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PREFACE 

This dissertation deals with a certain class of subsets of 

real linear spaces. It is the purpose of this paper to give a 

status report, in an expository manner, on the work involving the 

convex kernel of star-shaped sets. The concept of the convex kernel 

has been involved in a recent flurry of activity by some of the 

leading students of convexity. 

The desired audience for this paper is the student of convexity 

or functional analysis with a minimum background of the material in 

Parts I and II of Valentine's book [10]. Several concepts used freely 

throughout this exposition with which the reader should be familiar 

are: linear space, convex set, hyperplane of support, convex cone, 

the notion of one point seeing another via a set, topological 

properties of sets such as interior, boundary, open, closed, bounded, 

compact and connected, and sub-spaces and flats. The only notation 

which might be new to the reader is for the convex kernel of a set S, 

denoted by ckS, 

Chapter I is concerned with the basic definitions of star

shapedness and of the convex kernel of a star-shaped set, a historical 

development of the progress concerning convex kernels, and a statement 

of the two basic problems of interest involving convex kernels. 

In Chapter II, the first problem, that of finding and 
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characterizing the convex kernel of·a given non .. convex set,. is 

investigated. All of the major results of attempts at a general 

solution of.the problem are given and explained with various examples. 

Although most of the progress on this problem has concerned sets in 

finite-dimensional Euclidean.space, .some mention is made of sets in 

certain infinite-dimensional spaces. 

The second problem, that of finding a non-convex set for which a 

given conv~x set is its convex kernel, is discussed in Chapter III. 

The work on a general solution of this problem has appeared in the 

·literature only since 1964, so some comparative analysis is made of 

the published results •. Work on this problem.has had the setting of 

both finite and infinite-dimensional linear spaces, so examples are 

given in all cases. 

Chapter IV concerns itself with some recent activity, .some yet 

to be published, in the study of convex kernels and with some unsolved 

problems which should be of interest to most students of convexity. 

It was the purpose of the author to delete various unnecessary 

details of the known .results involving convex kernels •. All results, 

as well as copied problems, are referenced and if a statement is not 

referenced, it is that of the author. 

Indebtedness is ackn.owledged to the National Science Foundation 
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further support through Secondary School Summer Fellowship No. 75098. 
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CHAPTER I 

INTRODUCTION 

In the study of mathematics, many questions of interest arise when 

certain desirable conditions are relaxed. If such a relaxation proves 

feasible, the new result is sometimes called a generalization. Several 

attempts have been made to generalize the concept of convexity in a 

linear space. One such modification of convexity is that of star-

.shapedness. A set is star-shaped with respect to.a point if the 

connecting segment of the given point and each point of the set belongs 

to the set. The set Sin Figure 1, below, is a non-convex set which is 

star-shaped. This set is star-shaped with respect to each point of the 

rectangular region with vertices A, B, C and D. 

Figure 1 

1 



The collection of points of a set with respect to which a set is 

star .. shaped is called the convex kernel of the set. The idea of the 

kernel, .which is necessarily a convex set if .it exists, or 

11Kerneigebeit" of a set was introduced by H. Brunn [1] in 1913. 

2 

This concept of the convex kernel of a set requires only the 

structure of a linear space, however, the more interesting questions 

arise and more solutions are available in the setting of a linear 

topological space. Up to the present, two types of problems are of 

interest concerning the convex kernel of a set: 1) given a non-convex 

set, find its convex kernel and 2) given a convex set, find a non-convex 

set for which the given set is its convex kernel. In the first problem, 

more.than just show the existence of the convex kernel, it is desirable 

to characterize it, i.e. give a set theoretic description of the kernel. 

The second problem is one of extending the $iven set, such as the 

rectangular region ABCD in Figure 1, to a new set such that the original 

set plays the role of the convex kernel. Observation of Figure 1 shows 

that a given set may be the kernel .of more than one non-,convex set. 

Concerning the first problem, Krasnoselrskii [6], in 1946, made 

the earliest major contribution in showing the existence of the convex 

kernel of certain sets in finite dimensional Minkowski space. An 

important tool in Krasnoseltskii's work was Hellyts theorem [3] which 

was discovered in 1923. For several years after Krasnoseltskii's ~ork, 

there was a lapse in the·activity involving the convex kernel and only 

recently, since 1964, has the literature contained articles in the area 

of star-shapedness and the convex kernel. 

Two writers, Valentine [10], [11], [12], and Rabkin [8], have 



recently characterized the·convex kernel of certain classes of non

convex sets not applicable to Krasnosel•skii•s original theorem. The 

extensions· made by Valentine and Robkin are concerned with the 

properties of the sets and.not extensions relative to the dimension of 

.the.space. 

All the contributions of Kr~snosel•skii, Valentine and Robkin 

have been.focused on finding or proving the existence of convex 

kernels. This work has been contrasted by the activity involved with 

the second situation mentioned heretofore, the so-called extension 

problem. All of the literature concerning the extension problem is 

very recent. Klee [4] and Post [7], .apparently similtaneously, have 

investigated the problems concerning the realization of a given convex 

set as the convex kernel of a non"".convex set. Klee.• s results are more 

general and include much of Post•s work as a special case. It is 

interesting to compare the papers of .Klee and Post since they are 

similar.in-spirit, but quite different in detail. The setting for 

Klee•s paper .[4] is that of a separable Banach space, while Post [7], 

pursuing a problem posed by L. Fejes Toth, works in one of the more 

connnon Banach spaces, E.2• An intuitive approach to the extension 

problem would put Post•s work first. 

3 



CHAPTER II 

EXISTENCE OF CONVEX KERNELS 

When confronted with the problem of finding a point of the convex 

kernel of a plane.set, the student of convexity quite often exhibits 

such a point by inspectio.n. Occasionally one can .find the entire convex 

kernel and can give a simple geometric proof that his assertions are 

correct. In this section of the paper, a systematic approach, with 

respect to the properties of sets, will be made to show that the convex 

kernel. of some sets exist. 

In any linear space, if a set is convex then the set is star.shaped 

with respect to each point, hence the set and its convex kernel are 

identical. Similarly, .if a point of a set can see every other point of 

the set via the given set, then the convex kernel is non-empty. 

However, any .other general statements concerning the existence of the 

kernel are impossible without some knowledge of certain properties of 

the set being consideied. 

The first class of sets to be considered will be those sets in E2 

which are bounded and closed, that is, compact sets, whose boundary is a 

simple ·Closed polygon. If such a set is not convex, then one of the 

vertices must be a point of local non-convexity, that is the inter

section of every neighborhood of the vertex and the set produces a 

non~convex set. For an example, see the star-shaped set in Figure 2, 
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Figure 2 

Figure.3 



in which it is seen-that the vertices x1, x2 , x3 , x4 and x5 are points 

of local non-convexity of the set. 

Another concept required before formulation of the known results 

concerning the kernel of such polygonal regions is that of an external 

ray of support. A closed ray is an.external ·ray of support to.!!!! if 

its end-point Q~longs to the boundary of the set and the ray does not 

intersect the set in any other point. An external ray of support to 

.. the interior of a set can intersect the boundary of the set. The 

closed ray with the same end-point as a given external ray of support 

and which is the reflection in the same line of the given-ray is 

called_the -complementary ray of the support.ray. ------
The best results concerning convex kernels of such sets are 

summarized by Valentine [12] with the following theorem: 

Theorem 1: Let S be a compact set inE2 whose boundary .is a 

simple closed polygon. Suppose that for each three or fewer vertices 

which are also po-ints of local non-convexity of S there exist 

corresponding eJ!.'.ternal rays of support to the interior of S whose 

complementary rays are concurrent and meet ins. Then these 

conditions are both necessary and. sufficient for the convex kernel of 

S to be non-empty. 

6 

_Again, considering theset"in figure 2, it is not difficult to.see 

that such rays_of external support as required in Theorem 1 exist and 

that.the set is star~shaped. In fact the set in F,igure .2 has as its 

convex kernel the pentagonal region with vertices xl' x2 , x3 , x4 and x5• 

The need for the boundary of the set being considered.in Theorem 1 to be 



a simple polygon is shown by the set in Figure 3. Since the only 

vertices which are. not points of locai convexity are x1 and x2, 

complementary rays of the required rays of external support meet along 

the segment x1x2 but the set is riot star-shaped; i.e. the set has an 

empty convex kernel. 

Theorem 1 can be proved as a corollary to a later result, however 

in a logical approach to a solution of the original problem, it seems 

natural to consider those sets with polygonal boundaries first. The 

obvious question would concern the extension of the first theorem to a 

space of dimension greater than two. Again, a partial solution exists 

in the so-called Krasnoseltskii type theorems (cf. Krasnosel 1 skii [6] 

and Rabkin [8]). 

One could think of several possibilities for extensions of 

Theorem 1 to E. Certainly the condition of external rays of support 
n 

is a strong one as is the condition that the boundary of the region 

considered be a simple polygon, that is, the boundary is contained in 

a finite number of hyperplanes. It should be noted that the rays of 

support were demanded only at the points of local non-convexity. A 

rather strong theorem which retains the need for the existence of the 

external rays of support but requires only that the boundary of the 

set not isolate any regions of its complement, as does the set bounded 

by the annulus in E2 , is given by Rabkin [8]. Actually, this theorem is 

also a corollary of a more general, but awkward, statement. 

Theorem 2: Suppose that Sis a compact set in E which is the 
n 

closure of a non-empty open set. Further suppose that for every n + 1 

7 

or fewer boundary points of S there exist corresponding rays of external 



support to S (not simply supporting the interior of S) whose 

complementary rays are concurrent and meet in S. Then the convex 

kernel of Sis non-empty. 

Obviously a set can have a non-empty kernel and not be compact. 

But, the converse of Theorem 2 concluding the existence and concurrency 

of the.complementary rays of support is false. This fact is verified 

by an example in E2 which is demonstrated by the set in Figure 4. 

8 

This set is compact and is the closure of a non-empty open set. It is 

also star-shaped with respect to x0 , yet the complementary rays of any 

of the external rays of support to Sat x do not intersect S. Hence 
0 

any collection of three boundary points which includes x does not 
0 

satisfy the hypothesis of Theorem 2. 

To see the need for each member of the class of sets applicable to 

Theorem 2 to have a non-empty interior, the set in Figure .5 is 

considered. It is found that set Sin Figure 5 is compact and possesses 

the property that for every three boundary points there exist external 

rays of support to the set whose complementary rays are concurrent and 

meet in the set. However, .the set has an empty interior and is not 

star ... shaped. This non.,.empty interior requirement is still not.strong 

enough as there exist compact sets which have non-empty interiors and 

satisfy the conditions required of the external rays of support in the 

hypothesis of Theorem 2, but the sets are not star-shaped. Hence the 

need for each set to.be the closure of a non-empty open set is seen. 

For such a set in E2 , see the set in Figure.6 which is composed of two 

· circles that are tangent externally,. a segment of their connnon tangent 

line and the region bounded by one of the circles. This set has the 
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empty set for a convex kernel, yet it satisfies all of the conditions 

of Theorem 2 except it is not the closure of an open set. 

The conditions in Theorem 2 are n9t necessary for the e.xistence of 

a convex kernel as evidenced by the example .in F.igure .4, which is star-

shaped _and does not satisfy the hypothesis of .the theor~m. To obtain 

conditions which are bqth necessary and sufficient for star•shapedness, 

the classes of sets are somewhat restricted. The best result in-the 

two dimensional case has been given by Valentine [ 12], whil_e the best 

result in then-dimensional case is still Krasnosel•skii•s [6] original 

theorem of 1946. 

Before investigating Valentine•s results, it will be helpful to 

consider two additional concepts. One concept is that of the external 

cone of support to a set at a point of the set. An external ·cone of 

support to.! set at.! point is simply the union of all external rays of 

support to the set which have a common end-point belonging to the 

boundary of theset. The second concept is that of a one-sided point 

of external support to the interior of-a set. If the cone of external 

support to the interior of.a set exists and is contained in a half-

space, the boundary point of the set, or the apex of the cone, ls 

called a one ... sided point of external support !e ~ in.terior. of the set. 

It.should be noted that in Theorem 2 the sets considered were not 

required to possess a connected interior. Obviously a star~shaped set 

must be connected, in fact, it is polygonally connected .with at most 

two se·gments required to connect two points, but its interior may not. 

have .this property as evidenced by the .set S in Figure 4. With the 

restriction added that the sets cons.idered have a '.connected interior, 



Valentine [12] produced the following_which concerns a rather large 

class of sets in E2 : 

Theorem 3: Suppose Sis a bounded set in E2 which is the closure 

of an open connected set. Then necessary and sufficient conqitions 

that S be star~shaped (has a non-empty convex kernel) are: 

1) Each point of local non-convexity has a non-empty 

cone of external support to the interior of s. 

2) Given three points of local non-convexity of S. 

which are also one-sided points of external 

support to the interior of S, there exist rays 

in the external cone at each point such that the 

corresponding complementary rays are concurrent 

and meet in S. 

11 

To see that both conditions of Theorem 3 are necessary, examples 

are readily available. In Figure 7, each point of local non-convexity 

has a non-empty cone of external support to the interior of S while in 

Figure 8 this is not the case, since a region of the complement of the 

set is isolated. If points of local non-convexity x1, x2 and x3 in the 

set S of F.igure 7 are considered, . then condition (2) of the theorem is 

not satisfied while the set in Figure 8 satisfies condition (2) 

vacuously. To see that the set Sin Figure 7 does not satisfy 

condition (2) of the theorem, the cones of external support to the 

set are illustrated by the restricting rays which are the broken lines. 

As mentioned previously, Theorem 1 is a-corollary of Theorem 3. 

The requirements of Theorem 1 included the feature of the sets having 
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a simple polygon as its boundary~ This fact allows for the existence of 

the cone of external support for each vertex of local non~convexity. 

Condition (2) of Theorem 3 is almost the same as the hypothesis of 

'l'heorem 1. 

All of the results previously stated have been proved by using 

Hellyrs theorem [3] which is rather astounding to the beginning student. 

That is, it seems strange that the following (Hellyrs Theorem) has 

anything to do with star-shapedness: "Let F be a family of compact 

convex sets in an-dimensional Minkowski space containing at least 

n + 1 members, then a necessary and sufficient condition that all 

members of F have a non-empty intersection is that every n + 1 members 

have.a point in common." 

The proof of Theorem 3 actually gives a method of finding the 

convex kernel of the set being considered. If a set satisfies the 

conditions in Theorem 3, then its convex kernel is the intersection 

of the convex hull of the set and the closed convex hull of the 

complementary cones of each point of local non-convexity. Although 

this intersection might appear otherwise, it is a subset of the set 

being considered. The need to intersect the convex hulls of the set 

and complementary cone of support is to satisfy the hypothesis of 

Hellyrs theorem. For example, in Figure 9 the points of local non

convexity of the set are x1, x2 , x3 and x4 while the intersection of 

their closed complementary cones and the convex hull of the set has as 

its boundary the pentagon with vertices x4 , x5 , x6 , x7 and x8 • Of 

course this procedure is relatively simple to use if the set of points 

of local non-convexity is finite and the cones of external support are 
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easily found. 

In proceeding to E, n ~ 2, first to be considered is an existence 
n 

theorem of Valentine [ 11]. This result .is ~ by-product of some results 

involving a study of polygonally connected sets. 

Theorem 4: Suppose Sis a closed connected set in E, which has a . n 

unique point of local non-convexity. Then Sis star-shaped with respect 

to this point. 

Figure 10 exhibits a set in E3 with the properties described in 

the hypothesis of Theorem 4. It happens that x is the only point of 
0. 

local non-convexity and the only point in the convex kernel. A 

question which might follow is, rrrs this unique point of local non-

.convexity always the only point in the kernel?" The.answer is negative. 

In Figure 11, the given set has a unique point of local non-convexity 

but the kernel is found to contain points other than the point p. It 

is easy to see that the converse of Theorem 4 does not hold~ for the 

set in Figure 12 is star-shaped but both p and q are not points of 

local convexity. 

As mentioned previously, any of the attempts to establish the 

existence of the convex kernel of a given set have utilized properties 

of the boundary of the set. A subset of the boundary which plays a 

very important role· in Krasnosel, skii' s theorem is the set of regular 

points of the set. Precisely, a boundary point p of~ set Sis a 

regular point of S if a hyperplane exists,.which contains the point p 

and also which supports the subset of S which can seep via S. 

In Figure·l3,.x1 ~Sa regular point of the given set with the 
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Figure 13 

(a) 
(b) 

Figure 14 



required hyperplane being the line tangent to the disk at x1• The 

boundary p~;i.nt x0 is not a regular point of the set since every 

hyperplane passing through x0 strictly separates at least two points 

which can see x via the set. 
0 

With this background, Krasnosel • skii • s theorem [ 6] can now be 

stated: 

.Theorem 5: Let S be a non-empty compact connected set in En. 

Suppose that each n.+ 1 regular points of Scan see at least one point 

of S via s. Then the convex kernel of Sis non-empty. 

Each collection of three regular points of the set in 

Figure 13 can see x via the set and x belongs to the kernel of the 
0 0 

set. In Figure 14, the set does not possess a non-empty kernel while 

14a exhibits two regular points which can see some connnon points. The 

need for all collections of three or fewer regular points to see a 

common.point is exemplified in 14b where the -subsets which see x and 
0 

x1 via the set are disjoint. 

The·requirement in Theorem 5 for the subcollections to.contain 

n + 1 points is necessitated by Helly•s theorem. It is easily seen 

18 

that a converse of Theorem 5 is true since every point of a star-shaped 

set can.see.the kernel via the set, however, as mentioned earlier, the 

set need not be compact. 

If a set satisfies the hypotheses of Theorem 5, its convex kernel 

can actually be characterized by the following theorem which is deduced 

from Valentine•s proof [10] of the theorem: 
.: cr,:_~'J · 



Theorem 6: If Sis a non .. empty compact connected set in En such 

that each collection of n + 1 regular points of S sees at least one 

point of S, then 

where y is a regular point of Sand Cy denotes the intersection of all 

closed half-spaces which contain y and support those points of S ·which 

can .see y via s. 

Although it is often quite easy to find the kernel of two.and 

three d~mensional sets, the formulation of a procedure-for arbitrary 

finite dimensional spaces is rather cumbersome. For any set which can 

be exhibited by a diagram, one often relies on intuition to find the 

convex kernel, however, Theorems 5 and 6 are actually being employed. 

Occasionally in arbitrary linear topological spaces, it can be 

shown.that a non.,.convex set is star-shaped. However, it appears that 

any astounding results, say an analogue to Krasnosel'skii's theorem, 

are not to be found. One slightly interesting generalh:ationfor 

closed sets is given by Valentine [10]: 

Theorem 7: Let S be a closed set in a linear topological space 

and suppose l is a compact subset of S of dimension n. If each set 

of n + 1 boundary points of Scan see at least one point of K via S, 

then Sis star-shaped. 

A general .converse to Theorem 7 does not exist. If the set S of 

the-theorem is star-shaped with respect to-each poirtt of a compact 

subset, then each boundary point can ce;.t~;inly :see it via S. However, 

a star.,.shaped set need not be star-shaped with respec.t to each compact 

19 
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subset. 

Although the work heretofore. in. this cilapter has been concerned 

with finite dimensional Euclidean·spaces, .it is sometimes possible to 

characterize the convex kernel of some sets in infinite dimensional 

spaces. The example which follows will demonstrate this iqea. 

set: 

Example 1: In the space of real sequences consider the following 

E = [ x = (c 1,c2;···) I ci = 0, i odd; or ci = O, i even; or 

Ci·= 0, i = 1, 2, ••• }• 

Both x = (1,0,0,•••) and y = (O,l,O,O,•••) belong to E, yet 

\x + \y = (\,\,O,O,···) does not belong to E. Hence Eis not convex. 

It happens that the.convex kernel of E contains exactly one point, .the 

origin,;. The kernel contains; since a;+ (1-a)x = (l~a)x for.all x 

in E and for Os as 1, in fact for all real a. Also for every z in E, 

z f ;, there exists a vector win E such that w cannot see·z via E. To 

demonstrate this fact, let z = (z 1,z2, ... ), then for some coordinate, 

zi 1= 0 and zi+l = O. Consider w = (wl'w2,···) in E such that 

wi+l = zi 1= O. This choice of wi+l forces wi to be.zero. Then 

\z + \w = (\z 1 + \wl'\z2 + \w2,···,\wi-l'\zi,\wi+l'• .. ) does not belong 

to E since \wi+l = \zi 1= O, i.e. the point \z + \w has two. successive 

non-zero coordinates. "ence the ~et E .is star-shap~d with r~spect to 

the origin and not with respect to any other point. 

J At. present, no general results are available con.earning the 

characterization.of the convex kernels of sets such as~ in Example 1. 



Below is an example in a function space of a non-convex set that 

has a convex kernel consisting of more than one point: 

Example 2: In the space of real functions defined on I= [0,1], 

let S = ( f I f(I) c I, f(O) = O, f continuous except at :?Ci e I, 

1 ~· i ~ N } • S is not convex since 

and b' x =:/= 1, 
g(x) = 

, x = 1, 
f(x) = t: x =:/= 1, 

x = l~ 

both belong to S, yet (\f + \g)(x) = x/2 for all x e I, which implies 

\f + \g ¢ S. The convex kernel of S, 

ckS = (f I f e S, af + (1-a)g e S for all g e S, 0 ~a~ 1}, 

is characterized as follows: 

Given f e S, a necessary and sufficient condition 

that f e ckS is that f is discontinuous at x = O. 

21 

The sufficiency of this characterization follows from the definition of 

ckS and from the fact that for any g e S, g(O) = O~ To verify the 

necessity off being dis~ontinuous at x = O, a contrary assumption 

allows for a choice of a function in S, namely, 

{
1-f(x))(x/c), 0 ~ x~ c, 

g(x) = 
1-f(x), c ~ x ~ 1, 

where f is continuous on [O,c] and f(x) ~%for all O ~ x ~ c, such 

that \f + \g ¢ S, a contradiction off e ckS. 



CHAPTER III 

CONVEX SETS AS CONVEX KERNELS OF NON-CONVEX SETS 

A situation of equal interest to that of characterizing the convex 

kernel of a given set concerns the realization of a given convex set as 

the kernel of a non-convex set. Problems of this type are the so .. called 

extension problems. 

If the convex kernel of a set exists, then clearly it is unique. 

However, the above·extension of the given convex set may not ,be unique. 

For example, in Figure 15, both non .. convex sets are extensions of the 

regions bounded by the squares ABCD and A'B'C'D'. Thus it is seen that 

in the case of the region with the square as its boundary there can 

exist several extensions. 

All sets do not admit extensions. This fact is illustrated by a 

sequence of plane sets in Figure 16. Convex set Kin 16a, which is an 

open triangular region and three points, x1, x2 and x3 of the interior 

of the distinct sides of the triangle, cannot. be realized as the convex 

kernel of a non-convex set. Under a contrary assumption, suppose 

p0 t cl(K) sees K via some set S, then a segment of the interior of one 

side of the triangle, e.g. x0 x3 in 16b, is contained in the convex 

kernel of S. This fact is verified in 16c since if p1 sees y1 via S, 

p2 sees Y2 via S and p3 sees x2 via S., then x0 x3 c ckS, If 

p0 e cl(K), as in the set in 16d, then p0 plays the role of x0 in 16b 

22 
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0 

(a) (b) 

(c) (d) 

Figure 16 
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and 16c. Hence K is properly contained in the convex kernel of S, i.e. 

Sis not an extension of K. 

In Figure 15 the sets under consideration were closed while in 

Figure 16, K is not closed. In general, the results concerning the 

problems of extension are based on having a closed set to play the 

role of the kernel. However, other results are available for large 

classes of plane sets and they will be investigated first. 

A concept required for discussion of the extension problems is 

that of the K-star of a convex set K. A set S, different from K, such 

that K = ckS, will be called a K-star; moreover, if cl(S) is different 

from cl(K), then Sis a proper K-star. If K f. S, K = ckS and cl(K) = 

cl(S), then Sis called an improper K-star. Consequently any K-star of 

a closed set K is proper since cl(K) is exactly K. The region in 

Figure 15 admits a proper K-star which is illustrated in both cases. 

In Figure 17, the open-square region in 17a has a K-star, namely the 

set in 17b, which is the union of Kand two of its boundary points, 

x0 and x1, but this K-star is improper. This is true since the closures 

of Sand Kare identical. 

Possibly the simplest of all convex sets, subsets of straight 

lines, would be a good begipning point for any development of the 

theory of extensions. Post [7] produced the following, seemingly 

obvious, result: 

Theorem 8: If K is a convex subset of a straight line Lin E2 , 

then a pr~per K-star exists if and only if K f L. 
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As seen in Figure· 18, if K 1= L, then K is the convex kernel of the 

union of Kand the complement of L. The closure of such a:·set is the 

whole plane·while the closure of K iS a closed.ray. Therefore K is the 

kernel of a proper K-star. 

In developing a proof of Theorem 8 some unexpected results 

concerning infinite strips in the plane and half..;spaces are observed. 

While verifying· that the existence of a proper K..,.s.tar is sufficient to 

show that K cannot be the line L, it is seen that a.convex, two ... way 

infinite .strip between .two parallel lines in E2, although it is the 

kernel of a non..,.convex set, has no proper K-star. 

The open two-way infinite strip Kin Figure 19a admits many 

K...stars, one of which is the set in. Figure 19b,.which is the union of 

Kand two rays of one bounding line. This set is not convex and each 

point of the set sees K via.the set. However, the set inl9b is not a 

proper K-star since its closure .is identical to the closure of K. In 

fact, as seen in Figure l 9c, if a point which is not in the closure o.f 

K can.see K_via some set, then a boundary point of K must also be.in 

the kernel of the set. 

Another consequence of the development of Theorem 8 is that a 

convex half-plane has no proper star extension and a convex half..,.plane 

which is not open admits no star extension at all. -For example, in 

Figure 20, if a point x0 can see each.point of the neither open nor 

closed convex half.,space H, .then another point x1 which sees ·H via some 

set S also.sees x0 via S. Hence .a.new convex set,.which is the convex 

hull of x0 and Hand properly contains H, contains the kernel of s. 

Therefore, no ,star extension-ex,titts for H. 
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An open half-plane can be extended, as seen in Figure 21. The set 

K in 2la is exactly the kernel of the set in 2lb which is the union of 

K and the set consisting of the two points XO and xl' but the closure of 

K and the closure of the extension are the same. Hence the K-star is 

improper. 

Therefore by consequences of Theorem 8, it can be verified as to 

whether or not those plane convex sets which are subsets of a line, 

two-way infinite strips or half-planes admit a star extension. Further

more, it can be determined if the extension is proper or improper. It 

is necessary that the setting for Theorem 8 be a plane since a line in 

E3 can be the convex kernel of a non-convex set. One such non-convex 

set is the union of two distinct planes which have the given line in 

connnon. To be discussed later in this chapter will be a theorem of 

Klee [4] which gives a similar result for certain Banach spaces that 

are more general than E2 . 

When a student, not necessarily a student of convexity, is asked 

for an example of a convex set, the reply is usually that of a closed 

disk or a slight distortion of such a region. Sets of this type are 

called strictly convex sets. Precisely, a strictly convex set is one 

for which each hyperplane of support has exactly one point in connnon 

with the boundary of the set~ In Figure 22~ the set Sin 22a is 

constructed to be strictly convex while in 22b any hyperplane of 

support at x0 does not have a one point intersection with the boundary 

of T. 

It happens that any star extension of a strictly convex set K is 

a proper K-star. This is a lennna of Post [7] and follows from the fact 
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that any set S, satisfying Kc: S c c l(K), is convex if K is strictly 

convex, hence an improper K.star would be .convex,.which is a 

contradiction of the definition of a .·K-star. For exa,mple, . the extension 

of an <>pen circular disk, if it exists, must include .points not in the . 

bounding circle, otherwise an extension·would only be .a new convex set 

which is contrary to the definition of a K.star. 

A nice class of convex sets is that collection in which a 

hyperplane of support for a given set not only intersects the·set in 

exactly one point but also the plane of su.pport is unique for that 

point. Simply stated, this class is those-strictly convex sets with 

each boundary point similar to the .boundary points of a circular.disk. 

A strictly convex set which is not in this class is given in Figure 23. 

Point x0 of the given convex set S does not have a unique lirte of 

support passing through it. 

With the above class of sets, the following result was obtained by 

Post [ 7]: 

Theorem 9: For the existence.of a star extension of a strictly 

convex set Kin E2 such that each boundary point of the set admits 

only one line·of support through it, ilt is necessary and sufficient 
/ 

that bd(K) contains an arc A such that A~K is at most countable. 

As is often the case, the existence Theorem 9·does not produce the 

method for a solution. For example, to find a non-convex set for which 

a given closed disk in the plane is its kernel is not an easy task. 

Post [7] proves that such a set must exist, but a geometric formulation 
. ;. · ... : ··~. 

is lacking. 
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Some corollaries to Theorem 9 are 1) that a strictly convex closed 

set K with boundary as.required in .the theorem has a proper K-,star 

while .2) · such a set which is non-empty and open does not a·dmit an 

extension. Simply stated, convex sets which are d.isk-like and contain 

an arc of their boundary can.be properly extended while sets similar to 

the open disk in E2 cannot be extended. It should be noted that these 

somewhat general results do not require the set which is being extended 

to be closed. However, there is no hope of a proper extension in the 

case of the open strictly convex set. 

Mentioned earlier was the fact that any general theorems concerning 

the extension problem evolved around closed sets. Even though such a 

set can be extended, Figure 15 reveals that the extension may not be 

unique. Sunnnarizing and making use of Theorem 9 and some of its 

corollaries, the most complete result for extension of a closed set 

in the plane is.also given by Post [7]: 

Theorem 10: A closed convex set in E2 can be realized as the 

convex kernel of a non-convex set if and only if it is neither a half

plane nor a two-way infinite strip. 

Although.the extension may not be proper, some open sets can be 

extended, This is illustrated in F.igure · 17. Also, sets which are 

neither open nor closed might be -extended. F-igures 24 and 25 both 

exhibit such sets. The set in 24b is. an improper. extension· of the 

· set in 24a which consists of the open triangular region and two 

boundary points, x1 and x2• It happens that the set in Figure.24a 

has no proper extension. In Fig~re 25_, . the s~t in part (a) which is· 
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the union of the open·triangular region and the boundary point x0 , 

can be properly extended. An extension is shown in 25b. This non-

convex set has as its convex kernel, the set Tin 25a. This fact may 

not be obvious at first but careful inspection of 25b and noting that 

point c does not belong to S produces the desired conclusion. 

So far in .this chapter, all of the accomplishme·nts mentioned have 

been in E2• Several of the examples given and.some of the results 

stated could have had the setting of En, n larger than two. Foi 

example, .a closed cube in E3 can be realized as the kernel Qf a non

convex·set. Such a set could be.formed by constructing closed cubes 

on.each face of the given cube. Since all of the spaces En, n = 

1,2, • • •, are complete normed linear spaces whi.ch possess a countable 

dense subset, Le. separable, the available generalization of the 

extension problem is somewhat natural in development. Klee [4] gave 

such a generalization. 

Theorem 11: If K is a closed convex set of a separable Banach 

space, the following three assertions are equivalent: 

a) K contains no hyperplane; 

b) K is the·convex kernel of a non-convex set; 

c) for all O < s < p, K is the convex kernel of.a closed 

non-convex set S, such that Ks c Sc KP' where 

K. s and K are open parallel bodies of K. 
p . 

If the space of Theorem 11 is E2, then parts (a) and (b) of the 

· theorem are·the hypothesis and conclusion of Theorem 10. · This 

equivalence is realized s.ince the closed set K could not be a half-
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plane nor could it contain a two ... way infinite,strip without containing 

a hyperplane, which is a line in this case. Hence the statement that 

Theorem 11 is a generalization of Theorem 10 follows. This new result, 

Theorem 11, however, is not a generalization of Theorem 9 concerning 

strictly convex sets. To satisfy the hypothesis of Theorem 9, the set 

to be extended need not be . closed, therefore Theorem 1.1 is not 

applicable. 

Examples of sets in two and three dimensional Euclidean space to 

illustrate the corresponding forms of Theorem 11 have been given 

throughout this chapter. Examples to verify the theorem•s assertions 

in infinite dimensional $paces can also be found. The example which 

follows gives an extension for a one ... dimensional flat in an infinite 

dimensional space, however, the procedure of extension is the same for 

any finite ... dimensional flat. 

Example 3: In the space of real sequences, £ 2 , which is a 

separable Banach space, .consider the set 

The set is convex and closed and contains no hyperplane since ,it has 

co;,.dimension greater than one. Hence.by the authority of Tqeorem 11, 

there exists a non ... convex set S such that K = ckS. One such.set can 

be·defined by 

S = {x I c2n = 0 or c2n+l = O, n = 1, 2, or c - 0, n = 1, 2 , • • • J • n 

This set is not convex since x = (1,1,0,0,•••) and y = (1,0,1,0,0,•••) 

belong to S, but \x + \y = (l,\,\,O,O,·•·) does not belong to S. To 
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see that K is a subset of ckS, consider x = (c,O,O,···) in Kand 

y = (d1,d2,•q) in S. Then 0-c;.i)x + 0ty = ((l-0t)c + 0td1,0td2,0td3,···) 

belongs to S for all 0t such that O ~ 0t ~ 1 since di= 0 implies 0tdi = 0 

for any i ~ 1, 2, •••. To complete .the·verification that K = ckS, 

co.nsider any x = (c 1,c2,···) in S'\.K. Since.x does not belong to K, 

there exists an i ~ 2 such that cit O. Choose y = (d1,d2,···) in S 

such that di+l = ci, which forces di= O, then \x + \y has two 

successive non-zero coordinates, neither being the first coordinate. 

Hence \x + \y ¢Sand x ¢ ckS. Therefore S'\.K and ckS .are disjoint and 

K = ckS. 

As mentioned prior to the example, the technique used in Example 3 

for the extension of a one-dimensional flat can be used to find.a K

star for any finite-dimensional flat. This fact is emphasized to 

contrast the works of Post [7] and Klee [4] concerning extensions ·Of 

convex-sets. In the setting of Post's paper, any finite-dimensional 

flat did not admit a star-extension, whereas the.setting of Klee's 

paper does-allow such an extension. 

Although Klee's theorem, Theorem 11, is an existence-type theorem, 

it does give·some.information about the.nature of the possible 

extensions. This partial description is in part (c) of the theorem 

and.says that if an extension of a set exists, then there is at 

least one K-star between any two open parallel bodies of a set K. 

However, for certain norms, a parallel set is not always meaningfully 

characterized. 



CHAPTER IV 

RECENT ACTIVITY AND SOME .INTERESTING 

UNSOLVED PROBLEMS 

In Chapter I, it was stated that the basic problems of interest 

concerning convex kernels were 1) given a non-convex set, find its 

kernel and 2) given a convex set, find a non-convex.set for which the 

given set is its kernel. Chapters II and III were devoted to various 

attempts to.answer these questions in general. Throughout those 

chapters certain specific problems which might be of interest were 

mentioned in passing. 

Although the basic problems remain in a general setting, several 

specific interesting situations have arisen·while g~neral solutions 

were being attempted. For example,.in Chapter II several theorems were 

stated which involved the existence of a convex kernel for a given set. 

Suppose the restriction is added that the kernel have a certain 

dimension, .then certainly a much stronger hypothesis could be expected 

if the theorems were to be true. Consequently, a more general problem 

is at hand. 

All the results concerning the extension problem of Chapter III 

were-in tqe·setting of a separable.Banach space. The fact that the 

space was separable was very important in .the .work of both Klee [4] and 

Post [7]. As of the present, a. ~·t~o~ge',t' result, deleting the condition 

of separability from the hypothesis, has not beenpublished. Hence 
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another case of a particular problem which is an out-growth of one of 

theoriginal questions, that of extension. 
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Since much of the activity involving the convex kernel has been 

relatively recent, a current collection of unsolved or recently solved 

problems is lacking. Valentine [10] provides some problems in this 

area, but his collection is dominated by questions concerning star

shapedness relative to spherical surfaces and by questions about 

Helly-type theorems. 

Concerning the existence.of the convex kernel of a given set the 

most general problem is given first: 

Problem 1: Let S be a. set in a linear ·Space L (a· linear 

topological space if a topology is required). Find necessary and 

sufficient conditions for the existence of K ~ ckS and for the 

characterization of K. 

Of course, the solution of Problem 1 is ideal and almost the 

entirety of Chapter II was devoted to partial solutions of this 

problem. All of. the published partial solutions have had the setting 

of a finite-dimensional space. Various problems could be stated with 

the setting of a,particular space, such.as a Banach space. 

A problem of Valentine [10] which has received considerable 

.attention recently is: 

Problem 2: Let S be a set in a linear space L. Determine 

necessary and sufficient conditions that the convex kernel of S has 

dimension k. In particular, determtne this fork= 0 so that S has a 

one ·point kernel. 



All of the known results concerning Problem 2 have been for. the 

particular case where the kernel was to be a singleton set. One 

partial solution (which is incorrect). in the current literature was 

given by Hare and Kenelly [2]. Their result is sunnnarized with the 

following definition and theorem: Definition: A set Sin En, 

n ~ 2, has property kn if and only if given the set, 
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(x1, x2 , ···, xk+lJ, of affinely independent points (2 ~ks n), there 

exists a.upique point p e S such that xip c S, i = 1, 2, ···, k+l. 

Theorem: ~ compact set Sc En has a one point kernel if and only if S 

has property kn, n ~ 2. 

The above theorem is false since it is not necessary for the set S 

to have property kn in order for it to possess a one point kernel. 

For a counterexample, see the set in Figure 4. This set has a one 

point kernel yet it lacks property k2 since many collections of three 

affinely independent points can see arbitrarily many points of the set. 

From the results of Tidmore [9], it is reasonable to believe that the 

sufficiency portion of the theorem of Hare and Kenelly is correct. 

Tidmore [9] produced a more general sufficient condition for the 

existence of a one point kernel than was suggested by Valentine and 

supposedly given by Hare and Kenelly [2]. This result is as follows: 

Theorem: Consider a set Sin a linear space such that the dimension 

of Sis larger than one. If for each set of k affinely independent 

points (k = 3, 4), there exists a unique point x0 such that 

x0 xi c S, 1 ~ i ~ k, then S has a one point kernel. 

From Figure 4, it is easy to see that tlte star".'like condition in 
· ... : 

the hypothesis of Tidmore•s result is not necessary since each set of 
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three affinely independent points can see more· than ·one point vi,a the 

set, but st.ill the set has a one point convex kernel •. Although Tidmore 

does not have necessary conditions for the convex kernel to have 

dimension zero, it is of particular importance that he required neither 

the ·condition of cQmpactness nor connectedness on the set S .in his 

sufficient condition • 

. A tool; used·i,n the-study of convexity is tl:tat of decomposition of 

a-set into a certain.class of.its subsets. One seemingly natural 

collection-of subsets ofa non-convex-set which is often.used is the 

collection of convex: s.ubsets of the given. set. ~uch of this paper 

has. concerned itself with characterhing the convex kernel of a 

star-shaped set by one of several methods. It might be possibie to 

describe-the·convex kernel of a non-convex-set in terms of the convex 

:subsets of the non-convex set. The following problem, an adaptation 

of a Valentine [lO]_problem, is interesting. 

, Problem 3: Characterize the convex kernels of those .star~shaped 

.sets S ·in L, a linear topological space, in ,_terms of the maximal convex 

:subsets of S. 

Concerning the-problem of extension-of convex.sets to be convex 

kernels of non-convex sets, seve~al interesting unsolved ·problems 

exist. Analogous to Problem 1, .the following problem is the .most 

general of the extension problems: 

Problem 4: Let K be.a closed convex·set in a ~inear-topological 

space L. F-ind minimal sufficient conditions. such that K admits a 

K~star. 
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As stated in Chapter III, the most complete solution of Problem 4 

is given in Theorem 11 by Klee [4]. By restricting the setting to a 

separable Banach space, Klee was able to give a necessary and suffi-

cient condition that a closed set K admits a K-star. 

Two special cases of Problem 4, which, ,if solved, might lead to a 

solution of the general problem, are also given by Klee [4]: 

Problem 5: Find necessary and sufficient conditions that the 

unit ball K of a non-separable inner: product· space admits a: }.( .. star·. 

Problem 6: Find necessary and sufficient conditions for K, a 

closed and bounded convex set which has no supporting hyperplane, 

in a separable incomplete inner product space to admit a K-star. 

Before Problem 6·could·be attacked, it might be ·of interest to 

know whether or not a closed and bounded set with no supporting 

hyperplanes existed. Several years prior to.proposing Problem 6, 

Klee. [5] ,gave the following example of a set which satisfies the 

requirements of the set Kin the problem: 

Example 4: Consider the linear transformations T of i 2 into 

itself such that if x = (c 1 ,c2, ••• ) then T(x) = (41 ,d2,···) with 

di = 2-ici, i = 1, 2, • • •. Let C = (x I UxH ~ 1) and 

L = (x r 00 i 2 
~ (2 ci) <oo}. 

2 
If Mis a dense linear subspace oft such 

i=l 

that LUM spans the space, then T(C ('\ M) is. a closed and bounde.d 

. convex set which has no points of support. The verification of this 

example .is rather involved and will not be given. The details are 



supplied by Klee [5]. 

Gerta inly in function spaces as well as E.uclidean spaces, the 

concept of the x.star, i.e. those points of a set.which can see x via 

the set, has yet to be,exploited. This concept seems to have .a place 

in both the .problem of existence of convex kernels and the.problem of 

extension of convex-sets. 
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It may be .that more tools are needed before attacking the problems 

of generalization mentioned in this chapter. Possibly the equipment 

needed to:solve.these problems is available but the students of 

convexity are unaware of its existence. After all, it was more than 

:twenty years after the.publication of Helly's theorem before 

· Krasnosel r skii published his results and almost another twenty years 

before the recent flurry of activity involving the-convex kernel. 
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