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CHAPTER I 

INTRODUCTION 

-Electrical contacts have been the object of the attention of 

scientists and engineers for many yearso However, the advent of the 

space age and its inherently severe requirements, especially in the 

area of dynamic environments such as mechanical shock and vibration, 

has revitalized the study of electrical contactso Though already at 

a prodigious level, future environmental requirements will be anything 

but mi.ti.gati.ngo Accompanying the exigency for increased dynamic capa­

bility there is an incessant desire for additional miniaturization with­

out a simultaneous degradation in system and component reli.abi.lityo 

Whether the result of a vibration environment or not, unintentional 

contact transfer has long been one of the undesirable characteristics of 

switching apparatus employing electrical contact springso Recent em­

ployment of electromechanical switching components in ti.ming and logic 

circuitry has stimulated interest in another contact nemesis, contact 

chatter or bounce, the momentary opening of a normally closed circuit, 

In addition to the inadvertent cessation of circuit continuity, contact 

chatter can be a primary cause of excessive contact wear and contaminant 

generation due to arc erosiono 

It is paramount that it be kept in mind that loss of continuity 

and excessive contact wear are only some of the immediate consequences 
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of contact chatter; the potential ramifications of these phenomena if 

the contacts are a part of a missile, control system or weapon system, 

for instance, are overwhelming, 
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These considerations precipitate a marked need for an understanding 

of the response of electrical contact springs to various mechanical en­

vironments and of the contact chatter phenomenon. This understanding 

should not be recognized only as a.panacea for today's needs and the 

acquisition of systems capable of surviving and functioning properly 

but primarily as an incentive for analysis for design and conceptual 

purposes. Only the delineation, cognizance and understanding of the 

parameters pertinent to a given device or phenomenon can provide a 

sound basis for the initiation of design concepts and innovations. 

Definition of Problem 

The contact spring system shown in Figure 1 is a configuration 

frequently encountered in components employing electrical contact 

springs. 

2 

Figure 1. Contact Spring System 



The contact system is a redundant one in that circuit continuity 

from B to C may be provided by contact number 1 or contact number·2. 

3 

Both B andC are capable of conducting electrical current. Consequently, 

the simultaneous separation of contact 1 and contact 2, from the contact 

separator C, is requisite to the occurrence of circuit discontinuity 

from B to C. 

The problem, therefore, is to study the conditions under which the 

separation of one contact will cause the second contact to leave separator 

C. The influence of the various system parameters on the occurrence of 

contact separation may be determined by investigating-the conditions 

under which the release of contact number 1 from some static deflection 

will cause it to rebound upon collision with C and also induce separation 

of contact number 2 from C. 

The contact springs are assumed to be ideal cantilever springs and 

separator C to be a clamped-clamped beam. All of the members will be 

considered to be of homogeneous, isotropic materials and of uniform, 

prismatic cross sections. 



CHAPTER II 

PREVIOUS WORK 

The primary research effort in the field of electrical contact 

springs has been conducted from the standpoint of materials, contact 

resistance, contaminants, electrical arcing and the inh_erent material 

transfer [1],·[2]. 

If the electrical contact spring is viewed from the standpoint 

that it is merely a cantilever beam or a clamped simply supported beam, 

research in electrical contacts may be interpreted as having commenced 

with the works of people such as 'Lord Rayleigh, Euler and Timoshenko. 

The technical literature abounds with analyses of a multitude of beam 

.configurations and input· forcing functions. Unfortunately_ in all the 

cases reviewed only.the orthodox boundary conditions are considered; 

that is, a separation or displacement of one of the endpoints of the 

beam from ·the foundation is excluded. This latter condition, of course, 

is intrinsic to contact separation. 

In the previous works directly concerned with the dynamic behavior 

of electrical contact springs most of the early work ~n contact chatter, 

which was reviewed, was of a qualitative nature [3], · [4], [5], [6], [7], 

[8], [9]. The case of beam vibration with time dependent boundary con­

ditions has been investigated by Mindlin and Goodman [10]. The time 

dependent boundary conditions consist of prescribed motions of the beam 

4 

-- . 



5 

supports but separation of the beam from the support is not considered . 

. G. A. Nothmann [11] has analyzed the specific case of the vibration of 

a cantilever beam with prescribed end motion. The shear forces at the 

moving end of the beam were investigated but beam separation was pre­

cluded. The response to vibration of a propped cantilever beam was 

analyzed by Peek and Wagar ·[12], [13] and is described in two sources, 

Though these works are thorough, separation of the contact from the prop 

is ignored . 

. Some investigators have chosen to study the impending separation of 

two electrical contact springs, that is, .to determine the criteria for 

which separation will occur. These analyses have an obvious advantage 

in that a lumped system model may be employed. Lowery, Riddle and 

Stone [14] have studied the separation criteria for a linear set of 

contacts in a steady-state, sinusoidal vibration environment. Burkhart 

[15] has made a thorough investigation of the impending separation 

criteria for the case in which one contact spring has a nonlinear force 

deflection characteristic and included a qualitative discussion of the 

effects of damping. · An analytical study of the effects of damping for 

the linear case has been carried out by Baker [16]. 

Previous works in the specific area of contact chatter have empha­

sized chatter due to the operation of the device employing the electrical 

contact springs and have all been done by investigators foreign to the 

United States, primarily the Japanese. 

-In France, Pandeile and Tacnet [17] have qualitatively studied the 

impact and damping problems in a miniature telegraph-relay. Also the 

contact spring configuration studied is of such a specialized nature 

that it would not be of general interest. 
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Wikell [18], from Sweden, has treated the response-of two electri­

cal contact springs caused by the motion imparted to them as a result 

of the ope~ation of a relay. The analysis ·is therefore one of a pair 

of mating cantilever beams subjected to a prescribed forcing function 

at their endpoints. The problem is one of finding the solution-to a 

boundary value problem with time-dependent boundary conditions and 

Wikell's treatment employs the method of:N.othmann and that of:Mindlin 

and Goodman, both _of which have been previously mentioned, Wikell's 

analysis results in a delineation--of the variation of the contact 

forces with time -thereby permitting the prediction of chatter. 

The -most extensive and advanced work in contact chatter phenomena 

has been done by the Japanese. ·All of their work has been accomplished 

since about 1955 and is ·restricted to non-redundant, mating contacts. 

Takei [19] has analyzed the displacement due to impact for a 

single degree of freedom system using _Jacobsen's phase-plane techniques. 

This analysis has limited application due to the restriction to a single 

degree of freedom, and electrical contact springs are almost without 

exception distributed, infinite degree of freedom, elastic systems. 

A statistical approach, based on the-factorial design of experi-

ments, has been employed by ShJ.nohara, Ohki and Takashi [20] to study 

. the transverse vibration of two cantilevers. Th_is analysis is -strongly 

.oriented towards the .analysis of switches of the sealed, dry reed variety. 

T~e relations governing the interdependence of the various contact spring 

parameters are not the result of a theoretical derivation but are the 

consequence ·of an empirical examination of the chatter phenomenon for 

the case of two cantilever beams. ·As a-result the relations are of a 



qualitative nature and the problem parameters are given a statistical 

level of significance resulting from the factorial design analysis. 
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In an effort to extend the analysis of Takei [19], mentioned earlier, 

Takei and Takashi [21] have applied the graphical phase-plane technique 

to the contact chatter resulting from the interaction of two cantilever 

beams, taking the higher modes of the cantilever beams into account. 

The use of the graphical phase-plane technique is most advantageous for 

nonlinear and single degree of freedom problems; it becomes quite cumber­

some when applied to the situation at hand. Though the principle of 

superposition may be applied to the manipulation of the vibrational 

modes, for the linear case, it is not practical to construct the tra­

jectories for various modes independently when the possibility of impact 

exists .. It may be possible to apply the digital computer method for the 

phase-plane technique developed by Simpson [22] to make this approach 

more expeditious. 

The most notable and extensive work reviewed was that of Takamura, 

Shimizu and Otuka [23]. It is actually the first paper dealing with the 

repeated collisions between two bodies as is the case in the chatter of 

electrical contacts. A general discussion of the theory of the vibrations 

caused by the collision between two elastic bodies is presented and the 

response of a single degree of freedom or an elastic body colliding with 

a rigid body is investigated. Takamura, et aL employed an analog com­

puter for this analysis. 

·Previous investigations in the area of impact and stress wave propa­

gation appear to have been motivated primarily by a desire to study 

either the mechanism of wave propagation itself or the properties of 
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materials. For this reason, naturally only the optimum models and test 

specimen configurations have been used. Analyses are usually done on 

rods or prismatical bars with the loading forces distributed across the 

entire cross-sectional face of the bar or rod. 

Prior to mentioning any specific technical papers three basic works 

in this area should be mentioned, namely those of Hertz [24], Goldsmith 

·[25] and Kolsky [26]. Early authorities on the theory of impact, such 

as Love and Timoshenko [27], [28] and their respective treatises on 

the theory of elasticity should also be noted. 

Ripperger· [29], Davidson and Meier [30], and Donnell [31] have pre­

pared comprehensive works on the various aspects of the longitudinal 

impact of bars and the attendant wave phenomena. Cunningham and Goldsmith 

[32] have documented an experimental investigation of the impulses re­

sulting from the longitudinal impact of a steel ball on narrow rectangu­

lar bars. 

If a departure from the realm of convenient specimen geometries 

and loadings is made·and the literature pertaining to concentrated im­

pulsive loadings on geometries such as plates is sought, one is brought 

to the startling conclusion that very little analysis has been done. The 

investigations reviewed which were close to this problem both treated a 

concentrated impulsive ·load applied to a semi-infinite medium. Morse 

[33] treats the problem of compressional waves in a member of rectangular 

cross section; however, no mention is made that loadings and restrictions 

are placed on the cross-sectional dimensions so as to place it in the 

class of a rod. 

The most notable work is that of Broberg .[34] in which he develops 

a theory, using the Hertz law.of contact, suitable for solving for the 



displacement, along the axis of symmetry, of a semi-infinite elastic 

solid and the line of an applied impulsive force directed normal to the 

half-space at the free surface. 
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In Broberg's thesis, which contains extensive experimental work as 

well as some elaborate mathematical analysis, the impulsive force i.s the 

result of either a detonated explosive charge in contact with the free 

surface or the shooting of a projectile (sphere) against the free surface 

of the half-space. 

The subject of the impact of a mass on a beam has been investigated 

with renewed interest in recent years; however, almost all the works 

reviewed had two convenient constraints applied, specifically: 

1. Only simply-supported beams were analyzed. 

2. Impact considered was always between a solid mass and an 

elastic beam rather than an impact between members which 

have distributed elasticity. 

The early treatises on the impact of a mass on an elastic beam were the 

result of the efforts of the well-known researchers, Saint Venant [38], 

Timoshenko [39], and Rayleigh [40]. All of these works applied energy 

methods to the problem and also made the assumption that the striking 

mass becomes an integral part of the beam subsequent to collision. 

These analyses, as well as all those to be described, assume the contact 

force theories developed by Hertz [24], [41] to be applicable. 

Lee [42] has considered the impact of a mass striking a beam with 

the added complexity of rebound of the impacting mass following the 

collision. Subject to the assumption of a linear velocity for the mass 

and that the resulting vibrations of the beam are confined to the first 
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normal mode of the beam,-. the relations ·necessary. to predict the deflection 

of the beam are derived for central impact on a uniform simply-supported 

beam. 

The analysis of the central impact of a mass on a simply-supported 

beam including the consideration of internal and external damping has 

been carried out by·Hoppmann [43] •. The contact ·force is considered as 

a function .of time and the effect of the beam resting on an elastic 

foundation is discussed. 

Dengler and Go land· [44 J .have approached the transverse impact 

problem from more of an elasticity approach and arrived at a closed 

solution for the stresses ·induced in a uniform beam due to the appli­

cation of a concentrated, impulsive transverse load. By using the 

Laplace-transformation techniques and basing the solution on. the 

Timoshenko beam equation rather than the Euler beam equation, they 

have included the effects of rotatory inertia and shear. The beam 

:is taken to be ·of ·infinite length and the closed solution,is vaiid 

only when the beam's elastic properties are such that the transverse 

shear modulus and the Young's modulus are equal. 

The analysis of the flexural displacements of a beam and plate due 

to a transverse, concentrated,. tj_me-dependent force, . is presented in 

a paper by Eringen[45]. The fore~ again is that due to the impact of 

a mass on a beam and Hertz's·law of impact is applied. -Eringen~ however, 

-delves into.the problem of the shape of the force versus time curve in 

greater detail than previous authors. The force is normally assumed 

to·have a-sinusoidal variatioriwith time or to obey an equation com­

prised of a polynomial of sine terms. Eringen indicates that the 
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deflection is practically independent of the shape of the contact force 

function. Re found the deflections obtained using a Dirac 6-function to 

be in good agreement, providing the impulse delivered to the beam is 

consistent ·for the Dirac and time-dependent forces. This presents a 

major simplification in the complexity of the analysis especially when 

Laplace ·transform techniques are applied. 

Boley has been a major contributor to the literature on the problem 

of the impacting of a inass on a beam having contributed three recent 

papers :in this area, The initial work was an ·independent effort by 

Boley while the latest two papers were co--authored with C. C. Chao . 

. In Boley's paper [46] an approximate theory,-is developed for the 

analysis ·of the behavior of a Timoshenko beam subjected to a transverse 

impact. · Boley also attacked the problem from an elastician' s standpoint 

and used a· "travelling-wave" approach to analyze a section of the beam 

which undergoes a sudden change in shear force. Though not explicitly 

stated, the beam.is assumed to be semi-infinite in length. 

The first work presented by Boley and Chao [47] applied the method 

of Laplace transforms to a beam obeying the Timoshenko model and sub·­

jected to four types of dynamic loadings •.• All the· loadings have a single 

characteristic in common; namely, they are concentrated at a single longi­

tudinal location on the beam. Once more the analysis is based on a semi-· 

infinite beam. Solutions are presented in terms of definite integrals 

which must be evaluated numerically. 

The second work ~o--authored by Boley and Chao [49] is based, for 

all practical purposes, on the original work by Boley. This paper pro­

poses a method of analyzing a beam of finite length, a .simply-supported 
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bei3,m, by applyi:p.g the technique of superposition to the previous semi­

infinite results. 

Goldsmith and· Cunningham [49] .have ·reported some interesting experi~ 

mental effort on the kinetics of oblique impact on beams. The impact of 

a 1/2-inch .diameter steel ball on steel beams was investigated by means 

of a.Fastex camera. The beams were of 22 and 30 inch spans, .clamped, 

and simply-supported respectively. Beam deflection ·as well as crater 

topography were studied. This paper, though terse in its presentation, 

was .. found to be very detailed, unambiguous and extremely informative. 



CHAPTER III 

M4THEMATICAL MODEL 

The analysis of the contact separation phenomenon in the redundant 

contact system, depicted in, Figure 2, may be divided into the following 

four subproblems: 

A. The transverse vibrational response of the upper contact spring 

after release from the-initial static deflection y and the s 

subsequent collision with the separator. 

B. Transmission of the impulse due to the impact of the upper 

contact with the contact separator to the lower contact spring. 

C. Transverse vibrational response of the lower contact spring to 

an,initial velocity from the contact separator. 

D. Analysis for determination of the impulse resulting from the 

collision of the upper contact with the, separator. 

The governing relation for the maximum displacement of the lower 

contact will then provide a basis for determining ~he system parameters 

which influence the magnitude of the contact separation as well as their 

interdependence. In addition, it should furnish a basis for selecting 

the preload for the lower contact. 

Transverse Vibrational Response of Upper Contact Spring 

The upper contact spring is assumed to be a linear, , undampedj elastic 

cantilever beam whose behavior is governed by the·Bernoulli-Euler beam 
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equation. This implies the existence of perfect clamped boundary con-

ditions at x = 0, as well as insignificant shear and rotatory inertia 

effects during transverse flexure of the beam. 

The Bernoulli-Euler beam equation for the displacement, y(x,t), of 

a beam during transverse, flexural vibrations is 

(1) 

The solution of equation (1) is well known [35}, [36] and represents 

the free vibrations of the beam, restricted to the x-y plane; namely, 

or, 

co 

y(x,t) = I Xj(x) ~j(t), 

j=l 

. co 

y(x,t) = lX/x) (Afos P/ + B?in P/) 
j=l 

where X.(x) = normal mode function, and 
J 

a 2 = Eig/Ay. 

Substitution into the boundary conditions, 

X(O) = 0 

X'(O) = 0 

X"(L) = 0 

X111(L) 0 

(2) 

yields values for the constant coefficients in the mode function as well 

as the frequency equation 

Cos kL Cosh kL = -1 

where k = .fp{a. '.Che coefficients'A. and B. are determined by the initial 
J . J 

conditions on· the cantilever beam ... 



For the present analysis the initial conditions are as follows 

y(x,O) =f(x) 

y(L,O) = ys 

y(x,O) = 0. 

The selection of the function, f(x), which describes the shape or 

curvature of the cantilever beam prior to its release, is very signi-

ficant. Since the initial velocity is zero the coefficients, B. in 
J 

equation (2), will be zero. The remaining coefficients, A., will 
J 

therefore be determined solely by the choice of f(x). 
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Thus far, the only constraint which has been placed on the initial 

beam configuration is that y(L,O) = y. In this analysis the initial 
.s 

curvature will be assumed to be the consequence of a force at x = L 

of sufficient magnitude to satisfy the constraint y(L,O) = y. The s 

function f(x) will then be the static deflection curve for a cantilever 

beam subjected to a static force at its free end, which from strength of 

materials theory ·is 

3y .L a .3 

f (x) = Lg [ ~ - ~ ] . 

The displacement response of the·cantilever beam subsequent to 

release from the. initially deflected position may be shown to be (see 

Appendix A), 

00 

y(x,t) = l A . 'X. (x) Cos p . t. 
.] J J 

j=l 

The velocityis then given by 

ex, 

y(x,t) = l -pj Aj X/x) Sin P/ 
j=l 

\ 

(3) 

(4) 



where the coefficients A. are given by 
J 

3y L 

s 
L a 3 

A. s x L) = La (- -· 
J 2 6 

0 

17 

X. (x) dx. 
J 

(5) 

The equations (3) through(S) delineate the beam behavior until the 

moment the free end of the beam impacts with the separator; that is, 

when y(L,t) = O. At this instant both the contact separator and the 

free end of the beam will experience an impulse ,jr due to the impact. 

The reponse of a cantilever beam subjected to an impulse at its free 

end is (see Appendix B) 

co 

y(x,t) =1 l xj 

M 

(x) X. (L) 
(6) 

j=l 

and differentiation of (6) yields the beam velocity response, namely 

co 

y(x, t) = .iM \ X. (x) X. (L) Cos p. t .· L J J J 
(7) 

j=l 

Therefore the total displacement response of the beam subsequent to 

impact is, 

X .. (L) 
y(x,t) = \ fAJ. Cos p.t + [B. - 1 -1 J . Sin p.t} X.(x) L1 J J Mp. J J 

J 

co 

(8) 

j=l 

and the total velocity expression after impact is, 

y(x,t) Ico 1 X. (L) 
= { ... AJ .. Sin p. t + [B. - 1 J Cos pJ. t} · pJ. ·xJ. (x). (9) 

J J M p. 
J j=l 

In addition to the unknown coefficients· A. and B., which now depend on 
.J J 

the initial conditions immediately before impact, the impulse is also 

to be determined. The derivation of an expression for ,jr is deferred 

until Section D when the necessary response equations are available. 



18 

·The analysis of the displacement·response of the top contact, subject 

to an assumed collision between the top contact and a flexurally rigid 

separator, is presented inApfendix E. This analysis will predict the 

displacement versus time history of the contact including the first 

and subsequent collisions. A general recursion·relation is derived to 

relate the coefficients A· and B. , for the nth impact, in terms of 
jn Jn 

Aj(n-l) and Bj(n-l)" 

Transmission of the Impulse by the Contact Separator 

The analysis of the transmission of the impulse delivered .to the 

contact separator by the upper contact spring presents a particular 

problem. 

Two phenomena may be present as a result of the incident impulse, 

namely the transmission of a stress wave through the separator from 

the point of application of the impulse and the flexural response of 

the separator as a clamped-clamped beam. If the separator is assumed 

to be flexurally rigid, the stress wave mechanism will predominate 

and this analysis will be treated next. 

As was mentioned previously the major difficulty arises from the 

geometry of the ·separator, The configuration is as ·shown in Figure 3a. 

The actual system, shown in Figure 3a, has a concentrated impulse 

delivered to the center of a plate of finite thickness. The impulse 

will initiate a stress wave in the separator plate which will propagate 

from (x,y;z) = (O,O,O) in the positive z direction. As the dilatational 

wave passes through the separator the medium will experience a ~article 

motion and hence a velocity in the direction of wave propagation, The 
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Impulse to the Contact Separator 

dilatational wave will traverse the separator with dilatational wave 

velocity, cd, and upon impinging the surface y = d will cause a dis­

placement of the surface particles and therefore the bottom contact 

which is contiguous with the separator at (x,y,z) = (O,d,O). 

The analysis of the transmission of the wave through the contact 

separator may be simplified significantly by considering the mathemati-

cal model shown in Figure 3b. The separator, of finite thickness d, 

has been replaced by a semi-infinite inedium. The impulse 1\1 is delivered 

at coordinates (O,O) of the x-z plane which is the free surface of the 

half-space. 

It is possible to apply this simplified mathematical model to 

approximate the actual configuration by evaluating the particle dis-

placement at a specific y coordinate, namely that corresponding to'the 

separator thickness or y = d. However, at y = d the wave encounters 

the boundary of t.he contact separator, a free surface, and is reflected 
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which results in the particle displacements and.hence the particle ve-

locities being twice the corresponding values in the semi-infini.te body. 

Th.is particle velocity then becomes the ·initial velocity start imparted 

to the bottom contact spring at its free end. 

The equation for the particle displacement ud at a particular co­

ordinate (O,d,O) of a homogeneous, elastic half-space is· [34], 

c t - 1 
o( d. ) 

d 
(10) 

For a.free boundary at y = d, ud would be doubled and the particle 

velocity obtained by taking the time derivative. 

· The magnitude of this velocity, wh.ich would be imparted to the 

bottom contact, is exceedingly.small and is insufficient to cause the 

responses of the lower contact noted in experiments. There is also 

definite indication of significant flexural response of the separator 

and it will be assumed·that this is the transfer mechanism, 

The displacement response of the contact separator as a clamped-

clamped beam subjected to an impulse at mid-span is given by (see 

Appendix C), 

- _jr,g_ r . .x; (x) . 
y(x,t) - AL X.(L/2) .Srn p.t 

y J pJ. J 
j=l 

'(11) 

The velocity response is derived by differentiating equation (11) with 

respect to time t and is, 

co 

y(x,t)= .J.&AL \ X.(L/2) X.(x) Gos p.t 
y L J J J 

.(12) 

j=l 

E~aluation of equation (12) at the midpoint, x = L/2 of the separator 

will then yield the initial velocity.for the lower contact. 



Transverse Vibrational Response of Lower Contact 

The response of the lower contact spring can be developed in much 

the same manner as the upper contact except for its initial conditions. 

From the previous section it is seen that the free end will experience 

an initial velocity due to the flexural velocity attained by the sepa-

rator at x = L/2. Consider the system shown in Figure 4. 

----L--:l \fa 

Figure 4. Initial Velocity Start to 
A Cantilever Beam 

The initial conditions are, 

y(x,O) O; '(x O) = {O, V x # L} 
y' v Vx=L 

O' 

The initial conditions on velocity may be expressed conveniently, using 

the Dirac Delta function, as y(x,O) = v0 o(x-1). 

The displacement response of a linear, elastic cantilever beam to 

an initial velocity at its free end is (see Appendix D), 

y(x,t) loo Vo XjCL) 

L · X. (x) Sin p . t 
. pj J J 

(13) 

j=l 

The corresponding velocity expression is therefore, 

y(x,t) (14) 

j=l 
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Subject to the notation presented in Appendix E, equations (13) and 

(14) are valid in ~he time interval O ~ t ~· t 1 , At t = t 1 the first im-

pact occurs and the boundary conditions must again be imposed. For dis-

placeinent, 

which yields 

ICD v X. (L) X. (x) 
....£.. 1 J . Sin 
L p. 

J=l J 

CD 

= l SA. l J1 

+ Xj(L) 
Cos p.t 1 + [B. - iM. p ] Sin p.t;} X.(x) 

J J1 . j J J 
j=l 

= \ A. ;x. (x). 
l Ji J 

j=l 

Thus the relation for the coefficient A. is, 
Ji 

The velocities before and after impact are related as, 

co 

' (L t+) . (L t-) - 1,_M. \-, X2J. (L) Y1 . , 1 = Yo , ,. l 
j=l 

which, upon substitution for the velocities becomes, 

X. (L) [B. 
J . J1 

~1 Xj (L) 
- - . J 

M p. 
J 

CD CD V 

l i X/L) X/L) Cos p /i 
j=l 

- ~ I 
j=l 

a 
X. (L) 

J 

(15) 



The coefficients, B. , may therefore be calculated from the following 
Jl 

expression, 
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X. (L) 
1 Cos p. t 1 

J 
(16) 

The response of the beam for tl ;,;; t ;,;; ta is therefore, 

00. Xj(L) 
y(:x;,t) = I {Ajl Cos + (B. *l Sin p . t} X . (x) . (17) p.t - - p. ) J Ji M J J 

j=l J 

where the coefficients A. and B. are given by equations (15) and (16), 
Ji Ji 

respectively, 

For t ··:::: t 2 , the vibrational response of the lower contact may be 

analyzed.just as the top spring in~art'A; that is, equations (7), (8), 

and (9) of Appendix E are valid expressions for the beam displacement, 

Derivation of the Impulse E:x;pression 

The analysis will assume that the collision is between two elastic 

bodies one of which is the top contact and the second is the contact 

separator and the lower contact. The entire phenomenon can be described 

by the three conservation relationships: 

(1) Conservation of Mass 

(2) Conservation of Momentum 

(3)·Conservation of Energy. 

The· conservation of mass is obviously satisfied. . If the conservation 

of momentum and energy are applied to the collision of two elastic bodies 

of mass,·~ and Ma, traveling with velocities v1 - and v 8 - respectively, 

prior to collision, the expression for the impulse is given by 
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(18) 

The symbol e is the coefficient of restitution defined by 

e = 
V2+ - Vl+ 

Vl-,-.v:;a_ 
0 < e < 1, 

and is a measure of the 11e last icity" of the impact. 

For the case of the impact of the distributed members involved in 

this analysis, an impulse expression may be derived from. the conservation 

of energy relationship. This approach will inherently assume that, 

1. Collision is perfectly elastic ~r the energy of plastic de-

formation is negligible. 

·2. At the instant of impact the significant form of energy is 

kinetic energy. 

The kinetic energy will be given by i = 1, 2, 3, where the 

subscripts will refer to the upper contact, separator and lower contact, 

respectively. The superscripts plus (+) and minus (-) refer to the time 

immediately after and before collision. The respective kinetic energies 

may t~en be given by the following £xpressions: 

M .L co 

= =t J [ \ p .A .X. (x) 
l J J J 

]
:a 

Sin P/- dx, 
0 j=l 

_L X j (L1 ) + }a 
+ (B. - M ) Cos p. t, J X. (x) p. dx, 

J ~'"l p . J ' J J . J 
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= 0; = 0, 

+Ja X.(12 /2) X.(x) Cos p.t dx, 
J J J 

L CX) 

= ~
3 S [~3 I +Ja X. (13 ) X. (x) Cos p. t dx . 

J J J . 
O j=l 

If the total kinetip energies immediately before and after impact 

are equated and the substitution, t+ = 0, is made, the resulting equation 

is, 

.L oo. 

M2,_ J [ l -pJ. _]a AJ. X.(x) Sin p .t .. dx 
J ' J 

O j=l 

M L oo ,1, XJ·(Ll) 
=·-21 J [.\.(BJ. - ..L ) p. X.(x)]2 dx L, M; pj J J 

j=l 

If, in the preceding equation, the quantities. to be squared are expanded, 

the integration and summations are inverted and the orthogonality condition 

applied; the expression for the impulse is found to be, 
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CC> 

I pj B. .X. (L) 
J J 

'$ = 2 
j=l ,a (19) CC> 
X~ (L1 ) ,X~(L) 

I ] +·Xj (L/2) + l , , M,, M:a Ms 
j•l 

CD 

Since the quantity \ p .. B. x3• (L) is actualiy. the - impact velocity of the 
L J ·J 

j=l 

top contact and the coefficient of restitution by definition is such th.at 

0 -~ e ~ 1, .it is noted that equation (19)·is analogous to equation (18). 

-It w:ill be assumed that·the restriction on the magnitude of e also 

applies for a collision of elastic bodies in which the-vibration of the 

colliding bodies is not negligible. Hence, . the genera 1 expression for 

the impulse is given by, 

j=l 

. ·CO 

(1: + e) l p .. B .. X. (L) 
j=l J ;J J 

. (20) 

where the applicable mode function must be chosen for the respective beams 

and also be -evaluated ~t the appropriate length L. 



CHAPTER IV 

ANAI.iYSIS. AND DISCUSSION OF THE EQUATION:S 

CONSTITUTING THE· .MATHEMAT'ICA.L . MODEL 

.A.s stated in the Introduction, . it· is only the delineation, cogni­

zance and understanding of the pertinent parameters of a system which 

will yield valid, fruitful modifications and innovations to a system 

design,. It is the intention of th.is thesis to provide the afore­

mentioned· information with-regard to ,the redundant contact system 

and the phenomenon of contact.· separation _in that system. 

In this-chapter a discussion of the equations derived in the 

·previous chapter will be ·presented. The interrelation ·.of 'the system 

parameters, as far as the displacement response of the·lower contact 

. is concerned, will be scrutinized to ,indicate the system parameters 

whi~h are available to.the designer in his quest to eliminate circuit 

discontinuity or simultaneous separation of the upper and lower contacts 

from .the contact separator . 

. In an actual contact design or a revision to a design it:is es­

sential.that the-effect of the various system parameters on the·magni­

tude of the contact displacement be known. This information -_is equally 

vital in determining meaningful manufactur-ing tolerances for the contact 

system. -Thus, the following_ discussion should pe;rhaps be motivated by 

the question, ''What modifications to .the system may be adopted to mini­

mize the displacemen_t of the lower ·contact?'!. 

2.7 
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The system parameters are subscripted 1, 2, and 3 to indicate the 

upper contact,.contact separator and the lower contact, respectively. 

·Governing Equation 

The governing equation for the displacement of the lower contact 

at its free . end, 

'j=l 

Sin p. t 
Js 

may be ,rewritten by substituting·for·the velocity v0 with, 

.co 

:wg l x~ v = 
YaAraLra 0 Jm 

(La /2) 

j=l 

where 

The resulting equation is 

00 00 

Ys 
(1 + e) = 

· [ Ix~ (L:;/2>] .[ l P,. B. x. J 
Jra . \ Jl. Jl 

j=l j=l . 
ra 

00 x~ (Ll) x~ (Lra/2) XJ. (L3) 

l J~ + J ra ~ + ~s 
j=l ' ' 

00 XJ:~ (L3) 

l Sin t p. 
p. Js 

j=l ]3 

· (21) 
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It would at first appear that this expression is independent of 

the initial displacement; however, it should be recalled that B. is 
J1 

determined by the initial displacement of the upper contact as outlined 

in Part A of Chapter·III. For convenience and to preclude the omission 

of the .initial displacement of the upper contact in the discussion, the 

definition 

B. 
Ji 

is introduced, where y is the static, initial displacement of the free 
s 

end of the upper contact. ·With the above substitution equation (21) 

may be written as 

(1 + e)y 
s 

00 

l 
j=l 

(22) 

loo x~ (13) 
J3 S1.'n t p. 

p. Js 
j=l Js 

This equation yields the specific solution for the displacement 

versus time of the free end of the lower contact, that is, y3 (L3 ,t), 

It should be noted that equation (22) has been particularized for 

the contact configuration to be studied in this thesis. The solution 

is not general in that the normal mode functions are dictated by the 

specific types of distributed members which comprise the specific 

system under analysis. In addition, the normal mode functions~ X .. 
J 1. 

(xd, are evaluated at the beam coordinates, xi, at which the impact 
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occurs in this particular configuration. However, the basic analysis is 

completely general since th,ere are no constraints applied to the normal 

mode functions or the location at which themode function is evaluated. 

Thus the basic analysis is completely general as far as configuration 

is concerned and may be applied to any system comprised of threE;! uni-

form prismatic members, with distributed elasticity, which obey the 

Bernoulli-Euler beam equation. 

Equation (22) may. be wri,tten as follows 

(1 + e)y 
s 

co 

l 
j=l 

X~ (x3 ) 
]3 

Sin p. t 
p. ]3 

]3 

(23) 

This equation is completely general and each of the three distributed 

members can be any of the orthodox beam configurations as long as the 

respective mode functions, X .. (x.), are chosen correctly. In addition 
]1 1 

the point of contact of the three members is completely variable, that 

is, the mode function X .. of th,e ith body may be evaluated at the general 
]1 

axial coordinate x. corresponding to the points at which the members are 
1 

contiguous. The possibili,ty of such a generalization should present a 

strong motivation for analyzing such configurations as the distributed 

systems they in actuality are. 
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In several of the works reviewed which.deal with contacts, es­

pecially those ·which hypothesize a·lumped-parameter, single degree of 

freedom conta.ct model, the model ;i.s ·usually studied by varying the 

spring constants, masses ·and their ratios. These studies allow the 

·magnitude of the contact mass and spring stiffeness ·to vary inde­

·pendently. ·Though this condition ·provides the analyst with a mecha­

nism with ·which to· study. the c·ontact system it is an opportunity rarely 

affordedthe designer when choosing.a contact configuration. It is 

true that a contact system may respond predominantly .. in a single 

mode, given the proper excitation, .but .it. is also true that most 

contacts are not single degree of freedom systems. This is not to 

say that. it is impossible to vary the contact spring constant and 

simultaneously maintain an invariant contact mass, but rather that 

· it would be an infrequent ··luxury.· 

The use of a. distributed parameter model, necessary in this 

analysis due to·the impact, provides an.improved insight into contact 

response but unfortunately produces a relation of the complexity of 

equation (~2). The·governing equation, with ;its inherent algebraic 

series, .does not·lend itself to.immediate conclusions as to·the 

interactions of the various s·ystem parameters . 

. · Coefficient of Restitution and Initial Deflection 

To ·return to the specific system at hand, equation (22) delineates 

the relationship of the various system parameters·and will afford the 

designer the opportunity to study.effects of varying these parameters 

on the magnitude of the displacement of the lower contact. As it is 
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desirable to minimize this displacement, it can be seen that both the 

initial static deflection, ys' and the coefficient of restitution., e, 

should. be minimized. The coefficient of ·restitution, though definitely 

a des:ign variable,. is an elusive one in that the factors which. determine 

its magnitude are not clearly. definable and· can only .. be ·discussed quali­

tatively. Th_is parameter will be discussed further in Chapter VI. For 

the present discussion, the coefficient of-restitution might best be 

described as a measure of the-efficiency of the impact which occurs 

in the system. Thus, the requirement that the coefficient of resti­

tution.be -minimized is equivalent to desiring as inefficient an impact 

as possible within the remaining design constraints. 

A graph .depicting the maximum displacement of the lower contact, y3 

as a function of the contact separator thickness, h, is s·hown in Figure 

·5, Three curves for three different values ·of the initial static dis­

placement, y8 , of the upper contact have been shown. This plot indi­

cates, as does ·the mathematical model, that the ma.gnitude,of the lower 

contact response· decreases with. decreasing initial displacement. ·'rhe 

·plot also .indicates that the lower contact response approaches the 

ordinate, ;rs = O, -as the contact separator thickness increases. Thus 

the magnitude of the separation of the lower contact may.be reduced by 

reducing the.initial static displacement and by increasing the thick­

ness of the contact separator. 

Normal .Mode Function 

The-normal mode function presents a design parameter which is 

frequent:ly overlooked. The shape ·of the normal modes is determined 
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solely by the boundary conditions on the beam and for this reason once 

the beam has been classified the normal modes are usually assumed to be 
/ 

of no design value. It is true that ·the modes are fixed at this time; 

however, the modes are also a function of x, the axial coordinate of 

the beam. Thus, since the mode functions are periodic functions there 

exists the possibility that the summation of the mode functions will 

have finite maxima, minima, and nodes when evaluated with the axial 

beam coordinate as the independent variable. 

However, the dependence of the displacement of the lower contact 

on the magnitude of the mode functions is not obvious from equation (22). 

Figure 6 shows a plot of the lower contact displacement versus the ratio 

of x3 /L3 with x2 /L2 = 0.5. An additional restriction placed on the 

ratio of x 3 /L3 was that it ·lie in the range 0.7 ~ x3 /L3 ~ 1.0 . This 

constraint was applied since in an· actual application an electrical 

contact is made at a point where the contact has minimum st·iffness . 

For a cantilever contact this implies that i t be as close t o the fr ee 

end as is practical. The minimum value in the range of x3 / L3 was 

chosen to include the first nodal point of the contacts second mode 

and consequently the first nodal point of all the other modes. 

Curve I indicates the variation in the contact displacement , y3 , 

as a function of x3 /L3 with the total contact length, L3 , r ema i n i ng 

invariant . In curve II the length of the contact was i nc r ease d by an 

amount equal to (l-x3 /L3 )L3 at each x3 /L3 . This is equivalent to 

allowing x3 /L3 to vary while maintaining a constant axial location of 

t he point o f abutment from the contact support. It was hoped t hat t his 

would mainta in a constant contact stiffne ss. However , the s t i ffne ss was 
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reduced when compared to a comparable value of x3 /L3 for curve I since 

the stiffness is a .. function of both L3 and x3 • 

As ·can be seen from'Figure 6 the variation in the contact displace­

ment, y3 , indicates that the displacement, for a given contact, may be 

decreased by decreasing the ratio of x3 to L3 • This result is not sur­

·prising since as the point of contiguity is moved tow.;ird the contact 

support the contact ·stiffness increases presenting an increased deterrent 

to its own displacement. 

The variation in x/L has an interesting consequence in regard to 

the complexity of the·displacement response of the contact. As the 

ratio of x/L .is adjusted the relative intensity of the specific modes 

in the eomplete contact response is adjusted also. Thus, if x:/L is 

such that the contact separator touches the contact at a nodal point 

of the contact's third mode, the third mcide will be absent in the dis­

placement response of the contact at that point .. Similarly, the second 

mode will.be absent from the contact displacement response if the point 

of contiguity is at the node of the contact's second mode. -In contrast 

the free end is an antinode for each mode; hence, each mode will be 

·present at its maximum amplitude. 

However, the amplitudes of the various modes are inversely pro­

portional to the modal frequency as indicated in e·quation (23). Hence, 

the third mode will be relatively minor and it would therefore appear 

that a fairly simple response would result if the nodal point of the 

contact's second mode was -·selected for the point at which contact is 

made. At this point the third mode has a relatively. small amplitude, 

and more important, the second mode is precluded. 
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, Figure 7. shows a plot of the displacement versus time of the lower 

contact for two different ratios o·f x to L, . Specifically, the two values 

of x/L sh.own are .98 and .78. l'hese-locations correspond approximately 

to the usual location of a contact button in present designs and to ·the 

node of t'he second mode, respectively. The graphs very. definitely re­

flect the previous discussion. The curve for x/L = • 98 shows definite 

indications of higher moqe oscillations. . In con.tr a st the displacement 

response for a ratio of x to L .of • 78 appears to contain only a·· single 

mode. This is because the third mode amplitude is very small at this 

point. This implies that the ,response of the distributed parameter 

s-ystem emerges -as a r,esponse ,that would be expected from a single degree 

of freedom system. 

The behavior just described has.· some significant consequences. 

First, the reduction in x/L to, say, .78 results in a reduction in the 

maximum disp lace,ment of th.e · lower contact. . Secondly, the complexity of 

contact displacement response is· significantly reduced and the response 

approaches that of a single degree of freedom system. -Thus, .if the third 

mode is assumed negligible, which would certainly.be true in an engineer­

ing design, the possibility presents itself that a single degree of 

freedom, i.e., a lumped parameter model, analysis would be applicable. 

As :is obvious from the manipulations which were requisite in Chapter 

III,. this would provide a major simplification ,in the dynami,c analyses 

of contacts in general. This simplification has the inherent and im­

portant qualification that contiguit,y,between·the contact and the contact 

separator occur at or close to t'he nodal point of the lower contact's 

second mode. 
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The dependence of the complexity of the displac~ment response on 

the ratio of x/L has an additional ramification on the general chatter 

phenomenon. If contact -is ·made a:t, ·say, x/L .equal to 0. 98, the secorid 

as well as third mode ·will be ·present. ·As such, the possibility exists 

that immediately subsequent to an impact -some fine chatter will ensue. 

Fine chatter is defined as a contact bourice having a period. of one of 

the higher mo.de·s ·rather than that of the fundamental -motle. This was 

found to be evident in the analysis oFAppendix E. The conclusion to 

be drawn is that the point at which _the members are contiguous, -and 

therefore where the normal mode functions are ·evaluated, is influential 

in determining the vibrational chatacter of the contact chatter. 

· Mass Ratio 

An additional parameter which.is of interest is the ratio of the 

mas·s of the contact separator to -that of the contact. · This ratio will 

be denoted by the symbol R and defined by the following _equation 

00 

M,;/ l x~ (L~/2) 
Ja * / 

j=l .Ma 
R - =,·M* (24) 

00 3 

·MI I x~ (L) c Jc c 
j=l 

.Due to the ·symmetry in the contact system the·upper and lower contacts 

·may bedenoted by the subscript, c, signifying a contact. With these 

simplifications equation .(22). becomes 

Cl3 

( 1 + e)y \' p c ·x -(L ·) 
s L jc jc jc · c 

j=l 
·ye-== 

oo :X::i! (L ) 
_\· JC . c• 
L p. 

j=l JC 
Sin p. t. 

JC 
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. It has already been mentioned that it is not conside·red reali;;;tic 

to consider a variation in the mass of a contact independent of the re .. 

maining system parameters. Therefore, the total, system effect of the 

variation will be indicated in this discussion. 

Since the maximum displacement of the contact is of interest, the 
,, 

above equation may be evaluated at some time t = t , .the time at which 
m 

the maximum displacement occurs. For a given initial static displace-

ment and x/L ratio, the terms y8 and Xj will be constants. If the 

mass ·ratio, R, . is permitted to vary, the displacement of the lower 

contact.· is seen· to behave as shown· in Figure 8. This graph is for 

x /L - 0.98 and x/L = 0.5 for the contact separator with the initial 
c .c 

static displacement of the upper contact at 0.5 inch. The plot indi-

cates that the maximum contact displacement decreases as the mass 

ratio, R, increases. This,. therefore, suggests that to minimize the 

magnitude of the lower contact displacement the mass of the contact 

separator ·be as large as possible relative to the mass of the contacts. 

It should be recalled that the analysis presented in-Appendix E 

is for repeated impacts between a cantilevered contact and a.massive, 

flexurally.rigid contact separator. As the mass of the contact separator 

becomes large, the analysis in Appendix E will become more valid for 

the top contact. 

The results of the analysis in this chapter indicate.that the mag-

nitude·of the lower contact separation may be reduced by decreasing 

the magnitude of the coefficient of restitution, the initial static 

displacement, the ratio of x3 to 13 and by increasing the mass ratio. 

The.governing equation was also shown.to.be capable of generalization 
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to the study of contact separation for any contact system comprised of 

three.uniform beams. In addition,. it was theoretically demonstrated 

that the point at which the normal mode.function is evaluated will in­

fluence the complexity of the contact displacement response. If the 

point of contiguity between the·contact and the contact separator is 

at the node of the contact's second mode, the displacement response 

will closely resemble that of a single degree-of-freedom system. 



CHAPTER.V 

, EXPERIMENTAL MODEL AND INSTRUMENTATION 

· In order to facilitate a. study of the theory developed it was 

essential to build a model of the redundant contact systemdescribed 

in the Introduction. A large model was constructed as this would. re­

·duce the frequencies of the·various oscillating members facilitating 

the observation of the system and minimize. the.influence of any instru­

mentation in the model on the dynamic behavior of the model. 

Description of the Model 

The model, devoid of its instrumentation, has beeri depicted sche­

matically in Figure 1 in the Introduction. In order to minimize adjust­

ment difficulties, as well as crowding in the model and also.to make 

the upper and lower contact supports·independent, the.supports for the 

upper and lower contacts were placed on opposite sides of the contact 

separator, This arrangement is shown.in the photograph in Figure 9. 

As can be seen in.the photograph, the supports for the cantilevered 

contacts were made large and massive and then attached to 24 x 24 x·l 

inch aluminum plates in an effort to make the foundation for the entire 

model as rigid as practical. The entire·model was then placed on 1/4-

inch Isomode pads to further inhibit the introduction of extraneous 

motion to the model. The contact separator was held in the remaining 

two vertical supports as shown in Figure·lO. 
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Figure 9. Experimental Model 
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Pigure 10. Solenoid and Contact Separator Clamping Arrangement 
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The model provided the initial static deflection of the upper 

contact via a solenoid placed in the solenoid holder. The solenoid 

holder, in turn, was supported by two vertical, 1/2 inch threaded rods 

as shown in Figure 10. Adjusting nuts on the top and bottom of the·sole­

noid holder permitted a one degree of freedom variation in the location 

of the solenoid with respect to the contact separator. 

Both the contacts and the contact separator were constructed of 

aluminum. The contacts were 19 inches long, 2 inches wide and 1/8 inch 

thick. Each of the contacts was provided with hemispherical contact 

buttons, also of aluminum, and located near the free end of the contact. 

The contact separators were all 2 and 1/2 inches long and 1/2 inch 

wide; however, the thickness of the contact separator was permitted to 

vary. Contact separator thicknesses of .125, .250, .350, .500 and , 750 

inches were employed in the model. 

Instrumentation 

In order to measure the contact displacements a transducer having 

fast response time, good sensitivity and a high signal to noise ratio 

was needed. In addition, it was highly desirable that there be a minimum 

of reflected inertia from the transducer to the contact. All the afore­

mentioned characteristics implied an optical system and for this reason 

a photocell arrangement was employed. The photocells were photovoltaic, 

silicon cells. The light incident on the photocells was interrupted by 

a metallic shade attached to the contacts as shown in Figure 11. As the 

contact was displaced, the position of the shade relative to the stationary 

photocell and light source was changed thus varying the intensity of the 



Figure 11. Photocell and Light Source Arrangement 
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light incident on the photocell and yielding a displacement sensitive 

·system. 
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Contact velocity measurements were initially attempted by differ­

entiating the photocell signal but the ·requisite intermediate instru­

mentation had deleterious effects on the signal and this approach was 

abandoned. Instead an independent velocity transducer wqs utilized. 

The velocity transducer consisted of a high-coercive ·force ·permanent 

magnet core moving concentrically within a. Shielded coil. Voltqges 

are then generated, without external excitation, which·vary ·linearly 

with the ·velocity attained by the core. 

A dual beam cathode ·ray oscilloscope was ·used for ·readout purposes 

on all the instrumen,tation. A block-diagram of the.instrumentation and 

the electrical interconnections is Shown in Figure 12. A photograph 

of the complete experimental assembly is shown in Figure 13. 
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Figure 13. Experimental Model With Instrumentation 
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CHAPTER VI 

EXPERIMENTAL PROCEDURE AND RESULTS 

The essential goal of the experimental portion of this ·study was 

to substantiate the validity of the trends indicated by the proposed 

mathematical model for the behavior of the system to be studied. The 

laboratory effort also yielded a more intimate understanding and appreci­

ation for the physical parameters of the system and the general validity 

of the theoretical assumptions ·made in the analysis. -It also provided 

an .invaluable stimulus towards the final analysis. 

·Prior to initiating the investigation of the model and its .behavior, 

,the calibrations·of the various components of the instrumentation were 

·verified, The displacement transducers were calibrated during each 

experimental_ run since th,e position of tlw photocell. relative to the 

shade, on the contact, and the light source were critical. 

The velocity transducers were calibrated with an .MB-Cll vibration 

exciter. The transducer and the associated instrumentation for this 

calibration are shown in the photograph in Figure 14. Displacement 

and frequency readings ,from the vibration exciter were compared with 

the·voltage output of the velocity transducer. 

Model Parameters 

The model parameters which were studied were the contact and 

contact separator natural frequencies and the coefficient of restitution. 



Figure 14. Velocity Transducer Calibration Arrangement 
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An experimental check of the natural frequency of each of the 

contacts as well as the contact separator was made with the MB-ClOE 

vibration exciter. Care was taken to support the vibratory members 

as they were supported in the experimental model. 
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A verification of the natural frequency generally will serve as a 

check of several of the hypotheses made in the theoretical derivations. 

First, it can yield an indication of how well the assumed boundary con­

ditions are met . . In the derivations of the vibrational response equations 

it was assumed that these boundary conditions were fulfilled. This re­

quirement is, unfortunately, rarely, if ever, met in an actual physical 

system. Of the orthodox beam boundary conditions, the clamped end con­

dition is perhaps the most difficult to achieve. A deviation from an 

ideal clamped condition would permit additional deflection in the beam 

· resulting in a; appaiently longer and softer member. The experimental 

natural frequency of a beam whose clamped boundary condition is less 

than ideal would therefore exhibit a natural frequency which is less 

than that predicted by theory. A second deviation in the natural 

frequencies is possible due to the neglect, in the Bernoulli-Euler beam 

equation, of shear and rotatory inertia effects. These effects are 

normally significant in short stubby beams, that is, members in which 

the length is not significantly greater than the lateral dimensions. 

A beam in which the shear and rotatory inertia effects ar e not negligi­

ble will also exhibit a natural frequency whose magnitude is less than 

that predicted by the Bernoulli-Euler theory. 

To investigate the natural frequenc~es of the contacts, the contacts 

and the contact supports were removed from the experimental model and . 
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mounted on the MB-ClOE vibration exciter. This arrangement ·is shown in 

the photograph in Figure 15. A resonance search was made to ascertain 

the first four vibrational modes of each of the contacts. Two visual 

indicators were used to determine the frequency at which the contact 

exhibited a resonant condition. Visual observation was made with the 

aid of a Chadwick-Helmuth Strobex system. This is a strobelight system 

in which the phase between the vibration exciter and the strobelight 

may be varied uniformly and continuously through 360 degrees .. With 

this capability it is possible to observe the contact displacement in 

slow motion .. In addition, the·sand pattern technique was employed. 

In this technique, a fine grain sand is sprinkled on the entire contact 

prior to excitation or during excitation of the contact. As a resonant 

condition is achieved the sand is thrown off the contact at any dis­

placement antinodes while simultaneously being accumulated at the nodes. 

When a resonant frequency was achieved an amazingly sharp sand pattern, 

consisting of stationary, transverse rows of sand at each nodal line, 

was observed on the contact, The ·sand patterns indicating the nodal 

regions for the second through fourth mode of the contact are shown in 

the photographs in Figures 16 through 18. As can be seen from the photo­

graphs the sand patterns indicate sharply defined nodal regions. In 

addition, the sand patterns are normal to the longitudinal axis of the 

contact, This would connote that little or no torsional mode is generated 

in the contact beams. The resonant frequency was read on a digital 

frequency meter. 

The theoretical contact natural frequencies were calculated from 

the eigenvalues of the·cantilever beam frequency equation, which.is 



Figure 15. Experimental Arrangement for Finding the 
Natural Frequencies of the Contacts V1 
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Figure 16. Sand Pattern for the Second Mode of the Contact 
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Figure 17. Sand Pattern for the Third Mode of the Contact 
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Figure 18. Sand Pattern for the Fourth Mode of the Contact 
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I ~ where k. = (p. a) . 
J J 
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Cosh k.L Cos k.L -1, 
J J 

Both the experimental and theoretical values, in 

cycles per second, are given in Table I and are in excellent agreement. 

It should be noted that the ridigity of the contact supports i~ much 

greater than the stiffness of the contacts and also that the length to 

depth ratio of the contact is large. With such a configuration it would 

be expected that the boundary conditions would be satisifed and that 

shear and rotatory inertia effects could be neglected. The close agree-

ment between the experimental and theoretical contact natural frequencies 

certainly support this statement. 

TABLE I 

THEORETICAL AND EXPERIMENTAL CONTACT 

NATURAL FREQUENCIES 

Upper Contact 

Mode Theoretical (cps .. ) Experimental (cps.) 

1 10. 6 10.3 

2 66.5 65.0 

3 187.0 180.0 

4 366.0 360.0 

Lower Contact 

Mode Theoretical (cps.) Experimental (cps.) 

1 10.6 10.6 

2 66.5 67.0 

3 187.0 186.0 

4 366.0 371. 0 
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The natural frequency of the contact separator was also investi-

gated with the MB-Cl OE vibration exciter. The procedure was essentially 

the same as with the contacts except that, due to the small displacements 

exhibited by the contact separator, accelerometers were used to indicate 

when the resonant condition was reached, In this case two accelerometers 

were needed. One accelerometer was mounted on the vibration exciter 

head; the other accelerometer was attached to the contact separator ~ith 

dental cement. Both of the acclerometer outputs were then simultaneously 

monitored on a dual beam, cathode ray oscilloscope as the exciting fre-

quency was varied. When the resonant frequency of the separator was 

reached the output of the accelerometer on the separator indicated a 

significant increase while the accelerometer on the exciter reamined 

relatively unchanged. The experimental values of the contact separator 

natural frequency was read on a digital.frequency meter. 

The theoretical natural frequency of the contact separator was 

calculated from the eigenvalues of the clamped-clamped beam frequency 

equation, which is 

Cos k.L Cosh k.L = 1 . 
.J J 

The theoretical and experimental values are listed in Table II. 

In contrast with the contacts the theoretical and experimental 

values for the natural frequency of the contact separator are not in 

good agreement. Here two of the original assumptions must be recollected. 

First, it was assumed that the contact separator motion could be repre-

sented by Bernoulli-Euler beam equation. Secondly, it was hypothesized 

that the ideal clamped boundary conditions were fully satisfied. 



TABLE II 

THEORETICAL AND EXPERIMENTAL CONTACT 

Separator 
Thickness(in.) 

0.125 
0.250 
0.350 
0.500 
0.750 

SEPARATOR NATURAL FREQUENCY 

Theoretical (cps.) 

4050.0 
8100.0 

11,310. 0 
16,200.0 
24,300.0 

Experimental (cps.) 

2,000.0 
4,000.0 
5,000,0 
6,250.0 

11,100.0 
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In all the above cases the experimental values are lower than those 

predicted by the Bernoulli~Euler beam theory. This would indicate that 

either some elasticity existed in the contact separator supports or that 

Timoshenko beam behavior is present. A third alternative is that of 

non-ideal boundary conditions accompanied by shear and rotatory inertia 

effects in the contact separator. It should also be noted that the dis-

crepancy incre&ses as the contact separator thickness, d, increases. 

This is to be expected since as d increases the stiffness of the sepa-

rator becomes more comparable to that of the supports and the d/L:a ratio 

increases resulting in a greater susceptibility to shear and rotatory 

inertia effects. I.t is probable that both phenomenon exist, but the 

relative contributions of the individual effects on the magnitude of 

the discrep&n,cy was not investigated. Instead, a correctionfactor was 

applied to the contact separator length to account for the combined 

effects. 
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From Table II, it can be·seen that each of the.separators exhibited a 

resonance which was lower than theoretically predicted. That is, it be-

haved as a member having lower stiffness, i.e., a beam of greater length . 

. On this.basis the correction factor·was derived from the eigenvalues of 

the frequency equation for the clamped-clamped beam .. These eigenvalues 

are determined solely by the boundary conditions on the beam and are in-

variant with the beam length. Thus, for.any ideal clamped-clarripedbeam 

obeying. the· Bernoulli.,Euler. beam equation the· following equality is valid, 

a a 
.k L = 

a 
.E1 = 22.4 

a 

·. For the contact sepa.rators used in this study, 

a _s 
k = 1.72 x 10 p/d. 

The symbol, L will be used to denote the length of a theoretically 
c 

equivalent beam which obeys the idealized hypotheses of the mathematical 

model .. The equivalent length may then be determined from.the equation, 

a 
.L = 

c 

The values ford, p, and the resultant equivalent length L are listed in 
c 

Table·III. 

TABLE III 

, E{1JIVALENT LENGTH OF THE CONTACT, SEPARATORS 

d(in.) . p(rad./sec.) L (in.) c 

0.125 12,560.0 ,3.60 
0.250 25,120.0 3.60 
0.350 31,400.0 . 3.81 
0.500 39,250.0 4.07 
0.750 70,000.0 4.15 
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Coefficient of Restitution 

The coefficient of restitution was originally defined by Newton as 

the ratio of the-rebound and impact velocities. The magnitude of the 

ratio was assumed to be determined solely by the particular materials in-

volved in the collision. 

More recent studies of impact phenomena.indicate that more collision 

parameters are definitely involved in the determination.of the-magnitude 

of the coefficient of restitution than just the-materiaiso However, no 

mathematical relationship is preferred for the determination of the magni-

tude of the coefficiento Consequently, the only alternative is to.determine 

the magnitude of the coefficient of restitution experimentally, for the 

collision under study. 

For this reason it was deemed.advisable to investigate any variation 
; 

in the magnitude of the coefficient of restitution with ·the two major ex-

perimental variables, the contact sep,arator-thickness and the initial 

static deflection -of the uppe-r contact. The variation of these two para-

meters might alternatively. be considered as changes in the ratio of the 

masses and impact velocities, res.pectively. 

_ The experimental values of the coefficient of restitution were ob-

tained with_ the aid of a velocity transducer attached to the upper contact. 

The velocity transducer output was viewed on the cathode ray oscilloscope 

and a sample trace of this data is shown in Figure l9o The time base is 

fromleft to right in the photograph. The velocity of the tip of the con-

tact will undergo a reversal in.sign when it impacts on the contact 

separator. Therefore, the impact point will result in a vertical step 

discontinuity in the velocity. trace as the velocity changes from -a 
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Figu~e 19. Velocity Transducer Response 

negative to a positive value. In Figure 19, the velocity from release of 

the contact until impact occurs is represented by that portion of the 

trace from points A to B. The coefficient of restitution was then taken 

to be the ratio of ordinate CD to ordinate DB, i.e., the ratios of the 

rebound velocity to the impact velocity. 

To determine if the coefficient of restitution was a function of the 

impact velocity the magnitude of the coefficient was determined for several 

values of the initial static deflection of the upper contact. These im­

pacts were all made on the same contact separator and a plot of the co­

efficient of restitution versus impact velocity is shown in Figure 20. 

The plot indicates a slight dependence of the coefficient of resti­

tution on the impact velocity as indicated by a decrease in the magnitude 

of the coefficient with increasing impact velocities. The plot also 
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implies therefore that an increased impact velocity would be a means of 

reducing the coefficient of restitution. Though a decreasing coefficient 

of restitution is desirable in that it implies a more inefficient collision, 

the decrease in efficiency is small in comparison with the corresponding 

increase in impact velocity and its grossly deleterious effects on the 

displacement of the lower contact. 

To investigate the possibility of a variation in the coefficient of 

restitution with contact separator thickness, the coefficient was measured 

for the impact of the upper contact on separators of several thicknesses. 

The initial static displacement was held constant for all the various 

separator thicknesses to preclude the influence of the impact velocity 

dependence from entering the results. The results of this investigation 

are shown in Figure 20 which contains a graph depicting the variation of 

coefficient of restitution with the thickness of the contact separator. 

This plot is for an initial static deflection of 0.5 inch of the upper 

contact and shows a decrease in the magnitude of the coefficient of resti­

tution with the separator thickness, d. The magnitude appears to become 

stationary ash increases. 

The data plotted in these curves show a slight dependence of the co­

efficient of restitution on separator thickness as well as impact v~locity. 

It should be pointed out that in these experiments the vibratory members, 

the hemispherical contact shapes and materials were invarianL Any speci­

fication of the coefficient of restitution must be qualified by specifying 

the bodies, materials and velocities involved in the collision under 

discussion. 
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If the adjustments described in the preceding discusiion on the 

contact separator natural frequency and the coefficient of. res·titution 

are incorporated into the mathematical model,. the predicted maximum-lower 

contact displacements will be as shown in Figure 21. If the curves in 

this figure are compared with the curves plotted in Figure 5, it can.be 

seen that there isa decrease in the maximum displacement of the lower 

contact. 

Test Procedure 

Subsequent to properly mounting.the appXOflriate members in, the ex­

perimental model the test procedure was as follows: 

1. Adjust the solenoid to obtain the desired initial static dis­

placement of the upper contact. 

2. Adjust the illuminator power supply,.oscilloscope sweep and 

sensitivities. 

3. Note the initial displacement, separator thickness and oscillo­

. scope settings. 

4 .. Calibrate the photocells for displacement using. shims of known 

thickness between. the contact and the contact sepa.rator. 

5. Raise the upper contact and res-tit on the extended solenoid 

plunger, 

6 .. Connect the solenoid d. c. power supply. to .. o·scilloscope external 

trigger input. 

7. Trigger the solenoid and. oscilloscope. 

8. Photograph the oscilloscope.traces. 
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A typical pair of traces for the upper and lower contact displacement 

is shown in the photograph in Figure 22. The trace displays the initial 

impact as well as subsequent collisions of the contacts and the contact 

separator. The displacement response shows very definite signs of higher 

mode response in the contacts. 

Figure 22. Contact Displacement Response 

A comparison of the predicted and the experimental maximum displace­

ments of the lower contact is shown in Figure 23. The plot is for an in­

itial static displacement of 0.5 inches and a coefficient of restitution 

of 0.375. 

The trends indicated by the experimental data and the theoretical 

values predicted by the mathematical model are in good agreement. How­

ever, there is a discrepancy in the magnitudes of the maximum values for 

the displacement of the lower contact. In all cases the theoretical pre­

dictions are greater than the corresponding experimental values. The 

experimental data points shown are single values in that only one value 
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was recorded photographically. However, for each data point several 

experimental trials were taken in order to insure the repeatability of 

the data. 
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Several plausible explanations are possible for this discrepancy 

between the predictions of the hypothesized model and the experimental 

data from the actual model. First, the theoretically predicted impact 

velocities for the upper contact were never attained by the upper contact 

in the model. The measurements taken in the course of investigating the 

coefficient of restitution indicated that the experimental impact 

velocity was less than that predicted by theory. As indicated by the 

governing equation a decrease in the velocity of impact of the upper 

contact will decrease the magnitude of the displacement achieved by the 

lower contact, The diversity in the impact velocities is attributed to 

the release mechanism employed in the experimental model, specifically, 

the solenoid. The end of the solenoid plunger upon which the contact 

rested prior to release was round and hence precluded an instantaneous 

release of the upper contact. · It is recommended that in future models, 

such as the one employed in this study, that perhaps an exploding bridge 

wire be employed to release the contact. In addition, the actual static 

deflection curve, of the upper contact, probably deviates from the de­

flection curve which was assumed, in Chapter III, from strength of 

materials theory. 

·A second possible reason for the occurrence of experimental dis­

placement values which are lower than the theoretical values is that the 

contact buttons of the upper and lower contacts may not be exactly align­

ed, vertically. This would imply that the contact separator mode func­

tion should not have been evaluated at x/L = 0.5. Any deviation from 
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midspan.would result in a m0de.function of lesser magnitude and hence 

a diminished initial velocity on the lower c0ntact .. This, in turn, 

.would decrease the magnitude.of the lower contact displacement . 

. This chapter has included a description of the experimental investi-

gation of the.natural frequencies of the contacts and the·contact·sepa-

rator .. The theoretical and experimental frequencies were compared and 

found to be in excellent agreement for the contacts .. However, .. for the 

contact separator the values:were in poor agreement, and the·discrepancy 

was attributed to a combination of a deviation in boundary conditions, 

shear and rotat0ry inertia effects .. The coefficient of restitution was 

·studied experimentally, and it exhibited a slight decrease·in magnitude 

as the impact velocity and contact.separat0r th:i,ckness·were increased. 

Finally, the· experimental and theoretical values· for.· the· maximum con-

tact separation were compared .. The·trends indicated by the theory and 

experimental data were in good agreement .. The theoretical sep9-ration 

values:were.greater than the·experimental values, and several causes for 
; 

this discrepancy were discussed. 



CHAFTER, Vr;I: 

· CONCLUSIONS .AND RECOMMENDAT;LONS 

The subsequent conclusions have been attained as a consequence of 

this stu(Jy. 

1. The severity of any circuit discontinuity, for the contact 

configuration analyzed, may be determined by the prediction of the cJis­

placement response of the lo,wer contact. 

2. The magnitude of the displacement·response is directly pro­

pqrtional to the-initial static displacement and hence the impact 

velocity of the upper contact. 

3. The coefficient of restitution .is a measure of the efficiency 

of the impact of the upper contact on the contact separator and there,­

fore directly influences the degree of separation of the lower contact. 

The magnitude of the coefficient should be minimized to reduce the 

contact separation. 

· 4.· The coefficient of restitution, for t};le specific configuration 

studied, was found to be a function of both the impact velocity·and 

the contact separator thickness. 

5. The \llagnitude of the lower contact displacement decreases, 

for a given initial static displacement of the upper contact, with in,­

creasing contact separator thickness. 

6. For the symmetric contact configuration, the contact separator 

should be.as massive as-feasible relative to the contacts. 
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7 .. The normal mode functions, though completely determined for a 

given beam configuration, does present a means of minimizing the displace­

ment response· of the lower contact. A re:cluction in the magnitude of the 

displacement of the lower contact may be attained by moving. the point of 

contiguity, between the lower contact and the contact separator, from 

the free end of the contact to a location closer to the clamped end. 

8 .. The complexity of the d;isplacement response is influenced by the 

point of contiguity between the contact se,parator and the lower contact. 

In general, if contact is made at the nodal point of a contact 9 s second 

mode, the displacement response at that p·oint will resemble ~hat of a 

single degree of freedom system. 

Recorrnnendations for Future Aqalysis 

In addition to the conclusions just mentioned, this study preci­

pitated.some ramifications of the-problem which are recommended for 

additional analysis and scrutiny. 

Specifically, the following. areas· are recommended for· e~tended 

study. 

1. The conclusions stated concerning. the coefficient of, resti­

tution are based on the particular co,ntact configuration used in. this 

study. It would be fruitful if additional effort, of necessity experi­

mental, were concentrated on the parameters which determine the magnitude 

of this coefficient. It would appear that there is a possibility that 

perhaps a contact button, other than. the hemispherical shape~ would be 

advantageous from an impact standpoint. 
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2. The influence of the .normal mode function.should be investi­

gated more extensively .. Included.in.such an.investigation should be an 

inquiry into the possibility of altering the mode·shapes either by a 

change in the beam geometry or by intentionally. deviating from the ideal 

boundary conditions, i.e. , elast i,c or da~ped sup.ports, 

3, Determination of any advantage to displacing, along the·longi­

tudinal axis of the contact separator, the points·at which the contacts 

are contiguous• with the contact· sep.ara.tor. 

4. The effect of varying. material prop.erties, such as· modulus of 

.elasticity, density and hardness·of the·conta-ct·buttons and contact 

separator on the displacement response of the lower contact. 
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APPENDIX A 

RESPONSE OF A CANTILEVER BEAM TO 

INITIAL DISPLACEMENT START 

r _l_ 
:Ys 

f 
.. x 

Figure 24. Cantilever Beam With An 
Ini t ia 1 Displacement 

Initial Conditions: 

3y a 
( ) s .( .he.... - ~3) 

y x,,O = '""'ta 2 6 

y(L,O) = Ys 

y(x,O) = 0 

Boundary Conditions: 

X(O) = O; X"(L) = 0 

· X '(0) O; X111(L) = 0 
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The beam ·.is assumed to .be a linear, undamped, elastic member, The 

transverse vibrations are restricted 'to the x-y plane and governed by 

the partial differential equation, the Euler beam equation, 

:::i.4u :ga ·a~+. =· 
a . oX4, 'et o, ', (1) 

where 

·aa = Eig/Ay; ka = p/a. 

The solution of equation (1) is a function of two variables and is 

assumed to have a separable form capable of being written as, 

.y(x,t) = X(x) ,<t). (2) 

Substitution of the above solution into·(l) results in an equation:per-

mitting '.separation of variables and individual solutions for X(x) and 

,<t) which ate of the following form, 

X(x) = ·c1 . (Cos kx + Cosh kx) + Ca (Cos ·kx - Cosh kx) 

C3 . (Sin kx + Sinh kx) + C4 (Sin kx .,.. Sinh kx), 
(3) 

,(t) = A Cos pt+ B Sin pt. 

The constants, Ci' .in ·x(x) may be evaluted by subtituting the boundary 

conditions into the e~uation for X(x). This results ·in the standard 

mode function and frequency equation for a cantilever beam, namely, 

Cosh k:L Cos k,L = -1. 
J J 

(5) 



The subscript~ j result from th,e eigenv~lue problem in solving the 

transcendental frequencyequation.(5) and thus necessitates the ad-

dition of the subscript in ·cp(t) · and a summation convention over the 

index, j. The response equation may now.be ~itten as, 

.(X) 

y(x,t) = l Xj(x) (Aj Cos P/ +Bj Sin P{) 

j=l 

(6) 

The constantsA. and B. are determined solely from the startingcon-
J J 

ditions. Ther~fore, from. the initial displacement condition 

(X) 3y 

l Lx2 ·3 
y(x,O) A .. X. (x) 

. s - ~ ) = =-- (--
J J :L3 .2 6 

j=l 

multiplication of both sides by'X/x) and integrating from zero to L 

yields, 

L J y(x,O) Xi(x) dx 
s 

L (X) 

- S I 
(:) j=l 

(X) 

= I A. 
J 

j=l 

A. X .. (x) X. (x) dx 
J J l. 

L 

s X.(x) 
J 

X. (x) dx. 
l. 

(:) 

The orthogonality condition on the mode functions dictates that 

L 

S'. X. (x) X. (x) dx = L o .. = .{LO, 
J l. . . l.J . ' 

·.c;, 

i 4: j 
i = j 

82 

and hence the integral has non-zero value·at only a single index thereby 

precluding the summation operation. The resulting .equation is therefore, 
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.L 

Aj - i J y(x,0) X/x) dx (7) 

0 

The initial conditions on velocity dictate that, 

y(x,O) = r pj B. X. = o, or 
J J 

j=l 

L co L 

s y(x, 0) X. (x) = l P. B J X.(x) X.(x) dx 0. 
]. J j J ]. 

0 j=l 0 

The preceding equation can be reduced to, 

which·implies that B. = 0. 
J 

The displacement and velocity subsequent to .the release from Ys 

are 
co 

y(x,t) = l A. X. (x) Cos p,t, and 
J J J 

j=l 

co 

y(x,t) = l -p. A. X. (x) Sin p,t 
J J J J 

j=l 

where A .. is defined by equation (7) and the values of X. (x) c1re tabulated 
J J 

· [37]. 



APPENDIX B 

RESPONSE OF A CANTILEVER BEAM TO AN IMPULSE 

AT ITS FREE END 

---)(. 

_,,____ L l/J(x,t) 

Fi.gure 25. Transverse Impulse to the Free End 
of a Canti.lever Beam 

~(x,t) = ~ o(t) (1) 

The i.ni.ti.al conditions are assumed to be zero while the boundary 

condition are like those in Appendix A; however, the beam equation must 

contain the impulsive forcing function, Hx,t), i.e., 

(2) 

Laplace transformation and virtual work techniques will be employed 

in determining the solution of equation (2) and the transformed vari-

ables will be denoted by capital letters, in other wordsJ 
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CIO ' \, J . -st Y(x,s) = ~(x,t) = . y(x,t)e dt. 
0 

The solution y(x,t) is assumed to be capable of approximation by 

the series, 
CIO 

y(x,t) = \ ,x.(x) cp.(t). 
/_, J J 

(3) 

j=l 

Subject to the assumption of a virtual displacement, oy= Xjo tpj, 

the virtual work in the system may be written as follows: 

Inertial Virtual Work, IVW 

CIO CX) 

mY l X. (x) 
YA l X. (x) = m cp. =- cp. 

J J g J J 
j=l j=l 

L 

.IVW = J mY oydx 
0 

cpJ. X. (x))·· 6 q,. X. (x) dx 
.J J J 

YAL .. 
= - g cpj O cpj 

Elastic Virtual Work,· EVW 

L 
- E21 J' £.y_ a EVW = (d:x:a) dx 

0 

(4) 
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EI = - 2· 

co L 

l ~ s 
J·-1 J 

- 'O 

[
d2 · Xj (x) ]a 

dx:a dx 

= 

The virtual strain energy is therefore, 

(5) 

Virtual Work from Force, FVW 

(6) 

The total virtual work-is summed and equated to zero, After a re-

arrangment of the necessary terms from (4), (5) and (6) the resulting 

equation may be written as, 

(7) 

The Laplace transform of (7) yields 

~ 2 1.(s) - s ~(o) - ~(o) + a2 k4 t.(s) 
J j J 

gXj(L) 

yAL ~ (8) 

Since the initial conditions were set equal to zero, 

cp( 0) = 0; ¥ 0) 0' 



and equation (8) may be solved for ~.(s) yielding 
J 

The ·inverse 

but ka p. and a . 
J J 

gX. (L) 
J 

yAL 

transform of ~. (s) is, 
J 

. cp. (t) 
gX/1) 

~a Sin 
J yAL a . 

J 

g/"'(AL = 1/M, so that 

q,/t) 
= 1 Xj(L) 

Sin M pj 

ak~t 
J 

p.t. 
J 
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(9) 

The substitution of (9) into (3) yields the equation for the displacement 

response of the beam, 

= i 1~ Xj(L) Xj(x) 
y(x,t) Sin p.t . 

M p. J 
J 

(10) 

j=l 

The corresponding velocity response is therefore, 

y(x,t) X. (L) X. (x) Cos p. t. 
J J J 

(11) 

j=l 



APPENDIX C 

RESPONSE OF A Cl.AMPED-CLAMPED BEAM TO AN 

IMPULSE AT MID~SPAN 

Figure 26, Transverse Impulse to a.Clamped-Clamped 
Beam at Mid-Span 

* = *(x,t) = *o(t) o(x-L/2) 

The separator is assumed to be a linear, undamped, elastic, 

clamped-clamped beam with zero initial conditions which obeys the 

Euler beam equation, 

with a solution of the separable form~ y(x,t) = X(x) ~(t), 

(1) 

.The.boundary conditions resulting from the clamped-clamped as-

sumption are 

X (O) = X(L) = O, 
(2) 

X '(O) X '(L) = 0, 
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Substitution of the boundary condition ·then yields the frequency 

equation 

Cos k;L Cosh k,L = 1 
_J J 

(3) 

and the mode function, 

: X.(x) = (Cosb k.x - Cos k.x) - ~ .. (Sinh k.x - Sin k.x) (4) 
J J J J J J 

The normal mode functions are orthogonal functions and the ortho-

;gonality condition will be given by 

L s xj (x). xi (:K) dx = 'L oij 
'O 

(5) 

The function ·cpj(x) may be determined by assuming a virtual dis­

placement, oY = o cp.X., and obtaining expressions for the virtual work 
J J 

as ·in·Appendix .B. 

The differential equation may be written as, 

C+>j = yA$gL·. o(t) XJ. (L/2). 

·The application of Laplace transforms ·yields the following expression 

for cp(t), 

_ ·.!!_.Xj(L/2) 
c,o(t) - .,AL , Sin pJ. t. 

r· P j 

The complete displacement response is therefore obtained by.substitution 

.into 

.. or 

00 

y(x, t) = l · X/x) · cp/t) 

j=l 
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,irg lc:o . xj (L/2) X/x) 
y(x,t) = .,AL Sin p.t. 

r· p. J 
j=l J 

The velocity response is, 

00 

= i I .y(x;t) M X.(L/2) X.(x) Cos p.t. 
. J J J 

j=l 



APPENDIX D 

RESPONSE OF A CANTILEVER BEAM TO AN INITIAL 

VELOCITY START AT ITS FREE END 

.... x 

Figure 27. Initial Velocity Start to 
a Cantilever Beam 

Initial Conditions: 

y(x,O) = 0 

y(x,O) = v 0 6(x-L) 

The beam equation has the form, 

with a solution, 

(X) 

y(x,t) = I X.(x) (A. Cos pJ.t + B. Sin p.t). 
J J J J 

j=l 
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(1) 

(2) 



·. ~2 

S.ubstitution of the initial condition on displacement into equation (2) 

yields, 

y(x,O) = I X/x) ·Aj = 0, 

j=l 

which implies A.= 0. 
J 

The initial condition on velocity yields, 

QC) 

y(x,O) = l pj X/x) B. .= 'Vo 
J 

o(x-L). 

j=l 

(3) 

If both sides of (3) are multiplied by X; (x) and integrated, the resulting 
' J. 

equation·is, 

0:, L L 

l p .B. J xj (x) xi (x) dx = s Vo o(x-L) X. (x) . dx, 
J J l, . 

j=l ·o ·o 

However, with the orthogonality condition and the fact that 

o(x-L) X. (x) dx = v0 X. (L) 
'1 1 

0 

equation (4) reduces to the following 

or, 

p .B. L = v 0 X. (L), 
J J J 

B. = 
J 

v 0Xj(L) 

p.L 
J 

The d:;i.splacement ·response is therefore, 

. f v 0 .. XJ(L) 
y(x,t) = L ~ i>.'' 

j=l J 

(4) 

·. (S) 
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and the velocity is given by 

QO 

y(x,t) l Ve 
= L 

X. (L) X. (x) Cos p . t, 
J J J 

(6) 

j=d 



APPENDIX E 

DISPLACEMENT EQUATIONS FOR REPEATED IMPACTS OF A CANTILEVER 

BEAM, AT ITS FREE END, WITH A RIGID BODY 

The curve shown below will be used to facilitate the development 

of a notation adequate to describe the displacement of the cantilever 

beam for repeated collisions with a rigid body. 

'Y(x,t) 

---
00 t, 12 t3 --- t n-f tn tn+l 

~ f2 "'3 fn-1 V'n \/Jn +I 

Figure 28. Contact Response During Repeated Collisions 
With.a Rigid Body 

t 

In this figure, n. is an index denoting the number of the impact, 

~n is the impulse and yn is the contact displacement response due to 
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the impact at t = t . The coefficients A. and B. will, also have an 
n .J J 

added subscript, namely, n to associate them with a specific displace-

ment, yn and will be denoted as A. and B .. 
JU JU 

For the interval O s; t < t 1 , y(x, t) = y0 (x, t) and is given by 

equations (2) and (4) of Chapter III. At t =: t 1 , . the free ·end of the 

cantilever beam experiences its ·first impulse, Vi• The coefficients 

Ajl and Bjl may.be evaluated,using boundJry conditi~ns on .the contact 

displacement and velocity at t:,,, which -may ·be presented as follows, 

+ = Y\ (L, t:i,) = y1 (L, 0) 

CD 

L · x_t(L) 

j=l 

( 1) 

(2) 

If the appropriate di,sp lacement eqti.at ions are substituted into · (1), 

the result·is, 

x = 

CD 

I 
j=l 

A. X.(L) Cos p.t. 
JO J . J .. = I 

j=1 

A .. X. (L) • 
Jl J 

· After multiplication of both sides by·, X. (x) and integration from 
l. 

0 to x ·= ·L, the preceding- equation may be written as, 

. 00 L 00 L 

I A J.x. 2 (x) dx = :I A. .Cos p,tl s X :.s (x) dx, 
jl .J JO J J 

j=l ·o j=l 0 

and therefore for each j, 

A. = A Cos p.t1 • 
Ji _jo J 

(3) 

The velocity expression, equation (2), when expanded yields, for 

each j, 



Thus, for the time interval, t 1 s: t, ·< t 2 , 

co 

y(x,t) - y1 (x,t) = l {Aj 1 Cos P/ 

j=l 

,i,1 Xj(L) } 
+ (B. - -M ) Sin p. t .x. (x), 

Jl p. J J 
J 

where A. 1 and BJ. 1 are given by.(3) and (4), respectively . 
. J 
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(4) 

(5) 

It is now possible to obtain a general recursion relation for th,e 

coefficients A. and B. in terms of·A. 1 and B. 1 by using the 
JU JU JU- JU-

following equations, 

co 

1\ln l = ··y' (L t · t ) - - X2J. (L) • n-1 ' n - n-1 M 
j=l 

Substitution .into (6) yields, 

A. = A.(- l) Cos p.(t - t ·1) JU J n- J n n-. 

= .;,A. ( l) Sin p. (t - t 1 ) 
J n- J n n-

[ we l) x.(L)J. + B. - .n- . J Cos (t - t ) 
Jl M p. pj n n-1 

J 

and the corresponding displacement response. is 

y (x,t) 
n 

co 

= l {Ajn 
J=l 

tn- Xj'(L) 
Cos p . t + (B . - .11 p . .) · Sin p . t} X. (x) 

J JU J J J 

(6) 

(7) 

(8) 
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valid for the time interval tn ·~ t ~ t(n+l)" 

The expression for the impulse may be derived using the method of 

Sec.tion D of Chapter III and the resulting expression is, 

co 

(1 + e)M l p. B. 
J JU 

X. (L) 
J 

tn 
. '=1 

(9) ·= co 

I ·X~(L) 
J 

j=l 



APPENDIX F 

LIST • OF . MAJ.OR. INSTRUMENTAl'ION 

. A,udio Oscillator,--Mo4e1 200 AB;· Manufacturer;, Hewlett-Packarq; Serial 
No. 130~13888. 

Universal EPUT and Timer,.-Model 7360; · Manufacturer, Beckman-Berkley; 
: Serial No. 370. 

Dual Beam CathodeR,;1yOscilloscope--Model 502;: Manufacturer, Tektronix; 
Serial No. 26. 

Velocity Tra.nsducer.-,.-,Model 6LV2; Manufacturer,, Sanborn·Gompany;· Serial 
· No .. HH.· 

;Model 6LV1;, Serial No. HH . 

. Electromechanical: Sh,itk,er7:-Model. C· lOE; •Manufacturer,, MB.; Electronics; 
. Serial No. 121. 

Moc:lel c,..1i;. Serial No, 670 . 

. Power Stipplies (D.C.)-·Programmable Re:gatrori;· Manufacturer, .. Electronic 
Associates;; SeriaLNo, 348, · 

•. Model 865B;: M,;1nufacturer, Harrison L,;1boratories; 
. Serial No. ?~. · 

. Light· Sources-·Model Optic-Lume:· Illumtnatots; Manufacturer, Baush &:Lomb . 

. Photocells--Model 10-61;: M,;1nuf.acturer,. Sola.r ·Systems. 

. -~.,.., ... ._, 
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APPENDIX G 

FORTRAN. PROGRAM FOR THE LOWER CONTACT 

'DISPLACEMENT 
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C PRINTED CIRCUIT BOARD CONTACT SEPARATION ANALYSIS 
DIMENSION V(4l,C(4l,ALPHA<41,DOGl4l,SINHC4J,COSHC41,Pl41,UC41,Q(41 
DIMENSION R14l,DlC41,D2<4l,D314l,D4(41,D5(4l,D614l,D7C41,D8(4l 
DIMENSION AP(4J,PEl4l,All4l,Bl14,6l,APE(41 
DIMENSION V2(4J, C2141, ALPH214l, V3!4J, C3(41, ALPH314) 
DIMENSION P214), P314l, C2S(4), C3SC41 

10 FORMAT( 7Fl5e9l 
15 FORMAT CEl5e9tI2l 
20 FORMAT II5,I5,I5,I5,15,151 
5 READC5,10) XL,B,H,RHO,YSTAT 

READ 15,101 XL2, B2, H2,RH02 
READ C5,101XL3,B3,H3,RH03 

READ (5,101 DELT,ER,DELY 
READ 15,151 E,N 
READ 15,10) XL2C 

WRITE (6,101 XL2 ,B2, H2, RH02 
OT• DELT 

RHOC = IRHOI I 1728.0 
RH02C = RH02 I 1728.0 

RH03C • RH03 I l728e0 
A s B * H 

A2 • 82 *H2 
A3 • 83 * H3 
WM= CRHOC *A *XL l/386e4 
WM2 • I RH02C * A2*XL21 I 386.4 
WM3 = IRH03C * A3 * XL31 I 386e4 
EYE= (B*(H **311 I 12.0 
EYE2 = IB2*1H2**311 I l2e0 
EYE3 • IB3*1H3**3JI I 12.0 
W=SQRTICE*IEYE*386e4JJ/CA*RH0Cll 
W2 • SQRll(E*IEYE2 * 386e41l I CA2* RH02C II 
W3 = SQRTCIE* I EYE3 * 386e4ll I CA3 * RH03Cll 

30 DO 35 I= 1, N 
READ 15,101 VIII, CCII, ALPHACII 

35 CONTINUE 
36 DO 37 I= l,N 

READ 15,101 V2(11, C2CIJ, ALPH2(Il 
37 CONTINUE 
38 DO 39 I 3 l,N 

READ 15,101 V31Il, C31ll, ALPH3Cll 
39 CONTINUE 
60 00 70 I•l,N 

DOGIIJ=-VCll 
SINHCll=IEXPCVllll-EXPIOOGCllll/2.0 

COSHCil=CEXPCVCill+EXPIDOGlllll/2•0 
PI I I "' ( W * IV I J I ** 2 I I I ( XL ** 2 l 
UCII = VIII I XL 
QC I l=2e0/IUC I 1**31 
RCil=(XL**21/U(II 
D l ( 11 =IQ I I I-RI 11 l *COS IV I 11 I+ C C 2 • O* ( XL *SIN IV C I J l J J / W ( I I **2 l 1-Q C I ) 
02CIJ=Cll2eO*XLl*COSCVCllll/lUIIl**2lJ+!RCIJ-Q(Ill*SIN(V(!)I 
03 ( l) 11: I <3e O*D2 ( 11 >/UC I 11-1 I XL **3 l *COS IV I I I l J /U I I l 
041 I >=I IXL**3l*SIN<VI I I l/U( I I l-3•0*Dll I l/U( I I 
05 I I l =IR ( I I +Q ( I I l *COSH ( I J - I I 2 • O*XL >*SI NH I 11 /l UC 11 **2 I l-Q I I ) 
06 I I l = I IR I [ I +QI 11 ) *SI NH I 11 l - ( I 2 .. O*XL l *COSH ( I I I( U ( I ) **2 I ) 
D7Cll=IIXL**3l*COSH(l)/Ullll-l3e0*061II/UCIII 
D81Il=l<XL**3l*SINH(ll/U(l)l-13.0*D51IJ/UCl)l 

APIIl=Cl3e*YSTAT!/(Xl**3ll*(C06<I>-D2Clll-ALPHA(ll*(D5(Il-Ol(tl)) 
PE(ll=(YSTAT/CXL**4ll*((081I)-04(1Jl-ALPHAIIl*(D7(Il-D3ll))) 
APE I 1 l = I AP I I) -PE ( I I I 12 • 0 

WRITE (6,10) V(IltCClhALPHAII>, P<II, APECII 
70 CONTINUE 



T•OeO 
80 TY•OeO 

TYOTL•O•O 
ACT• OeO 
CT•OeO 
CT2 • OeO 
CT3 • o.o 

90 DO 100 Ial,N 
YcAPECI>*C(l)*COSlPCl)*TI 

TY=TY+Y 
YDTL•-CPCl>*APEll>*CCll*SIN(P(ll*T)I 

TYOTL•TYDTL+YOTL 
AC=-PIIl*APEII>*CIII 

ACT=ACT+AC 
C 1 • C ( I l **2 
CT"" CT+ Cl 
C2Slll • C21ll**2 

CT2 = CT2 + C2SCI) 
C3S C II II C3 Ill **2 
CT3 • CT3 + C3S!Il 

100 CONTINUE 
IF (TY-DELYll30,131,110 

110 WRITE16,10lT,TY,TYDTL 
IF !DELT-0.0005)120,115,115 

115 NTzT/(O.Ol/lOOel 
NTY=TY/IOel/100•1 

M=3 
120 IF CDELT-Oe00000001)13ltl31,122 
122 TT•T 
125 T .. T+DELT 

GO TO 80 
130 T=TT 

DEL T= <DEL TI/ 2 • 0 
T=T+DELT 
GO TO 80 

131 ED=9e999 
WRITE 16,lOIED 

132 EY = llleO +ERi * ACT) I (ICT/WMI + ICT2/WM2l + C CT3/WM3 II 
WRITE16,101 T,EY,CT,CT2,CT3 

DO 133 1•1,N 
Kcl+l 
X:aN 
Jsl 

A 1 I I l = APE I I l * COS I P I I I * T l 
BllI,Jl=-APEIIl*SINIP(ll*TI 

WRITE 16,101 Allil ,Bl(I,J) 
133 CONTINUE 
170 TcO.O 
200 TY=OeO 

TYDTL•O•O 
ACT:so.o 

240 DO 300 l•l,N 
Y=Allll*COS(P(ll*Tl 

Y=IY+<Blll,Jl-f(EY*CII)I/CWM*Plllll)*SIN(P(I)*Tlt*C!I) 
TV=TY+Y 

YDTL•-All J l*ISINCP( J l*TI I 

101 

YD T L = I YD TL+ I B 1 I I , J l - I C E Y * C< I ) ) IC W M*P ( I ) ) > ) •COS C P I I ) * T) > *C I I I *P ( I I 
TYOTLcTYDTL+YOTL 

AC=P(I)*Blll,J)*CIII 
ACT,.ACT+AC 

300 CONTINUE 
315 WRITE 16,lOIT,TY,TYDTL ,ACT 



350 TY20T • OeO 
WM2 • WM2 * ( XL2C I XL2 ) 

400 DO 410 I• ltN 
P2(l) • CW2 * CV2CU **2).) I XL2 **2) 
P3CI) • CW3 * lV3Clt **2 ))/ ( XL3**2 I 

Y20T • lEY/WM2 ) * C2SCI) 
TY20T • TY20T + Y2DT 

410 CONTINUE 
WRITE(6,l0> TY2DT 

450 TV3 • OeO 
500 DO 510 I• l,N 

Y3 • TY2DT * (C3S(I) * SI~(P3(IJ *T)I /CXL3 *P3CIJ 
TY3 • TY.3 + Y3 

!HO CONTINUE 
TAU• 0•060 

WRITE (6,10) T,TY3 
DELT • OT 

T • T + DELT 
IF ( T - TAU> 520, 600, 600 

520 GO TO 450 
600 DO 610 I • 1,N 

WRITE(6,10J v2,1,.c2,1,,ALPH2llt, P2CIJ 
610 CONTINUE 
650 DO 660 I= ltN 

WRITE 16,10) V3(1), C3(1t, ALPH3(1t, P3CI) 
660 CONTINUE 

GR"' H2 I XL2 
BETA• WM I (WM2 + WM31 

MRl • WM2 I WM 
MR3 • WM2 I WM3 

WRITE (6,10> WM, WM2t WM3 ,XL2C 
WRITE<6,10) GR, BETA, MRl ,MR3 

GO TO 5 
END 
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