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LORENTZ ENSEMBLES IN THE STOCHASTIC
THEORY OF SPACE-TIME
CHAPTER I
INTRODUCTION

It seems unlikely that man is aware of more than an in-
finitesimal fraction of all that affects his existence. His
progressive nature however, results in a continual investiga-
tion and consequent expansion of his perception of that with-
in which he exists, i.e., his universe. As his awareness has
increased, the means by which he tries tc describe hig uni-
verse has evolved from rather simple bodies of knowledge and
speculation having limited ranges of validity to more compre-
hengive theories. It has often been the inability of current
theories to cope with problems arising from man’s awareness
of new domains, e.g., smaller or greater distances, that has
led to the development of new theories.

The first great formulation of laws describing what man
calls his physical universe was the mechanics of Newton. His
theory, developed around 1670, resulted from observations that
were comparatively slight extensions of man’s direct sensory
perception. Newtonian mechanics was therefore developed to

describe particles which are massive compared to, say, an
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electron and slowly moving compared to an electromagnetic pho-
ton. As man extended the range of phenomena he might observe,
he became interested in problems associated with new domains.
It was the recognition of the inability of Newtonian, or clas-
sical, mechanics to describe either particles moving near the
speed of light or particles of atomic dimensions that led to
the two most significant advances of physical theory in this
century, the theory of relativity and quantum theory. Signif-
icantly, both theories yield the mechanics of Newton as a lim-
iting case, i.e., as velocities become small and the particles
become more massive. In fact, the extraordinary success of
Newtonian mechanics within its proper domain seems to imply
that it must be a special case of all more general formula-
tions of physical theory. It is an interesting fact that the
development of more general theories has always resulted in
more precise specification of the domain of Newtonian mechan-
ics.

The development of physical theory is again on the thresh-
0ld of great advancement. With the advent of non-relativistic
quantum theory it was recognized that a more generally appli-
cable theory, a relativistic quantum theory, must follow. Al-
though there have been many attempts to construct a quantum
theory which is relativigtically correct, a satisfactory form-
ulation has not been realized to date. In addition to being
expected on theoretical grounds, the existence of a more gen-
eral theory is also necessary since once again man has found

current theories inadequate to describe observed phenomena.
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Neither special relativity nor quantum theory serves to de-
scribe phenomena in the sub-nuclear domain. This paper is
concerned with the foundations upon which a more general form-
ulation, i.e., relativistic quantum theory, may be constructed.

The possibility of mass-energy transmutation, i.e., the
creation and annihilation of material particles, as predicted
by the theory of relativity, was appreciated at the time of
the first attempts at formulating a relativistically correct
quantum theory. Althocugh Dirac®s electron theoryl (1928,1931)
did account for the existence of anti-particles, its formal-
ism did not include the creation and annihilation phenomensa.
That particular difficulty was removed with the introduction
of quantum field theory (hereafter abbreviated as QFT) by
Heisenberg and Paulil in 1929. Dirac’s electron theory was
later shown to be included in the quantum theory of the elec-
tron field.

The QFT of Heisenberg and Pauli scored many successes.
At the very least it was far superior to its predecessors in
giving qualitative descriptions of many natural phenomensa. In
eddition to including in its formalism the creation and anni-
hilation of particles, photons emerged in a natural way upon
quantizaticn of the electromagnetic field. The manner in which
photons were described immediately suggested the possibility
that other particles whose existence is observed are also re-
lated to force fields by the same quantization procedure. I¥%
was on this basis that Yukawa1 predicted the existence of the

pion from knowledge of the existence of nuclear forces.
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Perhaps one of the most important contributions of the
old QFT was that it heralded the development of a new philo-
sophical approach to the formulation of physical theory. It
was a natural extension of the considerations of Yukawa and
others to associate with each kind of observed particle in
nature a field ¢(x) which satisfies an assumed wave equation.
A particle interpretation is obtained upon quantization of
the field. At least so far as formalism is concerned, this
marked the first real departure from the pre-relativistic con-
cept of a binary universe in which the relationships between
matter and energy did not include transmutation. The primary
intent of Dirac®s theory was to describe particles, a feature
it shared with Newtonian and non-relativistic quantum mechan-
ics. By contrast, QFT is a theory of quantized fields in which
increments of relativistic mass-energy characterized by rest
mass, charge, spin, etc., are secondarily identified as parti-
cles. Significantly, the formalism of QFT regards the fields
as more fundamental entities than the particles.

QFT has not, in general, been quantitatively successful.
In fact, its only quantitative results which are in agreement
with experiment are those concerned with the description of
electrodynamics. Amazingly, the agreement of these results
with experiment is extremely good. Its difficulties empha-
sized its unreliability but this single success was indica-
tive of the presence of some degree of truth in the founda-
tions of QFT. For this reason it was felt that rather than

disregard the entire structure of QFT, a proper modification
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should proceed from extreme scrutiny of its postulatory basis.
Theoretical investigations of this nature, begun in the early
1950’s, resulted in what is now called axiomatic QFT. Essen-
tially, an effort was made in the axiomatic approach to apply
only what were felt to be universally satisfied physical con-
straints. In a word, although these efforts did yield a more
rigorous formalism, few of the major difficulties of the old
QFT were avoided.

As a result of his analysis (193%6,1938,1939) of the ap-
plicability of QFT in connection with the self-fields of the

1 clagsfied interactions as

elementary particles, Heisenberg
those of the first and second kind. For the first kind, QFT
shows that the density of particles of the self-field (pho-
tons) does not depend essentially on their energies whereas
the density of self-field photons for the second kind show
strong energy dependence. He concluded that the interactions
of the first and second kind are, respectively, within and
without the range of applicability of QFT. The electromag-
netic self-field would be of the first kind.

Heisenberg aléo indicated how QFT must be modified to
describe interactions of the second kind. He noted that in
QFT one finds a prcbability of observing all photons of the
self-field. They are found to be distributed like a cloud in
a region immediately around their source particle. The source
particle and this cloud sre observed as a single particle. Be-

sides reacting with their own source particle, the contact of

the photon cloud of one elementary particle with that of a
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second particle gives rise to interactions between the ele~
mentary particles. In 1938 Wickl demonstrated that the pho-
ton cloud of a self-field of mass m extends mainly in a re-
gion of radius M/mc around the source particle. The density
of high energy photons of the self-fields is large at points
near the origin and gives rise to various kinds of infini-
ties, e.g., the infinite mass. Heisenberg suggested that
since the infinities are due to the high energy photons of
the self-fields, their high energy contributions must be de=-
limited in a new formulation of QFT. It appears necessary
to introduce a fundamental constant A = Hc/Eo thch discrim~
inates photon energies in such a way that the high energy
photons correspond to energies greater than Eo‘ The density
of the high energy photons near the origin of the source par-
ticle would be moderated by some factor depending on the con-
stant length A. Just as Planck’s constant h served to cut
off the high energy radiation and thus avoid the ultra-vio-
let catastrophe, A may play the role of cutting off the high
energy region of the self-fields of elementary particles and
thereby eleminate the ultra-violet divergences of QFT.

In the case of particles with Compton wave lengths much
greater than A the efrects of the self-fields may be expected
to be contained only in constants, i.e., masses and charges.
On the other hand, in phencmena concerning particles with wave
lengths small compared to A, the self-fields show dynamical
effects. These considerations provide a means of estimating

the magnitude of the fundamental length since QFT is known to
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work quite well for the electron-photon interaction but not
for any other. A must therefore be less than the Compton

1

wavelength of the electron (10"1 cm) but greater than the

Compton wavelength of a nucleon (10'14 c

m). Of course, the
question then became one of how the fundamental length sug-
gested by Heisenberg was to be incorporated into the formal-
ism in a logical manner. A means by which this might be ac-
complished was suggested by R.L. Ingraham in his stochastic
theory of space-time. This writer considers the work of

Ingraham as a major contribution toward the development of

relativistic quantum theory.




CHAPTER II
INGRAHAM'S THEORY OF STOCHASTIC SPACE-TIME*

Ingraham recognized that a possible explanation for the
divergences of QFT had root in the structure of the index space
of the quantum mechanical operators, i.e., space-time itself.
The problem of infinite renormalization suggested the neces-
sity for a high-momentum cut-off beyond which the density of
high momentum states is drastically reduced, or equivalently,
a fundamental length A = K/mc expressing a lower bound to the
fineness of measuring space-time coordinates. Moreovei, he
recognized that within this interpretation, the problem of di-
vergences could be attributed to the insistence that all equi-
valent Lorentz observers describe a given physical field by
the same mathematical object, e.g., a tensor or spinor. He
noted that this requirement of form invariance need not be
equated to the Principle of Relativity. Such considerations
led him to the development of a stochastic theory of space-
time and subsequently to a formulation of a finite QFT (as
opposed to *he older theory which may be styled "infinite"
in every sense of the word!). The major features of his sto-

chastic theory of space-time will be described in the follow-

ing.

*This chapter is primarily a summary of references 2, 3, and 4.
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Since space-time has an indefinite metric, it is not
possible to define a notion of nearness in it without add-
ing extra structure. This additional structure is included
by asking for frame or observer dependence of physical field
determinations. Ingraham’s method of accomplishing this was
to treat the index space of the gquantum mechanical operators
as a manifold of random, or stochastic, coordinates rather
than perfectly sharp coordinates as is the procedure in in-
finite QFT. This is done in such a way that the Principle
of Relativity, in its general sense of complete equivalence
of all Lorentz frames, is safisfied. An immediate consequence
is the violation of form invariance, i.e., different observers
do not in general describe the same physical field by identi-
cal mathematical fields (functions which are tensor or spinor
transforms of each other). In fact, it was shown by Ingraham
that stochastic space-tine theory precludes the possibility
of general form invariance.

From another point of view, Ingraham’s theory amounts
to recognition in current sharp theories of space-time that
a given Iorentz observer is capable of measuring the coordi-
nates of an event E with perfect accuracy, i.e., his repeated
measurements of the same event would always yield the same
four numbers. It is also assumed in sharp theories that he
can measure observable fields ¢(x) at E with perfect accuracy.
Morecver, since the measurements of the coordinates and fields
at E by equivalent ILorertz observers are connected in sharp

theories via Lorentz transformations, a given physical field
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is mathematically described over all space-time by a single
entity, i.e., current sharp theories are form invariant. The
assumptions of sharp space-time were considefed as "unphysi-
cal idealization" by Ingraham. Rather, he assumed that the
process of measurement (whatever its details) of observable
entities has an intrinsic dispersion characterized b 1 length
A which is the same for all equivalent observers, independent
of the field being measured. Thus, repeated measurements by
observer I of the coordinates or any other observable field
on a given space-time event do not always yield the same val-
ues, but values which are distributed about certain mean val-
ues.

It is significant to note that the proposed lack of
sharpness in stochastic theory is not the same as the quan-
tum mechanical indeterminacy which results from the non-com-
mutativity of conjugate operators in Hilbert space. Whereas
the lower bound imposed upon experimental conjugate pair ob-
servations by quantum mechanical indeterminacy is measured
by Planck’s constant h, the lower bound imposed by stochas-
tic theory on space-time coordinate observations is measured
by the fundamental length A. Of course, this is not to say
that the two indeterminacies are unrelated. The reason for
the intrinsic dispersion in space-time must ultimately emerge
from consideration of the measurement process itself. As noted
by Ingraham,3 measurement theory, having to deal with the in-

teraction of physical particles, must concern itself with quan-

tum theory due to the atomic nature of matter. An indication




11

of such a relationship was demonstrated by Cohn5 in which he
was able to show that the Heisenberg uncertainty relationship
between conjugate variables places a lower bound on the sharp-
ness of space-time measurements.

In any case, Ingraham’s theory does not require know-
ledge of the details of measurement theory but only the as-
sumption that they are mathematically describable by the for-
malism of random variable theory. Thus, the operation of
measuring the coordinates of an event E by Lorentz observer
L defines a quadruple random or stochastic variable X. Let
the probability distribution or frequency function of this
stochastic variable X" be f(7,E,L). The support s(E,L) is
some manifold of space-time having measure du(n,E,L) at n =
(nl,na,nB,n4)o The mean value of the field ¢, interpreted
as the average of the physical field measurements at E by L,
is defined by

o(x,L) = f«)(x) £(n,E,L) dp(n,E,L) (1)
s(E,L)
where x = x(E,L), the mean value of the coordinate of E as
measured by L, is defined by the appropriate moment of the

distribution, as given below:

£f(n,E,L) dp(n,E,L) =1 (2)
s(E,L)
ff(n,E,L) X(n,E,L) du(n,E,L) = x(E,L) (3)
s8(E,L)
f(EL) (X - 02 au(n,B,L) = A3E,L)  (4)

s(B,L)
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Equations (1) through (4) apply to the measurements of a given
observer as referred to his own frame.

Ingraham’s first postulate is that for equivalent obser-
vers L and 1L, connected by a Lorentz transformation or Poin-
care transformation P,

POSTULATE I: x(E,L) = P x(B,L) = Ax(E,L) + a

Since the mean coordinates of a given event as measured by
different observers will be connected by Lorentz transforma-
tions, the events E may be placed in 1l-1 correspondence with
their mean coordinates.

For a physical field at event E &s measured by L and re-

ferred to the frame of L, the stochastic average is defined as

Ce(x.I) = fe(X) £(n,E,L) an(n,E.L) (5)
S(Esl')

which is related to @(x,L) by some Lorentz transformation
o(x,L) = U(P) o(x,I) (6)

Form invariance would require that for any two equivalent ob-

servers, ¢(x,L) = ¢(x,L). This is not, however, the case in

stochastic space-time.

POSTUIATE II -- Principle of Relativity: Any two observers
L and L are equivalent in that theixr stochastic formula-

tions of physical laws must be subjectively identical.

Specifically, consider two corresponding or subjectively iden-~

tical points Q and Q such that x(Q,L) = x(g,L), i.e., Q stands
in the same relation to the frame L as Q does to the frame L.
The Principle of Relativity imposes the following constraints:
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(1) *(4,x,L) = X"(B,g,g) forn =1 and x = X.

(2) s(x,L) and s(x,L) are subjectively identical. In other
words, the set of numerical values of n allowed by s(x,L)
is identical with the set n allowed by s(x,L) if x = x.
This allows one to choose the element of measure du of the
support such that du(n,x,L) = dp(n,x,L) for 7 =  and x = X,
With the measure element so chosen, the next statement is
made:

(3) £(n,x,L) = f(n,x,L) for n = n and x = x. This statement
is necessary once the measure du is chosen to be observer
independent since otherwise the probability that L finds a
value of the coordinates in the measure element du(n,x,L)
around n when measuring the coordinates of a point Q to
which he assigns the mean coordinates x, namely f(n,x,L)-
dp(n,x;L), would in general differ from the probability
that L find a value in the corresponding measure element
du(n,x,L) with 3 = n and x = x around the corresponding
value 1 when measuring the coordinates of @, to which he
assigns the mean coordinates x = x, namely f(n,x,L).du(n,
x,g)° But then one of L and L would be preferred in some
way, which violates their complete equivalence.

This is all that is required by the Principle of Relativity.

However, considering constraints imposed by the symmetry group,

the proper, orthochronous Lorentz group, Ingraham made two ad-

ditional statements:

POSTULATE III: Homogeneity of stochastic space-time.

The following are immediate consequences of this statement:
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(1) Xp(n+a,x+a) = X*(n,x) + a, for all a
(2) n € s(x,L) => (n+a) € s(x+a,L) for all a. The support
for point (x+a) is therefore the translate of the support
for point x by a. This means the measure element du may
be further chosen such that dp(n+a,x+a) = dp(n,x) for all
a, i.e., dp(n,x) = dp*(n-x).
(3) The measure element 8o chosen requires that
f(n+a,x+a) = £(qn,x) = £ (n-x)
Concerning the rotations of the proper Lorentz group
LI, a postulate is necessary to assure that at least so long
as one is confined to the support s(x,L), the probability of
finding a value Xn(n,x) in measuring the coordinates of the
point having mean coordinates x(IL) is independent of the di-
rection of n from x(L). This amounts to requiring a limited
isotropy with respect to LI:
POSTULATE IV: Limited isotropy of stochastic space-time.

In particular, there is postulated to exist a non-trivial

group M L: such that if s(x,L) contains n, then [m(n-x) + x]

€ s(x,L) where m € M and x is taken as a fixed point or ori-

gin for M. Thus,

(1) X[n(n-x) + %,x] = m[X - x] + x, for all m € M

(2) s(x,L), with x the fixed point of M, is invariant under
M: 7 € 8(x,L) == [m(n~x) + x] € 8(x,L) for all m € M. This
means the measure element dp can be further restricted by
choice to have the property dulm(n-x)] = dp(n-x) for all m

€ M.
(3) Having so chosen this property for the measure element it
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is also required that flm(n-x)] = f(n-x) for all m € M.
This means that f must be a function of some group in-
variant, i.e., (n-x)2°
Ingraham’s next, and final, postulate recognizes that
the measurement of one spatial coordinate should rot depend
upon measurement of the others-
POSTULATE V: Stochastic independence of spatial coordinates.
If the spatial coordinates are stochastically independent,
the frequency function must be of the form of a product of

functions of each spatial variable, i.e.,

3 .
£(X,x) = IT fi(Xl,X4,x) (7

This postulate places no restrictions on the stochastic time
variable Xu° However there are only two possibilities, X4 is
either deperdent on or independent of the spatial coordinates.
Spatial dependence of X4 means that either time i1s dispersion-
less or that time measurements can be reduced to coordinate
measurements by some operational process using signals which
have the same constant velocity for all observers, e.g., light
signals.

Although he did not explicitly raise it to the status
of a postulate, Ingraham did assume, as did Einstein, that the
speed of light in vacuum is the same for all equivalent obser-
vers, independent of the motion of the source of the light.

Also regarding the last postulate, the objection has

been raised that it allows for the time variable to be treat-

ed in a manner different from the spatial variables, in a
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non-covariant way. Of course, this is in conflict with the
more common interpretation of the Principle of Relativity. It
is not, however, in conflict with the more general interpreta-
tion used by Ingraham. This interpretation, which only asks
for subjectively identical formalisms among equivalent obser-
vers, seems to have originated with Einstein°6 Thus, it is
only required that all observers find the same relationship
between stochastic space-time coordinates; the Principle of
Relativity places no restriction on the precise nature of such
relationships.

Ingraham did not make a definite commitment as to the
form of the distribution or its support. However, from phys-
ical arguments, he did suggest that the most likely situation
is that in which time may be expressed as a function of the
spatial coordinates. In fact, if it is assumed that all four
coordinate variables are stochastically independent, the fre-
quency function is fixed as gaussian. If one requires that

the support be of infinite extent, the normalization integral

1= j:i‘*x £(X-x) = A‘FL'"X [exp a(X-x)°]
s(E,L) s(E,L)
eleminates the possibility of a four dimensional support for
the gaussian distribution since divergence occurs whatever
the choice of a. It follows that all four variables may not
be independent. Two dimensional supports were reasonably re-
Jected for their asymmetric nature, thereby narrowing the pos-

sibilities to the one and three dimensional cases. Ingraham

did not choose between these last possibilities but strongly
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favéred the three dimensional support. In the case of dis-
persionless time, the frequency function for the three dimen-
sional case is gaussian. It does seem likely that for the
more physically realistic case of dispersion in all four co-
ordinates, the three dimensional frequency function is a mod-
ified gaussian. '

It is most convenient to express the stochastic averages
of the field ¢(X) in terms of its Fourier transform

o[X(n,x)] = fd4k ¢(k) [exp ikX(n,x)] (8)

With (8), equation (1) becomes

o(x,1) = [a*k o(x) g(k,I) [exp ilkx] (9)
while (5) becomes
o(x,L) = fa‘*k o(k) g(k,1) [exp ikx]  (10)
where the form factor g(k,L) for an arbitrary observer is de-
fined by
gk,L) = fdu £f(X~x,L) [exp ik(X-x)] (11)
s(E,L)

It is seen that any difference in (9) and (10), i.e., lack of
form invariance, is due to the difference in the form factors

associated with the observers:

#(x,L) - o(x,I) = Ja*k o(x) [exp ikx] [g(k,L) - &(k,L)]

(12)
Several properties of the form factors can be gleaned

from the foregoing. For one thing, the reality of the meas-
ure element and the frequency function implies that
g*(k,L) = g(-k,L) (13)

Moreover, g(k,L) must be real. This is seen by expanding (11)
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as

g(k,L) -'l;u £f(X-x) cos k(X-x) + ijdp £(X-x) sin k(X-x)

s(B,L) s(E,L)

As a function of the invariant (X—x)a, f(X-x) is an even func-
tion. Since the sine function is odd, the last integral will
vanish over a support of infinite extent. g(k,L) is there-~
fore real. In light of (13), this means that g(k,L) = g(~k,L)
and consequently g(k,L) must be a function of k2 = koko, i.e.,
g(x%,1).

Limitation of the support to be either three or one di-
mensional and the requirement that the support be of infinite
extent suggest that s(E,L) = s(x,L) be either a three dimen-
sional plane or a one dimensional line in four-space, respec-
tively. In both cases, since k appears as koqu-xU), in the
inner product, only the projection of k on the plane or line
has non-zero contribution to the integral defining g(k,L).

Iet n(L) repr2sent a unit four vector which is normal to the
planar support in the three dimensional case, or is parallel
to the linear support in the one dimensional case. Then the

contributing projection of k for the planar support is

k) = k4 [kon°(L)]n(L) (14)
while for the linear support it is
k, = anG(L) (15)

Note that in (14) if n(L) = (0,0,0,1) then kono(L) = -k, and
therefore kl = P In any case, the functional dependence of

the form factor on k must be kf for either support. In addition,
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it may be noted that the form factor has no dimensions and
so the actual dependence is g(kfk?L), where A is the length
defined by}equation 4).

For what class of observers will the form factor have
the same value? By (14) and (15) it must be that class whose
support is characterized by the same vector n, i.e., those
for whom n(Ll) = n(LQ) = +oo = n(L). The observer dependence
is therefore carried entirely by kl and so the functional de-

pendence of the form factor may be expressed simply as

8(k,L) = g(k9A) (16)

An attempt has been made to summarize the basic features
of Ingraham’s theory of stochastic space-time. As indicated
previously, this theory was developed as a prelude to the for-
mulation of a finite quantum field theory. Without entering
into a comprehensive discussion of finite field theory, it is
of interest to note that the theory of stochastic space-time
does allow for a logical'formulation of quantum theory in which
many of the discrepancies of infinite quantum field theory are
removed. For example, renormalization is finite, the ultra-
violet divergences do not occur due to the high-momentum cut-
off, ambiguities associated with local Lagrangians (products
of fields at the same point) disappear, etc. It is also im-
portant to recognize that the implications of stochastic space-
time extend throughout all physical theory, i.e., stochastic

space-time derives from the most fuﬁdamental considerations
of physics.
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In the chapters to follow, the stochastic theory of
space-time will be presented from a point of view that 4if-
fers from that of Ingraham. It will be demonstrated that the
formulation may be approached philosophically as the relaxa-
tion of a postulate normally made in sharp theories of space-
time. This in effect introduces an additional degree of free-
dom, which will be characterized by the parameter A. This ap-
proach is appealing since there can be no argument as to the
correctness of such a more general formulation if only its
derivation is rigorous. Any debate is settled by evaluation
of A. If the parameter is eventually proven to be zero, then
space-time is sharp and solution 6f the problem of developing

relativistic quantum theory must be found elsewhere.




CHAPTER III
STOCHASTIC RELATIONSHIPS OF A SET
OF COMMUNICATING OBSERVERS

It is desired to consider relationships which may exist
between observers or frames of reference in communication with
each other. The detail:z of the process of physical communica-
tion are not important, it is only required that a given obser-
ver Li can by some means convey fhe results of his measurements
and determinations of physical phenomena to any other observer
Lj.

Being in physical communication, the observers possess
the capability for agreement. They may, for exesmple, agree
to some common scheme of observer designation, such as obser-
ver one, two, etc. They may also establish unique mappings
between each pair of frames in the set. Thus, a well defined
. may be established

J
by all observers agreeing that the space-time point designated

coordinate mapping between frames Li and L

as P in the frame of Lj should always be mapped into the point
designated as P in the frame of Li‘ Moreover, this may be ac-
complished for all points in the frames. The coordinate map-

ing so defined from Lj to Li will be represented by the two

index quantity Lij‘
21
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It should be noted that the particular functional form
of the mapping may be different for different observers. The
development thus far only requires common agreement as to
which point of Lj is mapped into a given point of Li'

In addition to the coordinate mappings, the observers
may agree as to the manner by which mathematical functions
will be mapped between observers. Thsse mappings, designated
as Uij’ may or may not be functions of the Lij'

For some physical event E, let Li measure, by a process
involving single acts of observation at each step, the coordi-
nates and value of some physical field at those coordinates.
Li may repeat this procedure for other events, determining
coordinate and physical field values for each point in his
spacé. Eventually Li may analyze his data and conclude that
for coordinates Yi(E,Li) of the event E, the physical field
has the value given by the mathematical field ¢i[Yi(Li)]. The
field evalueted for some particular event E will be denoted
by ¢, [E,Y,(L;)].

Suppose a second observer Lj’ iﬁ a similar manner, ob-
serves the same events as Li' Lj will assign a given event
the coordinates Yj(E,Lj) and describe the same physical field
by a generally different mathematical field Qj[Yj(Lj)]. Each
member of the set of observers will likewise determine the
coordinates of various events and assign a mathematical field
to describe the physical field of interest.

Now let each observer transform his results to a chosen

common frame, say Lo’ oy transformations of the type
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Yi(Lj) = Linj(Lj) (17)

LY. (L. = U,. (L., 1
03 [Y; (1)) U; 594 075(T5)] (18)
Note that there is no justification for assuming that

or that
¢1[Yi(Lj)J = @Y. (L;)]

Once he has transformed the results of his observations
to the frame of Lo by the indicated mappings, let each obser-
ver communicate these transformed quantities to every other
observer. The observers may then construct identical tables
of the experimental data, all transformed to a common frame ‘
of reference (Lo) by means of agreed upon mappings. For an
arbitrary field it is therefore possible for each of the ob-

servers tu comstruct the following table:

TABLE I
determined bz_gb transform %o L, via (18)
¢°[Y°(Lo)] ¢0[YO(L°)]
¢, (Y, (T;)] U, [Y;(T9)]
¢k[Yk(Lk)] Ubkwk[Ik(Lk)]

. .
° °
] L ]

Consider first how individual observers would analyze

the distribution of coordinate values:
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TABLE II
determined by Lp transform to Lc via (17)
Yo(Lo) Yo(Lo)
T3 (1) Lo1¥3(Ty)
T (Tye) Lok Yie ()

Having identical tables of data, the observers will agree on
the distribution and frequency of coordinate values found in
the right column of Table II.

The mappings Lij and Uij have been completely arbitrary
thus far. If it is desired, however, that any lack of predict-
ability or randomness in the values of the left column of Table
II be reflected in a similar lack of predictability in the val-
ues of the right column, one must require that the mappings be
1-1, i.e., Lij = LS%. Such will be the case for the develop-
ment to follow. Likewise, it will be required that Uij = US}.,

With no constraint beyond the ability to communicate,

and the realization that the number of such observers is in-
-1
it
sonably assume that the distribution of values in the right

finite, the qualification that I allows one to rea-
column of Table II is random. ILet observer LO assign a ran-
dom variable xo, defined in his space-~time frame, which du-

Plicates the values of the right column as it ranges over

some manifold of points. To average this variable L, would
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seek a frequency of distribution function Fo(Xo,xo) such that
with the measure element duo(xo,xo) of his support, Fo(xo,xo)-
duo(xo,xo) is the probability of a coordinate value occurring in
the table (and also in his space-time frasme) in the range Xo,
X+ dXo about the mean value x . The mean value of the ran-
dom variable would then be given by
x (L) = fxo F (X %) du (X ,x,) (19)
s(E,Lo)
Of course the total probability of some value of the random
variable being in the table is unity:
fFo(Xo,xo) dp.o(Xo,xo) = 1 (20)
s(E,LO)
Moreover, since it is not assumed that the values in the right
column of the table will be identical, L° may find a non-zero
dispersion
f[xo-xoj"' F (X,x) & (X,x) = 3°(E,L) (21)
s(E,Lo)
Suppose now that each observer transforms the right col-

umn of Table II to the frame of Lk:

TABLE III
determined by Lp transform to Lo transform to Lk
Y, (L,) Y, (L,) Y, (L)
1, (L)) Ly1Y1(Iy) Lo1¥1(By)
: : Lro :
T, (Ly) L T (L) Lo Y (Tye)
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In a menner similar to that of Los Iy will average the column
referenced to him by assigning a random variable Xk defined in

his own frame, etc:
xk(Lk> = ka ‘Fk(xk’xk) duk(xk,xk) (22)

S(EaLk)

where
B (Xx) an(X,x) = 1 (23)
S(E’Lk)
q ‘
- [X,-x,1° F (X ap. ( ) A2(E (24)
X0 1% By (Xoxy) e (Xox) = 3A7(E,Ly)
s(E,I;)

Consider now how Lo will regard the column referenced
to Lk‘ He will simply see it as the column referenced to him-
self multiplied by a factor Lko’ His conclusion will be that
the aversge of the column referenced to Lk is the average of

the column referenced to himself, multiplied by Lko’ i.e.,
xk(Lo) = Lhoxo<Lo)° Therefore,

xk(Lo) = Lke/;o Fo(xo’xo) d“o<xo’xo)

s(E,Lo)
or since Lko contains no variables of integration,
xk(Lo) = fgk FO(xO’xO) duo(xosxo) (25)
S(E')Lo)

where X, is a random variable in the frame of L, such that

L, = Ipodo

Since Zk and Xk are both random variables defined in the frame
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of Lk’ voth of which duplicate the values of the column re-
ferred to Lk’ they are in fact the same random variable. This
means that the region of Lk’s frame over which the variable
Xk = gk = Lkoxo assumes its values is simply the coordinate
transform of the region of Lo’s frame in which xo assumes its
values. Since the manifold of points included in the values
assumed by these random variables must include the respective
supports, the supports over which the averaging takes place
must be transforms of each other.

It follows by inspection of Table III that the proba-
bility of the wvalue Xk occurring in the data referenced to
Lk is the same as the probability of Xo occurring in the data

referenced to Loo Therefore,
F (X ox,) dn (X ,x ) = P (X,x) dn(X.,x) (26)
Using (26) and the fact that the supports s(E,Lc) and s(E,Lk)

are transforms of one another, the variables of integration

in (25) may be changed as
x (L) = ka B, (X,x) aw (X ,x,) 27
8(E,Ly)
Comparing (22) =2rd (27) it follows that for a given event E,
X = () = xlL) = Lyx, (28)
This means that an event may be placed in 1-1 correspondance

with its mean coordinates ss determined in a particular frame.
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It is significant to note that if the allowed mappings
Lij are metric automorphisms of the space so that [Xk-xklz
is an invariant, (26) substituted into (24) shows that X(E,Li)
= X(E,Lj) = AM(E), i.e., at least for a given event, A(E) has

the same value for all observers.

Specification of the manner in which observers will av-
erage mathematical fields in general is somewhat more arbitrary.
However, if one wishes stochastic theory to reduce to the sharp
theory of space-time in the event of zero coordinate dispersion,
the prescription for averaging field values is determined. The
form invariance of sharp theories is retained in the limit of
zero coordinate dispersibn only if one requires in stochastic
theory that if two or more observers agree on one mathematical
field, they will agree on all others. That is, if they measure
the same coordinates for ar event, they also obtain the same
value for a physical field at that event. In particular, con-
sider Table I. The observers may assign to frame L0 a func-
rion YO(XO) which duplicates the field values of the right col-
unn for an event E as its argument, the random variable Xo of
Lo’s frame, ranges over its values. Since the mathematical
field YO(XO) is to have the same weight in the averaging pro-
cess as its argument X it follows that Fo(Xo,xo) duo(xo,xo)
is the probsbility of occurrence of the value YO(XO) in the

table. Observer L° will therefore average the function as

¢o(xo’Lo) = Yo(xo) Fo(xo’xo) duo(xo’xo) (29)
s(E,Lo)
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Now let all observers multiply the right column of Table I

by the appropriate factor to reference the data to the frame

of I3
TABLE IV
determined by pp transform to Lo transform to Lk
9ol¥o (L)1 9oL¥o (L)1 I ¢0[Yo(Lo)j-
¢, [, (T9)] Uy p97[T1(T9)] U101 [¥1(Tp)]
: : kol
¢y [T (T ] U 1 P [ T3 (T ) U Py [ ¥y (Ty) ]

The function which will generate this new column is wk(xk) =
UkOYO(Xo)o Observer L, will therefore find the average of
the right column of Table IV to be
¢k(xk’Lk) = -/;k(xk) Fk(xk’xk) duk(xksxk) (30)
S(Est)
Any other observer, say Lo9 will claim that the averages of

o

the two columns can differ at most by the constant factor Uko°
¢k(xk’L0) = Uk0¢0<xO°LO)
= U] %o (X)) Fo(Xgsxy) dug(X,ex,)
s(E,Lo)

or
d’k(xk’l‘o) = frk(xk) Fo(xo’xo) dp.o(xo,xo) (31)

s(EgLo)
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Summarizing ?riefly, the foregoing has sought to de-
scribe the manner in which a set of communicating observers
may establish common reference with regard to the coordinates
of events and appropriate mathematical fields to be associat-
ed with a given physical field. It has been found that all
observers will agree that the mean coordinates assigned to
the various individual observers for a given event will be
simple coordinate mappings of each other. However, if an ar-
bitrary observer Li describes a particular physical field by

the mathematical field

¢P(xp,Li) = qu¢q(xq,Li) = qu[uqr¢r(xr’Li)] = eee
where
0p(2peDy) = fwrar) Fy(Xp,%) ang(Xg,x5)  (32)
s(E,Li)

another observer Lj will describe the same physical field by
the mathematical field
= . = L. = o000
op(xpaly) = Uy bo(x05Ly) = Uy [0 0,(%,,T5)]
where
‘pr(xrvLa-) = fwr(xr) Fj(xj’xj) duj(xjaxj) (33)
s(E,L.
(E,Ly)
Being integrated over different supports, it is not expected
in general that the results of (32) and (33) will be identi-
cal, i.e., (br(xr,Li) 7 (br(xr,Lj) in general.
Not imposing the constraint of zero dispersion in coordi-
nate and field measurements among the observers resulted in a

degree of freedom not permitted in sharp or non-dispersive

theories. If the agreed upon mappings are metric automorphisms
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this additional degree of freedom is characterized by the
parameter A(E), which is the same for all observers for a

given event.



CHAPTER IV
THE STOCHASTIC FORMATLISM OF
INERTIAL OBSERVERS

It has been possible to formulate the mathematical struc-
ture of the preceding chapter in terms of very general obser-
vers. Attention will now be restricted to a special set of
communicating observers--those whose relative motion is uni-

form translatory, i.e., inertial observers.

POSTULATE I: The mean speed of light measured by rods and
clocks at rest in a given inertial frame is always c, in-
dependent of the motion of the source.

It should be specifically noted that it is not assumed that

the speed of light is sharp.

An immediate consequence of the above postulate is the
specification of the mappings Lij“ Thus, let all inertial ob-
servers regard the emission and progress of a pulse of light.
Lb will determine mean coordinates for observers Li and Lj for
the point at which the pulse was emitted and note mean coordi-
nates for the wave front some time later. For L, he will find

8%, 6%, - c2(68,)% = 0
where ¢ is the mean speed of light found for all observers.

ILikewise he will find for Lj

32
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2..5%. — 2 2
6%, 61?3 c=(6t,) 0
If pp then seeks a linear transformation satisfying the above

he will find it to be a Lorentz transformation. Thus,

65 = yloty - S 8F-¥;) (34)
. = = —1
L 8T, = oF + w?ji[%— a? ¥y = ¥6%;] (35)
-1
- |1-2 (36
S RS \
where the parameter f}i = - @;a is the mean velocity of L‘.j

with respect to Lio

The metric tensor is likewise determined as

gl - g2 . g5 . M .1

Note that since the mean coordinates merely designate another
point in the space of a given observer, i.e., the averaged
points and the sharp points are members of the same manifold,
g must be regarded as the metric tensor of the space. Thus,
if the metrical interwval (x-;_t)2 is invariant under the ILorentz
transformations, the metrical interval (X—x)2 must likewise be
an invariant.

' The Lorentz transformations form a ten-parsmeter auto-
morphic group. In particular, the metrical interval is in-
variant under four-space translations, rotations, and reflec-
tions. It has been shown that if xk = Lkoxo’ the supports
s(E,Lk) and s(E,Lo) must be transforms of one another. With
respect to the Lorentz translations, this means that if xo
€ s(E,Lo) = s(xo), then X, € s(xo+a) if X, = X + a. Similar

statements follow for Lorentz rotations and reflections. These
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properties allow one to choose the measure element dp such
that
du (X,x) = du (X,,x) (37)
The dot was placed above the sign of equality to emphasize the
particular nature of the relationship. Equation (37) does not
refer to a single volume element. It asks only that the meas-
ure element used by LO at Xo have the same magnitude as the
measure element used by Lk at xk = Lko 0° No constraint im-
posed on the theory so far requires the measure element be
chosen as in (37). However, such a choice imposes no speciali-
zation.
With the measure element chosen as in (37), the proba-
bility measure will be the same (see equation (26)) only if
the frequency functions are likewise related:
F (5,%) & F(X,x) (38)
That is, the function F

k
in the frame of L, , must give the same value as the (perhaps

, evaluated at the point Xk = Lkoxo

different) function Fos evaluated at X by L,

The preceding discuséion, from chapter III to this point,
has considered the description of a given event by various ob-
servers. The following postulate serves to establish re¢lation-~

ships between different events:

POSTULATE II--The Principle of Relativity: The laws by which
any two observers describe physical events are subjectively

identical.

An immediate, and very important, consequence of this last
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statement is that, at the very least, the length A has the
same value for all events of a given class, i.e., space-like,
time-like, or null. To obtain this result, consider subjec-

tively identical points x. in the frame of Li and Ej in the

i
frame of Lj’ i.e., xg = gg. 0f course, if X, is space-like

to Li’ 53 is space-like to L‘_jc The Principle of Relativity
requires that the dispersion of the random variable x& about
the point x, (as seen by Li) be the same as the dispersion of
X, about the point X4 (as seen by Lj). It follows from (4)

that
A(E,Li) = h(g,LJ)
where x; 1s the mean coordinate of E in L; and Xy is the mean
coordinate of E in Lj'
If the coordinate dispersion about subjectively identi-
cal points is to be the same, it follows that one must also
require

Fi(xi’xi) d"i(xi’xi) = Fj(gjs§j) duj(gjagj) (39)

with xg = 3% and Xg = §§° The equality is in the same sense

as (37) and (38). The Principle of Relativity also requires
that the support used by Lifor the event 9 be identical to

that used by Lj

choose auy (T,%) & any(X;x,) (40)

for §j° One may, without specialization,

With this choice, equation (39) requires
Fi(xi’xi) = Fj<§j’§j)
Since the Principle demands subjective identity in all as-

pects of the formalism, the last condition can be allowed
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only if it is required that the frequency functions be the
same for subjectively identical points, i.e.,

B(Xy,x;) & F(Xjx) (41)
Of course, Li uses the same frequency function for all points
in his space. Since each point is subjectively identical to
a point is some other frame, the frequency function must be
the same for all points and all observers, i.e., it is Lorentz

invariant in the sense
P(X,x) = PF(ILX,Ix) (42)
This means

F(X,x) = F’I(X"‘-x")(&-xu)] = F(nun") (43)

The Principle of Relativity also requires that the sup-
ports of subjectively identical points be subjectively identi-
cal. Since it may be argued that a given observer will use
the same type of support, e.g., & three-extent hyperboloid,
one-extent line, etc., for each point in his space, it fol-
lows from arguments similar to those leading to (42) that the
supports are form invariant. That is to say, if one observer
uses a three-extent plane for his support, all observers will

use three-extent planes.

To proceed with the derivation of the explicit form of
the frequency function and its support, it is necessary to
first consider the stochastic nature of the coordinates in
more detail. In particular, one must deside whefher or not

there is dispersion in all four coordinates. To answer this
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consider two identical atoms or particles separated by some
mean distance r, where the location of each particle at its
respective end-point of the interval r can only be specified
to within a region of radius 6. Suppose each atom is in some
energy state above its ground state initially but eventually
returns to ground state with the emission of a photon. It is
desired to investigate the simultaneity of these two events.
For this purpose assume that an ideal detector has been placed
at the midpoint of the separating interval such that the si-
multaneous incidence of the photons on the detector may be de-
termined. (Such a detector is not possible according to argu-
ments given by Cohn.5)

Let one atom emit a photon when it is furthest from
the midpoint of the separating interval and the other atom
emit a photon 26/c later at its closest approach to the mid-
point, both photons proceeding toward the midpoint. If it is
assumed that both photons travel with the same speed, they
would strike the detector simultaneously, even though they
were not emitted simultaneously. Of course, one may obtain
a similar result even if the photons are allowed to have dif-
ferent speeds. In any case, it appears that one may not have
a dispersion in spatial determination without a dispersion in
the determination of simultaneity, i.e., of time. Further,
one may demonstrate that a dispersion in time implies disper-
sion in spatial determination (simply let the emitting atoms
have sharp positions at the end points of the interval r while

allowing a dispersion 26/c in time measurement). It must be
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concluded therefore that, in general, dispersion in spatial
coordinates implies dispersion in time, and conversely. There

is dispersion in all four coordinates.

A statement must now be made concerning the stochastic
independence of the coordinate fluctuations. Suppose it is
assumed that all fouwr variables are stochastically independ-

ent. Then

JCRIDEEEE NI RCILNCHI A
from which it follows that

InF = 1ln Fl + 1ln F2 + 1n 15 + 1n Fh

From this last statement one obtains

alln F] aln. qM] alln P
Telir = ——< [0 not summed]
a[nun ] n
Since
1} B
anl > e 6n4

one obtains

1 4d[1n F)] d[ln F]] 4 d[in F] d[ln Fyl
2“ e = s e - = E
d[nunn] an reees =20 d[ﬂuﬂi] dn

From this last statement

1 d(ln H) 1 4[ln F,] d[ln F)
=1 T = cee = =~ -z-——&‘ s 2 T = a = const.
al dn ng dn d[nuﬂu] =

from which it follows
F(n,n") = B [exp g(nun“)l - (44)
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Consider first the possibility of a four-dimensional
support, where the measure element may be taken as the four-
volume d'X = axtax®ax’ax’. With the frequency function (44),

the normalization integral is

f[exp g_c('qunu)} dq'x“ = f[eXP g(?-?-(n4)2] a*x

“This integral diverges for any four-dimensional region of in-
finite extent, whatever the choice of a. Four-dimensional
supports are therefore not possible. With dispersion in all
four variables, a support of smaller dimensionality implies a
lack of independence of the stochastic variables, in contra-
diction to the original assumption that they were independent.
Thus, not more than three of the space-time coordinate random
variables are stochastically independent.

Symmetry suggests that if three of the random variables
are independent, they are the three spatial coordinates. If
this is the case, then the most general frequency function
still permitted is

F(nunu) = Fl(X}X?x)Fz(x?X?x)FB(X?X?x) (45)

The metrical interval between the mean coordinates of

an event and the origin must be in one of three classes: (i)
space-like, (ii) time-like, (iii) null. In considering the
“u = K29 K

possible supports for these cases, the surfaces nu

a constant, may be eliminated since they imply F(nunu) = F(Ka)’
which can not be normalized for a surface of infinite extent.

Whatever the nature of the support, however, it must depend

upon the event to be described in some manner.
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As one possibility, suppose observer Li used the family

of space-like surfaces T“(Li) = K for his supports, where K

depends on the event, an: T(Li) is a unique time-like vector
associated with the frame of Li‘ The Principle of Relativity
requires that the four-vector associated with a different ob-
server Lj have the same direction in four-space with regpect
to Lj that T(Li) has with respect to L;. This amounts to a
preferred direction in space-time. The time axis defines an
acceptable preferred direction but T(L) directed along this
axis may be ruled out since it implies zero dispersion in time.
Even if the notion of a preferred direction other than an axis
is not in conflict with the most general interpretation of the
Principle of Relativity, I feel that it must be rejected since
it is equivalent to saying "Nature points to the left."

More generally, it is felt that any support requiring a
preferred direction, frame, etc., in space~time must be re-

jected. The following development is consistent with this

point of view.

The mean coordinates are space-like xﬂ
P

If such is the case, observer
U3 )y

Li may find a frame Li in which the

time component of the mean event is

Zero.

4 = -2
0 = Y(fi)lcxi - i;‘lec freme of L,
where f; is the velocity of the frame L, relative to I;. The

above conditicn is satisfied by
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4
= cX, =
A S 4

1'%

One may now associate the four-velocity " of Li with a space-

(46)

like plane through the origin,

B
XuU = 0
or, with n = X - x,
nuU“ = 0 (47)

All events on the plane defined by (47) would appear simultan-
eous to yio It is suggested that this space-like plane is the
support to be used by Li for the event having mean coordinates
X; . (Note that this is not the plane over which L, would do his
own averaging.)

In the frame Li’ the condition (45) becomes
Paa™ = B (ahHEa?)FE) (48)

By a derivation identical to that leading to (44), one finds
that (48) is satisfied by the function

Bn,1") = 8 [exp -a*(+D] (49)

Equation (49) may be expressed in covariant form by defining

the coordinates

B v, 1 Ip*
o= mt o+ T [ng0T1U (50)
It follows that
1
g = ot e 2 [no%) (51)

Note that in the proper frame L., for which o = (0,¢), nn,
= jiﬁi ~The frequency function may now be expressed as

F(ﬂ_l_'ﬂl) = B{erp -0'-2(1111\1)] (52)
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which is valid in the frame of L; as well as that of yi‘
Calculations for Li nay be performed in the frame of

;i' That is, Li may express the relationship

¢o(x,,L5) = f‘Pr(Xr) F(nyn,) do (53)
c(xi)
simply as
op(xpLy) = B f ¥(X) lexp o°F;-H;1 a’n;  (54)

where the integration in the frame Li extends over all three
space. To carry out the actual integration one must trans-

forn the function ¥ (X)) to the frame of L,:

p(Ep) = U ¥ (X;)
U, U(F)DE; &) (55)
For example, the normalization integral may be evaluated in

Qi' Thus
fF(“.L".I.) do = Bf[exp -azfi»fil d33i (56)

1 = prfE? SNC 0
If (21) is likewise evaluated, it is found that

SO

A2 e 1 opePrmi® (58)
where As is a fundamental length associated with space-like
coordinate dispersion. From (57) and (58) one finds

2 -2
2AS =
B = A MZR172

The temporal intervals n4 may be expressed in terms of

(59)

the spatial intervals ?f' It must be true that
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E = ¥ - (2 (60)
Using (35) to transform ﬁiﬁ>it is found that 4(61)
TF = BT+ HARD2 + (ThmPnh® - 27 RY
Comparing (60) and (61) it is found that
(nh? - [%I;ﬁ_a]n‘* + [3’242332—2] = 0 (62)
Yy +¢ Yv +¢
Equation (62) may be solved for n4 to yield
nt = ?«;f (63)

If one substitutes (46) into (63) it is found that

. IR . 4 (64)

i
2%

Substituting (63) into (51) it is found that for Li’
1
= .o-‘- = 1 ‘? 2 6
Ny #l 1?1 02("?1 -i) (65)

Equation (52), in the frame of Ly is therefore

2
F(nn,) = Blexp -a°R, -§;1lexp %‘2(3\1-2\1)2] (66)

The form factor g(k,L) defined in equation (1l) may be

evaluated in the frame of L;. Thus,
B
g(k,L;) = fF(anl) [exp 1k 2"] do
d(xi)
g(k,Ly) = "Jr[“p ~a?P-Dlexp 12:7) ¢y

80

B B) = lom - 3] BB (67)
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Equation (67) may be put in invariant form by using

- i 2k 070" (68)

From (68) one obtains
_ U -2 g.2
Kk = kuk + ¢ [k U] (69)

Therefore, N
1
S(k.l.kl) = [exP - §xsk1k1] (70)

Evaluated in the frame of L. 0 ields
19 (7 ) J ’ (71)

g(ky) = [exp - PAZR; B 1lexp -~ (R, ;)% exp 3 ASF, k)]

The mean coordinates are time-like

In this situation, Li seeks a

frame L; in which the spatial components

of the mean event are zero:

> (y-1) = 4
0 = ?i"'fi[. AR ARE SO

1

which may be satisfied for
- [
A ig— f} (72)

One may now associate the four-velocity of L. with a line t(xi)
through the origin. All events on t(xi) will heve zero spatial
separation. It is suggested that this time-line is the support
to be used by L; for the event having mean coordinates x;.
In the frame of Ly, (45) reduces tc
Pa,a™) = FL(1H3

which is satisfied by
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Fa,a") = B [exp -a®(1})?] (73)
which in terms of the variable
o= eI Ut (74)
may be expressed in the covariant form

F('n"ﬂ") = B [eXP-a2ﬂ||Tl"] (75)

or
F(nmy) = B [exp-c 2a®(2, 1" (76)

which is valid in the freame of L, as well as that of L,.
For the average value of the field Yr(xr), Li may write
¢r(xraLi) = j;tr(xr) F(ﬂ"n") dr (77)
t(xi)
In the frame of L., (77) has the form
2, 4.2 4

¢ (X Dy) = Bf‘fr(}r) Lexp ~a™(n;)7] dny (78)

The normalization integral may be evaluated in the frame of

L

L; to yield

1 - priE (79)

Since the evaluation of (21) must yield a negative number,

define the constant

2 2
BAS = »AT (80)
Evaluation of (21) in the frame of Qi then yields
2 m
A, = B 3 (81)

where AT is a fundamental length associated with time-like
coordinate dispersion. From (79) and (8l) one finds
2 -2
2LT =

82
g = [ [2m? (82)
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The spatial intervals ﬁ’may be expressed in terms of
the temporal intervals n4. This is accomplished by noting

that '»1
-(1H2 = BR- (H?2 (83)
Transforming 7 by (34), it is found that
aH2 = YPI(H? - 27 R Ew + ARDA (84)

Comparing (83) and (84) one may solve to find
4
T =17 (85)
cy

Using (85) to evaluate (76) in the frame of L;, it is found
that

2.2 2
Fan) = B Lexp ~P(n)?1lexp (Bt =T3(a)?1 (86)
Y<e

The form factor g(k,L) may be evaluated as

(87)
g(ki) = [exp - %ht(kg)zl[exp -Eiélf(fl-f;)a][exp ixtﬁgofakgl

The mean coordinates are null

At this point one may identify what has been implicit
in the preceding discussion of spacétlike and time-like sup-
ports. With space-~like dispersion confined to a space-like
plene snd time-llike dispersion to a time-line, it follows
that if one observer finds an event to be null, all observers
differing by a Lorentz rotation will agree. The basic view-
point is that, for a given observer, the coordinate disper-
sion of an event is confined to be exclusively space-like,
time-like, or null.

~he support for null events is the light cone. Also,
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all observers differing by lLorentz rotations will agree to
this support. Equation (21) is not too informative since the
metrical interval is zero for all observers, i.e., (n4)2 =
ﬁﬁﬁi However, this same fact means that the dispersion in

the spatial and the temporal coordinates must be identical.
Since the spatial coordinates are assumed to be stochastically
independent, one may guess that the appropriate distribution

function for spatial coordinate dispersion is gaussian:
F = B [exp -a°T-R) (88)

= B [exp -a2(n")2] (89)



CHAPTER V
CONCLUSION

It has been shown that the basic structure of a sto-
chastic theory of space-time may be derived from two postu-
lates, i.e., the invariance of thée mean speed of light and
the Principle of Relativity. This derivation, while differ-
ing in approach, is found to parallel the development of
Ingraham®’s theory. His theory was derived by considering
the repeated observations of individual observers whereas
this paper is based on the observations of an infinite num-
ber of observers. It isn’t hard to show that the nexus of
the two theories is the Principle of Relativity.

Some basic features of the theory are shown to be a
natural consequence of dispersion in coordinate determina-
tions, e.g., agreement on the mean coordinates of an event,
lack of general form invariance under tensor transformations,
etc. Significantly, one finds that the two postulates of the
theory require a lower bound to measurement if physical deter-
minations are observer dependent. It is shown, however, that
the value of this lower bound may depend on whether or not
an event is space-like, time-like, or null.

It was also shown that if one goes a step further and

48
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assumes that the coordinate dispersion for a given event is
confined to intervals which are exclusively space-like, time-
like, or null, the basic requirements of the theory may be
satisfied by choosing the support of the space-like events
to be certain space-like planes, the support of the time-
like events to be certain time-lines, and the support of null
events to be the light cone. With this choice, it was possi-
ble to derive the appropriate distribution functions and con-
sequently, the appropriate formalism to be used for calcula-
tions. This procedure was not entirely arbitrary as it pro-
vided a means of avoiding specification of a preferred direc-
tion or frame of reference for all space-time. It is not
suggested that the supports and distribution functions dem-
onstrated constitute the only possible formalism. It is felt
that they are plausible and consistent to the extent that this
investigation has proceeded. Final conclusions can be drawn
only after the theory has been developed further.

The assumption of confined dispersion has some impor-
tant implications. For one thing, it indicates that observers
would agree absolutely on the speed of light, not just its
mean value. Also, with respect to microcausality, all observ-
ers will agree on the causal nature of two events since the
dispersion in their coordinate determinations will not cross

the light cone.
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