By
FREDERIC DAVID SOBERING
Bachelor of Science University of Manitoba Fort Garry, Manitoba 1950
Mastex of Science North Dakota State University
Fargo, North Dakota 1963

Submitted to the Faculty of the Graduate School of the Oklahoma State University

Groverars
 what or mat

ADJUSTMENT IMPLICATIONS OF GOVERNMENT COTTON PROGRAMS FOR SOUTHWESTERN OKLAHOMA

Sincere appreciation is extended to Dr．Luther G。 Tweeten，Graduate Committee Chairman，for his guidance，encouragement，and counsel through－ out my graduate program．

Appreciation is extended to Drs．Odell L。Walker，Frank G。Steindl， Daniel Do Badgers，and Robert Morrison for constructive criticisms and coments during the preparation of this dissertation．

Thanks are due Miss Pat Cundiff for her help in running the pro－ gramming solutions and making other computations．Thanks are extended to Mrs．Karen Konstas and Mrs．Joyce Werre who typed the earlier drafts and Mrs．Claudia Anderson for typing the final draft。

Finally，special gratitude is due my wife，Esther，and our children for their encouragement，patience，and sacrifice while I worked on my graduate program．

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Statement of the Problem 1
Objectives 4
Area of Study 5
Soil Types 6
Review of Previous Research 8
The Basic Model 12
Representative Farm Approach 12
Linear Programing Model 13
Aggregation Procedures 14
Content of Chapters 14
II. ANALYTICAL MODEL AND RESTRICTIONS 16
Linear Programming Models 16
Farm Numbers Models 17
Land Resource Situations 18
Maximization Model 18
Minimization Model 21
Allotment Restrictions 21
Labor Restrictions 24
Price Assumptions 25
Level of Technology 26
Capital 27
Overhead Costs 28
III. ANALYSIS OF ALT:ERNATIVE PROGRAMS WITH THE MAXIMIZATION MODEL 29
Allotment, Price, and Soil Situation Combinations 29
Major Activities and Stability of Programmed Plans 31
Comparison of Expected Returns of Alternative
Programs 33
Indifference Combinations of Price and Allotment 36
Comparison of Government Outiay and Expected Net Returms 48
Additional Program Alternatives 53
Idling Allotment Reductions 53
Summary of Maximization Model Results 56
Chapter Page
IV. AREA AGGREGATES WITH MAXIMIZATION MODEL 58
Aggregative Resource Bases and Weights 59
Aggregate Cotton Supply 61
Normative Cotton Supply 61
Cotton Output Response to Allotment Changes. 64
Major Product Output and Specified Resource Requirements 70
Net Returns 75
Optimum Area Program. 76
Summary of Area Aggregates. 80
V. PROGRAMMED MINIMUM REQUIREMENTS. 82
Programmed Combinations 83
Allotment Price Comparisons 86
Clay Soils 86
Sandy Soils 89
Level Loam Soils 90
Rolling Loam Soils 90
Land Price Comparisons Including all Enterprises. 91
Clay Soil Situation. 91
Sandy Soil Situation 93
Level Loam Soil Situation. 93
Rolling Loam Soil Situation. 93
Land Price Comparisons Excluding Feeder Enterprises 94
Clay Soil Situation。 94
Sandy Soil Situation 94
Level Loam Soil Situation. 96
Rolling Loam Soil Situation. 96
Labor Price Comparisons 96
Clay Soil Situation. 96
Sandy Soil Situation 98
Level Loam Soil Situation. 98
Rolling Loam Soil Situation. 98
Summary of Minimization Model Results 98
VI。 FARM NUMBERS PROJECTIONS 100
Past Changes in Farm Numbers 103
Extrapolation of Past Trends 104
Regression Analysis. 104
Markov Chain Distributions 108
The P_{c} Matrix and Its Interpretation 109
Projected Farm Numbers from P_{c} Matrix. 113
The P_{s} Matrix and Its Interpretation 116
Projected Farm Numbers from the P_{S} Matrix. 117

TABLE OF CONTENTS (Continued)

Chapter Page
Minimum Land Model Farm Numbers 119
Selected Comparisons of Farm Numbers by
Programming Minimization and Markov Models.。.... 121
Reliability of Farm Numbers Projections 123
VII. SUMMARY AND CONCLUSIONS 124
The Maximization Model. 126
The Minimization Model. 129
Farm Numbers Projections. 132
Additional Inferences of this Study 135
SELECTED BIBLIOGRAPHY 139
APPENDICES 143

LIST OF TABLES

Table Page
I. Land and Labor Resource Restrictions for Representative Farms for the Four Soil Classifications, Maximization Model, Rolling Plains of Southwestern Oklahoma 20
II. Percentage Composition of a Representative Acre by Soil Classifications with Respect to Cropland, Native Pasture, Other Land, Productivity Classes Within Cropland; Minimization Model, Rolling Plains of Southwestern Oklahoma. 22
III. Estimated Wheat Allotments and 1963 Base, 55 Percent, 85 Percent, and 115 Percent of Base Cotton Allotments on Representative Farms for the Four Major Soil Classifications, Rolling Plains of Southwestern Oklahoma 23
IV. Land Values by Soil Classification. 27
V. Assumed Annual Overhead Costs for Farms, Low Rolling Plains, Southwestern Oklahoma. 28
VI. Programming Combinations of Cotton Lint Prices and Acreage Allotment Levels as a Percent of Base Allotments per Representative Farm, Rolling Plains, Southwestern Oklahoma 30
VII. Programmed Net Returns and Residual Returns to Specified Resources; Clay Soil Representative Farm, Rolling Plains of Southwestern Oklahome 35
VIII. Programmed Net Returns and Residual Returns to Specified Resources; Sandy Soil Representative Farm, Rolling Plains of Southwestern Oklahoma. 39
IX. Programmed Net Returns and Residual Returns to Specified Resources; Level Loam Soil Large Representative Farm, Rolling Plains of Southwestern Oklahoma. 40
X. Programmed Net Returns and Residual Returns to SpecifiedResources; Level Loam Soil Small Representative Farm,Rolling Plains of Southwestern Oklahoma. 41

LIST OF TABLES（Continued）

Table Page
XI．Programmed Net Returns and Residual Returns to Specified Resources；Rolling Loam Soil Large Representative Farm， Rolling Plains of Southwestern Oklahoma 42
XII．Programmed Net Returns and Residual Returns to Specified Resources；Rolling Loam Soil Small Representative Farm，Rolling Plains of Southwestern Oklahoma．．．．． 43
XIII．Programmed Stability Ranges with Respect to Cotton Price per Hundredweight；Maximization Model，Rolling Plains of Southwestern Oklahoma 44
XIV．Returns to Land，Labor，and Management Under Specified Allotment Levels；With and Without Land Idling；$\$ 26.40$ Cotton Price，Rolling Plains of Southwestern Oklahoma 54
XV．Total Land in Farms，Included Acres，and Aggregative Weights for Representative Farms by Soil Classifica－ tion，Southwestern Oklahoma。．．．．。．．．．．．．．．。． 60
XVI．Aggregate Cotton Output by Soil Situations and Area；Out－ put Response to Allotment Changes；Specified Price and Allotment Situations，Rolling Plains of Southwestern Oklahoma． 67
XVII．Area Aggregations of Major Crop Acreages，Product Output， Livestock Numbers，Specified Resource Requirements，and Returns；By Specified Cotton Price－Allotment Combina－ tions，Rolling Plains of Southwestern Oklahoma ．．．．． 72
XVIII．Area Aggregations of Major Crop Acreages，Product Output， Livestock Numbers，Specified Resource Requirements，and Returns；By Specified Cotton Price－Allotment Combina－ tions，Rolling Plains of Southwestern Oklahoma ．．．．． 73
XIX．Aggregate Net Returns by Resource Situations and Area，Specified Cotton Price and Allotment Level Combina－tions，Rolling Plains of Southwestern Oklahoma ．．．．． 77
XX．Programmed Combinations Under the Minimization Model forEach Resource Situation，Rolling Plains ofSouthwestern Oklahoma．。．．．．．．．．．．．．．．．． 84

LIST OF TABLES (Continued)
Table PageXXI. Estimated Minimum Land and Nonland Capital Requirementsfor $\$ 5,000$ Return to Operator Labor and Management,Base Land and Labor Prices, Including all Crop andLivestock Alternatives; Specified Cotton Price-Allotment Combinations, By Resource Situations,Rolling Plains of Southwestern Oklahoma. 87
XXII. Estimated Minimum Land and Nonland Capital Requirementsfor $\$ 5,000$ Return to Operator Labor and Management,100 Percent Cotton Allotment, $\$ 26.40$ Cotton Price,Base Labor Price, Including all Crops and LivestockEnterprises; Specified Land Price Levels, By ResourceSituations, Rolling Plains of Southwestern Oklahoma. . . 92
XXIII. Estimated Minimum Land and Nonland Capital Requirements for $\$ 5,000$ Return to Operator Labor and Management, 100 Percent Cotton Allotment, $\$ 26.40$ Cotton Price, Base Labor Price, Excluding Livestock Feeder Enterprises; Specified Land Price Levels, By Resource Situations, Rolling Plains of Southwestern Oklahoma. . . 95
XXIV. Estimated Minimum Land and Nonland Capital Requirements for \$5,000 Returnto Operator Labor and Management, 100 Percent Cotton Allotment, $\$ 26.40$ Cotton Price, Base Land Price, Including all Crop and Livestock Alternatives; Specified Hired Labor Prices, By Resource Situations, Rolling Plains of Southwestern Oklahoma. . . 97
XXV. Farm Numbers in Southwestern Oklahoma, 1945-1960. 103
XXVI. Least Squares Estimates of Farm Numbers in Total and by Size States from 1945-1960 Quinquennial Census Data; Rolling Plains of Southwestern Oklahoma. 106
XXVII. Projection of Farm Numbers for 1965, 1970, and 1975 From Estimates Regression Equations; Rolling Plains of Southwestern Oklahoma 106
XXVIII. Transitional Table of Farm Movements in Southwestern Oklahoma From 1945 to 1950 110
XXIX. Projected Farm Numbers in Total and by Size Distribution for Southwestern Oklahoma (Projection Base $=1960$; Transition Base $=1945-1960$) 114
XXX. Projected Farm Numbers in Total and by Size Distribution for Southwestern Oklahoma (Projection Base $=1960$; Transition Base $=$ Opinion Survey)............117

LIST OF TABLES (Continued)

Table Page
XXXI. Estimated Maximum Number of Farms Realizing \$5,000Returns to Labor and Management; Weighted AverageFarm Size; Specified Price, Cost, and InstitutionalRestrictions, Rolling Plains of SouthwesternOklahoma 120

LIST OF FIGURES

Figure Page

1. Income Indifference Price Allotment Combinations, Clay Soil Farm 37
2. Income Indifference Price Allotment Combinations,Sandy Soil Farm 45
3. Income Indifference Price Allotment Combinations, Level Loam Soil Large Farm 45
4. Income Indifference Price Allotment Combinations, Level Loam Soil Small Farm 46
5. Income Indifference Price Allotment Combinations, Rolling Loam Soil Large Farm 46
6. Income Indifference Price Allotment Combinations, Rolling Loam Soil Small Farm 47
7. Cotton Supply Functions, Clay Soils, By Allotment Levels 62
8. Cotton Supply Functions, Level Loam Solls, By AllotmentLevels62
9. Cotton Supply Functions, Sandy Soils, By Allotment
Levels 63
10. Cotton Supply Functions, Rolling Loam Soils, By Allotment Levels 63
11. Aggregate Cotton Supply Functions, By Allotment Levels 65

CHAPTER I

INTRODUCTION

Statement of the Problem

Every segment of society is affected by, and should be concerned with, government programs for agriculture. Individual farmers and the agri-business complex are directly affected by these programs. Other segments of society are less directly affected.

Assistance programs for agriculture have developed over time because it was generally recognized that the industry possessed some unique characteristics. ${ }^{l}$ The highly competitive structure of agriculture precludes the individual's effectiveness in influencing price or total production. A high ratio of fixed to variable assets assures product output to remain near previously established levels though prices decline. The lag between initiation and completion of the production process makes it nearly impossible for the individual to equate with any accuracy marginal costs and marginal revenue.

Continuous out-migration of resources from the industry is implied by the rapid rate of output increasing technological development and acceptance。 Small changes in supply lead to relatively large changes
${ }^{1}$ Dale E。Hathaway, Government and Agriculture Public Policy in a Democratic Society (New York, 1963). pp. 83-130.
in price and income instability with the highly inelastic demand for agricultural commodities. The perpetuation of the "way of life" concept slows the out-migration of human resources from agriculture and contributes to the income and underemployment problem。

The commercial farmer is concerned with profits. He must realize returns over costs to pay his expenses and provide a living for his family. He recognizes that survival under the competitive structure necessitates continuous adjustments. These adjustments may take the form of a reorganization of enterprises on his farm or the acquisition of additional resources.

Government programs affect the farmer in various ways. Farm income is increased if the support price is set higher than the "free market" price and the program is not highly restrictive. Program restrictions such as allotments must be considered in any enterprise reorganization。 His problem is to determine the optimum organization of resources within the purview of program regulations and continuously adapt to changes in these programs.

Businessmen supplying agricultural producers with production inputs and personal goods and services are directly concerned with the welfare of agriculture. This is their livelihood. Since the well being of agriculture is predicated, partly at least, on the form of government programs in effect, the agri-business sector is vitally concerned with the implications of alternative policies. To the fertilizer dealer, high farm income means sales and profits irrespective of the size or numbers of farms in his area. The businessman who depends on numbers of people and income level is deeply concerned with the decline in farm population. Unless the people that move out of agriculture find gainful
employment in the area, or are replaced by people employed out of the agricultural sector, this type of business may be forced to close.

Other segments of society are concerned with the welfare of agriculture and the effects of government programs and program changes. Consumers want an abundance of high quality food at reasonable prices. Taxpayers are concerned with the costs of programs. Besides the direct costs of taxes, food costs may be higher than necessary if programs impair efficiency in agriculture by discouraging out-migration of resources from the agricultural sector.

The final decision on agricultural program policies is made in the political arena through the legislative process. Prior to this however, advisors to farm organizations, politicians, and the administration in power must formulate program proposals for the legislative body to consider.

These advisors, and the pelfiticians that make the final decision, face a dilemna. How will a proposed program or change in an existing program affect aggregate and individual farm income? Will it maintain the family farm structure? Will it assure an abundant supply of food and fibre at reasonable prices? What will be the treasury outlay? In other words, how will the proposal fit into the policy goals for agriculture that have developed over time? Will the program be politically feasible and socially acceptable?

The probable response of farmers to alternative program combinations would be helpful to policy advisors and politicians in formulating program proposals.

Knowledge of the optimum organization of resources under various program alternatives would serve as a guide to farmers concerned with
profit maximization with a given set of resources. Further, a knowledge of the complement of resources required to attain a particular income level would help farmers decide on the extent of adjustment necessary in their farm unit to remain competitive.

For agri-business firms, the number and size of farms in an area under alternative program combinations would provide guidance to these firms in developing business plans.

Though this study deals specifically with cotton in Southwestern Oklahoma, the problems delineated for policy advisors and producers of other major commodities are very similar.

Objectives

Specifically, this study has the following major objectives:

1. To determine the optimum combination of enterprises and returns to selected resources on delineated representative farm situations for selected soil resource situations under specified government cotton allotment and cotton price support combinations.
2. To develop and apply methodology that will allow the determination of cotton allotment and cotton price support combinations that will maximize returns to the individual producers on the delineated representative farms, given a treasury outlay restraint.
3. To determine the aggregate area returns and output or supply relationships of selected crop and livestock alternatives from the programmed situations.
4. To develop and illustrate the application of methodology to determine the govermment cotton program allotment and cotton price support combinations that will maximize returns to the aggregate area given a specified treasury outlay.
5. To determine the minimum rescurces required, and thus the ex tent of necessary adjustment in resource use, to obtain a specified return to farm operator labor and management under specified combinations of factor prices and cotton acreage allotment and price support combinations, and
6. To determine the number of farms within the area consistent with the specifined income level and compare these fiam numbers to projections based on past adjustment patterns.

Area of Study

The scope of this study embraces the area designated as Enonomic Area 4 in Oklahoma by the 1959 census. ${ }^{2}$ The area is a part of the low Rolling Plains of OkIqhoma and includes Becknam, Cadde, Comanche, Cotton, Grady, Greer, Hamon, Jackson, Kiowa, Tillman, and Washita Counties.

The agriculture in the area is characterized by farms which pxin marily produce field cropsoocotton, wheat, and other small grainsonwith supplementary livestock enterprises, and by ranching opergtions intero spersed throughout the area.

[^0]The economic area contains three major soil classifications differentiated primarily on the basis of physical characteristics. ${ }^{3}$ These classifications are designated as Clay (C), Loam (L), and Sandy (S). Each major soil group is further classified into productivity classes on the basis of topography and topsoil depth. Productivity classes are designated respectively as a, b, c, d, and e in descending order of proo ductivity。

The classification of clay (claypan) soils, as defined in this study, are normally identified as Foard and Tillman series or their equivalents. Clay soils are both fine and medium textured with a tight topsoil and very slowly permeable subsoils. The productivity classes for clay soils are: C_{b}, C_{C}, C_{d}, and C_{e}. The tight topsoil condition prea cludes a C_{a} productivity classification。 These soils are adapted to the production of cotton, wheat, oats, hay, and pasture for livestock. Detailed definitions of these soils classes and estimated yields for various crops on clay soil productivity classes are presented in Appendix A_{9} Table I_{0}

Sandy soils in the study area are course textured with highly pero meable subsoils. No sandy soil is classified into productivity class S_{a} due to wind erosion hazards. The classification of sandy soils are noro mally identified on soils maps as Miles, Dill, Pratt, or Enterprise Sandy Soils or their equivalents. These soils are adapted to production of cotton, wheat, grain sorghum, alfalfa, other hay, and grazing crops.
3^{3} Differentiation based on data from U. . Census of Agriculture. 1954 and 1259, $A_{0} S_{0} C_{0} S_{0}$ records for the area, sample farm surveys, studies by and opinions of soil scientists.

Severe wind erosion on unprotected cultivated sandy land necessitates the use of winter cover crops or mulching. A detailed definition of these soil classes and estimated yields for crop alternatives are presented in Appendix A, Table II.

Loam soils are medium textured soils with moderately permeable subsoils. On soils maps, loam soils are usually shown as Upland-Tipton, St. Paul, Carey, Bottomland-Spur, and Canadian series with some Quinlan and Vernon series or their equivalents. Five productivity classes, namely, $L_{a}, L_{b}, L_{C}, L_{d}$, and L_{e} are delineated.

Generally there are two recognized phases of loam soils, namely, the rolling phase and the level phase. These are treated separately in this study.

The level loam phase consists predominantly of level bottomland soil. It contains a high percentage of productivity class L_{a} soil and a very small percentage of the lower productivity classes. The rolling loam phase lies mostly on upland locations. It has a relatively small percentage of productivity class L_{a} soil。 Both phases of the loam soils are well adapted to production of cotton, wheat, grain sorghum, hay, and grazing crops. A detailed definition of these soil classes and estimated yields for adapted crop alternatives are presented in Appendix A, Table III。

Some of the land in the area was excluded from this study under the assumption that land in some particular enterprises will not be subject to significant adjustment pressures under changing price conditions. Land presently in ranches is suitable primarily for pasture and grazingo Thus changes in major crop prices would not affect the use of such lands as cropping it would be impractical.

Similarly Grade A dairying, vegetable farms, fruit and nut farms, specialty crop farms, poultry farms, and farms with irrigated land were excluded from this study.

Review of Previous Researeh

Considerable work in determining optimum organization of farm enterprises, given particular resource bases and minimum resource requirements to meet particular income targets, has been completed in the past several years. Both types of research results can be used to postulate adjustment implications under various conditions of length of run, asset fixity, factor and/or product prices, institutional restraints, or other specified limitations.

Linear programming ${ }^{4}$ has been used extensively in these types of research by agricultural aconomists. The most frequent applications of the technique have been to specify or suggest the (a) optimum organization of resources and enterprises to maximize form income, (b) desirable farm adjustments to achieve an income level. (c) profit maximizing mixes of commodities produced by maxiketing firms, (d) cost minimizing methods of processing products, (e) spatial equilibrium patterns in the flow of agricultaral products, (i) optimum interregional patterms of resource use and product specialization, and (g) other related types of problems. 5

A survey of the agricultural economies departments at land grant colleges conducted in 1960 by Eisgruber and Reiseh showed that 87 percent
${ }^{4}$ The assumptions and techniques of linear programing will be discussed in more detail in Chapter II.
$5_{\text {Earl } 0 \text {. Heady and Wilfred Candler. Linear Programing Methods }}$ (Ames, 1958), p. I.
of all departments employed linear programming as a technique in some of their research problems。 ${ }^{6}$ A bibliography of linear programming and its applications prepared by the same authors shows that the earliest problem solutions sought dealt primarily with optimum organization of resources and enterprises on farms and to specify spatial equilibrium patterns in the flow of agricultural products．？

This survey indicated that there were basically two types of limita－ tions to the linear programming approach，namely the lack of available input－output data，and the diffioulty of constructing models that real－ istically represent relevant relationships and alternatives，${ }^{8}$ Considero able progress has been made in the past several years to overcome both of these difficulties．The realism of models has been enhanced by the development of reactive，integer，nonlinear，convex，and stochastic prom gramming．More detailed input－output data are rapidly being accumulated． Several groups have in recent years allocated a considerable quantity of their research resources to area and regional approaches with emphasis on developing applicable input－output data。 9

[^1]Studies have been and are being conducted to define economically efficient patterns of regional production of agricultural commodities. Egbert and Heady conducted a study axalyzing regional production patterns for grain crops in the United States. 10 The express objectives of this and a later study ${ }^{11}$ were simultaneously to, (a) examine and emphasize methodological problems, (b) define within the limitations of available data the economic optimum regional distribution of production, (c) show the apparent degree of supplymdemand imbalance in the past, and (d) explore the possibilities of correcting this supply-demand imbalance through regional adjustments.

In addition to research on the problems of specifying optimum organization of resources and enterprises on specified farm resource bases and interregional patterns of efficient resouree use, emphasis is being placed on estimating the magnitude of change required in the agricultural sector of a specific area to achieve specified returns, that is, the size of farm in terms of land, labor, and capital consistent with a desired income level. The initial work in this field has been basically a determination of the problem and the establishment of an acceptable methodological framework to conduct such studies. Brewster was charged through discussions generated at a conference of the North Central Farm

10Alvin C.Egbert and Earl 0. Heady, Regiongl Adjustments in Grain Production: A Linear Programming Anglysis, $U_{\text {o }}$ S. Department of Agriculture in Cooperation with Iowa Agricultural Experiment Station, Center for Agricultural and Economic Adjustment, Technical Bulletin No. 1241 (Washington, 1961).
${ }^{11}$ Alvin C. Egbert and Earl. O. Heady, Regional Analysis of Production Adjustments in the Major Field Crops: Historical and Perspective, U. S. Department of Agriculture in Cooperation with Iowa Agricultural Experiment Station, Center for Agricultural and Economic Adjustment, Technical Bulletin No. 12.94 (Washington, 1963)。

Management Research Committee in 1957^{12} to develop research methods applicable to the resource minimization problem. The basic assumptions and the general framework developed are presented in a report to a conference of the Southern Farm Management Committee in 1957. 13 Brewster conducted a study to determine the mimimum farm resource requirements to obtain specified income returns to operator labor and management for representative farms in six areas of the United States using this methodology. 14

Several linear programing studies have recently been cornpleted in Southwestern Oklahoma under the Oklahoma Experiment Station Hatch Project No. 1040. White, Plaxico, and Lagrone ${ }^{15}$ investigated the normative supply relationships on loam soils under selected levels of cotton prices, capital costs, tenure, technology level, and levels of machinery costs. Martin, Lagrone, Plaxico, and Connor ${ }^{I 6}$ determined the effect on farm organization and income on clay soil farms of selected changes in cotton,

[^2]Wheat, cattle prices, and capital costs. Goodwin, Plaxico, and Lagrone ${ }^{17}$ developed aggregate supply response relationships for dryland crop farms in this area under various assumptions. These studies did not consider government allotment programs on cotton or wheat as an institutional restriction.

Strickland, Plaxico, and Lagrone ${ }^{18}$ estimated the minimum resource requirements for three specified income levels and the magnitude of change required in the agricultural sector of the Southwestern Oklahoma area to achieve these target incomes. This model incorporated acreage allotments for cotton and wheat as a program restraint.

The Basic Model

Representative Farm Approach
Relatively few studies have related alternative national agriculo tural pxice and income policy implications to representative farms though it is generally conceded that the effects of various programs will vary widely by resource situations, farm type, and locationa 19 In contrast to these studies, ${ }^{20}$ the majority of economists have relied

17John Goodwin, James S. Plaxico, and William F. Lagrone, Aggregation of Normative Microsupply Relationships for Dryland Crop Farms in the Rolling Plains of Oxlahoma and Texas, Oklahoma Agrao Exp. Sta. Tech. Bul. T-203. 1963.
${ }^{18}$ Percy I. Strickland, Jros James S. Plaxico, and William Fo Lagrone, Minimum Land Requirements and Adjustments for Specifined Income Levels. Southwestern Oklahoma, Okiahoma Agri. Exp. Sta. BuI. Bu608, 1963.

19James S. Plaxico and Luther Go l'weeten, "Representative Farms for Policy and Projection Research," Joumal qf Farm Economics, Vol. XIV (December, 1963), pp. 2, 458.59.

20 Examples of the representative firm approach axe studies by: Warren Bailey and Ronald Aines, How Wheat Farmers Would Adjust bo Differ. ent Programs, U. S. Department of Agricultures Production Research Repoxt No. 52 (Washington, 1961): Wheat - The Program for 1964, U. S. Department of Agriculture (Washington, 1963)。
mainly on aggregate data at the macro level to determine implications of vaxious government program alternatives. 21

This study employed the representative farm approach to investigate the effect of various government program combinations and to build aggreo gate data for an area. The representative farms do not necessarily reflect average or model farms as they presently exist in the study area. They are deemed to be representative of a majority of the commercial farms with respect to adjustment opportunitieso Severe criticism has been leveled against the representative form approach because the delineation criteria are necessarily highly subjective resting largely on the researchers knowledge of the area and its conditions, 22 Presently, there are no statistical procedures available to provide objective criteria for establishing representative farms.

Linear Programming Model

The linear programming maximization model used in this study to determine the optimum enterprise combinations under postulated combinao tions of cotton acreage allotmentoprice levels is similar to the model used by White et 2l. and Martin et al. The linear programing minimization model to determine the minimum combination of resources required to attain a specified income level is similar to the model used by Strickland et al. Specific assumptions and institutional restraints are delineated in detail in Chapter II.

[^3]
Aggregation Procedures

The aggregation procedures in this study consisted of simple summa. tion of commodity outputs and resource inputs over individual representative form situations within physical resource classifications. It is postulated that farms with similar soil resource situations can be expected to react to various stimuli in a similar manner. Thus, resource groups can be aggregated within groups and these aggregates combined to determine area estimates of supply response and resource requirements.

Content of Chapters

The basic programming model and the farm numbers models are prec sented in Chapter II. This chapter also sets forth the representative farm situations and the institutional and resource restraints that were assumed.

Chapter III presents and analyzes the results of the maximization model under the various altermative assumed goverment cotton program combinations. Cotton price allotment indifference curves for the repree sentative farm on the clay soil situations axe developed. A mathematical technique to compute a cotton price and allotment combination, given a predetermined government expenditure level, that will maximiqe returns to the representative farm is developed. This technique is applied to the representative farm on the clay soils.

The area aggregates or nomative supply functions for the maximiza. tion model are presented in Chapter IV. The technique to determine the optimum cotton price and allotment combinations is applied to the area aggregate net returns.

The results of the minimization model with a target return of $\$ 5,000$
to operator labor and management for the four soil resource situations are presented in Chapter V_{0}

The results of the farm numbers models are presented and compared in Chapter VI.

The results of the study are summariaed and the implications and conclusions presented in Chapter VII.

ANALYTICAL MODEL AND RESTRICTIONS

The purpose of this chapter is to (a) outline the basic linear programming models, (b) present the representative resource situations, (c) delineate the product price and factor cost variables, and (d) outline the included alternatives and restrictions.

Linear Programming Models

The analysis in this study was developed within the general framework of the linear programming technique。 ${ }^{1}$ Linear programming is cono cerned with the decisions of an economic unit. In this study, the economic unit is the farm firm. It was postulated that the firm's Objective was to maximize (or minimize) some measurable function of a set of variables controlled by the decision unit. Such a problem to allow solution must have (a) a quantifiable objective, (b) a finite number of alternative methods or processes by which the objective can be attained, and (c) a set of restrictions which set limits on the plan that can be considered. ${ }^{2}$ In addition to the assumptions of mathematical

[^4]maximization (minimization), Iinear programing invokes four special postulates, namely, linearity, divisibility, additivity, and finiteo ness. ${ }^{3}$

The two linear progremming models designed to satisfy Objectives (1) and (5) will be referred to respectively as the "maximization" and "minfo mization ${ }^{18}$ models.

Farm Numbers Model

Models to project future form numbers in Southwesterm Oklahoma are designated as follows:

Model I utilizes the programing results obtained from the linear programming minimization model to deternine the size of adjustment necessary to bring about a situation consistent with a $\$ 5,000$ income return for each resource situation under alternative levels of product prices, factor prices, and allotments.

Model II utilizes simple extrapolation of past trends in farm numbers in total and by siae breakdowns. Aggregate data on farm numbers and distribution by farm size breakdowns as reported at five year intero vals by the Census will be used.

Model III utilizes the concept of a Markov chain process ${ }^{4}$ to trace the movement of groups or "states" over time. The Markov chain process assumes that a population can be classified into varicus groups or states such as a distribution of farms by size. The states must be defined in a manner such that the process can only be ins one state at a particular
$3_{\text {Dorfman, }}$ po 81.
${ }^{4} J_{0} G_{0}$ Kemeny et al. Finite Mathematicgl Structures (New York。 1959). p. 248 。
point in time. A transition or change occurs when the process changes from one state to another. For example, a farm in one time period increases in size as the owner purchases more land and therefore moves into a different size group. The process is stochastic in which the outcome of a given state depends only on the outcome of the immediately preceding state. The probability of this movement is the same in all stages. This probability is a transition probability.

The data used, calculation of the transition matrix, and other details for the operational Markov chain models used to project future farm numbers and size distributions are discussed in detail in Chapter VI.

Land Resource Situations

Maximization Model
Six separate land resource situations were used to represent the four major soil classifications. One representative farm was selected to typify the clay and sandy soil areas respectively while the rolling and level loam soils were each represented by two farms of different sizes denoted as a "small" and a "large" farm. The farm sizes" used in this portion of the analysis do not reflect average, modal, or bimodal farms as they presently exist in the area. However: they were deemed to be representative of a majority of the commercial farms with respect to adjustment opportunities. Farm sizes are a function of both acres and machinery and equipment complements. Large farms are operated with four-row equipment and small farms with two row equipment.

The total acres of land, breakdown of cropland by productivity classes, native pasture, and wasteland for each of the representative
farms associated with the soil classiffications are presented in Table I. The clay soil farm consisted of 1,280 acres of total land of which 1,000 acres are cropland, 235 acres are native pasture, and 45 acres are farmstead, woods, and other nonproductive land. The representative farm on the sandy soils consisted of a total of 640 acres of which 500 acres are croplands 115 acres are native pasture, and 65 acres are considered nonproductive. The level loam soil area had two representative farms with 480 acres and 960 acres of total land, respectively, The "small" loam farm consisted of 375 acres of cropland, 85 acres of native pasture, and 20 acres of nonproductive land. The "large" farm consisted of 750 acres of cropland, 175 acres of native pasture, and 35 acres of wasteland. Similarly the rolling loam soil area was represented by a "small" and "large" farm with 240 acres and 960 acres of total land. The small farm contained 188 acres of cropland, 37 acres of native pasture; and 15 acres of wasteland. The large 960 acre farm contained 750 acres of total cropland, 175 acres of native pasture, and 35 acres of wasteland.

For each representative farm, cropland acreage was assumed to be approximately 78 percent of total land in the farm. Acres of native pasture (NP) were calculated from total acreage (TA) and cropland acres (C) as follows:

$$
\mathrm{NP}=\mathrm{TA}-\mathrm{C}-5-5\left(\frac{\mathrm{TA}}{160}\right)
$$

The remaining acres were then classed as farmstead, roads, and other wasteland. Though the sizes of the representative farms in each soil classification were not considered average farms or modal farms in size, the relationships of cropland to total land and productivity classes to cropland were considered typical of the four major soil classifications.

TABLE I
LAND AND LABOR RESOURCE RESTRICTIONS FOR REPRESENTATIVE FARMS FOR THE FOUR MAJOR SOIL CLASSIFICATIONS，MAXIMIZATION MODEL， ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Resource Restriction	Unit	Major Soil Classifications					
				Level Loam		Rolling Loam	
		Clay	Sandy	Large	Small	Large	Small
Total Land	Acre	1，280	640	960	480	960	240
Cropland ${ }^{\text {a }}$							
Class a	Acre	0	0	420	210	100	25
Class b	Acre	360	125	260	130	185	50
Class c	Acre	368	230	60	30	225	55
Class d	Acre	160	125	0	0	150	35
Class e	Acre	112	20	10	5	90	23
Total Cropland		1，000	500	750	375	750	188
Native Pasture ${ }^{\text {b }}$		235	115	175	85	175	37
Farmstead，Roads，etc．		45	25	35	20	35	15
Operator Labor ${ }^{\text {c }}$ Jan－Apr	Hr	538 d	$624{ }^{\text {d }}$	$581{ }^{\text {d }}$	667	$581{ }^{\text {d }}$	710
May－July	Hr 。	506	572	539	605	539	638
AugmSept	Hr 。	352	396	374	418	374	440
Oct－Dec	Hr 。	462	528	495	561	495	594
Total	Hr 。	1，858	2，120	1，989	2，251	1，989	2，382

${ }^{2}$ Based on Soil Inventory Form N－2，Oklahoma．
$\mathrm{b}_{\text {Native }}$ Pasture $=$ Total Land minus Cropland minus 5 minus 5 （total acres）
${ }^{c}$ Assumes 22 working days per month except February in which there are 20 working days．Allows eight hours per day December through March： nine hours per day，April，May，and November；and ten hours per day in June－October for nonmanagement time．To determine operator labor availo able，deduct onechalf hour per day for management time for each increment of 240 acres excluding the initial 240 acre unit．
doperator labor distribution also relevant for minimization models．

Minimization Model

One resource situation was analyzed in each of the separate soil classifications as incorporated into the minimization model. Preliminw ary calculations indicated that the majority of the minimum farm sizes to meet the specified income target under the various assumptions would be equal to or greater in size than the large representative farms of the maximization models. Specific exceptions will be discussed in Chapter V_{0} Thus, only the large farm representative resource situations were relevant in this model. The assumption was made that in each of the soil situations the relationships of (a) cropland to total land, (b) nao tive pasture to cropland, and (c) land productivity classes to cropland in each analysis represented the relationship for the entire area. The total land area in each soil situation contains a specific percentage of cropland, productivity classes within cropland, native pasture, and wasteland. The minimization model thus assumed that each acre as it was added contained these specified percentages for each of the soil classifications.

The specified percentages of land use classes within each farm and productivity classifications for each of the four major soil classificao tions are presented in Table II.

Allotment Restrictions
The admissable alternative crops in Southwestem Oklahoma include cotton and wheat under government acreage allotment programs. Acreage allotments in effect in 1963 for cotton and wheat were obtained fron

State A.S.C.S. office records 5 and the sample survey of farms for each of the major soil classifications.

TABLE II
PERCENTAGE COMPOSITION OF A REPRESENTATIVE ACRE BY SOIL CLASSIFICATIONS WITH RESPECT TO CROPIAND, NATIVE PASTURE, OTHER LAND, PRODUCTIVITY CLASSES WITHIN CROPLAND; MINIMIZATION MODEL, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

		Soil Classification			
Land Type and Productivity Class	Unit.	Clay	Sandy	Loam	Rolling
Loam					
Class a	Pct.	0	0	43.75	10.417
Class b	Pet.	28.125	19.531	27.083	19.271
Class c	Pct.	28.750	35.938	6.250	23.437
Class d	Pct.	12.500	19.531	0	15.625
Class e	Pct.	8.750	3.125	1.042	9.375
Cropland Total	Pct.	78.125	78.125	78.125	78.125
Native Pasture	Pct.	18.359	17.969	18.229	18.229
Farmstead, Roads, etc.	Pct.	3.516	3.906	3.646	3.646

Data from these records and the sample survey farms were used to determine the wheat and base cotton allotments for the representative farms in each major soil classification group. Estimated wheat and cotton allotments for the representative farms in each major soil classio fication, are presented in Table III. These allotments are expressed in terms of acres for the representative farms in the maximization model. For the minimization model, allotments are expressed in terms of percent

5Agricultural Stabilization and Conservation Service, 11963 Cotton Allotment After Release and Reapportionment, "Oklahoma, 1963 Mimeograph ASCS -63 - 260 ; and U. S. Department of Agriculture, Agricultural Stabilizao tion and Conservation Service, "County Acreage Allotments for 1963 Crop of Wheat," 1963 Wheat Bulletin 3, reprinted from Federal Register of August 18, 1962 (27 F. R. 8241).

TABLE III
ESTIMATED WHEAT ALLOTMENTS AND 1963 BASE， 55 PERCENT， 85 PERCENT． AND 115 PERCENT OF BASE COTTON ALLOTMENTS ON REPRESENTATTVE FARMS FOR THE FOUR MAJOR SOIL CLASSIFICATIONS， ROLLING PLAINS OF SOUPHWESTERN OKLAHOMA

Allotment Description	Unit	Major Soil Classifications					
				Level	Loam	Rolling	Loam
		Clay	Sandy	Large	Small	Large	Small
	Maximization Models（Per Representative Farm）						
Wheat Allotment	Acre	49.6	67.2	225.6	112.8	264	66
Cotton Allotment							
1963 Base	Acre	119.04	153.6	148.8	74.4	141.12	35.28
55% of Base	Acre	65.47	84.48	81.84	40.92	77.62	19.40
85\％of Base	Acre	101． 18	130.56	126.48	63.24	119.95	29.99
115\％of Base	Acre	136.90	176.64	171.12	85.56	162．29	40.57
	Minimization Model（Per Representative Acre）						
Wheat Allotment	Pet．	38.75	10.50	23.5	No．A $0^{\text {a }}$	27.50	N．A．
Cotton Allotment							
1963 Ease	Pet．	9.30	24.00	25.50	NoAo	14.70	NoA．
55% of Base	Pcto．	5.215	13.20	8.525	NoA。	8.085	NoA。
85\％of Base	Pct．	7.905	20.40	13.175	NoA。	12.495	NoA．
115% of Base	Pcto	10.695	27.60	17.825	NoA。	16.905	NoA．

[^5]of a representative acre.
In the maximization model, allotments entered the program as a land restriction. In the minimization model it was assumed that each addina tional acre purchased included the designated percentage of crop allota ment.

Labor Restrictions

A specified quantity of operator labor was assumed available for each resource situation under both the maximization and minimization model. It was assumed that the operator was available 22 days per month for all months except February in which there are 20 working days. Eight hours per day were allowed for December through March; nine hours per day for April, May, and November; and ten hours per day for June through October. Required daily management time (M) was considered to be a function of farm size in acres (F) with the following relationship:

$$
\text { (1) } M=(F-240) \frac{0.5}{240}
$$

The available amual nonmanagement labor distribrtion by grouped time periods is presented in Table I. Farm size and required management time explain the differences in available operator nonmanagement labor between resource situations in this table.

Operator labor was not a restriction in the same sense as farm sioe. In periods when necessary labor requirements were higher than ayailable operator labor, both models allow hiring additional skilled labor. The current assumed rate was $\$ 1.00$ per how. Thus labor would limit enters prise combinations and/or size only if the marginal value product of Labor was below $\$ 1.00$

Prices of factor inputs and product outputs of nonallotment crops
used in this analysis were based on price projections under specific assumptions developed by the U.S. Department of Agriculture: ${ }^{6}$

The price and cost projections contained in this pamphlet are tied to an allmproduct index of 235 (1910-14 = 100) for prices received by farmers and an index of 265 for prices and rates paid by farmers, including items used in production, interest, taxes, and wages. These general levels were agreed upon by the Agricultural Marketing Service, Soil Conservation Service, Forest Service, and Agricultural Research Service for use in evaluating work plans for watershed prow tection and flood prevention projects and for river basin development studies.

The projections represent the level of prices that may be expected to prevail over an extended period of years under assumptions of relatively high employment, a trend toward peace, continued population and economic growth, and a stable general price level. Under such conditions, the general level of prices received by formers and cost-price relationships are not expected to be much different than those prevailing during the period 1953-55. . . . The projections also take account of recent changes that have occurred in supply and requirement expectations of parm ticular crops. In general, the projections reflect the longoterm levels that might reasonably be expected with production and requirements in balance under competitive conditions.

The specific assumed prices paid for factors and received for
products are presented in Appendix A, Tables IV and V. Frices received for all crops and livestock are assumed to remain constant. Wheat price reflects the 1963 area average support price adjusted for

[^6]appropriate grade and storage differentials．${ }^{7}$
Four levels of cotton prices were assumed and analyzed in conjunc－ tion with specified allotment levels and variations in land equity，land prices，and labor prices．These combinations will be discussed in more detail in Chapter III．Cotton prices used were $\$ 17.60, \$ 22.00, \$ 26.40$ ， and $\$ 30.80$ per hundredweight of lint cotton．

Land prices used are current estimates for land transactions in the area as developed for an earlier study．${ }^{8}$ The land price for each soil classification was determined by assuming that each acre of land includes the same proportion of all productivity classes of the soil type under consideration．The final price per acre thus reflected a weighted average of the different productivity classes．Price per acre of land included the value of service buildings but excluded value of dwelling，mineral rights，or any other nonagricultural use values．Land values by soil classes as used in this study are presented in Table IV．

Level of Technology
The technical coefficients，production requirements，practices，and physical output assumed improved or advanced technology based on experi－ ment station recommendations．Advanced technology assumes that the best known practices now in the experimental stage or used by farmers on a limited basis will be extensively employed on commercial farms．

7U．S．Department of Agriculture，Commodity Credit Corporation， （1963 Crop Wheat Loan and Purchase Agreement Program，＂reprinted from Federal Register of July 9， 1963 （ 28 F 。R。6959）（Washington，1963）。
$8_{\text {Percy L．Strickland，Jro，Minimum Resource Requirements and }}$ Resource Adjustnents for Specified Farm Income Levels，Low Rolling Plains of Southwestern Oklahoma．＂（unpub．PhoD．dissertation，Oklahoma State University，1962）。

TABLE IV
LAND VALUES BY SOIL CLASSIFICATIONS

Soil Classification	Land Values Per Acres			
	Base	+ 50%	+100\%	-50\%
	- Dollars -			
Sandy	160	240	320	80
Clay	105	157.50	210	52.50
Level Loam	240	360	480	120
Rolling Loam	170	255	340	85

Capital
No limitations were imposed in either model on the quantity of capital available to the representative firm. It was assumed that operating capital for fertilizer, feeders, machinery, etc., could be obtained at an interest charge of six percent per year. Capital required for land investment in the minimization model was assumed available at a five percent annual charge.

Total capital requirements were computed for both models as an indicator of overall requirements. However, interest charges were computed on an annual basis only. Anmual capital requirements for an entero prise was defined as total capital times the proportion of time the item is utilized or held during a year. For example, a beef cow reprea sents a 12 month investment and thus total and annual capital are equal. A feeder steer held for three months might represent $\$ 120.00$ total capital investment and a $\$ 30.00$ ($\$ 120 \times 3 / 12$) annual investment.

Overhead Costs
The basic budgets that underly this analysis were constructed so costs are allocated to individual enterprises so far as feasible. Howo ever, expenses including land taxes, pickup truck operation, telephone, insurance, bookkeeping, and tax service could not be allocated to specific enterpriseso Generally, such expenses are a function of farm size, and were charged at the rate of $\$ 1.25$ per acre excluding land taxes which were charged at a fixed rate of $\$ 1.00$ per acre. The annual average overhead costs assumed in the study are presented in Table V 。

TABLE V
ASSUMED ANNUAL OVERHEAD COSTS FOR FARMS, LOW ROLLING PLAINS, SOUTHWESTERN OKLAHOMA

Item	Size of Operation		
	240-480 ac.	$640-960 \mathrm{ac}$	1280 ac.
Pickup Truck			
Interest	\$ 60.00	\$ 66.00	\$ 72.00
Depreciation	160,00	175.00	200.00
Gas, Oil Lubrication	110.00	166.00	223.00
Repair	90.00	120.00	150.00
Insurance	75.00	90.00	105.00
Bookkeeping and Tax Service	120.00	150.00	180.00
Insurance on Buildings and Workers	100.00	120.00	150.00
Total Overhead Costs	\$725.00	\$877.00	\$1080.00
Property Taxes/Ac.	\$ 1.00	\$ 1.00	\$ 1.00

CHAPTER III

ANALYSIS OF ALTERNATIVE PROGRAMS WITH THE MAXIMIZATION MODEL

The purpose of this chapter is to analyze and evaluate the alternative combinations of cotton allotment levels and cotton prices for the six resource situations delineated in Chapter II. The analysis was based on the optimum enterprise combinations and land use patterns that maximize net returns to land, labor, management, and unallocated resource costs as determined by the linear programming maximization model.

The analysis and evaluation of the alternative (possible) government program combinations for cotton was carried out in terms of (a) stability of the programs, (b) desirability of programs in terms of income from the viewpoint of the individual producer operating a representative farm, and (c) desirability of program combinations from the standpoint of the producer considering government (taxpayer) costs.

Allotment, Price, and Soil Situation Combinations

A total of 72 separate plans were developed by assuming combinations of cotton lint prices and allotment levels as set out in Table VI.

For ease of exposition, the four cotton prices used in the analysis,

IThe term income is used here in a broad sense. It will be defined more rigorously later in the chapter with respect to specific resources of land, labors and management
$\$ 17.60, \$ 22.00, \$ 26.40$, and $\$ 30.80$ per hundredweight of lint cotton were designated respectively as P_{1}, P_{2}, P_{3}, and $P_{4^{\circ}}$ These four price levels were assumed to be the Oklahoma farm prices for cotton and correspond respectively to national cotton prices of $\$ 20, \$ 25, \$ 30$, and $\$ 35$ at the farm level. Allotment levels were designated as follows: A - base allotment plus 15 percent; B - base allotment; C - base allotment less 15 percent; and D - base allotment less 45 percent。 For example, $P_{1} B$ refers to the situation characterized by a cotton lint price of $\$ 17.60$ per hundredweight and a base allotment level.

TABLE VI
PROGRAMMING COMBINATIONS OF COTTON LINT PRICES AND ACREAGE
ALLOTMENT LEVELS AS A PERCENT OF BASE ALLOTMENTS PER REPRESENTATIVE FARM, ROLLING PLAINS, SOUTHWESTERN OKLAHONA

Farm Price of Cotton Lint in Dollars Per Cwto	Level of Allotment			
	Base Plus	Base ${ }^{\text {a }}$	Base Less	Base Less
		Base ${ }^{\text {a }}$		
17.60	$P_{1} A^{\text {b }}$	$P_{1}{ }^{\text {B }}$		
22.00	$\mathrm{P}_{2} \mathrm{~A}$	$\mathrm{P}_{2} \mathrm{~B}$	$P_{2} \mathrm{C}$	
26.40	$\mathrm{P}_{3}{ }^{\text {A }}$	$\mathrm{P}_{3} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{C}$	$P_{3} D$
30.80		$\mathrm{P}_{4} \mathrm{~B}$	$\mathrm{P}_{4} \mathrm{C}$	$\mathrm{P}_{4} \mathrm{D}$

aApproximate 1963 allotment level.
$\mathrm{b}_{\text {This nomenclature for program combinations will be used as abbre }}$ viations in the text and pertinent appendix tables.

Further, the soil classifications and their respective representative farm sizes wexe designated as follows: C - alay soil farm: S sandy soil farm: LL - level loam soil large farm: LS - level loam snall
farm; RL - rolling loam soil large farm; and RS - rolling loam soil small farm. For example, symbol, $L L_{1} B_{3}$ refers to the situation specifically characterized by level loam soil, large farm, $\$ 17.60$ cotton lint price, and base allotment.

For every representative farm, each alternative allotmentoprice comm bination could be considered a potentially possible government cotton control-price support program. Returns to land, labor, and/or manage ment were used as the criteria to evaluate the desirability of particular programs from the producer standpoint. This study assumed that profit maximization was the underlying goal of the farm operator, ${ }^{2}$ and implis citly ignored such goals as freedom from government intervention,

Major Activities and Stability of Programmed Plans

There were ten major enterprises ${ }^{3}$ that entered into one or more of the 72 programmed situations. These enterprises included: (a) cotton, (b) wheat, (c) grain sorghum, (d) alfalfa hay, (θ) oats, (f) small grain hay. (g) annual grazing, (h) reseed cropland to native pasture, (i) beef Cous, (j) August marketed feeder cattle, and (k) March marketed feeder cattie. 4
$2_{\text {Preliminary information from a study in progress at Oklahoma State }}$ Uwiversity on farmer preference of altemative goverment programs inm dicates that the acceptability of alternative programs varies greatly between individual $f a r m s$ and depends on a number of factors besides prom fitt (support price level).
${ }^{3}$ For a detailed description of all potential allowable enterprises. their resource and rotational requirements for each soil ciassification, see Goodwin, Plaxico, and Lagrone, Processed Series Po35;: Lagrone, Strickland, and Plaxico, Processed Series P-369; and Connor, Lagrone, and Plaxico, Processed Series P-368.
${ }^{4}$ For a detailed breakdown of the magnitude of each enterprise, the optimum combination of enterprises, and the cropland use pattern for each progran situation see Appendix $\mathrm{B}_{\text {a }}$ Tables I through XI.

Cash crops entering the optimam farm organizations were cotton, wheat, grain sorghum, alfalfa hay, and oats. Small grain hay and/or annual grazing are intermediate products for one or more livestock enterprises. Forage crops and pasture would not enter a particular program unless at least one livestock enterprise was included in the optimum organization and added grazing, besides the quantity supplied by native pasture, was required. Native pasture can be utilized by either the beef cow or August marketed feeder enterprise. Additional grazing was available from winter wheat pasture.

Definite patterns of the magnitude of enterprises, enterprise come binations, and land use patterns were evident within soil and farm size classifications as cotton prices changed. In every programmed situation, wheat was produced at the full allowable allotment level. Cotton also was produced at the full allotment level in all programmed situations with a cotton price equal to or greater than $\$ 22.00$ per hundredweight of linto At the low cotton price ($\$ 17.60$), full allotments were produced on the sandy soil and the rolling loam soil small farm situation; less than full allotments were produced on the level loam soil small and large farm, rolling loam soil large farm situation: no cotton was produced on the clay soil farm.

Land use pattern shifts occurred as the price of cotton was changed. The only exception occurred on the clay soil situation where cotion entered the program on C_{b} land and no land use shifit occurred as cotton prices changed. On other soil situations with a low cotton price, proo duction of cotton occurred on land of lower productivity. As cotton price was increased, production of cotton shifted to the highest
productivity land where it generally replaced wheat and/or alfalfa. Though cotton acreage remained constant within an allotment situation, cotton lint production may increase as the price of cotton was increased.

Generally, within any allotment situation, the size of the livestock enterprise decreased as the price of cotton was increased. Since livestock enterprises require a relatively large capital input, capital requirements and labor requirements generally decline slightly, in the situations where livestock numbers declined as cotton price was in creased.

Comparison of Expected Returns of Alternative Programs

The net returns to the programed combinations were used to develop desirability ratings for alternative programs. As indicated earlier, the technique of linear programming employed in the maximization model selected the optimum combinations of enterprises that maximize net returns to resources under a given set of restrictions. In this model. the length of rung or the time period assumed was suoh that all reo sources except land are considered variable. The programed net returas represent returns to the previously unallocated costs, operator labor, management, and land. To determine returns to land, operator labor, and management, unallocated costs were deducted from programmed net returnso Further, to determine returns to operator labor and management, a return to land was imputed based on the assumed land values in each soil classification. Retura to land investment mas assumed to be five percent.

[^7]The residual return to operator labor and management can be interpreted as spendable income to the operator with zero equity in the resources used in his farm enterprises and all resources paid the assumed market values, i, e. , the costs charged in the programming matrix plus the five percent return to land. This return represents the opportunity cost of operator labor and management.

Returns to operator labor and management were determined by deducting from the programmed net returns unallocated overhead costs and a five percent return on land valued at the base price. Programmed net returns and computed returns to specified resources under the delineated assumptions for the clay soil representative farm are presented in Table VII. The highest return was realized with situation $P_{4} B$, i。e。, a cotton lint price of $\$ 30.80$ per hundredweight and a base allotment. The second highest retum was realized under situation $P_{4} C$. From an income standpoint, it is more desirable for an individual operating the clay soil representative farm to accept a 15 percent reduction in level of allotment than an approximate 16 percent reduction in cotton price per hundredweight. A reduction of allotment alone (a move from $P_{4} B$ to $\left.\mathrm{P}_{4} \mathrm{C}\right)$ reduced income by less than six percent whereas income was reduced by 20 percent as allotment level was held constant and price reduced 16 percent (a move from $P_{4} B$ to $P_{3} B$). Other comparisons and their desirability can be approxinately computed from the data in Table VII for discrete changes in allotment and/or price levels.

TABLE VII
PROGRAMMED NET RETURNS AND RESIDUAL RETURNS TO SPECIFIED RESOURCES; CLAY SOIL REPRESENTATIVE FARM, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Allotment Level	Cotton Price in Dollars Per Cwt.			
As Percent of Base	17.60	22.00	26.40	30,80
	- Dollars -			
Programmed Net Returns ${ }^{\text {a }}$				
100	12,618	12,744	13,655	14,566
85		12,725	13.499	14.274
55			13,188	13,689
115	12,618	12,763	13,811	

Returns to Land, Operator Labor, and Management ${ }^{\text {b }}$

100
85
55
115
Returns to Operator Labor and Management ${ }^{C}$

100	3,453	3,579	4,490	5,401
85		3,560	4,334	5,109
55	3,453	3,598	4,023	4,524
115				

${ }^{\text {a }}$ Includes returns to unallocated costs, land, labor, and management.
$b_{\text {After deduction of } u n a l l o c a t e d ~ c o s t s ~ f r o m ~ p r o g r a m m e d ~ n e t ~ r e t u r n s . ~}^{\text {en }}$
${ }^{c}$ After deduction of returns to land imputed at five percent of base land values from Table IV.

Indifference Combinations of Price and Allotment

Various allotment and price combinations were compared with the use of the stability range for programs computed by lineax programming. In the clay soil situation the stability range with respect to cotton price was $\$ 21.39$ to $\$ 152.45$. Cotton did not enter the solutions at prices below $\$ 21.34$. Returns to operator labor and management can be computed for any cotton price in this range, ceteris paribus. At a cotton price of $\$ 29.39$ and a base allotment, returns to labor and management were $\$ 5.781$ or equal to the income from situation $P_{4} C_{0}$. A cotton grower with a goal of profit maximization would be indifferent between these two price and allotment combinations. Similarlys situations representing (a) 100 percent - $\$ 26.57$, (b) 85 percent - $\$ 27.48$, (c) 55 percent $=$ $\$ 30.80$, and (d) 115 percent - $\$ 25.89$, allotment level - cotton price combinations would give identical returns to labor and management.

These combinations form an isowincome line which would represent an income indifference curve to the farm operator concerned with profit maximization.

Four of these computed income indifference curves that portray the cotton allotment and cotton price combinations to obtain returns to labor and managenent of $\$ 4,500, \$ 5,000, \$ 5,500$, and $\$ 6,000$, respectivelys are illustrated in Figure 1 。

The income indifference curves depicted in Figure 1 for the clay soil situation were established by computing the necessary cotton price to attain the desired income level at each discrete programed allotment

[^8]

Figure I. Income Indifference Price Allotment $^{\text {A }}$ Combinations, Clay Soil Farm
level. The points were then joined freehand to form a smooth curve. Care was exercised not to violate the programmed cotton stability ranges. The slope of the individual computed indifference curves and the computed data imply that a relatively large percentage change in allotment would be offset by a smaller percentage charge in price. This was particularly true at low cotton prices where the relative profitability of cotton was low compared to other enterprise alternatives, ceteris paribus.

Programmed net returns and computed returns to specified resources for the sandy soil, level loam soil large and small, and rolling loam soil large and small representative farms are presented in Tables VIII through XII. In every soil and farm size situation, price allotment combinations $\mathrm{P}_{4} \mathrm{~B}, \mathrm{P}_{4} \mathrm{C}$, and $\mathrm{P}_{3} \mathrm{~A}$ resulted in the highest, second highest, and third highest return, respectively. With returns as a program desirability criterion, a specified percentage reduction in allotment with price constant in these situations resulted in a smaller decline in returns as compared to a similar percentage reduction in cotton price Wi.th allotment level held constant. This held true for each of the soil and farm size situations.

Programmed stability ranges presented in Table XIII with respect to cotton price were used to compute price allotment combinations to attain a desired return level. These computations were carried out at each discrete programed allotment level. The indifference curves for the five remaining soil and farm size situations axe depicted in Figures 2 through 6 .

In every situation, commensurate with the programmed stability ranges, the necessary price to attain the indicated income level was computed at each programed discrete allotment level. For every soil

TABLE VIII

PROGRAMMED NET RETURNS AND RESIDUAL RETURNS TO SPECIFIED RESOURCES; SANDY SOIL REPRESENTATIVE FARM, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Allotment Level	
as Percent of Base	Cotton Price in Dollars Per Cwt.

Programmed Net Returns ${ }^{\text {a }}$

100	5,794	7,843	9,947	12,091
85		7,507	9,342	11,197
55		8,025	9,233	
115	5,851	8,178	10,572	

Returns to Land, Operator Labor, and Managementb ${ }^{\text {b }}$

100	4,189	6,238	8,352	10,486
85		5,902	7,737	9,592
55		6,420	7,628	
115	4,246	6,573	8,967	

Returns to Operator Labor and Management ${ }^{\text {C }}$

100	-931	1,118	3,232	5,366
85		782	2,617	4,472
55				1,453
115				

${ }^{a}$ Includes returns to unallocated enterprise costs, land, labor, and management.
$b_{\text {After deduction }}$ of unallocated enterprise costs.
${ }^{c}$ Returns to land imputed at five percent of base land values from Table IV.

TABLE IX

PROGRAMMED NET RETURNS AND RESIDUAL RETURNS TO SPECIFIED RESOURCES;
LEVEL LOAM SOIL LARGE REPRESENTATIVE FARM, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Allotment Level
as Percent of Base

Programmed Net Returns ${ }^{\text {a }}$

100
85
55
115
Returns to Land, Operator Labor, and Management ${ }^{b}$

100
85
55
115
Returns to Operator Labor and Management ${ }^{\text {C }}$

100	2,172	3,654	5,410	7,210
85		3,525	5,024	6,554
55			4,151	5,141
115	2,172	3,781	5,792	

a Includes returns to unallocated enterprise costs, land, labor, and management.
$\mathrm{b}_{\text {After }}$ deduction of unallocated enterprise costs.
${ }^{{ }^{\text {R }} \text { Returns }}$ to land imputed at five percent of base land values from Table IV.

TABLE X

PROGRAMMED NET RETURNS AND RESIDUAL RETURNS TO SPECIFIED RESOURCES:
LEVEL LOAM SOIL SMALL REPRESENTATIVE FARM, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Allotment Level as Percent of Base	Cotton Price in Dollars Per Cwt.			
	17.60	22.00	26.40	30.80
	- Dollars -			
Programmed Net Returns ${ }^{\text {a }}$				
100	8,127	8,856	9.725	10,625
85		8,789	9,535	10,300
55			9,112	9,607
115	8.127	8,918	9.914	

Returns to Land, Operator Labor, and Management ${ }^{b}$

100

6,862	7,591	8,460	9,360
	7,524	8,270	9,035
	7,862	7,653	7,847
	8,649		

Returns to Operator Labor and Management ${ }^{\text {C }}$

100	1,102	1,831	2,700	3,600
85		1,764	2,510	3,275
55	1,102	1,893	2,087	2,582
15				

a Includes returns to unallocated enterprise costs, land, labor, and management.
${ }^{\text {bafter deduction of unallocated enterprise costs. }}$
${ }^{\text {c Returns }}$ to land imputed at five percent of base land values from Table IV.

TABLE XI

PROGRAMIED NET RETURNS AND RESIDUAL REIURNS TO SPECIFIED RESOURCES; ROLLING LOAM SOIL LARGE REPRESENTATIVE FARM, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Allotment Level as Percent of Base	Cotton Price in Dollars Per Cut.			
	17.60	22.00	26.40	30.80
	- Dollars -			
Programmed Net Returns ${ }^{\text {a }}$				
100	10,732	11,309	12,768	14,385
85		11,257	12,524	13,932
55			11,947	12,886
115	10,732	11,351	13,012	
Returns to Land, Operator Labor, and Management ${ }^{\text {b }}$				
100	8,807	9,384	10,843	12,460
85		9,332	10,599	12,007
55			10,022	10,961
115	8,807	9.426	11,087	
Returns to Operator Labor and Management ${ }^{\text {C }}$				
100	647	1,224	2,683	4,300
85		1.172	2,439	3.647
55			1,862	2,801
115	647	1,266	2,927	
a Includes returns to unallocated enterprise costs, land, labor, and mana gement.				
$b_{\text {After }}$ deduction of unallocated enterprise costs.				
${ }^{\text {c Returens to }} 1$ land Table IV.	e perce	of ba	and val	from

TABLE XII
PROGRAMMED NET RETURNS AND RESIDUAL RETURNS TO SPECIFIED RESOURCES; ROLIING LOAM SOIL SMALL REPRESENTATIVE FARM, ROLIING PLAINS OF SOUTHWESTERN OKLAHOMA

Allotment Level as Percent of Base	Cotton Price in Dollars Per Cwt.			
	17.60	22.00	26.40	30.80
	- Dollars -			
Programmed Net Returns ${ }^{\text {a }}$				
100	3,032	3,361	3,717	4,111
85		3.296	3,639	3,990
55			3,334	3,569
115	3,078	3,420	3.785	
Returns to Land, Operator Labor, and Management				
100	2,007	2,336	2,692	3,086
85		2,271	2,614	2,965
55			2,309	2,544
115	2,053	2,395	2,760	
Returns to Operator Labor and Managementc				
100	- 33	296	652	1,046
85		231	574	925
55			269	504
115	13	355	720	

${ }^{2}$ Includes returns to unallocated enterprise costs, land, labor, and management.
$b_{\text {After deduction of }}$ unallocated enterprise costs.
${ }^{c}$ Returns to land imputed at five percent of base land values from Table IV.

TABLE XIII
PROGRAMMED STABILITY RANGES WITH RESPECT TO COTTON PRICE PER HUNDREDWEIGHT；MAXIMIZATION MODEL，ROLLING

PLAINS OF SOUTHWESTERN OKLAHOMA

Program Combination	Stability Ranges					
			Level Loam	Level Loam	Rolling Loam	Level Loam
	Clay Farm	Sandy Farm	Large Farm	Small Farm	Large Farm	Small Farm
	－Dollars－－－					
$\mathrm{P}_{2} \mathrm{~A}$	NoA。 ${ }^{\text {a }}$	17．58．18．09	17．59－17．86	15．81－17．70	17．59－18．84	12．91－18．74
$\mathrm{P}_{2}{ }^{\text {A }}$	21．39－152．45	18．09－23．24	19．48－23．28	19．51－23．43	$21.43-23.38$	21．31－24．06
$\mathrm{P}_{3} \mathrm{~A}$	21．39－152．45	23.240	24.000	24.150	$24.93-\infty$	25．88－29．95
$\mathrm{P}_{1} B$	N。A．	17．58－18．09	17．59－17．85	15．81．17．69	17．58－18．84	$12.64-18.74$
$\mathrm{P}_{2} \mathrm{~B}$	21．39．152．45	18．09－23．24	19．48－23．28	19．35－24． 15	$21.71-23.47$	21．31－24．06
$\mathrm{P}_{3} \mathrm{~B}$	21．39－152．45	$23.24=\infty$	24.060∞	24．15－	24．93－	25．88－29．96
$\mathrm{P}_{4} \mathrm{~B}$	$21.39-1.52 .45$	$23.240 \times$	$24.06-\infty$	24.150∞	24．93－${ }^{\circ}$	29．96－
$\mathrm{P}_{2} \mathrm{C}$	21．39－152－45	18．09－23．24	19．27－23．34	19．35－24．15	21．71－23．47	19．11－23．05
${ }^{2} 3 \mathrm{C}$	21．39－152．45	23.240 m	$24.06-\infty$ ．	24．15－	$24.93-\infty$	25．62－28．48
$\mathrm{P}_{4} \mathrm{C}$	$21.39-152.45$	23.240∞	24.060∞	24．15－	24．93－	29．96－m
$\mathrm{P}_{3} \mathrm{D}$	21．39－152．45	18．170 ${ }^{\text {c }}$	17．51－-	17．690 ${ }^{\circ}$	24．58－	23．05－${ }^{\text {a }}$
P4D	21．39－152．4．5	18.170∞	17．51－\quad	17．69＝	24.580	23．05－

${ }^{\text {a Cotton }}$ did not enter the linear programing solution at a cotton price of $\$ 17.60$ per cwt． irrespective of the allotment level．

Figure 2. Income Indifference Price Allotment Combinations, Sandy Soil Farm.

Figure 3. Income Indifference Price Allotment Combinations, Level Loam Soil Large Farm.

Figure 4. Income Indifference Price Allotment Combinations, Level Loam Soil Small Farm

Figure 5. Income Indifference Price Allotment Combinations, Rolling Loam Large Farm.

Figure 6. Income Indifference Price Allotment Combinations,
and farm size situation, the computed points were connected to form a smooth curve to obtain the estimated income indifference curve。

Comparison of Government Outlay and Expected Net Returns

Every potential support priceallotment level combination implies a particular level of taxpayer dollar outlay. One of the goals of government agricultural programs is to maintain or increase farm income. However, government funds are not unlimited. Society through the political process decides the magnitude of income assistance to the farm sector by the type of program that is put into effect. It appears reasonable to assume that society could be indifferent between specified combinations of cotton farm priceallotment levels that required a particular level of government outlay. In essence this would imply an outlay or cost restraint on the part of society. The question that naturally follows given a fixed level of government expenditure: What is the price allotment combination that will maximize net income to the individual producer given this restraint? In resolving this problem for Southwesto ern Oklahoma farmers, consideration must be given to the price effects of national cotton output, total cotton demand, and national program outlay.

The combined domestic and foreign demand for cotton was assumed to be:?
(3.I) $Q=46.50-I .2 I Y_{2}$
where $Q=U_{0}$ So cotton output in millions of bales
$Y_{2}=U$. So market price for cotton.
7Leo Vo Blakley, Quantitative Relationships in the Cotton Economy with Implications for Economic Policy, Oklahoma Agricultural Experiment Station Technical Butletin Tw95, 1962.

To determine the subsidy needed for a desired level of farm cotton price and a given quantity of cotton determined by allotment, equation (3.1) was modified to (3.2):

$$
\text { (3.2) } Q=46.50-1.21\left(Y_{2}^{\prime}-a_{1}\right)
$$

where $a_{1}=$ subsidy per pound

$$
=G[480 \mathrm{Q}]^{-1}
$$

where $G=$ level of government expenditure
$Y_{2}^{8}=$ desired farm price.
National allotments and total cotton output have been approximately 16 million acres and 16 million bales. ${ }^{8}$ Allotments as a percentage of the base allotment of 16 million acres were then converted to equivalent output of cotton in millions of bales, i.e., the national allotment is considered to be 16 million acres comparable to full base allotment and an output of 16 miliion bales. A 115 percent base allotment was assumed to be 18.4 million acres with an output of 18.4 million bales. Equation (3.1) was used to determine the necessary market clearing prices for the postulated allotment-output relationships. Equation (3.2) then was used to determine the govermment outlay necessary to maintain any desired national farm price and allotment (quantity output) desired.

A regression equation fitted to the relationship between government subsidy (g), desired Oklahoma farm price $\left(\mathrm{X}_{2}\right), 9$ and allotment level (X_{1})

[^9]as a percent of the base allotment resulted in equation (3.3):
(3.3) $G=-2991.5+11.09 X_{1}+84.997 X_{2} \quad R^{2}=.9799$.

Coefficients for variables X_{1} and X_{2} were both significant at the one percent level. Government expenditure was a linear function of farm price and allotment level.

From the producer's standpoint, net retums were also a function of these two variables. With an income function $Y\left(X_{1} X_{2}\right)$ and the government expenditures function, $G\left(X_{1}, X_{2}\right)$, the problem of determining the maximum profit combination of cotton prices and allotments given a predetermined government expenditure is comparable to the production economics problem of maximizing output given a prescribed cost level. ${ }^{10}$ Forming the function:

$$
(3.4) \pi=Y\left(X_{1}, X_{2}\right)+\lambda\left[G_{0}-G\left(X_{1} X_{2}\right) T\right.
$$

where $\lambda \neq 0$ is an undetermined Lagrangian multiplier
$\mathrm{Y}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ is the income function
$G\left(X_{1} X_{2}\right)$ is the government outlay function

$$
\pi=p r o t i t
$$

$G_{0}=$ fized level of government outlay.
The partial derivatives of π with respect to X_{1}, X_{2}, and λ were taken and set equal to zero:

$$
\begin{aligned}
& (3.5) \frac{\partial \pi}{\partial X_{1}}=Y_{1}^{1}-\lambda G_{1}^{\prime}=0 \\
& (3.6) \frac{\partial x}{\partial X_{2}}=Y_{2}^{1}-\lambda \cdot G_{2}^{1}=0 \\
& (3.7) \frac{\partial \pi}{\partial \lambda}=G^{0}-G\left(X_{1} X_{2}\right)=0
\end{aligned}
$$

where Y_{i}^{\prime} and G_{f}^{\prime} refer respectively to the $i^{\text {th }}$ partial derivative of the

10 James M. Henderson and Richard E. Quandt, Microeconomic Theory, A Mathematical Approach (New York, 1958), pp. 49a51.
income and govermment expenditure functions with respect to X_{i}.
To determine values for X_{1} and X_{2} consistent with the restrictions imposed by the functional relationships and the government expenditure, squations (3.5) and (3.6) were solved for , equated and solved for X_{1} in terms of X_{2}. This value of X_{1} was substituted into equation (3.7) and solved for the numerical value of X_{2}. The value of X_{1} was deter. mined by using the value of X_{2} and equation (3.7).

The returns function for the clay soil situation was fitted by regression techniques. The use of returns to labor and management from the programmed price allotment combinations ${ }^{11}$ resulted in the returns function:

$$
\begin{aligned}
(3.8) Y= & 709.5576-25.90758 \mathrm{X}_{1}+192.22628 \mathrm{X}_{2}-2.447751 \mathrm{X}_{2}^{2}+ \\
& 1.40296 \mathrm{X}_{1} \mathrm{X}_{2} \quad \mathrm{R}^{2}=.991
\end{aligned}
$$

where Y is returns to labor and management
X_{1} is allotment level in percent of base allotment, and X_{2} is Oklahoma farm cotton price.

Coefficients on X_{1}, allotment level; X_{2}, cotton price, and the cross product term, $\mathrm{X}_{1} \mathrm{X}_{2}$, were significant at the 99 percent level. The com efficient on X_{2}^{2} was significant at the 98 percent level。

The government expenditure relationship (3.1) is applicable to all specified representative farm situations under the assumption of a national cotton policy. The income relationship (3.8) is specifically applicable to the clay soil situation. The determination of a profit maximizing cotton allotment price combination for the clay soil farm,
$11_{\text {Additional }}$ income level, allotment-price combinations were computed from programmed stability ranges to provide sufficient degrees of freedom。
given a predetermined government outlay, can be carried out using equa tions (3.1) and (3.8). Assume for the illustration that G_{0} has arbitrarily been set at $\$ 400$ million.

Forming the function:

$$
\begin{aligned}
& \text { (3.9) } \pi= 709.5576-25.90758 \mathrm{X}_{1}+192.22628 \mathrm{X}_{2}=2.44751 \mathrm{X}_{2}^{2}+ \\
& 1.40296 \mathrm{X}_{1} \mathrm{X}_{2}+\lambda\left(400+2991.5=11.090002 \mathrm{X}_{1}=84.996622 \mathrm{X}_{2}\right) \\
& \text { where } \lambda \neq 0 \text { is an undetermined Lagrangian multiplier } \\
& \pi \text { is maximum profit } \\
& X_{1} \text { and } X_{2} \text { as before }
\end{aligned}
$$

The partial derivatives of π with respect to X_{1}, X_{2}, and λ were taken and set equal to zero:
(3.10) $\frac{\partial \pi}{\partial X_{1}}=-25.90758+1.40296 X_{2}-11.090002 \lambda=0$
(3.11) $\frac{\partial \pi}{\partial X_{2}}=192.22628-4.89502 X_{2}+1.40296 X_{1}-84.996622 \lambda=0$
(3.12) $\frac{\partial \pi}{\partial \lambda}=33991.5-11.090002 x_{1}-84.996622 X_{2}=0$

Equations (3.10) and (3.11) were solved for λ, equated, and solved for X_{2} in terms of X_{1} :
(3.13) $X_{2}=.089659 X_{2}+24.974244$.

Substituting this value of X_{2} into (3.12), the numerical value of X_{1} was 67.81. Substituting this value of X_{1} into (3.13), the numerical value of X_{2} was 31.05 . The profit maximizing combination for the clay soil farm of allotment and price for a $\$ 400$ million national government outlay was 67.81 percent of base allotment with a $\$ 31.05$ cotton price. This combination represents a point of tangency of the government isocost curve and a producer income indifference curve. The 67.81 - \$31.05 combination of allotment and price represents the maximum contribution to net income on an efficiently organized representative clay farm given
the predetermined government outlay. This analysis ignored any and all conflict that arises between income, freedom, or other individual farmer goals.

The clay soil representative farm results were used as a vehicle to illustrate the methodology necessary to determine the optimum priceallotment combinations. Similar analysis could be made for any or all the other resource situations.

Additional Frogram Alternatives

Idling Allotment Reductions
The foregoing analysis was carried out under the assumption that a reduction in cotton allotment did not necessitate idling an equivalent number of cropland acres.: Thus the analysis was highly restrictive in the sense that a wide range of program alternatives exist which were not considered.

This section broadens the analysis to the extent of comparing the income effects of a reduction in allotment without and with the require. ment that an equivalent number of cropland acres must be retired as allotments are reduced. The comparisons were restricted to one alloto ment change at one price level for each of the six representative farms.

Linear programming was used to determine the optimum organization of enterprises and net returns for each of the representative resource situations under the assumptions that, (a) base allotments were initially in effect, (b) allotments were reduced by 15 percent from this bese, (c) a cotton price of $\$ 26.40$ per hundredweight of cotton was maintained as allotments were reduced, (d) an equivalent amount of cropland must be idled, and (e) in every case the least productive land would be idled
first. Returns to land, labor, and management are compared in Table XIV for the situations designated as $\mathrm{P}_{3} \mathrm{~B}_{2} \mathrm{P}_{3} \mathrm{C}_{3}$ and $\mathrm{P}_{3} \mathrm{Cl}^{\prime}$ representing respece tively a $\$ 26.40-100$ percent, $\$ 26.40-85$ percent, and $\$ 26.40-85$ percent situations with the superscript (1) referring to the situation necessitating land idling as allotments were reduced.

TABLE XIV
RETURNS TO LAND, LABOR, AND MANAGEVENT UNDER SPECIFIED ALLOTMENT LEVELS; WITH AND WITHOUT LAND IDLING; $\$ 26.40$ COTTON PRICE, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Situation	Returns to Land, Labor, and Management		
	$\mathrm{P}_{3} \mathrm{~B}$	P3C	$\mathrm{P}_{3} \mathrm{Cl}^{1}$
Clay Soil Farm	11,210	11,054	11,027
Sandy Soil Farm	8,352	7.737	7,707
Level Loam Soil Large Farm	16,930	16,544	16,418
Level Loam Soil Small Farm	8,460	8,270	8,223
Rolling Loam Soil Large Farm	10,843	10,599	10,590
Rolling Loam Soil Small Farm	2,692	2,614	2,606

The programming results indicated that forced idling had little effect on net returns contrasted to a reduction in allotment without forced idling. This implied that the marginal value ${ }^{12}$ of enterprises forced out of the program was low. A comparison of optimum enterprise combinations for situations $\mathrm{P}_{3} \mathrm{C}$ and $\mathrm{P}_{3} \mathrm{C}^{\prime}$ on clay soils showed that the introduction of forced idling, which in this case retired 17.86 acres of C_{e} land, reduced annual grazing to the extent that feeders were reduced

12 Marginal value as used in this context refers to the marginal value product (MVP) in linear programming. In conventional marginal analysis, the MVP is usually defined as the change in gross receipts associated with a unit change in factor. However, in linear programming the marginal value is defined as the change in net returns associated with a unit change in a factor.
by two head. On sandy soils, where 20 acres of S_{3} and 3.04 acres of S_{d} land were idled, reseeded cropland was reduced by 23.04 acres necessitating a two head reduction in beef cows. On level loam soil large and small representative farms, sorghum fallow was reduced on L_{C} land, grain grazing increased on L_{c} land replacing the reduced grazing on L_{e} land while livestock numbers remained constant. On rolling loam soil representative farms, reseeded cropland was reduced on the least productive soils which necessitated a small reduction in beef cows.

The data in Table XIV imply that on any of the postulated represen tative farms, the operator would tend to be nearly indifferent between allotment reduction programs with or without forced idling. However, this would likely not hold true in cases where (a) all of his cropland was highly productive, (b) an alternative enterprise with a relatively high marginal value was available, or (c) the reduction in allotment was large so that all his low productivity cropland plus additional highly productive cropland was forced into retirement.

The data in Table XIV were used to calculate the maximum average value of an acre of cotton allotment for each of the farm situations over the 100 percent to 85 percent allotment range. For example, reducing the allotment by 15 percent in the clay soil situation necessitated a reduce tion in allotment of 17.86 acres. Returns to land, labor, and manageo ment were reduced by $\$ 183$ in total from $P_{3} B$ to $\mathrm{F}_{3} \mathrm{C}^{3}$ or an average of $\$ 10.25$ per acre. Theoretically, the value of this acre of allotment is the present value of its future income discounted to the present. The formula for the determination of present value is $\mathrm{PV}=\mathrm{R} / \mathrm{x}$, where "R" is annual net returns and "r" is the market rate of interesto Capitalizing the $\$ 10.25$ net return per acre at five percent, the capitalized
value of an acre of allotment on clay soils for the 100 percent to 85 perw cent allotment level range was $\$ 205$. This capitalized value must be considered as the absolute maximum that the operator could afford to pay for an additional acre of allotment. The $\$ 10.25$ annual return included returns to land, operator labor, and management. At $\$ 205$ per allotment, the operator would realize no return to his labor and management. Comparable average maximum values of an acre of cotton allotment for sandy, level loam large, level loan small, rolling loam large, and rolling loam small farms were $\$ 560, \$ 459, \$ 425$, $\$ 238$, and $\$ 325$ per acre, respectively.

Summary of Maximization Model Results

Definite patterns of enterprise size, enterprise combinations, land use patterns, and net returns developed as cotton prices and allotment levels changed. Cotton was produced at full allotment levels on all soil situations at prices greater than $\$ 22.00$ per hundred̉weight. Less than full allotments or no cotton appeared on the level loam soils, rolling loam soil large farm, and the clay soil farm with cotton priced at \$17.60 per hundredweight.

Income or net returns declined as cotton prices and/or allotments were reduced. Generally, a specified reduction in price, ceterus paribus, lowered net returns a proportionately greater amount than a similar reduction in allotment, ceterus paribus. The slope of the computed income indifference curves show that a relatively large change in allotment was offset by a smaller change in price.

The net returns from the clay soil optimum programs were used to determine a combination of cotton allotment and price that would maximize
returns to clay soil representative farms given a predetermined governm ment outlay for the national cotton program. With an arbitrarily assumed level of government expenditure of $\$ 400$ million, this combination was found to be a cotton price of $\$ 31.05$ per hundredweight and an allotment level at 67.81 percent of the assumed base. A mathematical technique was employed. The accuracy of the results rest on the assumption that the demand function was correct over a wide range of prices, that allotments can be converted to equivalent output of cotton in bales, and on the results of the linear programming representative farm approach.

The results in terms of net returns were very similar under the assumption that land was idled when allotments were reduced from the base level versus nonidling of land when allotments were reduced. The latter assumption was used throughout this study.

CHAPTER IV

AREA AGGREGATES WITM MAXIMIZATION MODEL

The optimum plans for the six representative farms in the four soil classifications presented and discussed in Chapter III and Appendix B represent the normative micro supply functions for commodities for the length of run where all factors, except the quantity of land per farm, were allowed to vary. A normative supply function describes the optimum relationship between the quantity of a product supplied and its price relative to a given norm。 ${ }^{1}$ The norm assumed in this study is the maxio mization of representative farm profits. The normative supply function estimates the optimum supply reaction to product price changes in terms of the norm and does not estimate the actual supply response of producers.

The representative farm optimum supply functions were used to construct an estimate of the aggregate normative cotton supply function. The aggregation model in this study consists of simple summation within cells (or resource situations) and then summation across cells. The process of horizontal aggregation of the programmed normative farm supply relationships involved the determination of appropriate weights related
$I_{\text {Dean }}$ E. McKee and Laurel D. Loftsgard, "Programaing Intra-Farm iNormative Supply Functions," Agricultural Supply FunctionsoEstimating Techniques and Interpretations, ea. Earl 0. Heady et al. (Ames, 1961), p. 1.52.
to the representative farm size and the total included land base contained in each respective soil classification and the total area included land base. The area aggregations are weighted summations of the programmed optima under the assumption that resource costs remained constant over all levels of resource use and product prices were constant over all output levels. External economies and diseconomies of scale and the 11 county study area's effect on product prices as output varies were not considered. Though these factions are relevant in supply aggree gation, they would be difficult or impossible to estimate for this small area comprising a minor percentage of total "industry" output。

It was assumed that with appropriate weights the area aggregate effect of aiternative cotton priceallotment combinations on, (a) optio mum supply of cotton and other major products, (b) acres of major crops and livestock mumbers, (c) labor requirements, and (d) returns to land, operator labor, and management can be ascertained.

Aggregative Resource Bases and Whilints

The aggregative resoure base is the residual after deducting the resources used by exciuded alternatives. It was assumed that this residual was distributed mong the physical soil type classifications as total area resources are distributed. Further the cropland capability distribution within representative farm situations wes assumed to be identical to the distribution of total area oropland.

Total land in farms, acres considered eligible for adjustment, and the aggregative weights for each representative farm in the four soil situations are presented in Table XV。 Since andy one representative farm sitwation was assumed for each of the clay gad sandy soil situations.
the aggregative weights for these two soils were computed by dividing the included acres by the representative farm size.

TABLE XV
TOTAL LAND IN FARMS, INCLUDED ACRES, AND AGGREGATIVE WEIGHTS FOR REPRESENTATIVE FARMS BY SOIL CLASSIFICATION, SOUTHWESTERN OKLAHOMA

Two representative farm sizes typify the land eligible for adjustment in both the level and rolling loam soil situation. Aggregations for these two situations were made on the basis of the percentage of land assumed to be in the small and large farm size. On level loam soils, it was estimated that 60 percent of the land was in small farms and 40 percent in large farms. In the rolling loam soil situation, 54 percent of the land was assumed to be in small farms and 46 percent in large farms.

Aggregate Cotton Supply

Normative Cotton Supply
The normative supply functions for cotton for each soil situation determined by the horizontal summation of representative farm cotton supply functions are presented in Figures 7 through 10. The first four figures illustrate the cotton supply functions for each soil situation with allotment held constant.

The text book presentation of a supply function usually takes the form of a smooth curve with a positive relationship between price and quantity. Such a curve commonly assumes that in the long run, all foce tors are variable, or, in the short run, that a designated group of factors are fixed while others are variable and infinitely divisible. The supply relationships delineated in this chapter assumed, (a) that all factors, except land (allotment level) were variable, and (b) prices of all other factors and products remained constant as the price of cotton was varied by discrete increments. The step form of the illusw trated supply functions was due to constant ranges of linearity for cotton prices as determined in the optimum program for each situationo For example, the clay soil farm had a linearity range for cotton of $\$ 21.39$ to $\$ 152.45$ per cwt. Within this range, the output of cotton per farm remained constant and the supply function is vertical os perfectly inelastic. Further, no cotton was produced at priees less than $\$ 21.39$ per cut. in the clay soil situation. Given the allotment level on clay soils, cotton production had an elasticity of zero with respect to proces between $\$ 21.39$ and $\$ 152.45$ per cwt. This held true for all four prom grammed allotment levels.

Figure 8. Cotton Supply Functions, Level Loam Soils, By Allotment Levels.

Legend:

$$
\begin{aligned}
\text { I - 55\% Allotment Level } & \text { III - 100\% Allotment Level } \\
\text { II - 85\% Allotment Level } & \text { IV - } 1 \pm 5 \% \text { Allotment Level }
\end{aligned}
$$

Figure 9. Cotton Supply Functions, Sandy Soils, By Allotment Levels.

Differences existed between soil situations. In the other soil situations, the elasticity of supply of cotton was zero only at the 55 percent allotment level. For the 85 percent, 100 percent, and 115 percent allotment level, the normative cotton supply takes the shape of a step function with elasticity of supply at zero for discrete stability ranges. Though the acreage of cotton, given an allotment level, remained identical for all soil situations at prices greater than $\$ 22.00$, cotton supply increased as price increased because cotton was shifted to more productive soils. Cotton became relatively more profitable than other crop alternatives as its price was increased. Accordingly, the upper limit of the supply of cotton for each soil situation depends on the size of the allotment, land productivity, and the quantity of highly productive land. With a smooth curve drawn to connect the low points of each stability range, the elasticity of supply would tend to be high at low cotton prices and low at high prices, given the allotment level.

The aggregate supply function for the entire area is illustrated in Figure 11. In constructing these supply curves, stability ranges were not taken into consideration. The aggregate output of cotton at the four programmed price levels were plotted and joined with a smooth curve. These supply curves represent approximations, however, they illustrate the high elasticity of supply for low cotton prices changing to a low supply elasticity at high cotton prices, given the allotment level. Cotton Output Response to Allotment Changes

The basic purposes of government agricultural programs are to increase or maintain farm income, facilitate agriculturai adjustmentss and ensure an adequate supply of food and fiber at reasonable prices.

Figure 11. Aggregate Cotton Supply Functions: By Allotment Levels

These objectives are conflicting and their fulfillment usually must be attained within a perdetermined government outlay. In the face of declining total U. S. cotton consumption coupled with output increasing technological changes, continuing decreases in cotton allotments have been necessary to avoid excessive accumulation of stocks at given support price levels. Under these conditions, what percentage allotment decrease would be necessary for a given year to attain a desire reduction in cotton production? In other words, what would be the response of output to allotment changes, i。e。g the elasticity of output with respect to allotment $\left(\mathrm{E}_{\mathrm{OA}}\right)^{2}$, given a fixed support price?

For this llacounty Southwestern Oklahoma area, the output response to allotment changes are presented in Table XVI for individual soil situam tions and the aggregate area.

The elasticity of output with respect to allotment was 1.00 for the clay soil situations for all allotment changes and for the level loam soil situation at prices of $\$ 30.80$ and $\$ 26.40$ per cwt^{2} This implies a one to one relationship between output and allotments. with an $E_{O A}$ of 1.00 cotton output would decrease by 10 percent with a cotton allotment decrease of 10 percent.

The relationship between output and allotment is a function of the changes in optimum programs computed by linear programming as allotment levels were varied. In the clay soil situation, as allotment was dem creased from 100 percent to 85 percent with price held at $\$ 26.40$ (a move from $\mathrm{P}_{3} \mathrm{~B}$ to $\mathrm{P}_{3} \mathrm{C}$), cotton acreage on C_{b} land decreased from 119 to 101

[^10]
TABLE XVI

AGGREGATE COTTON OUTPUT BY SOTL STMUATIONS AND AREA; OUTPUT RESPONSE TO ALLOTMENT CHANGES: SPECIFIED PRICE AND ALIOTNENT SITUATIONS, ROLLING PLAINS OF SOUTHVESTERN OKLAHOMA

PriceAllotment Combination	Clay Soil		Sandy Soil		Level Loam Soil Rolling Loam Soil				Area Aggregate	
	Cotton									
	Output	$\mathrm{E}_{\mathrm{OA}}{ }^{\text {a }}$	Output	EOA	Output	E_{OA}	Output	E_{CA}	Output	B_{OA}
- Cut. -										
$\mathrm{P}_{4} \mathrm{~A}^{\mathrm{b}}$	194,003		663,909		218,212		254,829		1,330,958	
$\mathrm{P}_{4} \mathrm{~B}$	168,699	1.00 1.00	587,184	.879 .862	189,750	1.00	229,179	.760 .854	1,174,812	.893 .902
$\mathrm{P}_{4} \mathrm{C}$	143,381	1.00 1.00	510,458	. 8685	161,288	1.00 1.00	199,488	. 854	1,014,615	
P4 ${ }_{4}$	92,779	1.00	332,475	-985	104,363	1.00	133,087	.932	662,704	. 979
$\mathrm{P}_{3} \mathrm{~A}$	194,008		663,909		218,212		254,829		1,330,958	
$\mathrm{P}_{3} \mathrm{~B}$	168,699	1.00 1.00	58\%,184	.879 .862	189,750	1.00 1.00	225,128	. 887	1,170,771	. 918
$\mathrm{P}_{3} \mathrm{C}$	143,381	1.00 1.00	510,458	.862 .985	161,288	1.00 1.00	199,232	.753 .929	1,014,359	. 883
Pjo	92,779	1.00	332,1475	. 985	104,363	1.00	133,087	. 929	662,704	-978
${ }^{P} 2_{2}$	194,008		645,139		199,404		198,663		1,237,214	
$\mathrm{P}_{2}{ }^{\text {B }}$	168,699	1.00	568,414	. 806	176,117	. 889	187,373	. 419	1,100,603	-838
$\mathrm{P}_{2} \mathrm{C}$	143,381	1.00	491,689	. 893	152,829	. 873	172,611	.506	960,510	. 838
$\mathrm{P}_{1} \mathrm{~A}$	0		604,451		85,472		112,851		802,774	
$P_{1} B$	0		527.727	.97	85,472	0	99,678	. 888	712,877	. 850

aThe elasticity of cotton output with respect to acreage allotment.
${ }^{\text {boutput for }} 211$ price-allotment combinations of cotton determined with the use of linearity ranges for each situation.
acres. ${ }^{3}$ No cotton was produced on C_{c} land prior to or after the decrease in allotment, so cotton output also was decreased by 15 percent as yields on C_{b} land were held constant. The $E_{O A}$ would be 1.00 in all situations where cotton was produced on one soil productivity classification only.

However, the $E_{O A}$ would not be unity in a situation where cotton was produced on more than one soil productivity class and the decrease (increase) in allotment decreased (increased) cotton acreage on one soil productivity class only. The E_{OA} would be less than unity if the change in cotton acreage occurred on the least productive land used for cotton production. Conversely, it would be greater than 1.00 , if, as allotment was decreased (increased) acreage of cotton decreased (increased) on more highly productive soils. All the computed elasticies of output with respect to allotment in Table XVI are equal to or less than one. This implies that cotton production was relatively more profitable on higher productivity soils and any reduction in allotment reduced production on low productivity soils.

A difference in output response to allotment changes was evident depending on the initial allotment level with a given price level. For example, consider the area aggregate output and $E_{O A}$ at a cotton price of $\$ 26.40$ per cwt. Given an initial allotment level of 100 percent, each subsequent one percent decrease in allotment would decrease cotton output about 0.88 percent (a move from $P_{3} B$ towards $P_{3} C$) on the average. A desired 12 percent reduction in total area output would necessitate an approximate 15 percent reduction in cotton allotment in this case. With further reductions (i.e., a move from $\mathrm{P}_{3} \mathrm{C}$ towards $\mathrm{P}_{3} \mathrm{D}$) the E_{OA} approaches

[^11]unity and any desired percentage reduction in output would necessitate an equivalent percentage reduction in allotment. At allotment levels well below the base level, in most soil situations all of the cotton production took place on one soil productivity classification.

The above analysis rests on the assumptions, (a) that profit maximio zation was the goal on all farms and (b) that the optimum organization of farm enterprises existed on all farms before and after an allotment change. Should these assumptions be violated, the output response to allotment change would be different than anticipated. For example, if the farmer's goal initially was a satisfactory income level rather than profit maximization and a decrease in his allotment level induced him to, (a) reorganize his farm enterprises, (b) intensify his cotton enterprises, i.e., increase fertilizer use, and/or (c) change his internal discount rate, then the $E_{O A}$ could conceivably approach zero. It would appear intuitively plausible that limits exist with respect to enterprise reorganization, intensification, and/or the individuals change in risk aversion. Therefore, the actual E_{OA} might approximate the values computed.

As a check on the realism of the computed elasticities, actual data on allotments and cotton output for the Southwestern area ${ }^{4}$ for the years 1961 through 1964 were used to compute the output to allotment responses. 5 From 1961 to 1964, allotments were reduced from 8,733,000 to 7,629,000

[^12]acres or 12.64 percent. Output was reduced from $5,135,000$ bales to $4,540,000$ bales. For this time period the $E_{O A}$ was 0.91 . This compares closely to the values obtained for the aggregate area response from Table XVI. Similarly, the $E_{\text {OA }}$ for the period 1962-64 in which allotments were reduced by 10.88 percent, was 0.88 which is very similar to the computed values for the aggregate area. However, the actual $\mathbb{E}_{0 A}$ varied considerably from year to year when data from consecutive years was used. For example, 1962 to 1963, the Ψ_{OA} was.52. From 1963 to 1964, when allotments were decreased by a fraction of a percent, the $E_{O A}$ was 7.049. The elasticities from consecutive years were greatly influenced by yield variations due to weather and factors other than allotment level. Such variations would make it extremely difficult to determine the adjustment in allotment required to realize accurately a desired goal of outco put reduction on a year-to-year basis. Over a longer period of time, a knowledge of the approximate output response of a commodity to allotment change should be helpful in formulating commodity price supportalloto ment programs.

Major Product Output and Specified Resource Requirements

The output of other commodities in a region or an area as the allotment and/or support price of a major commodity change are important. Though many agricultural regions tend to specialize ${ }^{6}$ in the production

[^13]of a commodity, significant quantities of other commodities are also prow duced. Any change in the cotton allotment in the Southwestern area of Oklahoma could have far reaching effects on the output of livestock, wheat, grain sorghum, and other crops.

The area aggregations for the 12 programmed cotton allotmentaprice combinations of major crop acreages, product output, livestock numbers, and specific resource requirements are presented in Tables XVII and XVIII. The only other crop restricted by allotments in the study area was wheat and this crop entered all programs at the full allotment level. Higher cotton prices engender land use pattern shifts as cotton became relatively more profitable and its production was shifted to higher productivity soils assuming a given allotment for cotton。 Generally, such shifts replaced wheat acreage and forced wheat production to lower productivity soils. Though wheat acreage was maintained at a constant level in all programed situations, the output of wheat declined as cotton prices were increased within each cotton allotment level. For example, With cotton at the base allotment, increasing the price of cotton from $\$ 17.60$ to $\$ 30.80$ per cwt. reduced wheat output 9.5 percent.

Alfalfa acreage was reduced substantially as cotton prices were increased within every allotment situation. An exception occurred when cotton allotments were reduced to 55 percent. Alfalfa was not restricted by allotments, but rotational requirements limited alfalfa in total and to the higher soil productivity classes. Cotton production shifted to higher productivity soils as cotton prices were increased and alfalffa was replaced and reduced in the optimum organization. The exception that occurred at the 55 percent allotment level was a function of the quantity of high productivity soils, At this allotment level, a sufficient

TABLE XVII
AREA AGGREGATIONS OF MAJOR CROP ACREAGES, PRODUCT OUTPUT, LIVESTOCK NUMBERS, SPECIFIED RESOURCE REQUIREMENTS, AND RETURNS: BY SPECIFIED COTTON PRICEmALLOTMENT COMBINATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations					
		$\mathrm{P}_{2} \mathrm{C}$	$\mathrm{P}_{3} \mathrm{C}$	$\mathrm{P}_{4} \mathrm{C}$	$\mathrm{P}_{1} \mathrm{~A}$	$\mathrm{P}_{2} \mathrm{~A}$	$\mathrm{P}_{3}{ }^{\text {A }}$
		- Thousands -					
Crops							
Cotton	Acre	374.0	374.0	374.0	306.3	506.0	506.0
Wheat	Acre	754.8	754.8	754.8	754.8	754.8	754.8
Sorghum	Acre	216.6	267.3	267.8	183.8	140.0	177.3
Oat Grain	Acre	40.2	40.2	40.2	140.6	4.8	4.8
Alfalfa	Acre	210.3	165.2	264.7	228.5	210.3	172.8
Small Grain Hay	Acre	170.4	169.4	169.4	170.6	167.3	168.4
Annual Grazing	Acre	239.2	234.1	234.1.	229.0	230.6	231.8

Major Crop Output							
Cotton	Cut.	960,5	996	996	803	1,237	1,331
Wheat	Bu.	11,684	11,371	11,373	12,400	11,835	11,078
Sorghum	Cwt.	2,664	3,303	3,308	2,283	1,659	2,136
Oats	Bu.	804	804	804	2,812	96	96

Livestock

$$
\begin{array}{lrrrrrrr}
\text { Feeders } & \text { Head } & 406.8 & 407.4 & 407.4 & 423.3 & 398.2 & 398.8 \\
\text { Beef Cows } & \text { Head } & 26.7 & 26.4 & 26.4 & 27.2 & 27.2 & 26.6
\end{array}
$$

Labor Requirements

Operator	Hour	7,448	7,441	7,441	7,508	7,554	7,543
Hired Skilled	Hour	2,511	2,410	2,410	2,498	2,573	2,477
Hired Unskilled	Hour	904	923	923	673	1,272	1,314

Land, Operator Labor, and Management Return

Aggregate Dol. 28,236 $32,607 \quad 37,072 \quad 25,081 \quad 29,394 \quad 35,042$

TABLE XVIII
AREA AGGREGATIONS OF MAJOR CROP ACREAGES, PRODUCT OUTPUT, LIVESTOCK NUMBERS, SPECIFIED RESOURCE REQUIREMENTS, AND RETURNS: BY SPECIFIED COTTON PRICE-ALLOTMENT COMBINATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations					
		$P_{1} \mathrm{~B}$	$\mathrm{P}_{2}{ }^{\text {B }}$	$\mathrm{P}_{3}{ }^{\text {B }}$	$P_{4} B$	$P_{3}{ }^{\text {D }}$	$P_{4} D$
	- Thousands -						
Crops							
Cotton	Acre	271.2	2440.0	. 440.0	440.0	241.9	241.9
Wheat	Acre	754.8	754.8	754.8	754.8	754.8	754.8
Sorghum	Acre	209.3	3183.9	219.3	325.7	7290.8	- 290.8
Oat Grain	Acre	141.0	22.5	522.5	522.5	575.7	75.7
Alfalfa	Acre	228.5	5210.3	3172.7	164.7	7212.5	$5 \quad 212.5$
Small Grain Hay	Acre	172.0	166.7	7168.8	168.9	171.8	171.8
Annual Grazing	Acre	242.0	- 228.4	4231.0	231.2	240.7	7240.7
Major Crop Output							
Cotton	Cwt.	713	1,101	1,171	7,175	663	663
Wheat	Bu .	12,409	11.729	11,209	11,242	11,689	11.689
Sorghum	Cwt.	2,611	2,227	2,684	2.761	3.629	3,629
Oats	Ba .	2,812	450	450	450	1,513	1,513
Livestock							
Feeders	Head	425.7	7398.8	8 402.8	303.4	414.0	414.0
Beef Cows	Hea.d	27.1	127.2	26.5	526.5	527.1	- 27.1
Labor Requirements							
Operator	Hour	7,365	7.493	7,496	7.488	7,083	7,083
Hired Skilled	Hour	2,484	2,543	2,448	2,448	2,430	2.430
Hired Unskilled	Hour	580	1,087	2,375	2,379	558	558
Land, Operator Labor, and Management Return							
Aggregate	Dol.	24,949	28,822	33,832	38,988	29.787	32,703
Av. per Farm	Dol.	5.669	96.549	7.687	8.859	6.768	-7.431

quantity of high productivity soils were available on the representative farms to produce the full cotton allotment and still maintain alfalfa acreage.

Grain sorghum output exhibited a slightly different pattern between programmed situations than either wheat or alfalfa. However, it too was directly related to the institutional restrictions imposed on cotton, the rotational restrictions on alfalfa, and grain sorghum's relative prom fitability. At the $\$ 17.60$ cotton price, the full allotment of cotton was not produced. Wheat was limited to its allotment. Alfalfa was limited by the rotational restriction. Therefore, grain sorghum output was high when cotton prices were low. As cotton prices were increased, cotton entered at the full allotment level and grain sorghum acreage and output declined sharply. However, at the highest cotton prices cotton had replaced alfalfa on the high productivity soils. Since alfalfa could not enter the program on low productivity soils, grain sorghum acreage and output increased at high cotton prices, i.e., $\$ 26.40$ and $\$ 30.80$ per cwt. The above analysis held with all soil situations except clay soils which are not adapted to grain sorghum production.

Oats for grain was an allowable alternative on clay soils but not in any of the other situations. At a $\$ 17.60$ cotton price, cotton did not enter the program on the clay soil situation. Therefore, at this cotton price, oats acreage and production was relatively high. As cotton entered the programs at the $\$ 22.00$ cotton price, the output of oat grain dropped sharply and remained at low levels at all cotton prices equal to or greater than $\$ 22.00$ per ewt. Small grain hay and annual grazing acreages were highly stable within each allotment level. Thus livestock output, remained very stable in all programmed situations.

Total labor requirements generally were directly dependent on the allotment level. Within an allotment level, total labor requirements were lower at the low cotton price at which the full allotment of cotton was not produced. Generally operator labor and skilled hired labor requirements were very stable both within and between allotment levels. The variation in total labor requirements were attributable to the unskilled hired labor required for cotton production.

Net Returns

Policy makers must concern thenselves with the returns that farmers in the area would realize for a given crop under various program combinations. On the farm level, the program combination in effect directly affects the farmer's returms and spendable income . If price and allotments were set at a level which allowed the farmer to realize a bare subo sistence income, then his ability to educate his children, repay debts, expand his operation, and enjoy the fruits of national economic growth would be impaired.

Conversely, a program combination with a high cotton price would inw crease farmer's income, may increase goverment stocks, and require a large government program outlay. Several research studies conclude that the benefits of a price support progrom are capitalized into the sale value of the farm. 6 Though the capitalization process becomes a realized

[^14]gain and a real cost when a farm is sold and purchased, over time the gains from support programs leave the agricultural sector.

The nonfarm sector in a rural area is affected by farmers returns. Expenditures for operating expenses may remain essentially stable as cotton prices change. However, items purchased out of income above operating expenses would be more sensitive to price changes. The economic welfare of many firms, particularly suppliers of luxury items and recreation is tied very closely to farmers net returns.

The aggregate net returns by resource situation and for the area by specified cotton price-allotment level combinations are presented in Table XIX. For any of the three measures presented in the Table, it was apparent that both allotment level and cotton price had a marked effect on returns. With a 115 percent allotment level, each successive reduction in cotton price reduced area returns to land, operator labor, and manage. ment by about 16 percent. For the 100 percent, 85 percent, and 55 percent allotment levels, the reductions were approximately 14 percent, 12 percent, and nine percent, respectively, for each successive increment of cotton price reduction. At lower allotment levels, less net returns were realized from cotton and net returns were reduced proportionately less percentagewise as cotton prices were decreased.

Optimum Area Program

The computation of the combination of cotton price and allotment that would maximize profits on the clay soin representative farm given a predetemined national government outlay were illustrated in Chapter III. However, with a commodity like cotion that is produced in a number of regions, it would not be feasible to assume that a conmodity program

TABLE XIX

AGGREGATE NE R REYURN BY RESOURCE SITUATIONS AND AREA, SPEGTfIED COTION PRICE AND ALLOTMENT LEVEL COMBINATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Resource Situations			
	Clay Soil	Sandy Soil	vel Loam Soil	Rolling Loam Soi 1
	- Thousands -			
100\%-\$30.80 ${ }^{\text {a }}$				
Programmed Returns	11,869	14,641	\%9,743	9,664
Land, Operator Labor, and Management Returns ${ }^{b}$	9.877	12,698	8,682	7.731
Operator Labor and Management Returns ${ }^{\text {c }}$	4,401	6,498	3,341	2,642
100\% - \$26.40				
Programmed Returns	11,127	12.057	8,909	8,669
Land, Operator Labor, and Management Returns	9,134	10,114	7.848	6,736
Operator Labor and Management Returns	3,659	3.914	2,506	1,648
100\% - \$22.00				
Programmed Returns	10,384	9,497	8,099	7.771
Land, Operator Labor, and Management Returns	8,392	7,554	7.038	5,838
Operator Labor and Management Returns	2,916	1,354	1,697	750
100\% - \$ 17.60				
Programmed Returns	10,282	7,016	7,419	7,162
Land, Operator Labor, and Management Returns	8,289	5,073	6,358	5,229
Operator Labor and Management Returns	2,814	-1.127	1,016	141
85\%-\$30.80				
Programmed Returns	11,631	13,559	9,441	9,371
Land, Operator Labor, and Management Returns	9,639	11,615	8,380	7,438
Operator Labor and Management Returns	4.163	5,415	3.038	2,349
85\% - \$26.40				
Progranmed Returns	11,000	11,313	8,731	8.494
Land, Operator Labor, and Management Returns	9,007	9,369	7,670	6,561
Operator Labor and Management Returns	3,531	3,169	2,329	1,473

TABLE XIX (Continued)

${ }^{a}$ Allotment level as a percent of base and cotton lint price.
$b_{\text {After }}$ deduction of unallocated overhead costs.
${ }^{c}$ Land returns imputed at 5 percent of base land values.
could be tailored to individual soil situations. It might well be reasonable to expect that if data for the major cotton production areas were available, optimum price allotment combinations could be determined for these major areas. These optimum combinations could then be utilized as a guide to formulating national commodity programs.

A cotton allotmentmprice combination that maximizes returns to operator labor and management for the area under consideration was computed. It would not necessarily be expected that such a combination would maximize returns for each and every soil situation and/or assumed representative farm situation within the soil situation.

The aggregate area returns function was estimated by least squares regression from the aggregate operator labor and management returns data of Table XIX to be:

$$
(4.1) I=10,287.286-189.1818 \mathrm{X}_{1}-430.31957 \mathrm{X}_{2}+9.43723 \mathrm{X}_{2}^{2}+10.34763 \mathrm{X}_{1} \mathrm{X}_{2}
$$

$$
R^{2}=.997
$$

Where $Y=$ aggregate returns to operator labor and management
$\mathrm{X}_{1}=$ allotment level as percent of base
$X_{2}=$ cotton price in dollars per hundredweight
Coefficients on X_{1} and $X_{1} X_{2}$ were significant at the 99 percent level.
The government outlay restraint equation based on the domestic and foreign cotton demand relationship is (4.2) from Chapter III. $(4.2) \quad G=-2991.5+11.09 \mathrm{X}_{1}+84.997 \mathrm{X}_{2}$ Where $G=$ level of government outlay

Assuming, for illustrative purposes, that government outlay was set at $\$ 400$ milition, the function formed was:

$$
\begin{gathered}
(4.3) \pi=10,287.286-189.1818 x_{1}-430.31957 X_{2}+9.43723 X_{2}^{2}+10.34763 X_{1} X_{2} \\
+\lambda\left(400+2991.5-11.0,90002 x_{1}-84.996622 x_{2}\right)
\end{gathered}
$$

Where $\lambda \neq 0$ is an undetermined Lagrarian multiplier, π is maximum profit and X_{1}, X_{2} as before.
Take the partial derivatives of π with respect to X_{1}, X_{2}, and λ and set them equal to zero:

$$
\begin{aligned}
& (4.4) \frac{\partial \pi}{\partial X_{1}}=-189.1818+10.34763 X_{2}-11.090002 \lambda=0 \\
& (4.5) \frac{\partial \pi}{\partial X_{2}}=-430.31957+18.87446 X_{2}+10.34763 X_{1}-84.996622 \lambda=0
\end{aligned}
$$

$$
(4.6) \frac{\partial \pi}{\partial \lambda}=3391.5-11.090002 X_{1}-84.996622 X_{2}=0
$$

Solve (4.4) and (4.5) for λ_{3} equate and solve for X_{2} in terms of X_{1} : (4.7) $X_{2}=.171226 x_{1}+16.87204$

Substitute this value of X_{2} into (4.6), the numerical value of X_{1} is 82.3. Substituting this value of X_{1} into (4.7), the numerical value of X_{2} is 30.96. Thus the profit maximizing combination of cotton price and allotment level for the Southwestern area with a $\$ 400$ million national government outlay is 82.3 percent of base allotment with a $\$ 30.96$ cotton price.

Summary of Area Aggregates

The purpose of this chapter was, (a) to determine aggregate output of various comodities under different government cotton program combinations, (b) to determine the output response to allotment changes, and (c) to illustrate mathematically the computation of an optimum cotton price-allotment combination for the area given a predetermined national government outlay for the cotton program.

For the aggregate individual soil resource situations the cotton supply function at each allotment level were of a step form reflecting the constant ranges of linearity for cotion prices in the programming
solutions. The aggregate supply function for the area at each allotment level indicated a high elasticity of supply at low cotton prices and a low supply elasticity at high cotton prices.

A measure of cotton output to allotment (the $E_{O A}$) was computed for each individual soil situation and for the area. For many of the priceallotment combinations the $E_{O A}$'s were 1.00 , indicating a one to one rem lationship between change in output and allotments of cotton. For the area as a whole, the $E_{0 A}$ ranged from .838 to .979 . Since allotments under the cotton program have been decreased over the period 1961 to 1964. the $E_{O A}$ was computed for this period and found to be 0.91 , about the mid.. point of the range computed in this study. The most logical comparison of the actual $E_{0 A}$ for the period 1961-64, when allotments were reduced by nearly 13 percent would be to the change from a 100 percent to 85 percent allotment level at a price of $\$ 26.40$ per cwt. With this combination the computed E_{OA} was 0.88 and very similar to the actual E_{OA}.

The combination of cotton price and allotment that would maximize net returns to the area under the assumption that the representative farms were organized efficiently was computed. This combination was a cotton price of $\$ 30.96$ per hundredweight and a cotton allotment 82.3 percent of the base with a $\$ 400$ million government outiay.

CHAP'TER V

PROGRAMMED MINIMUM REQUIREMENTS

The agricultural industry is highly competitive in nature. New technology is developed and accepted quickly by many farmers. Product price and costs fluctuate within and between years. Government agricul. tural policies change over time. All these factors imply perpetual adjustments in the individual farm in both the quantity and the combina tion of resources necessary to obtain a satisfactory income level. To the layman farmer it simply boils down to two interrelated questions, namely, "How bigl must I be" and "How do I combine these resources" to obtain a satisfactory income level.

The minimization model is designed to minimize the quantity of land required to realize a specified return to operator labor and management. It simultaneously determines the optimum combination of resources on this minimum land area. The results of applying this model indicates the extent of adjustment needed in an area for individual farms to realize the predetermined "satisfactory" income level. From these
$I_{\text {Size of }}$ a farm in the minds of many people is associated too of ten with land area alone。 This is a fallacy. Size to be meaningful must be measured in terms of all resources employed on the unit. Admittedly, there is some justification for the association of land area with size since land quantity in a given area is more nearly fixed than any other resource used in production.
results it is possible to determine the minimum number of farms all realizing this target income in a given land area.

What level of return can be considered satisfactory? The decision is largely subjective. The target return used in this study was \$5,000. This level of return does not necessarily represent the "opportunity cost" of the operator's labor and management skills or a "fair" or "parity" return to the farm operator.

Programmed Combinations

For each of the four soil resource situations, linear programming computations were made to determine the minimum land requirements, other resource requirements, and the optimum combination of enterprises for the specified level of return. Separate estimates were made for combina. tions of cotton price levels, cotton allotment levels, land prices, labor prices, farm type, and equity in land. These combinations allow compario sons, ceteris paribus, of minimum land requirements under specified (a) allotmentoprice combinations, (b) laboreprice combinations, (c) form type and land price comparisons, and (d) land equity comparisons. The 22 programmed combinations for each soil resource situation are delineated in Table XX.

The detailed results, i,e., land and other resource requirements, optimum enterprise combinations, and selected product output, of these programed combinations are presented in Appendix C. In this chapter, the total land requirements and nonland capital requirements are preo sented and discussed. The discussion is carried out for each resource situation in terms of comparisons of land and capital needs to meet the \$5,000 income target.

PROGRAMMED COMBINATIONS UNDER THE MINIMIZATION MODEL FOR EACH RESOURCE SITUATION, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA
Program Specification $\quad \frac{\text { Cotton Allotment Price Combinations }}{\mathrm{P}_{1} B \mathrm{P}_{1} A \mathrm{P}_{2} \mathrm{C} \mathrm{P}_{2} \mathrm{~B} \mathrm{P}_{2} \mathrm{~A} \mathrm{P}_{3} D \mathrm{P}_{2} \mathrm{C} \mathrm{P}_{3} \mathrm{~B} \mathrm{P}_{3} A \mathrm{P}_{4} \mathrm{D} \mathrm{P}_{4} \mathrm{C} \mathrm{P}_{4} \mathrm{~B}}$
A. Allotment-Price and Labor Price Comparisons:
a. Includes all crop and
livestock alternatives
b. No equity in land
c. Land price:

Base price less
50 percent +
Base price plus
50 percent +
Base price plus
100 percent +
Base price

50 percent +
Base plus
100 percent +
B. Farm Type-Land Price Comparisons:
a. Excludes feeder enterprises
b. Base labor price
c. No equity in land
d. Land price:

Base price less
50 percent +
Base price + Base price plus

50 percent +
Base price plus
100 percent +
C. Land Equity Comparisons:
a. Includes all alternatives
b. Base land price
c. Base labor price
d. 100 percent land equity +

In the first set of comparisons in the minimization model, cotton price and allotment levels were varied in each soil situation. All crop alternatives and livestock alternatives for which supplementary feeds only were purchased were considered. Skilled hired labor prices were held at $\$ 1.00$ per hour and land values were held at base levels ${ }^{2}$ with no equity in land assumed.

Secondly, land price levels were varied. All crop alternatives and livestock alternatives for which supplementary feed only were purchased were allowed to enter the programs. Cotton allotments were held at base levels with a cotton price of $\$ 26.40$ per hundredweight. Labor price was set at $\$ 1.00$ per hour.

Labor prices were varied in the third set of comparisons. All crop alternatives and livestock alternatives for which only supplementary feeds were purchased were allowed. Cotton allotments were held at the base level with a cotton price of $\$ 26.40$ per hundredweight. It was further assumed that the operator had no equity in land and land prices were at base levels.

In the final set of comparisons, land prices were allowed to vary. Labor was held at base levels. Cotton allotments were at base levels and cotton prices set at $\$ 26.40$ per hundredweight. Zero equity in land was assumed and, in this case, feeder cattle enterprises were excluded as allowable alternatives.

One programmed combination assumed a 100 percent equity in land。 The results of this were included in the second set of comparisons and

[^15]designated as base land price less 100 percent, that is, no charge was made for interest on land investment.

The above programmed combinations indicate some of the farm size adjustments that are necessary to maintain the assumed income target if government cotton programs change, if labor or land prices should change, or if the operator should decide to exclude ${ }^{3}$ feeders as an alternative enterprise.

Allotment Price Comparisons

Clay Soils
The lowest land and nonland capital requirement to meet the $\$ 5,000$ target return on clay soils were 1,293 acres and $\$ 60,954$ (Table XXI). These occurred with the $P_{4} B$ or $\$ 26.40$ price and 100 percent allotment level combination. : The highest minimum land and capital requirement occurred when the price of cotton was $\$ 17.50$ per hundredweight (P_{1}) and allotments were 115 percent and 100 percent of base (A and B) respec* tively, At this low cotton price, the cotton enterprise did not enter the optimum program so it was immaterial whether the allotment level was low or high.

The minimum farm sizes obtained by the minimization model in the clay soil situation to attain the $\$ 5,000$ target return implies a tremendous adjustment problem for the area. In the last census, there were a total of 15,061 farms in the Southwest 11 -county area with 852 of these
${ }^{3}$ Such an exclusion could take place because of personal dislikes, risk level whether real or imagined, and so forth.

TABLEE XXI
ESTIMAPED MINLMUM LAND AND NONLAND CAPITAL REQUIREMENTS FOR \＄5，000 RETURN TO OPERATOR LABOR AND MANAGEMENT，BASE LAND

AND LABOR PRICES，INCLUDING ALL CROP AND LIVESTOCK
ALTERNATIVES；SPECIFIED COTTON PRICE－ALLOTNENT
COMBINATIONS，BY RESOURCE SITUATIONS，ROLLING
PLAINS OF SOUTHWESTERN OKLAHOMA

Price Allotment Combinations	Require－ ment	Unit	Resource Situations			
			Clay Soils	Sandy Soils	Level Loam Soils	Folling Loam Soils
$\mathrm{P}_{1} \mathrm{~A}$						
	Land Total Cap．	Acre Dol.	$\begin{array}{r} 3,213 \\ 159,540 \end{array}$	$\begin{aligned} & \text { N.S. }{ }^{\text {a }} \\ & \text { N.S. } \end{aligned}$	$\begin{array}{r} 37,338 \\ 1,326,590 \end{array}$	$\begin{aligned} & \text { N.S。 } \\ & \text { N。S. } \end{aligned}$
$\mathrm{P}_{2}{ }^{\text {A }}$						
	Land Total Cap．	Acre Dol.	$\begin{array}{r} 2,971 \\ 141,280 \end{array}$	$\begin{aligned} & \text { N.S. } \\ & \text { N.S. } \end{aligned}$	$\begin{array}{r} 1,744 \\ 64,599 \end{array}$	$\begin{aligned} & \text { N.S. } \\ & \text { N.S. } \end{aligned}$
$\mathrm{P}_{3}{ }^{\text {A }}$	Land	Acre	1，660	858	840	
	Total Cap．	Dol．	78，265	37.953	29，813	98，090
$P_{1}{ }^{B}$						
	Total Cap．	Acre	$\begin{array}{r} 3,213 \\ 159,540 \end{array}$	NoS．	$\begin{array}{r} 37,338 \\ 1,326,590 \end{array}$	N．S．
$\mathrm{P}_{2}{ }^{\text {B }}$						
	Land Total Cap．	Acre Dol．	$\begin{array}{r} 2,953 \\ 141,392 \end{array}$	$\begin{aligned} & \mathrm{N}, \mathrm{~S}_{0} \\ & \mathrm{~N}, \mathrm{~S}_{0} \end{aligned}$	$\begin{gathered} 1,884 \\ 69,148 \end{gathered}$	$\begin{aligned} & \text { NoS。 } \\ & \text { N.S. } \end{aligned}$
$\mathrm{P}_{3} \mathrm{~B}$	Land	Acre	1，763			4，384
	Total Cap．	Dol．	83，678	51，085	32，522	135，190
$P_{4}{ }^{B}$						
	Land Total Cap．	Acre Dol.	$\begin{array}{r} 1,293 \\ 60,954 \end{array}$	$\begin{array}{r} 565 \\ 24,393 \end{array}$	$\begin{array}{r} 651 \\ 22,567 \end{array}$	$\begin{array}{r} 1,324 \\ 39,808 \end{array}$
$\mathrm{P}_{2} \mathrm{C}$						
	Land Total Cap．	Acre Dol．	$\begin{array}{r} 3,030 \\ 145,768 \end{array}$	$\mathrm{N}_{\mathrm{N} . \mathrm{S}}$ ．	$\begin{array}{r} 2,048 \\ 74,490 \end{array}$	$\begin{aligned} & \mathrm{N}_{0} \mathrm{~S}_{0} \\ & \mathrm{~N}_{0} \mathrm{~S} \end{aligned}$
$\mathrm{P}_{3} \mathrm{C}$	Land	Acre	1，885	1，800	1，022	7.039
	Total Cap．	Dol．	90，065	78，666	36，244	217.229

TABLE XX (Continued)

Price Allotment Combinations	$\begin{aligned} & \text { Require- } \\ & \text { ment } \end{aligned}$	Unit	Resource Situations			
			Clay Soils	Sandy Soils	Level Loam Soils	Rolling Loam Soils
$\mathrm{P}_{4} \mathrm{C}$						
	Land Total Cap.	Acre Dol.	$\begin{array}{r} 1,414 \\ 67,166 \end{array}$	$\begin{array}{r} 704 \\ 30,073 \end{array}$	$\begin{array}{r} , 722 \\ 25,336 \end{array}$	$\begin{array}{r} 1,624 \\ 48,836 \end{array}$
$P_{3}{ }^{\text {D }}$						
	Land Total Cap.	$\begin{aligned} & \text { Acre } \\ & \text { Dol. } \end{aligned}$	$\begin{array}{r} 2,207 \\ 106,906 \end{array}$	$\begin{aligned} & \text { N.S. } \\ & \text { NoS. } \end{aligned}$	$\begin{array}{r} 1,428 \\ 52,377 \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{S}_{0} \\ & \mathrm{~N}, \mathrm{~S} . \end{aligned}$
$\mathrm{P}_{4}{ }^{\text {D }}$	Land	Acre	1,739	1,844	986	
	Total Cap.	Dol.	83,881	78,468	35,792	117.486

larger than 1,000 acres in size。 ${ }^{4}$ Of the 852 farms larger than 1,000 acres in size, 184 were larger than 2,000 acres. The comparison of preo sent distribution with the results on the clay soil situation are not necessarily entirely valid. In this study advanced technology was assumed. Had present technology been assumed, the minimum farm sizes would have been even larger. However, clay soils make up only a portion of the total area and at least for many of the cotton price allotment combinations, the minimum farm sizes necessary to attain the $\$ 5,000$ return were much smaller in the other situations than for clay soils. If the $\$ 5,000$ return is assumed to be realistic for the future, then (a) substantial adjustments in farm sizes on clay soils must take place and (b) substantial quantities of capital would have to be availo able to make such size adjustments and to operate large units.

Sandy Soils

No solutions were obtained on sandy soils with (a) cotton prices at $\$ 17.60$ and $\$ 22.00$ per hundredweight with allotment levels equal to or greater than 85 percent of base and (b) a cotton price of $\$ 26.40$ and an allotment level restricted to 55 percent. This implies that there was no possible combination of resources that would return $\$ 5,000$ to operator labor and management with these allotmentoprice combinations. Where solutions were obtained, the smallest farm size necessary for the $\$ 5,000$ return was 565 acres combined with $\$ 24,393$ noniland capital. This occurred with combination $P_{4} B_{0}$. With a cotton allotment of 100 percent, a decrease in the price of cotton to $\$ 26.40$ per hundredweight increased

[^16]land requirements by 597 acres, or 106 percent. With allotments at the 85 percent level and the same cotton price decrease, land requirements increased by 1,096 acres, or 156 percent. Thus, with a more highly restricted allotment level, similar cotton price decreases required a larger percentage farm size increase. A comparison of price-allotment combinations $\mathrm{P}_{3} \mathrm{C}$ and $\mathrm{P}_{4} \mathrm{D}$ in the sandy soils indicated a decrease in cotton allotment from 85 to 55 percent was counterbalanced by an increase in cotton price from $\$ 26.40$ to $\$ 30.80$ per hundredweight with respect to minimum farm size to attain the target income. Nonland capital requirements were also nearly identical for these two combination.

Level Loam Soils
Solutions were obtained for every price-allotment combination in this soil situation. With a cotton price of $\$ 17.60$ per hundredweight irrespective of allotment level, the minimum land requirement was 37,338 acres with a nonland capital requirement greater than $\$ 1.3$ million. This size by present standards must be considered unrealistic. However, with cotton prices equal to or greater than $\$ 26.40$ per hundredwei.ght and wi.th cotton allotments equal to or greater than 85 percent of base, the minimum land requirements were generally l,000 acres or less. This is considerably larger than present average farm size.

Rolling Loam Soils

No solutions, that is, no combination of resources was possible to attain the target income with cotton pricemallotment combinations $P_{1} A$, $P_{2} A, P_{1} B, P_{2} B_{2} P_{2} C$, and $P_{3} D$ in the rolling loam soils. Where solutions were obtained, minimum land requirements ranged from a low of 1,324 acres with a cotton price of $\$ 30.80$ and a 100 percent allotment $\left(P_{4} B\right)$ to a high
of 7,039 acres with a $\$ 26.40$ price and 85 percent allotment $\left(P_{3} C\right)$. Capital requirements varied from $\$ 48,836$ to $\$ 217,229$ for the same two combinations. The minimum resource requirements were extremely sensitive to cotton price changes within a given allotment level. With a 100 percent allotment, decreasing the price from $\$ 30.80$ to $\$ 26.40$ per hundredweight $\left(P_{4} B\right.$ to $P_{3} B$) increased the minimum land requirement by 3,060 acres, or 231 percent and the capital requirement by 240 percent.

Land Price Comparisons Including all Enterprises

Clay Soil Situation
Varying the price of land greatly affects the minimum land and nonland capital requirements given the cotton allotment and price (P3B) and including all crop and livestock enterprises for which supplementary feeds only are purchased. With a land price of $\$ 105$ per acre, the base price for clay soils, minimum land requirements were 1,763 acres (Table XXII). With land price reduced by 50 percent to $\$ 52.50$ per acre, minimum land requirements were 753 acres, a 57 percent reduction. Nonland capital requirements were reduced by 58 percent when land price was reduced 50 percent.

With no charge for land (designated as base less 100 percent in Table XXII) minimum land requirements were further reduced to 520 acres. This situation would characterize an operator with full equity in land who imputed his entire residual return to operator labor and management. When the price of land was increased by 50 percent, to $\$ 157.50$ per acre, no feasible solution was obtained. At this, or higher land price levels, there was no combination of resources that would allow a net return of

TABLE XXII
ESTIMATED MINIMUM LAND AND NONLAND CAPITAL REQUIREMENTS FOR \$5,000 RETURN TO OPERATOR LABOR AND MANAGEMENT, 100 PERCENT COTTON ALIO'TMENT, $\$ 26.40$ COTTON PRICE, BASE LABOR PRICE, INCLUDING
ALL CROPS AND LIVESTOCK ENTERPRISES; SPECIFIED LAND PRICE
LEVELS BY RESOURCE SITUATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Requirement	Unit	Land Price Levels as Percent of Base			
		Base ${ }^{\text {a }}$	Base Less 50 Percent	Base Less 100 Percent	Base Plus 50 Percent
Clay Soil Situation					
Land	Acre	1,763	753	520	NoS. ${ }^{\text {b }}$
Total Capital	Dol.	83,678	34,867	24.196	N.S.
Sandy Soil Situation					
Land	Acre	1,162	516	377	N.S.
Total Capital	Dol.	51.085	22,240	16,343	NoS。
Level Loam Soil Situation					
Land	Acre	918	420	284	Nos.
Total Capital	Dol.	32,522	14:579	9,795	NoS.
Rolling Loam Soil Situation					
Land	Acre	4,384	680	440	NoS.
Total Gapital	Dol.	135,190	20,004	12,890	Nos.

${ }^{\mathrm{a}}$ Base land prices for Clay, Sandy, Level Loam, and Rolling Loam Soils, respectively, are assumed to be $\$ 105, \$ 160, \$ 240$, and $\$ 170$ per acre.
${ }^{\text {b }}$ No solution.
$\$ 5,000$ on clay soils under the given assumptions of factor prices, product prices, institutional, and technological restraints.

Sandy Soil Situation
A similar situation existed for the sandy soil situation, Minimum land requirements were 1,162 acres at an assumed base land price of $\$ 160$ per acre. Nonland capital requirements were $\$ 51,085$ (Table XXII). A reduction of 50 percent in the price of land reduced land and nonland requirements by some 56 percent. With no charge made for land, land and nonland capital requirements were further reduced by approximately 12 perem cent. With land priced at greater than 50 percent of base, no solution was obtained.

Level Loam Soil Situation
At a base land price of $\$ 240$ per acre, minimum land requirements to attain the target return on level loam soils were 918 acres (Table XXI). Reducing the land price to $\$ 120$ per acre reduced land requirements by 498 acres to 420 acres, or 54 percent. A similar reduction occurred in nonland capital requirements. With no charge for land, minimum requirea ments were reduced to 284 acres and $\$ 9,795$ nonland capital, a reduction of approximately 15 percent. No solution was obtained when land price was increased by 50 percent or more over the base price.

Rolling Loam Soil Situation
With a base land price of $\$ 170$ per acre, minimum land requirements for the rolling loam soil situation were 4,384 acres (Table XXII). Hows ever, reducing the price of land by 50 percent reduced the land requirement by 84 percent with a similar reduction in nonland capital needs.

This represented a greater reduction in minimum requirements than in any other soil situation and suggests that the assumed price of rolling loam soils is relatively higher with respect to its productivity than the other three soil classifications.

With no charge levied against land, the minimum requirements were reduced to 440 acres. Again, no solution was obtained with land price 50 percent greater than the base price.

Land Price Comparisons Excluding Feeder Enterprises

Clay Soil. Situation
With feeder cattle enterprises excluded, no solutions were obtained in the clay soil situation when land price was at, or greater than, the base level (Table XXIII). With a 50 percent reduction in land price, the minimum land required to attain the returns target was 1,927 acres. This is 164 acres more than the land requirement at base prices when all enterprises were included.

Sandy Soil Situation

At the base price of land, the minimum land requirement to meet the target return was 3,504 acres. This represents an increase of 2,342 acres, or slightly over 200 percent, over the comparable situation on sandy soils with feeder enterprises included. With land prices reduced by 50 percent, minimum land needs were reduced by 2,828 acres to 676 acres, or 80 percent, with a comparable reduction in nonland capital requirements. No solution was obtained with the price of land equal to or greater than 50 percent over base.

TABLE XXIII
ESTIMATED MINIMUM LAND AND NONLAND CAPITAL REQUIREMENTS FOR \$5,000 RETURN TO OPERATOR LABOR AND MANAGEMENT, 100 PERCENT COTTON ALLOTMENT, $\$ 26.40$ COTTON PRICE, BASE LABOR PRICE, EXCLUDING LIVESTOCK FEEDER ENTERPRISES; SPECIFIED LAND PRICE LEVELS, BY RESOURCE SITUATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Level Loam Soil Situation
The minimum land requirement at the base land price to attain the target return was 1,488 acres on level loam soils (Table XXIII) when feeder cattle enterprises were excluded as alternative enterprises. This was 570 acres, or 62 percent, greater than the comparable situation with all enterprises included. Reducing the price of land by 50 percent, reduced the land requirement to 480 acres, an approximate reduction of 68 percent. No solution was obtained with land price 50 percent or more above the base price of $\$ 240$ per acre.

Rolling Loam Soil Situation

No solution was obtained in this soil situation when the price of land was set at, or greater than, the base price of $\$ 170$ per acre (Table XXIII)。 With the price of land reduced by 50 percent, the minimum amount of land required to meet the target return was 882 acres. This was 202 acres, or 30 percent, more than the comparable situation on rolling loam soils when all enterprises were allowed to enter the proo gram.

Labor Price Comparisons

Clay Soil Situation

With a labor price of $\$ 1.00$ per hour, the minimum land requirement to attain the target return on clay soils was 1,763 acres with a nonland capital requirement of $\$ 83,678$ (Table XXIV). Increasing the price of labor to $\$ 1.50$ per hour increased land requirements to 4.532 acres, or an increase of 157 percent with a comparable increase in nonland capital needs. No solution was obtained when the price of labor was increased to $\$ 2.00$ per hour.

ESTIMATED MINIMUM LAND AND NONLAND CAPITAL REQUIREMENTS FOR \$5,000 RETURN TO OPERATOR LABOR AND MANAGEMENT, 100 PERCENT COTTON ALLOTMEN'T, \$26.40 COTTON PRICE, BASE LAND PRICE,

INCLUDING ALL CROP AND LIVESTOCK ENTERPRISE
ALTERNATIVES; SPECIFIED HIRED LABOR PRICES
BY RESOURCE SITUATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Requirement	Unit	Skilled Hired Labor Prices Per Hour		
		\$1.00 ${ }^{\text {a }}$	\$1.50	\$2.00
Clay Soil Situation ${ }^{\text {a }}$ (b				
	Acre	1,763	4.532	No. ${ }^{\text {NoS. }}$
Sandy Soil Situation				
Land	Acre	1,162	1,512	4,267
Total Capital	Dol.	51,085	58,407	163.153
Level Loam Soil Situation				
Land	Acre	918	1.039	1,315
Total Capital	Dol.	32,522	37.381	47.256
Rolling Loam Soil Situation				
Land	Acre	4,384	N.S.	N.S.
Total Capital	Dol.	135,190	NoS.	N.S.

Sandy Soil Situation
With a labor price of $\$ 1.00$ per hour, minimum land requirements were 1,162 acres (Table XXIV). Increasing the price of labor to $\$ 1.50$ per hour increased land requirements by 350 acres, or 30 percent. This was a much smaller increase than was found in the clay soil situation. Increasing the price of labor to $\$ 2.00$ per hour increased land requirements to 4,267 acres, an increase of 268 percent.

Level Loam Soil Situation

Minimum land requirements on the soil situation with labor priced at $\$ 1.00$ per hour were 918 acres (Table XXIV). Increasing the price of labor to $\$ 1.50$ and to $\$ 2.00$ per hour, increased the land requirements by 121 acres and 397 acres, or 13 percent and 43 percent, respectively.

Rolling Loam Soil Situation
No solutions were obtained in this situation when labor price was increased from $\$ 1.00$ per hour to $\$ 1.50$ and $\$ 2.00$ per hour. With the base price of labor, minimum land and nonland capital requirements to meet the target income were 4,384 acres and \$135,190.

Summary of Minimization Model Results

The purpose of this chapter was to determine the minimum land $r \theta_{\infty}$ quirements to realize a $\$ 5,000$ target income under various assumptions of cotton allotment levels, cotton prices, land prices, labor prices, and land equity levels. The results indicate the extent of adjustment that would be necessary under these assumptions for farmers within the soil resource situations.

The results indicate a tremendous adjustment problem。 In several
of the resource situations, solutions were not obtained. This was particularly true, when cotton prices or allotment levels were low, or land or labor prices were set at higher levels than the assumed base prices.

The lack of a solution indicated that there was no combination of resources available under the specified set of assumptions that would return $\$ 5,000$ to the operator's labor and management.

In several other cases and particularly in the level loam soil situation when cotton price was held at the $\$ 17.60$ per hundredweight level, the minimum land requirements were extremely high. In one situam tion ($L L P_{1} A$ and $L I P_{1} B$) land requirements to realize the target income were 37,338 acres with a total capital requirement of $\$ 1,326,590$. With combinations of the higher cotton price levels or with land prices at below base price levels, minimum land requirements were rew duced to levels that would be considered more "normal". An example of this would be the 516 acre requirement in the sandy soil situation with land price at 50 percent of base (Table XXII). This could well typify a relatively small farmer who appears to be realizing a satisfactory in come for himself. Had he purchased this land a decade or two ago when land prices were considerably lower than the assumed levels, he is realizing the $\$ 5,000$ target return and a five percent return on his "initial" investment (the price of the land when he actually purchased it). Further, if in past years he had paid for this land he could use the return to land to cover living expenses. He is not realizing an "opportunity" return to the present value of his land capital. However, if he is an efficient manager and enjoys farming, there is no real pressure on such an individual to increase the size of his unit, or for that matter, to leave farming and seek alternative employment。

CHAPTER VI

FARM NUMBERS PROJECTIONS

The level of income for the individual, a group, or sector of an economy is the generally accepted indicator of well being with respect to other individuals, groups, or sectors. Income comparisons are frequently averages in terms of hourly wages, annual income, per capita income, and so forth. Growth in real income over time implies that the particular group under consideration is sharing in the fruits of national economic growth.

Such comparisons are fraught with pitfalls. Total income for a group may decline, though individual income within the group is increasing, if the number of people in the group is declining. Average data may obscure substantial income variations with some individuals extremely well off and others on the edge of starvation. Hourly wage comparisons can be misleading if time worked, overtime pay, or nonmonetary fringe benefits are not considered or ignored. Special skills, investment required to attain a specified income, may also be overlooked when simple income comparisons between groups are cited.

Available farm income data are subject to many of the criticisms listed above when used to compare returns in agriculture to those received by individuals in other sectors of the economy. It is generelly conceded that many real farm incomes are substantially lower than
incomes for comparable ability in town. 1 The farm problem for a substantial percentage of the agricultural industry is basically low per capita farm income. This in itself does not necessarily imply less than parity returns to employed resources on low income farms. Low incomes can result from too small a complement of land and capital combined with a relatively fixed quantity of operator and family labor into a producing unit. Underemployment of labor typical in such a situation spawn low annual labor returns.

Though considerable disagreement exists as to the reason(s) for low farm incomes, it is generally conceded that a combination of the main contributing factors are, (a) an inelastic demand for farm products, (b) a low income elasticity for agricultural productss (c) a high ratio of fixed to variable assets in production, (c) atomistic competition, (e) rapid development and acceptance of new technology, (f) lagged production, (g) sensitivity to the state of the economy as a whole, and (h) a value structure that propounds the attributes of farming and rural living as "the way of life."2

To maintain parity returns to resources invested in agriculture under such a structure, continuous and rapid adjustment with possible outmigration of resources of land, labor, and/or capital must take place. However, the quantity and quality of land for agricultural purposes in

[^17]an area remains relatively fixed and constant. 3 For example, the Census of Agriculture reports land in farms in Oklahoma for 1950, 1955, and 1960 at $36,35.6$, and 35.8 million acres, respectively. 4 The resources that must migrate out of agriculture are people and possibly capital. 5 To raise per capita or per farm operator income given a particular set of input costs, product prices, technology level, and institutional restrictions, farm size must increase. It follows that farm numbers in the area must decline.

From the standpoint of economic adjustment and area development, past adjustment patterns in farm numbers must be analyzed to project what may occur in the future under various assumptions.

The changes that have occurred in the past 20 year period in terms of farm numbers in total and by specified size group breakdowns are presented in Table XXV. Extrapolation of past trends in total and by size groups was one method used to investigate future size distributions. The Markov chain process, under various assumptions, was also used to estimate future size distribution. Finally, the results of the linear

3 This is not necessarily true close to rapidly expanding urban areas where housing or industrial development may remove relatively large areas from agricultural production when received from a local standpoint. In aggregate, however, such land use shifts are extremely small percentagewise.

4U. S. Department of Commerce, Bureau of the Census, U. S. Census of Agriculture: 1959 , Vol. I, Part XXXVI, p. 3.

5 This is not to imply that agricultural land cannot be removed from production. Low product prices for an extended period of time would likely result in abandonment of part or whole farms. Government land retirement programs remove land from production but do not necessarily reduce census tabulation of land in farms. Land purchase programs, with or without conversion to uses such as recreation, forestry, and so on, would decrease land in production and decrease land in forms.
programing minimization model were used to determine the number of efficiently ${ }^{6}$ organized fams realizing a $\$ 5,000$ return to operator labor and management that this area could support under the various cotton price, cotton allotment, land price, labor price, and equity relationships delineated in Table $X X$, Chapter Vo

TABLE XXV
FARM NUMBERS IN SOUTHWESTERN OKLAHOMA, $1945-1960$

Year	Acres				Total
	0.219	220.499	$500-999$	Over 1,000	
1945	16,302	7,012	1.395	416	25.125
1950	12,910	6,898	1,582	501	21,891
1955	9.332	6,513	1,989	617	18,451
1960	$6,637^{\text {a }}$	5.469	2.461	852	15,419

addjusted upward to allow for change in definition of a farm in the 1959 census. The adjustment is made in the small size classification under the assumption that the decrease in number of farms due to the definitional change occurred entirely in the small farm size group.

Source: Data from Uo So Census of Agriculture.

Past Changes in Farm Numbers

The total number of farms in the llocounty study areg has declined ropidy in the 20-year period from 1945 to 1960 . This was not the case Ln 212 sias groups. The Census of Agriculture gives 11 tarn gixe break

[^18]downs. For the purpose of this analysis the smaller size group classo ifications have been combined and the classifications designated as follows:

Classification or State	Farm Size (acres)
S_{1}	0.219
$\mathrm{~S}_{2}$	220.499
$\mathrm{~S}_{3}$	$500-999$
$\mathrm{~S}_{4}$	1,000 and over

The two smaller size groups, state S_{1} and S_{2}, have declined rapidly whereas the two larger groups, S_{3} and S_{4} have increased in numbers.

The decrease in all farms in the Southwestern Area of Oklahoma was 12.88 percent, 15.72 percent, and 16.44 percent, respectively, for each of the five year periods beginning with 1945. For the 15 -year period total farms decreased by 39 percent. Over the entire period, the small farms (S_{1}) declined 60 percent; farms consisting of those between 220 and 499 acres $\left(S_{2}\right)$ declined 22 percent. The 500 to 999 acre farms $\left(S_{3}\right)$ and farms of 1,000 acres or over $\left(S_{4}\right)$ increased 76 and 105 percent, respece tively, in the same time period.

Extrapolation of Past Trends

Regression Analysis

Regression equations were fitted to the farm size and time data of Table XXV. The dependent variable (Y_{i}) was farm numbers in the respeca tive size state and the independent variable (X_{i}) was time in terms of the last two digits of the period. Preliminary graphic analysis indicated a possible curvilinear relationship between farm numbers and time in
states S_{4} (1,000 acres and over), S_{3} (500-599 acres), and S_{2} (220-499 acres). In these three states both a linear and a quadratic least squares fit was calculated. These estimates of farm numbers in total and by size groups are presented in Table XXVI.

For each fitted equation, farm numbers projections for 1965. 1970, and 1975 are presented in Table XXVII.

A projection of farm numbers, either in total or by size groups from the estimated regression equations can lead to absurd conclusions. Equation (6.1) relating total farm numbers in the area to time, predicted zero farms by the year 1984. For time periods after 1984, equation (6.10) predicted negative farm numbers. Such an occurence is impossible. The negative number problem could be overcome with the use of log or reciprocal transformations of the data. The data, however, does not give any basis for anything other than a linear extrapolation since the R^{2} of the simple regression on total farm numbers approached one.

It is vexy probable that farm numbers in total will continue to decline. It seems intuitively plausible to assume that at some point this decrease will be at a decreasing rate. The data on farm numbers in total for the four time periods considered in this analysis gives no indications of when this might occur.

Similarly, zero farms were projected in state S_{2} by the year $201 ?$ with the linear formulation of equation (6.6), and by the year 1974 with the quadratic formulation of equation (6.7). In state S_{2}, the quadratic form of equation (6.7), decreased at an increasing rate, that is, the first and second derivatives of farm numbers with respect to time are negative。

For states S_{3} and S_{4}, farm numbers increased more rapidly with the

LEAST SQUARES ESIIMATES OF FARM NUMBERS IN TOTAL AND BY SIZE STATES FROM 1945-1960 QUINQUENNIAL CENSUS DATA; ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

	Size								
Equation	State	R^{2}	Constant	X_{1}	X_{1}^{2}				
(6.1)	Total	.999	54407.4	-651.16					
(6.2)	S_{4}	.944	-898.7	28.48					
(6.3)	S_{4}	.996	3188.8	-129.02	1.5				
(6.4)	S_{3}	.968	-1928.5	72.1					
(6.5)	S_{3}	.998	5837.75	-227.15	2.85				
(6.6)	S_{2}	.849	11737.7	-100.28					
(6.7)	S_{2}	.995	-13604.8	876.22	-9.3				
(6.8)	S_{1}	.997	45496.9	-651.46					

TABLE XXVII
PROJECTION OF FARM NUMBERS FOR 1965, 1970, AND 1975 FROM ESTIMATED REGRESSION EQUATIONS; ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Equation Number	Equation Type	Size State	Year		
			1965	1970	1975
(6.1)	Linear	Total	12,082	8,826	5.570
(6.2)	Linear	S_{4}	952	1,095	1,237
(6.3)	Quadratic	S_{4}	1,140	1,507	1,950
(6.4)	Linear	S_{3}	2,758	3,118	3,479
(6.5)	Quadratic	S_{3}	3,114	3,902	4.832
(6.6)	Linear	S_{2}	5,219	4.718	4.217
(6.7)	Quadratic	S_{2}	4,057	2,161	$-201{ }^{\text {a }}$
(6.8)	Linear	S_{1}	3.152	$-105^{\text {a }}$	$-3.363^{\text {a }}$

$a_{\text {We recognize that }}$ it is impossible to have a negative number of farms in a siae group. The figures were included only to illustrate what may occur if past adjustment patterns were used to predict farm numbers in this manner though the R^{2} was extremely high.
quadratic formulations as compared to the linear formulations of the respective regression equations. Both of the quadratic equations for S_{3} and S_{4} increase at an increasing rate, that is, the first and second derivative of farm numbers with respect to time were both positive in the relevant range.

For states S_{2}, S_{3}, and S_{4} the quadratic form in each case had the highest R^{2}. However, when the quadratic formulation of the equations in either one or more of these states was used to project future farm numbers by individual farm sizes, the projected numbers did not total to the projected farm numbers with equation (6.1), the total farm regression equation. For example, in Table XXVI the projected total farm numbers for 1965 of 12,082 is not equal to the sum of the projections for that year of equations (6.3) , (6.5) , (6.7), and (6.8), though it does equal the summation of the projections of the linear equations in each state.

A simple extrapolation of past trends did not appear to be a feasio ble method for projecting future farm numbers in total, or by size groups, with any confidence. A more reasonable hypothesis would be that farm numbers in the small size groups will continue to decline in the future but at a diminishing rate. More than likely, a point in time will be reached where a hard core of small farms consisting of semimretired farmers and partotime farmers will remain. The larger size groups will likely continue to increase but at a decreasing rate. Accordingly, farms in total will continue to decline, possibly quite rapidly for several more census periods. The rate of decline would likely be drastically reduced in the not too distant future. The Markov chain process appeared to be a more feasible approach to the problem of projecting farm numbers.

Markov Chain Distributions
Another approach to describing the possible pattern of future farm size distributions centers around the Markov chain process. As indicated in Chapter II, this process assumes that a population can be classified into various groups or states. Further, it assumes that movements between states over time can be regarded as a stochastic process. The states must be defined in such a way that the process can only be in one state at any point in time, $i_{0} e_{0}$, a farm is in a particular given size state in a given year. A transition occurs when the process changes or shifts from one state to another.

The critical step in the Markov chain process in the construction of the transition probability matrix designated as $[P]$ The elements of this matrix indicate the probability of each firm moving from size i to j in a particular time period. Thus, $p_{i j}$ in $L E T$ is the probability that a firm in state i will move to state j in the next time period. Given a known starting state, the probability that a firm will be in any other state can be determined for the next period or any future period. This assumes that the transition probabilities are known and do not change over time. To determine the size distribution of firms in time period n from a known starting distribution, the transition matrix is multiplied by itself n times yielding a new matrix $\lceil P=n$ which is then multiplied by the initial known distribution. In addition to estimates of the size distribution of firms in any time period, this method can be used to estimate equilibrium distribution of farms. An equilibrium occurs when sufficient time has passed to make each row in the matrix identical. Equilibrium does not imply lack of further movement between states. The distribution remains constant, that is, the number of firms
entering a particular state equals the number of firms leaving.
Ideally, to accurately estimate the transition matrix, data recorde ing the actual size transitions ofi a large number of firms over a period of time would be required. Data on individual movements were not readily available for the study area. Therefore, base data on farm numbers for the area was obtained from the U. S. Census of Agriculture for 1945, 1950, 1955, and 1960 (Table XXV). Size classifications, the S_{i}, are as delineated earlier in the chapter.

Two different approaches were used to determine the transition proc ability matrix. The first approach used past census data. Specific assumptions were made with respect to farm movements over time. The transition probability matrix calculated by this method was denoted as LPG. The second approach used the latest available census data as a starting point with the transition matrix determined from a personal opinion survey of future change in farm numbers as expressed by real estate agents, county extension agents, farm home administration supervisors, bank agricultural loan officers, and others in each of the 11 counties. The transition probability matrix calculated by this method was denoted as $\left[P_{\text {Som }}\right.$.

The LP P_{c} I Matrix and Its Interpretation
The basic hypothesis that underlies the computation of the transi..w tion probability $\left[P_{c}\right]$ from the farm size distribution of the past four census periods is that firms either move up a size state, that is, increase in size or go out of business.

The transition matrix for this method was determined by the follow ing procedure. A trancitional table was computed for each five year
interval using the above hypothesis on farm movements. The transitional table shows the hypothesized movements of farms from state to state between each time period. Table XXVIII illustrates the estimated movements for the period 1945 to 1950.

TABLE XXVIII

TRANSITIONAL TABLE OF FARM MOVEMENTS IN SOUTHWESTERN OKLAHOMA FROM 1945 TO 1950

Size State in 1945							
	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	Total	
S_{0}	0	0	0	0	0	0	
S_{1}	3,234	12,910	158	0	0	16,302	
S_{2}	0	0	6,740	272	0	7,012	
S_{3}	0	0	0	1,310	85	1,395	
S_{4}	0	0	0	0	416	416	
Total	3,234	12,910	6,898	1,582	501	25,125	

Initially, only the total size distributions for 1945 (the column totals) and for 1950 (the row totals) were known. The S_{0} column total shows the decrease in farms in the five year period. These were the first figures entered into the transitional Table XXVIII. To obtain a total of 501 farms in state S_{4} in 1950, the 416 farms that were in this state in 1945 were entered into S_{55} (row 5, column 5) in the transitional table. It was assumed that 85 farms (501 minus 416) from S_{3} in 1945 moved into S_{4} in 1950. The number 85 was entered into S_{45} of the table。

The 1,310 remaining S_{3} farms of 1945 were entered in S_{44} under the assumption that they had stayed in this state in the five year period.

To make up the necessary 1,582 farms in S_{3} in 1950, 272 (1,582 minus 1,310) S_{2} farms were assumed to have moved into S_{3} during the period. This number was entered into $S_{34^{\circ}}$ This left 6,740 farms in $S_{2}(7,012$ minus 272). To obtain the required 6,898 farms for state S_{2} in 1950, 158 farms from S_{1} were moved into S_{2} and entered into S_{23}. Of the 16,144 remaining farms (16,302 minus 158), only 12,910 were required for state S_{1} in 1950. The difference of 3,234 farms (16,144 minus 12,910) were assumed to have gone out of business in the five year interval from 1945 to 1950. This figure was entered in S_{21} of the table. To complete Table XXVIII, zeros were entered into all the cells. The none zero components in the matrix table were then divided by the row totals and entered into another matrix. This becomes the transition probability matrix for the first five year interval.

The same procedure was repeated for each of the two remaining five year intervals. First, a transition table was computed under the "up or out" hypothesis and a probability matrix computed from the table. To determine the probability matrix P_{c} for the entire period, the probablio ties in corresponding cells for each time interval were totalled and averaged. ${ }^{7}$ The P_{c} matrix is shown in equation (6.9).
 separate transition tables and dividing the items in the table of totals by the row totals. See Ronald D. Krenz "Projection of Farm Numbers for North Dakota with Markov Chains," Agricultural Economics Research. Vol. XVI, No. 3, ERS, USDA, 1964, pp. 77-83. This method with our data gave less accurate "predictions" when compared to the known farm size diso tributions for 1950, 1955, and particularly for 1960. It is recognized that such "predictions" are analagous to "testing" a regression equation against the data from which it is derived, but it appears intuitively plausible to use the probability matrix from which the "predictions" agree more nearly with the known distributions.

A probability of unity was placed in the p11 cell and zeros in the $p_{1 j}(j=1, \ldots, 4)$. This indicates that there can be no new entrants into the farming industry. The p11 entry, in computations of future farm size distributions, allows an áccumulation of farms that have gone out of business since the base period, in the w_{11} cell of the $n^{\text {th }}$ farm size distribution vector $\left(w^{n}\right)$. Each $p_{i j}$ in the $\left[P_{c-}\right]$ matrix indicates the probe ability of a farm moving from state S_{i} to S_{j} in the next five year period, or if converted to percent, the percentage of farms in S_{i} that will be in S_{j} after five years. Coefficients in each row of the P_{c} matrix sum to one so that all farms are accounted for from time period (t) to ($t+1$). An inspection of the P_{c} matrix gives an indication of the movement of farms expected over time. Both states S_{0} and S_{4} are absorbing states, that is, farms once in either of these states remain in them. The coefficients in the P_{c} matrix show that farms in all size states can move into larger size groups but only the two small size groups, S_{1} and S_{2}, go out of business. About eight percent of S_{3} farms moved into the larger size category in each time interval. However, less than one percent of the S_{1} farms moved up into the next largest group every period. Farms of this size are not likely to expand. About 25 percent of the small size group S_{1} and about 1.7 percent of group S_{2} go out of business
in every time period. None of the farms in states S_{3} or S_{4} go out of business or become smaller.

Projected Farm Numbers from P_{c} Matrix
The projected farm numbers for consecutive five-year time periods may be obtained by multiplying the farm size distribution vector of the base year by the P_{c} matrix and continue post multiplying the resultant vector of farm numbers by P_{c} for the desired number of periods. ${ }^{8}$ The projection base used in this study was 1960. The estimated farm numbers for different time periods are presented in Table XXIX. This model projected a total of 11,337 farms by 1975. This represented a decrease of 26.5 percent from the 1960 base period. A total of 4,082 farms would go out of business by 1975 with the majority of these coming out of state S_{1}, the 0 - 219 acre size group. The programming minimization model results indicated that little if any labor was hired when farm size drops to 500 acres or less. Any decrease in farm numbers in the small size groups would imply a release of farm labor for reoemployment in the nonfarm sector in the area, or for relocation and employment in other areas.

The Markov process allows estimating equilibrium distribution of firms. With absorbing chains, the equilibrium distribution would consist of firms in only the absorbing state or states. It was evident from an inspection of the transition probability matrix P_{C} that all farms in the initial size distribution vector in the base period would either go out of business or eventually be larger than 1,000 acres because S_{0} and S_{4}
 results, is to multiply the P matrix by itself n times then multiply p^{n} by the initial or starting distribution. This gives the projected distribution for time period n.

TABLE XXIX
PROJECTED FARM NUMBERS IN TOTAL AND BY SIZE DISTRIBUTION FOR SOUTHWESTERN OKLAHOMA (PROJECTION BASE $=1960$; TRANSITION BASE $=1945-60$)

Size of Farm	$\begin{aligned} & \text { Actual } \\ & \$ 72600 \end{aligned}$	Projected Farm Numbers		
		1965	1970	1975
S_{0} (Out of Business)		1,761	3,085	4,082
S_{1} (0-219 Acres)	6,637	4,925	3,654	2,711
S_{2} (220-499 Acres)	5,469	5,013	4,587	4,192
S_{3} (500-999 Acres)	2,461	2,661	2,810	2,915
$S_{4}(1,000$ Acres and Over)	825	1,059	1,283	1,519
Total S_{1} to S_{4}	15.419	13,658	12,334	11,337

were both asborbing states. Thus the equilibrium distribution of firms in this instance was not of interest.

However, the number of surviving firms can be determined and would be of interest from a policy standpoint. The probability matrix P_{c} was rearranged and partitioned as in equation (6.10).
S_{0}
S_{4}
S_{1}
S_{2}
0 $\left[\begin{array}{cccccc}S_{0} & S_{4} & S_{1} & S_{2} & S_{3} \\ S_{3}\end{array}\left[\begin{array}{ccccc} \\ .2512 & 0 & 0 & 0 & 0 \\ .0172 & 0 & 0 & 0 & 0 \\ 0 & .0841 & : & 0 & 0 \\ \hline\end{array}\right.\right.$

The southeast submatrix was designated as Q and the southwest submatrix was designated as R. With I an indentify matrix, ($I-Q)^{-1} R$ as in equation (6.11) indicates the probabilities of absorption of states S_{1}, S_{2}, and S_{3} by states S_{0} and $S_{4^{\circ}}$. The probability was .9786 that S_{1} farms would go out of business, and 0.214 that they would ultimately be absorbed by state $S_{4^{\circ}}$. It follows that out of the 6,637 farms in State S_{1} in the base period, 97.86 percent would go out of business and 2.14 perm cent would eventually become l,000 acres or greater in size. Similarly, 18.78 percent of S_{2} farms would go out of business and 81.22 percent

$$
\left[I-Q J^{-1} \begin{array}{c}
\mathrm{S}_{1} \tag{6,11}\\
\mathrm{R}=\mathrm{S}_{2} \\
\mathrm{~S}_{3}
\end{array} \quad\left[\begin{array}{cc}
\mathrm{S}_{0} & \mathrm{~S}_{4} \\
.9786 & .0214 \\
.1878 & .8122 \\
0 & 1
\end{array}\right]\right.
$$

would move to state S_{4}. All of the state S_{3} farms in the base period would move into the larger size group. A total of 7,897 farms were estimated to survive using the P_{c} probability matrix and the 1960 farm size distribution projection base.

The P_{s} Matrix and Its Interpretation
The transition probability matrix $\left[P_{S}\right]$ was developed from a personal opinion survey of future change in farm numbers as expressed by real estate agents, county extension agents, farm home administration supervisors, bank agricultural loan officers, and others, in each of the 11 counties in the study area. Tables were prepared for each individual county showing the trend in farm numbers from census data in the particular county over the past four census periods. The individuals inter. viewed in each county were asked to indicate the movements they felt had occurred within each size group in the past five year period (1959-64) and the numbers of farms remaining in each group. The opinions of india. viduals within each county were totalled and averaged and county averages were totalled and averaged. Individual cell entries and row and column totals similar to Table XXVIII were obtained for the area as a whole. The transition probability matrix P_{s} was calculated by dividing each cell entry by the row total to obtain the individual $\mathrm{p}_{\mathrm{ij}}{ }^{\prime} \mathrm{s}$ (equation 6.12).
$S_{0}=$
S_{0}
S_{2}
S_{3}
$S_{4}$$\quad\left[\begin{array}{ccccc}S_{0} & S_{1} & S_{2} & S_{3} & S_{4} \\ 1 & 0 & 0 & 0 & 0 \\ .2166 & .7691 & .0095 & .0048 & 0 \\ .0622 & 0 & .8537 & .0841 & 0 \\ .0175 & 0 & 0 & .9208 & .0617 \\ 0 & 0 & 0 & 0 & 1\end{array}\right](6.12)$

The probability matrix $\left[\bar{P}_{5} \overline{]}\right.$ is quite similar to the $\left[P_{C-}\right]$ matrix computed earlier. The difference was basically one of additional allowable movements of farms from state to state. For example, in the $\left[P_{S-}\right]$ matrix, state S_{3} farms (500-999 acres) could move to state S_{0}, that is, go out of business over time. Also a small percentage (less than onehalf of one percent) of the S_{1} farms would move to S_{3} farms in each fiveyear time interval.

Projected Farm Numbers from $\left[P_{s} \square\right.$ Matrix
The projected total farm numbers and size distribution for 1965 was computed by multiplying the $\left[P_{s}\right]$ matrix by the farm size distribu tion in the base year of 1960. Continued post multiplication of the results of each preceding computation gave the results for 1970 and 1975. These are presented in Table XXX.

TABLE XXX
PROJECTED FARM NUMBERS IN TOTAL AND BY SIZE DISTRIBUTION FOR SOUTHWESTERN OKLAHOMA (PROJECTION BASE = 1960; TRANSITION BASE $=$ OPINION SURVEY)

Size of Farm	$\frac{\text { Actual }}{1960}$	Projected Farm Numbers		
		1965	1970	1975
S_{0} (Out of Business)		1,821	3,269	4,425
S_{1} (0-219 Acres)	6,637	5,104	3,925	3,019
$S_{2}(220-499$ Acres)	5,469	4.732	4,088	3,527
$S_{3}(500-999$ Acres)	2,461	2,758	2,962	3,090
$S_{4}(1,000$ Acres and Over)	852	1,004	1.174	1,35\%
Total (S_{1} to S_{4})	15,419	13,598	12,150	10,994

By 1975, 4,425 farms would go out of business. The majority of these farms were initially in size state S_{1}, with the remainder from size state S_{2} and S_{3}. The state S_{1} farms decreased in number by 3,618 farms, a decrease of 54.5 percent. Most of this decline was due to S_{1} farms going out of business, however, some of them moved up into state S_{2}. State S_{2} farms also decreased in numbers as 6.2 percent moved out of business and 3.4 percent moved into size state S_{3} every five-year interval. S_{3} farms increased by 25.5 percent though 6.2 percent moved into the S_{4} group every five-year period. The S_{4} group increased by 59.3 percent by 1975 .

In total, farm numbers declined by 28.7 percent from the 1960 base period to 1975. This was a greater decrease than projected from the LPC] matrix computations (Table XXIX). The projection from the probability matrix $\left[P_{S}\right]$ developed from the opinion survey indicated a less rapid decline in S_{1} farms by 1975 (3,019 versus 2,711), a more rapid dew cline in S_{2} farms (3.527 versus 4,192), a slightly greater increase in S_{3} farms (3,090 versus 2,915), and a less rapid increase in the large size group $S_{4}(1,357$ to 1,519$)$ than the computations using the $\left[P_{c, u}\right]$ probability matrix.

The surviving number of farms can be computed from the $\left[\mathrm{P}_{\mathrm{S}}\right]$ probability matrix and the 1960 projection base by the method employed earlier (equation 6.13).

$$
[I-Q]^{-1} \begin{gather*}
\\
R= \tag{6.13}\\
S_{1} \\
S_{2} \\
S_{3}
\end{gather*}\left[\begin{array}{cc}
S_{0} & S_{4} \\
.9654 & .0346 \\
.5521 & .4478 \\
.2210 & .7790
\end{array}\right]
$$

The probability that state S_{1} farms would go out of business is .9654 and .0346 that they would move up to the large farm category. Therefore 96.54 percent of these farms go out of business. In size state $S_{2}, 55.21$ percent of the farms go out of business and 44.78 percent moved to the largest size group and 22.1 percent of the S_{3} farms go out of business with 77.90 percent moving to S_{4}. The number of farms that remained in business were approximately three percent of the farms in $S_{1}, 45$ percent of the farms in $S_{2}, 78$ percent of the farms in S_{3}, and all farms in $S_{4^{\circ}}$ The equilibrium distribution totalled to 5,448 farms or 2,449 farms less than the model using the $L P_{c} I$ probability matrix.

Minimum Land Model Farm Numbers

The programming results of the minimum land model were utilized to determine the maximum number of farms which each resource situation and the total area could support at a $\$ 5,000$ income level. Area farm numbers were determined by aggregation across soil resource situations.

To determine the maximum number of farms which each resource situation would support, the resource situation's land base was divided by the minimum farm size for that situation. For this purpose, the entire land base of the resource situation was considered eligible for recombination, that is, no land was reserved for excluded alternatives as deIineated in Chapter II. The determination of farm numbers by resource situation and in aggregate was carried out for all of the 22 combinations of cotton price, cotton allotment, land price, and type of farming situam tion that were delineated in Table XX, Chapter V. The estimated maximum farm numbers by soil resource situation and in aggregate under these assumptions are presented in Table XXXI.

TABLE XXXI

ESTIMATED MAXIMUM NUMBER OF FARMS REALIZING $\$ 5,000$ RETURNS TO LABOR AND MANAGEMENT, WEIGHTED AVERAGE FARM SIZE; SPECIFIED PRICE, COST, AND INSTITUIIONAL RESTRICIIONS, ROLEING PLAINS OF SOUTHWESTMRN OKLAHOMA

Item	Soil Resource Situations				Total	Weighted Average Size
	Clay	Sandy	Level Loam	Folling Loam		
	-	Number	of Farms	S		(Acres)
Price Allotment Comparison						
$\mathrm{P}_{1} \mathrm{~A}$	556	2				
$\mathrm{P}_{2}{ }^{\text {A }}$	601		642			
P3A	1.076	1,561	1,333	346	4,316	1,239
$\mathrm{P}_{1} \mathrm{~B}$	556		30			
$\mathrm{P}_{2} \mathrm{~B}$	605		594			
$\mathrm{P}_{3} \mathrm{~B}$	1,013	1,152	1,220	251	3,636	1.470
$\mathrm{P}_{4} \mathrm{~B}$	1,382	2,370	1.720	832	6,304	848
$\mathrm{P}_{2} \mathrm{C}$	590					
$\mathrm{P}_{3} \mathrm{C}$	948	744	1,096	156	2,944	1,815
$\mathrm{P}_{4} \mathrm{C}$	1,264	1,902	1,551	678	5,395	994
$\mathrm{P}_{3} \mathrm{D}$	810					
$P_{4}{ }^{\text {D }}$	1, 027	726	1.136	296	3,185	1,678
Land Price Comparison - $I^{\text {b }}$						
Base	1,013	1,152	1,220	251	3,636	1,470
Base less 50 percent	2,373	2,595	2,666	1,620	9,254	577
Base less 100 percent	3.436	3,552	3.943	2,503	13.434	398
Land Price Comparison - $I^{\text {c }}$						
Base		382	753			
Base less 50 percent	927	1.980	2.333	1,240	6,489	823
Labor Price Comparisons						
\$1.00 per hour	1,013	1.152	1,220	251	3,636	1,470
\$1.50 per hour	394	886	1,078			
\$2.00 per hour		374	852			

${ }^{a_{1 N}}$ solution was obtained in the programming model for this and other blanks in the table so farm numbers could not be estimated for these solutions.

Includes all crop and livestock enterprises.
${ }^{c}$ Excludes feeder cattle enterprises.

Programming solutions were not obtained for all of the 22 specified combinations. In such cases, farm numbers were indeterminate for the particular resource situation and for the area.

If it is assumed that the adjustments implied by the minimization model should take place by 1975, an approximate comparison of the maximum number of farms from this model under any of the 22 specific combinations can be made with the projections of the other farm numbers models.

Selected Comparison of Farm Numbers by Programming Minimization

 and Markov ModelsWhen cotton prices and allotments were varied in the price allotment comparisons of Table XXXI holding land and labor prices at base levels, the maximum number of farms the area could support at the postulated returns levels was 6,304 . This occurred at the $\$ 30.80$ cotton price and a 100 percent allotment level $\left(P_{4} B\right)$. This was 4,690 farms less than the total number of farms projected by the Markov chain model with the probaw bility matrix $\left[P_{S}\right]_{0}^{9}$ The weighted average size of farm was 848 acres from the minimization model. Relating this size to the distribution of farms in 1975 from the Markov model implied that some 40 percent of the farms in 1975 would have returns to labor and management of $\$ 5,000$ or more. This assumed that the farms in state S_{3} and S_{4}, a total of 4,447 farms, would have attained or passed the minimum income target. It would likely be more realistic to assume that the S_{3} farms were evenly dise tributed over the S_{3} size range. Under this assumption, only 939 of the

9 All comparisons in this section will be based on the projections. Similar conclusions would occur using the LPGTmatrix except for differences in total farms and distribution between size groups as noted earlier.

3,090 farms in state S_{3} would be equal to or greater than 848 acres in size. It followed that under this assumption only 2,296 farms, or 20.9 percent of the total (all farms in state S_{4} plus the 939 farms in S_{3} greater than 848 acres) would have incomes equal to or greater than \$5,000.

If by 1975, however, cotton allotments should hold at the 100 percent level but cotton prices were reduced to $\$ 26.40$ per hundredweight $\left(P_{3} B\right)$, the maximum number of farms the area would support at a $\$ 5,000$ income level per farm would drop to 3,636 farms. With the lower cotton price, farm size necessarily would have increased to attain the assumed income target. The weighted average farm size would be 1,470 acres under situation $\mathrm{P}_{3} \mathrm{~B}_{0}$ Again, comparing this result to the 1975 projection rea sults with the P_{s} probability matrix implied that at least 9,636 farms. would receive less than the income target.

When the price of land was decreased by 50 percent from the assumed base levels with cotton at the 100 percent allotment level and price at $\$ 26.40$ per hundredweight, the area would support a maximum of 9,254 farms (Table XXXI) with an average size of 577 acres. With no charge levied against land, denoted as base less 100 percent in Table XXXI, the area would support a maximum of 13,434 farms. The average size of these farms was 398 acres. This number was greater than the total projected farm numbers for 1975 with the $\left[P_{5}\right]$ projections. However, even with this small a farm size and assuming farms in the S_{2} group were distributed evenly over this size range, 5,261 farms, or 47.8 percent of the total would receive an income of less than $\$ 5,000$ 。

Reliability of Farm Numbers Projections

The simple extrapolation of past trends in farm numbers in total and by size groups led to some absurd conclusions with respect to farm numbers in total and by size groups. Adjustments in farm numbers have been rapid in the past and the opinions of a number of well informed individuals in the study area was nearly unanimous that rapid adjustments have continued in the past five year period (1959-1964). This does not mean that farm numbers in total would drop to zero by 1984 as indicated by the estimated trend line of equation (6.1). Further, the dilemma of negative farm numbers in certain size categories arose in the regression analysis.

The Markov chain process overcame at least some of these objections. Though farm numbers can decrease to zero in specific size states, it is mathematically impossible to obtain negative farm numbers in any category. The Markov process, similar to other projection procedures, assumes that factors operating during the time period used to compute the transition probability matrix would continue to act in the same manner in the future. Also, detailed data to compute the transition probability matrix was not available and would be difficult and expensive to obtain.

Thus, it was impossible to project the exact number of ferms in total or in specifice size groups. Farm numbers will continue to decline and farm size will continue to increase in the immediate future.

SUMMARY AND CONCLUSIONS

The major objective of this study was to determine the effects of alternative government cotton programs on, (a) individual farm organization and net returns, (b) aggregate area returns and commodity supply relationships, (c) minimum resource requirements for a specified income, and (d) future farm numbers in the study area. The study area consisted of the 11 counties in Southwestern Oklahoma.

More specifically, the first objective was to determine the optimum combination of enterprises and retums to selected resources on repre* sentative farm situations under specified government cotton programs. This involved the use of six representative farm situations on four soil types. These soil situations were the Clay, Sandy, Level Loam, and Rolling Loam Soils. Through linear programming, the income and resource allocation effects of 12 different cotton price and allotment level come binations were determined for each of the six representative farms.

The second objective was to develop and apply to one soil situation, methodology that would allow determination of a cotton allotment and price support combination that would maximize returns to individual pros ducers given a predetermined government outlay. The programmed returns to labor and management were used to determine the combinations of cotton prices and allotment levels between which the operator would be indiffers ent, given a return level. Conversely, these results can be interpreted
to define a hierarchy of government policies that cotton producers could choose assuming a goal of profit maximization and should a choice exist. A mathematical technique to determine the profit maximizing government cotton policy given a predetermined government outlay and the net returns function was developed and applied to the clay soil situation.

The third objective was to detemine the aggregate area returns and commodity supply relationships from the representative farm organizations under the assumed govermment cotton allotment and price support alternatives. Normative supply functions for cotton were developed by simple summation among cells of each soil situation and across cells for the aggregate area. The fourth objective was to apply the mathematical technique to the aggregate area returns function and determine the profit maximizing combination of cotton price and allotment for the aggregate area.

The fifth objective was to determine the adjustment in farm size and other resource use necessary on the assumed representative farm situations to obtain a $\$ 5,000$ return to labor and management. This involved the simultaneous determination of minimum land requirements and profit maximizing enterprise combinations needed to earn the specified return on each of the resource situations. Alternative assumptions regarding cotton price support levels, allotment levels, land prices, labor prices, and land equity were used in estimating these minimum requirements. The results of this segment of the study imply the adjustment necessary in the area for farm operators to realize "parity" returns to their invested resources.

The final objective was to investigate past adjustments in faxm numbers in the study area. Regression analysis and a Markov chain model
were used to project future farm numbers. These projections were then compared to the adjustments in farm size and farm numbers consistent with the specified income level in the minimum land model.

The Maximization Model

Cotton entered the programmed solutions at full allowable allotment levels in all resource situations when cotton prices were not less than $\$ 22.00$ per hundredweight. At the low cotton price of $\$ 17.60$ per hundredweight, no cotton was produced on the clay soil representative farm. At this low price, however, full allotments were produced on the sandy soil farm and on the rolling loam small farm situation. Less than the full allotment level was produced at the low cotton price on the two level loam soil representative farms and the rolling loam large farm situation.

In the clay soil situation, the elasticity of supply of cotton with respect to price, given all allotment levels, was zero. In the other three soil situations, the elasticity of supply of cotton with respect to price varied over the programmed range of cotton prices given an allotment level. In these soil situations, increasing the price of cotton resulted in a land use shift on the representative farms. Cotton at the higher price was relatively more profitable in relation to other crop alternatives and tended to replace these crops on highly productive soils within the resource classification. Thus, the output of other crops such as wheat and grain sorghum was reduced, though their prices were unchanged, when the price of cotton was increased.

Though the supply functions were of a step form because of the stability ranges in the programming model, the supply function for cotton became more inelastic as price was increased. This held true for the
aggregate normative supply function obtained by summing across all the soil situations. Within a range, the output of cotton in an area with a fixed cotton acreage can be changed by changing the cotton price.

Of more relevance and possibly of more concern to the policy maker would be the output response of cotton to an allotment change given a cotton price level (the E_{OA}). If for some reason the carryover of a government controlled crop such as cotton became excessive, the decision might be made that the allotment level for the following year should be reduced so that demand could be filled from future production and stocks carried over from the previous year. The magnitude of the allotment reduction necessary to realize the desired goal would become the relevant question.

The programming results indicated considerable difference in cotton output response to allotment changes given a price level in the four resource situations. The $E_{0 A}$'s were unity between all programmed price levels in the clay situation and between cotton prices of $\$ 26.40$ and $\$ 30.80$ per hundredweight in the rolling loam soil. In the other soil situations, the $E_{O A}{ }^{\prime} s$ were less than one indicating that a particular percentage reduction in allotment would call forth a smaller percentage reduction in cotton output. It follows that with an $E_{O A}$ less than one a desired level of reduction in cotton output would be obtained only if allotments were reduced by a greater amount than the desired percentage output reduction.

At the aggregate level, with cotton at the base price of $\$ 26.40$ per hundredweight and the allotment at the base or 100 percent level, a required reduction in cotton output, ceteris paribus, of 12 percent would require an allotment reduction of 15 percent since the computed average
was 0.883 between the 100 percent and 85 percent allotment level. Further reductions in allotment would have a different effect on cotton output. Between the 85 percent and 55 percent of base allotment level, the E_{OA} increased implying that further given percentage allotment reductions would result in a cotton output reduction approaching the allotment reduction. This followed from the fact that as the allotment was drastically reduced from the base level, all cotton production occurred on the highest productivity land. Acre allotment-output reductions approached a one to one relationship in these cases.

The programing results of the maximization model were also used to develop sets of income indifference curves for alternative cotton allotmentmprice combinations. The farmer with a goal of profit maximization should logically be indifferent between combinations of cotton price and allotment levels that result in identical net returns on his farm unit. Thus, any cotton pricemallotment level combination on a given income indifference curve computed for a resource situation should be equally acceptable to the operator of a representative farm。 In all the situations, the shape of the computed income indifference curve implied that a given percentage change in the cotton allotment was offset by a smaller change in the cotton price. A cotton grower faced with a choice of accepting either a reduction in allotment or an equivalent reduction in price, as might be the case in a referendum, would be wise to choose the allotment reduction.

Under the assumptions that (a) a cotton demand function is definitive, (b) that a relationship between level of government outlay on the national level, desired cotton price, and allotment level is identifio able, and (c) that farm net returns are a function of cotton price and
allotment level, an optimum cotton priceallotment combination that would maximize returns in a soil situation was computed. This computation was made for the clay soil situation. The optimum computed combination for the clay soil farm was a 67.81 percent of base cotton allotment and a \$31.05 per hundredweight cotton price. A similar computation with aggregate data resulted in an optimum combination of 82.3 percent of base cotton allotment and a $\$ 30.96$ cotton price. Though the two computed combinations are not identical, both support the conclusion drawn earlier that maximum producer income would be realized with a relatively low cotton allotment and a relatively high price if restrictions were to be placed on either one or both.

The Minimization Model

The minimum land model as used in this study determined the size of the farm in terms of land and capital that would simultaneously give the representative farm operator opportunity returns to invested capital, an efficiently organized frarm unit, and the given operator return to labor and management under any postulated set of resource cost-product price assumptions.

The results of this model can be interpreted to imply the extent of adjustment, if any, necessary for the farm operator to realize the desired resource returns. In this study, the variables included the price of cotton, level of cotton allotment, price of land, price of labor, and allowable livestock enterprises.

Marked differences existed in the minimun land requirements under the alternative combinations of variables within a resource situation and between resource situations. With base prices of cotton, land, labor,
and a base or 100 percent allotment level, minimum land requirements for the clay, sandy, level loam, and rolling loam situations were respectively 1,763 acres, 1,162 acres, 918 acres, and 4,384 acres. These programmed minimum farm sizes in each situation were considerably larger than the average size farm now found in the area. In 1960, only about five and one-half percent of total numbers of farms in Southwestern Oklahoma were greater than 1,000 acres in size. This would indicate that the majority of farms in the study area are not realizing "parity" returns to their invested resources. Since the programing matrix coefficients reflect advanced technology, the adjustment necessary for the majority of farms in the area would be greater than comparisons of present farm size disa tributions would indicate.

A comparison of the minimum farm sizes obtained under various cotton pricemallotment combinations shows that a change in price, given an allotment level, required a larger adjustment in farm size to maintain the $\$ 5,000$ target return than a comparable change in allotment level, given a cotton price.

In the sandy and rolling loam soil situations, combinations of prices, allotments, and costs were found that made it impossible for the operator to realize the target return. This held true when the price of cotton was equal to or less than $\$ 22.00$ per hundredweight with the allote ment level at 85 percent or greater. A similar situation existed with the price of cotton at $\$ 26.40$ per hundredweight and the allotment level restricted to 55 percent of the base. This implies that drastic reduca tions in allotment and/or price as the case might be, would make it impossible for farmers on the sandy or rolling loam soils to adjust their resource structure to obtain a $\$ 5,000$ return to labor and manage-
ment if the prices of other products and production costs were held at the programmed levels.

Varying the price of land in the minimization model, with the price of cotton and the level of the cotton allotment at the assumed base, had a very marked effect on the minimum land requirements to obtain the $\$ 5,000$ return to operator labor and management. Lowering the price of land to 50 percent of the assumed base levels, decreased the minimum land requirements by more than 50 percent in all four soil resource situations. A similar reduction in total capital requirements occurred. As expected, a further reduction in the price of land to zero, lowered minimum land requirements. In the clay situation, minimum land requirements were 1,763 acres with land at the base price as contrasted to 753 acres and 520 acres with land prices at 50 percent and base less 100 percent, respectively. This would imply that farm operators who purchased their land some years ago when land prices were considerably lower are obtaining a $\$ 5,000$ return to labor and management and an opportunity return on their initial investment in land at farm sizes that approach the present average in the area.

In all four resource situations, an increase in land values by 50 percent over the assumed base, made it impossible to obtain a feasible solution in the minimization model. There was no combination of resources available with the assumed price, cost, and allotment structure that would make it possible to obtain the target return.

Increasing the cost of skilled labor from the $\$ 1.00$ per hour base level increased the minimum land requirements considerably. An increase to $\$ I_{0} 50$ per hour resulted in no feasible solution in the rolling loam situation. The increase in minimum land requirements would be expected
as the price of labor was increased since the production of cotton requires relatively high labor inputs. Similarly excluding feeder enter. prise aiternatives increased the minimum land requirements. The increase was not identical in the four resource situations. In the clay soil situation, excluding the feeder enterprises, made it impossible to find a feasible solution. In this situation, the level of feeding was high in all the programming results in both the maximization and minimization models. Thus, excluding feeder cattle alternatives would have a greater effect in the clay soil situation as compared to the sandy, level, and rolling loam soils.

Farm Numbers Projections

Regression analysis was used to extrapolate past trends in farm numbers both in total numbers of farms and by size group breakdowns. Total farm numbers in the Southwestern Oklahoma area in 1960, was 15,419 farms. In each of the prior five year periods, total farm numbers had decreased by approximately 12 to 16 percent. The total decrease in the 20 year period was 39 percent. A regression equation fitted to total farm numbers over the past projected a total of 5,570 farms in the area in 1975. However, such a projection can lead to ridiculous conclusions. The same equation indicated that by 1984, farm numbers would be down to one. Similar results are obtained with regression equations fitted to farm numbers by size breakdowns. The smaller farms, which have been decreasing in the past, eventually decline to zero. The larger farms, which have been increasing in numbers, continue to do so. Therefore, a simple extrapolation of past trends did not appear to be a feasible method for projecting future farm numbers in total, or by size groups,
with any confidence.
A more reasonable hypothesis would be that farm numbers in the small size groups will continue to decline but at a diminishing rate. A hard core of small farms, consisting probably of semi-retired and part-time farmers likely will remain. Farm numbers in the large size groups will continue to increase but at a decreasing rate. Farms in total would probably continue to decline, possibly quite rapidly for several more census periods, but the rate of decline would be drastically reduced in the future.

A more feasible approach to the problem of projecting farm numbers is the Markov chain process. This process assumes that a population, in this case, farm numbers can be classified into states or groups. It further assumes that movements between the states over time can be regarded as a stochastic process. The outcome of a given state depends only on the outcome of the immediately preceding state and this dependence is the same at all stages. In this study, two approaches were used to determine the transition probability matrix. One approach used past census data under specific assumptions with respect tofarm size movements over time. The second approach used the latest available census data as a starting point with the transition probability matrix determined from a personal survey of future change in farm numbers as expressed by agricultural leaders in the study area.

The use of the Markov chain process resulted in estimates of total farm numbers that were considerably higher than those obtained from regression analysis. Using past census data to compute the transition matrix, total farm numbers in 1975, were projected at 11,337 as compared to 5.570 with the regression equation on total farm numbers. With the
opinion survey, 1975 total farm nuribers were projected at 10,994 . This implies that the agricultural leaders surveyed felt that the change in farm numbers would be more rapid in the immediate future than had occurred in the immediate past.

In gddition to estimates of size distribution of firms in any time period, the Markov chain process gave estimates of the equilibriun distribution of farms. Equilibrium in this context does not imply a lack of further morement between states, or farm size groups, but means that the distribution remains constant, that is, the number of firms entering a size state equals the number of firms leaving the size state The equilibriwm number of farms in total, using the past census approach and opinion survey to develop the transition probability matrix, were respectively 7,897 and 5,448 farms.

The programing results of the minimum land model were utilized to determine the maximum number of farms that each resource situation and the total area can support at the assumed $\$ 5,000$ returns level. This was possible only when feasible solutions were obtained in all four resource situations under specified product price, factor cost, and alloto ment levels. For exmple, with a cotton price of $\$ 26.40$ per hundredweight and a base allotment level with all other variables at their assumed base prices, the area conld support a total of 3,636 farms all reaining the target return The regression and Markoy chain model indicated that farm numbers by 2975 would be considerably greater than this. This would imply that if past adjustment patterns continue as predicted, a large number of farms in the area would not be realizing "parity" returns even though prices, costs, and allotment levels remained near present levels and technological advances contrinued in the future.

Additional Inferences of this Study

The programing results of both the maximization and minimization models indicated that substantial adjustments in farm size and/or other resource use levels would be necessary for the majority of farms in the study area to realize concurrently a "desirable" standard of living as measured by returns to labor and management and "parity" returns to invested productive resources.

In the maximization model, returns to operator labor and management greater than $\$ 5,000$ were realized only on the level loam soil large representative farm when cotton prices and allotment levels were assumed to be at base levels, i, eo, $\$ 26.40$ per hundredweight of lint and 100 percent of cotton base allotment. In the other five assumed representative farm situations, returns to labor and management were all below $\$ 5,000$ at cotton pricewallotment combinations equal to, or less than, base levels.

The results of the minimization model bear this outo In this model, the $\$ 5,000$ return to labor and management assumed necessary to provide the farm family with a decent standard of living meant considerable adjustment in farm size when base prices of land and labor and base or less than base assumptions of cottonoprice allotment combinations were used.

With cotton the most "profitable" alternative in the study area, it followed that any reduction in allotment and/or price of cotton would adversely affect returns on farms of a given size, or imply upward adjustments in size to maintain a desired income level. Since the 1965 Food and Agriculture Act which sets the general program regulations for
the four year period from 1966 through 1969 contains provisions to lower both price and allotments as needed to maintain a supply-demand-reserve balance for controlled agricultural commodities, it is logical to assume that strong upward adjustment pressures in farm size will continue in the agricultural sector. It follows that agricultural producers not in the position to increase farm size for reasons such as age, managerial capacity, and capital availability can only expect decreasing incomes and declining standards of living in relation to other sectors of a growing economy.

This is not to imply that a farm family with a low return to labor and management must automatically be classed as a poverty case. Returns to owned land and other equity can be treated as spendable income. Depending on the situation, a family with low returns to labor and management may actually enjoy a high standard of living. For example, an elderly couple with no family obligations, who have accumulated considerable equity in their farm business over their life span may well be cone sidered "wealthy" in terms of spendable income relative to their needs though their returns to labor and management may be low.

However, low returns to labor and management for a farmer possessing skills, or with the capacity to be trained in skills that are in demand outside the agricultural production sector, imply that he could enjoy a higher standard of living outside agriculture. A move of this kind could involve liquidation of all assets invested in the agricultural productive plant with subsequent employment and capital reainvestment in the none agricultural sector. It could involve liquidation of short and intera mediate term assets (seed, feed, crop inventories, livestock, and machino ery) with retention of land ownership to be operated on a rental basis by
a farmer with the need to add land to his farm operation. Since cash renting is a common practice in many states, this approach would give the farmer leaving agriculture an assured annual income from his land holdings and give him the opportunity to share in future land value increases.

This study also contains some implications for policy makers concerned with planning future changes in government farm programs. It should be safe to assume that output increasing technology in agriculture will continue to be developed and accepted by farmers and that for at least some agricultural comodities these output increases will outstrip demand increases at given, or "satisfiactory" price levels. For such commodities, the elasticity of output to allotment concept developed in this study and applied to cotton for the study area, conld be useful to the policy maker concerned with maintaining a supplymdemand-reserve balance at a given support price。

If comparable measurements of product output response to allotment changes were developed for all areas producing a major commodity, the policy maker would have guides to follow if either output increases or decreases were dictated by changing supply-demand relationships.

The technique of computing profit maximizing combinations of cotton price and allotment developed in this study may hold some further implications for policy makers. The urban-rural power structure is undergoing change with reapportionment vesting more political power in urban hands. It is conceivable that in the future, though the urban political power structure may continue to assist the agricultural industry throwgh government programs, this assistance may be couched in terms of a predetermined government outlay in total and for commodities in particular.

The development of a particular commodity's program regulations may be vested in the hands of administrators or possibly a board comprised of producers of the particular commodity. If such were the case, the profit maximizing combinations of price and allotments could be computed for producing areas if the output response and the net returns functions as developed in this study were known for each producing area. If a national program or combination of prices and allotments were required, then obviously each area could not be satisfied, since the maximizing combinations would vary from area to area. The final ational combination would likely still be determined through politacal power or some type of arbitration or bargaining board.

Of particular significance to individual farmers and/or farm organizations concerned with influenoing the political processes in comodity program development was the change that occurred in net returns as either price or allotment for cotton was changed with the other held constant. In all cases, a given percentage change in cotton price, given an allotw ment level, changed net retums a greater absolute amount than a comm parable percentage change in allotment given a price level. This implies that should a choice exist as might be the case in a commodity referendum, famers concerned with profit maximization would be better off selecting a reduction in allotment rather than a reduction in price of the commodity. Conversely, they would be better off selecting an increase in prose rather than in allotment in an either/or situation.

SELECTED BIBLIOGRAPHY

Bailey，Warren and Ronald Aines．How Wheat Farmers Would Adjust to Different Programs．Washington：U。S．Department of Agriculture， Production Research Report No．52，1961．

Blakely，Leo Vo Quantitative Relationships in the Cotton Economy With Imolications for Economic Policy．Stillwater：Oklahoma Agri－ cultural Experiment Station Technical Bulletin T－95， 1962.

Brewster，John M．Farm Research Needed for Specified Income Levels． Washington：U．S．Department of Agriculture，Agricultural Research Service Information Bulletin No。18，1野7。 －Goals and Values in Agricultural Policy．Ames：Iowa State University Press， 1961.

Bostwick，Don．＂Yield Probabilities as a Markov Process．＂Agricultural Economics Research，Vol．XIV，No．2，ERS，USDA，1962，49m56．

Connor，Larry Jo，William F．Lagrone，and James So Plaxico．Resource Requirements，Costs and Expected Returns；Alternative Grop and Livestock Enterprises；Loam Soils of the Rolling Plains of South－ western Oklahoma．Stillwater：Oklahoma Agricultural Experiment Station in cooperation with U．So．Department of Agriculture，Prom cessed Series P－368， 1961.

Dantzig，George B．Linear Programming and Extensionso Princeton： Princeton University Press，1963。

Dorfman，Robert．Application of Linear Programming to the Theory of the Firm．Berkeley：University of Califormia Press，1951．
，PoA．Samuelson，and R．A．Solon．Linear Programming and Economic Analysis．New York：McGraw Hill Book Company．Inc．， 1958.

Egbert，Alvin Co and Earl 0．Heady．Regional Analysis of Production Adjustments in the Major Field Grops：Historical and Perspective． Washington：U．So Department of Agriculture in cooperation with Iowa Agricultural Experiment Station，Center for Agricultural and Economic Adjustment，Technical Bulletin No．1294， 1963.
－Regional Analysis in Grain Production：A Linear Programming Analysis．Washington：U．S．Department of Agriculture in coopera－ tion with Iowa Agricultural Experiment Station，Center for Agricul－ tural and Economic Adjustment，Technical Bulletin No．1241，1961．

Eisgruber，Ludwig Mo and Erwin Reisch．＂A Note on the Application of Linear Programming by Agricultural Economics Departments of Land Grant Colleges．＂Lafayette：Purdue University，Mineograph，1960．
－＂Bibliography of Linear Programming and its Application to Agricultural Economics Problems．＂Lafayette：Purdue University， Mimeograph，1960。

Edwards，Clark．＂Shortcomings in Programmed Solutions to Practical Farm Problems．＂Journal of Farm Economics，XIIII（December，1961）， 393－401．

Gibson，W．Lo，Jr．，C．JoArnold，and F。D．Aigner，The Marginal Value of Flue Cured Tobacco Allotments．Blacksburg：Virginia Polytechnic Institute Technical Bulletin No．156， 1962.

Goodwin，John，James S．Plaxico，and William F。Lagrone。 Aggregation of Normative Microsupply Relationships for Dryland Crop Farms in the Rolling Plains of Oklahoma and Texas．Stilwater：Oklahoma Agricul－ tural Experiment Station Technical Bulletin T－103， 1963.
－Resource Requirements，Costs and Expected Returns；Alternative Crop and Livestock Enterprises：Clay Soils of the Rolling Plains of Southwestern Oklahoma．Stillwater：Oklahoma Agricultural Experiment Station in cooperation with U．S．Department of Agriculture，Pro－ cessed Series P－357， 1960.

Hathaway，Dale E．Government and Agriculture－Public Policy in a Demo－ cratic Society．New York：The MacMillan Company， 1963.

Heady，Earl O_{0} et al。（ed）．Agricultural Adjustment Problems in a Growing Eeonomy．Ames：Iowa State University Press，1958。 and Wilfred Candler．Linear Programming Methodso Ames：Iowa State University Press， 1958.

Johnson，J．Eoonometric Methods．New York：McGraw Hill Book Company， Inc．， 19

Kemeny，J．Go，et al．Finite Mathenatical Structures．New York： Prentice Ha all．Inco， 1959.

Krenz，Ronald D．＂Projection of Farm Numbers for North Dakota with Markov Chains．＂Agricultural Economics Research，XVI，No．3，ERS， USDA，1964．77－83。
，Ross V。Baumann，and Earl 0．Heady．＂Normative Supply Functions by Linear Programing Procedures．＂Agricultural Economics Research． XIV，No．1，ERS，USDA，1962，13018。

Lagrone，William Fo，Percy L．Strickland，Jr．，and James So Plaxico． Resource Requirements，Costs and Expected Returns；Alternative Crop and Livestock Enterprises；Sandy Soils of the Rolling Plains of Southwestern Oklahoma．Stillwater：Oklahoma Agricultural Experi－ ment Station in cooperation with U．S．Department of Agriculture， Processed Series P－369，1961．

McKee，Dean Eo，and Laurel D．Loftsgard．＂Programming IntraøFarm Norma－ tive Supply Functions．＂Agricultural Supply Functions－Estimating Techniques and Interpretations．Earl 0．Heady et al．（ed）．Ames： Iowa State University Press，1961，152－166。

Martin，James，et al．Effect of Changes in Product Price Relationships and Farm Organizations and Income on Clay Soil Farms，Southwestern Oklahoma，Stillwater：Oklahoma Agricultural Experiment Station Technical Bulietin B－621， 1964.

Nelson，Ted R_{a}＂An Econometric Model of the Land Market Stressing Effects of Government Programs on Land Values．＂Stillwater： （urpub．PhoD．thesis，Oklahoma State University）， 1964.

Plaxico，James So＂Linear Programming Techniques－Discussion．＂Journal of Farm Economics，XXXVI（December，1954），1048－1050．
and Lather Go Tweeten．＂Representative Farns for Policy and Pro－
jection Research．＂Journal of Farm Economics，XLV（December，1963）， 1458－1465．

Shepherd，Geoffrey S．Farm Policy：New Directions．Ames，Iowa State University Press，1964。

Strickland，Percy $L_{o} J r$ o＂Minimum Resource Requirements and Resource Adjustments for Specified Farm Income Levels，Low Rolling Plains of Southwestern Oklahoma．＂Stillwater：（unpub．Fh．D．thesis，Oklahoma State University）， 1962.

Tweeten，Luther G_{0} et al．Fgrm Program AItermatives．Ames：Iowa State University Press，CAED Report No．18， 1963.
\qquad －＂The Farm Firm in Agricultural Policy Researcho＂Paper Pree sented at the Workshop on Price and Income Policy，sponsored by the Agricultural Policy Institute，North Carolina State University， Raleigh，April 21， 1965.

U．S．Department of Agriculture．Statistios on Cotton and Related Data， 1925－1962．Economic Research Service，Statistical Bulletin No．329． Washington：1962。
\qquad －Wheat－The Program for 1964．Washington： 1963.
\cdots Agricultural Statistics．Washington：1937－196z．
U. S. Department of Agriculture。 "1963 Cotton Allotment After Release and Reapportionment." Oklahoma: Agricultural Stabilization and Conservation Service, Mimeograph, ASCS-63-260, 1963.
\qquad - "County Acreage Allotments for 1963 Wheat Cropo" Washington: Agricultural Stabilization and Conservation Service, 1963 Wheat Bulletin, reprinted from the Federal Register of August, 1962 (27 F.R. 8241), 1963.

- Agricultural Prices and Cost Projections for Use in Making Benefit and Cost Analyses of Land and Water Resource Proiections. Agricultural Research Service and Agricultural Marketing Service, Washington: 1957.
- " 1963 Crop Wheat Loan and Purchase Agreement Program." Commodity Credit Corporation, reprinted from the Federal Register of July 9, 1963 (28 FoR。6959) , Washington: 1963.
U. So Department of Commerce. U. S. Gensus of Agriculture for Oklehoma. Washington: 1944, 1949, 1954, and 1959.

APPENDIX A

APPENDIX A, TABLE I

```
DEFINITION OF LAND RESOURCE SITUATIONS AND YIELD LEVELS
    BY LAND CLASS; CLAY SOILS, ROLLING PLAINS
                                    OF SOUTHWESTEERN OKLAHOMA
```

Dey Land
C_{b} - Land Capability Class IIs, Soil Units 1 and 5 (FoardoTillman and equivalents).
C_{C} - Land Capability Class $I I I e_{\text {, }}$ Soil Units 1 and 5 (Foard-Tiliman and equivalents).
$C_{d}=$ Land Capability Class IVe, Soil Units 1 and 5 (Foardomilman and equivalents).
C_{e} AII other cropland classes (not adapted to harvested crops).

Crop	Unit	Laxd Type			
		\bar{c}	C_{c}	C_{2}	$\mathrm{C}_{\text {e }}$
			Yield	Acre)	
Wheat (continuous)	Br 。	14	12	10	6
After Row Crop (6 Mo . Fallow)	Bu.	17	14	11	7
(12 Mo. Failow)	Bu.	19	16	12	8
Cotton	Lb。Lint	175	125		
Oats (contimous)	Bra	28	20	25	
Small Grain Hay	Ton	1.6	2.5	2.4	
Grazing ${ }^{\text {a }}$					
Suden	AUM	3.0	2.8	2.6	1.9
Grawed Out Small					
Native Pasture	AUM	1.6	1.5	1.4	1.0
Harvested Small					
Blue Panic	AUM	3.4	3.2	3.0	2.1

$a_{\text {Grabing yields are basically expected values since moisture is the }}$ limiting figetor in forage production. The monthly distribution of grage ing is not specified because of seasonal uncertainties. Permanent pase ture grazing yield is one AUM per acre of reange. The acreage of range land and cropland for livestock budgets can be calculated from this table.

APPENDIX A, TABLE II
DEFINITIONS OF LAND RESOURCE SITUATIONS AND YIELD LEVELS BY LAND CLASS; SANDY SOILS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Dry Land
S_{b} - Land Capability Class II, Soil Units 70, 7X, 12,-12X. Miles, Dill, Pratt, and Enterprise Soils (or their equivalents).
S_{c} - Land Capability Class III - same soils as above.
S_{d} - Land Capability Class IV - same soils above plus some Brownfield and Nobscott Soils (deepmplowed Brownfield Soils would be included in the S_{b} group).
S_{e} - All other cropland classes (not adapted to row crops).

Crop	Unit	Land Type			
		Sb	$S_{\text {c }}$	S_{d}	S_{e}
		(Yield Per Acre)			
Cotton	Lb. Lint	325	275	150	
Wheat	Bu.	18	14	8	
Grain Sorghum	Lb.	1,750	1,300	1,000	
Alfelfa					
Hay Basis	Ton	2.5	2.0		
Hay and Seed Basis	Ton Hay	2.0	1.5		
Small Grain Hay	Ton	1.7	1.5	1.2	
Forage Sorghum	Ton	2.0	1.7	1.3	
Grazing ${ }^{\text {a }}$					
Sudan	AUM	2.7	1.9	1.3	. 9
Grazed Out Small Grain	AUM	3.3	2.8	2.3	1.5
Haryested Small Grain	AUM	. 4	. 3	. 2	
Rye Cover Crop	AUM	. 5	. 4	. 3	

${ }^{\text {a Grazing yields }}$ are basically expected values since moisture is the limiting factor in forage production. The monthly distribution of grazing is not specified because of seasonal uncertainties. Permanent pasture grazing yield is one AUM per acre of range. The acreage of range land and cropland for livestock budgets can be calculated from this table.

APPENDIX A，TABLE III

DEFINITIONS OF LAND RESOURCE SITUATIONS AND YIELD LEVELS
BY LAND CLASS；LOAM SOILS，ROLLING PLAINS
OF SOUTHWESTERN OKLAFOMA

Dry Land
I_{a}. Land Capability Class I, Soil Units 2, 4, 7, and 9. Jplando
Tipton, St. Paul, and Carey Soils; BottomlanduSpur and
Canadian Soils (or their equivalents).
I_{b} - Land Capability Class II - same soils as above.
I_{c} - Land Capability Class III - same soils as above plus Quinlan
and Vernon Soils (or their equivalents).
I_{d} - Land Capability Class VI - same as L_{c} 。
I_{e} - All other cropland classes (not adapted to row crops).

Crop	Unit	Land Tyoe				
		L_{a}	Lb_{b}	L_{c}	Id	Le
		（Yield Per Acre）				
Cotton	Lb，Lint	275	225	185	100	
Wheat	Bu 。	23	18	14	11	
Alfalfa						
Hay Basis	Ton	3.0	2.25			
$\begin{aligned} & \text { Hay and Seed } \\ & \text { Basis } \end{aligned}$	Ton	2.5	1.75			
Grain Sorghum	Ib。	1，600	1.450	1，200	900	
Forage Sorghm	Ton	2.2	2.0	2.7	1.2	
Small Grain Hay	Ton	2.0	1.8	1.5	1.0	
Grazing ${ }^{2}$						
Sudan	AUM	3.0	2.4	1.7	1.3	1.0
Grazed Out Small Grain	AUM	4.0	3.5	3.0	2.8	2.0
Harvested Small Grain	AUM	.6	.5	． 4	.3	

agrazing yields are basically expected values since moisture is the limiting factor in forage production．The monthly distribution of grazing is not specified because of seasonal uncertainties．Permanent pasture grazing yield is one AUM per acre of range．The acreage of range land and cropland for livestock budgets can be calculated from this table．

APPENDIX A，TABLE IV

ASSUMED ${ }^{\text {a }}$ PRICES PAID AND RECEIVED BY FARMERS， ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Price
		（Dollars）
Prices Paid		
Seed and Feed		
Seed Cotton	Cwt．	8.00
Seed Wheat	Bu：	2.05
Seed Oats	Bu．	1.10
Sudan，Sweet	Cwt．	6.00
Grain Sorghum	Cwt。	15.00
Alfalfa Seed	Lb。	． 50
Forage Sorghum	Cut．	15.00
Native Grass Seed	Lb。	． 60
Rye	Bu．	1.25
Cottonseed Cake	Ton	76.00
Fertilizer		
10－20－10	Ton	105.00
13－39．0	Ton	105.00
16－20－0	Ton	89.00
8－32－16	Ton	106.00
60.4600	Ton	79.00
Custom Rates		
Combining Wheat and Groin Sorghtum	Acre	3.00
Cotton Stripping	Cwt．Seed Cottion	$\bigcirc .75$
Cotton Snapping	Cwt．Seed Cotton	2.00
Hauling		
Cotton	Cwto．Seed Cotton	． 25
Wheat	Bra	.07
Grain Sorghum	Cut．	． 10
Hay	Cut．	． 08
Cotton Defoliation	Acre	2.00
Cotton Insecticide Spraying	Acre	3.50
Cotton Hoeing	Acre	2．00－2．50
Cotton Ginning and Wrapping	Cut．Seed Cotton	． 85
Cotton Pre－－Energe Chemical	Acre	2.50
Hay Baling	60 Lb ．Bale	.16

APPENDIX A, TABLE IV (Continued)
Item Unit

Fuel and Lubricants

Gasoline	Gal.	.20
$\mathrm{~L}_{0}$ Po Gas	Gal.	.09
Diesel Oil	Gal.	.16
Kerosene	Gal.	.15
Motor Oil	Gal.	1.00
Libbricant	Li.	.20

Prices Received
Cotton Lint (SLM 15/16)
Cwt.
Variable ${ }^{b}$
Cotton Seed
Ton
Wheat
Alfalfa Hay
Bn.
50,00
1.65^{c}
Grain Sorghum
Oats
Beef
Ton
20.00
1.70

Cwt.
Bu.
Cwt。
$.65 d$

These price assumptions are not to be interpreted as predictions of prospective prices.
$\mathrm{b}_{\text {Four }}$ different price levels used in the analysis.
${ }^{\text {c Adjusted }} 2963$ support price.
dSee Appendix A, Table V.

APPENDIX A, RABIE V
ASSUMED PRICES TOR STOGKAR AND FTEDER STEERS, AND CULL CCUS BY MONTHS, ROLITING PLAINS OF SOUTHESTERN OKLAHOMA

[^19]AFPENDIX A, TABLE VI
ESTIMATED COST PER HOUR OF USE FOR SPECIFIED
EQUIPMENT BY TYPE OF SOILS

Item		Cost Per Hour of Use ${ }^{\text {a }}$		
		Clay	Lom Sojls	Sandy Soil
		(Dollars)		
Four-Row Equipment				
Tractor	4 or $3-16$ tricycle\% $L_{0} P_{0}$			
	Poso, hydraulic, P PO,	1.27	1.27	1.27
	3 point hitch, 51 HP。			
Moldboard plow	$4016{ }^{\prime \prime}$ integral	.36	. 46	.46
One-way	12-foot	- 5 ?	. 57	
Tool bar (Home)	120foot	. 34	. 34	. 34
Cultivator	4 row	. 32	. 32	. 32
Planter ${ }^{\text {b }}$	4-row (with premerge)		1.09	
Planter	4orow	.67	.77	. 77
Gyromor	5-foot		. 22	. 22
Mower	7-foot	. 27	.27	.27
Side delivery rake	10.100t	. 34	. 34	. 34
Grain drizl	16-8 inch	. 58	. 77	.77
Spike tooth harrow	24 foot	.07	.07	.07
Cyclone rye seeder	60row			. 10
Single action disc	15-100t			. 19
Monitor (Goodevil)	4-row			. 23
Two-Row Equipment				
Tractor	3 or 2-16" tricycle, L.P. PoSc, Hydraulic, $\mathrm{PTO}_{\mathrm{s}}$			
		1.00	.86	. 86
Moldboard plow	2-16" integral	. 25	.25	.25
Oneoway	8-foot	. 33	.33	
Tool bar (Hoeme)	8-foot	. 27	. 27	. 27
Cultivator	2-now	. 15	. 15	.15
Planter ${ }^{\text {b }}$	2orow (with preaemerge)		. 55	
Planter	2 mrow	. 33	. 33	. 33
Gyromos	5-foot		. 22	. 22
Mower	7-foot	. 27	. 27	. 27
Side delivery rake	10-foot	.34	. 34	.34
Grain drill	16-8 inch	. 58	.78	.78
Spike tooth harrow	180foot	. 05	. 05	.05
Monitor (Go-devil)	20row			.12
Cyclone rye seeder	6erow			. 10

athese figures include per hour costs of lubrication, repair, depree ciation due to wear, and in the case of tractors the per hour cost of fuel and oil. It is assumed that equipment is used ato an annual rate such that it would wear out before it becomes obsolete.
bIncludes peromerge equipment for cotiton.

APPENDIX B

APPENDIX B, TABLE I
CLAY SOIL REPRESENTATIVE FARM; ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOTMENT COMB INATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations					
		$P_{2} A$	$\mathrm{P}_{2} \mathrm{~A}^{\text {a }}$	$\mathrm{P}_{2} \mathrm{~B}$	$\mathrm{P}_{2} \mathrm{~B}^{\text {b }}$	$\mathrm{P}_{2} \mathrm{C}^{\mathrm{C}}$	$\mathrm{P}_{3} \mathrm{IL}^{\text {d }}$
Cotton	Acre		137		119	101	65
Cotton Lint	Cwt.		238		207	176	114
Wheat	Acre	496	496	496	496	496	496
Oats	Acre	173	6	173	27	49	93
Oat Hay	Acre	137	138	137	138	138	138
Annual Grazing ${ }^{\text {e }}$	Acre	194	189	194	190	191	192
Fallow	Acre		34		30	25	16
August Feeders	Head	123	140	123	139	136	131
March Feeders	Head	174	134	174	138	144	155
Operator Labor	Hour	1.737	1.756	1.737	1.754	1,751	1.246
Hired Labor	Hour	2,124	2.154	2,124	2.150	2,146	2,138
Annual Capatal	Dol.	55.565	52,839	55,565	53,194	53,550	54.262
Total Capital	Dol.	62,557	60,004	62,55?	60,338	60,671	61.337
İand Use							
C_{b} Land							
Cotton	Acre		137		119	101	65
Wheat	Acre	360	189	360	211	234	279
Fallow	Acre		34		30	25	16
C_{0} Land							
Wheat	Acre	136	307	136	285	262	217
Oats	Acre	173	6	173	27	49	94
Oat Hay	Acre	59	55	59	56	57	57
C^{2} Land							
Oat Hay Annual	Acre	78	82	78	82	82	80
Grazing	Acre	82	78	82	78	79	80
G_{e} Land							
Grawing	Acre	112	112	112	112	112	112

${ }^{\text {a Optimum organization identical for situation }} P_{3} A$.

${ }^{c}$ Optimum organization identical for situations $\mathrm{P}_{3} \mathrm{C}$ and $\mathrm{F}_{4} \mathrm{C}$.
doptimum organization identical for situation $P_{4} D$.
eIncludes small grain, Sudan, and Blue PanicmSudan graziag.

APPENDIX B_{8} TABLE II
SANDY SOIL REPRESENTATIVE FARM; OPTIMUM ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOTMENT COMBINAFIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations				
		$\mathrm{P}_{1} \mathrm{~A}$	$\mathrm{P}_{2}{ }^{\text {A }}$	$\mathrm{P}_{3}{ }^{\text {a }}$	$\mathrm{P}_{3} \mathrm{D}^{\text {a }}$	
Cotton	Acre	177	177	177	84	
Cotton Lint	Cwt.	499	533	548	275	
Wheat	Acre	67	67	67	67	
SorghumaFallow	Acre	22	22	53	115	
Alfalla	Acre	89	89	58	89	
Small Grain Hay	Acre	24	24	28	24	
Annual Grazing ${ }^{\text {b }}$	Acre	32	32	36	32	
Reseeded Cropland	Acre	89	89	81	89	
March Feeders	Head	67	67	76	67	
Beef Cows	Head	11	11	11	11	
Operator Labor	Hour	1,894	1,894	1,906	1,799	
Hired Labor	Hour	290	290	226	235	
Anmal Capital	Dol.	22.245	22,264	23,078	21,002	
Total Capital	Dol.	27.744	27.744	28,153	26,005	
Land Use S_{b} Land						
Cotton	Acre	27	94	125	84	
Wheat	Acre	67			10	
Alfalfa	Acre	31	31		32	
S_{C} Land						
- Cotton	Acre	250	83	52		
Whest	Acre		67	67	5 ?	
Alfialfa	Acre	58	58	58	58	
Sorghum-Fallow	Acse	22	22	53	115	
S_{d} Land						
Small Crain Hay	Acre	24	24	28	24	
Annual Grazing	Acre	32	32	36	32	
Reseeded Cropland	Acre	69	69	61	69	
S_{e} Land						
Reseeded Cropland	Acre	20	20	20	20	

${ }^{a}$ Optimum organization identical for situation $P_{4} D_{0}$
bIncludes mall grain and Sudan grazing.

APPENDIX B, TABLE III
SANDY SOIL REPRESENTATIVE FARM; OPTIMUM ENTERPRISE ORGANIZATION AND IAND USE PATTERNS FOR SPECIFIED COTTON PRIGE AND ALLOTMENT COMBINATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Cotton Price and Allotment Combinations					
	Unit	$\mathrm{P}_{\perp} \mathrm{B}$	$\mathrm{P}_{2} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{~B}^{\text {a }}$	$\mathrm{P}_{2} \mathrm{C}$	$\mathrm{P}_{3} \mathrm{C}^{\text {b }}$
Cotton	Acre	154	154	154	131	131
Cotton Lint	Cwt.	436	469	485	406	422
Wheat	Acre	67	67	67	67	67
Grain SorghummFallow	Acre	45	45	76	68	99
Alfalia	Acre	89	89	58	89	58
Small Grain Hay	Acre	24	24	28	24	28
Annual Grazing ${ }^{\text {c }}$	Acre	32	32	36	32	36
Reseeded Cropland	Acre	89	89	81	89	81
March Feeders	Head	67	67	76	67	76
Beef Cows	Head	11	11	11	11	11
Operator Labor	Hour	1,870	1,870	1,882	1,846	1,859
Hired Labox	Hour	279	279.	215	269	196
Annual Capital	Dol.	21.950	21.950	22,764	21,637	22,447
Total Capital	DoL.	27.311	27,311	27.719	26,877	27.283
Land Use						
S_{b} Land						
Cotton	Acre	27	94	125	94	125
Wheat	Acre	67				
Alfalfa	Acre	31	31		31	
S_{C} Land						
Cotton	Acre	127	60	29	37	6
Wheat	Acre		67	67	67	67
Alfalfa	Acre	58	58	58	58	58
Grain SoroghunFallow	Acre	45	45	76	68	99
$S_{\text {d }}$ Land						
Small Grain Hay	Acre	24	24	28	24	28
Anmual Grazing	Acre	32	32	36	32	36
Reseeded Cropland	Acre	69	69	61	69	61
S_{e} Land ${ }^{\text {dat }}$						
${ }^{\text {a Optimum }}$ organization identical for situation $\mathrm{P}_{4} \mathrm{~B}^{\text {a }}$						
$b_{\text {Optimum }}$ organization identical for situation $P_{4} C^{6}$ 。						
${ }^{\text {c Includes small }}$ gra	and	dan graz	ng。			

APPENDIX B, TABLE IV

LEVEL LOAM SOIL REPRESENTATIVE LARGE FARM; OPTIMUM ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOTMENT COMBINATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Cotton Price and Allotment Combinations				
	Unit	$\mathrm{P}_{1} \mathrm{~A}$	$\mathrm{P}_{2} \mathrm{~A}^{\mathrm{ta}}$	$\mathrm{P}_{2} \mathrm{C}$	$\mathrm{P}_{3} \mathrm{Cb}$
Cotton	Acre	98	171	126	126
Cotton Lint	Cut.	265	430	329	348
Wheat	Acre	226	226	226	226
Sorghum-Fallow	Acre	192	125	170	170
Alfolfa	Acre	170	170	170	170
Small Grain Hay	Acre	21	21	21	21
Annual Grazing ${ }^{\text {c }}$	Acre	33	37	37	37
Reseeded Cropland	Acre	10			
August Feeders	Head				
March Feeders	Head	89	88	88	86
Beef Cows	Head	10	10	10	10
Operator Labor	Hour	1.912	1.927	1.923	1.922
Hired Labor	Hour	738	794	758	749
Anmual Capital	DoI.	27.682	28,314	27.807	27.493
Total Capital	DOI.	34.083	34.928	34,240	33,874
Land Use					
L_{2} Land					
Cotton	Acre	89	89	89	126
Wheat	Acre	226	226	226	189
Alfelfa	Acre	105	105	105	205
Sorghum-Fallow	Acre				
Lb_{b} Lend ${ }_{\text {and }}$					
Cotton	Acre	9	82	37	
Wheat	Acre				37
Alfalfa	Acre	65	65	65	65
Sorghumofallow	Acre	156	92	137	137
Smell Graix Hay	Acre	21	21	21	21
Annual Grazing	Acre	9			
$L_{\text {c }}$ Land					
SorghummFallow	Acre	36	33	33	33
Annual Grazing	Acre	24	27	27	27
L_{e} Land					
Reseeded Cropo land	Acre	10			
Annual Grazing	Acre		10	10	10

[^20]
APPENDIX B, TABLE V

LEVEL LOAM SOIL REPRESENTATIVE LARGE FARN; OPTIMUM ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOIMENL COMBINATIONS, ROLLING PLATNS OF SOUTHWESTERN OKLAHOMA

Item	Cotton Price and Allotment Combinations				
	Unit	$\mathrm{P}_{1} \mathrm{~B}$	$\mathrm{P}_{2} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{~B}^{\text {a }}$	$\mathrm{P}_{3} \mathrm{D}^{5}$
Cotton	Acre	98	149	149	82
Cotton Lint	Cut.	265	380	409	225
Wheat	Acre	226	226	226	226
SorghummFallow	Acre	191	147	148	199
Alfalfa	Acre	170	170	170	170
Small Grain Hay	Acre	22	21	21	25
Annual Grazinge	Acre	33	37	36	38
Reseeded Cropland	Acre	10			10
August Feeders	Head				6
March Feeders	Head	89	88	84	90
Beef Cows	Head	10	10	10	10
Operator Labor	Hour	1.912	1.926	1,926	1,924
Hired Labor	Hour	738	775	762	738
Annual Capital	Dod.	27,682	28,060	27.555	28,376
Total Capital	Dol.	34,083	34,610	34.022	34,805
Land Use					
$L_{\text {a }}$ Land					
Cotion	Acre	89	89	149	82
Wheat	Acre	226	226	166	226
Alfalfa	Acre	105	105	105	105
Sorghum-Fallow	Acre				7
L_{6} Land					
Cotton	Acre	9	60		
Wheat	Acre			60	
Alfelfa	Acre	65	65	65	65
SorghumaFallow	Acre	155	114	114	156
Small Grain Hay	Acre	22	21	21	25
Annagl Grazing	Acre	9			14
L_{c} Lend					
Sorghumafallow	Acre	36	33	34	36
Annual Grazing	Acre	24	27	26	24
$L_{\text {e }}$ Land					
Reseeded Cropo land	Acre	10			
Anmal Grazing	Acre		10	10	10

[^21]
APPENDIX B, TABLE VI

LEVEL LOAM SOIL REPRESENTATIVE SMALL FARM; OPTIMUM ENTERPRISE ORGANIZAIION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOTMENT COMBINATIONS, ROLLING PLAINS OF .SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations			
		$\mathrm{P}_{1} \mathrm{~A}$	$\mathrm{P}_{2}{ }^{\text {A }}$	$\mathrm{P}_{3}{ }^{\text {A }}$	$\mathrm{P}_{3} \mathrm{Da}^{\text {a }}$
Cotton	Acre	24	85	85	41
Cotton Lint	Cut.	65	215	235	113
Wheat	Acre	113	113	113	113
Sorghum-Fallow	Acre	117	60	62	100
Alfalfa	Acre	84	84	84	84
Small Grain Hay	Acre	13	11	10	13
Annual Grazing ${ }^{6}$	Acre	19	17	16	19
Reseeded Cropland	Acre	5	5	5	5
August Feeders	Head	3			3
March Feeders	Head	45	44	42	45
Beef Cows	Head	5	5	5	5
Operator Labor	Hour	1.815	1.840	1,840	1,825
Hired Labor	Hear	300	356	343	314
Annual Capital	Dol.	14,368	14.636	14.302	14.581
Total Capital	DoI.	17,494	18,032	17.639	17:798
Land Use					
$I_{\text {a }}$ Land					
a Cotton	Acre	24	45	85	41
Wheat	Acre	113	113	73	113
Alfalfa	Acre	52	52	52	52
SorghumaFallow	Acre	21			4
$L_{\text {b }}$ Land					
Cotton	Acre		40		
Wheat	Acre			40	
Alfalfa	Acre	32	32	32	32
Sorghummeallow	Acre	78	47	48	78
Small Grain Hay	Acre	13	11	10	13
Annual Grazing	Acre	7			7
I_{c} Land					
SorghummFallow	Acre	18	13	14	18
Annual Grazing	Acre	12	17	16	12
L_{e} Land					
Reseeded Crop. land	Acre	5	5	5	5

bIncludes snall grain and sudan grazing。

APPENDTX B, TABLE VII

LEVEL LOAM SOIL REPRESENTATIVE SMALL FARM; OPTTMUM ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOTNENT COMBINATIONS, ROLLING PLAINS OF SOUEHWESTERN OKLAHOMA

Item	Unit	Cottor Price and Allotiment Combinations				
		$\mathrm{F}_{1} \mathrm{~B}$	$\mathrm{P}_{2} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{Ba}^{\text {a }}$	$\mathrm{P}_{2} \mathrm{C}$	$\mathrm{P}_{3} \mathrm{Cb}$
Cotton	Acre	24	74	74	63	63
Cotton Lint	Cuto.	65	190	205	165	174
Wheat	Acre	113	113	113	113	113
Grain Sorghum-Fallow	Acre	117	71	72	82	82
Alfalfa	Acre	84	84	84	84	84
Small Grain Hay	Acre	13	11	11	11	11
Annual Grazing ${ }^{\text {c }}$	Acre	19	17	16	17	17
Reseeded Cropland	Acre	5	5	5	5	5
August Feeders	Head	3				
March F'eeders	Head	45	44	42	44	43
Beef Cows	Head	5	5	5	5	5
Operator Labor	Hour	1.825	2.834	1.834	1.827	12827
Hired Labor	Hour	300	347	334	334	326
Arnual Capital	Dol.	14.368	14,498	14.257	14,361	14,213
Total Capital	Dol.	17.494	17,834	17.550	17.637	17.461
Land Use						
I_{a} Land						
Cotton	Acre	24	45	74	45	63
Wheat	Acre	113	113	84	113	95
Alfolfa	Acre	52	52	52	52	52
Grain Sorghume Fallow	Acre	21				
L_{b} Land						
Cotton	Acre		29		18	
Wheat	Acre			29		18
Alifilfa	Acre	32	32	32	32	32
Grain SorghumFallow	Acre	78	58	58	69	69
Small Grain Hay	Acre	13	11	11	11	11
Anmal Grawing	Acre	7				
L_{c} Land						
Grain Sorghumo Fallow	Acre	18	13	14	13	13
Armual Grazing	Acre	12	. 17	16	17	17
I_{e} Land ${ }^{\text {da }}$						
Reseeded Cropland	Acre	5	5	5	5	5

a0ptimum organization identical for situation $\mathrm{P}_{4} \mathrm{~B}_{0}$
boptimm organization identical for situation $\mathrm{P}_{4} \mathrm{C}$ 。
${ }^{\text {Concludes small grain and Sudar grazing. }}$

APPENDIX B, TABLE VIII

ROLLING LOAM SOIL REPRESENTATIVE LARGE FARM; OPTIMUM ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOTNENT COMBENATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Cotton Price and Allotment Combinations				
	Unit	$P_{1} A$	$\mathrm{P}_{2} \mathrm{~A}$	$\mathrm{P}_{3} \mathrm{~A}$	$\mathrm{P}_{3} \mathrm{D}^{\text {a }}$
Cotton	Acre	22	162	162	78
Cotton Lint	Cut.	41	32.0	425	213
Wheat	Acre	264	264	264	264
Sorghumofallow	Acre	226	173	183	225
Alfalfa	Acre	63			9
Smajl Grain Hay	Acre	25	26	22	24
Annual Grazing ${ }^{\text {b }}$	Acre	35	35	29	32
Reseeded Cropland	Acre	115	90	90	118
March Feeders	Head	87	87	73	81
Beef Cows	Head	17	15	16	17
Operator Labor	Hour	1,865	1,834	1,834	1.838
Hised Labor	Hour	397	423	394	322
Annual Capital	Dol.	25,946	26.325	24.528	25,006
Total Capital	Dol.	31,096	30,770	28,689	29,346
Land Use					
Ra Land					
Cotion	Acre			200	78
Wheat	Acre	75	100		13
Alfalfa	Acre	25			9
P_{b} Lend					
cottons	Acre		49	62	
Wheat	Acre	247	136	123	185
Alfogla	Acre	38			
R_{c} Land					
Cotton	Acre	22	113		
wheat	Acre	42		110	66
SorghumeFallow	Acre	136	86	93	135
Small Grezin Hay	Acre	25	26	22	24
R_{d} Land					
Wheat	Acre		28	31	
Sorghumomallow	Acre	90	87	90	90
Annual Grazing	Acre	35	35	29	32
Reseeded Cropland	Acre	25			28
Re Lend ${ }_{\text {Reseeded Cropland }}$	Acre	90	90	90	90

APPENDIX B, TABLE IX
ROLIING LOAM SOIL REPRESENTATIVE LARGE FARM; OPTIMUM ENTERPRISE
ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALIOTVENT COMBINATIONS, ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Cotton Price and Allotment Combinations					
	Uni.t	$\mathrm{P}_{1} \mathrm{~B}$	$\mathrm{P}_{2} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{~B}^{\text {a }}$	$\mathrm{P}_{2} \mathrm{C}$	$\mathrm{P}_{3} \mathrm{C}^{\text {b }}$
Cotton	Acre	22	141	141	120	120
Cotton Lint	Cuto.	41	279	368	240	320
Wheat	Acre	264	264	264	264	264
Grain Sorghummallow	Acre	226	194	203	215	224
Alfalfa	Acre	63				
Small Grain Hay	Acre	25	26	22	26	22
Annual Grazing ${ }^{\text {c }}$	Acre	35	35	30	35	30
Reseeded Cropland	Acre	115	90	90	90	90
March Feeders	Head	87	88	75	88	76
Beef Cows	Head	17	15	16	15	16
Operator Labor	Hour	1,865	1,834	1,833	1,833	1,833
Hired Labor	Howr	391	406	378	388	363
Annual Capital	Dol.	25.496	26,143	24.469	25,902	24.410
Total Capital	Dol.	31.096	30,485	28,457	30,132	28,403
Land Use						
R_{a} Land						
Cotton	Acre			100		100
Wheat	Acre	75	100		100	
Alfalfa	Acre	25				
R_{b} Land						
Cotton	Acre		46	42	46	20
Wheat	Acre	147	139	144	139	165
Alifalfa	Acre	38				
$\mathrm{R}_{\mathrm{c}} \mathrm{L}$ and						
Cotton	Acre	22	95		74	
Wheat	Acre	42		90		69
Grein Sorghumo						
Fallow	Acre	136	104	113	125	134
Small Grain Hay	Acre	25	26	22	26	22
R_{d} Land	Acre		25	30	25	30
Grain Sorghum			25		25	30
Fellow	Acre	90	90	90	90	90
Annual Grazing	Acre	35	35	30	35	30
Reseeded Cropland	Acre	25				
$\mathrm{R}_{e} \frac{\text { Land }}{\text { Resecded Cropland }}$	Acre	90	90	90	90	90

APPENDIX B; TABLE X

ROLLING LOAM SOIL REPRESENTATIVE SMALL FARM; OPTIMUM ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALLOTMENT COMBINATIONS, ROLIING PLAINS OF SOUTHWESTERN OKLAHONA

APPENDIX B, TABLE XI
ROLIING LOAM SOIL REPRESENTATIVE SMALL FARM; OPTIMUM ENTERPRISE ORGANIZATION AND LAND USE PATTERNS FOR SPECIFIED COTTON PRICE AND ALIOTNENT COMBINATIONS, ROLIING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations				
		$P_{1} B$	$\mathrm{P}_{2} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{~B}$	$\mathrm{P}_{4} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{D}^{\text {a }}$
Cotton	Acre	35	35	35	35	19
Cotton Lint	Cut.	65	80	89	92	53
Wheat	Acre	66	66	66	66	66
SorghumoFailow	Acre	23	32	34	39	40
Alfelfa	Acre	18	18	18	12	18
Small Grain Hay	Acre	9	6	5	6	8
Annual Grazing ${ }^{6}$	Acre	14	8	7	7	14
Reseeded Cropland	Acre	23	23	23	23	23
August Feeders	Head	3				4
March Feeders	Head	22	19	18.	18	20
Beef Cows	Head	3	3	3	3	3
Operator Labor	Hour	1.326	1.407	1.399	1,393	1.175
Hired Labor	Hour					
Anmal Capital	Dol.	7,388	6,587	6,405	6,396	7,003
Total Capital	Dol.	8,841	7,928	7.717	7,606	8,336
Land Use						
Ra Land 16						
Cotton	Acre		16	19	25	19
Wheat	Acre	19	3			
Alfalfa	Acre	6	6	6		6
R_{O} Land 10						
Cotton	Acre			16	10	
Wheat	Acre	38	38	22	28	38
Alfalfa	Acre	12	12	12	12	12
$\mathrm{R}_{\text {c }}$ Land						
Cotton	Acre	35	19			
Wheat	Acre	9	19	37	31	28
Sorghummallow	Acre	2	11	13	18	19
Small Grain Hay	Acre	9	6	5	6	8
R_{d} Land						
Wheat	Acre		6	27	7	
Sorghum-Fallow	Aere	21	21	21	21	21
Annual Grazing	Acre	14	8	7	7	24
$\mathrm{R}_{\text {e }}$ Land ${ }_{\text {Leseeded }}$ Cropland	Acre	23	23	23	23	23

bincludes small grain and Sudan grazing.

APPENDIX C

COMPARISON OF ESTIMATED MINIMUM REQUIRENENTS FOR \$5,000 RETURN TO OPERATOR LABOR AND MANAGEMENT. BASE LAND AND LABOR PRICE, INCLUDING ALL CROP AND LIVESTOCK ENTERPRISE ALTERNATIVES

SPECIFIED COTTON m PRICE ALLOTMENT COMBTNATIONS BY
RESOURCE SITUATIONS, ROLLING PLAINS
OF SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations					
		$\mathrm{P}_{1} \mathrm{~A}$	$\mathrm{P}_{2}{ }^{\text {a }}$	$\mathrm{P}_{3}{ }^{\text {A }}$	$\mathrm{P}_{2}{ }^{\text {c }}$	$\mathrm{P}_{3} \mathrm{C}$	$\mathrm{P}^{\text {c }}$
Clay Soll Situation							
Total Land	Acre	3,213	2,971	12,660	3,030	1,885	1.414
Cotton	Acre		318	178	240	149	112
Cotton Iint	Cwt.		553	309	417	259	194
Wheat	Acre	1.245	1.152	643	1. 174	730	548
Wheat	Bu 。	16.749	14,933	8,341	15,379	9.564	7.173
Oats	Acre	433	14	8	117	73	54
Oats	Bu:	8,664	297	152	2.354	1. 454	1.090
Oat Hay	Acre	346	320	178	327	203	152
Annual Grazing	Acre	486	440	246	451	281	210
Figlow	Acre		79	44	60	37	28
August Feeders	Head	310	326	182	322	200	150
March Feeders	Head	436	309	173	340	212	159
Operator Labor	Hour	1.858	1.843	1,830	1,847	1,858	1.777
Hired Labor ${ }^{\text {a }}$	Hour	7.832	7,238	3.240	7.384	3,881	2,527
Annual Capitalb	Dol.	140.738	123.749	68.748	127.924	79.219	59,223
Total Capital ${ }^{\text {b }}$	Dol.	159,540	141.280	78,265	145,768	90,065	67.166
Sandy Soil Situation							
Total Land	Acre			858		1,800	704
Cotton	Acre			237		367	144
Cotton Lint,	Cut.			735		1.185	464
Wheat	Acre			90		189	74
Wheat	Bu.			1,261		2,647	1,035
Sorghummallow	Acre			71		279	109
Grain Sorghum	Cut.	g		770		3.015	1.179
Alfalfa	Acre	-	-	78	$\stackrel{\text { r }}{+}$	163	64
Small Grain Hay	Acre	$\stackrel{7}{7}$	$\stackrel{3}{7}$	37	\%	78	32
Anmual Grazing	Acre	\%	ก\%	49	\%	102	40
Reseeded Cropland	Acre	\%	\%	108	O	227	89
March Freders	Head	${ }_{4}$	\%	102	\%	215	84
Beef Cows	Heed			14		30	12
Operator Labor	Hour			2,120		2.120	1,926
Hired Labor ${ }^{\text {a }}$	Hour			489		2,356	263
Annual Captital ${ }^{\text {b }}$	Dail.			31,048		64.132	24.728
Total Capital	Dol.			37.953		78,666	30:073

APPENDIX C，TABLE I（Continued）

Item	Unit	Cotton Price and Allotment Combinations					
		$\mathrm{P}_{1} \mathrm{~A}$	$\mathrm{P}_{2}{ }^{\text {A }}$	$\mathrm{P}_{3}{ }^{\text {A }}$	$\mathrm{P}_{2} \mathrm{C}$	$\mathrm{P}_{3} \mathrm{C}$	$\mathrm{P}_{4} \mathrm{C}$
Level Loam Soil Situation							
Total Land	Acre	37.338	1.744	840	2，048	1，022	722
Cotton	Acre	330	311	150	270	135	95
Cotton Lint	Cwt．	743	781	412	702	370	262
Wheat	Acre	8，775	410	197	481	240	170
Wheat	Bu 。	201，813	9.428	4，181	11，068	5，328	3，762
Sorghummallow	Acre	＇10，944	227	112	361	182	129
Grain Sorghum	Cutb。	133.645	2，615	1，290	4，220	2， 124	1， 450
A1falfa	Acre	6，612	309	149	363	181	128
Small Grain Hay	Acre	841	39	18	46	22	16
Annual Grazing	Acre	1，278	67	31	79	38	27
Reseeded Cropland	Acre	． 389					
March Feeders	Head	3，462	160	73	188	91	65
Beef Cows	Head	401	18	9	21	10	7
Operator Labor	Hour	1．989	1.989	1．839	1．989	1.940	1.723
Hired Labora	Hour	83，373	2.427	607	3.000	863	442
Annual Capital ${ }^{\text {b }}$	Dol．	1，067，218	51．991	24.115	60，077	29，316	20，598
Total Capital ${ }^{\text {b }}$	Dol． 1	，326，588	64.599	29，813	74.490	36，144	25.336
Rolling Loam Soil Situation							
Totel Land	Acre			3，183		7.039	1，624
Cotton	Acre			538		880	203
Cotton Lint	Cwt．			1.377		2,346	541
Wheat	Acre			875		1，936	44%
Wheat	Bu 。			13．579		31，293	7，220
Sorghummallow	Acre			607		1， 639	378
Grain Sorghum	Cut．	－	－	5.326		14，742	3，401
Small Grain Hay	Acre	$\stackrel{\rightharpoonup}{3}$	$\stackrel{+}{\stackrel{\rightharpoonup}{3}}$	72	$\xrightarrow{3}$	164	38
Annual Grazing	Acre	${ }_{0}$	$\stackrel{\square}{\text { in }}$	97	$\xrightarrow{\circ}$	224	52
Reseeded Cropland	Acre			298		660	152
March Feeders	Head	\％	\％	235	号	559	129
Beef Cows	Head			52		114	26
Operator Labor	Hour			1．989	＊	1.989	1，924
Thired Labora	Hour			4， 121		11．303	1，345
Annual Capitajb	Dol．			82.886		183，625	41．714
Total Capitalb	Dol．			98，090		217，229	48,836

2unskilled hired labor not included．
bexcludes land and building capital．

APPENDIX C，TABLE II

COMPARISON OF ESTIMATED MINIMUM REQUIRENENTS FOR $\$ 5,000$ RETURN TO OPERATOR LABOR AND MANAGEMENT BASE LAND AND LABOR PRICES， INCLUDING ALL CROP AND LIVESTOCK ENTERPRISE ALTERNA－ TIVES；SPECIFIED COTTON PRICE ALIOTMENT COMBINA
 TIONS BY RESOURCE SITUATIONS；ROLLING
 PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Cotton Price and Allotment Combinations					
		$\mathrm{P}_{1} \mathrm{~B}$	$\mathrm{P}_{2} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{~B}$	$\mathrm{P}_{4} \mathrm{~B}$	$\mathrm{P}_{3} \mathrm{D}$	$\mathrm{P}_{4} \mathrm{D}$
Clay Soil Situation							
Total Land	Acre	3，213	2.953	1.763	1．293	2.207	1．739
Cotton	Acre		275	164	120	113	89
Cotton Lint	Cut．		478	285	209	196	155
Wheat	Acre	1.245	1.144	683	501	855	674
Wheat	Bu。	16．749	14，911	8，902	6，528	11，306	8，909
Oats	Acre	433	64	38	28	161	126
Oats	Bu．	8，664	1.274	761	558	3，202	2，523
Oat Hay	Acre	346	318	190	139	237	187
Annual Grazing	Acre	486	439	262	192	331	260
Fallow	Acre		68	41	30	28	22
August Feeders	Head	310	318	190	139	227	179
March Feeders	Head	436	320	191	140	266	210
Operator Labor	Hour	1，858	1，858	1.847	1.756	1，858	1，832
Hired Labora	Hour	7.832	7.148	3.530	2.186	4，839	3，445
Annual Capitalb	Dol．	140，736	123，818	73，555	53.733	94， 132	73，998
Total Capitalb	Dol．	159.538	141，392	83．678	60,95410	106：906	83，881
Sandy Soil Situation							
lotal Land	Acre			1，162	565		1，844
Cotton	Acre			279	136		249
Cotton Lint	Cut．			880	428		808
Wheat	Acre			122	59		198
Wheat	Bri 。			1.708	830		2，882
Sorghum－Fallow	Acre			138	67		337
Grain Sorghwn	Cut．		5	1.494	726	${ }_{0}$	3，635
Alfalfa	Acre	$\xrightarrow{+}$		105	51	＋	262
Small Grain Hay	Acre	？	$\stackrel{3}{3}$	51	25	－	72
Annual Grazing	Acre	8	\％	66	32	8	94
Reseeded Cropland	Acre	\bigcirc	$\stackrel{\circ}{8}$	147	71	$\stackrel{8}{8}$	261
March Feeders	Head	2	\％	138	67	号	197
Beef Cows	Head			19	9		33
Operator Labor	Hour			2，120	1，801		2，120
Hired Labor ${ }^{\text {a }}$	Hour			1，091	136		2，477
Annual Capitaib	Dol．			41，719	20，051		62，817
Total Capital ${ }^{\text {b }}$	Dol．			51.085	24，393		78，468

APPENDIX C ：TABLE II（Continued）

Item	Unit	Cotton Price and Allotment Combingtions					
		$P_{1} B$	$\mathrm{P}_{2} \mathrm{~B}^{\text {a }}$	$\mathrm{P}_{3} \mathrm{~B}$	$\mathrm{P}_{4} \mathrm{~B}$	$\mathrm{F}_{3} \mathrm{D}$	$\mathrm{P}_{4} \mathrm{D}$
Level Loam Soil Situation							
Tocail Iand	Acre	37．338	1，884	918	65.1	1，428	986
Cotton	Acre	330	292	142	100	122	84
Cotton Lint	Cwt．	743	745	392	274	335	231
Wheat	Acre	8，775	443	216	151	336	232
Wheat	Bu．	201，815	10，182	4，680	3，271	7，720	5，332
Sorghum－Fallow	Acre	10，945	289	143	100	297	205
Grain Sorghum	Cut．	133.645	3.353	1．660	1，160	3，489	2，410
Alfolefa	Acre	6，612	334	163	114	253	175
Small Grain Hay	Acre	841	42	20	14	37	26
Annual Grazing	Acre	1，278	73	35	24	57	39
Reseeded Cropland	Acre	389				15	10
August Feeders	Head					8	6
March Feeders	Head	3.462	173	81	56	134	93
Beef Cows	Head	401	19	9	7	15	10
Operator Labor	Hour	1，989	1，989	1，897	1，663	1.989	1，933
Hired Labora	Hour	83.373	2，690	703	345	1，663	785
Annual Capital ${ }^{\text {b }}$	DoI．	1，067，224	55，710	26，348	18，325	42，529	29，172
Total Capital ${ }^{\text {b }}$	Dol．	1，326，595	69.148	32，522	22，567	52.377	35.792
Rolling Loam Soil Situation							
Total Land	Acre			4.384	2.324		3，717
Cotton	Acre			644	195		300
Cotton Lint	Cunt．			1，678	507		826
Wheat	Acre			1．206	364		1，022
Wheat	Br 。			19，095	5.768		17，606
Sorghum－Fallow	Acre			929	281		871
Grain Sorghum	Cut．			8，258	2.494		7.836
Alfalfa	Acre						39
Small Grain Hay	Acre			100	30		92
Amnual Grazing	Acre	－	$\stackrel{\text { r }}{ }$	137	42	$\xrightarrow{8}$	325
Reseeded Cropland	Acre	\％	宫	411	124	8	455
March Feeders	Head	¢	\bigcirc	342	103	क	324
Beef Cows	Head	足	\％	72	22	\％	66
Operator Labor	itour			1．989	1，883		1．989
Hired Labor ${ }^{\text {a }}$	Hour			6，357	923		4.963
Annual Capitajb	Dol．			114，256	33.983		98，804
Total Capitalb	Dol			135，190	39,808		117．486

a Unskilled hired labor not included．
bexcludes land and building capital．

APPENDIX C_{9} TABLE III
COMPARISON OF ESTIMATED MINIMUM REQUIREMENTS FOR \$5,000 RETURN TO OPERATOR LABOR AND MANAGEMENT, 100 PERCENT COTTON ALLOTMENT. \$26.40 COTTON PRICE, BASE LABOR PRIGE, INCLUDING ALL CROP

AND LIVESTOCK ENTERPRISE ALTERNATIVES; SPECIFIED LAND
PRICE LEVELS BY RESOURCE SITUATIONS: ROLLING
PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Land Price Levels as Percent of Base			
		Base	Bese Less 50 Percent	Base Less 100 Percent	Base Plus 50 Percent
Clay Soil Situation					
Total Land	Acre	1.763	753	528	
Cotton	Acre	164	70	49	
Cotton Lint	Cutio	285	122	85	
Wheat	Acre	683	292	205	
Wheat	Bu_{0}	8,902	3,801	2,667	
Oats	Acre	38	16	11	
Oats	Bu 。	761	325	215	
Oat Hay	Acre	190	81	57	9
Annual Grazing	Acre	262	112	79	$\stackrel{3}{3}$
Fallow	Acre	42	17	12	$\stackrel{\square}{8}$
Angust Feeders	Head	190	81	57	
March Feeders	Head	191	82	57	8
Operator Lizbor	Hour	1.847	1,652	1.495	
Hired Labosa	Hour	3.530	644	198	
Armual Capitalb	Dol.	73.555	30,976	21.595	
Total Capitajb	Delo	83.678	34.867	24,196	
Sandy Soil Situation					
Total Land	Acre	1, 162	516	377	
Cotton.	Acre	279	124	90	
Cotton Lint	Cut.	880	391	277	
Wheat	Acre	122	54	40	
Wheat	$B u_{0}$	1.708	758	554	
Sorghum Fallow	Acre	138	61	63	
Sorghum	Cwito	1.494	663	594	
Alfalfa	Acre	105	47	51	\%
Small Grain Hay	Acre	51	22	17	$\xrightarrow{3}$
Axmual Greasing	Acre	66	29	22	\%
Reseeded Cropland	Aere	147	65	12	8
March Feeders	Head	138	62	46	\%
Beef Cows	Head	19	9	4	
Operator Labor	Hour	2,120	1.748	1. 295	
Hired Labora	Hour	1,091	84		
Anmel Capitarb	Dol.	41,719	18,295	13.481	
Total Capital ${ }^{\text {b }}$	Dol.	57.085	22,240	26,343	

APPENDIX C, TABLE III (Continued)

Item	Unit	Land Price Levels as Percent of Base			
		Base	Base Less 50 Percent	Base Less 100 Percent	Base Plus 50 Percent
Level Loam Soil Situation					
Total Land	Acre	918	420	234	
Cotton	Acre	142	65	44	
Cotton Lint	Cwt.	392	179	121	
Wheat	Acre	216	99	67	
Wheat	Bu.	4,680	2,140	1,446	
SorghummFallow	Acre	143	65	44	
Sorghum	Cwt.	1,660	759	513	
Alfalfa	Acre	163	74	50	.
Small Grain Hay	Acre	20	9	6	$\stackrel{3}{3}$
Annual Grazing	Acre	35	15	11	-
March Feeders	Head	81	36	25	\bigcirc
Beef Cows	Head	9	4	3	
Operator Labor	Hour	1,897	1.475	1,241	
Hired Labora	Hour	703	57		
Annual Capitalb	Dol.	26,348	11,88?	7.995	
Total Capitalb	Dol.	32,522	14,579	9.795	
Rolling Loam Soil Situation					
Total Land	Acre	4,384	680	440	
Cotton	Acre	644	100	65	
Cotton Lint	Cut.	1,678	260	169	
Wheat	Acre	1,206	187	121	
Wheat	Bu.	19,095	2,963	1.918	
Sorghum Fallow	Acre	929	144	93	
Sorghum	Cinto	8,258	1,282	829	
Small Grain Hay	Acre	100	16	10	-
Annual Grazing	Acre	137	21	14	$\stackrel{+}{3}$
Reseeded Cropland	Acre	412	64	41	-80
March Feeders	Head	342	53	34	\bigcirc
Beef Cows	Head	71	11	7	\%
Operator Labor	Hour	1,989	1,699	1,361	
Hired Labora	Hour	6,357	57		
Annual Capitalb	Dol.	114.256	17,220	11.105	
Total Capital ${ }^{\text {b }}$	Dol.	135,190	20,004	12,890	

aUnskilled hired labor not included.
$b_{\text {Excludes }}$ Iand and building capital.

APPENDIX C, TABLE IV
COMPARISON OF ESTIMATED MINIMUM REQUIREMENTS FOR \$5,000 RETURN TO OPERATOR LABOR AND MANAGEMENT, 100 PERCENT COTTON ALLOTMENT, $\$ 26.40$ COTTON PRICE, BASE IABOR PRICE, EXCLUDING LIVES'OCK

FEEDER ENTERPRISE; SPECIFIED LAND PRICE LEVELS BY RESOURCE SITUATIONS, ROLLING PLAINS

OF SOUTHWESTERN OKLAHOMA

Item	Unit	Land Price Levels as Percent of Base		
		Base Less 50 Percent	Base	Base Plus 50 Percent
Clay Soil Situation				
Total Land	Acre	1,927		
Cotton	Acre	179		
Cotton Lint	Cut.	312		
Wheat	Acre	747		
Wheat	Bu 。	9.729		
Oats	Acre	125		
Oats	Bu.	2,509		
Oat Hay	Acre	8	5_{0}	${ }_{6}^{6}$
Annual Grazing	Acre	25	$\stackrel{9}{+8}$	+
Fallow	Acre	45	$\stackrel{3}{7}$	$\stackrel{3}{7}$
Idie Cropland	Acre	376	\%	¢
Beef Cows	Head	39	\%	\%
Operator Labor	Hour	1,581		
Hired Labore ${ }^{\text {a }}$	Hour	1,317		
Annual Capital ${ }^{\text {b }}$	Dol.	24,843		
Total Capital ${ }^{\text {b }}$	Dol.	27,741		
Sandy Soil Situation				
Total Land	Acre	676	3,504	
Cotton	Acre	162	841	
Cotton Lint	Cutb.	496	2,570	
Wheat	Acre	71	368	
Wheat	Bu.	993	5.150	
Sorghummallow	Acre	47	246	
Grain Sorghum	Cute	511	2,652	${ }_{6}$
Alfalfa	Acre	94	487	-
Small Grain Hay	Acre		2	-
Reseeded Cropland	Acre	153	794	\%
Beef Cows	Head	18	94	${ }_{3}$
Operating Labor	Hour	1.863	2,120	
Hired Labor a	Hour	210	5,567	
Annual Capital ${ }^{\text {b }}$	Dol.	14.355	76,858	
Total Capital ${ }^{\text {b }}$	Dol.	19,140	104,001	

APPENDIX C, TABLE IV (Continued)

Item	Unit	Land Price Levels as Percent of Base		
		Base Less 50 Percent	Base	Base Plus 50 Percent
Level Loam Soil Situation				
Total Land	Acre	480	1,488	
Cotton	Acre	74	231	
Cotion Lint	Cwt.	204	634	
Wheat	Acre	113	350	
Wheat	Bu.	2.403	7,458	
Sorghum-Fallow	Acre	96	298	
Grain Sorghum	Cwt.	1,121	3.480	5
Alfalfa	Acre	85	264	H
Small Grain Hay	Acre			$\stackrel{3}{7}$
Armual Grazing	Acre			-8
Reseeded Cropland	Acre	5	16	\bigcirc
Idle Cropland	Acre		5	${ }^{2}$
March Feeders	Head			
Beef Cows	Head	7	21	
Operator Labor	Hour	2,504	1,989	
Hired Labora	Hour	85	18,607	
Annual Capitap	Dol.	8,153	26,083	
Total Capital ${ }^{\text {b }}$	Dol.	10,463	33.922	
Rolling Loam Soil Situation				
Total Land	Acre	882		
Cotton	Acre	130		
Cotton Lint	Cwto	338		
Wheat	Acre	243		
Wheat	Bu 。	3,650		
Sorghumallow	Acre	172		
Grain Soxghum	Cwt.	18861		
Alfalfa	Acre	27	$\xrightarrow{\text { f }}$	垩
Small Grain Hay	Acre		\%	3
Annual Grazing	Acre		\%	\%
Reseedad Cropland	Acre	83		
March Feeders	Head		\%	\%
Befef Cows	Head	17		
Operator Labor	Hour	1.832		
Hired Labor ${ }^{\text {a }}$	Hour	206		
Annual Capital b	Dol.	13.876		
Total Capital ${ }^{\text {b }}$	Dol.	16,695		

anskilled hired labor not included.
$b_{\text {Excludes }}$ land and building capital.

APPENDIX C , TABLE V

COMPARISON OF ESTIMATED MINIMUM REQUIREMENTS FOR \$5,000 RETURN TO
OPERATOR LABOR AND MANAGEMENT, 100 PERCENT COTTON ALLOTMENT, $\$ 26.40$ COTTON PRICE, BASE LAND PRICE, INCLUDING ALL CROP AND LIVESTOCK ENTERPRISE ALTERNATIVES; SPECIFIED

HIRED LABOR PRICES BY RESOURCE SITUATIONS,
ROLLING PLAINS OF SOUTHWESTERN OKLAHOMA

Item	Unit	Skilled Hired Labor Prices Per Hour		
		\$1.00	\$1. 50	\$2.00
Clay Soil Situation				
Total Land	Acre	1.763	4.532	
Cotton	Acre	164	421	
Cotton Lint	Cwt.	285	733	
Wheat	Acre	683	1.756	
Wheat	Bu.	8,902	22,884	
Oats	Acre	+ 38	502	
Oats	Bu.	761	9,013	
Oat Hay	Acre	190	15%	
Annual Grazing	Acre	262	202	5
Fallow	Acre	41	105	+
Idie Cropland	Acre		397	$\stackrel{3}{3}$
August Feeders	Head	190		0
March Feeders	Head	191	504	,
Beef Cow	Head		43	
Operator Labor	Hour	1.847	1,858	
Hised Labora	Hour	3,530	68836	
Ammal Capiteab	Dol.	73.555	125.643	
Total capitaib	Dol.	83.678	144,222	
Sandy Soil Situation				
Total Land	Acre	1.962	1.512	4,267
Cotton	Acre	279	363	1,024
Cotton Lint	Cwt.	880	1,945	3.233
Wheat	Acre	122	159	448
Wheat	Bu。	1,708	2,222	6,273
Sorghum Failow	Acre	139	131	16%
Grain Sorghum	CWt.	1.494	1,410	2.170
Alfalfa	Aere	105	137	386
Small Grain Hay	Acre	51	49	129
Annual Grazing	Acre	66	81	178
Reseeded Cropland	Acre	147		
Idle Cropland	Acre		262	967
March Feeders	Head	139	170	4,44
Beef Cows	Head	19	14	41

APPENDIX C, TABLE V (Continued)

Item	Unit	Skilled Hired Labor Prices Per Hour		
		\$1.00	\$1. 50	\$2.00
Operator Labor	Hour	2,120	2,120	2.120
Hired Labor ${ }^{\text {a }}$	Hour	1.091	1.473	6,858
Annual Capital ${ }^{\text {b }}$	Dol.	41.719	48,023	131,256
Total Capital ${ }^{\text {b }}$	Dol.	51,085	58,407	163.153
Level Loam Soil Situation				
Total Land	Acre	918	1,039	1,315
Cotton	Acre	142	161	204
Cotton Lint	Cut.	392	443	560
Wheat	Acre	216	244	309
Wheat	Bu.	4,680	5.296	6,700
SorghumoFallow	Acre	143	162	224
Grain Sorghum	Cut.	1.660	1.878	2,632
Alfalfa	Acre	163	184	203
Small Grain Hay	Acre	20	22	28
Annual Grazing	Acre	35	38	45
Reseeded Cropland	Acre			
Idle Cropland	Acre			14
March Feeders	Head	81	92	116
Beef Cows	Head	9	11	14
Operator Labor	Hour	1,897	1,945	1.989
Hired Labor ${ }^{\text {a }}$	Hour	703	913	1,372
Annual Capitalb	Dol ${ }^{\text {a }}$	26.348	30.107	38,070
Total Capital ${ }^{\text {b }}$	Dol.	32.522	37,381	47.256
Rolling Loam Soil Situation				
Total Land	Acre	4,384		
Cotton	Acre	644		
Catton Lint	Cwt.	1,678		
Wheat	Acre	1,206		
Wheat	Bu .	19,095		-8
SorghumeFallow	Acre	- 929	豆	$\stackrel{3}{3}$
Grain Sorghum	Cwt.	8,258	合	\%
Alfalfa Small Grain Hay	Acre			0
Small Grain Hay	Acre	100	\%	\%
March Feeders	Head	342		
Beef Cows	Head	71		
Operator Labor	Hour	1,989		
Hired Labora	Hour	6,357		
Annual Capitalb	Dol.	114.256		
Total Capitalb	Dol.	135,190		

a Unskilied hired labor not included.
$b_{\text {Excludes }}$ land and building capital.

[^0]: ${ }^{2}$ According to the UoSo Census of Agriculture for 1952 the area contained approximately 15 percent of all land in farme in Okihome. 25 pero cent of the total cropland harvested, 65 percent of the cottors 25 pero cent of the wheat, and about 15 percent of the cattie and calves on farms.

[^1]: ${ }^{6}$ Ludwig M．Eisgruber and Erwin Reisch，＂A Note on the Application of Linear Programming by Agricultural Economics Departments of Land Grant Colleges＂（Lafayette，1960），Mimeograph．
 ${ }^{7}$ Ludwig Mo Eisgruber and Erwin Reisch，＂Bibliography of Linear Proo gramming and Its Application to Agricultural Economics Problems＂ （Lafayette，1960），Mimeograph．
 ${ }^{8}$ Eisgruber and Reisch，＂A Note on Linear Programming，＂ p 。3．
 FFor example，Regional Research Project S－42，＂An Economic Appraisal of Faming Adjustment Opportunities in the Southern Region to Meet Chang－ ing Conditions．＂This is a cooperative effort of state agricultural experiment stations in Alabama，Arkansas，Georgia，Kentucky，Louisiana， Mississippi，North Carolina，Oklahoma，South Carolina，Tennessee，Texas， and Virginia；the Farm Production Economics Division，Economic Research Service：and Cooperative State Research Service of the USDA．Other rew gions are conducting similar cooperative research projects．This study is a part of the continuing work in the Sm42 regional project．

[^2]: ${ }^{12}$ Papers and discussion of this conference are reported in Earl 0 . Heady et al ev. Agricultural Adjustment Problems in a Growing Economy (Ames, 1958).

 13John M. Brewster, "Analyzing Minimum Resource Requirements for Specified Income Levels" Farm Size and Output Research, Southern Cooperative Series Bulletin No. 56, June, 1958, pp. $95-104$.

 14 John M. Brewster, Farm Resources Needed for Specified Income Levels, Agricultural Information Bulletin No, 180, Agricultural Research Service, U. So Department of Agriculture, December, 1957.

 15 James H. White, James S. Plaxico, and William F, Lagrone, The Influence of Selected Restraints on Normative Supply Relationships for Dryland Crop Farms on Loam Soils, Southwestern Oklahoma, Okla. Agri. Exp. Sta. Tech. Bul. T-101, 1963.

 16 James Martin, William F. Lagrone, James S. Plaxico, and Larry J. Connor, Effect of Changes in Product Price Relationships on Farm Organization and Income on Clay Soil Farms, Southwestern Oklahoma, Oklahoma Agri. Exp. Sta, Bul. Bo621, 1964.

[^3]: 210f. Luther Tweeten, Eari Heady, and Leo Mayer, Farm Program Altero natives, CAED Report No. 18 (Ames, 1963).
 ${ }^{22}$ Luther Tweeten, "The Farm Firm in Agricultural Policy Research. ${ }^{33}$ Paper presented at the Workshop on Price and Income Policies, sponsored by the Agricultural Policy Institute, North Cerolina State University, Raleigh, April 21, 1965 .

[^4]: IFor detailed discussion of the linear programming technique and some extensions see Robert Dorfman Application of Linear Programning to the Theory of the Firm (Berkeley , 1951); George B. Dantidgo Linear Programming and Extensions (Princetor, N. Jo, 1963): and Earl O. Heady and Wilfred Candler, Linear Programming Methods (Ames, 1959).
 $2_{\text {Heady }}$ and Candier, po 2 。

[^5]: ${ }^{a}$ NoA．signifies not applicable for the minimization model．2

[^6]: 6_{U}. S. Department of Agriculture, Agricultural Research Service and Agricultural Marketing Service, Agricultural Prices and Cost Projections for Use in Making Benefit and Cost Analysis of Land and Water Resource Projections, U. S. Department of Agriculture, Agricultural Research Service and Agricultural Marketing Service (Wa shington, 1957), p. 4.

[^7]: ${ }^{5}$ Alfalfa is not considered a crop alternative in the clay soil situan tion. Thus in the clay situation cotton replaces wheat as the price of cotton is increased.

[^8]: 6_{A} stability range indicates the limits between which the coeffic cient, in this case cotton price, musti lie to maintain the optimality of the current program, ceteris paribus.

[^9]: $8_{\text {U. S. Department of Agriculture, Economic Research Service, Sta- }}$ tistics on Cotton and Related Data, 1925-1962, Statistical Bulletin 329 (Washington, 1962), pp. 1-3.
 ${ }^{9}$ To allow relating the regression equation to the income indifference curves developed for the representative Oklahoma farms, national farm price was related to the Oklahoma price where Oklahoma price is 88 percent of the national farm price.

[^10]: ${ }^{2} E_{O A}$ is an average elasticity defined as $\triangle O / \triangle A \cdot \bar{A} / O$ where (0) is output of cotton in cwt's. of lint; (A) is allotment as percent of base.

[^11]: 3 See Appendix B, Table I_{0}

[^12]: ${ }^{4}$ The Southwestern area as used here includes Texas, Oklahoma, and Kansas.
 ${ }^{5}$ U. S. Department of Agriculture, Economic Research Service, Statistics on Cotton and Related Data, 1925-1962, Statistical Bulletin 329 (Washington, 1963), pp. 3-5, and 1964 Supplement, p. 2.

[^13]: ${ }^{6}$ The term specialize as used does not imply the production of one commodity to the exclusion of all others, but implies that areas or regions generally grow one major or basic crop in conjunction with several other more minor field crops and related livestock enterprises. Well known examples are cotton in the Mississippi Delta, corn in the cornbelt, and wheat in the Great Plains.

[^14]: GTed Richard Nelson, "An Econometric Model of the Land Market Stressing Effects of Government Programs on Land Values" (unpub. Ph.D. thesis, Oklahoma State University, 1964) ; and Wo L. Gibson, Jro, Co Jo Arnold, and F. D. Aigner, The Marginal Value of Flue Cured Tobacco Allotments, Agricultural Experiment Station, Virginia Polytechnic Institute (Blacksburg, 1962). Technical Bulletin No. 156.

[^15]: $2_{\text {Base land prices for Clay, Sandy, Level Loam, and Rolling Loam }}$ Soils, respectively, are assumed to be $\$ 105, \$ 160, \$ 240$, and $\$ 170$ per acre.

[^16]: ${ }^{4}$ U. S. Department of Commerce, Bureau of the Census, U. So Census of Agriculture, 1959 pp。168m73.

[^17]: ${ }^{1}$ Qeoffrey S. Shepherd, Farm Policy: New Directions (Ames, 1964), p. 88. Shepherd discusses in considerable detail the problems that arise in determining the measure of farm income that is appropriate and the validity of various income measures to use in comparison with incomes in other sectors. Ibid., pp. 72-88.
 $2_{\text {Hathaway }}$ pp. 83-130.

[^18]: $6_{\text {Efficiency implies a goal of profit meximigetion through optimum }}$ enterprose organiwation. Further, it implies parity retarns to land and other capital investment. The $\$ 5,000$ return to operator labor and manage. ment is therefore assumed to rerlect "parity" returms to this resource.

[^19]: IThe seasonoi pathara wall as the oleas and grade differentasis are based on data from Jackson I, James and Jemes S Flasioc, Best Gattie Prioes Seasonal Movements and Price Differentials on the OkJhoma City Manke OkIahoma Agriculturai Reperwnent Stabion Builebim Ba486, Febraary, 1957

[^20]: ${ }^{\text {a }}$ Optimun orgæization identical for situation $P_{3} A_{0}$
 b° Optimum organization identical for situation P_{4} C.
 ${ }^{c}$ Includes small grain and Sudan grazing.

[^21]: ${ }^{a}$ Optinum organization identioal for situation $P_{4} B$.
 ${ }^{b}$ Optimum organization identical for situation $P_{4} D_{0}$
 ${ }^{\text {c }}$ Includes small grain and Sudan grazing.

