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PREFACE -

This dissertation deals with a certain class of subsets of
real linear spaces. It is the purpose of this paper to give a
status report, in an expository manner, on the work involving the
convex kernel of star-shaped sets. The concept of the éopvex kernel
has been involved in a recent flurry of activity by some of thg
leading students of convexity.

The desired audience for this paper is the student of convexity
or functional analysis with a minimum background of the materiél in
Parts I and II of Valentine's book [10]. Several concepts used freely
throughout this exposition with which the:reader should be familiar
are: linear space, convex set, hyperplane ofbsupport, convex cone,
the notion of one point seeing another via a set; tépological
properties of sets such as interior, boundary, open, ciosed, bounded,
compact and connected, and sub-spaces and flats. The only notation
which might be new to the‘reader is for the convex kernel of a set S,
denoted by ckS.

Chapter I is concerned with the basic definitions of star-
shapedness and of the convex kernel of a star-shaped set, a historical
development of the progress concerning convex kernels, and a statement
of the two basic problems of interest involving convex kernels.

In Chapter II, the first problem, that of finding and
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characterizing the convex kernel of a given non-convex set, is
investigated. All of the major results of attempts.atba general
solution of the problem are given and explained with various exampies.
Although most of the progress on this problém has concerned sets in
finite-dimensional Euclidean space, some mention is made of sets in
certain infinite-dimensional spaces.

The second problem, that of finding a non-convex set for which a

given cohvgx set is its convex kernel, is discussed in Chapter III.
The work on a general solution of this problem has appeared in the
literature only since 1964, so some éomparative'analysis is made of
the published results. Work on this problem has had the setting of
both finite and infinite-dimensional linear spaces, so examples are
given in all cases.

Chapter IV concerns itself with some recent activity, some yet
to be published, in the study of convex kernels and with some unsolved
problems which should be of interest to most students éf convexity.

It was the purpose of the authorbto delete various unnecessary
details of the known_resﬁlts involving convex kernels. All results,
as well as copied prbblems, are referenced and if a statement is not
referenced, it is that of»the author.
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CHAPTER 1
INTRODUCTION

In the study of mathematics, many questions of interest arise when
certain desirable conditions are relaxed. If such a relaxation proves
feasible, the new result is sometimes called a generalization. Several
attempts have been made to generalize the concept of convexity in a
linear space. One such modification of convexify is that of star-
shapedness. A set is star-shaped with respect to.a point if the
connecting segment of the given point and each point of the set belongs
to the set. The set S in Figure 1, below, is a non-convex set which is
star-shaped. This set is star-shaped with respect to each point of the

rectangular region with vertices A, B, C and D.
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The collection of points of a set with respect to which a set is

star-shaped is called the convex kernel of the set. The idea of the

kernel, which is_necessarily a convex set if it exists, or
"Kerneigebeit" of a set was introducea by H; Brunn [ 1] in 1913.

This concept of the convex kernel of a set requires only the
structure of a linear space, however, the more interesting questions
arise and more solutions'aré avaiiable in the setting of a linear
topological space. Up to the present; two types of problems are of
interest concerning the convex kernel of a set: 1) given a non-convex
set, find ité-convex kernel and 2) given a convex set, find a non-convex
set for which the given set is its convex kernel. 1In thé first problem,
more than just show the existence of the -convex kernel, it is desirable
to characterize it, i.e. give a set theoretic description of the kernel.
The second prbblem is one of extending the given set, such as the
recténgular region ABCD in Figure 1, to a'new set such that the original
set plays the role of the convex kernei. Observation of Figure 1 shows
that a given set may be the kernel of more than one non-convex set.

Concerning the first,problem, Krasﬁosel'skii [6], in 1946, made
the earliest major contribution in showing the existence of the convex
kernel of certain sets in finite dimensional Minkowski space. An
important tool in Krasnosel'skii's work was Helly's theorem [3] which
was discovered in 1923. For'severél years after Krasnosel'skii's work,
there was a lapse in the activity involving the convex kernel and only
recently, since 1964, has the literature contained articles in the area
of star-shapedness and the convex kernel.

Two writers, Valentine [10], [11], [12], and Robkin [8], have



recently characterized thé convex kernel of certain classes of non-
convexvsets not applicable to Krasnosel!skii's original theorem. The
extensions made by Valentine and Robkin are concerned with the
froperties of the sets and not extensions relative .to the diménsion of
the space.

All the contributions of Krasnosel!skii, Valentine and Robkin
have been focused on finding or proving the'existence of convex
kernels. This work has been contrasted.by the activity involved with
'the,second situation mentioned heretofore, the so-called extension
problem. All of the literature concerning the extensibn problem is
very recent. Klee (4] and>Post [7], apparently similtaneously, have
investigated the pfoblems concerning the realization of a given conQex
set.és the convex kernel of a non-convex set. Klee's results are ﬁore
general and include much of Post's work as a special case. It is
interesting to comparé the papers of Klee and Post since they are
similar. in spirit, but quite different in detail. The setting for
Klee's paper [ 4] is that of a separable Banach space, while Pos£ (77,
pursuing a problem posed by L. Fejes Toth, works in one of the more
common Banach spaces, E2. An intuitive approach to the extension

problem would put Post!s work first.



CHAPTER 1I
EXISTENCE OF CONVEX KERNELS

When confronted with the ﬁroblem of finding a point of the convex
kernel of a plane .set, the student of convexity quite offen exhibits
such a point by inspection. Occasionally one can find the entire convex
kernel and cén give a simple geometric proof that his assertions are
correct. In this section of the paper, a systematic approach, with
respect to the properties of sets, will be made to show that the convex
kernel of some sets exist.

In any linear space, if a set is convex then the set is star-shaped
with respect to each point, hence the set and its convex kernel are
identical. Similarly, if a point of a set can see every other point of
the set via the given set, then the convex kernel is non-empty.
However, any .other general statements concerning the existence of the
kernel are'impossible without some knowledge of certain properties of
the set being considered. |

The first class of sets to be considered will be those sets in E2>
which are bounded and closed, that is, compact sets, whose boundary is a
simple closed polygon. 1If such a set is not convex, then one of the

vertices must be a point of local non-convexity, that is the inter-

section of every neighborhood of the vertex and the set produces a

non-convex set. For an example, see the star-shaped set in Figure 2,






in which it is seen:that the vertices X5 Xgs X35 X, and Xg are points
of local non-convexity of thé set.

Another concept required before formulation of the known results
concerning the kernel of such polygonal regions is that of an external

ray of support. A closed ray is an external ray EE support to a set if

its end-point belongs to the boundary of the set énd the ray does not
intersect the set in any other point. An external ray of support to
_the intérior of a set cah intersect the boundary of the set.. The

closed ray with the same end-point as a given external ray of support

and which is the reflection in the same line of the given ray is

called the complementary ray of the support ray.
The best results concerning convex kernels of such sets are

summarized by Valentine [12] with the following theorem:

Theorem 1: Let S be a compact set in E, whose boundary.is a
simple closed polygon. Supposé that for each three or fewer veftices
‘which. are also points of local non-convexity of S there exist
corresponding externél rays of support to the interior of S whose
complementary rays are concurrent and ﬁeet in S. Theﬁ these
conditions are both necessary and sufficient for the convex kernel of

S to be non-empty.

Agéin, considering the set in Figure 2, it i$ not difficult to see
that such rays of external support as required in Theorem 1 exist and
that the set is star-shaped. 1In fagt fhe set in Figure 2 has as ifs
convex kernel the pentagonal region with vertices xl,Ax2,1x3, X, and X

The need for the boundary of the set being considered in Theorem 1 to be



a simple polygon is shown By the set in Figure 5. Since the only
vertices which are not points of local cdnvexity are x1 and x2,
complementary rays of the required rays of external support meet along
‘the segment xlxé but the set is not star-shaped, i.e. the set has an
empty convex kernel.

Theorem 1 can be proved as a corollary to a later reSult, however
in a logical approach to.a solution of the oeriginal pfoblem,vit seems
natural to consider those sets with polygonal boundaries first. The
obvious question ﬁould concefn the extension of the first theorem to .a
space of dimension greater than two. Again, a partial solution exists
in:the so-called Krasnosel'skii type theorem§ (cf. Krasnosel'skii [6]
and Robkin [8]).

One could think of several possibilities for extensions of
Theorem 1 to En. Certainly the cdndition of external rays of suppo;t
is a strong one as is the condition that the boundary of the region
considered be a simple polygon, that is, the boundary is contained ip
a finite number of hyperplanes. It should be noted that the rays of
support were demanded only at the points of local non-convexity. A
rather strong theorem whiéh.retains_the need for the existence of the
external rays of support but requires only that the boundary of the
set not isolate any regions of its complement, -as does the set bounded

by the annulus in E is given by Robkin [8]. Actually, this theorem is

2,
also a corollary of a more general, but awkward, statement.
Theorem 2: -Suppose that S is a compact set in En'which is the

closure of a non-empty open set. Further suppose that for every n + 1

or fewer boundary points of S there exist corresponding rays of external



support to S (not simply supporting the interior of S) whose
complementary rays are concurrent and meet in S. Then the convex

kernel of S is non-empty;

Obviously a set can have a non-empty kernel and not be compact.
But, the converse of Theorem 2 concluding the existence and concurrency
of the complementary rays'of support is false. This fact is verified

by an example in E, which is demonstrated by the set in Figure 4.

2
This set is compact and is the closure of a non-empty open set. It is
also star-shaped with respect to X, yet the complementary rays of any
of the external rays of support to S at x; do not intersect S. Hence
any cbilection of three boundary points which includes X does not
satisfy ‘the hypothesis of Theorem 2.

‘'To see the need for each member of the class of sets applicable to
Theorem 2 to have a non-empty interior, the set in Figure 5 is
considered. It is found that set S in Figufe 5 is compact and possesses
the property that for every three boundary points there exist external
rays of support to the set whose complementary rays are concurrent and
meet in the set. However, the set haé an empty interior and is not
star-shaped. This non-empty interior requirement is still not strong
enough és»there exist compact sets which have non-empty interiors and
satisfy the conditions required of the external rays of support in the
hypothesis of Theorem 2, but the sets are not star-shaped. Hence the
need for each set to be the closure of a non-empty open set is seen.

For such a set in E see the set in Figure 6 which is composed of two

2,

circles that are tangent externally, a segment of their common tangent

line and the region bounded by one of the circles. This set has the
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empty set for a convex kernel, yet it satisfies all of the conditions
of Theorem 2 except it is not the closure of an open set.

The conditions in Theorem 2 are not necessary for the existence of
a convex kernel as evidenced by the example:in Figure 4, which is star-
shaped and does not satisfy the hypothesis of the theorem. To obtain
conditions which are both neceséary and sufficient for star-shapedness,
the classes of sets are somewhat-restrictéd. The best: .result in-the
two dimensional case has been given by Valentine [12], while the best
result in the n-dimensional case is still Krasnosel'skii's [6] original
theorem of 1946. |

Before investigating Valentine's results, it will be helpful to
consider two additional concepts. One concept is tﬁat of the external

cone of support to a set at a point of the set. An external cone of

support to a set at a point is simply the union of all external.rays of
support to the set which have a comﬁon end-point belonging to the
boundary of the set. The second concept is that of a one-sided point
of external support to the interior of a set. If the . cone of external
support to the interior of a set exists and is contained in a half-
space, the boundary point of the set, or the apex of the cone, is

called a one-sided point of external support to the interior of the set.

It should be noted that in Theorem 2 the sets considered were not
required to possess a cﬁnnected interior. bbviously a star-shaped set
must be connected, in fact, it is polygonally_connected with at most
two segments required to connect two points, but its interior may not
have -this property as evidenced by the set S in Figure 4. With the

restriction added that the sets considered have a ‘connected interior,
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Valentine [ 12] produced the following which concerns a rather large

class of sets in E2:

Theorem 3: Suppose S is a bounded set in E2-which is the closure
of an open connected set. Then necessary and sufficient conditions
that S be star-shaped (has a non-empty convex kernel) are:

1) Each point of local non-convexity has a non-empty

cone of external support to the interior of S.

2) Given three points of local non-convexity of S

which are also one-sided points of external
support to the interior of S, there exist rays
in the external cone at each point such that the
corresponding complementary rays are concurrent

and meet in S.

To see that both conditions of Theorem 3 are necessary, examples
are readily available. In Figure 7, each point of local non-convexity
has a non-empty cone of external support to the interior of S while in
Figure 8 this is not the case, since a region of the complement of the

%X, and x, in the

1’ 72 3

set is isolated. If points of local non-convexity x
set S of Figure 7 are-consi&ered, then condition (2) of the theorem is
not satisfied while the set in Figure 8 satisfies condition (2)
vacuously. To .see that the set S in Figure 7 does not satisfy
"condition (2) of the theorem, the cones of external support to the

set are illustrated by the restricting rays which are the bréken lines.

As mentioned previously, Theorem 1 is a corollary of Theorem 3.

The requirements of Theorem 1 included the feature of the sets having
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a simple polygon as its boundary. This fact allows for the existence of
the cone of external support for each vertex of local non-convexity.
Condition (2) of Theorem 3 is almost the same as the hypothesis of
Theorem 1.

All of the results previously stated have been proved by using
Helly's theorem [3] which is rather astounding ﬁo the beginning student.
That is, it seems strange that the following (Helly's Theorem) has
anything to do with star-shapedness: 'Let F be a family of compact
convex sets in a n-dimensional Minkowski space containing at least
n + 1 members, then a necessary and sufficient conditioen that all
members of F have a non-empty intersection is that every n + 1 members
have a point in common.™"

The proof of Theorem 3 actually gives a method of finding the
convex kernel of the set being considered. If a set satisfies the
conditions in Theorem 3, then its convex kernel is the interéectién
of the convex hull of the set and the closed convex hull of the
complementary cones of each point of local non-convexity. Although
this intersection might appear otherwise, it is a subset of the set
being considered. The need to intersect the convex hulls of ‘the set
and complementary cone of support is to satisfy the hypothesis of
Helly's theorem. For example, in Figure 9 the points of local non-

convexity of the set are Xys X9, Xg and X, while the intersection of

their closed complementary cones and the convex hull of the set has as

its boundary the pentagon with vertices X9 Xgs Xgs Xg and Xge of
-course this procedure is relatively simple to use if the set of points

of local non-convexity is finite and the cones of external support are
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easily found.
In proceeding to En’ n = 2, first to be considered is an existence
theorem of Valentine [11]. This result is a by-product of some results

involving a study of polygonally connected sets..

Theorem 4: Suppose S is a closed connected set in En, which has a
unique point of local non-convexity. Then S is star-shaped with respect

to this point.

Figure 10 exhibits a set in E_ with the properties described in

3
the hypothesis of Théorem 4. 1t happens that X is the only point of
local non-convexity and the only point in the convex kernel. A
question which might follow is, "Is this unique point of local.non-
convexity always the only point in the kernel?" The answer is negative.
In Figure 11, the given set has a unique .point of local non-gonvexity
but the kernel is found to contain points other than the point p. It
is easy to see that the converse of Theorem 4 dbes not hold, for the
set in Figure 12 is star-shaped but both p and q are not points of
locél convexity.

As mentioned previously, any of the attempts to establish the
existence of the coﬁvex kernel of a given set have utilized properties
of the boundary of the set. A subset of the'boundary which plays a
very impoftant role in Krasnosel!skii's theorem is the set of regular

points of the set. Precisely, a boundary point p of a set S is a

regular point of S if a hyperplane exists, which contains the point p
and also which supports the subset of S which can see p via S.

In Figure 13, X is a regﬁlar-point of the given set with the
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Figure 13

Figure 14
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required hyperplane being-the'line tangent to the disk at X The

boundary point X is not a regular point of the set since every
hyperplane passing through X, s;rictly separates atvleast two . points
which can see X via the set.

With this background, Krasnosel'skii's theorem [ 6] can now be

stated:

.Theorem 5: Let S be a non-empty compact connected set in E_.
Suppose that each n + 1 regular points of S can see at least one point

of S via S. Then the convex kernel of S is non-empty.

Each collection of three regular points of the set in
Figure 13 can see x via the set and X, belongs to the kernel of the
set. In Figure 14, the set does not possess a non-empty kernel while
l4a exhibits two regular pdintS'which can see some common poiﬁts; The
need for all collections of three or fewer regular points to see a

common point is exemplified in 14b where the subsets which see X, and

xi via the set are disjoint.
The requiremeht in Theorem 5 for the subcollections to.coentain
n + 1 points is necessitated by Helly's theorem. It is easily seen
‘that a converse of Theorem 5 is true siﬁce every point of a star-shaped
set can see the kernel via the set, however, as mentioned earlier, the
sef need not be compact.
If a set satisfies the hypotheses of Theorem 5, its convex kernel
can éctually be c¢characterized by the following theorem which is deduced

from Valentine's proof [ 10] of tbg_theqrém:

SN



Theorem 6: If S is a non-empty compact connected set in En such
that each collection of n + 1 regular points of S sees at least one

point of S, then

ckS = (f;\\(cy(‘convs)

where y is a regular point of S -and Cy denotes the intersection of all
closed half-spaces which contain y and support thpse points of S which
can .see y via S.

Although it is often quite easy-to find the kernel of two. and
three dimensional sets, the formulation of a procedure‘fbr arbitrary
finite dimensional spaces is fathef cumbersome. For any set which can
be exhibited by a diagram, one often reliés on intuition to find the
convex kernel, however, Theorems 5 and 6 are actually being employed.

Occasionally in arbitrary linear topologicai spaces, it can be
shown that a non-convex set is star-shaped. However, it appears that
any astounding results, say an analogue to Krasnosel!skii's theorem,
are not to be found. One siightly interesting geheralization for

closed sets is given by Valentine [10]:

Theorem 7: Let S be a closed set in a linear topological space
and suppose K is a compact subset of S of dimension n. If each set
of n + 1 boundary points of S can. see at least one point of K via S,

then S is star-shaped.

A general .converse to Theorem 7 does not exist. If the set S of
the theorem is star-shaped with respect to each point of a.compact
subset, then each boundary poiﬁt can certainly see it via S. However,

a star-shaped set need not be star-shaped with respect to each compact

19
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subset.

Although the work heretofore in this chapter has been concerned
with finite dimensional Euclidean spaces, it is sometimes possible to
characterize the convex kernel of some sets in infinite dimensional

spaces. The example which follows will demonstrate this idea.

Example 1: 1In the space of real sequences consider the following

set:

E={x= (cl’cz;"') I c; = 0, i odd; or cy = 0, i even; or

Both x = (1,0,0,++-) and y = (0,1,0,0,+++) belong to E, yet

5x + %y = (%,%,0,0,*+) does not belong to E. Hence E is not convex.
It happens that the convex kernel of E contains exactly one point, the
origin, ¢. The kernel contains ¢ since of + (l-o)x = (l-a)x for all x
in E and for 0 < o < 1, in fact for all real w. Also for every z in E,
z ¥ ¢, there exists a vector w in E such that w-cannot see z via E. To

demonstrate this fact, let z = (zl,zz,--~), then for some coordinate,
z; # O,and'zi+1 = 0. Consider w = (wl,wz,?--) in E such that
Wit] = 24 # 0. This choice of w; forces w; to be .zero. Then

Yz + Lw = (%z1 =+ %wl,%zz + %wz,'°',%wi_1,%zi,%w *++) does not belong

i+1?

to E since %wi+1 = %zi # 0, i.e. the point %z + 3w has two successive

non-zero coordinates. Hence the set E is star-shaped with respect to
the origin and not with respect to any other point.
At present, no general results are available concerning the

characterization of the convex kernels of sets such as E in Example 1.
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Below is an example in a function space of a non-convex set that

has a convex kernel consisting of more than one point:

Example 2: 1In the space of real functions defined on I =v[0,1],
let S= [f l f(I)c 1, £(0) = 0, f continuous except at X, € 1,

l<i<NJ}. S is not convex since

x, x ¥ 1, : .0, x#1,
f(x) = . and g(x) =

both belong to S, yet (%f + %g)(x) = x/2 for all x ¢ I, which implies

%f + %g ¢ S. The convex kernel of S,
ckS$ = {f | fe S, af + (l-a)g e S forallge S, 0<as 1},

is characterized as follows:

Given f ¢ S, a necessary and sufficient condition

that f ¢ ckS is that f is discontinuous at x = O.

The sufficiency of this characterization follows from the definition of
ckS and from the fact that for any g ¢ S, g(0) = 0. To verify the
necessity of f being discontinuous at x = 0, a contrary assumption
allows for a choice of a functién in S, namely,

(1-£(x))(x/c), 0 € x < c,

g(x) =
1-f(x), c<x< 1,

where f is continuous on [0,c] and f(x) < % for all 0 € x £ ¢, such

that %f + %g ¢ S, a contradiction of - f ¢ ckS.



'CHAPTER III
CONVEX SETS AS CONVEX KERNELS OF NON-CONVEX SETS

A situation of equal interest to that of characterizing the convex
kernel pf a given set concerns the realization of a given convex set as
the kernel of a non-convex set. Prbblems of this type are the so-called
extension problems.

If the convex kernel of a set exists, then clearly it is unique.
However, the above extension of the given convex set may.not:be unique.
For example, in Figure 15, both non-convex sets are extensions of the
regions bounded by the squares ABCD and A'B!C!'D'. Thus it is 5een that
in the case of the region with the square as its boundary there can
exist several extensions.

All sets do not admit extensions. This fact is illustrated by a
sequence of plane sets in Figure 16. Convex set K in lé6a, which is an
open triangular region and three points, X5 Xy and X4 of the interior
of the distinct sides of the triangle, cannot be realized as the convex
kernel of a non-convex set. Under a contrary assumption, suppose
Po ¢ cl(K) sees K via some set S, then a segment of the interior of one
side of the triangle, e.g. X X3 in 16b,. is contained in the convex
kernel of S. This fact is verified in léc since if P, sees y; via S,
pp sees yp via S and p; sees xp via S, then x,x3 < ckS, If

P, © cl(K), as in the set in 16d, then Py plays the role of x, in 16b

22
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and 16c. Hence K is properly contained in the convex kernel of S, i.e.
S is not an extension of K.

In Figure 15 the sets under consideration ﬁere closed wﬁile in
Figure 16, K is not closed. 1In gener#l, the results concerning the
problems of extension are based on having a closed set to play the
role of the kernel. However, other results are available for large
classes of plane sets and they will be investigated first.

A concept required for discussion of the extension problems is
that of the K-star of a convex set K. A set S, different from K, such
that K = ckS, will be called a K-star; moreover, if cl(S) is different
from c1(K), then S is a proper K-star. If K # S, K = ckS and cl(K) =
cl(S), then S is called an improper K-star. Consequently any K-star of
a closed set K is proper since cl(K) is exactly K. The region in
Figure 15 admits a proper K-star which is illustrated in both cases.

In Figure 17, the open-square region in l7a has a K-star, namely the

set in 17b, which is the union of K and two of its boundary points,

X and Xqys but this K-star is improper. This is true since the closures
of S and K are identical.

Possibly the simplest of all convex éets, subsets of straight
lines, would be a good. beginning point for any development of the
theory of extensions. Post [7] produced the following, seemingly

obvious, result:

Theorem 8: If K is a convex subset of a straight line L in E2,

then a proper K-star exists if and only if K # L.
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As seen in Figure 18, if K # L, then K is the convex kerngl of the
union of K and the complement of L. The ciOSure of such a set is the
whole plane while the closure of K is a closed'ray; ‘Therefore K is the
kernel of a proper K-star. |

Iﬁ developing a proof of Theorem 8 some unexpected results
concerning infinite strips in the plane and half-spaces are observed.
While verifying that the existence of a proper K-star is sufficient to
show that K cannot be the line L, it is seen,that a convex, . two=way

infinitevstrip between two parallel lines in E,, although it is the

kernel of a non-convex set, has no proper K-star.

The.open two-way infinite strip K in Figure 1% admits many
K-stars, one of which is the set in Figure léb, which is the union of
K and two rays of one bounding'line. This set is not convex and each
point of the set sees K via the set. However, the set in 19 is not a
proper K-star since its closure is identical to:the closure of K. 1In
fact, as seen in Figure 19c, if a point which is not in the closure of
K can see K-via some set, then a boundary point of K must also be in
‘the kernel of the set.

Another consequence of the development of Theorem 8 is that a
convex half-plane has no proper‘star extension and a convex half-plane
which is not openvadmits no star extension at all. .- For example, in
Figure 20, if a point X, can see eéch point of the neither open nor

closed convex half-space H, then another point X, which sees 'H via some

set S also sees X via S. Hence a new convex set, which is the convex
hull of X, and H and properly contains H, contains the kernel of S.

Therefore, no :star extension exists for H.



(a)

(b)

(c)

Figu:e-19
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An open half-plane can be extended, aS seen in Figure-21n The set
K in 2la is exactly the kernel of the set in 21b which is the union of
K and the set consisting of the two points X, and X{5 but the closure of
K and the closure of the extension are the same. Hence the K-star is

improper.

Therefore by consequences of Theorem 8, it can be verified as to
whether or not those plane convex sets which are subsets of a line,
two-way infinite .strips of half-planes admit a star extension. Further-
more, it can be determined if tﬁe extension is proper or improper. It
is necessary that the setting for fheorem 8 be a plane since a line in
E3'can be the convex kernel of a non-convex set. One such non-convex
set is the union of two distinct planes which have the given line in
common. To be discussed later in this chapter will be a theorem of
Klee [ 4] which gives a similar fésult for certain Banach spaces that
are more general than E,.

When a student, not necessarily a student of convexity, is asked
for an example of a convex set, the reply is usually fhat of a closed

disk or a slight distortion of such a region. Sets of this type are

called strictly convex sets. Precisely, a strictly convex set is one

for which each hyperplane of support has exactly one point in common
with the boundary of the set. In Figure 22; the set S in 22a is
constructed to be strictly convex while in 22b any hyperplane of
support at x  does not have a one point intersection with the bounda?y
of T.

| It happens -that any star extension of a strictly convex set K is

a proper K-star. This is a lemma of Post [7] and follows from the fact



Figure 22

Figure 23
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that any set S, satisfying R?: Sc cl(K), is convex if K is strictly
convex, hence an improper K-star would be convex, which is a
contradiction of the definition of a K-star. For exaﬁple,vthe extension
of an open circular disk, if it exists, must include points not in the .
bounding circle, otherwise an extension would only be a new convex set
which is contrary to the definition of a K-star.

A nice class of convex sets is that collection in which a
hyperplane of support for a given set not only intérsects the set in
exactly one point but also the plane of support is unique for that
point. Simply stated, ﬁhis class is those-sﬁrictly convex sets with
each boundary point similar to the .boundary points‘of a circularvdiék.
A strictly convex set which is not in this class islgiven in Figure 23.
Point x  of the given convex set S does not have a unique line of
support passing through it.

With the .above qlass of sets, the following result was obtained by

Post [7]:

Theorem 9: For the existence of a star extension of a strictly
convex set K in E, such that each boundary point of the set admits
only one line of support through it, it is necessary and sufficient

that bd(K) contains an arc A such that ANK is at most countable.

As is often the case, the existence Theorem 9 does not produce the
‘method for a solution. For example, to find a non-convex set for which
é given closed disk in the plane is its kernel is not an easy task.
Post [ 7] proves that such a set must exist? but a geometric formulation

is lacking.
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Some corollaries to Theorem 9 are 1) that a strictly convex closed
set K with boundary asfrequired in the theorem has a proper K-star
while 2) such a set which is non-empty and open does not admit an
extension. Simply stated, convex sets which are disk-like and contain
an arc of their boundary can be properly extended while sets similar to
the open disk in E; cannot be extended. It should be noted that these
somewhat general results do not require the set which is being extended
to be closed. However, there is no hope of a proper extension in the
case of the open strictly convex set.

Mentioned earlier was the‘fact that any general theorems concerning
the extension problem evolved around closed sets. Even though such a
set can be extended, Figure 15 reveals that the exténsion may not be
unique. Summarizing and making use of Theorem 9 and some of its
corollaries, the most complete result for extension of a closed set

in the plane is also given by Post [7]:

Theorem 10: A closed convex set in E2 can be realized as the
convex kernel of a non-convex set if and only if it is neither a half-

plane nor a two-way infinite strip.

Although the extension may not be proper, some open sets can be
extended. This is illustrated in Figure 17. Also,‘setS'which are.
neither open nor closed might be extended. Figures 24 and 25 both
exhibit such sets. The set in 24b is an improper extension of the

-set in 24a which consists of the open triangular region and two
boundary points,_x1 and Xye It happens that the set in Figure 24a

has no proper extension. In Figure 25, the set in part (a) which is
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the union of the open triangular region and the boundary point Xy

can be properly extended. An extenéion is shown in 25b.. This non-
convex set has as its convex kernél, the set T in 25a. This fact may
not be obvious at first but careful inspection of.25b and noting that
point ¢ does not belong to S produces the desired conclusion.

So far in this chapter, all of the accomplishments mentioned have
been in E,. Several of the examples given and some of the results
stated could have had the setting of E, n larger than two. For

example, a closed cube in E., can be realized as the kernel of a non-

3
convex set. Such a set could be formed by constructing closed cubes
on each face of the given cube. Since all of the spaces E,n=
1,2,-+-+, are complete normed 1inear‘spaces which possess a countable
dense subset, i.e. separable, the available generalization of the

extension problem is somewhat natural in development. Klee [ 4] gave

such a generalization.

Theorem 1ll: If K- is a closed convex set of a separable Banach

space, the following three assertions are equivalent:

a) K contains no hyperplane;
b) K is the convex kernel of a non-convex  set;
c) for all 0< s < p, K is the convex kernel of -a closed

non-convex set S, such that KS<: S Kp, where |

Ks and Kp are open parallel bodies of K.

If the space of Theoremill‘is E2, then parts (a) and (b) of the
- theorem are the hypothesis and conclusion of Theorem 10. - This

equivalence is realized since the closed set K could not be a half-
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plane nor could it contain a two-way infinite strip without containing
a hyperplane, which is a line in this case. Hence the statement that
Theorem 11 is a generalization of Theorem 10 follows. This new result,
Theorem 11, however, is not a generalization of Theorem 9 concerning
strictly convex sets. To satisfy the hypothesis of Theorem 9, the set
to be extended need not be closed, therefore Theorem 1l is not
applicable.

Examples of sets in t&o and three dimensional Euclidean space to
illustrate the corresponding forms of Theorem 11 have been given
throughout this chapter. Examples to verify the theorem's assertions
in infinite dimensional spaces can also be found. The example which
follows gives an extension for a one-dimensional flat in an infinite
dimensional space, however, the procedure of extension is the same for.

any finite-dimensional flat.

~ Example 3: In the space of real sequences, £2, which is a

separable Banach space, consider the set

K= {x= (cl,cz,---) | c, =0, n= 2, 3, *-°}.

The set is convex and closed and contains no hyperplane since it has
co-dimension greater than one. Hence by the authority of Theorem-1ll,
there exists a non-convex set S such that K = ckS. One such set can

be defined by

S = {X I C2n.= 0 0r-C2n+1 = O,V:n = 1, 2, ses, OF cn = O’ n= 1, 2’ .-o}.

‘This set is not convex since x = (1,1,0,0,+++) and y = (1,0,1,0,0,++¢)

belong to S, but ix + %y = (1,%,%,0,0,+++) does not belong to S. To
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see that K is a subset of ckS, consider x = (¢,0,0,¢++) in K and

y = (dy,dp,***) in S. Then (l-a)x + ay = ((l-a)c + ddl,adz,ad3,'°°)
belongs to S-f&r‘all o such that 0 <€ o é 1 since d; =0 implies ad; =0
for any i = 1, 2, +++. To complete the verification that K = ckS,
consider any x = (cl,cz,---) in S"K. Since x does not belong to K,
there exists an i 2 2 such that c¢; # 0. Choose y = (dl,dz,---) in S

such that di% =cys which forces di = 0, then %x + %y has two

1
successive non-zero coordinates, neither being the first coordinate.
Hence 5x + ¥y ¢ S and x ¢ ckS. Therefore S\K and ckS are disjoint and
K = ckS.

As mentioned prior to the example, the technique used in Example 3
for the extension of a one-dimensional flat can be used to find a K-
star for any finite-dimensional flat. This fact is emphasized to
contrast the works of Post [ 7] and Klee [ 4] concerning extensions of
convex sets. In the settihg of Post!s paper, any finite-dimensional
flat did not admit a . star-extension, whereas the setting of Klee's
paper does allow such an extension. |

Although Klee's theorem, Theorem 11, is:an existence-type theorem,
it does give some .information about the nature of the possible
extensions. This partial description is in,part (c) of the theorem
and says that if an extension of a set existé, then there is at
least one K-star between any two open parallel bodies of a set K.
However, for certain norms, a parallel sét is not always meaningfully

characterized.



CHAPTER IV

RECENT ACTIVITY AND SOME INTERESTING

UNSOLVED PROBLEMS

In Chapter I, it was stated that the'basiévproblems of interest
concerning convex kernels were 1) given a non-convex set, find its
kernel and»2) given a convex: set, find a non-convex set for which the
given set is its kernel. Chapters II and III were devoted to various
attempts to answer these questions in general. Throughout those
chapters certain specific problems which might be of interest were
mentioned in passing. |

Although the basic problems remain in.a general setting, several
specific interesting situations have arisen while general solutions
were being attempted. For example,. in Chapter II several theorems were
stated which involved the existence of a convex kernel for a given set.
Suppose ‘the restriction is addgd that the kernel have a certain
dimension, thgn certainly a much stronger hypothesis could be expected
if the theorems were to be true. Consequently, a more general problem
is at hand.

All the results concerning the extension problem of Chapter III
were in the setting of a separable Banach space. The fact .that the
space was separable was very important in the work of both Klee [4] and
Post [7]. As of the present, a s§tonger1result, deleting the condition

of ‘separability from the hypothesis, has not been published. Hence

.39
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another case of a particular problem which is an out-growth of one of
the original questions, that of extension.

Since much of the activity invelving the convex kernel has been
relatively recent, a current collection of unﬁolved or recently solved
problems is lacking. Valentine [ 10] provides some problems in this
area, but his collection is dominated by questions concerning star-
shapedness relative to spherical surfaces and by questions about
Helly-type theorems.

Concerning the existence of the convex kernel of a given set the

most general problem is given first:

Problem l: Let S be a set in a linear space L (a linear
topological space if a topology is required). Find necessary and
sufficient conditions for the existence of K = ckS and for the

characterization of K.

Of course, the solution of Problem 1 is ideal and almost the
entirety of Chapter II was devoted to partial solutions of this
problem. All of the . published partial solutions have had the setting
of a finite-dimensional space. Various problems could be stated with
the setting of a particular space, such a§ a Banach space.

A problem of Valentine [ 10] wﬁich has received considerable

.attention recently is:

Problem 2: Let S be a set in a linear space L. Determine
necessary and sufficient conditions that the convex kernel of S has
dimension k. 1In particular, deté}ﬁine3this for k = 0 so that S has a

one -point kernel.
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All of the known results concerning Problem 2 have been for the
particular case where the kernel was to be a singléton.set. One
partial solution (which is incorrect) in the current literature was
given by Hare and Kenelly [2]. Their result is summarized with the
following definition and theorem: Definition: A set S in E,
n = 2, has property k, if and only if given the set,

{xl, Xys **%s xk+l}’ of affinely independent points (2 < k < n), there
exists a unique point p ¢ S such that X,pC S; i=1, 2, ==+, ktl.
Theorem: A compact set S C E, has a one point kernel if and only if S
has property kn, nz= 2.

The above theorem is false since it is not necessary for the set S
to have property k, in order for it to possess a one point kernel.
For a counterexample, see the set in Figure 4. This set has a one

point kernel yet it lacks property k, since many collections of three

2
affinely independent points can see arbitrarily many points of the set.
From the results of Tidmore [9], it is reasonable to believe that the
sufficiency portion of the theorem of Hare and Kenelly is correct.
Tidmore [ 9] produced a more general sufficient condition for the
existence of.a one point kernel than was suggested by Valentine and
supposedly given by Hare and Kenelly [2]. This result is as follows:
The;rem: Consider a set S in a linear space such that the dimension
of S is larger than one. If for each set of k affinely independent
points (k = 3, 4), there exists a unique point x, such that
X X; © 8, l1< i<k, then S has‘a one point kernel.

From Figure 4, it is easy to see that the star-like condition in

the hypothesis of Tidmore's result is not necessary since each set of
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three affinely independent points can see more than one point via the
set, but still the set has a one point convex kernel. Although Tidmore
does not have necessary conditions for the convex kernel to have
dimension zero, it is of particular importance that he~required‘neither
the condition of compactness nor connectedness on the set S in his
sufficient condition.

A tool used in the study of convexity is that of &ecomposition of
a set into 'a certain.class of its subsets. One seemingly natural
collection of subsets of a non-convex set which is often uséd is the
-collection of convex: subsets of the given.set. Much. of this paper
-has concerned itself with characterizing the convex kernel of a
star-shaped set by one of several methods. It might be possible to
describe the convex kernel of a non-convex .set in terms of the convex
:subsets of the non-convex set. The following problem, an. adaptation

of a Valentine [10] problem, is interesting.

_Problem 3: Characterize the convex kernels of those star-shaped
sets S in L, a linear topological space, in terms of the maximal convex

:subsets of S.

Concerning the problem of extension of convex sets to be:convex
kernels of non-convex sets, several interesting unsolved problems
exist. Analogous to: Problem 1, the following problem is the most

 general of the extension problems:

Problem 4: Let K be.a closed convex-set in a linear topological
space L. Find minimal sufficient conditions such that K admits a

K-star.
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As stated in Chapter III, the most complete solution of Problem 4
is given in Theorem 11 by Klee [4]. By restricting the setting to a
separable Banach space, Klee was able to give a necessary and suffi-
cient condition that a closed set K admits a K-star.

Two special cases of Problem 4, which, if solved, might lead to a

solution of the general problem, are also given by Klee [4]:

Problem 5: Find necessary and sufficient conditions that the

unit ball K of a non-separable inner: product: space admits a: K-star.

Problem 6: TFind necessary and sufficient conditions for K, a
closed and bounded convex set which has no supporting hyperplane,

in a separable incomplete inner product space to admit a K-star.

Before Problem 6 could be attacked, it might be of interest to
know whether or not a closed and bounded set with no supporting
hyperplanes existed. Several years prior to proposing Problem 6,
Klee.[5]‘gave the following example of a set which satisfies the

requirements of the set K in the problem:

Example 4: Consider the linear transformations T of 22 into

itself such that if x =‘(cl,c2,---) then T(x) = (dl’dZ"") with

4 =27y, 121, 2, re Lee G = x| | < 1) and

L CD - v 2
L ={x ‘ z)(Zlci)2 <o}. 1If M is a dense linear subspace of £ such
i=1 ,

that L \J M spans the space, then T(C {1 M) is a closed and bounded
. convex set which has no .points of support. The verification of this

example is rather involved and will not be given. The details are
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-supplied by Klee [5].

Certainly in function spaces as well as Euclidean spaces, the
concept of the x-star, i.e. those points of a set which can.see x via
the set, has yet to be exploited. This concept seems to have a place
in both the problem of existence of convex kernels and the problem of
extension of convex sets.

It may be -that more tools are needed before attacking the problems
of generalization mentioned in this chapter. Possibly the equipment
needed to.solve these problems.is available but the students of
convexity are unaware of its existence. After all, it was more than
.twenty years after the. publication of Hellyfs theorem before
"Krasnoseltskii published his results and almost another -twenty years

before the recent flurry of activity involving the convex kernel,
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