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CHAPTER I 

INTRODUCTION 

The use of air and gas in rotary drilling was introduced just 

prior to 1950 and its use was expanded during the 10 years from 1950 to 

1960. During the present decade its use has reached a static condition 

relative to expansion. Because in the use of any technique static con­

ditions are generally short-lived, it must be assumed that the use of 

air and gas will either decline or increase in the future. Thus the 

purpose of this research has been to expand old technology and intro­

duce new ideas that will lend themselves to a further expansion of the 

use of air and gas in rotary drilling, 

Drilling with air and gas was expanded rapidly in the early 

1950's, when it had been demonstrated that penetration rates could be 

increased by a factor of 10 over penetration rates with drilling mud. 

However, the drilling industry faced problems. Drilling rigs were 

burned because of escaping gas around the rig floor, underground ex­

plosions resulted from combustible mixtures of air and hydrocarbons 

under pressure, and underground water flows resulted in stuck drill 

pipe. Of equal importance was the fact that volume requirements were 

an unknown quantity. From this beginning, solutions were found for 

the most serious problems. Better pack-off equipment minimized es­

caping gas and safety precautions minimized the danger of fires. The 

combustion pressure range for various concentrations of air and hydro­

carbons was determined and used by rig crews when potential problems 

1 
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existed. Methods for controlling water flows were conceived. In some 

cases attempts were made to shut-off the influx of water; in others, 

chemicals and water were used to form a bed of foam to remove the water, 

In all of this development, volume requirements for air and gas 

drilling were never considered a real problem. At first the drilling 

industry was content to use a modification of Weymouth's equation for 

horizontal air flow in pipe-lines. Improvements were made and in 1957 

a set of charts for selecting air and gas volume requirements were 

introduced by Angel (1), This work represented a big step forward, but 

unfortunately the last step forward. Industry was still left with the 

necessity of assuming standard air velocities of 3,000 ft/min for an-

nulus flow, a value taken from the mining industry. Density effects of 

formation solids were considered relative to pressure losses and neg-

lected relative to particle slip velocities. 

From this beginning the drilling industry has drifted into the 

habit of determining air and gas requirements on a trial and error basis. 

Past experience has become the determining factor; the application of 

sound technology is disappearing from field practice. If this happens, 

air and gas drilling will also disappear. Thus, this research is the 

first step in the necessary revival of technology in air and gas drill-
1 

ing. 

1 
For the purpose of clarity and to prevent a continued use of 

the terms air and gas, only the term gas will be used in the following 
chapters. 



CHAPTER II 

SUMMARY OF PREVIOUS WORK 

The review of previous work will be directed towards those 

areas that concern technology related to volume requirements in gas 

drilling. This will include work where: (1) the primary objective was 

to develop methods for determining gas requirements in rotary drilling, 

(2) the objectives were limited to particle lift in areas related to 

rotary drilling, (J) the objectives were concerned with particle lift 

in areas unrelated to rotary drilling and (4) the objectives were to 

determine pressure losses in multiphase solid-fluid systems. 

Because the use of gas in rotary drilling is relatively new, 

the development of technology in this area is limited. Martin (2) in 

1952 and 1953 presented methods to determine gas volume requirements 

based on a modification of Weymouth's equation for gas flow in a hori-

zontal pipe line. His results are shown in Equation (1). 

= (1) 

There is no gravity term for vertical flow and the presence 

of drill solids have been ignored. Because of the "deficiencies in 

Equation (1), it was obvious immediately that some other method would 

have to be utilized, Beginning with Martin's work the drilling indus-

try used a rule-of-the-thumb gas velocity for cleaning the hole of 

3 
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formation cuttings. The velocity assumed was 3,000 ft/min of standard 

air. 1 This number came from quarry mining and was an experience factor. 

It seemed to suffice and is still accepted by the oil industry. 

Nicolson (3) in 1954 presented an equation for slip velocity 

based on Newton's second law, F = ma, and a constant drag coefficient 

of 0.5. His results are shown in Equation (2). 

= (2) 

Nicholson's equation was recognized but not used. Industry 

had decided to use the velocity of 3,000 ft/min of standard air. Actually 

his assumption of 0.5 for the drag coefficient on spheres was based on 

work from other areas and is approximately correct for a sphere which is 

dropped through a quiescent fluid in an infinite gas column. 

In 1957, four other investigators, Gray (4), McCray and Cole 

(5) and Scott (6) made contributions to drilling with gas. Gray used 

the same approach as Nicolson. However, instead of assuming a drag co-

efficient of 0.5, Gray's work was directed primarily towards the meas-

urement of actual drag coefficients. He used limestone and sandstone 

particles and found the drag coefficient for sandstone to be an average 

of 0.805 and for limestone to be 1.400. 

The difference in qrag coefficients was assumed to be a 

function of particle shape. Sandstone particles were primarily sub-

rounded in shape and limestone particles were angular in shape. These 

runs were made with a given mass of particles which were suspended in 

a transparent flow chamber. He used the slip velocity equation developed 

1standard air refers to air at 14.7 psia and 60°F. 
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for spheres and calculated drag coefficients making the assumption that 

the measured drag coefficients provided the necessary correction for 

particle shape. 

Gray used the ~lip velocity formula derived from taking a force 

balance on a sphere, which is shown as Equation (3). 

v = s 

He considered wall effects by using Equation (4) first introduced by 

Bruce and Williams (7). 

v = 
a 

v s 

1 + Dp 
D 

(3) 

(4) 

Using Equations (3) and (4) and his experimentally determined 

drag coefficients, Gray found that his calculated slip velocities devi-

ated ·from the actual slip velocity by an average of 6.49 percent for 

sandstone and 7.10 percent for limestone. He assumed that shale cut-

tings would be angular and similar in shape to the limestone particles 

and that the drag coefficient for shale would also be 1.40. 

Brown (8) suggested the use of a sphericity factor to correct 

for particle shape. The suggested sphericity factor, x, is shown in 

Equation (5), 

x = 1 
n 

(5) 

In this Equation (5), Da is the average diameter of the particle or 

particles determined from a screen analysis; Ds is the equivalent 

diameter of a sphere having the same volume as the particle; n is the 
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ratio of specific surfaces. Gray did not use the sphericity factor 

because of the difficulty involved in the determination of n. By using 

the ideal gas law for density and the drag coefficients determined for 

limestone and sandstone, Gray modified Equation (3) to give the follow-

ing slip velocity equations: 

For Limestone and Shale: 

= 

For Sandstone: 

v = s 

rD T e Jl/2 o .9456 L p ; p 

1.,\45 [DPT; e p] 
1/2 

( 6) 

( 7) 

Equations (6) and (7) were used by Gray to construct Fig. 1 and 

2, which show slip velocity as a function of bottom -hole injection pres-

sure. If observed casually, this might indicate that the gas volume 

required for lift goes up as the pressure goes down. Actually the reverse 

is true, an increase in pressure will result in the requirement of a 

greater volume of gas. However, Gray's results are useful for the deter-

mination of drag cofficients and are believed to be the best work avail-

able for this purpose. Either Equation (6) or (7) could also be plotted 

as a straight line on log-log paper with a slope of minus one-half. 

Such a modification of Equation (6) is shown as Equation (8). 

Log v = log (0.9456 D T e )1/ 2 - 1/2 log P (8) s p a p 

Gray's work used alone does not provide a method for calculating volume 

requirements, but is a,valuable aid to work of this type. 

Also in 1957, a method for calculating gas requirements was 

presented by Ang el. He included charts which were the result of computer 
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solutions, and .because of the fact that these data could be readily 

used they were adopted by the oil industry. Angel used two equations, 

one to predetermine the pressure at any point in the annulus and the 

slip velocity formula shown as Equation (3), However, he did not use 

Equation (3) to determine gas requirements. Instead he also assumed 

that the required velocity of standard air was 3,000 ft/min. Because 

Angel's work introduced a new approach, the basic method that he fol-

lowed will be outlined. 

To determine pressure loss at any point in the annulus, he used 

Equation (9), which is a simplified form of the general energy balance. 

(9) 

The first term on the right hand side of Equation (9) is the static head 

and the second term accounts for the flowing pressure losses. This is 

a standard equation and is used frequently to determine the bottom-hole 

pressure in dry gas and gas condensate wells. Angel used the Weymouth 

friction factor of 0.014 (Dh-Dd)-l/3 in Equation (9). Actually there 

are many empirical constant friction factors in use. In normal pipe 

line flow the Weymouth friction factor has been found to be as accurate 

for determining pressure losses as more complicated methods. The Moody 

friction factor could be used. However, Fig. 3 shows a plot of the 

Moody friction factor versus Reynolds number and in a high range of 

Reynolds numbers the friction factor is a function of pipe roughness. 

For most cases it would be very difficult to describe the roughness in 

the drill pipe-hole annulus. For this reason the use of a constant 
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friction factor such as the Weymouth friction factor simplifies the 

calculation with no particular sacrifice in accuracy. 

Angel modified the density term as had been done when the gas 

stream contained liquids, This was done as shown in Equation (10), 

SP (1 + ~) 
Mr 

(10) 

This modification was made to account for the change in fluid density 

introduced by the presence of drill solids. In making this modification 

the following assumptions are necessary: 

1. The solids from the formation go into solution, 

2, The resulting solution is homogeneous in nature, 

Equation (10) allows for the consideration of drilling rate as a param-

eter, since the density is changed in proportion to the quantity of 

solids added to the gas stream and the quantity of solids added to the 

gas stream is a direct function of the drilling rate, 

Angel used a temperature variation based on the geothermal 

gradient and then settled on the use of an average temperature, because 

it could be shown that the results using either approach were essentially 

the same, 

In conjunction with Equations (9) and (10), Angel used a 

modification of Equation (3). He assumed a required standard air velo-

city of 3,000 ft/min, and also used the continuity equation to obtain a 

second equation which contains pressure as one of the variables. His 

modification of Equation (3) and his use of this modification with the 

one-dimension continuity equation introduced an incompatible mathematical 

relationship that was not valid. By considering the drag coefficient, 
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CD' as a constant and neglecting the density of the fluid relative to 

the particle density, Equation (11) is obtained from Equation (J). 

= €.f (11) 

As long as the slip velocity is used in Equation (11), it is limited 

only by the assumptions made. Although Angel's work does not include 

the specific assumptions made, the following assumptions were necessary 

for his final equation, in which he substituted the fluid velocity for 

slip velocity in Equation (11). 

1. The most difficult point of lift was at standard condi-

tions or in this case at the surface. This was done when 

he assumed the standard air velocity equal to the slip 

velocity. 

2. The air velocity required to lift cuttings at any other 

point in the hole can be defined by the modified form of 

Equation (11). 

None of these assumptions are considered valid. The one dimensional 

continuity equation shown as Equation (12) was also used. 

e s A v SS = ef A vs (12) 

This equation states that es Vss = ef Vs. Thus if Equation (12) 

is- used with Equation (11), the assumption must be made that the den-

sity of the air remains constant with changes in temperature and 

pressure. This is an obvious discrepancy which makes this approach 

mathematically incorrect. 

Combining the integrated form of Equation (9) with Equations 

(10), (11), and (12) formed the basis for Angel's final formula for 

gas volume requirements shown as Equation (13). 



where: 

6.61 ST Q2 
a s = 

a = 

b = 

2 
SQs + 28 .8 r Dh 

53,J Qs 

6 -6 2 1. 25 x 10 Qs 

()2 ah Ta_ b T2 I a 1/2 

\..f a 

Angel solved Equation (13) by trial and error methods. He reasoned 

(lJ) 

that a trial and error solution represented a more simplified approach 

than solving for Qs, since this term appears in quadratic form in both 

sides of Equation (lJ). Since he introduced the assumption of J,000 

ft/min of standard air, and used equations which contain mathematical 

inconsistancies his results are of questionable accuracy. 

Also in 1957, Scott presented an approach similar to that 

proposed by Angel but not as clearly illustrated, He began his work 

using a general energy balance and developed the same differential pres-

sure equation used by Angel, except he used the Fanning friction factor 

in the final form of his equation. He also used the assumption that a 

standard air velocity of J,000 ft/min was required to lift cuttings and 

used the same approach as that used by Angel to include this velocity 

into his final equation for volume requirements. Since Scott's develop-

ment is the same as that taken by Angel, his equations and work will 

not be presented. 

Following this work McCray and Cole in 1958 used a similar 

approach to that used by Angel and later by Scott. They started with 

the general energy balance and developed the same equation as that 

shown in Equation (9), except the kinetic energy term was not omitted 
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in their approach. Also the Fanning friction factor was used instead 

of the Weymouth friction factor. This followed the approach taken by 

Scott. Actually the use of the kinetic energy term, which can be shown 

to be negligible, and the Fanning friction factor is not believed to 

increase accuracy but it greatly increases the difficulty of the cal­

culation. McCray and Cole used the same density correction factor as 

that used by Angel. They used the force balance in exactly the same 

manner as Angel and Scott. Thus their final results would differ from 

those used by Angel only by the change in the predicted pressure at any 

point. Because the pressures predicted by McCray and Cole's equations 

are generally higher than those from Angel's equation, their required 

gas volumes are also higher, particularly as wells are drilled deeper. 

The work cited has been a resume of the most significant 

contributions used by the oil industry for the determination of volume 

requirements in gas drilling. The resume of work is necessarily short, 

because there has not been a dedicated effort by research organizations 

in this field. Although the literature contains a large volume of mat­

erial on gas drilling as an art, there has been little interest in 

trying to develop the science. Angel I s work in 1957 brought forth the 

last new idea to be considered in gas drilling; McCray and Cole's work 

followed in 1958 but they used the same appraoch as that used by Angel. 

Actually a large volume of work has been done on particle lift and drag 

coefficients but this work has not been considered in the oil industry, 

For this reason, the remaining portion of this review of past work will 

be directed towards a summation of the more significant work that has 

been performed mostly for other industries and not used in the oil 

industry. 



One of the most significant contributions on particle lift 

made to technical literature was that provided by Lapple and Shepherd 

(9). They combined the data of several investigators to prepare a 

correlation of drag coefficients versus particle Reynolds number for 

15 

spheres and discs.· Their correlation is shown in Fig. 4. In this plot 

the particle Reynolds number is defined by Equation (14). 

= (14) 

The drag coefficient is the same as that shown in the development of 

Equation (6). Fig. 4 shows three regions of interest. These regions 

are summarized as follows: 

1. The Stokes Law region, ~< 1.0. 

2. The intermediate region, 1.0 
"" \ ( 300,000. 

3. The turbulent region, 300,000 <. ~· 
This summary of drag coefficients applies for Newtonian fluids 

only and is valid only for single particles in an infinite stream. Al-

though deviation from Newtonian behavior must be considered when using 

these drag coefficients, gas will behave as a Newtonian fluid thus these 

data are applicable under similar conditions. In the normal gas drill-

ing operation, the area of interest is the region where the drag coef-

ficient remains constant. It will be noted that drag coefficients for 

spheres in this region are about constant at 0.44 and those for discs in 

the same region are constant at about 1.1. This compares with 0.5 used 

by Nicolson and 0.805 for sandstone and 1.4 for limestone found by Gray 

in actual measurements. However, in Gray's work, a variety of shapes 

were used which were neither spherical or disc shaped. His particles 

were field samples and thus his results are considered more adaptable 
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to gas drilling than those shown in Fig. 4. This range of drag 

coefficients does show that data accumulated by Gray compares favorably 

with the investigations made in other fields. 

A continuing problem in the determination of drag coefficients 

is the shape of the particle. A recent review of shape factors was pre-

sented by Torobin and Gauyin (10). They reviewed the various shape fac-

tors proposed in literature and concluded that only the sphericity factor 

introduced by Brown has any application in the intermediate flow range. 

Pettyjohn and Chri~tiansen (11) in a study of the free fall 

rates of isometric particles, concluded that the shape deviation could 

be adjusted using the concept of sphericity. They defined their drag 

coefficient as shown in Equation (15), 

= 5.31 - 4,88x (15) 

It should be noted that using x = 1 for a sphere, the drag coefficient 

is 0,43 which agrees with Lapple and Shepherd. In using Equation (15) 

the investigators suggested the use of equivalent diameter for the par-

ticle diameter. 

The equivalent diameter is defined by Equation (16). 

In Equation (16), 

D = e 

reduces to D 
p 

if a sphere is used. 

(16) 

Because 

of the difficulty in correlating the variety of different particle shapes 

in the study of drag coefficients, a large quantity of the work for ir-

regular shaped particles had been completely empirical in nature. 

Burke and Plummer (12) made a study by suspending coke particles 

in a turbulent air stream and obtained the slip velocity relationship 
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shown in Equation (17), 

1/2 

= 13,8 le (e -er] (17) v p 
s er 

They used a drag coefficient of 2.25 in Equation (17), Martin (13) 

obtained a drag coefficient of 1.98 for quartz grains suspended in an 

air stream. 

Miller and Mcinally (14) found that for coal, anthracite, sand-

stone and pyrite particles the drag coefficient was l.J. For shale par-

ticles they found the drag coefficient to be 1.8. In general these 

results indicate the drag coefficients to be higher than those found by 

other investigators and suggest that test conditions may contribute sub-

stantially to the magnitude of drag coefficients. Many conclusions have 

been made relative to drag coefficients for particles of various shapes 

and densities. In many cases, there is a wide disagreement on drag co-

efficients. A look at testing procedures shows that drag coefficients 

have been determined using a variety of different testing techniques. 

In many tests the particles have been dropped through quiescent 

fluid streams. In others they have been suspended in transparent flow 

systems, where air flow rate is then equal to particle slip velocity. 

They have been studied as single particles in large and small flow 

streams or as a mass of particles in large and small flow streams. With 

this variety of testing procedures many variables have been ignored, 

Barker (15) in a study of work by other investigators concluded 

that particle density has an effect on drag coefficients other than that 

accounted for by the use of particle Reynolds number. For cylindrical 

particles in the intermediate flow range, he showed a decrease in drag 

coefficients with an increase in particle-fluid density ratio, 
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A composite look at the literature indicates that for gas­

particle systems in the dilute range, (less than four percent solids by 

volume) the slip velocity is affected to a negligible degree by the 

solids feed rate. This same type investigation shows a wide variation 

in conclusions relative to the effect of gas stream velocity. 

Lewis, Gilliland, and Bauer (16) using glass spheres in air 

concluded that the slip velocity was independent of the solids mass feed 

rate and gas velocity. Their experiments were conducted with 0.0016, 

0.0040 and 0.0012 inch diameter spheres in tubes of 2.5 and 4,5 inches 

in diameter. 

Harris and Molstad (17) in the lifting of sand with air concluded 

that the slip velocity was independent of solids loading. However, they 

also concluded from their work that the terminal velocity of most solids 

was about half the gas velocity. This indicates that slip velocity is 

a function of gas velocity. Their experiments were conducted in 0.267 

and 0.532 inch tubes with particles of various types ranging from 0.0036 

to 0.00165 inches in diameter. 

Culgan (18) using tenite and alundum particles, soybeans, and 

cottonseed in a three inch diameter pipe concluded that slip velocity 

is independent of the solids feed rate, but a direct function of gas 

velocity. His particles ranged in size from 0.03 to 0.33 inches in 

diameter. 

Huntington and Williams (20) in a recent report showed that gas 

velocity affected slip velocity, In fact they showed no particle slip 

at a gas velocity of 3000 ft/min. They were using a 20-foot flow col­

umn where the solids entered the column at a velocity higher than the 

terminal particle velocity, Based on their results it is suspected that 
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the particles never reached a terminal velocity through the entire 

length of the flow column, They concluded that their tests proved that 

a standard air velocity of 3000 ft/min was sufficient in most gas 

drilling, 

The wide range of disagreement among investigators relative to 

the effect of gas velocity on slip velocity seems to indicate that test 

conditions varied a considerable amount. From a review of all the work 

it··.is not clear in many cases whether acceleration of the feed solids 

was considered, Relative to this problemJ Russ (21) showed that pres­

sure drop per foot of length for gas flow does not become constant for 

a distance of 14 feet from the entrance, This indicates that the gas 

has not reached a steady flow condition for this distance. Culgan 

reported that the conduit length to allow particles to reach a constant 

velocity may be appreciable. Hinkle (22) in a study using horizontal 

pipe showed a length of 30 feet was necessary to reach a constant velo­

city. Obviously the distance required for a solid particle to reach a 

point of constant velocity will depend on the velocity of the particle 

and gas entering the flow column, the size of the flow column, and 

whether the flow column is vertical or horizontal, 

One reasonable answer to these wide variations in results could 

be explained by the fact that the drag coefficient is a function of the 

fluid Reynolds number as well as the particle Reynolds number. It has 

been a common engineering practice to assume that the drag coefficient 

versus particle Reynolds number curves obtained by the fall of solids 

through a quiescent fluid could also be used for.a dynamic fluid system, 

Zenz (23) in a correlation of drag coefficients versus particle Rey­

nolds number also used fluid Reynolds number as a parameter, His results 
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are shown in Fig. 5 and indicate that the drag coefficient at least in 

the range studied is a function of fluid Reynolds number. These data 

were not discussed by Zenz. However, the data indicate that drag co­

efficients are a function of fluid Reynolds number and that the use of 

static systems for the determination of drag coefficients is not reli­

able. This study lends support to the manner in which Gray determined 

drag coefficients since his study was conducted in the range of fluid 

Reynolds numbers used in field practice. 

Data from the literature emphasizes that the slip velocity is 

independent of the solids feed rate, as long as the fluid solids system 

is in the dilute range. When the concentration of solids exceed this 

range, concentration affects slip velocity and solids removal. To 

illustrate the effect of solids concentration, Fig. 6 which is similar 

to curves from many literature sources, has been prepared, which is the 

normal pattern of pressure drag versus mass flow rate. 

An explanation for Fig. 6 can be made starting at point A. 

Decreasing the gas velocity results in an increase in solids concentra­

tion but a net decrease in pressure loss between points A-B, because of 

the lower gas velocity. At point B the concen~ration of solids begins 

to increase rapidly until finally at point C, the gas velocity can no 

longer remove the solids. At this point the solids collapse in the 

tube and the flow chamber is choked-off. The velocity at point C is 

called the choking velocity. 

In general investigators have considered this choking velocity 

to be greater than the terminal velocity of the solids in the normal 

fluid system. Several explanations have been given for the solids 
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collapse at point C. Zenz gave a reasonable explanation and this is 

summarized as follows: 

A particle in a turbulent fluid stream leaves behind a turbu-

lent wake. Since induced turbulence reduces the drag coefficient, any 

particle entering this wake will require a higher gas velocity for sus-

pension. With no increase in gas velocity, the particle falls and con-

tacts the particle below it. These two particles provide for a con-

siderable increase in mass with very little increase in lift area. Thus 

the fall rate of the particles is increased. In a very short ~ime, this 

process of particle accumulation accelerates and the sudden increase in 

concentration causes a collapse of all the solids. 

Zenz, recognizing the importance of concentration and the 

choking velocity, suggested the empirical formula shown as Equation (18). 

(18) 

Equation (18) assumes the particles will have some velocity between the 

choking velocity and the particle slip velocity. Applying this equa-

tion to experimental data, he found values for voidage, £, ranging 

from 0.943 to 0.984, 

Dallavalla (24) proposed Equation (19) for estimating the 

choking velocity in vertical pneumatic transport lines. 

v 
c [ 

910 e ] 
= p + 62 .~ . 

D 
p 

0.6 
(19) 

Dallavalla 1s equation is based on particles 4-6 and 14-20 mesh with a 

particle density of 187 lbm/ft3 and less. Also his experiments were 

conducted at very low solids concentrations. However, his equation 
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does give a basis for comparing the choking velocity in his system with 

the assumed velocity of 3000 ft/~in of standard air used in the oil in-

dustry for normal gas drilling. This is shown in Example 1. 

Example 1. 

Assumptions: ep = 187 lbm/ft3 

p = 14.7 psia 

D = 0.1 inch 
p 

v = [(910) (187)]0.l = 17,75 ft/sec = 1065 ft/min 
c 14. 7 + 62 • 3 12 

Example 1 shows that the choking velocity is about one-third 

of the normal velocity used in gas drilling. This means that under 

normal methods of design that the velocity required for lift of forma-

tion particles is substantially above the choking velocity, at least as 

described by Dallavalla. 

Zenz and Othmer (25) included a table of recommended lift 

velocities for various types of materials. These data are shown in 

Table I and it is noted that recommended velocities are higher than 

those considered necessary in gas drilling. 

Zenz and Othmer proposed a correlation between the group 
2 0 2 

vc /g Dp ~p and the dimensionless group formed by the ratio of solids 

to gas ratio W/vs ef' The velocity term, Ve' represents the choking 

velocity and correlates with the same choking velocity term discussed 

by Dal1avalla and shown in Example 1, Using experimental data Zenz and 

Othmer obtained Fig. 7 for uniform particles and Fig. 8 for mixed par-

ticles sizes. These data present an ·interesting concept and offer a 

.basis of .further consideration. 



26 

TABLE I 

VELOCITIES RECOMJ'1ENDED FOR PNEUMATIC CONVEYING OF VARIOUS MATERIALS (25) 

Material Ft/Sec 

Barley 80 

Coal, Powdered 65 

Coffee Beans 40 

Cork, Ground 55 

Corn 80 

Cotton Seed 65 

Feathers, Chicken 10 

Flour 55 

Hemp 75 

Jute 75 

Lime 85 

Metal Turnings 85 

Oats 75 

Portland Cement 100 

Pulp Chips 75 

Rye 80 

Salt 80 

Sand 100 

Sawdust 65 

Sugar 80 

Wheat 80 

Wood Flour 65 

Wool 75 
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Actually the choking velocity under normal conditions will be 

less than the required velocity to remove formation cuttings. However 

it is a limiting factor and the condition may arise where it would be 

necessary to consider this limitation in the design for gas volume re­

quirements. Conditions where choking velocity might need to be consid­

ered are: (1) in a large hole where penetration rates are extremely 

high, (2) in areas where formation chips are large and tend to accumulate 

at the top of the drill collars, and (3) situations where the supply of 

gas is limited. In practice if the supply of gas is not in excess of 

that required to exceed the choking velocity then either gas drilling 

should not be attempted or consideration should be given to reducing 

hole size. 

Other past work which contributes to the area of gas drilling 

is the work performed by various investigators in the determination of 

pressure losses with two phase mixtures. The problem is an old one as 

evidenced by the fact Lescher (26), a German mining engineer, described 

the simultaneous flow of gas and liquid up a vertical tube as early as 

1797·, A substantial amount of work in this field was performed before 

1930, but it was mostly directed towards gas-liquid mixtures and for 

liquid rates much higher than being considered in this work. 

Wilhelm (27) presented a log-log graph of pressure loss versus 

superficial gas velocity in 1948, The results of his work are shown 

in Fig. 9, From A to B the solids are stationary and the air blows 

through. 
I 

At point B some of the solids begin to move and from C to C 

the solids are in a slugging region. Point Chas frequently been called 

the choking velocity point. This represents the point at which solids 

cannot be lifted because of excessive concentration. In gas drilling 
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only the portion of the curve from c' to Dis of general interest. This 

is the so-called dilute region, the section of the curve where the 

solids are moving up the vertical column continuously. 

Baker (28) in 1963 studied the two phase flow of liquid and air. 

He made his particular data fit experimental data by using the feed rate 

of water as a parameter a.nd modifying the Fanning friction factor. 

These data are not considered applicable in this work, Williams (29) 

studied the pressure losses experienced by the simultaneous flow of sand 

and air and his results are shown in Fig. 10. He made no proposal for 

theoretical calculations. 

A recent study of pressure drops around spherical particles was 

presented by Wentz and Thodos (30). They ran tests for gas pressure 

losses around spheres that were held stationary. Thus the only pressure 

loss considered was that due to air-particle friction. The primary 

purpose of their work was to determine a friction factor or drag coeffi-

cient between air and the particles. 

Pressure loss as due to friction around the spheres is 

shown in Equation (20). 

p = 6 efv2 h Cn (1 - ( ) 

2 gc Dp 
(20) 

In this equation the voidage or that part of the flow channel that does 

not contain solids is called £ . In Fig. 11, Wentz and Thodos, show 

a variable drag coefficient; however, their range of data is substan-

tially below that which is experienced in normal gas drilling operations. 

Their main contribution to the work in this research was the manner in 

which pressure loss due to particles was determined. 
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One important problem concerned with cutting size has been 

investigated by two different organizations. In full scale laboratory 

drilling studies at the Jersey Production Research Company it was found· 

that 11 percent of the cuttings just above the bit in air drilling are 

larger than 0.2 inches and 22 percent are larger than 0.1 inches in 

size. Later, Bruce, Simons, and Whitaker (31) conducted a series of 

tests to determine cutting size in actual field air drilling operations. 

Their results are shown in Table II. The results show that about 10 

percent of the cuttings at the top of the drill collars are larger than 

0.0787 inches in size. However at a distance of 300 feet above the col­

lars only about 7 percent of the cuttings are larger than 0,0787 inches 

in size. At the surface most of the cuttings had been reduced to pow­

der form, They concluded that the erosive action of the drill pipe was 

the primary reason for the reduction of cutting size to the powder form 

observed at the surface, 

Other data on solids transportation and pressure losses for 

two phase mixtures are available; however, this review has been dedi­

cated to presenting information of interest in gas drilling. The 

following conclusions are made from the summary of previous work, 

(1) The methods used to determine volume requirements in 

rotary gas drilling are not correct mathematically, as 

a result the oil industry has been forced to rely on 

trial and error methods of design, 

(2) A large quantity of data are available on drag coeffi­

cients, but the data presented by Gray are the most 

accurate for use in gas drilling, 

(3) The solids feed rate will not affect the solids slip 



TABLE II 

SIZE ANALYSIS OF JUNK BASKET SAMPLES 

Total Weight Weight 
Sample Cuttings Cuttings 

Location Well Weight Retained Retained 
Of Junk Basket Depth Including No. 6 No. 10 

Mud Screen Screen 
ft. gm. gm. gm. 

Above Bit 2984 817.0 15.1 16.2 

Above Collars 2984 932,5 93,4 26.5 

303 Ft. Above Collars 2984 723,5 35,4 13,6 

Above Bit 7533 752,4 160.9 34,0 

Above Collars 7533 752.0 33,5 36.1 

1,000 Ft. Above Collars 7533 863.8 33.3 43,1 

Percent 
Cuttings 
Retained 

No. 6 
Screen 

1.8 

10.0 

4.9 

21.3 

4,4 

3,9 

Weight 
Cuttings 
Retained 

No. 10 
Screen 

2.0 

2.8 

1.9 

4,5 

4.8 

5.0 

\..,.) 
V'l 



velocity as long as the concentration of solids is the 

dilute range (less than 4 percent solids by volume). 
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(4) Choking velocity should be considered in design criteria 

as a limitation on minimum allowable gas volumes. 

(5) In calculating pressure loss for gas-solids systems, 

pressure drop due to air-particle friction must be con­

sidered separately and the assumption that solids go 

into solution is not valid. 

(6) Cutting sizes at the top of the drill collars will in 

general be 0.2 inches or less in size. 



CHAPTER III 

THEORETICAL CONSIDERATIONS 

The theoretical considerations will be directed towards the 

development of mathematical models that can be used to predict the gas 

volumes required to remove solid particles in rotary gas drilling. As 

shown in the summary of previous work the calculation of gas volumes has 

been attempted by other investigators; however, they have made unnecessary 

assumptions and in some cases used incorrect mathematical models. 

Mathematical developments presented in this chapter can be used 

to calculate two of the more necessary variables in gas drilling. One 

will be the development of a differential pressure equation that can be 

used to predict the pressure at any point in a vertical hole for a flow­

ing mixture of gas and solids. The other will be the equation for pre­

dicting the mass of gas required to lift given size solids at the predicted 

pressure. This pattern of development is similar to that taken by other 

investigators; however, a completely new differential pressure equation 

for a gas-solids mixture will be developed. Also as a.supplement to this 

equation it will be shown that only the most difficult point of lift which 

is just above the drill collars should be considered for vertical flow. 

Therefore the program design for solids lift will be at one point and not 

for all points in the vertical flow column. In conjunction with this 

development the effect of gas and solid deacceleration will be shown and 

discussed. 
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The equation for the mass of gas required for particle lift 

will be based on the common force balance relationships on one solid 

particle, To account for particle shape, the force balance equation 

will be developed as if the particle being lifted is a sphere and the 

deviation in particle shape will be considered in the empirical drag 

coefficients. From this equation the actual mass of gas required for 

solids lift will be considered. The assumption of a standard gas ve­

locity of 3,000 ft/min, which was necessary in previous work, is 

eliminated in this work. 
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In addition to the mathematical model developed using the 

differential pressure force balance equations, the effect of excessive 

solids loading will be considered. Past references indicate the solids 

feed rate has a negligible effect on the mass of gas required to lift 

particles until the concentration of solids by volume reaches from three 

to four percent of the gas volume. At this point solids choking can 

occur with the result that the solids are removed in slugs or lift may 

cease completely. This effect will be considered, but only as a design 

limitation. However, even in this category it is an important factor 

even though it has received no attention in previous investigations of 

gas volume requirements. 

Location of Most Difficult Point of Lift 

In the design of gas volume requirements, the point of design 

should be where the greatest mass of gas is required to lift a given 

size particle. In past work investigators have used a geothermal grad­

ient or average temperature and determined the support capacity of the 

gas in the entire annulus. 
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The point of most difficult lift will be shown using the slip 

velocity equation for spherical particles, This equation is developed 

completely in Appendix A, The slip velocity for one particle may be 

calculated using Equation (21). 

vs = [4 g DP ep]l/2 
3 CD er 

(21) 

If it is assumed that the slip velocity is equal to the upward gas ve-

locity the particle floats in the gas stream, Any small increase in 

gas velocity will lift the particle, thus the assumption will be used 

that v::; vs' This will be true when the velocity of the particle 

approaches zero, Using this assumption in Equation (21) and multiplying 

both sides of the equation by erA, results in Equation (22). 

G = (22) 

where: G = €.r Av, the mass of flowing gas, 

Equation (22) can be further modified by expressing density in terms of 

pressure and temperature as shown in Equation (23), 

G = A f 4 g DP ep SP ] 1/2 

l_J CD 53,3 T 
(23) 

From Equation (23) 3 it can be seen that the mass of gas required to lift 

a given size particle is a function of the drag coefficient, flow chan-

hel area, and the pressure and temperature of the gas. In the flow 

region using gas', the drag coefficient is considered a constant and for 

. design purpose's the flow channel size is also considered constant, Using 
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the concept of an average temperature or the temperature at a given 

point, the mass of gas required to lift a given size particle increases 

as the pressure increases. The point of highest pressure would be at 

the bottom of the hole; however the lift area between the drill collars 

and the hole is about one-half the area between the drill pipe and hole. 

The smaller area reduces the mass of gas required for Iift. around the 

drill collars even though the pressure is higher. In all cases, the 

higher pressure at the bottom of the hole will not be high enough to 

offset the differences imposed by the smaller lift area. The point of 
,. 

most difficult lift will be located at the top of the drill collars,. 

where the lift area is a maximum and the pressure is at its highest 

level for this same flow area, 

Bruce, Simons and Whittaker in their investigation found that 

particle sizes in gas drilling became smaller as the solids moved up 

the annulus. They concluded that the smaller size was a result of 

erosion due to collisions between solids and the drill pipe. An impor-

tant reason for the smaller solid size which they apparently overlooked 

was the fact that the gas volume may have been too low to lift the larger 

particles. Thus these particles remain in a relatively short zone at 

the top of the collars. If the rate of influx of large cuttings into 

this zone exceeds the rate at which they are broken up and removed, the 

accumulation will result in particle slugging, and eventually the 

choking-off of solids lift. 

Zone of S.olids Accumulation at the Top of the Drill Collars 

The zone of solids accumulation just above the drill collars 

could have a serious effect on normal gas drilling operations. It is 
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the purpose of this development to predetermine the length of this zone. 

In many of the laboratory experiments, several.investigators predicted 

the distance required for the gas or solid to reach a terminal velocity. 

In the annulus above the drill collars the distance required to expend 

the kinetic energy imparted to the gas and solids due .. to higher vela-

cities around the drill collars, can be obtained by a reduced form of 

the energy balance. For this purpose refer to Fig. 12, which is a 

' schematic diagram of the portion of the annulus to be considered. Point 

A, at the top of the drill collars represents the entrance to the sys-

tern. Assuming a steady flow of gas the general energy balance reduces 

to Equation (24). 

Ha +fQ - £.W = 0 
M M 

(24) 

Because of the short distance of observation, both the change in enthalpy 

and heat transfer effects are considered negligible. Also the selection 

of an open system.with fixed boundaries means the work term equals zero. 

Thus Equation (24) reduces to Equation (25), 

KE· l PE0 = 0 

Inserting the definitions of potential and kinetic energy results in 

Equation (26). 

Mv? 
l 

Mv2 
0 

= 

Solving Equation (26) for h gives Equation (27). 

h = 
2 

V, 
l 

2g 

v2 
0 

An Example, B-1, showing the use of Equation (27) is included in 

Appendix B. 

(26) 

(27) 
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The length of the zone of solids accumulation may be important, 

A short interval of solids accumulation may magnify the problem because 

less tolerance is permitted between the entry of solids too large to 

lift and the rate at which they must be broken up so they can be re-

moved from the hole. 

After establishing the fact that the primary problem of lift 

in gas drilling is just above the drill collars, the next problem is an 

equation that will predict the pressure loss in this region of the an-

nulus, The losses in energy can be described by the use of the general 

energy balance for both the gas stream and particles. Again a steady 

state system will be chosen such that the entrance to the system is 

above the drill collars at Point Bin Fig. 12 and the system outlet is 

at Point Cat the surface. Point C is actually the point at which the 

gas and solids discharge to the atmosphere. Using this approach and 

this system the general energy balance reduces to that shown in Equa-

tion (28), 

H. 
l 

KE + ~ 
o M 

,w = 
M 

0 (28) 

Again the open system with fixed boundaries gives a i W = 0. However, 

in this case other changes in energy must be considered since the entire 

annulus is being considered rather than a short section. The heat 

transfer term may be defined by the entropy balance as shown in Equation 

( 29). 

LQ = 
M 

TAS 

The heat transfer term in Equation (28) may be written as shown in 

Equation (30). 

(29) 
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+ d( KE) (JO) 

Using the definition that 9 dh = TdS + VdP 9 which can be developed by 

simple thermodynamic applications and Equation (29) for£ Q results in 

Equation (31) o 

VdP = d(PE) + d( KE) + TS 
p (31) 

Using density instead of specific volume and substituting the defini-

tions of d(PE) and d(KE), Equation (31) reduces to what is commonly 

called the Bernoulli equation as shown in Equation (32)o 

dP = .e_g dh + e v d v + e Tsp 
g c gc 

(32) 

The TSP term represents what is commonly called the irreversible work 

term, Actually it is the energy lost in overcoming frictional resis-

tance O The complete term e TSP is the pressure required to overcome 

the frictional resistance, 'I'he pressure required to overcome friction 

may also be expressed using empirical friction factors, 

The Moody friction factor, a commonly used empirical factor, 

is defined as shown in Equation (33), 

(33) 

Rearranging this equation and expressing the differential pressure as a 

function of the differential height in the annulus gives Equation (34), 

which is the expression for the pressure losses necessary to overcome 

friction, 

dP = e v2 f dh 
2 gc D 

(34) 



Using Equation (34) in Equation (32) gives Equation (35), 

dP = ~ dh + 
gc 

e, v dv + e, v2 f dh 
gc 2 gc (Dh-Dd) 

The pressure losses due to changes in kinetic energy, given by the 

second term on the right hand side of Equation (35) 3 are generally 

considered negligible relative to the other pressure loss terms, An 
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(35) 

example, B-2y showing the relative effect of kinetic energy is included 

in Appendix B, 

Assuming that the pressure losses due to changes in kinetic 

energy are negligible and using the fact that the numerical values of 

gravity and the units conversion constant gc are equal results in the 

commonly used equation for pressure loss using a specific material which 

is shown as Equation (36), 

dP = e dh + 
€, v2 f dh 
2 gc (Dh-Dd) (36) 

The development for this equation has been presented to illustrate that 

it is applicable regardless of the flowing material providing the cor-

rect interpretation is made for all of the terms, First consider only 

the pressure losses due to the flowing gas stream, For the pressure 

loss for gas alone in the annulus 3 Equation (36) is expressed as shown 

in Equation (37), 

dP = 
ef v2 f dh 

2 gc (Dh-Dd) 
(37) 

Equation ( 37) does not account for any loss in pressure due to particles 

and cannot be modified to account for this particle pressure loss by 

simply adding a ratio of the mass of particles to the mass of gas as 

many other investigators have done. 
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The total pressure loss due to the particles may be expressed 

as shown in Equation (38), 

Particle Pressure Loss = p + p + p 
p-p a-p p-w (38) 

where: 

pp-p particle-particle loss 
) = pressure J 

Pa-p = air-particle pressure loss 

p = particle-wall pressure loss I 

p-w j 

In normal gas drilling it is assumed that the particle concentration is 

always in the dilute range, In fact in most cases this concentration of 

solids will be less than one percent by volume of gas, 

As a resulty the particle-particle and particle-wall pressure 

losses are considered negligible. This appears to be an acceptable as-

sumption 9 when it is realized that the rate of particle slip in the gas 

may exceed 2,000 ft/min 9 thus creating a relatively large loss in pres-

sure due to shear as compared with the occasional collision of particles 

in a dilute gas-solids stream, Using this basis 9 Equation· (36) may 

be modified to account for the pressure loss due to solids only as 

shown in Equation (39), 

= (39) 

The first term on the right side of the equal sign in Equation (39) 

accounts for the pressure imposed by the static head of solids and the 

second term accounts for the pressure drop caused by shear of the gas 

stream around the solids, The total pressure loss due to the shear 

force may be determined by considering first the shear force due to 

one particle and then counting the total number of particles. 
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Shear Force Due to One Particle 

The shear force due to one particle may be determined by use 

of the dimensionless drag coefficient. The drag coefficient consider-

ing the particle shape to be a sphere is given by Equation (40), 

= 

Solving Equation (40) for pressure and multiplying each side of the 

resulting equation by the total particle shear area 9 As, results in 

Equation (41) 9 which gives the shear force on one particle. 

= = 

(40) 

(41) 

To use this relationship in Equation (39), it will be necessary to count 

the total number of particles as shown in Equation (42), 

N = (42) 

In Equation (42), Aadh represents the total volume of the annulus for 

any differential height and9 e , represents the fraction of the annulus 

that contains no solids or the voidage. Thus 9 1 - ( is that part 

of the annulus volume that contains solids. The numerator of the right 

hand side of Equation (42) gives the total volume of solids and divid-

ing by the average volume of each solid the total number of solids is 

determined, From this the shear force for one solid in Equation (41) 

may be modified to account for all of the solids by multiplying by the 

number of solids given by Equation (42), The total shear force for all 



of the solids is given by Equation (43). 

(2f As v~ CD Aa (1 - () dh 

2gc VP 

48 

(43) 

The differential pressure drop in the annulus due to shear around the 

solids is given by Equation (44). 

dP = a-p = 
e.f As v~ CD (1 - ( )dh 

2gc VP 

Equation (44) may be further modified by substituting for the shear 

(44) 

area A and the 
s 

D3 
and V = ~, 

volume of the solid VP. For this purpose, A =1l'D2 
s p 

p 6 based on the assumption that the solid is a sphere. 

Also the value of the slip velocity, vs, as shown in Equation (21) may 

be used. Using these substitutions Equation (44) may be reduced to that 

shown as Equation (45). 

dP a-p = 4 e p ( 1 - (_ ) dh (45) 

The form shown in Equation (45) can be used only by replacing 

the voidage fraction by some measurable quantity. This is done as 

follows: 

The fractional part of the annulus (1 - £) occupied by solids 

can be expressed as shown in Equation (46). 

1-( = (46) 

The volume of solids or particles, Vs, and gas, Vf, can be defined in 

terms of mass as follows: 



and Vf = 

Substituting these relationships into Equation (46) and simplifying 

gives Equation (47). 

1 - E = 

Equation (47) can be further simplified by assuming that the term 

~ er is negligible as compared with Mt' eP' the final definition 

of, 1 - E , is shown in Equation (48). 

1 - €. = 
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(47) 

(48) 

Proof that this simplification is valid is shown by an example B-3 in 

Appendix B. It is shown that in the actual case differential pressure 

at any point in the annulus of a rotary drilled well would be affected 

by less than 0.1 psi by omitting the ~er term in the denominator of 

Equation (47). 

Substituting Equation (48) into Equation (45) shows that the 

air-solid pressure loss can be defined as indicated in Equation (49). 

dPa-p (49) 

The total pressure loss due to solids may be written by 

combining Equations (39) and (49). This result is shown as Equation 

( 50). 

(50) 



The ~/Va term can be expressed as er Mp/Mr , by the same argument 

used to develop Equation (48). If this is done Equation (50) for 

total pressure drop due to solids may be written as shown in Equation 

( 51). 

50 

= dh + 4!1P e f dh = 

Mr 
(51) 

Eq1iation (51) shows that the pressure loss due to solids is a function 

of the ratio of solids mass to gas mass times the density of the gas. 

This relationship for pressure loss due to solids is considerably dif-

ferent than that introduced in the summary of previous work. As noted 

particle diameter does not appear in the final equation except as it 

would be used in calculating the total mass of solids. 

Because the equations for solids pressure loss and pressure 

loss due to friction of the flowing gas stream were considered sepa-

rately, the total pressure drop due to the gas-solids mixture can be 

obtained by simply adding Equations (37) and (51). The relationship 
-

for total differential pressure at any point is shown as Equation (52). 

dP = 
. . 5~ ef (1 + -)dh + 

Mr 
ef ~ f dh 

2gc (Dh-Dd) 
(52). 

Equation (52) represents an entirely new development for the 

determination of pressure loss for a flowing stream of gas and solids. 

It should be noted that Equation (52) is only valid where the concentra-

tion of solids is in the dilute range, the normal condition in gas drill-

ing. 

The ratio ~/Mr will be a function of the mass of solids 

which enter the flowing fluid stream and the mass of fluid required to 



51 

lift these solids. In terms of measurable quantities this ratio can be 

expressed as shown in Equation (53). 

= 

2 1603 Dh r 
(53) 

In Equation (53) the particle specific gravity has been assumed to be 

2.5 and the total mass of gas has been expressed in terms of the total 

mass at standard conditions. The S term is the gas specific gravity 

relative to the density of air. The gas density at any point is ex-

pressed as shown in Equation (54). 

s p (54) 
53,3 Z Ta 

The gas velocity at any point is shown in Equatio~ (55). 

v = (55) 

Combining Equations (54) and (55) with Equation (52) gives Equation (56). 

Equation (53) is not utilized at this point since ~/Mr is not a 

function of pressure or well depth. 

PdP = 1 + 5 ...E. dh + sp2 [ MJ 
53.3 ZT . Mr 

(56) 

The detailed solution to Equation (56) is shown in Appendix A. The final 

solution is shown as Equation (57). 

(57) 
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where: 

a = 
7,84 (10-3) SQ~ Ta f 

(D~ - D~)2 (Dh - Dd) 

b s (1 + 5 ~)-= 53,3 T ~ a 

The gas deviation factor, Z, has been omitted from the definitions a 

and b, since at the low pressures encountered in gas drilling the gas 

behavior will be ideal. If desired, the Z factor can be used. As 

shown in Equation (57) the pressure loss at any point in the annulus 

will depend on the volume flow rate of gas, which means that Equation 

(57) contains two unknowns, 

The volume flow rate of gas required to lift a given size 

particle at a given pressure can be obtained by modifying Equation 23, 

which defines gas requirements to lift a given size particle in terms 

of mass. The mass of gas required to lift particles is rewritten, 

using a particle density of 156 lbm/ft2, as shown in Equation (58). 

G = (58) 

A detailed development of Equation (58) is in Appendix A. 

Although Equation (58) was developed from a force balance on a single 

spherical particle it is assumed that it can also be used for any num-

ber of particles, since previous work showed the solids feed rate had 

practically no effect on the gas volume required to lift solids. Be-

cause flow is confined to one direction in the annulus, the one-dimen~ 

sional continuity equation may be used with Equation (58) to determine 

the volume of gas in standard cubic feet per second required to lift 
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the cuttings. It should be re-emphasized that the mass of gas required 

from Equation (58) will be at one point in the annulus and the continuity 

equation is used only to convert to standard conditions of measurement. 

The continuity equation is shown as Equation (59), 

eA v = e A v 
S SS 

(59) 

Since, G = e Av, and, A vss = Qs, Equation (59) may be rewritten as 

shown in Equation (60). 

or G = 0.0764 S Qs (60) 

where: 0.0764 is the density of air at standard conditions and 

S is the gas specific gravity. 

Using Equation (60) with Equation (58) gives Equation (61), which de-

fines the required rate of gas flow as a function of pressure. 

1/2 

[ 
DP p] 

SCD T 
(61) 

Equations (57) and (61) contain two unknowns, the pressure and flow rate 

of gas and may be solved simultaneously to obtain solutions. This will 

be done by rearranging Equation (61) to solve for pressure and setting 

Equations (57) and (61) equal to each other. The result of doing this 

is shown in Equation (62). 

2 
0,752 (10-4) CDT Qs S 

(D~ - D~) 2 Ds 
= 

Since both a and b contain Qs and b is contained in 

the exponent of e, it is easier to solve this equation by trial and 
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error than to attempt a direction solution for Qs. It should be noted 

that the solutions to Equation (62) also give the pressure at that depth 

in pounds per square foot. 

Equation (62) is assumed to have application so long as the 

concentration of solids is less than 4 percent by volume of the total 

occupied space. Under normal conditions of gas drilling this will not 

be a problem since in the general case the concentration of solids by 

volume will be less than one percent. However in special cases where 

the supply of gas is substantially below that required for normal lift, 

consideration should be given to concentration effects. 

To understand the problem of excess solids concentration refer 

back to the summary of previous work where the concept of choking veloc~ 

ity was discussed. Zenz showed that the choking velocity occurred be-

tween the ratio of solids volume to gas volume of 1.5 to 4,5 percent 

depending on the operating conditions. Based on Zenz 1 s results, a solids 

concentration of four percent was considered the maximum permissible be-

fore choking would occur. This relationship is shown in Equation (63). 

Volume of Solids = 0.04 
Volume of Gas 

(63) 

This may be expressed in the form of variables used previously expressing 

the solids volume in terms of hole size and drilling rate and using the 

required quantity of gas, Qs, for lift. 

The volume of solids will be a function of the hole size and 

drilling rate and may be expressed as shown in Equation (64). 

V0lume of Solids (64) 
4 
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The volume of gas may be expressed in terms of the total gas mass as 

shown in Equation (65). 

Volume of Gas = (65) 

Using Equations (64) and (65), Equation (63) can be expressed as shown 

in Equation (66). 

= 0.04 (66) 

Solving Equation (66) for Qs and expressing density in terms of temper­

ature and pressure gives Equation (67). 

= 
2 4.825 Dh r P 

T 

( 67) 

Equation (67) can be solved with less difficulty by trial and 

error since the pressure term also includes the Qs term. Equation 

(57) defines pressure as a function of the volume flow rate and when com-

bined with Equation (67) gives Equation (68) for the determination of the 

volume requirements necessary to prevent solids choking. 

2 4.825 Dh r 

fr( 2 §..) 2bh §:.] 1/ 2 
= lpw + b e - b, (68) 

Equation (68) introduces a completely new concept into rotary 

drilling with gas, This is the minimum permissible gas requirements if 

gas drilling is to be continued in any given hole. If gas volumes 

available are less than those stated necessary by Equation (68) solids 

choking will probably occur. 
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There are several occasions when the accumulation of solids 

might reach the point where solids choking could occur. If drilling 

continues with volumes less than those required from Equation (62), 

there will be an accumulation of solids above the drill collars. It is 

possible that gas drilling can continue because the solids will be 

broken into smaller sizes just above the collars. However the build-up 

ih solids concentration cannot exceed four percent solids by volume or 

solids choking will occur • .Another situation that could result in an 

accumulation of solids would be an enlarged hole section. Assume for 

example that the hole size was two times its original size. It may be 

possible to show that drilling with gas cannot continue, because the 

volumes available are less than those required for the enlarged hole 

section. · 

Summary 

Parts of the theoretical investigation of this chapter are 

similar to previous work. For example the idea for solving simultaneous 

equations for the determination of Qs, the volume of required gas, was 

introduced by Angel. The slip velocity equation is an adaptation of a 

force balance on one particle, the concept for which, was introduced by 

Newton's second law, F = ma. The use of this equation with the assump­

tion that the particles were spherical and changing the drag coefficient 

to account for shape deviations were introduced by Gray. 

From this past information, it has been possible to extend old 

ideas and introduce new ones which will permit the engineer to have more 

confidence in the future design for gas volume requirements. For exam­

ple, it can be shown that small variations in pressure can introduce 
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substantial increases in gas volume requirements. Thus it was necessary 

to improve the method of·predicting pressure in the drill pipe-hole an­

nulus. This has been done and the results should offer a substantially 

more reliable means for predicting pressure loss for a mixture of solids 

and gas. Even more important it offers the basis for a continued in­

vestigation into the simultaneous flow of three phases, where a liquid 

phase is added. 

By using the actual drag coefficients, and designing the gas 

volum.e requirements for a specific point in the annulus, the assumptions 

of 3,000 ft/min for standard air and the conflict in mathematics intro­

duced by the dual use of the force balance equation on a particle and 

the continuity equation has been eliminated. 

Previous work shows concentration effects in normal gas drilling 

to be negligible. However, the region where trouble might be incurred 

has been illustrated and an entirely new method of handling such a prob­

lem has been introduced. This is the first time concentration effects 

have been considered in gas drilling and it opens the door to further 

consideration of the problem when liquid is added as the third phase. 



CHAPTER IV 

EXPERIMENTAL WORK 

Experimental tests were conducted both in the laboratory and at 

a drilling rig, where air was being used as the circulating fluid, 

Field tests were conducted.primarily to determine the annulus pressure 

losses while drilling with air. Laboratory tests of pressure loss with 

a flowing solids-gas system are not considered reliable because of en­

trance and exit effects ?oupled with low pressure losses within the 

system which magnify potential errors. 

Laboratory Tests 

.The primary objectives of laboratory tests were to determine: 

(1) the effective particle density as opposed to total particle mass on 

volume requirements when drilling with gas, (2) the effect of solids 

concentration on particle lift, (3) the point at which solids choking 

occurs and (4) the point at which solids are the most difficult to lift 

in a vertical flow column. 

Description of Equipment 

A schematic diagram of the laboratory equipment used in these 

investigations is shown in Plate I. Air was supplied by a 25-horsepower 

rotary blower run by a 25-horsepower electric motor shown in Plate II. 

The blower was capable of supplying air at two atmospheres of pressure, 
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PLATE I 

SCHEMATIC DIAGRAM OF THE LABORATORY EQUIPMENT 
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PLATE II 

ROTARY AIR COMPRESSOR 
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which was more than adequate for the purposes of this work. Also the 

use of the rotary type ai'r.·device made it possible to obtain a steady 

flow of air with no surge effects. This eliminated the necessity of 

using an air volume t~nk. Air volumes were controlled by (1) changing 

belt sheaves for large changes in required volumes and.(2) by a vari­

able opening needle or bleeder valve in the air line. 

The measurement of air volumes was accomplished by the use of 

a calibrated orifice meter in the manner shown in Plate III. Pressure 

and temperature gauges were used upstream from the meter run and read­

ings were taken every few seconds during experimental tests. 

The flow chamber for this series of tests was a 4-inch internal 

diameter lucite tube, which was 20 feet long. This flow tube is shown 

in Plate IV. Particles could be observed visually through the transpar­

ent pipe. Located adjacent to the lucite tube is a 20 foot section of 

4-inch steel pipe. This pipe was not used in this ser±~s of tests. 

Pressure taps in the lucite tube were located at 3.67, 12~67, and 19.0 

feet from the bottom of the pipe. In all cases the particles were sus­

pended in the flowing air stream above the lowest pressure tap. Pressure 

differences in the flow chamber were measured by manometers shown just to 

the right of the steel pipe in Plate IV. Kerosene was used in the man­

ometers to increase the accuracy of pressure measurements. 

Particles were put into the flow system at the base of the lucite 

tube. This was accomplished by a lubricator system such that the rate of 

particles injected could be controlled. Particles and air were discharged 

to the atmosphere at the top of the flow chamber. No attempt was made 

to maintain a controlled back pressure. 
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PLATE III 

LABORATORY ORIFICE METER INSTALLATION 
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PLATE IV 

LABORATORY FLOW CHAMBER 
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Subrounded plastic and glass particles were used in these 

tests. The glass particles had an average diameter of 3.4 milltmeters 

and weighed 150 pounds mass per cubic foot. The plastic particles were 

the same size but weighed 73 pounds mass per cubic foot. 

Pressure and temperature measurements were made every few 

seconds while circulating air. The primary purpose of these measure­

ments was to determine the volumes of air being used and to determine 

the loss of pressure due to the presence of particles. This particle 

pressure loss was determined by recording the pressure loss in the sys­

tem at given rates of air flow with no solids, then measuring the pres­

sure loss at the same air flow rates using a known mass of solids. The 

difference in pressure loss was taken to be the particle pressure loss. 

Laboratory Results 

During the laboratory experiments, the particle$ were suspended 

in the flow chamber such that the particle slip velocity equaled the air 

velocity. As would be expected the particles showed a tendency to move 

towards the walls of the flow chamber. There is no particular signifi­

cance that can be attached to this phenomena, since the normal velocity 

distribution would tend to cause particles to leave the middle of the 

flow stream, where the velocity of air is a maximum. Also the particles 

on most occasions moved up the pipe in a spiral motion. Because these 

particles entered the flow chamber from a perpendicular flow line it is 

possible that this was a result of a centrifugal action of the air in 

the flow chamber. 

During one series of tests an effort was made to determine the 

effect of temperature on the lifting capacity of air. Air temperature 
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was varied 22°F and no noticeable change was observed in the mass of air 

required to suspend particles. This is an expected result since theory 

predicts that the mass of gas required to lift particles is inversely 

proportional to the square root of absolute temperature. This is shown 

as follows: 

For example, the change in temperature was from 600°R to 622°R. A simple 

calculation shows that the required mass of gas at 622°R should be 1.015 

times the mass of gas required at 600°R. This is such a small change 

it is not surprising that it was not detected in experimental results. 

The purpose in considering temperature was to determine whether 

it was necessary to include temperature as a variable or some average 

value when calculating gas requirements. These laboratory tests showed 

the effect of varying temperature was negligible. The field tests showed 

the temperature at 3,750 feet, which was just above the bit for this 

series of tests to be 120°F and the temperature at the flow line dis­

charge to be 60°F. It can be shown that an average temperature between 

the surface and 3,750 feet can be used with no measurable sacrifice in 

accuracy relative to the pressure loss in the annulus. 

The first series of laboratory experiments were made to deter­

mine the effect of particle density on particle pressure drop and gas 

requirements. In these tests, pressure loss was determined for the glass 

and plastic particles only. This was done by measuring the pressure loss 

in the flow chamber shown in Plate V between pressure taps 1 and 2. 

The measured particle pressure loss due to both the glass and 

plastic particles is shown in Tables III and IV. A graph of particle 
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PLATE V 

DIAGRAM OF TOWER SHOWING POSITION OF PRESSURE TAPS 

AND PARTICLE FLOTATION 
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TABLE III 

3,4 MM GLASS PARTICLES 

Mass Q Particle 
Run No. Grams SCF/Hr Pressure Drop 

Inches, H20 

67 10 11,500 .024 

68 20 11, 100 .049 

69 30 11,200 .071 

70 40 11,500 .094 

71 50 11,400 .116 

72 60 11,400 .131 
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TABLE IV 

J,4 :MM PLASTIC PARTICLES 

Mass Q Particle 
Run No. Grams SCF/Hr Pressure Drop 

Inches, H:zO 

12 5 7,460 .01 

13 10 7,450 ,02 

14 15 7,410 .OJ 

15 20 7,410 .04 

16 25 7,410 .05 

17 JO 7,410 .06 

18 35 7,400 .07 

19 40 7,400 .08 

20 45 7,380 .09 

21 50 7,350 .11 

22 55 7,330 .12 

23 60 7,330 .lJ 
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pressure loss versus mass of both glass and plastic particles is shown 

in Fig. 13, A comparison of these data show that particle pressure loss 

is a function of total mass and essentially independent of individual 

particle density. From this it is concluded that: (1) individual par­

ticle density is not an independent variable relative to particle pres­

sure loss and (2) the pressure loss due to particles was due primarily 

to air-particle loss not particle-particle or particle-wall losses. 

These conclusions are reached because it is obvious that the plastic 

particles would outnumber glass particles by a ratio of 2:1 for the 

same mass. These results are important in the determination of pressure 

loss in the annulus of gas drilled wells. 

Drag coefficients calculated from data in Tables III and IV 

ranged from o:.856 to O. 995. These are higher than those predicted by 

past theory for spheres (0.44), but are in the same range as Gray's re­

sults using sandstone (0.805) and shale (1,40) particles. 

These data also show that the effects of solids concentration 

on gas requirements is reflected completely in the pressure change ef­

fects. This means that with pressure staying constant, the amount of gas 

required to lift particles of a given size would be independent of the 

total number of particles. This is a conclusion reached by previous in­

vestigators and this work offers confirmation of this fact. Referring 

to Tables III and IV, it can be seen that the air required to suspend 

cuttings remained the same as the concentration of particles was increased. 

This was particularly true for the glass particles. For the plastic par­

ticles the amount of air required for suspension decreased slightly after 

the mass of particles exceeded 40 grams. The cause of this slight re­

duction in required air volume is believed due to the fact that the 
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resulting air velocity was increased due to the decrease in void space. 

This suggests that some optimum range of solids volume to gas volume 

might be obtained in normal gas drilling operations. However, this op­

timum would probably have to be obtained in a region where small increases 

in solids volume might choke-off particle lift entirely. 

No further efforts were expended in the check of drag coefficients 

for the following reasons: (1) there is an abundance of information avail­

able on drag coefficients and in almost all of the work the drag coeffi­

cients vary from 0,44 to 1,4 depending on test conditions, (2) the work 

completed by Gray appears to be reliable for the purposes of this study 

since his work included studies at concentrations of more than one par­

ticle and the particles selected were actual field samples and (3) it 

would be almost impossible to predetermine the shape of formation cut-' 

tings, which must vary in shape and size in the annulus. 

The next phase of this experimental work was directed towards a 

determination of the effect of extremely high concentrations of solids. 

This study was made because of the zone of solids concentration which 

may occur at the top of the drill collars. In the summary of previous 

work, Zenz showed that at a given concentration of solids, in the so­

called choking range, the lift of solids may reduce to a slugging actio~. 

As the concentration of solids increases further, a fluidized bed is 

formed and the removal of solids may be choked-off completely. 

This choking action could be a serious problem in gas drilling 

and might be minimized if the problem could be recognized in normal 

drilling operations. To test this phenomena a series of tests were con­

ducted by adding 3,4 mm glass beads to a constant rate flow stream until 

solids choking occurred. The results of these tests are shown in Table V. 
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TABLE V 

SOLIDS CHOKING RUNS 

Mass Temperature 
Static hw Condition 

Run No. Pressure Inches of 
Grams OF 

Psig H20 Flow 

73 50 123 0 98 Lift 

74 100 138 0 98 Lift 

75 150 144 0 100 Breakdown 

76 150 138 0 98 Breakdown 

77 131.5 146 0 98,5 Breakdown 

78 121.0 159 0 99 Breakdown 

79 ·109,0 160 0 99 Breakdown 
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It is noted that a choking-off of particle lift consistently occurred 

when the mass of glass particles exceeded 100 grams. Calculations 

show that choking in th~se tests occurred when the solids content by 

volume of gas was about 4 percent. Other investigators have show.n that 

solids choking may occur when the ratio of solids to gas volume is no 

more than two percent. In these tests, the cause of solids choking can. 

be explained as follows: As the concentration of particles is increased, 

the effective velocity acting on the particle is increased. As long as 

this small increase in effective velocity offsets the additional fric­

tion loss, the volume of air required for suspension remains fairly 

constant or may even decrease slightly as shown in Table IV. However, 

at some point the stacking of particles, one above the other, results 

in an increase in mass without a corresponding increase in drag area. 

As this stacking of particles continues the small increases in air ve­

locity due to the reduction in void space are not enough to offset the 

increase in effective mass per unit of drag area. Thus at some point the 

continuous lift of particles is choked-off. 

This description of a solids choking can be correlated with 

actual gas drilling operations in the following manner: consider the 

potential point of solids build-up at the top of the drill collars. 

Solids which are too large to lift further may be suspended in the zone 

at the top of the drill collars. As drilling progresses these solids 

are broken into smaller pieces by the rotation of the drill pipe and 

may be lifted out of this zone. In.the meantime large particles are 

still entering the zone. Thus an equilibrium concentration of solids 

occurs. A sudden increase in the drilling rate, a slight decrease in 

the air volume or an increase in the back pressure on the annulus might 



74 

result suddenly in solids choking and these solids would fall back 

around the top of the drill collars. This could result in stuck drill 

pipe and the end of gas drilling not only in that particular well but 

in that particular area of operations, because any indication of hole 

trouble may result in no more gas drilling operations. This increase 

in the accumulation of solids might be detected at the surface by a 

small increase in pressure loss or perhaps in additional rotating torque. 

Thus the warning may be small and the result expensive unless precau­

tions are taken when the problem first occurs. There are many possible 

solutions. The most simple solution is to increase the air volume. If 

this is not possible it may be necessary to decrease the rate of pene­

tration. Another possibility is the raising of the drill pipe while 

circulating. This would tend to move the zone of solids accumulation to 

a higher level in the annulus and might be enough to initiate a removal 

of the solids. 

This problem of solids accumulation prompted another series of 

tests which were concerned with the effect of insufficient air volumes 

on lift and the possible consequences if adequate volumes of air were 

not available. In this particular experimental system air entered the 

4~inch flow chamber from a 2-inch line. Thus a venturi effect was 

created which is similar to that created as air moves from the drill 

collar-hole to the drill pipe-hole annulus. 

By varying the air flow rate at volumes below that required for 

lift, the height reached by the particles was altered. From this and 

knowledge of the point at which the particles suddenly moved up the flow 

chamber, a correlation was obtained between the percent of the air vol­

ume required for lift versus the fraction of the height required. This 
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result is shown in Fig. 14 and has added significance if analyzed 

carefully. Fig, 14 shows that if the air volumes required for lift are 

90 percent of those required for the actual cutting removal, the solids 

will reach a height of only 60 percent of that required for removal up 

the annulus. A small deficiency in gas volumes may cause a considerable 

amount of difficulty in gas drilling. For example the accumulation of 
~ 

solids above the collars would be in a much shorter interval and there-

fore the rate of solids accumulation would be much more critical. As 

shown in Fig. 14 this problem is increased substantially as the percent 

of required air volume is reduced below 90 percent. 

Another problem investigated in this work was the point at which 

lift is most difficult. This was attempted in the laboratory circula-

ting system. However, conclusive results were not possible because of 

the extremely small changes in pressure. A numerical analysis for a 

9,000 foot well using 1,000 foot intervals was investigated using an IBM 

1410 computer. These results are shown in Tables VI and VII. 

It is noted from Tables VI and VII that the mass of gas required 

for lifting a given size particle increases with well depth. Actually 

this mass of gas is primarily a function of pressure if an average an-

nulus temperature is assumed. From this numerical evaluation it can be 

seen that the most difficult point of particle lift in gas: drilling is 

at the point of highest pressure. Thus any back pressure imposed by 

surface connections may have a substantial effect on volume requirements 

for gas drilling. Also it is noted that the gas requirements are in-

creased slightly as the ratio of the mass of particles to the mass of 

gas is increased. This does not contradict previous statements, since 

the increase in gas requirements is due to the increase in pressure 
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TABLE VI 

AIR FLOW RATES VERSUS WELL DEPTH 

(Particle Size Equals 0.1 Inch) 

Hole Size 7-7L8 Inches Drill Pi2e Size ~-1L2 Inches 
Depth Pressure Flow Rate Pressure Flow Rate 
ft. (psia) (SCF/min) (psia) ( SCF/min) 

0 14,70 410.4 14,70 410.4 

1,000 15,97 423,3 16.10 424,4 

2,000 17.25 437.0 17,49 439,4 

3,000 18.56 452,4 18.93 z.54,3 

4,000 19,92 467,8 20.42 471.1 

5,000 21.32 485.0 21.98 488.0 

6,000 22.78 503,9 2.3.59 506.8 

7,000 24.28 522.9 25,27 527 ,5 

8,000 25.84 543,8 27.01 548,4 

9,000 27,45 566.6 28.82 571.4 

\!Mr = 0.1 
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TABLE VII 

AIR FLOvJ RATES VERSUS WELL DEPTH 

(Particle Size Equals 0.1 Inch) 

Hole Size 9 Inches Drill Pipe Size 4-1/2 Inches 
Depth Pressure Flow Rate Pressure Flow Rate 
(ft) (psia) (SCF/min) (psia) (SCF/min) 

0 14.70 596.8 14.70 596.8 

1,000 15.64 616.2 15.7'3 6.517 

2,000 16.64 6.36.7 16.86 6.35.8 

.3,000 17.73 6.36.7 18.0.3 658,.3 

4,000 18.84 659,4 19.24 681.0 

5,000 19,98 682.2 20.50 706.1 

6,000 21.16 707 • .3 21.81 706.1 

7,000 22 . .38 7.34.8 2.3.18 73.3,7 

8,000 2.3.64 762,6 24.59 761.7 

9,000 24,96 762.6 26.06 792.4 

Mp/Mr = 0.1 Mp/Mf = 0.2 
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imposed by the increase in solids. Of specific interest in Tables VI 

and VII is the magnitude of the increase in gas requirements from the 

surface to total depth, For example in Table VII using Mp/Mr= 0.1, 

the calculated pressure is 14.7 psia at the surface and 24,96 psia at 

the total depth of 9,000 feet. For an increase of 10.26 psia the gas 

requirements for lifting particles has increased 27.8 percent. This is 

a significant increase and illustrates the importance of watching very 

closely the surface pressure gauge when drilling with gas. 

In summary Tables VI and VII indicate that a particle that could 

not be removed at 9,000 feet might be lifted at 8,000 feet if in some way 

it could attain that level. This increase in gas requirements with depth 

is certainly not a new concept but the magnitude of increase as a func­

tion of small increases in pressure has not been emphasized in past work. 

Field Tests 

Field tests were made in two wells being drilled with air in 

Southwestern Arkansas. These tests were conducted to determine (1) the 

pressure loss in the annulus while actual drilling operations were in 

progress and (2) to obtain if possible from observations the minimum air 

volumes required to move formation cuttings up the annulus. 

Field Equipment 

A double pole mast drilling rig capable of drilling to 10,000 

feet was used on this job. Plate VI shows a schematic diagram of the in­

ternal part of the circulating system. The piping would be considered 

standard except for the mandrel just above the bit which shows a side 

opening. This side pocket or opening in the mandrel was used to put a 
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pres~ure recording device into the annulus. A cross-section of this 

mandrel is shown in Plate VII. Plate VIII shows two views of the side 

pocket opening on the mandrel assembly suspended in the derrick of the 

drilling rig. Wireline assemblies were run through the lubricating 

device shown in Plate IX. Pressure measurements were made with pres­

sure gauges that were frequently calibrated with a dead weight tester. 

Air volumes were measured with a standard orifice meter. Plate X shows 

the orifice meter and gauges used at this location for measurements of 

pressure. Plate XI shows pressure on the output air from the compres­

sors; this gauge is also shown in Plate X. These field tests were run 

during a period beginning in December 1964 and ending in March 1965. 

Field Test Procedure 

Pressure data using down-hole measuring devices could be 

obtained only with the bit suspended off bottom and the drill string 

stationary. For this reason all of the actual down-hole data were 

obtained at 3,800 feet. From these data, calibration curves were con­

structed for pressure losses through the individual parts of the drill 

string. These calibration curves were then used with recorded surface 

pressures to determine pressure losses within the drill string while 

drilling at other depths. 

Pressure tests at 3,800 feet were made inside the drill string, 

just above the bit, and in the annulus just above the bit. Flow rates 

were varied from 590 to 1,238 SCFM and all pressure measurements were 

made and checked at five different flow rates. Pressure measurements 

were also made at the compressor discharge and at the stand-pipe on the 

drilling rig floor. This procedure permitted the determination of 
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pressure loss through the bit, inside the drill pipe and in the annulus 

while circulating air with the bit just off bottom. When drilling oper­

ations were commenced pressure measurements were made at the same surface 

locat:tbnsJand~increases in pressure were assumed to be due to the solid 

added to the flow stream. This permitted the determination of pressure 

losses in the annulus while drilling at given rates. Although actual 

down-hole pressure measurements were made at only the 3,800 foot level, 

the data were extended for deeper depths by the use of the calibration 

curves and comparisons between field data and theoretical calculations 

were also made at 4,488, 5,038 and 5,919 feet. These tests were made 

at drilling rates of 28, 29, 42 and 61 ft/hr~ In addition to the pres­

sure data, drilling rates were observed as a function of air circulation 

rates and these results are compared with design rates and pressure 

levels in the annulus. The methods used to construct calibration curves 

for pressure losses in the drill string and for measuring annulus pres­

sure losses are given in Appendix C. 

Field Test Results 

A summary of results is shown in Table VIII. Included in .this 

table is a comparison between field test results and those obtained 

using the theoretical equation developed by the writer and those ob­

tained using the equation proposed by Angel. Graphical comparisons of 

these results are shown in Fig, 15, 16, 17 and 18. 

Fig. 15 shows comparisons between annulus pressure losses 

determined from field measurements, those calculated using the theoret­

ical equation developed by the writer and those calculated using Angel's 

pressure loss equation. These tests were run at 3,812 feet while 
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TABLE VIII 

SUMMARY OF RESULTS 

Annulus Pressure Loss, psia 

Well Depth Flow Rate From From From 
feet SCFM Field Data Theory Angel's Equation 

3,812 659 30,44 32,97 21.36 
733 31.82 33.13 22.00 
869 34,41 33.17 23.78 

1,028 37,32 34.76 24,96 
1,215 40,71 36.37 27.11 

4,488 571 29,40 33,95 21.22 
678 30,37 33,84 22.01 
752 30.85 33,96 22.63 
825 31,24 34.21 23,30 

1,001 31.80 35,18 25.06 
1,179 31.93 36,39 27.03 

5,038 584 37,83 36.85 22.55 
698 38,48 36.35 23,35 
761 38,21 36,30 23.88 

1,008 37,47 37,01 26.28 
1,189 35.28 38.20 28,30 

5,619 593 43,50 40,33 24,23 
709 44,57 39,28 24,90 
805 44,67 38,87 25,62 
877 44,56 38,72 26,22 

1,043 43,37 39,06 27,87 
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drilling at a rate of 29 ft/hr. The press.ure loss through the pipe 

and bit at this depth had been measured previously, thus the annulus 

pressure losses were determined by subtracting these losses from the 

recorded surface pressure at the various rates of air flow. The max­

imum variation in pressure loss was observed at a flow rate of 1,215 

SCFM, where field data indicated the pressure loss to be 40,7 psig 

and theoretical calculations show this pressure loss to be 36,4 psia. 

This is a difference of 4,3 psia or a variation of about 10 percent. 

In subsequent tests annulus pressure losses were determined 

by using the calibration curves shown and discussed in Appendix C. The 

results of these tests are shown in Fig. 16, 17, and 18 which include 

comparisons at depths of 4,488, 5,038, and 5,919 feet while drilling 

at rates of 28, 42 and 61 ft/hr. The curves for the field results do 

not follow the expected trends. Under normal conditions, these curves 

should follow the same pattern as the calculated curves. The test pro­

cedure followed may be responsible for the shape of these curves. 

Measurements were initiated at the low rates of air flow and increased 

in five steps to the maximum rate of air flow. Pressures at the sur­

face were recorded at each rate of flow after a 5 minute waiting period. 

It is possible that this waiting period was not long enough to clean 

the annulus of solids. Future field tests run for this purpose should 

be conducted by starting at the maximum air velocity and reducing by 

increments. In any event the order of magnitude for pressure loss in 

the annulus seems to compare favorably for the theoretical and field 

results. At a drilling rate of 28 ft/hr shown on Fig. 16, the maximum 

difference in pressure loss was 4,5 psia. At a drilling rate of 42 
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ft/hr as shown on Fig. 17 the maxim1,Illl pressure difference was less than 

3.0 psia. The largest variation in values occurred at a drilling rate 

of 61 ft/hr while drilling at 5,919 feet; these results are shown on 

Fig. 18, Pressure differences between field and theoretical results 

were as high as 6.0 psia. The maximum variation showed theoretical 

calculations to be about 13,7% below field results at an air flow rate 

of 850 SCFM. 

Because particle-particle and particle-wall collisions have 

been neglected in the theoretical equations it is possible that at the 

higher drilling rates that the omission of this phenomena may result in 

calculated values of pressure that are conservative. 

It was not possible in these drilling tests to determine with 

accuracy the optimum amount of air either to remove cuttings or to max­

imize drilling rates. However in one series of tests shown on Fig. 19, 

there appeared to be an optimum air velocity relative to maximizing 

penetration rate. It was noted that in each drilling test that pene­

tration rates could be increased by increasing air volumes up to some 

given point, where the rates of penetration in most circumstances were 

reduced by further increases in air flow rates. A question as to why 

the increased air flow rates might actually reduce penetration rates 

is introduced. For some insight into one probable cause, compare 

the air flow rates for the minimum theoretical pressure calculations 

with those for maximum penetration rates. In the test at 3,812 feet 

the calculated minimum pressure in the annulus occurred at a flow rate 

of 650 SCFM and the maximum rate of penetration occurred at a flow rate 

of about 750 SCF. In the test at 4,488 feet the minimum pressure loss 
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was shown to be at a flow rate of 675 SCFM and the maximum penetration 

rate at just under 800 SCFM. In the test at 5,038 feet the minimum 

calculated annulus pressure loss occurred at just above 750 SCFM and in 

this same test the maximum penetration appears to occur at just under 

800 SCFM. Data on penetration rates for the 5,919 feet depth were not 

considered reliable. 

These data were checked in more than one drilling test and 

there appears to be a definite relationship between air volumes and 

penetration rate. It is noteworthy that the maximum rates of penetra­

tion were so closely related to the minimum calculated pressure losses. 

While no definite conclusions can be drawn from these tests, they do 

show that excess flow rates of air can be detrimental and emphasize the 

need for properly designed gas drilling programs. It is also indicated 

in these tests that the optimum quantities of gas may very well corre­

late with minimum calculated annulus pressures. This is a significant 

probability and further field tests are needed to confirm this correla­

tion, If it is confirmed, optimum volume requirements for gas drilling 

could be based on the rate of flow that resulted in a minimum calculated 

pressure loss. This flow rate would be the optimum required for lift­

ing cuttings, for maximizing drilling rate and for minimum power re­

quirements at the surface. 

These experimental tests have shown that a program designed on 

the basis of a maximum solids content of 4 percent by volume of gas 

would probably have no basis for use. Attempts to drill with very low 

air volumes were in general unsuccessful. This occurs because when 

volumes are slightly less than those required to lift the cuttings, 
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solids loading occurs rapidly. This means that in most gas drilling 

operations the operator must maintain a volume ratio of solids to gas 

of one percent or less. 

The correlation of the calculated minimum pressure point as a 

function of penetration rate and volume rates of air flow with the air 

flows required for maximum drilling rate is a significant result. This 

same point of minimum pressure correlates with the minimum calculated 

gas volumes required in the design programs presented in the theory of 

this work. As a result the operator can no longer afford the luxury 

of having too much gas, because not only is he spending additional money 

for gas or compressor capacity he is also reducing the penetration rate. 

While the field results in this case are preliminary and certainly 

should be checked further they are startling enough to cause the oper­

ator to examine current programs where excess gas may be used. 

One question that may remain in the mind of readers is the fact 

that the field results show pressure at a maximum where calculated 

values were at a minimum. This is a point of concern and raises a ques­

tion concerning the validity of the field pressure measurements. It 

appears from these tests that the annulus was loading with solids and 

that as air volumes were increased the volume ratio of solids to air 

was being reduced. Also it may be possible that calculated pressure 

losses inside the pipe and through the bit were not completely accu­

rate, and thus in subtracting these losses from surface measurements, 

the determination of annulus pressure loss was slightly in error. 

From the results of the drilling rate tests and experience 

relative to the fact that annulus pressure reductions should increase 
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drilling rate, it is concluded that the calculated annulus pressure 

losses are as reliable as those reported in field results. It is be­

lieved that these field results show the theory in this to be reliable 

enough for general use; however it is suggested that further testing 

would be desirable, 



CHAPTER V 

COMPARISONS WITH PREVIOUS WORK 

In the discussion of experimental work, annulus pressure 

losses for gas-solid mixtures were determined in field tests. These 

results were then compared with calculated annulus pressure losses 

using two theoretical equations. One of these pressure loss equations 

is new and has been presented for the first time in this research, the 

other equation was introduced by Angel and has been accepted and used, 

by the oil industry for more than eight years. This chapter will show 

comparisons, using the same two equations, with laboratory data ob­

,tained by Williams. In addition comparisons will be made between gas 

volume requirements predicted in this research work and those predicted 

in work presented by Angel. 

The primary purpose in comparing the theory with previous 

laboratory data is to show the expected pressure trends versus gas 

velocity using gas-solids mixtures, Although quantitative results from 

laboratory tests are of questionable value, the qualitative trends 

should be reliable. The comparisons on gas volume requirements are 

presented to show that predicted gas volumes from this work are consid­

erably lower than those required in results from Angel 1 s work. 

Angel's equation in differential form for the annulus pressure 

loss to be expected from a gas-solid mixture is rewritten for quick 
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reference. 

The equation for annulus pressure loss developed in this work 

is also repeated for convenience. 

dP = 
dh 

+ (52) 

Calculated results using Equations (9) and (52) are compared with lab-

oratory data obtained by Williams. Williams used sand feed rates of 

14 and 35 lbm/ft2-sec and a f+ow chamber with a 1.05 inch internal 

diameter. Since he was using a constant feed rate for sand, the ratio 

of solids mass to fluid mass is a function of the input air velocity. 

The methods used to determine the pressure loss using Equations (9) 

and (52) are shown in Appendix D. 

Fig. 20 shows Williams laboratory results versus calculated 

pressure losses for a flowing mixture of sand and air, where the sand 

feed rate is kept constant[14 lbm/ft2-se~ and the air flow rate is 

varied. The agreement between the theory and laboratory measurements 

is poor at low air velocities. A much better agreement is observed at 

high air velocities. However, the use of the concept of mixture den­

sity, em, and Equation (9) represented by the top curve in Fig. 20 

shows these values are much higher than laboratory results. Another 

comparison using a solids feed rate of 35 lbm/ft2-sec is shown in 

Fig. 21. Again at low flow rates the theoretical results are much 

higher; however, the agreement improves as the flow rate is increased. 
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Calculated results using Equation (9) or the·assumption the solids 

increase density by going into solution are substantially higher. At 

low rates of air flow, theory predicts the solids will accumulate in 

the flow chamber,and that most of these solids will not be removed 

continuously until the air flow rate reaches about 3,600 ft/min. 

Actual results show some accumulation of solids, but show most of the 

solids being removed at a flow rate of 2,600 ft/min. As flow rates 

are increased the pressure loss developed by theory and that obtained 

by laboratory measurement is converging. In fact above air flow rates 

of 6,600 ft/min the pressure loss obtained in the laboratory by Wil­

liams exceeds the predicted pressure losses. The reasons for this 

behavior are believed to be: (1) at low rates of air flow, solids are 

injected into the flow chamber and some distance is required before 

they deaccelerate to a terminal velocity, thus the lower pressure loss 

from laboratory results occurs because solids slippage is less than 

predicted; (2) at high flow rates the degree of turbulence in the air 

and solids stream has increased substantially and the collision of 

solids is adding to the total pressure loss. 

Of importance is the fact that laboratory results also show 

the accumulation solids at low rates of air flow. This is predicted 

by theory in this research. In the equation where solids are assumed 

to go into solution, no allowance is made for solids accumulation. In 

Fig, 21, it is apparent that the use of Equation (9) to calculate 

pressure losses for an air-solids stream offers no similarity with 

measured results. 

Comparisons of gas volume requirements using the theory from 

this research and Angel's predicted requirements is shown in Fig~. 22, 
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2.3, 24 and 25. In Fig. 22 the gas volume requirements using this theory 

are about 40 percent less than Angel's requirements at a drilling rate 

of .30,. 'rt/hr and about .35 percent less at a drilling rate of 90 ft/hr. 

Although there are some small variations, this difference is about the 

same for all depths for the given hole and drill pipe sizes of 6-1/4 

and .:3-1/2 inches. The same magnitude of differences are noted in Fig. 

2.3 for the combination of hole and drill pipe sizes of 7-7/8 and 4-1/2 

inches. As the combinations of hole and (irill pipe are increased in 

size as shown in Fig, 24 and 25, the difference in predicted gas vol­

umes is decreased slightly but is still of the same order of piagnitude, 

The difference in predicted requirements between .Angel's work and this 

work is due to, (1) the difference in the calculated annulus pressure 

losses and (2) the use of the slip velocity equation to determine lift 

requirements rather than using a standard air velocity of .3,000 ft/ 

min, 

The quantitative differences in gas volume requirements noted 

in Figs. 22, 2.3, 24, and 25 are significant when designing necessary 

equipment for a gas drilling operation. For example, consider Fig. 25 

where at a drilling rate of .30 ft/hr at 10,000 feet, this writer's 

theory predicts a gas requirement of 1,510 SCFM and Angel's predictions 

show requirements of 2,.3.30 SCFM, a 54 percent increase. Economically 

the operation may not be feasible if the higher volumes are actually 

required. Of equal significance is the fact that if the higher volumes 

are used drilling rates may be reduced substantially. Thus the costs 

of a poor design are compounded by increases in equipment and drilling 

costs. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Gas has been used as a circulating medium in rotary drilled 

wells since the latter part of the decade from 1940 to 1950, Drilling 

rates using dry gas have been shown in some cases to be 10 times greater 

than those using normal drilling mud. These phenomenal results brought 

quick acceptance of gas drilling by the oil industry. Many oil com­

panies plunged into the use of gas with the philosophy that volume re­

quirements can be determined experimentally. Subsequent technical 

interest developed,rand in 1957, Angel introduced a good initial basis 

for determining volume requirements. This work was followed by 

McCray and Cole intl959, who presented a similar approach to Angel's; 

however, because they used a different friction factor their results 

showed a need for still higher gas volumes. This ended the efforts 

towards any theoretical consideration of volume requirements in gas 

drilling. Since 1959, any further developments have been based on trial 

and error methods in field practice. This research was initiated be­

cause the results from field practice showed the gas volumes predicted 

by past theoretical approaches was much higher than needed in actual 

drilling operations. 

Instead of searching for methods to extend or modify past 

theoretical work, it was decided to start with known fundamental concepts 
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and develop new equations for predicting gas volume requirements. The 

first step necessary was the development of an equation that could be 

used to predict the pressure loss for a flowing mixture of gas and 

solids. There were obvious faults in previous developments, because 

of the use of a density term where it was assumed that the solids went 

into solution. In this research the general energy balance was used 

to account for the loss of energy in circulating the gas and solids as 

separate units of mass. This is obviously a sound approach, the only 

limitations are the use of simplifying assumptions to reduce the dif­

ficulty of solution. The assumption that pressure loss for the solids 

is due only to the shear of gas by the solids as they slip through the 

gas stream seems reasonable because of the low concentration of solids 

by volume in the gas stream. Thus the pressure loss equation developed 

in this research work appears to be far superior to any theoretical 

development in past work. Instead of using a standard air velocity of 

3,000 ft/min, a mythical number introduced from other industries, the 

fundamental equations for solids slip have been used along with exper­

imentally determined drag coefficients. Thus the appn,,ach to calcula­

ting gas volume requirements has been improved substantially, by the 

use of more reliable equations for pressure loss and particle slip. 

In conjunction with these theoretical developments it has been 

shown that if the solids accumulation by volume exceed four percent, 

the lift of solids will be choked-off completely. This is a signifi­

cant development and may explain difficulties that have occurred in 

many gas drilling operations where the removal of solids ceases sudden­

ly, It has been shown by the use of pressure profiles that a prelude 
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to the loss of solids lift would be the removal of solids by a slugging 

action. 

Of particular significance were the field results that showed 

excessive gas volumes may reduce penetration rates, Also in this same 

work, it was shown that the point of minimum calculated annulus pres­

sure losses were obtained in the same range of gas flow that the maxi­

mum rates of penetration were obtained. This introduces the possibility 

of a completely new approach in the optimum design for gas volume re­

quirements. Based on these preliminary results it would be desirable 

to calculate a pressure profile versus volume rate of flow for any 

given rate of penetration and combination of hole and drill pipe size. 

The volume rate of gas flow that results in the minimum pressure loss 

in the annulus, would also be the rate of flow that would give the 

maximum rate of penetration. If subsequent field tests confirm these 

preliminary results, this would have a significant effect on drilling 

with gas. It could also affect methods for future design with any com­

pressible circulating medium. 

Drilling with low density fluids such as predetermined ratios 

of gas and liquids offer a considerable amount of promise in rotary 

drilling. The results developed in this work can be used with modifi­

cation for three phase mixtures of gas, solids and liquids. With 

adequate technology it might be· possible to introduce completely new 

concepts for circulating fluids in rotary drilling. 



CHAPTER VII 

RECOMMENDATIONS FOR FUTURE STUDY 

The field test portions of this research need to be continued. 

More data are needed to confirm the complete validity of pressure loss 

equations developed in this research. More information is needed on 

drilling rates as a function of gas volumes. Previous information seem 

to indicate that penetration rates would be a maximum when annulus pres­

sures are a minimuip.; this needs to be confirmed. 

A reliable method needs to be developed for measuring annulus 

pressure losses while drilling with gas. One method might follow that 

outlined in Appendix C of this work. However, this introduces problems 

of innacuracy because of pipe dimensions that change with time. A 

preferable means would be the development of a, method of a.ctually 

measuring the annulus pressure losses while drilling. If such a method 

could be developed for routine use then required gas volumes could be 

determined experimentally for each operation, Prediction methods would 

be used only in the general sizing of equipment. If actual annulus 

measurements were possible only on a test basis, this would still serve 

to help increase the accuracy of prediction equations. 

Theory should be extended to include the presence of water in 

the gas flow stream. Also the effects need to be considered where; (1) 

liquid is emulsified in the-·gas stream and (2) the gas is emulsified in 
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the liquid stream. In any drilling operation either or both of these 

conditions may exist. It is possible to have different flow patterns 

in the drill pipe-hole annulus. Flow may be laminar close to bottom 

and convert to turbulence at some higher level, These conditions 

are poorly defined for three phase mixtures of solids, liquids and 

gases. In contrast to dry gas flow, the mixture will probably behave 

as a non-newtonian fluid. Thus more study of the fluid behavior for 

such systems is needed. If fluid behavior oan be predicted, pressure 

losses can be calculated in laminar flow and the transition to turbu­

lent flow can be forecast. 

More basic information is needed on drag coefficients for 

solids in mixtures of gas and liquids. Methods need to be developed 

to predict the solids support capacity of gas-liquid systems. More 

information is needed on the effects of surface tension of various 

mixtures on solids lift. 

In conj unction with these nee.d5,, standard testing procedures 

need to be developed. Some system of collecting field data are needed. 

Emphasis needs to be placed on the need for accuracy in field measure­

ments. 

These are not difficult suggestions; studies on non-newtonian 

fluid behavior are common. Results from these studies with modifications 

can be made applicable to the conditions encountered in gas drilling. 

Using low density drilling fluids in rotary drilling offer a potential 

means of saving mi+lions of dollars in drilling costs. 
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APPENDIX A 

Appendix A includes the development and solution for some of 

the equations shown in the theoretical developments of Chapter III. 

Derivation of Slip Velocity Equation 

The basic slip velocity equation is derived from Newton's 

Second Law of Motion F = ma. Usihg a force balance on one particle 

falling through an infinite fluid stream gives the following rela~ 

tionship: 

F = ma = - FD 

For the condition where the particle falling through the fluid reaches 

a terminal velocity, the acceleration term, a, equals zero. Then: 

where: M = p 

Mr :;:: 

g = 
FD = 
gc :;:: 

mass of the particle 

mass bf liquid displaced by the particle 

acceleration of gravity 

drag force on particle caused by friction 

units conversion constant 

and t = Fp 
As 

117 



then: 

A th h h M rr 0~ e i-i ..;-i.ssuming e particle to be sp · erical in s ape, --p == 6- -

1f Dp Qf 
and Mf == 

then: 

and 

6 

8 g Dp ( e p - ef) 

6 CD e f 

== 0 
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Since the density of gas ef is negligible as compared to e P the 

equation for slip velocity may be written as follows: 

Let: 

Then: 

P dP == 

Solution for Pressure Loss Equation (56) 

a == 

b == 
s (1 + 5 ~) 

Mr 

P dP == b p2 dh + a dh == (a+ b P2) dh 



or 

p dP-
a + b P2 

JP 1 p 
b @:.+p2 

PW b 

p2 
__l_ ln 
2b p2 

w 

p2 + @:. 

ln ( 2 . ~) 
p + .,-w . b 

r2 + la c: 
b 

p2 (P2 :::; 

w 

p c: 

dP 

a +-b 
+@:. 

b 

= 

(p2 
w 

+ 

j\n. :::; 

0 

= h 

2bh 

e2bh 

+ 

@:.) 
b 

~) 
b 

2bh e 

2bh e 

6 2bh 

a 
- b 

a 
b 

1/2 

Derivation of .Gas Mass Required to Lift Particles 

Begin with the slip velocity equation as follows: 
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Also: v = v - v s p 

When vp ~ 0, vs ~ v, this is the minimum required fluid velocity 

to support particles. In this case vp is defined as the net upward 

velocity of particle, Using these conditions, the slip velocity equa-

tion can be modified as follows: 

1/2 

Let G = e f A v f c mass of flowing gas 

1/2 

Substitute: 
'[[__ 2 2 

A = 4 (Dh-Da)' 

then: 



APPENDIX B 

EXAMPLE SOLUTIONS 

In the theoretical developments of Chapter III, statements 

have been made on why certain conditions are considered important or 

why certain assumptions are reason.able. These statements are substan-

tiated in the following examples; 

Example B-1: Length of the zone of solids accumulation at the top 
of the drill collars. 

Assume: Hole size= 8,75 inches 

Drill pipe size= 5.00 inohes 

Drill collar size= 6,75 inches 

v = 
0 

25 ft/sec 

41. 5 ft/sec .. , 

Determine: h, the length of the zone in which formation solids may 

accumulate. Using Equation (27), 

h = (4l,5) 2 - (25) 2 
64.4. = 17.1 ft. 

The length of the zone of solids accumulation for the conditions assumed 

is 17,1 feet. If oversized drill collars, s1.1.ch as 8 inches O.D. were 

used the length of this solids accumulation zone would be 155 feet 
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and the calculation would follow the same pattern shown in Example 

Example B-2, The effect of kinetic energy on pressure loss ip 
the drill string-hole annulus. 

Assume: Conditions at the top of the drill collars in the annulus 
as follows: 

p = 64.7 psia 

T = 600°R 
a 

z = 1.0 

Surface conditions are as follows 

then: 

P = 14.7 psia 

T = 600°R a 

Ap = 

v dv 

(0.202) (2325 - 120) 
( 64 . 4) ( 144) = 0.0481 psia 
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It can be seen that even with substantially higher changes in pressure 

that the kinetic energy term is negligible. 

Example B-3, A comparison of the order of magnitude ~f ~ ef with Mr e p. 

Assume: Required gas volume = 600 SCF/min 

Drilling rate = 100 ft/hr 

ef = 0.0764 lbm/ft3 

e P = 156 ll;im/rt3 

Determine: Mp ef and Mf (2 p 



123 

(1T) (16) (100) (156) (0.0764) = 0.116 lb;/ft3sec 
(144) (3600) 

(600) (0.0764) (156) 
60 

This calculation shows the order of magnitude ratio of Mf e p to 

~ e f to be a 1000 to 1, Since annulus pressure losses are generally 

less than 100 psia, the neglect of Mp e f will introduce a negligible 

difference in results. 



APPENDIX C 

CALIBRATION AND :fl.ETHODS FOR :MEASURING ANNULUS PRESSURE 

LOSS IN FIELD TESTS 

One complete set of pressure tests were run with the drill pipe 

suspended just above bottom at approximately 3,800 feet. During these 

tests pressures were measured with calibrated gauges at the standpipe 

on the rig floor, just above the bit inside the drill collar string and 

in the drill pipe-hole annulus just above the bit. These results were 

used as calibration tests since it was not possible to measure the 

annulus pressure just above tlie bit while drilling. This was true be-

cause the side pocket tool could not be used with compression in the 

drill string. 

The measured annulus pressure loss versus the calculated 

annulus pressure loss using the writers theoretical equation while 

circulating air only is shown in Fig. C-l, The calculated pressure 

loss is an average of 1.0 psia less than the mea,sured pressure loss 

at all flow rates. 

Methods used to determine pressure losses in the various parts 

of the circulating system are given as follows: 

Surface Connections--Between the Standpipe and Bottom of the Kelly 

dP = e db + 
e v2f 
----- db 2g D 

c 
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For this system e dh = 0 

dP -

v = Q _ (14.7) Ta Qs = 0.0282 Ta 

A 520 PA PA 

p df 

= QI Q2 Th s 

126 

dh 

2 2 2 
This shows that a plot of Pk - Pp versus Qs T will be a straight line 

with a slope equal to C1h, Actual measurements showed this correlation 

to be valid and Fig. C-·2 was constructed to be used as a calibration 

curve. 

Drill Pipe and.Drill Collar Pressure Losses 

These losses were calculated from just below the bottom of the 

kelly to just above the bit. A modifieq form of the energy balance was 

used for the calculations. Because the length of the drill string was 

changing, one calibration curve could not be used for determining pres-

sure losses inside the pipe. Thus the energy balance was arranged in the 

follow,ing form and solved numerically to increase accuracy. 

dP = (' f dh - (' f v2 f dh 
2gc D 
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where: e = 
s p and v = 0.0282 T Qs -
RT p A 

then 

dP ~ [! ~ s p (0 .0282 92 Q; f J dh -
R 'L' PA 2gcD 

Let: a = 2gc A2 D S 

b = (0.0282 T Q )2 Sf s 

then : dP = l-. a p2 - b 1
1 dh 

a P R T 
..,;. 

a p dP = _l_ dh 
a P2 -b RT 

This form of the equation can be written as follows: 

thus: 

a 2 

R T 

d(P2 ) - 2(a P2 - o) 
~ a RT 

dh 

2 2 b 
- ~(P --) . 

R T a 
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Equation B-1 gives the slope ot: any point on a curve of P2 versus 

depth h. It can be modified for nl,llilerical application as follows: 

For given short intervals, 

d(P2 ) A (P2) 
dh Ah 

then: 

p2 p2 = d(P2 ) (h2-h1) 2 1 dh 
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Using this calculation, a typical profile through the drill pipe and 

drill collars was constructed as shown in Fig, C-J. An example cal-

culation is illustrated as follows: 

Well Depth: 5,038 feet 

Surface Pressure (just below kelly) = 170 psia 

qs = 1189 .11 SCFM 

T = 518°R 

__ 2 __ = P2 - 1.384 (10-3) (1189 x 518) 2 (0.023) 
(53,3) (518) (2.764)5 

d( p2) = 
dh -4,74 

Let Ah = 100 and calculate the pressure at the next point down the 

pipe. 

p2 + 
l Ah 

p~ = 28.900 - 4,74 (100) = 28,426 

P2 = 168.6 psia 

From this another interval is selected and the next P2 is calculated 

using 168.6 psia as P1 . 

Pressure Drop Across Bit 

Pressure losses through the bit were determined using the 

conventional flow through an orifice formula used in A.G.A. Report 

No. 3, This formula and the method in which it was utilized is shown 

as follows: 

D22 [hT .P J 1/2 Qs = 129,226 E ·v1 
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Let Cl ~ 129,226 ED~ 

· Then: 
1/2 

Because pressure drop is a function of the fluid head, 11w can be 

expres.sed as follows: 

11w = C2 (Pi- Po) 

[G2 . r2 Qs = (Pi; Po) pi 
·-
C1 

Q2 C2 (P.- p) p. s = l . 0 l 

c2 1 T 

pi - Po :;:: 1 [~ TJ 
C2Cf -----;; . 

Based on the form of Equation (4), a plot 

will. give a straight line with a slope of 

of P. - -b l _,, 0 

1 
ccZ. 

2 1 

versus 

(4) 

Q2 T 
s -.-p. 

l 
Such a plot 

has been prepared from measured data and this is shown in Fig, C-4, 

A summary of the data used to determine annulus pressure 

loss is shown in Table C-1. 
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TABLE C-1 

SUMMARY OF CALCULATIONS TO DETERMINE ANNULUS PRESSURE LOSSES 

Well Flow Pressure '):'emp. Q2T/Pi . Pressure Pressure Loss 
J)epth Rate: Above Bit From. Fig. Loss Through in Annulus 
feet SCFM psia OR 0-4 Bit, psia psia 

J,812 659 32.06 591 8.013 1.62 30.44 

733 34.05 591 9,337 2,23 31.82 

869 37,73 591 11.831 3,31 34,41 

1028 41,.92 591 14,897 4.60 37.32 

1215 46,84 591 18.640 6.13 40,71 

4,488 571 30.35 608 6!526 0,95 29,40 

678 32 .. 28 608 8.659 1.91 30,37 

752 33,48 608 10.264 2.63 30.85 

825 34,62 608 11.988 3,38 31.24 

1001 37.05 608 16.441 5,25 31.80 

1179 39,21 608 21,56 7.28 ,31.93 

5,038 584 38,34 624 5,55 0.51 37,83 

698 39,91 624 7.62 1.43 38,48 

761 40 .56 624 9,61 2.35 38.21 

1008 42.14 624 15.04 . 4,67 37,41 

1189 42 .84 624 20.86 7.00 35.28 

5,619 593 43,85 644 5.17 0.35 43,50 

709 45,65 644 7,09 1.08 44,57 

805 46,72 644 8.94 2.05 44,67 

877 47,29 644 10,47 2.73 44,56 

1043 47,97 644 14,88 4.60 43,37 



·APPENDIX D 

Comparisons with other investigators' experimental data; 

(52) 

ef = the density of the flowing medium, far the test conditions 

used by Williams, 80°F and 15.5 psia, the air.density is 

determined as follows: 

ef = PM = (l5.5H 28 ·96) = 0.078 lb /ft3 = 5 41 (10-4) lb /ft-in2 
RT ( 10. 72 )( 540) m • m 

Williams used a constant sand feed rate, which means the unit mass of 

particles per unit mass of air ~/Mr varied relative to the air flow 

rate. The \/Mr ratio was determined as follows: 

Feed Rate = 

= lZ2..:..5. 
v 

Feed Rate = 

14 lbm 1T (1.05) 2 in2 ft2 
ft2-sec (4) 144 in.2 = 0.0842 lbm/sec 

35 lb 17' (1.05) 2in2rt2 

ft2-sec(4) 144 in2 

= Q.2104 lbm/sec 

eQ(air) lbm/sec 

= 0.2104 lbm sec(4) in2-ft _ 4!f)._ 

v ft sec T1"(1.05)2in2 5 .41(10-4 )lbm - v 
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Friction factor 1;1.sed: 

(0.14) 

:r = ,014 (D)"l/J = ['1-~) f/3 
Feed Rate.= 14 l9m/ft2-sec 
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= 0.0,315 

dP = 5.41(10-4)1bm 11 + 5(179.5)] + .0315(5.41)(10-4)ll>mlb:r-see2 v2 :rt2 

dh ft-in2 [ v 64. 4 lbrn-ft ft-in2 0 .• 0875 ft sec2 

. I 2 Feed Rate = 35 lbrn ft -sec 

dP = 5 .41 ('.L0-4)lbm 32 .2 ft lbf-sec2 [ l + 5 (~49)] + 

dh ft-in2 sec2 32.2 lbm-ft 

[
.0315 ( 5 .4:).)(10-4) lbrn] 

64.4 lb -ft ft-in2 m 

[
lbf-sec2 v2 ft21 

.0875 ft sec2 ] 

(D-1) 

(d-2) 

The solutions of Equations (D~l) and (D-2) are given in 'l'able D-1. 
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TABLE D-1 

PRESSURE LOSS VS. AIR VELOCITY 

Air Velocit;y 
ft/ ft/ 
sec. min. 

Pressure Loss 2 . f!Siaift 
Air Sand Rate Sand R~te 
Onl;y 14 lbmift2'"-sec 35 Ibmift -sec 

JO 1800 .003259 .019459 .043259 

60 3600 .011413 .019513 .031413 

80 4800 .019869 .025944 .034869 

100 6000 .OJ0741 .035601 ,042741 

120 7200 .043488 ,047538 .053488 

140 8400 .059192 .062662 .067762 



NOMENCLATURE 

a - Acceleration, ft/sec2 

A - Flow area, square feet 

Aa - Annulus area, square fe t 

A - Shear area of one particle, square feet 
s 

CD - Drag coefficient, dimensionless 

D - Internal pipe diameter, feet 

Da - average particle diamete~, feet 

Dd - Outside pipe diameter, feet 

De - Equivalent particle diameter, feet 

Dh - Hole diameter, feet 

D - Particle diameter, feet 
p 

F - Force, lbf 

FD - Drag force, lbf 

f - Moody friction factor, dimensionless 

g - Acceleration of gravity, 32.2 ft/sec2 

gc - Units conversion constant, 32.2 lbm-ft/lbf-sec2 

G - Mass flow rate of gas, lbm 

h - Well depth, feet 

Hi - Enthalpy into selected system, ft-lbf/lbm 

H0 - Enthalpy out of selected system, ft-lbf/lbm 
-.-
KEi - Kinetic energy into selected system, ft-lbf/lbm 

KE0 - Kinetic energy out of selected system, ft-lbf/lbm 
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M - Mass, lb 
m 

Mp - Mass of particles, lbm 

Mf Mass of fluid, lbm 

n - Ratio of specific surface areas 

p - Pressure at any point, psia 

P - Pressure at any point, psfa 

P - Pressure loss due to particles or solids, psfa 
p 

Ps - Standard pressure, psfa 

Pw - Well-head pressure, psfa 

P1,P2-Pressure at a specific point, psfa 

PEi - Patential energy into selected system, ft-lbf/lbm 

PE0 - Potential energy out of selected system, ft-lbf/lbm 

.t.Q - Heat transferred at boundaries of system, ft-lbr/lbm 

Qs - Volume flow rate of gas, SCFM 

r - Drilling Rate, ft/hr 

Re - Fluid Reynolds number, dimensionless 

RP - Particle Reynolds number, dimensionless 

S - Specific gravity of gas, dimensionless 

As - Entropy change into and out of system, ft-lbf/lbm 

Sp - Entropy produced within system? ft-lbf/lbm 

t - Time, second 

T - Temperature at any point, 0 R 

Ta - Average temperature of flow stream, 0 R 

Ts - Standard temperature, 0 R 

v - Fluid velocity, ft/sec 

va - Act:cml slip;velocity, ft/sec 



vc - Choking velocity, ft/sec 

v - Net upward partiole velocity, ft/sec 
p 

vs - Theoretical slip velocity at any point, ft/sec 

vss - Theoretical slip velocity at standard conditions, ft/sec 

w 

- Velocity into selected system, ft/sec 

- Velocity out of selected system, ft/sec 
. 2 

- Solids feed rate, lb /sec-ft 
m 

x - Sphericity or shape factor 

e -Density, lb /rt3 
m 

ef - Fluid density, lbr/ft3 

e -Particle density, lb /ft3 
p m 

em - Fluid-particle mixture, density. lbm/ft3 

es - Fluid density at standard conditions, lbm/ft3. 

p_ - Fluid viscosity, centipoise 

C. - Voidage fraction, dimensionless 

ft - feet 

lbf - pounds force 

l~ - pounds mass 

psia - pounds per square inch absolute 

psfa: - pounds per square foot absolute 

SCFM - Standard cubic feet per.minute 

0 R - Degrees Rankine 

139 



VITA 

Preston Leon Moore 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: THEORY OF TRANSPORTING SOLIDS IN AIR AND GAS DRILLING 

Major Field: Mechanical Engineering 

Biographical: 

Personal Data: Born at Los Angeles, California, October 21, 1924, 
the son of Raymond and Eva Moore. 

Education: Attended grade school at Atwood, Oklahoma; graduated 
from Atwood High School, Atwood, Oklahoma, in 1942; received 
the Bachelor of Science Degree from the University of Okla­
homa, in August 1949; received the Master of Science Degree 
from the University of Houston in May 1958; completed re­
quirements for the Doctor of Philosophy degree in May 1966. 

Professional Experience: .Empl0yed by the Humble Oil and Refining 
Company in Houston, Texas, as a Petroleum Engineer, 1949 to 
1958; joined the Petroleum Engineering Faculty at the Univer­
sity of Oklahoma as an Assistant Professor in September 1958; · 
promoted to Associate Professor of Petroleum Engineering in 
September 1962; performed consulting work in United States, 
Canada, Middle East, Europe and South America; currently 
teaching and supervising research. 

Professional Organizations: Member of Society of Petroleum 
Engineers of AIME; American Petroleum Institute. 




