi;, two components of the material velocity at 

cell centers; that is, these variables as functions of Rand 

e , at discrete instants of time., The quantity of numeri-

cal data produced by the computer is enormous .. The des­

cription provided by the h;ydrodynamic model is best ,sh0wr.C 

in the form of graphs which show the preceeding variables 

at selected instants as the impact proceeds in tirne. The 

following sections give illustrations of tbe important 

results and the nature of the solutions. 

Organization of Solutions 

The step by step description of the early pro ess of 

the hypervelocity impact are first j_llustrated graphicslly 

by profj_les which show the variation of pressure along 

the normal axis to the target at differtnt times., Two 

dimensional plots are shown in a plane bmrnded by the axis 

of symmetry. The vol1Jme distribution of the variables is 

obtained by rotating the two dimensional plots around the 

normal axis. •:i;ihe values a .. t an instant of time are shown by 
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lines of constant density, by isobars, by lines of constant 

energy, arid by arro~s that show the magnitude and direction 

of the velocity. Since the volume distributions of all the 

variables is symmetric about the axis of symmetry, the 

velocity is entirely contained in the two dimensional plot., 

The illustrations presented show the initiation of 

shock waves at the point of impact and subsequent decay 

as larger 'Volumes and free surfaces are encountered" Flow 

patterns for the pressure and material velocity are 

presented with comments on the chief features. Graphs of 

the time history of free surface motion are then presented. 

Shock Wave Formation and Decay 

The most noticeable features of the hydrodynamic 

solutions are the two shock waves which originate from. the 

point of initial contact" Two compressive waves of approxi-

mately equal strength appear soon after the start of the 

calculationso One moves into the target and the other 

into the projectile" The shock wave into the micrometeoroid 

is reflected from the vacuum-material boundary as an 

expansion wave which races to weaken the primary shock wave 

traveling into the targeto This primary wave also decays 

as tbe volume it affects increaseso As the primary front 
. •. 

penetrates greater distances into the target, more an~ 

more material is compressed which decreases the energy 

density in the propagating disturbanc_e o 



Pressure Profiles 

The processes of shock wa.ve format ion and subsequent 

decay are illustrated in the first series 'of graphs!! in 

Figures 7 9 8; and 9o To a.mpli.f'y the points of d:i.SClJSSion~ 

shock profiles, which are curves of function values versus 

distance~ are presented for several different times alonp:: a 

line near an axis norn:ial to the target. The mot ion of 

the fluid is very nearly one dirnmensional along such a lineo 

On ·the. axis, variables are functions of the radial distanceo 

Each Pigure is marked along the distance sca1e in units of 

the micrometeoroid radius 9 RM• The distance is :rrarked from 

the point of initial contact, S. In those" graphs in which 

the back edge of the micrometeor6id or back edge of the 

fluid material is contained 9 the position is labeled w:'ltb 

the letter B. The pressune is given in units of megabars,, 

Each mega.bar is approximate1y one million atmospheres. 

Plots of the pressure illustrate graphically the owth 

of the affected volume which occurs after impacto An 

initial peak, slightly displaced below the point of first 

contact, indicates the start of shock wave formation" 

Approximate wave profiles show the establjsbment of two 

shock waves. Reflection and propagatJ.on of expans,ion waves 

from the vacuum=aluminum boundary, where the pressu1"'e; is 

equal to zero, are again seen t.o · contribute to the decay 

of the .pr•imary shock wave .. 
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A. Time= .0524 x 10-9 sec 

B 

B. Time = . 105 x 10-9 sec 
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C. Time= .224 x 10-9 sec 
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Early stages of pressure development are illustrated in 

Figure 7o The first results given by the finite difference 

scheme are for only a f~w cells of the mesh and must be 

interpreted as containing oscillations, 

Reflection of a strong pressure front from the free 

surface will begin soon after• the time profile shown in 

Figure 8-A. This release wave combined with declining 
1,.,.,., 

peak pressures at the head of the disturbance can be s~en 

in Figures 8-B and 9. In the pressure curves, there seems 

to be a spurious peak at the front of the shock wave; that 

is higher pressures than would be expecteda This is dua 

in part to the effect of the pseudo viscosity in the n11m~"r:l­

cal calculationo The value of the coefficients in the 

expression for the pseudo viscosity were kept at very small 

values, with greater smoothing effects on the flow profiles 

being o~tained from the stucture of the finite difference 
...... ' 

equations a Tb is was done to avoid losses in movtng the 

particle through the cells of the finite.difference mesha \ 

The.reduction in value of the pseudo viscosity results in 

larger oscillations in the variables, particularly the 

pressure and the specific internal energy, than in previous 

hydrodynamic calculations. U-i··a 14) o 

Pull two dimension results of the hydrodynam.ic model 

are ~hown in the next sectiono 



Two Dimensional Distributions 

The hypervelocity impact of a micrometeorold on a 

semi-infinit~ target puts the material of the target in 

motion and produces a large scale disturbance of the flow­

ing aluminum. A series of two dimensional maps showing the 

fluid pressure and material velocity distribution drawn from 

tbe numerical solutions of tbe bydrodynamic model are pre-­

sented in this section. 

A qualitative survey of the features associated with 

hypervelocity impact bas been given by Charters (8). 

Tbis description will be discussed now since the present 

solution embodies a number of observed effects. 

The impact is accompanied by a fla:sh of light. 

Radiation can be observed .form the immediate vicinity of 

the impacto This is not shown by the hydrodynamic equations 

since they contain no radiation producing mecbanismo If 

the gave rning e qua.t ions we1,e supplemented by an equation 

of state which includes ionization and radiation energy, and 

changes in the conservation equations, it is believed that 

the plasma state formed by the iiapact would give radiat :lono 

The shock waves discussed are observed in high speed 

experiments. One 9 referred to as tbe primary shock wave 9 

radiates out form the point of impactv compressing and 

accelerating the material of the target a.bead of the on­

rushing sphereQ Another wave moves back jnto the pr•ojectl1e 
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opposite to the motion of the projectile. The res~lt of 

these two movements is an approximately stationary shock 

front moving very slowly beyond the point of initial contact. 

As the back edge of the micrometeoroid passes the 

position of the original target, a depression or crater 

starts to form. !VIost of the flow is in a radial dire ct ion 9 

but some material moves around the crater edge and is 

ejected. These features seen in the laboratory are also 

evident in the numerical solution. The opening of a cavity 

and the movement of target material ab'ove the original 

target surface are both very striking in the solutions 

presented. 

The shock wave which is reflected from the free surface 

as a rarefaction wave eventually overtakes the primary shock 

wave. This latter wave penetrates great distances into 

the target. The expanding crater follows at a distance. 

Between the two, a shell of highly energetic matter, 

compressed by the shock and stretched by the rarefaction., 

is found. Xhe strength of the shock wave decreases as its 

volume of action increases, and as it is overtaken by rare­

faction waves originating at the free surface of the materi­

al •. These features of hypervelocity impact are displayed in 

the hydrodynamic solutions. 

Ultimately, the plastic and elastic properties of the 

target material void the perfect fluid sssumptions and the 

final size and sh:pape of the crater cannot be· fix<id. 'i'his 



difficulty can be remedied by consideration of the chan~e 

from fluid to elastic flow. 

53 

Distributions of the pressure and material velocity are 

shown for different instants of timeo The velocity is 

portrayed by scaled vectors representing the velocity of 
/ 

material at the tail of the vectoro A velocity scale is -·- __ ..,. 

given.on each illustration. Pressure contour maps are 

obtained by connecting points of equal pressure on different 

radial lineso Distances are shown on the normal axis in 

units of the micrometeoroid radiusll RMo The times shown 

for the typical 10-9 gmo micrometeoroido 

, Pressure and Material Veloci.ty Distributions 

The micrometeoroid enters the target quite rapidlyo 

Two early velocity distributions a.re shown in Fig11re 10. 

Most of the velocity vectors are parallel to the axis 

and represent the free veloclty of tJ:;te micrometeoroia.· The 

vectors n~ar the original surface and below are reduced in 

magnitude and oscillate. 

The pressure distribution in Figure 10-B shows the high-

est pressure attained in this part'i.cular tmpact caseo Two 

approximately equal shocks will be formed from the pressure 

peak shown. There is some assymetry apparent in Figure 10= 

Band subsequent plots due to the geometry of the entering 

projectile and the initis .. l div1.ston of material ve1oc1.ty. 

The material of the micrometeoroid has initially 
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high velocity while the material of the ter~et is at resta 

Some general undulati<ms are seen in the c')ntour maps and 

may also be discerned by careful inspection of the velocitJ 

distributions. This is caused by the particular choice of 

times and points included in the results and by the nature 

of numerical solutions. 

The velocity distribution in Figure 10-B gives the 

start of the expansic,n period of the disturbance. Material 

moving from the straight line path of the onrushing micro­

meteoroid has been put in motion by the primary shock wave 

rather than by direct contact with the projectile. The 

maximum pressure developed ls twelve megabarso The extent 

of this peak pressure is shown in F'ig:ure 10-B. In an 

idealized treatment of this impact~ the peak pressure w,Juld 

extend to the surface. In the numerical scheme!/ the motion 

of fluid particles is communlcated from cell to cell in 

the mesh covering the region of interest. The model chosen 

probably depicts the physfcal situaticm rather ·well, 'J1he 

peak pressure occurs near the normal axis under the 'imping= 

ing sphere., 

The continued growth of the disturbanced is shown in 

Flgure 10., The prlmary shock wave propagates rapidly into 

the target., This material velocity imparted by the orimary 

front slightly exceeds one-half the original free space 

velocity of the impinging particleo An lmpac t 1.ng 
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flat plate of aluminum on a semi-infinite slab of aluminum 

would give exactly one-half the velocity. ( 23) • Further 

illustrations of full two dimensional material velocity - . . . ~· 

vectors depicting the gross motions to target and sphere 

will be presents~ and discussed. 

The behavior ~f the material velocity is unique 

compar'ed to the other fluid model parameters. At the start 

of the calculations, all aluminum material is in its normal 

undisturbed state. The micrometeoroid bas initially a very 

large material velocity which represents the free space 

velocity of the particle. This leads to the distinctive 

velocity distributions at initial stages of the imp act. 

At slightly later times, as shown in F i gu:re J.2, the 

radial character of the fluid d isturbance can be seen. The 

material of the target has a strong tendency to expand away 

from the re g ions of 'direct impact with a material velocity 

of magnitude ,approximately one-half the free space velocit y 

, of :the micrometeoroid. The shape of th ~ d, isturbed port ion 

of the target material, and the micrometeoroid, can be seen 

from the pI?essure distribution in Figure 12 .. It is near 

this time that free surface effects qegin to influence the 

solution. 

In time, the shock wave traveling to the rear of the 

micrometeoroid reaches the back edge. It is reflected as 

a rarefaction wave. The modification of the primary shock 

wave caused by material expansion is shown in Figure 13. 



If the target and projectile had been of different media 

this first reflection could result in a tension wave 

proceeding from the free surface. Since the impact 

process started with aluminum on aluminum, no negative 

pressures occur. 
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In one of the later time plots, Figure 14, the radial 

character of the cavity and disturbance is evidento This 

shape is a result of the geometry of the impinging micro­

particle. Upward motion near the target surface can be 

seen in Figure 140 

Further propagation of the shock wave provides an 

illustration of the decay of the primary shock wave as 

amounts of previously undisturbed aluminum are engulfed. 

Ultimately» this shock front will reduce to a sound wave of 

vanishingly small amplitude. The hydrodynamic model does 

not apply to such late stages of the ir.ipact and the 

solution must be terminated before material properties 

such as yield strength play an important role. The last 

results obtained in the computer program are presented in 

Figure 15. The two distributions a.re terminal on1y in an 

arbitrary sense. They do not and cannot, represent the 

final stages of crater formation. The deepest part of the 

cavity is centered a.bout the impact point. 

The density behavior of the fluid model is closely 

related to the pressure of the fluido Plots of constant 

density lines for various times will be discussed in the 
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next section. 

Density Distributions 

A slightly differ·ent view of the impsct is given by 

8* series of _grB.phs of cor1sta.r1.t d.enslty contcu .. :vse. 1l1l1ese-

illlistrat ions were drawn in the same manner as the pressure 

distributionsa Constant density contours are shown in 

J?igur·es 16, 17, and 18. The density value is given as the 

ratio of material density at a point to that of normal 

aluminum. Lines marked 1.0 jndicate a return to normal 

conditions. 

Density values result from solutions of the continuity 

of mass equation. Such values to2ether with the internal 

energy determine the pressure in the hydrodymnrd.c model o 

At peak pressure and peak density points, however, a shock 

process is occuring and the equation of state applicable is 

the Hugoniot curveo Such a relation is apparent at early 

times in the nurne rical so 1 ut ion where all di stul'.'be:rnce s are 

essentially by shock compress i.on. 

In the first stages of micrometeoroid penetration, the 

density behaves much like the pressure. A peak is formed 

slightly below the original point of contact. This pe is 

then tro J.dened into two approx:l.r:1a.te1y equal shock 1,,raves, 

The propaggtion and relection of these two fronts proceeds 

as discussed previously. Illustrations of the density 

variation are found in Figure 16. 
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Further results of the numerical solutions are 12:iven 

in Figure 17. The dissipation, as with the pressure, is due 

to rarefaction w1;1ves and the ever-increasing vo11Jme of 

action. 

Material is seen above the ta.rget surface in F'igure lBo 

It is at th is time that the c ond it ion requiring the dens i.t y 

ratio to be equal to or greater than one is first invoked. 

Material which leaves the target is probably in the form of 

a fine spray. The average density of this spray, composed 

of some material clusters and some vacuum between, is 

undoubtedly less than that of normal aluminurn. In fail1ng 

to adequately describe such states, which would have a 

negative pressure, the equation of state prevents some 

motion of the shock wave in the direction perpendicular to 

the axis of impact. 

Internal Energy Distributions 

The internal energy is calculated from the total ener 

which is conserved in the solution of the problem. Contom's 

of constant internal energy are shown in three Figures, 19, 

20, and 21. 'l1he values of internal energy are given in terms 

of a reference energy which equals 4.4 x 101 2 ergs/gm. The 

three maps shown are called illustrative rather than 

exhaustive. 

The energy distribution shown in Figure 19 is very 

similar in shape to the pressure contours at the same tlme. 
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There is some slight sluggishness evident in this Figure and 

in Figure 20. That is, the internal energy does not propa­

gate as rapidly as other fluid parameters. 

The shape of the free surface in Figure 21 shows the 

approximate radial character of the disturbance at this time. 

The decay, Ds in other va.raiables :ls, of-course, .evident 

in the values of the constant internal energy lines. 

Cavity Pormat ion 

The purpose of the study of hypervelocity impact 

studies is to predict micrometeoroid damage to space 

vehicles. The assessment of such impacts is quite often done 

in terms of penetration or crater size related to initial 

impact velocity values. The numerical solution presented for 

the hydrodynamic model shows the initial and middle stages of 

cavity divelopment. 

In order to observe the formation of the depression, a 

series of penetration versus time curves are shown in 

Figures 22 and 23. Such illustration also ~ive an overall ,_ 

view of the nature of the solution obtained. 

The.mean velocity of free space micrometeoroids in the 

vicinity of the earth is about 36 km/sec. (2). Solut:lons 

were obtained for an im.p.,,ct of this velocity. Positions of 

the material surface are shown for various times in Figures 

22 and 23. The time: for each curve is given in each 

F'igure. 
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The progress of the solution describes the "swallowingn 

of the incident particle- Tbe momentum and energy trans-

ferred from the micrometeoroid to the target compress the 

aluminum and cause the material to move into the target 
,,:. 

forming depression. 

The initial motions of target and micrometeoroid are 

followed in Figure 22. At 'the late st time shown, material 

from the target is squeezed out by the disturbance of the 

micrometeoroids entrance. The cavity formation and ejection 

of material proceed in Figure 23. 

The shape of the cavJty assumes a radial symmetry about 

the point of contact. The curves shown bear out this 

statement~ 1 with the deepest portions of the cavity are 

on a radial arc about 3. As seen from the numerical 

solution there is a strong tendency, evident in the graphs, 

for some target material to flow away from the entrance path 

of the micrometeoroid. This activity corresponds to the 

spray observed in hypervelocity cratering experiments. It 
! 

is probable that the material expands to such states in 

which the density is less than that of normal aluminum. 

The equation of state, however, only allows states of 

compression or, at least, zero pressure, The density is 

required. to be equal to or greater than normal density o 

This provision leads to an impasse near the distorted 

portion of the surface where it is probable that densities 

less than normal would be seen. The shock wave moving in 



the lateral direction cannot propagate as freely as the 

pressure front penetrating along the normal axis. 

Dissipation of the Peak Pressure 
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A ;,plot pf pressure <iecay has been prepared and is 

presented in Figure 24. This is shown in order to illustrate 

the rapid decay of the peak pres.sure. These peak value 

dissipation tr~ces aiso permit correlation with experimental 

data and other theoretical calculations. 

The curves are drawn using the approximate peak 

pressure along the normal axis versus the position ·Of this 

function on the normal ax.is. There is some uncertainty 

concerning the exact point to point comparison, but the 

average curves yield a aatisfactory indication of the decay 

rate. Distance along the axis is measured in units of 

the micrometeoroid radius, RM, from the point of impact, 

S. As R increases, there is some uncertainty in interpreting 

the peak pressure and the large scale of the drawings seems 

to indicate a decay to a constant state~ This is not 

observed in the results as can be verified by reference to 

full pressure distributions. 

For the case of an impact velocity of 36 km/sec., 

sufficient information was obtained from the numerical 

solution to indicate the growth to a peak pressure of 12 

megabars and the subsequent decay. This value is found 
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in other shock propagation calculations (4, 14). 

Such a curve gives an indication of the transient nature 

of tpe peak pressure which occurs in an impact process. 

This. peak pres sure f :e however, .. determines the subsequent 

states of the affected target material and perhaps ultimately 

the crater size and terminal mechanisms. 

Discussion of Results 

The most interesting feature of this data is the 

production of two distinct shock waves at the point of 

initial contact. Both shock waves are of approximately 

equal strength traveling in opposite directions .. There is 

some asymmetry in the forward direction~ however; the 

primary shock front is. somewhat stronger since it moves 

into undisturbed material. 'rhe progress of such waves is 

followed until free boundary reflection of one wave and 

considerable decay of the primary shock front modify the 

flow patterns. The start and growth of the cratering process 

have been fully depicted. A complete description must be 

found in other material regimes, such as the plastic and 

elastic. The radial character of the cavity becomes apparent 

at later times when material begJns to flow out of the 

target .. 



CHAPTER V 

SUMfvu\.RY AND SUGGESr:I.1 ION3 FOR FUTURE WORK 

Calculations for the impact of a spherj_cal a1liminum 

microparticle on a semi-infinite aluminum target have been 

presented~ A numerical method was developed and tested for 

the solution of a set of E1.1lerian 9 dimensionless., equations. 

These equations include shock wa.ve propap:at ion and ta t 

motion. A FORTRAN IV computer program has been used to 

obtain solutions for all cases up to a tj:me when the decay 

of the primary shock f'ront is sign:1.fici:mt~ 

A basic feature of tbese solutions is the form.at ion of 

two shock wa~es at the position of initial contact of micro­

particle and target. One shock front, the primary shock 

wave, travels into the target compressing material of the 

target. The other, moving into the projectile, is reflected 

at the material=vacuum boundary. The resulting rarefaction 

wave eventually overtakes the primary limve and weakens it. 

Another feature noted in the curves depicts the start of a 

crater and the ejection of material above the original 

target surface. The impacting microparticle appears to 

compress the target material ahead of and m1rrcrnnding 
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itselfo This results in the flow of the target material up, 

around the entering particle and out of the target. 

As the disturbance engulfs more target material, the 

hydrodynamic pressures become comparable to yield stresses. 

It is then inappropriatE? to neglect material strength and 

the hydrodynamic model becomes inapplicable. This same 

difficulty occurs earlier near the free surfaces involved 

in the problemo Consideration of necessary descriptive 

equations of the plastic and elastic states in addition to 

the hydrodynamic state will give a more complete description 

of micrometeoroid impact. 

It is believed that inclusion of plasma properties in 

the equaion of state, and s.ddition of plasma conservation 

equations to the modified Eulerian set, would ex-plain the 

radiation observed in the impact process. 

These extensions 9 the refinement of the hydrodynamic 

model to include plasma, plastic, and elastic material 

should lead to a better understanding of the hypervelocity 

impact problem. 
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