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CHAPTER 1
INTRODUCTION |

‘An investigation of the data obtained from the 'sonic boom tests
conducted by the Federal Aviation Administration in Oklahoma: City,

Ok lahoma, during 1964 indicates that many structures may respond to
sonic booms in the manner of a Helmholtz resonator. The data obtained
froﬁ these tests, however, was not complete -enough to permit a thorough
study of internal pressure responses. No tests were conducted specifi-
cally to investigate the mechanism or properties of these pressure re-
sponses. While the available data indicated the presence of such
phenomena; it_mwas not adequate to permit a comprehensive -study.

The Helmholtz resonator in its simplest form consists of an en-
closed volume which communicates with the external air through a neck.
The response of a Helmholtz resonator to sound, that is more or less
‘steady state pressure oscillations, was studied by Lord Rayleigh:[l]l,
and various aspects of the problem have since been studied by other
investigators. Rayleigh showed that at low frequencies the resonator
could be described by a lumped parameter oscillator with the air 'in
the neck providing mass and that in the cavity providing.elasticity.

He also pointed out that an exact solution was impossible because of

Numbers ‘in parentheses refer to references in the selected
bibliography.



the inadequacy of existing mathematics. This observation has been
altered little by developments since his time. More recent ihvestim
gators have considered various shapes of necks, various damping mecha-
nisms, and the effects of varied positioning of the neck. Very little
interest has been shown, however, in the transient response problem

which is the object of this work.
Definition of the Problem

It will be shown in Chapter III that the frequency limitation
which must accompany the lumped parameter description of the resonator
usually becomes effective at frequencies in the neighborhood of the
resonant frequency of the resonator. The response of such a lumped
parameter oscillator to a pulse such as an N-wave repfesenting an
idealized sonic boom would be expected to be greatest when the duration
of the pulSe and the natural period of»the oscillator are approximately

the same.

i

R

PRESSURE

1 T TIME

Figure 1-1. N-Wave Idealized Sonic Boom Signature

"A Fourier analysis of a pulse shows that the energy of the pulse is
not concentrated at a single frequency but is distributed over all

frequencies. The frequency ‘limitation on the lumped parameter



description which is given in Chapter III is easily applied to the
steady state problem for which the input frequency is well defined,

‘but the meaning of this frequency limitation is not clear 'in the
transient case. On the basis of previous work dealing with Helmholtz
resonators ‘it is not possible to state if, or with what accuracy, the
lumped parameter description is applicable to study of transient re-
-sponse phenomena. A theoretical and experimental study of the transient

response properties of the Helmholtz resonator 'is needed.
The Purpose and-Scope of the Study

The purpose of this study is to investigate the transient response
spectra of a Helmholtz resonator in an infinite baffle to a plane wave
pressure pulse at normal incidence. The study consists of two phases:
theoretical and experimental. The results of the study have application
-in the area of acoustic responses to -sonic booms. Other applications
might include acoustic response to blasting or other types of explosions,
response to gusts produced by storms, and possible response to noise
generated by rocket launchings.

The scope of the theoretical study includes the derivation of a
more exact solution for a circularly symmetric resonatof in transfer
function form and Laplace transformation notation; a discussion of
frequency limitations of several models; Fourier analysis of pulses
with application to response of an Helmholtz resonator; a qualitative
discussion of -damping effects and their effect on higher mode response;
and a Fourier or Laplace synthesis -study of the response of a simple

oscillator to an N-wave or the first few harmonics thereof.



The scope of the experimental phase of the study consists of the
design and construction of a plane wave tube; development of apparatus
for producing pressure pulses; design and construction of a test reso-
nator; instrumentation to measure and record input pressure and internal
pressure of a test resonator as functions of time; and two series of
tests which demonstrate, first, that a Helmholtz resonator responds to
pressure pulses generally as a lumped parameter oscillator responds to
a shock input, and secondly, that higher mode responses with attendant
magnitude and phase differences of internal pressure are of minor im-

portance.

Previous Work

There is no known previous work dealing with the transient response
of a Helmholtz resonator which includes any consideration of the possi-
bility of higher mode response or deficiency of the lumped parameter
model. Olson [2] briefly examined transient response of a lumped
parameter acoustical resonator, but he simply accepted the lumped
parameter model with no discussion, justification or study of frequency
limitations. There is no known experimental work in the area.

Rayleigh [1] presented the lumped parameter analysis for the steady
state case and low frequency.

Beranek [3] gave some discussion of approximately what the frequency
limitations should be in the steady state problem.

Ingard [6] in a comprehensive paper examined the effects of differ-
ent neck cross sections, different cavity geometry, different position-

ing of the neck, and different damping mechanisms, all pertaining to



the steady state case. Ingard [7] examined the near field of a spheri-
cal Helmholtz resonator exposed to a steady plane wave. Lambert [8]
presented a systematic study of damping effects,

Albert and McGinnis [9] discussed several-degrees-of-freedom
acoustical networks built up from multiple Helmholtz resonators.
Lagrange's equations were used to develop the equations of ‘motion.
The lumped parameter model was accepted. The work done by Albert
and McGinnis coupled with the present study which verifies the lumped
paraﬁeter model in the transient situation form an excellent basis
for handling the transient response of an acoustical network with
several-degrees-of-freedom.

Much work has been done with the transient response of linear
systems and there are many good sources in the literature. References
used for this work included Jacobsen and Ayre [5] and Thompson [10].
Cheng [11] did some extensive theoretical work with the response of
simple oscillators, beams, and plates to N-wave inputs. -Arde
Associates [12] presented a great deal of theoretical work with
sonic boom response including some good work on the response of a
simple oscillator to various types of idealized booms.

In the report published by Andrews Associates [13] the proba-
bility of Helmholtz resonator type response to sonic booms was dis-
cussed. The section of the report which contains this discussion
was originally written by J. D. Simpson who was serving as consultant
to Andrews Associates of Oklahoma City. ‘A paper [14] dealing speci-
fically with the area of this thesis, written by J. D. Simpson and
Dr. R. L. Lowery, is to be presented at the 70th meeting of the

Acoustic Society of America in November, 1965.



CHAPTER II
SONIC BOOMS AND TRANSIENT ACOUSTIC RESPONSES

The problem of the transient response of a Helmholtz resonator
was first encountered by the author in 1964 when he and Dr. R. L.
Lowery were consulting with Andrews Associates of Oklahoma City on
their contract for recording and reporting data from the Federal
AviatioﬁvAgency's sponsored sonic boom tests in Oklahoma:City in

1964.
Sonic Boom Signatures

The pressure pulse referred to as a sonic boom is often idealized
as an N-wave as shown in Figure 1-1. Figures 2-1 and 2-2 are recorded
sonic boom signatures from the 1964 tests in Oklahoma City. These
recorded signatures are reasonably close in shape to the idealized
N-wave. These figures were taken from reference [13]. Figure 2-3
shows recorded signatures from the Oklahoma City tests which are also
fairly typical but are not approximated well by the N-wave. They
could bé better approximated perhaps by one cycle of a sine wave or

of a triangular wave.
Occurrence of Acoustic Resonators in Structures

Any typical home and many commercial buildings contain enclosed

volumes and openings which could function as Helmholtz resonators
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and would have resonant frequencies in the region where considerable
excitation could be expected from sonic booms. -Natural freqﬁencies
of individual rooms with one open .door or window would typically be
in thé range from five to fifteen cycles per second which would
correspond to periods ‘of approximately 0.07 to 0.20 seconds. Very
large rooms with large openings could have lower natural frequencies,
perhaps as ‘low as one cycle per second. The time duration of the
sonic ‘booms recorded :in the Oklahoma: City tests ranges from approxi-
mately ‘0,08-0,18 seconds.

-Various combinations of rooms, hallways, windows, and doors
would produce acoustical systems of several degrees of freedom which
if properly tuned could be -strongly excited by sonic booms. Three
very simple possible configurations are shown in Figure 2-4. Casual
inspection of the floor plan of any typical home will reveal many
such simple possibilities as well as much more complicated acoustical
networks. Figure 2-5, which was taken from reference [13], exhibits
many possibilities for simple, one-degree-of-freedom resonators and
more complicated acoustical systems. The resonance properties -of
rooms ‘or groups of rooms will be influenced to some extent by the
flexibility of the structure, a factor which is not included in this

study.
The Sonic Boom and Dynamic Response

An idealized pressure signature of a sonic boom is shown in
Figure 1-1l. The duration of the boom depends mostly on the-length

of the aircraft which generated the boom. The measured durations
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of booms in the Oklahom%(City.tests'were approximately 0.08, 0.10,
0.12, and 0.18 seconds corresponding to .the four types of aircraft
used -in the tests, It is expected that the duration of the boom
generated by the proposed supersonic transport will be on the order
of 0.25 seconds. The amplitudeﬂéf the pressure pulse which is -con-
‘sidered '"'safe' at this time is ‘approximately 2 psf’[l3]. .The normal-
ized response of a simple mechanical oscillator to an N-wave -force
pulse is:shown in Figure 2-6. The developments presented in Chapter
II1 show that the differential equations which govern the Helmholtz
resonator are identical in form with those which describe a simple
‘mechanical oscillator. Thus, the curves ishown in Figure 2-6 also
apply to the normalized internal pressure response of a Helmholtz
resonator to a. N-wave pressure pulse. From the figure it can be
seen that pressure magnification on the order of two may.be expected
to occur in a properly tuned resonator. It is safe to assume that
higher pressure differentials will mean higher damage probabilities
so that the importance of the doubling of the pressure by the reso-
nator 'is obvious. Figure 2-7 shows the effect of a small amount of
viscous damping on the response of a simple-oscillator to--a N-wave.
Timing effects can be very important also. If the pressure rise
inside reaches a maximum when the 6ﬁtside~pressure'swings-through
a minimum, a maximum possible pressure differential is developed
across windows or wall panels. This timing effect is :shown-in
Figufe‘2-8 which is a laboratory response. |

"A complicated acoustical network such .as a house could very

easily demonstrate rather unusual dynamic~response'pfoperties, As

13
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an example, beating could be expected and was in fact observed in the
Oklahoma City tests.

Pressure amplification resulting from reflections from the ground
and negrby buildings -coupled with acoustic amplifications'within‘the
structure could easily result in greatly amplified pressure differ-
entials across wall panels or windows. Conditions favorable to very
large amplifications -may not occur frequencly but,-on the other 'hand,
it is statistically probable that some situations resulting -in con-
siderable amplification will occur when a boom is generated over a
large urban area.

The presence of many cycles of acoustic vibrations might exciﬁe
any critically tuned system to considerably more amplitude than could
the ‘incident pulse. 'In other words, it 1s possible that a. sonic boom
could set up pressure oscillations within a. structure which could per-
sist for ten or more cycles; these pressure oscillations could in turn
act.as the driving force on any other systems within the house which
were capable of vibration, This possibility is -illustrated in Figure
2-10 which is a recorded response frbm-a»sonic boom and in Figure 2-9

which is a.laboratory response.

~-Evidence of ‘Acoustic Responses From

‘the Oklahoma:City Tests

Examination of the data obtained from the -Oklahoma City.tests
‘revealed considerable_gvfﬁ@hce'of acoustic resonance phenomena. The
inside microphone in Test House-#1 which was -located directly under

the flight path recorded pressure oscillations which persisted for-a
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considerable time after the passage of the boom. Figure 2-10 shows
one such recorded response. Beating was frequently observed; the
pressure oscillations seeming to disappear entirely for a time and
then reappear. The inside pressure was occasionally a little larger
than the outside pressure. The ceiling and window of the front room
in Test House #5 often appeared to be driven to considerable amplitude
by something other than the incident boom. The following discussion
is taken directly from reference [13]. The figures used in the dis-
cussion are not included in this paper.

c. Window Glass - Test House No. 5

In the typical oscillograph records shown for July 28th [Figure
52-1 through 52-8], several basic wave forms are shown, indicating
that there is considerable variance in the nature of the pressure
signature [wave form], and it is to be expected that different types
would produce different responses in a given element,

From the graph [Figure 57 in Section IIIL] it is observed that
peak overpressure does not necessarily produce peak displacement or
strain. This is to be expected since the shape of the pressure signa-
tures vary significantly as mentioned above. The response of a simple
structure depends upon both the amplitude of excitation and the time
duration. The principle and theory of this statement is discussed
more fully in following subsections of this report.

Aside from the obvious variations due to inconsistencies in the
shape of the pressure wave, another unusual effect was observed in
some of the displacement recordings. On the records corresponding
to Flights 4, 5, 6, 7, and 8 of July 28 [Figures 52-4 through -8],
relatively high readings were taken for both the differential trans-
former and the strain gage. The fact that both readings were high
suggests that the window actually was driven by some force to a
considerable amplitude and that the instruments were not in error.

The strain and displacement traces show the window to be
vibrating at a low frequency, about 5 cps. This is unexpected
since the natural frequency of the window was found to be on the
order of 25 cps, in shock excitation tests. This figure of 25 cps
also checks with the calculated natural frequency.

It can be seen in some of the recordings that the peak strain
[and displacement] can occur after the pressure wave is past. The
logical explanation for this is that a secondary driving function
has been generated and continues to drive the window at a low fre-
quency, after the wave has passed.
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Considering the possibility of a pressure fluctuation, or
oscillation, .in the living room, it can be seen that the ceiling of
the room, on which a.strain gage [#1] was installed, should also be
excited at the -same frequency.

‘Figure 76 is a tracing of the oscillograph record for Flight 7
of ‘July 28 showing responses only for pressure -signature, differential
transformer [#1] and strain gage [#7] on the window, .plus-living room
ceiling [Strain Gage #1].

This frequency of about 5 cps -can be detected in the strain re-
cordings [Strain Gage #1] for the living room ceiling. The amplitude
of vibration of the ceiling is low, which is to be expected in view
of massive construction. ‘[The ceiling carries the floor joists for
the room above.] The shock excitation tests demonstrated that the
natural frequency of the ceiling is far above -5 cps which-rules out
the possibility of any other explanation for the correlation of motion
between the window.and ceiling. It can also be seen that the motion of
the ceiling is ‘reasonably well in phase with the motion of the window.
That is, when the window moves outward, the ceiling is moving upward.
This is to be expected since both of these members appear to be driven
by a forcing function well below. either.of their respective natural
frequencies.

At this point it can be reasonably well established that a pressure
fluctuation is responsible for the relatively high readings for these
particular flights. -The mest credible explanation at this time is that
‘the living room and the connecting -passageways, doors, and windows con-
-stitute an acoustic resonator similar to a Helmholtz Resonator. The
natural frequency of such a device is a function of the total volume
of a cavity [the room], the length of connecting passages [the doors
and hallways] and the temperature and humidity of the ambient air.
While it would be difficult to arrive at exact values for the various
variables presented here, preliminary calculations show that this room
can easily have a natural frequency of 5 cps.

The exact tuning of the room would depend upon the number of doors
and windows -open and possibly upon the position of doors and windows
in other parts of the house. This could explain why most of these un-
usual recordings were taken on simultaneous flights; no windows or doors
would likely be closed or opened between flights.,

The question arises as to the occurrence of the pressure fluctua-
tions on one day and not on another. This can be explained by the fact
that the temperature and humidity of the air varies widely from one day
to the next; and more important, it 1s not likely that the same combina-
tion of doors and windows would be open or c¢losed on any two days. -Part
of these flights were made on some of the hottest days -of the year which
made it necessary . to open many of the windows in the back part of the
house. - Also, it is ‘thought that the shape of the pressure signature
has ‘a direct bearing on the excitation of Helmholtz resonance,

It might be possible for considerable stresses to be bullt up in
a window having a natural frequency close to the Helmholtz resonance.
While the pressure fluctuation inside the room is probably very slight,
it could continue for a sgufficiently long period to allow potentially
dangerous resonant vibrations to be developed in.anything having the



same natural frequency. That is, the energy input to the window could
last for several times the duration of the pressure signature.

Additional investigation is indicated in this area of Helmholtz
resonance,
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CHAPTER IIIL
ANALYSIS OF THE HELMHOLTZ RESONATOR

The electrical or mechanical analog representation of the
Helmholtz resonator as well as the most suitable mathema:ical model

are dependent on the frequency of the input sound.
Low Frequency Theory

- The resonator consists of an enclosed volume V which com-
municates with the external air through a neck of area A and

length L',

p(t)— @B Y,

~

Figure 3-1. General Helmholtz Resonator

If it is assumed that the wavelength of pressure variations is
long enough, then the pressure everywhere inside the volume is
essentially the same. Very little velocity is attained within
the volume so that there is very little change in kinetic energy

within the volume. The air in the volume acts as a spring alter=-

nately absorbing and relinquishing potential energy by wirti
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resistance to compression or dilatation. Since acoustic level pressure
variations are relatively small, the temperature variations caused by
the alternate compression and rarefaction will also be small as will

be the temperature gradients, Due to the small temperature gradients
and large distances between regions of compression and rarefaction

and the limited time during which the temperature gradients exist,
there 1s very little heat transfer. Thus, it is reasonable to assume
that the compression takes place adiabatically. Adiabatic compression

‘is expressed mathematically as

PVY = constant, (3-1)

The differential of equation (3-1) is

aevY + Yl av = o, (3-2)

which can be solved for dP as

a = - % av. (3-3)

In the neck, the air attains appreciable velocity and thus kinetic
energy. If the neck (the space through which the kinetic energy is
sensible) is very small in comparison with the wavelength, the air
moves In response to the differential pressure across it and to its
own inertia very much as an incompressible fluid would. Thus, the
air in the neck behaves as a mass while that in the enclosed volume
behaves as a spring. Therefore, if x 1is the displacement of the
air plug in the neck, then a Newtonian force balance on that air

mass leads to the differential equation of motion,

@x Yo . ’
(poLeA) T3 + v A% x = P(t) A, (3-4)
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where ‘Le the effective length of the néck, which includes the end
effects, has been used instead of the actual length L', -If P, 1is
replaced by its equivalent poc® and a variable change,

‘X = Ax = volume displacement, (3-5)

is made, the equation of motion may be written as

P : c®

5 £F+ o k=2, (0, (3-6)
or 2

P L Po€

(=5 5+ ) Jvae =2 (o), (3-7)

where U 1s the volume veloclty. From elther of these equations

the natural frequency ls seen to be

c [A |

The incident pressure Pl(t) has been assumed to be sinusoidal and
the steady state -situatlon has also been assumed in the above deri-
“vation. Similar derivations may be found in references*[l],'[3],
and- [4].

The effective length of the neck is used rather than the actual
length since some of the air on either end of the neck moves in

unison with that in the neck. The effective length is given by

L,o=L'+ & + &, (3-9)

where o .and Ay are end corrections. The neck corrections
depend on the shape of the neck cross section, the geometric con-
figuration of the resonator, and the frequency of the sound. - Gener-
ally they are taken as .85A for an infinite baffle terminaticn .and

.6A for an unflanged termination.
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In the frequency domain, equation (3-7) becomes

p, (5) 110
U(S) = poLe poca . ( - )
S +

A VS

The pressure within the cavity is given by

P(S) = IO , (3-11)

2
2
where 'w, 1s the natural frequency of thé resonator in radians
per second and is given
Wo = C o (3-12)
e

It can be seen that the natural frequency of the resonator depends
on the area and 1ength.of the neck and the volume of the cavity. The
shape of the neck is a rather minor factor as long as the cross section
is not greatly elongated. The geometric configuration of the cavity
does not enter into the problem, that is the cavity might be-sphefical,
cubical, or cylindrical with no change in the properties of the reso-
nator as long as the volume remains constant.

There are a number of refinements or corrections which can be
included in the description of the resonator. The end corrections
depend not only on the area and termination of the neck but also on
the shape and on how and where the neck is joined with the cavity and
also on the geometry.of the cavity.. Damping should be considered to
improve the description., Damping mechanisms include reradiation of
energy from the mouth of the resonator, viscous ‘losses, thermal. losses

to a conducting surface and mechanical losses to a non-rigid shell.
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These refinements are useful in some cases, but for the most part the
very simple description already given is quite adequate as long as the
frequency limitation is observed.

At higher frequencies this simple model becomes inadequate. The
resonator is actually a continuous system with distributed mass,
elasticity and damping. The resonator is capable of response in
higher modes which are much more strongly tied to the detailed

geometric configuration of a given resonator.
Frequency Limitations

The derivations presented in Appendix C permit a mathematical
statement of the frequency limitations which must be associated with
the lumped parameter description of the Helmholtz resonator. The pro-
cedure used in establishing these frequency limitations follows closely
along the lines used by Beranek [3]. The lumped parameter model which
is described in the section on low frequency theory is shown to be
accurate within approximately five percent for frequencies low enough
so that the wavelength is greater than about sixteen times the charac-
teristic dimension of the resonator. The characteristic dimension is
normally taken as the largest dimension of the resonator. Analagous
electrical and mechanical systems which are valid if the frequency
limitation is satisfied are shown in Figures C-5 and C-6.

As the frequency of the input sound is increased it becomes
necessary to use a more complicated mathematical or analog description

of the resonator. The geometric configuration of the resonator becomes

more important as the frequency is increased. It was shown in the previous
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section that at low frequencies the Helmholtz,respnator could be de-
scribed by the cross sectional area and length of the neck -and the
volume of the cavity. The neck cross section might be round, square,
or triangular and the cavity might be spherical, cubical or etc. with
only very minor effects on the properties of the resonator. -At higher
frequencies this is no longer true; the géometric configuration becomes
all important in determining the higher modes. A solution which is
-valid for higher frequenciés is thus tied to a particular geometric con-
figuration. The mathematics involved in the higher frequency solution
become very difficult even for a very simple geometric situation. -If
the geometry is not extremely simple, the mathematics become unmanageable.
The solution obtained may be questionable because of assumptions which
must be made to permit a solution at all. Also, the complexity of the
higher frequency solution may be 'such that it is almost impossible to
use. The tremendous mathematical difficulties involved in the higher
frequency solution might be tolerated if the problem could be solved
once and the results applied thereafter to any Helmholtz resonator.
-However, this is not the case; each different geometric situation re-
quires a separate solution.

Any study of the general Helmholtz resonator for which the geo-
metric details are unimportant must rely on the lumped parameter model

which implies a frequency restriction.

Application of Frequency Limitations

The relationship between the limiting frequency, fL , below

which the simple low frequency . lumped parameter model is assumed to
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be valid and the natural frequency of the resonator, £, , is in many
cases more important than the relationship between fL and charac-

teristic dimension of the resonator. The latter relationship is given

by

A > 16 D, (3-13)
or
C

fL < 16D * (3-14)

where D 1s the characteristic dimension of the resonator. The
relationship between fL and f, varies with the geometric con-
figuration of the resonator and cannot be expressed by a single
equation. Some idea of the range of -variation may be obtained,
however, by looking at a few examples.

The expression for the natural frequency of an Helmholtz reso-

nator was given previously as

c 1A

fo =97 WL -
e

(3-15)

In order to evaluate equation (3-15) for f,, it is necessary to make
some arbitrary assumptions about the geometry of the resonator. As
good a choice as any to examine "is the circularly symmetric resonator
discussed in Appendix C and used in the experimental part of this
work. -Table 3-1 gives some calculated values of fL’ f, and fL/fO
for several geometric configurations. The range of'valueS'of fL/fo
is about 0.4 to 1.5. Often the limiting frequency is less than the
natural frequency. Maximum amplitudes can be expected in either the

steady state 'situation or the transient situation when the period or



TABLE 3-1

fL AND f, FOR SEVERAL RESONATOR CONFIGURATILONS

Cavity Neck Neck

Length Diameter Length D fL = §%§ £q
(Inches) (Inches) (Inches) (Inches) (cps) (cps)
2.5 1.0 2.0 5.5 155 148 .05
' 0.0 270 .57
1.5 2.0 206 .75
0.0 331 47
3.0 2.0 350 b
0.0 468 .33
5.0 1.0 2.0 5.5 155 104 .49
0.0 : 191 .81
1.5 2.0 146 .06
0.0 234 .66
3.0 2.0 247 .64
0.0 331 7
7.5 1.0 2.0 7.5 113 85 .33
0.0 156 .76
1.5 2.0 119 .95
0.0 191 .59
3.0 2.0 202 - .56
0.0 270 42
10.0 1.0 2.0 10.0 85 74 .15
0.0 135 .63
1.5 2.0 103 .83
0.0 165 .52
3.0 2.0 175 .49
0.0 234 .36

Cavity Diameter = 5.5 inches
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frequency of the input is about the same as the natural period or
natural frequency of the resonator. The validity of the lumped

parameter model may well be questionable at the resonant frequency.
Higher Modes

The higher modes in which the Helmholtz resonator is capable
of responding are standing wave type modes and are thus very closely
associated with the geometry of the cavity. Some comparison between
the natural frequencies of the Helmholtz mode and these higher modes
is needed. 'In the previous section it was shown that the Helmholtz
resonant frequency would be very approximately equal to .the limiting

frequency which can be expressed mathematically as

fo ~ £ == (3-16)

where ¢ 1is the velocity of sound and D 1is the largest or charac-
teristic dimension of the resonator. The above formula is approximate;
nevertheless, it ‘is a useful answer and would undoubtedly be'good within
a factor of two in either ‘direction.

The higher modes are of a standing wave nature and the lowest

possible of these modes might be estimated by the condition

2 -, (3-17)
or
£ = 5% . (3-18)

. Comparison of equations :(3-16) and (3-18) shows that the higher modes

may be expected to have natural frequencies of eight or more times
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the Helmholtz frequency. This comparison is admittedly subject to con-
siderable error, but it is impossible to do any‘bettér without considering
a particular resonator and comparing the resonant frequencies. This
would be a very difficult task and the results would only apply to the
particular geometric configuration considered. The results could be
extended to a general resonator only crudely and would be mno bettér

than the comparison already established.



CHAPTER IV
TRANSIENT RESPONSE

"In the steady-state response analysis, frequency limitations
are-applied by considering the frequency domain description of the
input sound. It would seem :logical to apply frequency limitations
in the transient problem in the same way. However, the frequency
domain description of a pulse is continuous rather than discrete
‘so that no single frequency is available from the Fourier‘analysis
which characteristically describes a pulse. In the transient pro-
blem, however, the natural frequency of the resonator is more im=-
portant than the frequency description of the input pulse in determining

the accuracy of the lumped parameter description.
‘Fourier Analysis

‘An aperiodic function £ (t) is best described in the frequency

domain by the Fourier integral which can be defined [16] as

©
1 . -3
E(w =3¢ J f(t) e Jutye (4-1)
L)
. =
The frequency domain-representation F(w) 1s not discrete but is
a continuous function of the angular frequency .w and in general

is complex. Usually the amplitude -density spectrum and phasé density

spectrums ‘are more -useful than the complex form. In many cases the

32
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amplitude -density spectrum which is simply the absolute value of. F(w)
is the most useful. ‘A description of the energy and frequency relation-
ship is given by the energy density spectrum which can be defined-[16]

as
8(w) = 2m|F(w) |? (4-2)

The amplitude density spectrum |F(w)| is not an actual amplitude
characteristic of f(t) because all amplitudes are of infinitesimal
magnitude; it is rather a characteristic which shows relative magni-
tudes only. The -same is true for the energy density spectrum. The
Fourier integral can be used only approximately to predict response
of a single-degree-of-freedom linear 'system and its correlation with
the response of a several-degrees-of-freedom system is virtually im-
possible.

The amplitude density spectrum and the energy density spectrum
for a N-wave pulse are presented in normalized form in Figures 4-1
and 4-2. The spectra for other pulses similar to a N-wave will be
generally similar to Figures 4-1 and 4-2. It is difficult to obtain
much information from these curves which would be of any use towards
predicting the importance of higher mode response. ‘A pulse which cen-
tained a large amplitude high frequency signal would show. this ‘high
frequency energy on- either an amplitude density spectrum or an energy
density spectrum, but the same information is available from the pulse

itself and is perhaps more apparent there.
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Frequency Limitations for Transient Response

In the steady state situation the frequency limitation has been
used to differentiate between frequencies for which the response of
the Helmholtz resonator can be adequately described by the simple
lumped parameter model, that is for which the pressure everywhere
within the cavity is in phase and has the same magnitude for all
practical purposes. At frequencies above the limit frequency the
higher mode responses begin to become important, with phase and
magnitude differences in pressure; magnitude differences in pressure
associated with the fundamental mode also become important.

It is important to determine what sort of frequency limitations
are necessary in the transient problem. The frequency limitations
developed previously for the steady-state problem applied to the
frequency of the input. Since the frequency domain description of
a pulse is continuous rather than discrete, it is apparent that it
will be difficult to apply the previously derived frequency limitations
to the frequency domain description of the transient input.

The results of the experimental work reported in Chapter IV in-
dicate that the response of the Helmholtz resonator to transient
pulses is limited for all practical purposes to response in the
fundamental mode. Residual vibrations are simply relaxation oscil-
lations in the fundamental mode. The time or frequency properties
of the input pulse are thus not nearly so important in determining
the acceptability of the simple lumped parameter description as is
the case for steady-state excitation. The natural frequency of the

resonator is the frequency which may be used in determining the
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‘approximate accur;cy‘of the lumped parameter description. .In Chapter
III it was shown that the limiting frequency may very often be some-
what below the natural frequency of the resonator., If this is the
case, the differences in the magnitude of pressures at various ‘points
‘inside the resonator cavity may be expected to acquire -some importance.
The response is still essentially in the fundamental mode so that no
phase differences are expected. The physical situation has :deviated
from that discussed under low frequency theory in Chapter III in that
the velocity and thus the kinetic energy have become sensible to ‘some
extent 'in the cavity in the neighborhood of the neck opening. The
appropriate mass to be used in the derivations :in Chapter IILI has
‘therefore increased somewhat. The appropriate spring.constant has
also increased somewhat with the result that the natural frequency
estimate given by Equation (3-8) is still reasonably good. However,
the pressures at points in the cavity remote from the neck will be
slightly larger than at points near the neck opening. Points remote
from the neck opening -store and release potential energy but acquire
little velocity and thus kinetic energy. Points near the neck also
store and release potential energy but not quite so much since there
is also some interchange of kinetic energy in this region.

‘An estimate of the magnitude of this effect may be obtained by
studying the derivations for the cavity in-Appendix C. From Equation
(C-34) the internal pressure is 'seen to.-be a function of the axial

coordinate x according to the expression,

S
cosh - (L-x)

3 {4-3)
sinh :‘L
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where only the first value of ¢, has been considered. The ratio

ll

of the pressure at the back of the cavity to that at the front is

then approximated by

2 |

~ (1/sinh 2 1) / (1/tanh gn) - 1/cosh<§ LY.  (4-4)

Substitution of j2mw for S yields the relationship

P
R 1
P~ SHiL. (4-5)
N cos(—=)
C
or
P
R 1
P 21L (4-6)

N cos(fifﬁ

If L 1is A/l6 then equation (4~6) may be evaluated as

0,925 ~ 108

which indicates about 8% difference. In Appendix C an estimate

was made following Beranek [3] which indicated about 5% difference:
for this case. ‘Beranek's estimate is less accurate but the difference
is not great enough to warrant argument. The above discussion would
tighten the frequency limitation for 5% accuracy to about D < A/20
where 'D is again the characteristic dimension of the resonator.
‘Equation (4-6) can be approximated to a general geometric configuration
as an expression of the ratios of the pressure at points remotfe from

the neck opening'to pressure at the neck opening as

Pe 1

oA TSI (4-7)
PN cos(z?P )
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where D' is the distance from the mouth of the resonater to the
remote point of interest. It may be observed that D' 'is probably
a more meaningful characteristic dimension of the resonator than is
D which is simply the largest dimension.

In the transient situation equation -(4-7) may be used to predict
expected values of internal pressure differences by using the wave-
length corresponding to the natural frequency; however, it is probably

more convenient to rearrange the expression as

P
R 1 .
P~ T o (4-8)
N cos(—'z—°“§
Equations (4-8) and -(3-14) could be combined to yield
P
R 1
AT TR - (4-9)
N cos(.39 ¥Q)

L
From table (3-1) it may be seen that fo/fL will rarely be greater
than 2, which would yield a value of PR/PN of 1.33. For a reasonably
small neck area, a nonzero neck length, and an approximately_cubical

or spherical cavity, £,/f ~may be expected to be near unity in

L
which case the maximum internal variation will be closer to 8 or 10%.
Generally the-internal pressure variations in the transient situation
will be on-the order of 10% or less, although in the more extreme
geometric situations this variation may be scmewhat greater. -An
.estimate of the magnitude of the pressure variations may be obtained
from equation (4-8) or (4-9).

The preceding discussions ‘indicate that the frequency limitations

developed for the steady state 'situation may be adopted to the -transient
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problem. In the transient application the frequency domain description
of the input is not an important consideration, The natural frequency
of the resonator assumes much greater'importance, “A relationship
between the natural frequency of the resonator and the resonator geo-
metry determines the accuracy of the lumped parameter model. In the
steady state situation it was a relationship between the input fre-
quency and the resonator geometry which determined the accuracy of
the lumped parameter model.

.Thé use of the frequency limitation in the transient situation
is quite different from the use in the steady state situation described
in the beginning of this section. The term, frequency--limitation, is
perhaps a misnomer in the transient situation since it is not used to
restrict the frequency content of the input so that the lumped para-
meter model is acceptable, In the transient case the frequency limitation
is used only to estimate variation of internal response pressure from that
predicted by the simple model. These variations are generally on the

order of 10% or less and are therefore of limited importance.
Participation Factors

‘It 'is pointed out in reference [12] that the dynamic response of
any structure can be described as the sum of products ¥ (normal mode
-gshape) - "X (corresponding dynamic response function). It -is also noted
that 1f the shape of the load distribution is spacewise constant, the
above sum of products takes the form

contribution of the jth .th d . £ .
mode to the static u}){ J ynamlc Tresponse unctlon;},

deflection
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If the Helmholtz resonator ‘is assumed to be a structure capable of
dynamic response in many modes, then the dynamic responses could be

described by the equation

dynamic } - ol participation factor} X {jth dynamic reSponse}
\response) . for the jth mode ' function ’

The participation factor is defined in reference [12] as the fractiomal

contribution of the given mode to the maximum static stress due to a

uniform pressure on the top surface. In reference [12] this procedure

is applied to beams and plates.

In the case of the Helmholtz resonator, the only mode which would
contribute to static deflection would be the first mode or what has
been previously termed the Helmholtz mode. The participation factors
for all the other modes would be zero. On the basis of this reasoning,
it would seem that the fundamental mode of the Helmholtz resonator
would be the only mode excited for whatever type pulse was applied.

If this reasoning is valid, then there is no need for any_ sort of
frequency limitations for the transient response problem of the
Helmholtz resonator at least in the case of normal incidence of the
pulse. The validity of the participation factor theory with reference
to the acoustic problem is questioned by the author, but its result
does seem to be 'in fairly good agreement with the experimental results

which will be reported in Chapter VI.
Damping Effects

It is not the purpose of this ‘section te examine in any detail

the ‘various damping mechanisms which can be -present 'in the Helmholtz
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resonator or to comment on their relative importance but ‘rather to dis-
cuss the effects of damping on the various ‘mode responses of which the
Helmholtz resonator is capable. If damping of all modes at all frequen-
cies was about the -same the effect on the higher frequency modes would
be much more pronounced than the effect on the Helmholtz mode. This
can be best illustrated by an example: A resonator with. a natural
frequency of 100 cps is excited by N-wave of amplitude 1.0 and duratien
0.01; also, a higher mode which has a frequency of 1,000 cps is excited
and the maximum amplitude of this higher mode excitation is about 0.2;
the damping factor for all modes is estimated to be ¢ = 0.05; after
0.05 seconds the Helmholtz mode response would be about 1.0 as the
damping has had wvery little time to take effect; the higher frequency
oscillations have already gone through 5 cycles, however, and have
been reduced by damping by about ,-0.05 x 2m x 5 = o-1.57 = .21, Or,
in other words, the high frequency oscillations have been reduced to
rabout one fifth their initial amplitude by the time the Helmholtz
response i1s passing through its first maximum. High frequency re-
‘sponses excited for example by a step input would be damped out very
rapidly. Since the degree of excitation of the higher modes can be
expected to be considerably less than that of the fundamental, it
would seem that damping should greatly reduce the importance of
higher mode response.

The damping also tends to-increase with frequency. Kinsler and
Frey [4] consider reradiation of energy from the mouth of the resonator
as the major damping source. Their expression for the damping coefficient

increases as the square of frequency. Ingard [6] shows that viscosity
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losses ‘increase as the square root of frequency if the velocity ampli-
tude remains constant. He also shows that heat conduction losses to
the surfaces of the resonator increase as the square root of frequency
1f the sound pressure magnitude at the surface remains constant. It
can be generally expected, therefore, that the higher modes will be

damped as much or more than the fundamental mode.
Validity of the Lumped Parameter Model

With reference to the sonic boom there is very little interest
in the case when the ratio of the boom length to the resonator natural
period is less than about 0.4 since for small values of /T there
will be little excitation of the fundamental mode.  In general the
most interesting cases are those in which there can be significant
dynamic amplification in the fundamental mode. The experimental re-
sults which follow in Chapter V show that for values of t/T greater
than about 0.4 or 0.5 the response of the Helmholtz resonator to
pressure pulses is that of a simple oscillator. Higher mode response
is generally very small except when the pulse has a high frequency
sinusoidal component superimposed upon it. This high frequency
driving input results in what amounts to>stegdy state high frequency
response. ‘Even this type of high frequency response can be ignored
in determining the overall response of the resonator. Sharpness of
rise of the input pulse does not seem to increase high frequency
response significantly.

Response in the fundamental mode may exhibit scme pressure

variations inside the resonator cavity as pointed cut previcusly in
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this chapter. The presence of these pressure variations can be pre-
dicted on the basis of the natural frequency of the resonator and. the
geometry of the resonmator and 1s not strongly dependent on the time
or frequency properties of the input pulse, Normally these pressure
differences may be expected to be about 10% or less,

The experimental results of Chapter IV bear out the minor im-
portance of the higher modes but also -indicate that in. some cases
internal pressure differences associated with the fundamental mode
may assume some importance.

The simple lumped parameter description is therefore a reasonably
good engineering approximation of the Helmholtz resonator in the

transient excitation problem.



CHAPTER V
EXPERIMENTAL APPARATUS

In order to study the response of a Helmholtz resonator to
transient pressure pulses, one had to devise apparatus capable of
producing appropfiate'pressure pulses whose shape, amplitude, and
time duration were within limits which permitted easy study. To
facilitate the study the pulse needed to be as reproducible as
possible. The ability to vary the shape, amplitude and time du-
ration as much as possible was highly desirable. There had to be
sufficient time following the arrival of the pulse at the resonator
to study 1its response before the arrival of reflections which would
provide additional input to the resonator.

The apparatus described in this chapter performed in accordance
with the above needs quite well. The test apparatus could be improved
considerably with a moderate outlay for equipment. Although this
equipment is a prototype, the Suécesses with it encourage the belief
that the equipment could be developed into an excellent sonic boom

simulation apparatus.
A Plane Wave Tube

The plane wave tube, or traveling wave tube, used as a basic

part of the test apparatus had a cross 'section area of about 14
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inches square and the tube was 32 feet long. The cross sectional area
was chosen rather arbitrarily; however, there were several requirements
which influenced the choice. It was desired to have a plane wave front
at the test end. This requirement does not place any limits on the cross
sectional area except that the length of the tube must be a great deal
longer than either of the cross section dimensions. The plane wave

front criteria requires driving at the input end in & reasonably evenly
distributed way. It was also desired to minimize the feedback effect
caused by introducing the test resonator. It was highly desirable that
the test resonator should not influence the input. This was accomplished
by making the cross section of the tube considerably larger than the
cross section of the resonator neck. A photograph of the tube taken

from the driver end is shown in Figure 5-1.

Figure 5-1. The Plane Wave Tube
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All of the sizing of the tube was influenced by consideration of
frequency ranges within which the various components of the test apparatus
would work best. The loudspeakers produced transients reasonably well
in the range from about 50 to 300 cps. The microphone response was flat
for frequencies above 50 cps. Test resconators with natural frequencies
from about 100 to 200 cps were compatible with the above limits and
were of convenient size (about 6 in. diameter and up to 10 in. long).

The neck diameter of the test resonators of 1 to 2 inches influenced
the choice of the cross sectional area of the tube in accordance with
the criteria that the tube cross section should be much larger than the
neck cross section. The natural frequency of the test resonators dictated
the required length of the tube., For example, if the natural frequency
of the resonator is 100 cps, primary interest will be in pulses whose
duration is from about .5 up to about 3 times the natural period of
0.0l seconds. If the length of the input pulse were .03 seconds, then
about .06 seconds would be enough time to study the forced response and
about 3 cycles of free vibration. The speed of sound is approximately
10 ft. per 0.0l sec., which requires approximately a 60 foot path for
the reflected wave to travel before rearrival at the resonator if there
are to be 0.06 seconds between arrival times of the pulse and the first

reflection.

-Generating the Pressure Pulse

‘Various means of generating pressure pulses are considered before
deciding to use direct-radiator loudspeakers. The electronic system

using loudspeakers has the advantage of good reproducibility. -Also,



variations in the shape, amplitude, and duration ef the pulse can be
accomplished much easier with the electronic system. Control of ex-
plosives or shock tube apparatus is, at best, difficult; reproduci-
bility is difficult and usually each pulse must be individually set
up. The electronic system can produce identical successive pulses,

as many as desired. A block diagram of the system is shown in Figure
5-2. Figure 5-3 1s a general view showing most of the instrumentation
which was used in generating pulses and measuring responses, The low
frequency function generator 1s capable of producing leow frequency
sine, triangular orvsquare waves, The signal from the function gener-
ator may be fed directly into the gat& or through rectifyiﬂg or
differentiating circuits into the gate. The purpose of the extra
circuitry is to obtain greater flexibility of electronic input.

For example, a differentiated square wave yields spikes which pre-
duce fast-rise pulses. The gate permits conversion from a steady
state input to a transient. The signal from the gate after being
amplified is fed to a loudspeaker or bank of smaller loudspeakers.,

The loudspeaker is shown in Figure 5-1 and the bank of smaller loud-
speakers is shown in Figure 5-4. The main difference in the two

loudspeaker systems was that the larger tended to produce cleaner

'LOW FREQUENCY

FUNCTION
SHAPING COHERENT POWER
GENERATOR NETWORKS GATE AMPLIFIER |
OSCILLATOR :
LOUDSPEAKER
OR BANK OF

LOUDSPEAKERS

Figure 5-2. Block Diagram of Pulse Generating. Apparatus
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Figure 5-3. General View of Instrumentation

Figure 5-4. Bank of Small Loudspeakers Used
As a Driving Unit
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low frequency pulses while the bank of smaller loudspeakers :tended to

produce better pulses at higher frequencies.
Test Resonators and Recording Instrumentation

The tesf resonator used for almost all the work was a circularly
symmetric one as described in Appendix C, made of plexiglass. The
diameter of the cavity was 5.5 inches and the length could be varied
from zero to iO,inches. The neck was detachable so that -the neck
‘length and cross‘section could be easily varied. Holes were drilled
at intervals along the cavity to permit microphone access. Holes and
junctions were -usually sealed with paraffin during operation to eliminate
leaks. Figures 5-5, 5-6, and 5-7 show various views of tesf'resonators°
Figure -5~5 shows the test resonator in position for testing with micro-
phones in position for measuring the input pressure pulse and the re-
sponse of the resonator. Figure 5-6 shows another view of the test
resonator and also a plug in position to permit comparison of micre-
phone sensitivites. Figure 5-7 shows a view of another resonator of
smaller diameter. ' The neck of the resonator simply slips into the
hole in the plate on the end of ‘the tube. -The position of tﬁe micro=
phone measuring the input pressure pulse is shown clearly.

The microphones shown in the figures are Altec model BR-150.

‘The outputlof the microphones was easily viewed on an oscilloscope

and could be photographed if desired.

Performance of the Test Facility

In general the performance of the test apparatus may be termed

sdtisfactory. Of course, the experience of using the apparatus



Figure 5-5., Test Resonator in Position for Testing

Figure 5-6.

Microphone Comparison Fixture and Test Resonator
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Figure 5-7. Smaller Test Resonator

Figure 5-8. End Plate Used for Evaluating the
Plane Wave Assumption
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disclosed possibilities for improvement. Improvement in pulse shaping
would increase the usefulness of the equipment. Nevertheless for the
present needs the equipment was adequate.

All of the analysis in this work assumed that the input pressure
pulse was invariant in both amplitude and phase, at least in the
immediate neighborhood of the neck of the resonmator and the input
microphone. -In other words, it was assumed that the wave froent was
plane at the test end of the tube. This was checked out experimentally
and found to be a very good assumption. The back plate shown in Figure
5.8 was used to check out how planar the wave was. By moving the micro-
phones around from hole to hole while keeping the other holes plugged,
one could easily compare microphone sensitivities and pressure measure~
ments at the various holes. This was done with a steady sinusoidal
input of varying freqﬁencies up to about 400 cps and with a variety
of pulse inputs. There was no discernible difference of magnitude
or phase for readings ‘in the central part of the plate. There was
a small drop in magnitude on the order of 5 to 10% for readings taken
in the four corner holes. -For the central part of the back plate which
includes all but the corners the wave front is very nearly planar.

The question of whether the variation of impedance at the test
end caused by changing the resonator configuration produced any effect
on the input must be answered with reference to the testing situation.
An attempt was made to use the tube with a steady state -sinusoidal in-
put to make measurements on the natural frequencies and -damping factors
for various resonator configurations. The results were in good agree-

anis? § BT

ment with both theory and the results of transient tests, but it was



observed that variation of the resonator tuning did affect the input
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amplitude also. This was not true however 'in the transient .case. -Using

various input pulses, one could not detect any variation -in the.input
readings when the resonator tuning was varied. In fact, the hole in
the back plate where the resonator neck is inserted could be plugged
or left completely open or the resonator inserted and the tuning
varied with no»obser&able effect upon the recorded input.

‘There were limitations oun what sort of pulse could be obtained.
This situation could be greatly improved by using a more sophisticated
driving systenm as will be discussed in the next seétion. However, a
large variety of pulses could be produced. ‘A representative sampling
of the types of pulses which were successfully produced are shown in
Figures 5-9 through 5-12 and also in many of the figures in Chapter
VI. The loudspeaker driving units -do nct accurately follow the in-
put electronic signal since the loudspeaker is a complicated dynamic
system with electrical, mechanical, and acoustical components which
possesses several-degrees-of-freedom. ‘For this study, the electronic
input was varied until a useful pulse response was obtained. By
trial it was thus possible to find several pulses which were well
suited for testing. Improved control of the pulse shape could be
established by better control of the loudspeaker system or of the

electronic input.

Recommendations for Improved Apparatus-and-Sonic Boom-Simulation

There are several means by which the test apparatus could be im-

proved, but the path to really good sonic boom simulation in an easily



ivaision

0.1 psf/d

Figurc 5-9.

| 0.1 psf/division

— — ———— ——

Figure 5-10.

5 msec/divisicn
st

Representative Pulse Produced by the
Test Apparatus

5 msec/division

Representative Pulse Produced by the
Test Apparatus

35



ision

psf/division

psf /c v:

Figure 5-11. Representative Pulse Produced by the

vision

psf/di
psf/division

Fipure 5-12,

Test Apparatus

5 msec/division

Representative Pulse Produced by the
Test Apparatus

56



57

controlled situation has been shown. There is a need for this :simu-
lation., There are many acoustical, structural, and dynamic problems
associated with .sonic booms which are deserving of study because of
the ever 'increasing number of supersonic flights...It appears-that"
an excellent simulation facility could be built when sufficient€funds
become available.

- There is no reason why the cross sectional area of the plane wave
‘tube might not be increased many times, thereby permitting testing of
fairly large specimens. The ability to control and shape the pulses
could be improved greatly in several ways. Rigid diaphram transducers
could reduce unwanted responses of the driving units. Increased
variability of the input electronic signal would add greatly in the
shaping of the resultant pressure pulse. -Probably the optimum situation
would be rigid diaphram transducer with servo controls permitting good
control of ﬁhe diaphram motion and thus control of the pressure pulse.

‘This sort of system would be far superior to any which depend on
explosive or shock tube techniques to produce the pressure -pulse because
0of the control over pulse shape and the very good reproducibility.

One limitation of such a system as proposed might be that it could
not easily produce a pressure pulse whose time duration was as ‘long as
actual booms due to poor acoustic coupling between the driving trans-
ducers and the adjacent -air at low frequencies. This is»onlyva~scaling
problem however. The important feature is the relatienship betweén
the time or frequency properties of the'pu}se anﬁ the time or frequency

properties of ‘the test piece.



CHAPTER VI
EXPERIMENTAL RESULTS

The several purposes of the experimental work may be listed
as follows:
(1) to determine if the overall'response of a Helmholtz resonator
to a pressure ‘pulse -is generally the same as the response of
a simple oscillator to transients;
-(2) to obtain information on the importance of higher mode response;
(3) to establish some basis for making statements regarding how good
the simple lumped parameter descr%ption of the Helmholtz rescnator
is, that is to establish restrictions similar to the frequency
limitations of the steady state solution.
It is wvery difficult.to categorize the individual tests as ‘falling
under one of the above sféted purposes. It is more often the-case
that any given test sheds some light towards answering all three
-questions. There is, in fact, considerable overlap in the stated
purposes. -The experimental results are -therefore presented by
simply discussing the various tests performed and pointing out
what sort of information the tests contribute towards answering
the questions of interest.
From preliminary tests which were conducted simply to prove

the test facility, it appeared that the low frequency -theory would
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hold fairly well in the transient situation. Therefore, the low
frequency lumped parameter description was assumed and the tests
were conducted to either substantiate this assumption or to:find

fault with it.
Natural Frequency and Damping Measurements

‘A logical first test was the check of the natural frequencies.
The test procedure consisted of exciting the resonator with some
sort of transient pulse and observing the ringing or residual free
relaxation oscillations. Figure (6-1) shows input (#1) and fesponse
(#2) traces. From the response trace it is easy to compute the damped
natural frequency of the resonator, Wy > knowing the sweep rate of the
scope. - Most of these measurements were made by simply reading the trace
on the oscilloscope. The damped natural frequency Wy is related to

the undamped natural frequency wg through the equation

wg =V1L - 2w > (6-1)

where ( 1is the damping factor. -Since the damping was quite small,
Wy and w, are-equal for all practical purposes.

A theoretical estimate of the natural frequencies was made from
equation (3-8). The end corrections were taken as 0.85A for a wide
flange or infinite baffle termination. This end correction tends to
be a little high which results in estimates of the natural frequency
which are a little low. . Table 6-1 gives a comparison of measured

‘natural frequencies versus theoretical for various resonator cen-

figurations.
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TABLE 6-1

NATURAL FREQUENCY COMPARISONS

cavity diameter - 5.5 in., neck diameter - 1.5 in., neck length -~ 2 in.

Cavity Theoretical ‘Measured
‘Length Natural Natural
Inches Frequencies cps Frequencies c¢ps
3.0 189 194
-4.0 163 169
5.0 146 149
6.0 133 . 135
7.0 123 125
8.0 115 117
9.0 109 111
10.0 103 105

cavity diameter - 5.5 in., neck diameter - 1 in., .neck length - 2 in.

3.0 135 137

4.0 117 119
5.0 104 - 107
6.0 95 95

All of the measurements recorded in the table were taken with .all of the
joints-and holes ‘in the cavity sealed with paraffin. The results-ﬁere
quite repeatable as long as the cavity was tightly sealed. The total
spread of measured values between several trials was usually only:two

or three cycles per second. The agreement between theoretical .and

measured values is good.
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If the resonator was not sealed, the natural frequencies were
observed to increase on the order of eight to ten percent and the
results were less repeatable because the amount of leakage was not
controllable. The damping also increased considerably. These re-
sults will be discussed in a later sectilon.

‘Measurements of both the natural frequency and damping were
also made with a steady sinusoidal input. The results were in good
agreement with both theory and the values obtained from transient
tests, ‘It was however a little more difficult to pinpoint the
natural frequencies. For example, there might be a frequency. range
of five or ten cycles for which the response was a maximum and very
nearly the same. At times the resonator produced a feedback effect
in that the input pressure was affected by reradiation from the
‘resonator. In this situation an accurate estimate of the input
was not-available. 1In general, the transient tests were much
easier to make.

‘A study of damping effects was not included in the objectives
of this study because of the works of Ingard [6] and Lambert [8].
Since damping characteristics are readily evaluated from the tests,
a comparison of damping in steady and transient cases can'lend support
to the equivalence of the two systems. The logarithmic decrement of
the transient and the amplitude of the steady state can-be converted
into the damping coefficient. The damping factor was found to lie
in the range of { = 0.025 to 0.030, being slightly higher for the
larger cavities. Damping could also be estimated from :steady state

tests at resonance since the magnitude of the amplification -factor
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at resonance is controlled solely by damping. The results were in
close agreement with those obtained from the transient tests.

There is nothing new about measuring the natural frequency or
the damping of an Helmholtz resonator; the measurements were made
more to establish confidence in the logic and equipment than for
the measurements themselves. The measurements did however produce
some-usefdl results which support the preliminary theorizing of this
work. If any of the higher modes of the resonator were excited to
amplitudes comparable with that of the fundamental or Helmholtz
mode, this would show up noticeably on the recorded decay curves.,
The wave form would be distorted showing any higher frequency com-
ponent of comparable magnitude clearly. The frequency would appear
to be changing -due to the presence of more than .one frequency. Some
high frequency excitation can be observed in Figure 6-1 and in ‘many
other figures showing response curves. The amplitude of the-high
frequency components .1s always very small in comparison with the
amplitude of the Helmholtz mode so that for all practical purposes
the Helmholtz mode determines the response of the resonator.. . From-
the response traces it is difficult to say if the high frequency
response -is excited by the sharp rise of the input pulse or by the
small amplitude high frequency oscillations superimposed on the in-
put pulse.

Many types of pulses were used to excite the resonator to make
- the natural frequeqcy:testS’with no control maintained over the pulse
shape. The free vibration decay curves were always the smooth classical

decay curves typical of a simple oscillater. The frequency of the
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Helmholtz mode was always the only frequency present with a significant
amplitude. These natural frequency tests although carried out mainly
to check the natural frequencies accomplished more than their purpose,
This was primarily bécause the tests amounted to Ftudying‘fhe relax-

. ation oscillations of a resonator excited by a.pulse,:wﬂich had not
been done before. The tests contributed something towards all the
listed purposes of the experimental work. The importance -of the
higher modes appears generally negligible and no frequency limitation

on the -input 'is apparent.
Time Response -Studies

One method of determining how well the Helmholtz resonator 'is
desgribed by the simple low frequency model in the transient situation
is to subject the resonator to Qarious pulses and compare theoretical
and measured responses. Significant differences between predicted and
measured responses would indicate the possible presence of other effects .
such as ‘higher mode responses. Several studies of response traces are
presented, all of which show excellent agreement between predicted and
recorded traces and further demonstrate the relatively minor importance
of higher modevresponses. The predicted response curves are -derived
using a straight line approximation of the pulse. The measured values
‘of natural frequency and damping are used to define the resonator.

The response is then :solved for using Laplace transforﬁ techniques

‘and a digital computer. The response pressure ‘is given by

P(S) = G(S) P, (S), -(6-2)
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where G(S) 1is the transfer function of the resonator and is defined
by the natural frequency and the damping factors, and ‘P,(S) is the
input pulse description. ‘A correction factor is used to account for
the slight difference in the sen;itivities of the microphones as noted
in Appendix D. When the damping is very small, the phase plane tech-
niques presented by Jacobsen [5]:may be used to predict ‘the response.

Figure 6-2 shows the same trace as Figure 6-1 except that the
sweep rate has been decreased. The sweep rate in Figure 6-2 is
‘2 msec/line. The natural frequency and damping factor may be taken
from Figure 6-1 as £y ~ 105 cps and [ a 0.03.

Figure 6-3 shows a straight line approximation of the input
pulse and the computed response. The separations between scale
‘divisions in Figures 6~2 and 6-3 correspond, the time scale for
each figure being 2 m sec/division, while the amplitude scale is
approximately 0.1 psf/division. The difference in microphone‘sensi—
tivities is taken into account in computing the predicted response
shown in Figure 6-3. ‘The agreement between the measured and pre-
dicted responses is excellent. The period of the first push-pull
cycle in -the input 'is about 6 m sec. so that the value-of the nen-
dimensional time parameter r/T is about 0.63. The magnification
obtained in this case is about 1.75. This considerable magnification
for tuning which is not close to critical can be attributed to the
fact that the pulse approaches a square wave which produces maximum
amplification [13].

Figure 6-4 shows the resonator configuration when'Figures»é—l

and 6-2 were recorded.
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When Figures 6-1 and 6-2 were recorded the measuring microphone
was in the No. 1 hole close to the center of the cavity. For this
particular “configuration fo/fL is about 1/0.83 from Table 3.1; thus
from equation (4-9) the ratio ‘PR/PN would be predicted to be approxi-
mately 1.12,

Figure 6-5 and 6-6 are pressure recordings inside the cavity for
the same pulse input as shown in Figures 6-1 and 6-2. Traces obtained
with the microphones near the axial center exhibit larger amplitude
high  frequency response which is, however, still quite minor as far
as the overall resbonse of the resonator is concerned, the amplitude
ratio being about .4/7 ~ 5%. This amount of high frequency response
was about as much as was ever observed.

The amplitudes of the traces shown in both figures appear to be
very nearly equal. The nuwber 2 microphone is, however, about 1.1
times as 'sensitive as the number 1 wmicrophone so that the pressure
at the rear of the cavity-is about 1.1 times that at the front as
predicted. This was as much amplitude variation inside the ‘resonator
as was ever observed. This resonator configuration is the most ex-
treme ever used. The cavity length is nearly twice the diameter and
the distance from the neck to the back plate is nearly 4 times the
distance from the neck to the side walls. The reéonator theory éould
not be expected to be very accurate if the length/diameter ration were
greater than about 2.

The study of this particular time>fesponsé”has indicated that "in
general the simple -oscillator representation is good, that the higher

mode response is of very ‘limited importance, and that the intermnal
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‘pressure differences associated with the first mode are present and
could in extreme cases become important but can generall& be expected
to be about 10% or less.

Figures 6=7 and 6-é are response traces for the same:resonator
configuratipn as F}gures 6-1 and 6-2. Figure 6-9 shows a istraight
line approximation of the input pulse anq fhe predicted response.
-Genefally the agreement between predicteﬁ and measured response
‘is, again, Qery good. The recorded peaks are about 10% higher'than
the predicted peaks. The -measurements were taken with the'micropbong
‘in the number 4 hole at the rear of the resonator. According to éhe
previous discussion these measurements should be about 107% higher;

The pulse studied in these figures has some resemblance ‘to a
sonic boom complicated by a reflection. The frequency properties of
this pulse are considerably different from the pulse shown in Figure
6-1, yet the pressure amplitude variation is still approximately 10%,
a fgct which to some extent tends to substantiate the claim that the
~relationship‘between the natural frequency of the resonator and the
geometry of the resonator determine the amount of pressure ampliﬁude
variation and that the frequency properties -of the pulse do not enter
significantly.

Figure 6-10 is the same ‘trace as Figure 2-10 except that the
sweep rate has been slowed to 2 m sec/divisioﬁ° The~reéonator con-
figuration used here was the same as in»Figure’6~4 except that the
cavity length was shorted to & inches. "The natural frequency and
damping factor for this confiéuration may~be“taken’from;Figure‘2~1Q*_

as approximately £, a 169 cps and { ~ 0.024. From equationi(4~é),



71

0.1 psf/division

5 msec/division

Figure 6-7. Time Responsc Measurement

g
o
1
v
o
N
Ual
o
-
tay
7]
ja P
'-{
. -
Q

Figure 6-8. Time Response Measurement



PSF/DIVISION

0.1

X ~DENOTES MEASURED AMPLITUDE
FROM FIGURE 6-8

v
/

\\/‘

"Figure 6-9.

o
N

2 MSEC/DIVISION

Time Response Measurement

44



PR/PN ~ 1.05, so that pressure variations inside the cavity may be
expected to be minor. It was difficult to observe any variation at
all,

Figure 6-11 shows a straight line approximation of the input
pulse and predicted response. In these two figures the amplitude
scale for the response is twice that for the input. The resonator
and the input are fairly closely tuned and the magnification is
about (2.2/1.7) x 2 x .91 = 2.35.

The input in Figure 6-12 is similar to a sonic boom input with
a reflection. The resonatér-configuration was the -same as for Figure
6-10. The response sensitivity is one fifth the input sensitivity.
The period of the push~pull cycle of the input pulse and the natural
period of resonator are nearly equal in this case so that there is
considerable amplification. The amplification is approximately

(1.8/2.1) x 5 x .91 = 3.9, Figure 6-14 shows the straight line

approximation and predicted response. Sonic booms with a reflection

can ‘look very much -like this input pulse so that pressure amplificaticn

on the order of 4 resulting from the Helmholtz resonator effect are
‘not unrealistic.

Figure 6-13 shows an input pulse which is-a fairly good approxi-
mation of a N-wave at least until the minimum is reached. The high
frequency spikes have little effect since their frequencies -are far
above the resonant‘frequency of the resonator. -The resonator. e¢on-
figuration is the same as for Figures 6-10 and 6-12., Figure 6-15
shows a straight line approximation of the pulse and the-predicted

response; agreement between the predicted and measured responses is
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again good. The sensitivities for the responses are half that for
the inputs. The magnification in this case is about (2.5/2) x 2 x
91 = 2.3,

Figure 6-16 shows an input pulse with three well defined push-pull
cycles. Reflections could produce such a signature for a sonic boom.
The response sensitivity is one fifth the input sensitivity so that
the magnification is about (2.9/2.1) x 5 x .91 = 6.3.

There are several conclusions which can be drawn from the time
response studies. The time response of the resonator to transient
input pulses can be predicted quite satisfactorily with the simple
lumped parameter model. The influence of higher modes appears to
be minor. -Pressure amplitudes at points remote from the neck .opening
may be expected to be slightly higher than given by the simple theory.
Although the differences are often noticeable, normally they will not
be large. These pressure differences can be predicted fairly well on
the basis of either equation (4-8) or (4-9). Considerable pressure
amplification can be achieved for pulses with more than one push-pull
cycle as would be expected theoretically. This has important-appli-

cation in sonic boom response analysis.

Maximax Study

A check on how thelHelmholtz resonator responds ‘as a simple
oscillator can be accomplished by checking how well the resonator
response traces out maximax curves such as given by Jacobsen and
Ayre [57]. The only pulse which could be produced well enough to

perform this test with the existing experimental apparatus was one
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cycle of a sine wave and this could not be shut off so that the study
'had to be restricted to the maximum displacement of the resonator
during the forcing era, denoted by XF (page 160, ref. 5),

Figure 6-17 shows input and response curves as used in making
these measurements although most of the measurements were made by
reading an oscilloscope trace. The results of these tests are shown
in Figure 6-18. The agreement between theory and measurements is
‘satisfactory. The theoretical curves agree with the curve - given by
Jacobsen and Ayre (5, page 165) except in the neighborhood of . /T
= 1.0. The pertinent curve from‘Jacobsen and ‘Ayre has been replotted
in Figure 6-18. The efror in Jacobsen and Ayre's curve may be ex-
plained by examining Figure 6-17. The maximum amplitude of resonator
response during the forcing era is seen to occur at the end of the
forcing era. The time rate of change is not zero at this point,
however. Perhaps Jacobsen and Ayre considered only those maxima
for which the first derivative is zero. This test adds nothing new;
it merely adds more weight to the argument that generally the simple
luméed parameter description of the resonator is quite good in the
transient situation.

There has been some discussion concerning the proposed super-
sonic transport as to the possibility of shaping the boom so that
it resembles one cycle of a sine wave rather than a N-wave. Com-
parison of Figures 6-18 and 2-6 shoﬁs-that the sine’have’pulse
can produce more amplification than the"N-wave for near critical
tuning (i.e., 7/T ~ 1.0) but not much amplification fof cases where

the tuning is not good. The N-wave, on the other hand, produces
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‘significant amplification any time the dimensionless parameter 7/T

‘is ‘greater than about 0.5.
Higher Mode Response

The higher mode response was discussed at some length-in the
first two sections of this chapter. Generally the amplitude-of the

higher mode response was found to be on the order of 5% or ‘less, of

the Helmholtz mode response. The only procedure which proved success-
ful in exciting a greater magnitude higher order response was the use
-0of an input pulse 'such as shown in Figure 5-12. This :in fact, -however,

amounted .to driving the resonator with many cycles of high frequency

input and does not belong in this study.

The higher mode response should not be-confused with the~Vari=

ations in pressure amplitude from point to point inside the-reéonator

cavity associated with the fundamental mode.

Generally there ‘is interest 'in the transient response'of‘the
‘Helmholtz resonator only when the time or frequency properties of
‘the input pulse are such that considerable excitation of the’fﬁﬁ&af

mental mode is expected. The higher mode response is not at all.

significant under these conditions. Higher mode response is very

often present but is not of the same order of magnitude as the.

‘response ‘in the fundamental mode.

The Frequency Criteria
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In the steady state situation, the representation of theﬁHéimhbltz

resonator as -a simple ‘oscillator -is restricted bygfrequency‘lfmitations
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on the input. The restrictions on the frequency or time properties

‘of the -input are not nearly so critical in the transient case. In

the transient case the input is limited in two ways, however. First,
there must be only a very few push-pull cycles in the input pulse.

If there were many cycles 'in the input, the steady state situation
‘would be approached. Also, the ‘input pulse must have a period which

is 'long enough so that considerable excitation of the fundamental or
Helmholtz mode occurs. Lf these two restrictions are-satisfied; then
the resbonse of the resonator can be described quite well by the simple
oscillator model.

The frequency of interest in the transient-response problem is
the natural frequency of the resonator rather than any frequency aééoci-
ated with the input. The relationship between the natural frequency.of
the resonator and the resonator geometry determines the importance -of
pressure amplitude differences from point to point inside the resonator
cavity. These pressure differences which are associated with the
fundamental mode are predicted approximately by equation (4-8) or
(4-9).

‘The experimental results discussed under time response studies
substantiate the above statements ‘fairly well. Figures 6-19 and 6-20
further substantiate the fact that the internal pressure differences
are related to the natural frequency of the cavity. -The resonator
configuration was as shown,in.Figure 6-4 when these results ﬁete'-
obtained, The input pulse for both éets of traces'ianearly_identicalu
In Figure 6-19 the‘responsé was recorded at the back.bf-the~reécnétor

while in Figure 6-20 the response was recorded with the microphone in
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the number 1 hole near the center of the resonator. Table 6-2 shows
the ratio of the peaks obtained from (6-19) to those obtained from
(6-20) for the first nine peaks. During the forcing era and also
the relaxation era this ratio 1s always about the same. Small
differences 1in the input pulse or difficulty in reading the photo-~
graphs ‘accurately could easily account for more variation than is
shown in Table 6-2. The ratio (PR/PN) was previously predicted

to be about 1.1 for this resonator configuration. The measured
values of ‘PR/PN given in Table 6~2 are in agreement with: the
predicted value and are about the same during both the forcing era

and the free vibration era,
The Effect of Leakage

An interesting effect which was observed during this work con-
cerns the consequences of the resonator cavity's not being air tight.
The sonic boom application might very possibly involve attempting to
calculate the Helmholtz resonant frequency of a typical room. It was
mentioned previously that air'leaks caused a noticeable rise in the
‘natural frequency. This effect along with other complications such

as non-rigid walls will have to be taken into account "in any attempt

86

to compute the ‘Helmholtz frequencies for rooms and will make theoretical

attempts more complicated and perhaps less reliable.
The two -observed effects of the resonator cavity's not being air
tight were an increase in damping and an increase 'in the natural fre-
b H

quency. The increase ‘In damping -is quite reasonable since there is

air motion through small holes which may be expected to -increase viscous



TABLE 6-2

COMPARISON OF MEASUREMENTS FROM FIGURES 6-19 AND 6-20

Peak #5 Hole Fp

Number. #1 Hole PN
1 24 - 1.1
2 22 = 1.08
3 o = 1.15
4 L2 = 1.06
5 o) = 1.07
6 2:2 = 1.074
7 L5 - 1n
8 2.1 - 1.08
9 2.2 = 1.1

N
o
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losses. The increase in the natural frequency may be explained by
considering a problem for which the air leak is controlled. The
resonator configuration as in Figure 6-4 was used with the cavity
length reduced to 4 inches and the no. 5 hole left open. Figure

6-21 shows an input and response trace for this configuration. The
natural frequency has increased considerably, to 203 cps, as compared
to 169 cps with the no., 5 hole sealed. The damping has increased
only slightly to ( = 0.03; a much greater increase in damping might
be expected if large numbers cof small holes or narrow slots formed
the leakage passage.

A predicted response curve was computed in exactly the same
manner as was previously done. The gencral shape of the response
curve is in agreement with the predicted curve, all the pcaks
occurred in the right places but the predicted values were about

30% higher than the measured values.

Figure 6-21. Time Response Measurement With Leakage
on a Second Mass
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The situation here is no longer the simple, one-degree-of-freedom
oscillator. The acoustical and equivalent mechanical circuit is shown

in Figure 6-22.

ACOUSTICAL SYSTEM ' MECHANICAL SYSTEM
< ‘
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Figure 6-22, Acoustical and Mechanical Systems
With Leakage or a Second Mass

.The differential equation for the acoustical system may be written as

. :
d® Poc A ' ' ;
(poly AL 5 + T (Ax - Agy) = AR(¢), (6-3)
. . v _
and
3
PoC Ay ‘ ddy '
“"“—'-V (Agy - Ajx) + po,&eaA2 rei 0, (6-‘-4)

where x and y are real displacements in the necks. If the equa-

tions are written in terms of volume displacements,

X = A;x o
, (6-5)
Y =Aay’

transformed into the frequency domain, and written in matrix form,‘

they become



[ ¢ ok p Ca} “poc? ] T R
—_ e gz 20 3 ° ‘x(s) I 1P (s
{55 x| fre
) . (6-6)
-n.c® L 2
poc Pole, ,4900} _
7 {} i ) S% + v L Y(S)_ i 0
which may be solved for the volume -displacements
(maSE + K) P, (S)
() = m m,S% + (m, + mg) KSZ ’ (6-7)
and
K P, (8)
Y(S) = (6-8)

m, m°S% + (m, + m?) KS? °

where m,, m,, and K are defined in Figure 6-22. A Newtonian force

balance on each of the acoustic masses yields the equations

Lel
() S%X(8) =P, (8) - B(S), (6-9)
1
and
.PoLe2
) S Y(8) = P(S). (6-10)
2 .

Equations (6-7) through (6-10) may be solved for the pressure inside

resonator cavity as
— T
) B ()

P(S) = s (6-11)
—_— 4+ 1
(m, + mg)K
The nonzero natural frequency. of -the system is
(my +.my)K

2 — ' -
We = mlmz » (6 12)
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If a numerical estimate is made as was done in the first part of this
chapter, the estimated natural frequency is 196 cps. This 'is in reason-
able agreement with the measured value. Equation (6~11) may now be

written as
) B
P(S) = ; (6-13)
Wo

which is identical to_the response equation for the simple resonator
given by Equation (C-94) except for the term mz/(m1,+-m2) in the
numerator. Thus, prediction of the response on the basis of the simple
resonator model is acceptable but should be in error by the multiplier
ma/(m1 + my). The relative magnitudes of m; and my are given by

m ~ 1.85 and my m~ 4.27. -Therefore, my/(m, + m,) is approximately
0.7 which agrees with the experimental results.

The expressions for the acoustic masses

m, = Pole, (6-14)
A1 ?
and
ny = Poes (6-15)
A,

indicate that a small cross sectional area leads to a large acoustic
mass. Thus, for small leaks the factor m,/(m, + m,) may be expected
ta be closer to unity.

-Several time response studies were made with various resonatér
configurations which were not sealed with wax so that there were
leaks particularly around the annulus between the back plate and

cylinder walls. 'As long as measured natural frequencies and damping
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factors were used, the prediction of the response using the simple
oscillator theory was quite good except for the constant amplitude
factor., If the leaks are relatively minor, this factor will not
cause differences of more than about "10%.

The presence of leaks in the resonator thus has three main
effects. The natural frequency increases, the damping increases,
and the response amplitudes decrease. .If the leaks are minor the
effect on the natural frequency and response amplitudes will not be
great. Damping may be increased considerably. Although the damping
factor might easily be doubled, the doubled value would still be
considered small relative to the inertia and elastic effects. The
damping for the sealed rigid resonator 'is so small that the addition
of only a little damping can double or triple the total amount of

damping.



CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

The following conclusions have been reached from the results
of this study:
1. In sonic boom response investigations, the lumped parameter repre-
sentation of the Helmholtz resonator should be adequate as a model for
transient response studies. -As is often the case with the Helwmholtz
resonator, determination of the effective neck length will be an im-
portant and critical part of the -prediction Oﬁjnatural frequencies,
The fact that the walls of a structure are nonrigid will have some
effect on the validity of the model simplification. The presence of
air leaks may have marked effects if the amount of leakage is great.
Still, it should not be difficult to make reasonable estimates of the
natural frequency. -If measured estimates of the natural frequency'
and damping are used it should be possible to predict responses to
booms quite well.
2. The Helmholtz resonance phenomena should be an important part of
any analysis or prediction of sonic boom damages. Pressure magnifi-
cations may cause damage because of increased level of loading. The
ringing associated with the Helmholtz response may possibly act as a
secondary source driving other properly tuned systems to considerable

amplitudes.
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3. The proposed supersonic transport, which will produce a longer
boom duration than those produced in the Oklahoma City tests, will
cause no new problem as far as Helmholtz resonance is concerned.

If the shape of the boom is modified to resemble one cycle of a sine

wave, amplification by Helmholtz resonance or response of any simple

oscillator will be greater for near critical tuning but less for non-

critical tuning. The maximum magnification possible for the sine
wave -is about three, while that for the N-wave is about two. The
N-wave can theoretically produce pressure magnifications on the
order of 1.5 to 2 in any resonator which has a period less than
about twice the length of the boom.

4. The lumped parameter representation of the Helmholtz resonator

will generally be adequate for the analysis of transient responses.

-If the resonator walls are reasonably rigid and there are no air

leaks the natural frequencies may be predicted within about 3%.

If measured natural frequencies and damping factors are used and

the resonator geometry is reasonable, the response to a pressure
pulse can be ‘predicted accurately. Reasonable resonator geometry
requires that the cavity be compact as opposed to elongated, that
the neck cross ‘section be compact, that the neck cross :section be
small compared to the cavity cross section, gnd that the neck 'length
be less than the large dimension of the cavity but preferably not
zero. -The input pulses must not contain over two 6r three push-pull
cycles however. Frequency limitations are not as critical as ‘in the
steady state -response problem.and the frequency of interest is the
natural frequency of the rescnator, rather than any particular fre-

quency associated with the transient input.
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5. ‘Higher mode response is not generally important for the transient
problem. Sharp rise inputs do not produce significant higher mode
response; the higher mode response is usually less than 5% of the
fundamental mode response.

6. The effects of air leaks on the resonator response include in-
creasing the natural frequency, increasing the damping, and reducing
response amplitudes. These effects may be minor or quite significant
depending on the extent of air leakage.

7. The plane wave tube used in this study is ‘a very useful and
workable ‘tool for the study of acoustic transient response problems

and particularly sonic boom simulation studies.
Recommendations

It is recommended that further investigations be carried out
in the following areas:
1. The verification of the lumped parameter representation of the
Helmholtz resonator for the simple, one-degree-of-freedom resonator
seems to answer the multi-degrees-of-freedom question at least
partially. An experimental verification of a lumped parameter
description of a several-degree-of-freedom system would probably
not be wasted effort however. A study of several-degrees-of-freedom
systems with interest 'in maximum éossible responses would be of in-
terest to the sonic boom applications. The complications arising
from pressure amplitude variations in the fundamental mode from
point to point within the simple resonator could lead to some in-

teresting problems with the several-degrees-of-freedom system.
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2. The difference between normal incidence and oblique incidence of
the pulse should be minor due to the rapid passage of the pulse over
the neck opening; however, the problem probably warrants closer study
and some experimental investigation.

3. The theoretical basis for predicting the importance of the higher
modes is weak. This 1s a very difficult problem in the case of the
acoustic system and is not simple for any other type of distributed
system.

4, 1In a typical residence it is sometimes very difficult to -identify
the lumped parameters because of difficult geometry. The solution of
this problem will be necessary if attempts are made to study the
acoustic response of buildings as a whole to sonic booms.

5. The effects caused by the nonrigid walls deserve investigation,
6. The plane wave tube used in this work offers excellent possi-
bilities 'in sonic boom simulation. Refinements in the driving mecha-
ism such as a rigid diaphram and servo control which could be programmed

as desired should permit really good simulation,
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APPENDIX A

LIST OF SYMBOLS

A Cross sectional area of the neck of a Helmholtz resonator.
Also used as an arbitrary constant in Appendix C.

B An arbitrary constant used in Appendix C.

C Capacitance

c Velocity of‘sound

D Characteristic dimension, also the diameter of the cavity

cylinder in Appendix C.

E Voltage

To
fn(E: Function defined by Equation (C-28)

To

fn'(E: Function defined by Equation (C-52)
fL Limit frequency on lumped parameter model
£, Natural frequency of a resonator
j /-1
Jo Bessel function of the first kind of order zero
L Length of the circularly symmetric cavity shown -in Figure:C-1
L' Leﬁgth of the neck shown in Figure C-1
Le ‘Effective length of the neck
ﬂv Inductance
P Acoustic pressure
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Pressure at the open end of the neck as shown in Figure C-3.
Lnput Pressure

Pressure at the mouth of the cavity

‘Pressure inside the resonator

Vector velocity

Radius of the cavity shown in Figure C-1
Radius of the neck shown in Figure C-1

Radius ‘and fadial coordinate used in -Appendix C

Function defining pressure variation as a function of radius
defined by Equation (C-3) '

The Laplace operator
Time

Function defining pressure variation as a function of time
defined by Equation (C-3)

Volume velocity

Unit vector in the axial direction used in Appendix C
Unit vector in the radial direction used in Appendix C
Velocity component along Gx

Velocity component along Gr

Velocity at the mouth of the cavity in Appendix C
Velocity at the open end of the neck -in-Appendix C

Volume displacement

-Axial coordinate shown in Figure C-2

Maximum displacement during forcing era

Static ‘displacement

Function defining pressure variatieon as a function of x
defined by Equation (C-3)

Bessel function of the second kind of order zero



Axial component along neck defined by Figure C-3
Parameter defined by Equation (C-18)

Parameter defined by Equation (C-6)

Neck correction at the open end

Neck correction at the closed end

Parameter defined by Equation (C-80)

Parameter defined by Equation (C-38) and (C-41)
Wave length of pressure oscillations

Angular frequency in radians per second
Parameter defined by Equation (C-70)

Mean density of air

Parameter defined by Equation (C-38)

Time duration of a sonic boom
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APPENDIX B
LIST OF MAJOR INSTRUMENTATION

Microphone System~-Model 21BR150 Condensor Microphone, Serial No.
3854; 165 A Base; Model 526 B Power Supply,
Serial No. 608; Manufacturer; Altec Lansing
. Corporation,

Microphone System--~Model 21BR150 Condensor Microphone,  Serial No.
3892; 165 A Base; Model 526 B Power Supply,
Serial No. 606; Manufacturer, Altec Lansing

Corporation.

Dual Beam Oscilloscope--Model 502; Manufacturer, Textronix;
Serial No. 022893.

Low Frequency Function Generator--Model 202A; Manufacturer,
Hewlett-Packard; Serial No. 037-09559.

Audio Oscillator--Model 200 AB; Manufacturer, Hewlett-Packard;
Serial No. 003-13132.

Tone Burst Generator--Type 1396-A; Manufacturer, General Radio
Company; Serial No. 354.

Power Amplifier--Model MG 75; Manufacturer, McIntosh.

Microphone--Model 98A108 Crystal Microphone: Manufacturer, Shure
Brothers; Serial No. 2241,

Microphones (4)--Model 141-11, Crystal Microphone; Manufacturer,
Turner.
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-APPENDIX C
DERIVATIONS RELATING TQ FREQUENCY LIMITATIONS

A more detailed analysis of a particular resonator which is
geometrically simple is warranted for several reasons. The analysis
allows establishment of frequency limitations on the lumped parameter
model in a reasonably straightforward manner, at least for the steady
state situation. How these frequency limitations may be applied to
the transient situation is not clarified by the discussions in this
appendix, The frequency limitations so established may then be assumed
to apply to other geometric configurations at least in a general way.
This extension to other geometric configurations is restricted to
shapes which are not too extreme. The cavity should not be greatly
elongated, i.e., it should be roughly spherical. The neck cross
section could be round, elliptical, square but should not be, for
example, a narrow slot. The establishment of frequency limitations
and their extension to permit application to the general Helmholtz
resonator follows along the lines used by Beranek [3]. The analysis
is essentially a solution of the wave equation for a particular geo-
metric configuration. The solutions obtained reduce to the lumped
parameter description when approximations permitted by a low fre-
quency assumption are . introduced into the equations.

The analysis glso illustrates the tremendous mathematical diffi-

culties involves in detailed analysis of the Helmholtz resonator,

106



107

Even for the very simple geometric éituation studied here, it is
necessary to make several simplifying assumptions.. Attempts af a
more sophisticated solution often encounter insurmountéble mathe-
matical difficulties. The geometry of the resonator if not extremely
‘simple can present great difficulties.

The analysis also demonstrates how the consideration of higher
frequencies and higher modes ties the solution to the geometric
details of a particular resonator. -Any solution thus oﬁtained at
tremendous cost in terms of time and effort is very restricted in
its application,

The geometric configuration of the resonator to be studied is
shown in Figure C-1. The volume or cavity of the resonator is a

circular cylinder of radius R, and length L closed at both ends.

e | — , ' L

Figure C-1. Cross Section of a Circular Symmetric Resonator
Configuration
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The neck is a circular cylinder of radius r, and length L' and
is attached to one end of the cavity along the axis of circular
symmetfy. The walls and neck of the resonator are assumed to be
rigid.

The wave equationm,

1
1y o= e
K p = cd ata > (C“].)

will be assumed to apply and damping will be neglected. Because
of the discontinuity where the neck joins with the cavity, it is
advantageous to analyze the neck and the cavity separately. The
physical configuration of the cavity is shown in Figure C-2., The
axial component of velocity is to be specified in the neck as a

function of radius and time.

Ro

Figure C-2. Geometric Configuration of the Cavity of the Resonator
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The property of circular symmetry suggests that polar coordinates
would be appropriate. The wave equation applicable to this case may

be written as

2 3
Fp lop Fp_ L Fp -
where
p = the pressure
x = the distance along the axis of the cylinder
r = the radius
" ¢ = the velocity of sound.
The solution of Equation (C-2) may be taken in the form
p(r,x,t) = R(x) X(x) T(t). | (c-3)
Equation (C-2) can then be written as
1 (d®R , 1 dR 1 d?X 1 d3T _
R ldr®  r dr} TX a® T BT ad - (c-4)

If the Laplace transformation is applied to Equation (C-4) with re-

spect to the time variable the equation becomes

1 (d®R

1 dR 1 d8x _ 82
R dr® " r dr} + X dx= ¢® (c-5)

where 8 1is the Laplace operator. The function R(r) is given by

the solution of the ordinary differential equation
LRGLR a2 g (C-6)
dr® " ¢ B°R =0,

which is Bessel's differential equation. The general solution of

Equation (C-6) is
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"R(r) = €y Jg(Br) + Ca¥o(Br) (c-7)

whexre C, and Cp; are arbitrary constants, J,(Br) is the Bessel
function of the first kind of order zero, and Y,(Br) is the Bessel
function of the second kind of order zero. The Bessel function of

the second kind Y (Br) goes to infinity for a zero argument. Since
pressure along the axis will be finite in the problem under discussion,

the constant C, must equal zero and Equation (C-7) may therefore

be reduced to

R(r) = C J,(Br). (Cc-8)

The pressure and velocity are related through the equation

-grad(p) = (€-9)

29
pOBt ’
where a is the vector velocity and p, 1is the mean density. In

the cylinderical coordinates of this problem, Equation (C-9) may

be written as

- - Vy - Vr -
2L _o®s o, QX ‘ o'r
K Ux ar Yy Po At Yx * po Jt Yr

» (C‘lO)
where ﬁx and Gr are unit vectors directed in the x and r

directions and VX and Vr are the velocity components. -Equation

(C-10) can be divided into separate equations

. v
2L, ER_‘E (c-11)
3 Vr
»éf- =T po “g;“ ) (lez)



At the cylinder wall the radial velocity Vr becomes ‘zero as does
the time derivative of Vru This ‘boundary condition in Equation

(C-12) leads to

2P _R@ - o
ar 5t X(x) T(t) 0 (c-13)
or
RE) _ (C-14)
dr
and
J1<BR0) = 0, {C-15)
where J is the Bessel function of first kind and order one.

1

Equation (C-15) defines the values which the parameter { may

have. Thus, the successive values of § are

3.832 7.0155 10,1753 13,324 16,471

B=0"g "R, * T R, * R, ' R

(C~16)
o

The function X(x) is given by the solution of the differential

equation
d?x
el oRPX =0 , (C-17)
where
S= 2
Q%=E—5+5 . (C-18)

The general solution of ‘Equation (C-17) is given by

X = Ae®® 4+ Be”¥ (C-19)

The solution of Equation (C-5) which is the Laplace transform of

the solution of Equation (C-2) is given by

B(r,x,8) = § (B 1) {éneahx + Bnemahx} T(S) . (C-20)
n=0
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The velocity Vx in the x direction will be zero at x = L. This

boundary condition in Equations (C-11) and (C-20) leads to the equation

d P o Ct’nL “O/nL ‘
= {X=L - £ 50 e ™ -Be "l (c-21)
or
o L o1
Ae™ -Be " =0, (C-22)
n n

At the end x = 0, the boundary conditions are

Vx =0 for r > ry (C-23)

and

Vx = V(r,t) for r <1y . (C-24)

These boundary conditions may be applied by substituting Equation

(C-20) into Equation (C-11) with the result

™ |x=o=§§o Jo (80> @y {AL - B} T(S) = -poSV() Vo(8) (c-25)

where the variables have been separated in the velocity function on
the right hand side. V, is the velocity input at the mouth of the
cavity. ‘The radial component of this velocity is assumed to be zero.
The .difference between the coefficients {An - Bn} may be separated
from Equation (C-25) by using a Fourier Bessel series expansion. The
procedure 1s to multiply both sides of the equation by rJo(Bnr) and
-then to integrate with respect to the r variable from zero to R,.

The result is in this case

r
-2p, SVg(S) IOF'Va(r)VJQ(Bnr) dr

n" T o T(5) R J2(B T)

- (C-26)



or
. g RS Va(S) . Zo i}
A, -3 RS R (c-27)
where Ty :
I, 2 j r Vy(r) Jo(Bnr) dr
£(x) = —F (c-28)

Ro® Jo2 (B r)

If the velocity in the opening is not a function of the radius then

Vo(r) =1 r <1y
] ‘(C-29)
Vo(r) =0 r >r, :
and Equation (C-28) becomes
r 2ry J, (B _r,)
o n
=) = c-30
fn( R ) R2 Bn JOS (BnRQ) ( )

Several values of this function have been tabulated in Table C-1.

TABLE C-1

VALUES OF fn

n & fﬁ(.l) fn(.Z) fn(.3) fn(.4) fn(.S)
0 0 .01 .04 .09 0.16 .25
1 3.83 . .0613 ‘ .232 475 .733 .95
2 7.0155 . 1045 .343 .54 .515 .21
3 10.1735 . 1405 .362 .298 -.116 ~.53
4 13.324 . 166 .286 -.062 -.436 -.169
5 16.471 .181 . 139 -.304 -.158 413

6 19.619 .182 -.022 -.282 .266 <147
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Equations (C-22) and (C-27) may be solved for the coefficients

A and B as Ty - L

n n i n

A = 9 (C"“31)
a&I(S) 2 sinh (anL)

and
Lo oan
SV (S) £ (=)e
Po -Va n Ry
Bn = ’ (0_32)
ahT(S) 2 sinh (anL)

Substitution of these coefficients into the solution equation yields

fo. [ an(lox) o (Len)

- Jo(ﬁnr)po SVE(S) fn(EE.) {e On X + eOIn X }

Blr,x,8) = 2 o sinh(o L)
n=0 n n

(C-33)
or
T
Jo(Bnr) cosh(éh(L—xZ)fn(E%)

o 31nh(anL)

B(r,x,8) = p, SV (S) % {C=34)

n=0

The axial and radial components of velocity can be derived from
Equations (C-11) and (C-12) as

r
. Jo (B 1) Sinh<?n<L“x§>fn<E%>

Vx(r,x,s) = Vz(s) 2 sinh (QL) (C.,,BS)
n=0 n
and
Lo
RN cosh(éh(L~x§>fn(§;ﬁ
. . = S - B -
V (r,x,8) = Vg( )nEO o sinh @ L) (C-36)
At x = 0, Equation (C-34) becomes
To
) - Jq (Bnr) cosh (&'nL )fn (*E-:)
P(r,0,s8) = py SV5(S) T (C-37)

n=0 an'Sth.@%L)
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These solutions agree with Ingard [15] who made his derivations in the
time domain. Several assumptions are involved in this solution. The
wave equatlon was assumed and damping was neglected. The resonator
was assumed to be rigld. The radlal component ¢f the input velocity
was assumed to be zero and the axial component was assumed invariant
over the neck cross section to facilitate a simple sclution. More
complicated velocity assumptions greatly complicate the solution.

The neck may be studied by considering an open end circular
tube where the pressure variation as a function of radius and time
is specified at one end and the velocity variation as a function

of radius and time specified at the other end.

P'(Z) P[(rl fo Q_ V2(Z) Va(fL

Figure C-3. ©Neck Configuration

The solution of the wave equation for this case may be written as

_ oo , o,y -0,y
Blr,y,8) = £ Jo(yr) fAe " +Be TLTis) . (0-38)
n=0

The radial velocity must be zero at the walls of the tube so that

Jl(ynr) =0, (¢-39)

This expression defines the permissable values of v  as



_ o 3.832 7.0155
Yo T V2 rey ry ’

o . (C-40)
The parameter o, is defined by the expression
s %
= 4(2)2 - AC-4
o, = {2 + v} - (c-41)

Lf the pressure variation at the open end of the neck is assumed to

be a function of time only, then

P, (5) =ﬁ§O,Jo(ynr){An +B_} T(S) (c-42)

If both sides of Equation (C-42) are multiplied by rJo(Vhr> and
integrated with respect to r from zero to r, , the coefficients

are given by

2 j:o r<?l(S)/T(Si> Jo(th) dr

A +B

n n (C-43)
5% %y ¥o)
or after carrying out the integration
2 P (S) Jl<tho>
A +8B (C=-44)

n n  T(S) oY, J02<Vnro)

Since Jl(yhro) = 0 , the sum {An + Bn)} must equal zero for all
n greater than zero. The value of A, + By can be evaluated from

~Equation (C-44) by taking the limit as . approaches zero
Y, app ;

2 Pl(s) lim J1<Wro)>

AO + By = m 0 v (C-45)
The limit can be evaluated using L'Hospital's rule as
1im J1 {¥eo) _ lm g () - i (yrgd g (C-46)
:Y__,O v - ﬂY...O { olV¥ro ero } ° ’ -
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which can be written as

lim 5 (Y0 1 1im () = 2
N0y T2 y0 To Tet¥rel T Ty

This results in

The boundary condition on the right leads to the equation

o o L' -g L'
“po SVa(8) Up() = T o, Ja(ynr){gne "oope ° } T(S)
n=

Using the Fourier Bessel series expansion, leads to

r
0
N ean' . e-gnL' -2 py SV5(S) fo r V,(r) Jo(an)dr
n n ch(S) r,°? Jo (ynro)
or ‘
R GhL' s é-an'= -pg SV5(8) fn'(ro)
n® n chT(S)
where

r
2 Jor Vg (x) Jo(ynr)dr

fn'(r°) = réﬁ JAE(Enr)

If the velocity at the neck end which joins with the resonator cavity

is not a function of the radius, that is Vg(r) = 1, then the function

1
fn (ro) becomes

2 J, ('ano)
Yoo Jo- (¥,F)’

fn'(ro) =

The condition of constant pressure at one end and constant velocity

at the other leads to the results

A +B =20

(C-47)

(C-48)

.(C-49)

(C-50)

(€c-51)

(C-52)

(C-53)

(C-54)
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and
o L' -g L'
Ae®™ -Be " =0 (C-55)
n n
for n > 0. These equations have no -solution except An ='Bn =0
for n > 0. ‘Equation (C-38) thus becomes
] Sy -2y
B(y,s) = {Ae + Be } T(S) . (C-56)
Equation (C-51) becomes
S
%’L' =T LY po cVa(8) 5
Ae - Be = T(S> (C_’ )

Equations (C-48) and (C-57) may be solved for the coefficients A

and B as
S
P, (8)e”  + pg cV,(S)
A = v 3 {C-58)
-2 cosh(:L'} T(S)
and
.S_, .Ll
-P, (8)e™ - pg cV,(8)
B = N (C"59)

-2 cosh(%L') T(S)

Substitution of these results into Equation (C-56) results in the

solution

P, (S) cosh(%(L' - yi)- po V5 (8) sinh(g"y)

ﬁ(YsS) =

S i
cosh(c L") (C-60)
The velocity can be derived from Equation (C-11) as
S
_ 2%£gz sinh<§'(L'-i» + Vv, (5) cosh(%-y)
V(y,s) = —> (C-61)

S o
cosh (c L")

At y ='L', Equation (C-60) becomes
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P,(S) - pcVg(s) sinn(Z LY

P,(S) = : (C-62)

cosh (§ LY
c
Having obtained solutions for the wave equation for the cavity
and for the neck, one next examines these solutions and determines
under what conditions they may be combined to obtain a complete
solution for the resonator. The solution equations for the cavity
show that in general the pressure across the mouth is not constant
but is a function of the radius r. The solution for the neck with
a constant pressure input at the open end and a constant velocity at
the cavity end indicates that the pressure and velocity in the neck
are independent of the radius. Thus, at the mouth of the cavity
Equations (C-33) or (C-34) indicate that the pressure is a function
of the radius while Equations (C~60) or (C-62) indicate that the
pressure is not a function of the radius., Thus, the solutions will
Be of value when this discrepancy can be avoided or reduced to a
minor effect. From a mathematical point of view this difficulty
arises because ‘it is impossible to impose three arbitrary end
conditions on the solution of the wave equation for the neck. Thus,
it is not possible to impose simultaneously the boundary conditions
of the pressure at the open end being P, (S), the velocity at the
cavity end being V,(S), and also that the pressure at the cavity
end being P,(r,s). Actually neither the pressure nor velocity
will be constant across any cross section .of the neck. A better
approximation for the velocity and pressure distribution might be
obtained for a few geometrically simple cases, but the mathematical

difficulties become excessive and any general solution is impossible.
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Since the objective of this work is the study of the transient response
of resonators in general rather than a detailed study of the modes and
responses of a particular configuration, the solutions already obtained
are adequate for their intended purpose,

The equations which describe the characteristics of the neck may
be ‘improved somewhat by taking into acccunt the movement of the gas
in the immediate vicinity of either end of the neck. Reasoning from
the continuity viewpoint, some of the gas outside must move in unison
with that in the neck. Kinsler and Frey [4] show ﬁhat a-piston vibrating
in an infinite baffle is loaded by the adjacent medium with a mass equal
to that of the fluid contained in a cylinder of the same diameter as
the piston and length AL = 8r,/3T , where r, is the radius of the
piston. At low frequencies ‘it is usual to assume AL = 8r,/3m = 0.85r,
for a neck terminated in a wide flange and AL = 0.6r, for an unflanged
termination. Thus, in the equations describing the neck, the actual
length of the neck L' can be replaced by an effective length Le

where
‘Le =L' + AL, + ALy . (C-63)
Kinsler and Frey show that there is a frequency limitation on this
approximation which is given by
A > 4T, -(C=64)

The correction factor does not vary rapidly however so that the fre-
quency limitation is neither rigid nor critical. The correction
factor also depends on the -shape of the neck although it does not

vary much for shapes which are not extreme. As the length of the



121

neck is‘ipcréased théfcorrectionvfactofé beéomé’relativeiy 1¢ss'im-v
portant.‘

The solution equations for the cavity are fully compatible with
the solution equations for the neck‘if pressure.or velocity variation‘
,with the radius_is Small‘for r leés than Lo Some.idea of hbw
important the dépendeﬁcy'bn the radius-is,’caﬁ be develo#ed by con-
sidering the frequency properties.of the éscillations. ‘For préssure
oscillations which are sinusoidal in time, a variation of 18° in
Figure C-4 which éorrespoﬁas to A/20 represents about fiQe ﬁercent

variation. Thus, if the pressure or velocity variation with the

-~ 90°
A

—trd e

4

Figure C-4, Wave'Length and Frequency Relationship for
: " Sinusoidal Motion
radius ié to be less than five percent for r < Ty, T, 1is related
to the wavelength by the equation
\ .
ry <55 > (C—65)
or the diameter of the neck should be less than A/10. If the dia-

meter of the neck is less than half the diameter of the cylinder,

_then this condition can be expressed as
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D <-§— (C-66)

where D 1is the diameter of the cylinder.

The solution equation for the cylindrical cavity may be written

as
P, (x,s)
Va(8) = (C-67)
o5 & oD ool T
n=0 % _51nh(ahL) n R,
or
Po(r,s)
Vg (8) = osh(G 1) r J,(B_r) cosh(g L) r
Po€ ;:i:i'i?"" G+ 508 T — A £ (=)
sinh(Z L) Ro 2l e« simn(al) ‘n'R,
(C-68)

where Pg(r,s) may now be considered to be the input and v, (8)
to be the response. TIf the condition expressed by Equation (C—65)
or Equation (C-66) holds, then the variation with the radius is

unimportant. For r = 0 -Equation (C-68) becomes

| . Py (S)
Va(s) = S
cosh(= L) 1, » w 1 cosh(a L) I,
—— @) *pSE o )
Po® W1y Ro Po @ sinh(gl) n'R
sin c n= (C-69)
The parameter o, is -defined by Equation (C-18) as
S»a 1 SE @'2 1
= 42 e 8l% _ [2 -0\ ol
@, {ca + Bn } c® + Roa} ° (C-70)

If jw is substituted for S in Equation (C-70) the result is

_ L2, B
% T {' G+ (Ro) } . (C-71)
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Lf the second term of the above expression is much -larger than the
first, then the first may be neglected. The parameter §, may be
evaluated from Table C-1 as § = 3.83, so that the first term on

the right of Equation (C-71) may be neglected if

3,83 2m

R, ® > (5)E . (C-72)

If the first term is to be less than five percent of the second,

then
o 5 200m° 4 -7
(3.83)%
or
A > 7.4 Ry (C-74)
or approximately
A > 4D, (C-75)

Lf Equation (C-75) holds then o is approximated by the relation

¢

= (C-
Q’nmﬁn-Ro . (C-76)

If @nL/Ro is greater than about 2, the ratio

cosh g L
n

sioh o L~ ' ° (©-77)

since the hyperbolic functions are very nearly equal for large argu-
ments. With this condition the second term in the denominator of

Equation (C-69) becomes

Lo Ty
S 3 g S 5 & s 3 8 2 % (Byro) (C-78)
Po "= Po PP & BT B -
n=1 % n=1 Bn n=1 §n To (BnRO)

or



r
. £ G
.+ i AR -
pOSnE1 a PoS gy A (C-79)

where

= 2 J, (B ¥o)
b=k 350 (B Ry

(C-80)

The hyperbolic functions may be expanded in infinite series

form as
a & 7
's~inhx=x+-}-;-.-»+-}5£r+-’-7{-:-+-.. (C-81)
and
X2 xY o x®
cosh x =1+ ET'+ 5T +-ET'+ T, -(C-82)

It is sometimes useful to use only the first term of these ‘series
approximations, -Some notion of the accuracy and limitations of
this ‘approximation may be gained by comparing the one term approxi-
mation with the two term approximation, For cotanh (x) the

approximation becomes

. -] 2 ]
(1 +-’2£,-+ -e0) (1 +12‘-3-+ e (1 -%+ o)

x(1 + 2%)

cosh x
ginh x ™

~ X

(c-83)

If the term x2®/3 1is less than perhaps five percent of the 1, then

the one term approximation of

cosh'% (L-x%) 1
sinh — 1L —_—
c c
will be accurate within about five percent. Thus
3 1 A
(SL/e)®/3 < 55 (C-85)
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Substitution of @ = 2mf for S, where w and f are the frequency
of the sound in radians per second and cycles per second respectively

and
fA=c , (C-86)

where A 1is the wavelength of the sound, allows Equation (6-85) to

A > 2m /-%? L~16L . | (C-87)

With these simplifications the response equation for the cavity

be written as

becomes
) A (c-88)
V,(8) = = , C-88
2 Poca o C
ST Rge T Pofold
which could be expressed as
P, (8S)
V,(8) = , (C-89)

poc® §5 T SpoTol
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where A 1s the area of the neck and V 1is the volume of the cavity.

Thus, the acoustical system shown in Figure C-2 (the cavity alone) is

analogous to the electrical system in Figure C-5

T

E(t) ==

&

Figure C-5. Electrical Circuit Analogous to an Helmholtz
Resonator at Low Frequencies
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where the voltage input is analogous to the pressure input, current
is analogous to velocity at the piston, the inductance is L= Polol
and the capacitance is C = poca A/V. This agrees with the analogous
representation as presented by many other authors except for the in-
ductance term. This term is in fact the end correction term for the
cavity end of the neck. In the previous discussion of the neck it
was mentioned that additional mass loading ranging from about .85 r,
to .6 T, should be added. The value of A for various values of
(r,/Ry) 1is given in Table C-2 and is seen to be in rough agreement

with the above values.

TABLE C-2

SELECTED CALCULATED VALUES OF A

(o]

Cig) A
| =
2 27
A .56

There are indications that the neck correction factors are not simply
a function of the neck shape and the assumed velocity distribution as
is implied by Rayleigh [1] for example, but also depend on the geometry
of the cavity and the location of the neck opening into the cavity.

If the effective length of the neck is less than 'A/16 , then

Equation (C-62) may be reduced to

P, (S) - P,(S)
v(s) = LB ; (c-91)
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where V(S) 1is the mean velocity in the neck. The second term in
the denominator of Equation (C-89) may now be dropped since r A = Ag
in Equation (C-63). This leads to the equation

P, (8)

— i Vo (8) = V(s) . (C-92)
P ys

Equations (C-91) and (C-92) may now be combined to yield
P. (S)

CEK
4 PoC A
Po SLe +

(C-93)
B o

In terms of pressures this result becomes

P,(5) = B(S) = (C-94)

SB

+ 1
(czA
VL
e
From either of these equations it can be seen that the Helmholtz
resonator 'is analogous to a simple oscillator as shown in Figure
C-5 where the inductance is now pLe. -If the mechanical analogy
is desired rather than the‘electrical, the equivalent system. is

‘shown in Figure C-6.

LLLLLLLLLLLLSLYL

K

M
| 'I f(t)

Figure C-6. Mechanical System Analogous to a Helmholtz Resonator
at Low Frequencies




Here the forcing function is analogous to pressure input, the mass

3
c*A
is m =-pLe and the spring constant is K = Egv—— . The natural
frequency is given by
c A
fn “om4 VL (C-95)

The results given by Equations (C-93), (C-94), and (C-95) and the
analogous electrical and mechanical circuits are in agreement with
the simple results -obtained by Rayleigh and others. This model is
‘subject to the restriction that the sound wavelength be greater
than sixteen times any of the characteristic dimensions of the
resonator.

Lf the ratio of the hyperbolic functions is approximated as

cosh x 1 + x*/3
sinh x ~ X

(C-96)

an estimate of what the wavelength restriction should be may be
obtained by examining the effect of adding another term. Thus,

the approximation could be written as

2 4
cosh x 1+ §T1+ Wr )
sinh x 3 5 ~
(x + %T + %T )
| B P SO e SO e
Arorhyr ) - A -3r-ST+ G +57° 4 ..
X
x2 x4
L+5 - 45
= - (C-97)

The approximation
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cosh §’L 1+ C%‘L)Q/B
: g ~ - (C-98)
sinh E‘L §E
) c

will be accurate within approximately five percent if

20 <30 %"("E‘) (€-99)
which reduces to
Ason [FL ~7.3L (C-100)
or
A > SL‘ . (c-101)

If the approximation given by Equation (C-96) is used in:Equation

(G-69) which describes the response of the cavity, the result is

P, (S)
'Vz(s) = . (C-102)
poc’a ro 2 QOSL re 2
5L (Eo-) 3 (‘1'{0“) + poS(xgh)

The analogous circuit for this case would be the same as that shown

in Figure C-5 where the inductance and capacitance are given by

- _ Pl To.2
L = 5 ('1'{0-) + po (rod) (C-103)
and
2
pPoc A - ,
C = —5— . (C-104)

This circuit representation of the cavity is valid for wavelengths
‘greater than 8 times -the characteristic dimensipns -of the cavity.
If the cavity dimensions are less than 'A/8, it is very likely

that the neck dimensions would be less than 'A/16. The equivalent
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kcir¢u1t'for Equation (C-91) is ShOWn'in,Figute,C;7;

Figure C-7. Analogous Electrical Circuit for the Neck for

- R A>L /16 ' :
The combination of the analogous circuits from Figures C-7 and C-5,
beihg careful not to include end effects more than once, again results
'in the simple oscillator circuit shown in Figure C-5 where the_in-.

ductance and capacitance are given by

R X 1oy
= + = (& ' C-105)
Po™e _3»-R‘° , =
“and .
» ’ caA . o -
o= ~ (c-106)

The equation for the circuit can be written down from the circuit
or can be obtained by combining Equations (€-91) and (C-102). In

this case Equation (C-91) should be written as

P, (S) - Py(S) S
Vol = (-

where

Ly = L'+ 8 o ~ (c-108)
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is used instead of

Le =L'"+ 5 +hp =Ly + 8y (C-109)

where 4, 1s the end correction term for the open end of the neck
and A, 1is the end correction for the end which joins with the
cavity. The reason for this change is that the end correction term
for the cavity end is included in Equation (C-102). Elimination of

P,(S) from Equation (C-102) and (C-107) yields

P, (S)
Vy(8) = V(S) = . (c-110)

2 T SL Ty a
2 (Foyf £t To
@D T @ ek,

The pressure inside the cavity is given by

cosh g (L-x) 14 3
P (8) {poc S (E_) + poséz}
P(x,s) = sinh © L : (C-111)

${pol, + 5 <—> T p°° A

Equations (C-110) and (C-111) are valid if the dimensions of the
cavity are less than 'A/8, the diameter of the neck is less than
A/10, and the length of the neck or more exactly the effective
length of the neck is less than A/16.

In the simple model which is valid if all dimensions are less
than A/16, the geometric details of the resonator were not relevant.
The response Equation (C-94) involved only the volume of the cavity
and the area and length of the neck. The shape of the neck pro-
vided that it is not distorted badly enters only as a minor effect
in determining the end corrections. Equation (C-110) may be written

as
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P, (5)
2 a’
Pot A Pol® A
SV + S.(poLe + 3 V)

From either form, :Equation (C-110) or (C~112), it can be ‘seen-that
the relative geometry of the cavity has entered into the problem.
'It was shown that pressure or velocity variation with radius
in the neck would be less than five percent for (ro/R) < .5 ‘and
‘A > 5D. If (ro/Ro).S .4 then the wavelength limitation can be

relaxed to ‘A > 4D. Equating Equations (C-37) and (C-62) leads

‘to
. .S
05 V5 (S) § Jo(ﬁnr),COSh(dnL) ) iﬁ . < 51nh(c L")
n=0 ¢« sioh(a L) n &7 F eoc Val(® S
n n ° cosh(;'L')
__hAG (C-113)
- S 1
cosh(c L")
which can be solved for V,(S) as
: S
v P, (5) cosh(Z-L) Ty 2
Va(8) = —= poc 5 ()
cosh(= L") sinh(= L) o
c _ c .
o Jo(8 1) cosh(a L) r,  poc sinh(@ L")
+ 0,5 % —D— £ () + }e
n=1 % Slnh(ahL) n R cosh(%‘L')

(C-114)

No attempt has yet been made here to include an end correctien term
for the open end of the neck. The correction for the cavity end is

the second term in the brackets in the denominator of Equation (C-111).
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With the substitution

L, =1 + 4 (C-115)

where A = 0.85 r, is the end correction for the open end into
Equation (C-111) for L', a reasonable correction is made. -Equation
(C-111) may then be substituted into Equation (C-34) to yield an

expression for the pressure in the cavity,

_ P, (S)
P(r,x,s) = ’ X
S . S .
S cosh(; L) 1,2 81nh(: Ly)
cosh (: Ly) sc 3 (ﬁ“ te———g— * SIQA}
51nh(z L) ° cosh(E‘La)
< © Jo(Bnr) cosh QH(L-X) ; (ro) (C-116)
n=0 o 31nh (QhL)ﬂ n 'R,

This equation is valid for »K greater than 4 times any diﬁénsion of
the resonator. The difficulty encountered in relaxing the wavelength
limitation arises from the need to limit the pressure or velocity
variation with radius at the junction of the neck with the cavity.

The solution given by Equation (C-116) is valid for higher
frequencies than is»the'simple lumped parameter solution but it has
several weaknesses. Tﬁe geometry of the resonator under consideration
was exceedingly simple; however, the solution given by Equation (C-116)
is exceediﬁgly complicated, almost too complicated to be of much‘usea
The solution is chained to the geometry of the particular case; an
application to a different geometrical situatidn could be impossible.
Damping has not been included and will become éore important at higher

frequencies.



TABLE C-3

SUMMARY OF FREQUENCY DEPENDENT APPROXIMATIONS

Apbroximation Wavelength Approximate
PP Restriction Accuracy
@n )\. . O
1. anmsn = R >4 Dla. 5/o
sinh §l" SL
2. e = A > 16 L 5%
SL c
cosh —
C
: S
sinh 'E'Ii 'EI'J'
3. Cosh_.I: Qi+(§£)2/3 A>81L 5%
c N> 5L 10%
4. sinn % Sk A > 11.5 L 5%
C C
5, sin—w% A > 11.5 L 5%
3
6. sinh 2= 3k 4 Sy A > 2m L 5%
C C C
SL SL.2
7. sin%lim'c“*(?) /6 A > 2n L 5%
8. cosh%gl A > 20 L 5%
9, cos%liml A>200L 5%
3 - ps
10. cosh—SEI:gjl+(§-Ii) /2 A> 8L 2k
¢ A>5.7.L 10%
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"APPENDIX D
CALIBRATIONS

Two factory-calibrated Altec microphones and a Textronic os-
cilloscope were used to make the measurements. The calibration
curves for the microphones indicate that the sensitivities of both
microphones are -54.5 DB (reference 1 volt per dyne per centimeter)
from 20 to 4000 cps which includes the frequencies encountered in
this study. The above sensitivity corresponds to approximately
1.095 psf/volt. Tests indicated however that there was a slight
difference in the sensitivitires of the microphone. Microphone
No. 3892 was used to record inputs mostly and is also referred to
as microphone No. 1. Microphone No. 3854 was used to measure
responses mostly and is also referred to as microphone No. 2.
Table D-1 shows the relative sensitivities at various frequencies
which cover the range of testing for this work° A photograph such
as was used to compare the sensitivities is shown in Chapter V.
Because of the inherent difficulty of reading a scope to more ‘than
two figures, the use of three'figures in Table D-1 is probably not
justified. On the average the sensitivity of the No. 2 microphone
is about 1.1 times that of the No. 1 microphone. In labeling the
figures throughout the work, the sensitivity of the microphone was

taken as 1.0 psf/volt instead of the 1.095 psf/volt given above.
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TABLE D-1

MICROPHONE SENSITIVITY COMPARISON

Frequency #2 Sensitivity
cps #1 Sensitivity
60 1.06
70 1.05
80 1.08
90 1.1
100 1eik
110 1.13
120 1.09
130 1.09
140 1.09
150 1.08
160 1.09
170 1L
180 1.08
190 1.09
200 1.09
210 L.l
220 1.1
230 1.09
240 L.
250 0
260 1.1

300 11




This is justifiable since precise ;alibration is not of interest;
instead the significant factér is the relative sensitivities of the
two microphones.

The sweep rate calibration and linearity of the oscilloscope
were checked by means of an oscillator and a Beckman counter. The
calibration and linearity were good enough so that it was not
possible to read any error from the scope trace. The amplitude
calibration was-chgcked with the internal calibrator of the scope
and found to be good. The important consideration for this work
was not absolute amplitude calibration but that the sensitivities
of the two beams were identical. It was not possible to see any
difference between the sensitivities or linearity of the two beams
for all of the scales used in this work. In short, the scope
calibration was good enough to be considered perfect since whatever

errors were present could not be seen.
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