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ABSTRACT

The directional reflectance in the plane of incidence, frum a
statistically coastructed rough surface, is investigated. The V-groove
character of the surface geometry is assumed describable by the RMS peak
to valley and RMS peak to peak dimeansions, g and a, respectively. The
peaks of these surfaces are assumed to be rounded, dependent on a para-
meter P.

The analytical approach of this investigation iavolves a Monte
Carlo technique of following an energy bundle as it is reflected about
the rounded V-groove, obeying the rules of geometrical optics and thus
includes multiple reflections. The peak to valley and peak to peak
dimensions are assumed to be Rayleigh distributed random numbers, thus
each energy bundle encounters essentially & different surface. The con-
cept of a localization circle, whose radius is the wavelength of the
incident radiation im the plame of incidence, is used in an attempt to
restrict regions of the rounded V-groove from first incidence. Upon
escape of the energy bundle from the rounded V-groove, its angle of
escape is categorized into angular regions.

The results of this analysis are graphically compared to pub-~
lished experimental data of other investigators. It is evident from
these compariscoas that this approach yields a close approximatica to
experimental data under variations of the angle of incidence and the
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wavelength of the incident radiationm.
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INVESTIGATION OF EFFECTS OF SURFACE ROUGHNESS

UPON REFLECTANCE

CHAPTER 1
INTRODUCTION

This research is directed toward the question of why surfaces
reflect as they do. It is assumed once this is understood, accurate
theories may be developed to describe the reflectance (thus emittance
properties (1)) of surfaces as functions of surface geometry, both large
and small scale, and electrical properties as well as the angles of
irradiation and observation. The question of how these characteristics
should be defined is directly linked to what characteristics can be
measured with confidence. Thus the decision must be made as to what to
measure and how to measure it. The work reported herein is an attempt
to determine the effects of surface characteristics upon reflected energy
distributions, thereby indicating what surface properties should be
measured.

Classically there are two extremes for classification of re-
flected energy: the so-called "specular" and the "diffuse'. The
specular (hereafter referred to as "regular") results when radiant
energy strikes a smooth surface. Academically, '"smooth" implies the
surface is exactly flat with no small scale variations. The Fresnel
laws of reflection and refraction discussed in all standard optics

1



textbooks (2) appear to adequately describe the fractions of the incident
radiation that are reflected and refracted. That is, in the plane of
incidence the angle of incidence equals the angle of reflection and the
refracted angle is related to the incident angle by Snell's law. It is
interesting to note that the regular reflection rule was stated more than
650 years ago (3). Thus if.it were possible to have a '"smooth'" surface,
the surface would appear dark, except when viewed at the angle of reflec-
tion and the fraction of energy received would be that described by
Fresnel's Law. In actuality this is never obtainable since the radiant
energy is scattered by impurities that form on the surface (dust, oxides,
etc.).

In general, surfaces of interest are not smooth but exhibit some
form of waviness or irregularity. This irregularity results in a spread-
ing of the reflected energy distribution. At this point, a statement

need be made which is based on experimental evidence about the size of

the irregularities as compared to the wavelength of the incident radiation.

This rule is generally stated as follows: if the irregularities are very
small compared to the wavelength of the incident radiation, the majority
of the reflected energy will be of the regular form and as the relative

size of irregularities increases, the spreading of the reflected energy

will increase. Thus in a practical sense all irregularities need not be
removed before a surface will exhibit strong regular reflection charac-

teristics.

When radiant energy is incideat on a surface that may be charac-

terized as irregular (usually referred to as a matt surface), the incident

energy is scattered in all directions to varying degrees and in the case
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of appropriately sized irregularities,.very little or no traée of the
regular component may be found. This is usually referred to as "diffuse
reflection", that is, all the incident radiation is reflected and re-
fracted in all directions.

In the discussion that follows, this circumstance will be re-
ferred to as non-regular reflection and the word "diffuse'" will be
reserved for a special case of non-regular reflection. Note this ter-
minology eliminates the requirement that all interaction need take place
at the surface. Thus when non-regular reflection is observed, the energy
received may result from reflections and refractions of the energy with-
in the material as well as regular reflection between the surface irregu-
larities. This statement assumes the emitted energy is negligible.

The word "diffuse'", when used in this discussion, will refer to
tie non-regular reflection condition when the surface exhibits reflected
flux characteristics that are independent of the angles of obsérvation
(the surface appears equally bright in all directions). To be explicit,
assume uniform, unidirectional irradiance, H', incident upon a surface
element dA. Thus the energy interacting with the surface in dA is

dE = H' cos § dA .

The radiant intensity upon reflection is

43 = B a8 cos 6
where R is a reflection coefficient.

RHI

So dJ = e dA cos § cos 8

’

Thus the apparent radiance is

_dl _ _dl _ RH
Q= “dA Cos 6

dA' is the projected area in the direction of ©. This result is usually

cos §

referred to as Lambert's Law (4). The surface that exhibits this
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characteristic is called diffuse, Lambe;tian, or Lambertonion. The de-
ceptive simplicity of this relation has resulted in its widespread use
and general acceptance.

No real surface has been found to exhibit an intensity or flux
pattern in accordance with predictions bases on this law. In fact the
radiation reflected from most matt surfaces deviates considerably from
such predictions, except for very limited ranges of ¢ and 6 (5 - 20).
Recognizing the failure of Lambert's Law, some investigators have con-
sidered the use of more complicated expressions which contained a number
of parameters to be determined experimentally (21- 31). As a consequence,
these expressions can be made to agree with actual measured reflected
energy data under restricted conditions. The major drawback to this
approach is that these models are not based upon firm physical grounds
and 1f the physical model is adequate, it does not fit experimental data
well.

| Thus there appears to be no such thing as diffuse reflection in
the strict sense and no simple theoretical basis for the Lambert Law
hypothesis. Its general acceptance has been due to the fact that it
describes the reflected intensity pattern from matt surfaces (i.e. no
perceivable regular component) as well as any other of the more com-
plicated expressions as yet reported. Therefore, diffuse reflection is
just one limit of non-regular reflection.

Surfaces of engineering interest exhibit a superposition of
regular and non-regular reflection characteristics to varying degrees
depending upon small scale roughnesgs, wavelength, etc. Experimental

investigation of such surfaces are extremely difficult to reproduce and
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analyze due to instrumentation complication. That is, there is a need
for the existence of, 1) an infinitesimal, high intensity, unpolarized
radiation source, 2) perfect collimators, and 3) infinitesimal but ex-
treme fast and sensitive detectors. Attempts to standardize reflection
measurement procedur;s and classify reflection characteristics of a sur-
face with only one optical measurement have been undertaken for sometime
(32 - 35) but with little success. The physicists refer to measurements
of this type as determinations of mirror efficiencies while the psycholo-
gist considers the perceptual attributes of surfaces. Some engineers
;efer to these measurements as gloss determination, where gloss is defined
as a property of surfaces which causes them to have a shiny or mirror-
like appearance. Therefore, gloss is the degree to which a surface
simulates a perfect mirror im its capacity to reflect incident radiation.
Actually this approach is not truly satisfactory because the distribution
of the reflected radiation in and adjacent to the mirror direction is
too complicated and varied to be compared by a single measurement. 1In
fact even under the above definition of gloss, several different types
of gloss could exist, for example, objective (specular) - the ratio of
radiation reflected by the test surface in the specular direction to
that of some standard surface under the same condition, and subjective
(contrast) - the ratio of radiation scattered in the specular direction
to that scattered in some other specified direction.

Ament (36) used the statistics of noise theory to rigorously
formulate the problem of predicting the specular (regular) reflection
coefficient of a perfectly conducting surface. Mathematical complexities

prevented him from obtaining an exact solution. Feinstein (37) combined
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physical optics and a stochastic process analysis to investigate surface
reflections. He obtained the approximate solution of Ament plus some
higher order terms. Computational difficulties would preclude the use
of his result. Spetner (38) approached the problem in a statistical
fashion by assuming the rough surface consists of a large number of in-
dependent point scatterers. This theory is restricted to forward
scattering.

The most physically appealing approach to the problem of deter-
mining a general equation to describe the reflected intensity pattern
has been with the use of diffraction theory. The three approaches most
ggnerally discussed in the Iitefatufe are those of Davies (39), Porteus
and Beckmann (41). The theories of these three investigators result in
the expressions for the far field disturbance due to the two type of
reflection characteristics discussed previously. Theoretical iavestiga-
tions of the near field disturbance have also been considered (42 - 44)
but will not be discussed in this work.

These are just a few of the approaches taken in the study of
surface reflection. But these do not, by a long way, exhaust the models
and methods used in attempts to solve the problem of reflection of

radiation from a rough surface.

(40)




CHAPTER II

BACKGROUND

Definitions

Let us digress to consider definitions that are used in the lit-~
erature and will be used in the following discussion. Figure 2-1 will be
helpful in defining parameters of interest. To define a reflectance,
care must be taken to recognize the character of the incident and re-
flected radiation. Consider first the classical or ideal situation of
a uniform, monodirectional incident flux F. In the specular case the

reflectance would be defined as

= —————Fr (e ’ (p) 6 = =0
pS Fi(w) 3 w: ¢
=0 s elsewhere,

assuming the detector aperture was at least the size of the specimen. The
subscripts denote reflection (r) and incidence (i). In the non-regular

case

_ flr (8, @) cos 8 duw_
Pa = F ()

where Ir represents the intensity and dwr is the solid angle of observa-
tion. In both cases { is the angle of incidence, § is the polar angle of
reflection and ¢ is the azimuthal angle of reflection (measured from the

plane of incidence).



Figure 2-1, Geometry Used in Reflectance Measurements
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Most of the experimental apparatus reported in the literature

does not deal with the monodirectional situation. 1In fact the radiation

is focused upon the test specimen. Thus the incident intensity is de-
fined as - A
AF,
I () =
cos ¢ Awi

where Nni is the solid angle of the incident pencil of radiation. When
considering the reflected radiation intemsity, care must be taken.to
distinguish between regular and non-regular type surfaces. For the non-
regﬁlar case,

AF. (§5 05 o)

Ir (w; 9’ (p) = cos e Mr hd

Note the flux variable and thus the intensity is much smaller than the

corresponding terms would be in the regular type situation. 1In the case

A -”

of the regular type surface

AF. G5 ¢, 0)
Ir (‘l’; D) 0) = .

cos ¢ Au)r

Thus the regular reflectance is usually defined as
I (4s ¢ 0)
s I, €] .

The non-regular reflectance is referred to as biangular reflectance in

the literature and thus connotes the strict dependence of this coefficient

upon the angles involved. Thus the biangular reflectance is defined as
I (4 0 @) '
Pba = TAF,
I, (y5 85 o)
1, (y) cos § Awy

This definition of biangular reflectance leads to certain important
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reciprocity relations discussed in references (45 - 48).
Note that under these conditions, the biangular reflectance may

be related to the regular reflectance from a non-regular surface by

by () = 0, (U5 ¥, 0) cos y pu_ |

Three possibilities are apparent for the presentation of the
evaluation of reflectances: 1) absolute reflectance measurements, 2)
regular refleétance measurements of a specimen relative to a specular
reflectance measurement from a highly polished similar specimen or a
standard, and 3) biangular reflectance measurements of a specimen re-
lative to the biangular reflectance measurement in a specified direction.
Method 1) may be accomplished, but has associated with it an extremely
large error. Methods 2) and 3) are popular in the literature with 3)

being the usual presentation (e.g. 14).

Approach of Davies

The approach of Davies is based on the diffraction integral
theorem of Helmholtz and Kirchhoff (see Appendix A) and lists as its
assumptions

1. the surface is not so precipitous that
some parts of the surface are shielded

from the incident radiation,

2. the surface is made from a perfect
conductor,

3. multiple scattering is neglected, and

4, the distribution of the heights of the
surface irregularities is Gaussian.

In this work Davies considers only two limiting cases;

/A < <1 and g/A > > 1, where g is the RMS height and A is the wave-
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length of the incident radiation. In the case of g/)\ < < 1, Davies ob-
tained expressions for the regular and non-regular components (his words
were coherent and incoherent components). The non-regular component is

of the form

2 -2 4 2
3 (a' cos § + cos a! .
TT X) (% Lcos S cos ‘kﬂ,) exp {_ (__n)\ ) [(sin @ cos ¢ -

sin W)Z + sin2 ¢ sin2 w]}
where a' is a statistical factor which aids in the description of the

surface and is called the autocorrelation or autocovariance parameter.

The regular component is of the form

- 2
exp [_ (4n g Ccos *) ].

)\ .
The regular component expression form was determined experimentally in
1916 (49, 50). For the large optical roughness case (¢/\ > > 1), Davies

obtained the same expression for the regular component, but the non-

regular component was of the form

1 fa' 1 /at
161 K&) cos 9 cos § eXp [-' Ka)

(sin § cos ¢ - ‘sin ¢)2 + sin’ [} sinz_g
2(cos 8 + cos §)* }

Tnis last expression is the final form for the non-regular component after

a correction by Spetner (51).

Approach of Porteus

The approach of Porteus is similar to that of Davies and is an
attempt to extend the restriction to shorter wavelengths (i.e. g/rA < 1).

Porteus begins his work with the Fresnel diffraction integral (see
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Appendix A) and lists essentially the same assumptions as Davies. Under
the section which Porteus states as '""Normal Surfaces'" he arrived at the
same expression for the regular (coherent) component but the non-regular

(incoherent) component has a differeat form. It is

(- om[1- (BE= )]} 0 o[- (257 ]}

where o is the angle of acceptance of the detector. This equation is

strictly true only for normal incidence ( § = 0).

Approach of Beckmann

Beckmann started his approach with the most general form of the
Helmholtz - Kirchhoff diffraction integral. Because of the more exact
approach of Beckmann, an additional assumption must be added to the list
used by the other two approaches previously discussed. The assumption is
that the field at ény point of the surface may be approximated by the
field that would be present on the tangent plane at that point. That is
the field at any point of the surface is expressed as the sum of the
incident and reflected fields on that straight line. This assumption is
exactly correct for an infinite plane and will obviously be quite good
when the radius of curvature of the irregularity is large compared to the
wavelength (i.e. locally flat). But if the irregularities consist of
sharp edges and points, this theory breaks down.

The generality of the approach of Beckmann yields a general
solution that would be exact, within the limit of the assumptions, if
the surface contour was known exactly. Simple forms may be handled, but
actual surface irregularities become mathematically unwieldy. An alter-

nate approach is to use statistics in a fashion similar to the approaches
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discussed previously. Thus an almost mathematically manageable solution
may be obtained by assuming a randomly rough surface. In fact for the
case of a normally distributed surface, Beckmann's approach yields the
same expression for the regular component as obtained by Davies and
Porteus. The non-regular (incoherent) component is considerably more

complicated and has the form

[++]
e 8 1 g g e-viy /4
41 cos 6 cos § o m! m

- 2
where g [Zn % (cos § + cos 6)]

F = [1 + cos § cos O - sin §y sin § cos w1
B cos 6 + cos §

al
T = 2m —
"X
2 . 2 . 2 . .
Vey sin” ¢ + sin 0 - 2 sin § sin © cos ¢

Beckmann also presents an equation for the large optical roughness case.
The form is

2 exp [_ 2
- g2 4g2 Xy

for the non-fegular component with no contribution due to the regular
component (i.e. g/A > > 1). This non-regular component is only an
approximation and it is independent of the wavelength of incident

radiation.

Comparison of the Three Approaches

A fine discussion of the models of Davies and Beckmann appears
in reference (52). 1In this paper the authors determine the approximate

regions for which these two models would apply by accounting for all the
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reflected energy. That is, they numerically integrated the non-regular
components and added the contribution of the regular components for the
small optical roughness case. Theoretically this directional-hemispher-
iﬁal reflectance should bé unity. By their calculations this quantity is
not unity in'general. The deviations are less than a few percent for
both models for g/\ < 0.04, 1 < a'/A = 100, and 0°< y < 80% For larger
values of o/, the Davies equations are very much in error while the
Beckmann values are still acceptable. But for values of o/\ = 0.1, both
models are markedly in error with the Davies model by far the worst. The
large optical roughness case of Beckmann was subjected to the same inves-
tigation and found to be greatly in error for values of a'/c < 10.

Comprehensive non-regular reflectance measurements were carried
out by Birkebak (53). 1In his work, he used metal samples as specimens
and discussed the observed trends of the data as compared to the Davies
model. Houchens and Hering (52) analyzed Birkebak's data with the model
of Beckmann and determined the parameters o and a'. The results of their
investigation indicated that except for values of very small optical
roughness-wavelength ratioes (g/A < 0.16), a' decreased Qith increasing
values of this ratio. These investigators believe a' should remain
constant regardless of the waveleagth of the incident radiation.

Therefore, it appears that the model of Davies is essentially
restricted to surface irregularities with very small slopes in both cases
discussed. The Beckmann model, théugh not true in general, is better
than that of Davies; that is, the unit directional-hemispherical reflec-

tance criterion is satisfied over a wider range of variables.
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Surface Characteristics

As have been discussed in the previous sections, the experimental
approaches to determining the interrelations of the various variables
involved for accurate prediction of reflected energy distributions are
not satisfactory. At most, one can only fit the data from experiments
conducted on a test specimen. A change in any of the variables might
and usually does require another analysis to fit the data. The approaches
using diffraction theory seem to be a step in the right direction. That
is, if these theories were correct, only knowledge of the surface para-
meters would be necessary to predict the far field disturbénce. The draw-
bécks to these thgories are one or more of the following assumpiidns
incorporated into the theories:

1. The dimension of the irregularities are taken

either to be much smaller than or much greater
than the wavelength of the incident radiation;

2. The radius of curvature of the irregularities

is taken to be much greater than the wavelength
of the incident radiation;

3. Shadowing effects are neglected;

4. Only either the near or the far field situation
is considered;

5. Multiple, inter-surface reflections are neglected;
6. The density of irregularities are not considered;

7. The theory is restricted to a particular profile
or surface contour;

8. Perfect conductivity is assumed.
Thus as the degree of rigor of the theory increases, its generality is
lost. The result is a set of equations which indicate the trends to be

expected, but not a quantitative representation.
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The near mathematical impossibility of describing a generally
encountered irregular surface requires a statistiqal approach. When
using this statistical approach, one must keep in mind not only that this
is an averaging process, but in addition to knowing this mean value, the
probability distribution about the mean must be specified. Thus the ir-
regular surfaces met in real life would seem best described by at least
two parameters which are indicative of the deviation of characteristic
surfacedimensionéfrom their mean values. The primary dimension usually
considered as a surface characteristic is the RMS surface roughness
(height of irregularities). Obviously this dimension will not uniquely
describe a rough surface for it tells us ncthing about the distances
between the hills and valleys of the surface. Thus a peak density or
asperity function wduld seem important. In the literature, the second
dimension, if discussed, is the autocorrelation or autocovariance length.
This length has been shown to be related to the RMS surface roughness and
the RMS slope of the surface (54). It is believed by this investigator
that great care must be taken to adequately interpret this dimension. 1In
the literature the surface roughness is usually stated by an RMS surface
roughness-wavelength ratio. Tnis cannot be an unique description, but
the aforementioned theories are based upon this type of partial restric-
tion. Therefore the results may be misleading.

The definition of these two parameters and their associated dis-
tributions, plus knowledge of the electrical properties of the material
for the wavelength considered and the conditions of irradiation and
observation, would hopefully be all that is necessary in order to deter-

mine reflected energy distributions in a general fashion.
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From the data available and counsidering the theories presented in

their regions of application, a rule may be stated for whiéh any proposed
| model for the solution of this problem should adhere. The trends of
variations of the reflected distribution as the parameterAis varied would
seem to go according to the following statement:

The regularly reflected energy depends upon the angle

of incidence and a roughness-wavelength ratio (g/}).

Similarly, the non-regularly reflected energy would

depend on these parameters. Thus the parameter o/A

determines the apportiomment of the energy between these

two modes of reflection. That is, for very small values

of /A, the majority of the reflected energy is of the

regular type. As g/\ increases, the distribution be-

comes increasingly non-regular. This statement has

been fairly well justified by experiment.
A similar statement concerning the other discussed surface defining para-
meter has not been sufficiently investigateﬂ by experiment and the
theories presently available do not emphasize its importance. An
analytical treatment of the region 0~ A~ a' has not as yet been pub-
lished. Thus the apparently very complicated interrelation of the paré-

meters g, a' and A\ in this region is completely unknown.




CHAPTER III
DISCUSSION OF STATISTICS

There are a large number of fine texts (55, 56) and short write-
ups (57) which discuss the various rules of probability analysis. Thus
most of these basics will be assumed. The purpose of this section is to
state the terminology used in the following work so there will be no mis-
understanding.

"Random Variable'" is a real number value determined by the out-
come of a random experiment. It may be discrete or continuous.

"Random Experiment', when conducted under a given set of circua-
stances, results in different outcomes which may be characterized by a
number from O to 1 and represents the relative frequency that that event
may occur in a large number of trials.

"Random Event" is one result of a large number of random experi-
ments. The "probability'" of a random event is the limiting value of the
frequency of occurence.

The "cumulative distribution function" or just distribution
function, F, gives the probability of obtaining a random variable equal
to or less than some specified value Xi' Clearly

0< F(Xi) <1 for all X, .

The "probability density function" or just demsity function (f)

is related to the distribution function by the rule

18
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Thus f(x) dx is the probability that the random variable is obtained.
Therefore

rx

F(x) =J f(x)dx

A Monte Carlo simulation is used in this research to investigate
the reflectance problem heretofore discussed. This approach is also re-
ferred to as synthetic sampling or empirical sampling and has resulted
in successful analyses of other physical phenomena (57 - 62). 1In apply-
ing this simulation, a large number of imaginary random experiments are
conducted. In each experiment an energy bundle is followed as it is
forced to obey predetermined rules. As noted previously, a very large
number of experiments must be conducted for the results to be stable.
That is, because Monte Carlo simulations involve random numbers, the
results are subject to statistical fluctuations. Thus the results are
subject to an associated error. The largef the number of trials, the
smaller the error.

Determination of the number of trials that will result in an
acceptable error band may present some difficulty. The approach used
in this research will be using a Bernoulli trials analysis. That is
for repeated independent trials, there are only two possible outcomes
for each trial and the probability of success (p) and failure (1 - p)
(collected in a particular region or not) is constant. Taus the maxi-
mum allowable error in estimating p, ¢, must be specified as well as
C the desired probability or confidence level that the estimate value

of p, ﬁ, does not differ from p by more than ¥ €, where 5 is the result
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of a large number of trials and p is the exact value. So
lp-p] se¢
as n, the number of trials, becomes large. Thus the following relation
based on the norﬁal approximation to the binomial distribution is the
probability that the above inequality is true}

erf(t / /2)

3 / n
where t=g¢g E?T_:_ET

Note ¢ = p B where B is the error. This approximation is adequate in

c

general as long as n p or n(l - p) is greater than 5.

It must be noted that the true probability, p, is not known. It
is assumed that a good estimate of p is the ratio of the number of hits
in a particular region to the number of trials.

Intimately related to the Monte Carlo simulation is random number
generation. Scofield (57) discusses the uniform random number generator
subroutine recommended by IBM. In this discussion, he indicates that
this subroutine exhibits the appropriate uniform randomness for rather
finite sample sizes. This same subroutine was used in this research when
a uniformly distributed random number was required.

In addition to uniform random numbers, another form of random
number was needed in this research for the distributions of the surface
roughness and the density or asperity. As discussed previously, the
usual assumption is that these quantities are distributed according to
a Gaussian distribution. For the model used in this research (to be
discussed in the next chapter), this assumption was not feasible. 1In-

stead a distribution derived from the normal distribution was used.
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This distfibution, usually referred to as Rayleigh distribution, has not
been used in reflectance analyses reported in the literature. One state-
meat could be found and that by Beckmann (41). He casts doubt on the.
possibility that such a distribution exists for r;al surfaces, but goes

on to say that non-symmetrical distributions probably do exist in nature.
In Aﬁpendix B this distribution is discussgd; Also included in this ap-
pendix is a discussion of the random number generator used for the pro-
duction of the height (peak to valley dimension) and density (peak to peak

dimension) numbers used in the model of this research.



CHAPTER IV

ANALYTICAL MODEL

This chapter is a general discussion of the model investigated in
this research. The discussion will begin with the presentation of partic-
ular points of the analytical model composition, thus illustrating the
assumptionsmade. This chapter will conclude with illustrations of the

effect of variations of the important parameters involved.

Surface Construction

Surfaces which yield what has generally been described as non-
regular reflection, are '"rough" in nature. The exact character of this
"roughness" cannot be stated in a general form due to the differences in
the physical properties of different materials (ductiliﬁy, malleability,
conductivity, etc.) and even the same materials after exposure to different
external conditions. This investigation attempts to agree with other
investigators (30, 31) by assuming the general character of the roughness
is ﬁhat of a V-groove. 1In addition, it is assumed that the tops of these
grooves are rounded. Both the rounded and V-groove portions reflect in a
mirror-like fashion;

The approach of this investigation is to use a Monte Carlo method.
This approach automatically implies long run times of a digital computer.

Accordingly, this investigation considers only the action of energy bun-

22
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les in the plane of incidence. To do this, the assumption is that the
plane of incidence is the most interesting since this plane exhibits all
the possible peculiarities of reflection encountered experimentally. As
a co-assumption, it is asserted that the vast majority of the energy re-
ceived in the plane of incidence is the result of inter-reflection within
the rounded V-groove whose sides are generally perpendicular to the plane
of incidence.

Experimentally, the surface parameters usually used to describe
a surface are an RMS peak to valley dimension (g) and an autocovariance
function, a'. Because of the aforementioned lack of experimentally
verified information concerning a', this investigator prefers instead to
consider a parameter indicative of the peak density. This parameter will
be an RMS peak to peak dimension a. Whether this dimension is even re-
lated to the autocovariance length will not be considered.

To make this model essentially similar to reality, the surface
Heights o will be distributed in a Rayleigh distribution with g as the
defining parameter. The peak to peak dimension, a, will also be distri-
buted according to a Rayleigh distribution, but with a as the defining
parameter, The apex of this V-groove (Xo) is assumed to be selected in
a uniform random fashion (see Figure 4-1). For each individual energy
bundle ¢, a, and Xo will be selected from the appropriate random distri-
bution, thus defining the surface. The energy bundle is followed in this
geometry up to four reflections unless it escapes this geometry to the
hemisphere above, is refracted at a surface or is trapped by reflecting
four times.

The surface is constructed in the following fashion. Figure 4-1



Figure 4-1, Basic V-groove Ceometry

KA



25

represents the geometry from which the energy bundle is either reflected

or refracted. The equations for the sides of the V-groove are
y1=-<)€-)x+c and
o
- /__x_;_e_) +5 (4-1)
2 \a - Xo o .

Thus the components of the normals of these surfaces are

ny = cos 61
nx = sin 91
Ny = cos 92
Nx = sin 62 (4-2)
- tan Ll &
where 91 = tan X
o
- -1 __ o
92 = tan 7 - X R
o

The assumed circular cap on the upper left point of the V-groove

has the equation

Note from Figure 4-2, y3(x) is the equation for the surface up to x = §1
and y = §1. At this point the equation makes a smooth transition to the
straight line yl(il).

At the point (il’ 91’)

dys(xy) _ i) o o2 *L n o= tan g
dx . dx 1 ?1 - Hl 1
or X, = ml(y1 - Hl) = ml(-mlx1 + 0 - Hl)



Figure 4-2. Ceometry of Left Side of the Rounded V-groove
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x, =mlo- B (4-3)

Requiring that yl(il) = y3(§1) results in

- - 2 2 2 2
2 =mlo-H) lbi_ d+m") - (c - Hy) ,% . (4-4)

1

Note that equation (4-3) must equal equation (4-4).

Thus b1 V1 + ml2 = (g - Hl) .

- mlbl
So x1 =
Y1+ ml2
- by
I e B
Further requiring that H1 + b1 = P < g yields
b1 -9 P - and H1-= P/l+m?-o .
fr:;;-l L+m? -1 ' (4-5)

The components of the normal to y3(x) are

i

x/b

nx 1

n

v /1 - (x/bl)z , X <X . (4-6)

The assumed circular cap on the upper right point of the V-groove

(Figure 4-3) has the equation

y4(x) = H2 +‘/522 - (x - 3)2 .
y4(x) is the equation for the surface from x = iz and y = §2 to x = a and
y = P. The smooth transition from the straigh line yz(x) to y4(x) is at

the point (iz, §2). At this point gzﬂﬁfll = m, yielding
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Figure 4-3.

Ceometry of Right Side of the Rounded V-groove
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. mz(o' - HZ)
27T T mE T oS e

Setting yz(iz) = y4(§2) results in

my(s - By, VmpZ(o-Hp2- (L +myD)[ (o -Hp)? - b,%] |

"
]
Y
[}

2 2 2
1+ m, 1+ m,
(4-8)
Notice equation (4-7) equals equation (4-8) or
b2/1 +m2'2' =o-H .
- - b
So Xy =8 - EEEE__, and y, = B, + 2
‘/1+m22 1+m,
Again requring the Hz + b2 =P<g &ields
b =—-—Oo =P
V1 + m22 -1
H2=PJ1+m27-o ' (4-9)
V1 4+ mzz- 1
The components of the normal to y4(x) are
N = -(a - x) / b2

Ny = /1 _ (a -Z,ELZ_ . (4-10)
b2

It may be noted that the surface shape is very much dependent on
the roundness parameter P. At P = 1, the surface is triangular. As P
decreases, the radius of the round portion, required for continuity, in-
creases until for a particular value of P, given ¢ and a, the transition

point is superimposed on Xo. The value of P which produces this geometri-
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cal configuration for the particular case of X0 = a is defined as P(LIM)
(see Figure 4-4). From geometrical consideration, the following expression

relating P(LIM), o, and a may be derived. The result is

pm) =2 [\ 1+ 6)2 -2 (4-11)

Figure 4-5 illustrates the variation of P(LIM) versus g/a. Notice P(LIM)
is never greater than 0.5 and decreases monotonically to zero as o/a
approaches infinite. Thus for given values of ¢ and a various cases must
be considered. Figure 4-6 illustrates three of the six possible cases
when P < P(LIM) which are included in this analysis. The other three
cases are related similarly but on the left side of Xo.

The relations discussed in this section are embodied in sub-

routines SURFl and SURF2 (appendix C).

Penetration

Quantum mechanics indicates that the localization of a radiation
quahtum or energy bundle to a region less than the wavelength of the
radiation quantum before a collision or interaction is impossible (63).
In an attempt to analytically reproduce experimental results of other
investigators and utilize the aforementioned statement, a quantum mechani-
cal wavepacket, in which the energy bundle is positioned, is assumed to be
approximated by a sphere, or a circle in the two-dimensional model used in
this research. This "billiard-ball" model is used to indicate an initial
maximum depth of penetration of the radiation quantum into the rounded V-
groove by means of a geometric calculation. That is, the point of first

incidence cannot be deeper than this maximum depth. This calculation
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Figure 4-4. (eometry Used in the Definition of P(Lim)
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Figure 4-6.
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assumes a '"localization circle".of radius )\ and depends on the ratioes
o/a and g/\.

Since this is an approximation, the rounded V-groove is approxi-
mated by a symmetric V-groove of height ¢ and width a. The apex of the
V-groove is the origin for this calculation with the X axis along a,
while ¢ is in the Y direction. There are five regions or interrelations
of g, A\, and a. Case I: § < g -'61, A< lmax (see Figure 4-7)

The equation for the "localization circle" is

2

x> + (y - B)2 = A2

AT

- 2
Note that b = ) sec © %% 32 + (%)

S-x=x,/1+4(‘;’>2.-1] . (4-12)

To determine the region of validity of this equation, i.e. determination

h

of xmax’ the circle is positioned at the top of the V-groove so that the

a
radius is perpendicular to the sides of the V-groove at the points (E,cr>

a AY
and (— 5 o). So
2

M =24 (s - D)2,

max

o

Using the above expression for b

Max _ 1 a\? / e 2
_.c;..—- = Z —} 1 +4(a> . | (4 13)
Case IIE'w < % - 91, A2 kmax (see Figure 4-~8)

Again the equation for the "localization circle" is

x2 + (y - 5)2 = xz .

Note that from the cosine law
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-a/2 af2?

Figure 4-7. Ceometry Used in Defining the Penetration
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Figure 4-8. Ceometry Used in Defining the Penetration
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Thus

But

So

or

b =

35

52 2 (m
b™ 4+ ¢ - 2bc cos \2 61>

52'+ c2 - 2bc sin 91

(2¢ sin 91) b + (c2 - Xz) =0 ,

c sin 61 * Jcf sind 8y - (cZ - 2\%)

sin 91 = g/c and cos 6 = a/2¢

b

h

b
o

Y,
o+ /22 - (%) and
b -2

2 .
A L_/i) -
1 5 + (o> \2o where A > kmax . (4-14)

2

o _ i -
Case III: § = 91, A< xmax (see Figure 4-9)

IT.
max

This situation is somewhat more complicated than either cases I or

is not as defined as case I, and notice that the center of the

"localization circle" is at (E, b) due to the non-symmetry resulting from

the geometric shadowing. The shadow boundary on the right side of the V-

groove is at the point

X

[e}

) (tan 01
2

LX)
o

cot w)
tan 67 + cot ¢

o (tan 8, - cot ¢\ -n
tan 63 + cot §/ min -

2gc + A sec 0,

26;‘0 20’6
A sec 91 + -3 tan B

X, - b tan B

a
= (tan B + 7% cot B) hmin .
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-a/2 0 x' a/2

Figure 4-9. Ceometry Used in Defining the Penetration Depth for
(/= -’21 - 9, and A S Apax

Figure 4-10. Ceometry Used inp Defining the Pene)t:ration
LA >A>
Depth for {2 5 01 and ) - Aax
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Recall

where

is the
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20 -

: A sec 91 + 2 xo

1+%gtane
h=b -2

A sec 6, + (1 + 20 tan B) h
= 1 a min

1+ %?‘tan B (4-15)

3l o)
B=s -\ 9 -

To obtain an expression for xmax in this situation, the procedure

same as in Case I (x = af2, y = g and )\ is perpendicular to the side

of the V-groove at that point). After algebraic manipulation,

where

Case IV: § >3 - 6

%) .. .6& . Ve® +4mm (4-16)
max 2Fo 2Fg
H=1D - BE2 + B2 sec2 B
. 2

G = AE - 2AB sec B
F = l-A2 sec2 8
E =25 + tan B (2;{o ~ a)

: 2

- 2
D= (xo -3) +o

C = io - b tan 8

B=nh,
min
sec 61
A= 5 ,
1 + =2 tan 8
a
1’ Mmax 2 > M > Mpax (see Figure 4-10)

Mnax is as defined as in case III. Again
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x - 2 +0y - B2 =2

This is the most complicated arrangement in that the "localization circle'"
is pinned at x = a/2, y = ¢ and is tangent to the shadow line at (x', y').
After a great deal of algebra,

b=Xsin{§ +0 -~ a cos § sin y

+ cos § Va2 cos y (2A/a-cos )
and h=5b-21. (4-17)
The imposed restriction on the upper limit of this case is x' =-a/2,

Notice that for this condition,

~<

' = g. This is used to define X\ .
max 2

¢ = 0 and the "localization circle" is perpendicular to the shadow line at

(- a/2, o) and pinned at x = a/2, y = o. The geometry yields

A sec . (4-18)

max 2

N

. oo_
Case V: § > 5 61 and A > hmax 9

Xmax 2 is as defined in case IV. For this situation, case II is

used if § is less than d@rit where

(h +r-0) ]

tan yorie T a/2

If § is greater than § . , case III is used.

The interpretation of this depth of penetration is the following:
The intersection of this height with the sides of the V-groove for the
S g - 91 case and the right side of the V-groove in the y§ > g - 91 case
defines a forbidden zone, in which the energy bundle cannot strike the V-
grooveifor first incidence, as illustrated in Figure 4-11. The basis for
the assumption of the '"localization circle" is the experimental evidence

of many investigators that if the relationship of ) and ¢ are such that
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/// Represents The Forbidden Zone

Figure 4-11, TIllustration of Forbidden Regions
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essenfially non-regular reflection is obtained, increasing the wavelength
will evenfually result in a large regular reflection component (i.e. o/\
approaches zero implies a large regular component and ¢/\ large implies
éssentially no regular component). Thus for this model, as )\ increases,
the first incidence point of the energy bundle is closer to the top of the
V-groove. The tops of the V-groove are rounded, being exactly flat at

& a/2, o). So the model follows the experimental evidence in a gross
fashion; The equations discussed in this section are used in subroutine

PENET (appendix C).

First Incidence Pcobability

The decision must be made as to which side of the rounded V-groove
the energy bundle strikes first. This decision must depend on o, a, A and
the penetration depth.

The hypothesis of a penetration depth introduced the idea of a for-
bidden zone in which the eneréy bundle could not strike the surface for
first incidence. It would seem to follow that the probability to deter-
mine the side of the first incidence would depend on the relative area
available for incidence or in this two-dimensional model - line available.

In addition, there is an assumed smoothness factor, which depends
in some complicated fashion upon the incidence angle and the average de-
viation of the roughness peaks from the meén roughness o.  Figure 4-12
illustrates the situation. For an angle of incidence, wi, the second peak
is completely masked from the source. For an angle of incidence, VZ’ the
second peak sees the source. Note as § approaches zero, the effect of ¢

should decrease. In the ¢1 case, the energy bundle may only strike the
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Figure 4-12. 1Illustration of Shadowing
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Figure 4-13, (Geometry Used for Definition of the Side of
First Incidence Probability for ¢ € 1;_- - 01
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first peak. In the y, case interreflections are allowed. Not knowing

the form of this function, a postulated function was used: Its form is

F = exp(g tan2 ¥)
where A is an unknown function of o, a, A, and ¢. Note % goes to 1 as

A approaches zero or y approaches OO, and as A approaches infinity or ¥

apprbaches 900, F becomes very large.

Let us consider the situation when F 1 such that A = 0. There

are two cases.
Case I: ¢ < g - 61 (see Figure 4-13)

Notice the forbidden region of first incidence and the penetration
depth h defines the corresponding intersection with the sides of the
rounded V-groove (x? andvxg). Thus any energy bundle which would strike
the left side of the V-groove, must do so between 0 and x¥%, having first
crossed the line AB. Similarly any enmergy bundle which would strike the
right side of the V-groove would have first crossed the line CD and would

2

gy is uniform, a simple area (line) ratio would be an adequate probability.

strike the V-groove between x¥% and a. Assuming the incident radiant ener-

Thus the probability that the energy bundle would strike the left side of
the rounded V-groove first is

P(left) = AB / (AB + CD)

x? - (P - h) tan
xf - (P-h) tan § + (a - xg) + (P - h) tany  (4-19)

xf - (P - h) tan ¢
a - (x*2 - x’l")

11: I L
Case II: 7 > ¢ 23 91
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There are two subcases to be considered: 1. h < ;1 and 2. h > §1.
figure 4-14 is representative of subcase 1. Note that we must define a
new upper limit (for xf) for incidence on the left side of the rounded V-
groove. The point (x', y') is the shadow boundary line (point). Thus

the upper limit is not xf but x'. The probability of first incidence on

the left side is as in Case I. Thus

x' - (P-vy') tan ¥

P(left) = x' - (P - yl‘) tan ¥ + (a - x’zk) + (P - h) tan Y
= x' + (P -y') tan ¥y
a-x§+x'+(?'h) tan ¥

Subcase 2 has two parts
LI

(8) ¥, >¥>%5 -8

®) ¥>v¥,
where Yc represents tangential incidence at the depth of penetration.

Part (a) is representative of the situation in which the depth of
penetration is less than the shadow boundary (see Figure 4-15).

This is then just Case I, since the shadow boundary is in the for-

i * % * 1o oxR),
bLQden zone (x1 to xz) (i.e. xFsx' < xz)

Part (b) is representative of this situation in which the depth of
penetration is greater tham the shadow boundary but above the surface
transition poiant §1 (see Figure 4-16). This is then just Case II (i.e.
the shadow boundary is outside of the forbidden zone - x' < xf).

Figures 4-17 illustrate the variation of P(left) for various o/a,

o/A, P and XO/a situations.

In the case of the situations for which F > 1, the probability
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P(left) versus § with o/ a and

Figure 4-17.
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will be.defined in an analogous fashion. That is

P(left) = AB F / (AB F + CD) . (4-21)
Since this could noﬁ be derived, this statement has nothing but a basic
heuristic indication of correctness. |

Note as F approaches ‘infinite, P(left) = 1 and if F = 1.000, P(left) s 1.

The computation of first incidence probability is made in sub-

routine APROB (appendix C).

First Inci&ence Point

To determine the first point éf incidence on either the right or
left side of the rounded V-groove, the basic assumption is that the inci-
dent energy bundles are uniformly distributed. The probability is uniform
across fhe beam between lines along the incideﬁt direction intersecting
the surface at x = xg and x = a for the right side and intersecting the
surface at x = 0 and x = x? for the left side.

An illustration of the pertinent geometry for the determination of

the first incidence point on the right side appears as Figure 4-18. Let

A = cot ¥, where ¥ is the angle of incidence. Then

@
@

At x = 0, we may define a uniformly distributed random number
R, = e , Oses@-@
EONQ) '

The assumed line of flight of the energy bundle is then

¥, = <z:)+ e

A(xz -x) + yg

I

A(a - x) + P .




o ’ 2 2 a

Figure 4-18. Geometry Used in Defining the First Point of Incidence
on Right Side of Rounded V-groove

Ly
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= * - o - x* - y*
y? A(x2 x) + y; + RalA(a x2) + (P ya)] . |
Notice the line of flight of the energy bundle incident at the transition
) is

point (iz, 52

yQ = A(x2 - x) + Yy
So at x = 0,
.- = X - * v -l .
Yo - )= Ay ¥ + Gy - W
Thus the particular uniformly distributed random number which would pro-

duce y, = would be

YqQ

= Oq - (::)) / ((::> - (::>) .

To select, in a random fashion, the point of first incidence, two cases

=

must be considered.
Case I: R_ < R
a
In this case y?(x) and yz(x) must be solved simultaneously for x,

yielding

ox, + (a - %) |axp +yy + R JAG - 20 + @ -0 | oo
c+ A(a - xo)

X =

Thus for R = 0, x = x* and for R =R, x = x,.
a 2 a 2

Case IL: R = R

In this case y,(x) = y4(x) results in

x = (AC +a) _ [(ac + a)2 - (1 + AZ)(C2 + a2 - bzz)]%
1 + A2 1 + A2 (4-23)

where C = y¥ - H, + Axy + Ra[A(a - xg) + (P - yg)]

To compute the point of first incidence on the left side of the

rounded V-groove two cases must be considered.
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eIy <D ; ]
Case I : ¢ < 5 61 (see Figure 4-19)
As in the preceding case

A = cot §

(::) = -Ax + P
= - - % *
@ A (x xl) + yl

yQ ='A(X - xl) +y1
= - * % -
Yy Ax+P+Ra (Ax1 -i-y1 P)
e
R = ——
O
at x =0 .

& =% " 0)
-®
Subcase (a) Ra > R

For this situationm, y, = Yi resulting in
P - o'+Ra(Ax’1'f+y* - P)

1

* = A -m, (4-24)
where m, = o/X .

1 o
Thus for R, = 1, x = x} and for Ra=§, x=)-<1 .
Subcase (b) Ra < R.
Thus y, = Y3 resulting in

2 2 2
X = 7 - 5
1+A 1 +A (4-25)

= - %* X - .
where C = P Hl + Ra(Axl + ¥y P)
Case IL: >-g' - 61 ~ (see Figure 4-20)

In this particular case, the point (x’f, y’f) may be shadowed. If
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Figure 4-19., Geometry Used in Defining First Point

of Incidence on Left Side of Rounded
V-groove ¥ < -;— - 6,

I
! I
X

Figure 4-20. Ceometry Used in Defining First Point
of Incidence on Left Side of Rounded
V-groove ¥ > —'21 - 0.
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so, we must define a new point of maximum penetration for this side. Tnis
may be accomplished easily by noting that the shadow boundary is deter-

-—d ~—
mined by I * N = 0. Thus the shadow boundary point is

x' = b, cos §

1
ya&x') .

[}

y

Thus xf = x' and yf h = y'. With these definitions the computation of
case I, subcase (b) yields the first incidence point. If (x%, y?)is not
shadowed, the procedure is to use case I, subcase (b) with the original
(xi": }”1") .

Point (x, y) is computed in subroutine XYLFT or XYRIT (appendix C).

Reflected Direction

The law of reflection may be used to determine the reflected di-
rection in general form given the incident direction, the equation of the
surface, and the point of incidence.

Consider the determination of the reflected direction. Recall
that for regular reflection the angle of incidence y eqdals the angle of
reflection §. Thus

cos § = cos 6
and sin ¢ = 8in 6 .

In vector form these equations are

N+R=-N-1 (4-26)
and ITXN=RXN . (4-27)

Operating on equation (4-27) by N X yields

NX(IXN)=NX(RXN)
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(N*T)N=R-(N-R)N .

i
1

or

Lad -, -t

=T-[(N-I)-(N-R)]N

w

Thus

=T-2(N-1)N from equation (4-26).

—
And in Cartesian coordinate matrix form R = M'f
2

1 - 2n - 2n n - 2nn
X Xy X z
2
where M= ~2nn 1 - 2n - 2n_n
Xy y y 2
2
~ 2n_n ) - 2n n 1 - 2n
X z y 2 z

and n s ny, and n, are the components of the normal to the surface at the

point of incidence. For the model reported herein n, = 0.

So R {1 - 2n2 - 2n n 0 I
X X Xy X
2
R = - 2n.n 1 - 2n 0 1
y Xy y y
R 0 0 1 1
z z

And if I = sin §y and I = - cos §
X y

= - 92 -
Rx = (1 2nx) Ix 2nxny Iy
2
R =-2nn I +(1-2n)1I
y Xy X y vy

These coefficients are determined in subroutine REFLT (appendix C).

Model Characteristics

Now that the basic assumptions of the analytical model have been
discussed, it would seem advisable to put the whole pictﬁre together. It
may be recalled from the previous sections that the analysis of this re-

search was conducted using a Monte Carlo method. Thus each energy bundle
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considered requires the construction of a new rounded V-groove. 8o height
o, width a, and V-groove vertex point, Xo are all different for each ener-
gy bundle. Therefore the lobing effects of periodically rough surfaces

- will not be observed (41).

This analysis was programmed for the IBM-360-40 system, available
at the University of Oklahoma, under the code name MCR. The program is
listed in Appendix C. Primary requirements to initiate a run are an angle
éf incidence, {, RMS height, 8, RMS width, 5, wavelength, )\, and the com-
ponents of the index of refraction. With this information, surfaces are
constructed in the previously indicated random fashion. A penetration
depth is computed as well as the fi;st incidence probability. Comparison
of this probability to a uniformly distributed random number makes the
deéision as to whether the first incidences is on the left or right side
of the rounded V-groove. Recall the penetration depth limits how deeply
the energy bundle may go for first incidence. Having determined this |
point, the Fresnel reflection coefficient for umpolarized light (64) is
computed. As before, a random number comparison with this coefficient
determines if the energy bundle is refracted or reflected. If refracted,
that bundle is lost and a new surface is constructed. If reflected, it
does so obeying the laws of geometrical optics for regular (specular) re-
flection. The determination is now made as to whether the bundle escapes
the rounded V-groove ér strikes the other side. ;If the bundle escapes
this geometry, its angle is categorized 1n£o one of 36 - five degree in-
tervals and counted. If the bundle does not escape the geometry, a
straight line trajectory is used to determine the point of incidence on

the other side of the rounded V-groove. Note, the depth of penetration
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restriction is not used; that is, the energy bundle may strike any line

of sight position on the rounded V-groove after first incidence. When the
point of second incidencé is determined, the Fresnel coefficient is com-
puted and the reflected-refracted decision is made, with the same alter-
natives. This procedure may continue up to four times. If the energy
bundle does not escape by the fourth reflection, it is defined as trapped
and a new surface is constructed.

The output of these runs are presentedvin two forms. The first is
just an accumulative count of the number of energy bundles which escape
into the various five degree intervals. Also a count is made as to the
number which escape in one degree intervals on either side of the regular
reflection angle (i.e. § - 5°< 9 < v+ 50). The second listing of the
data is a ratio of the number in a five degree interval and the maximum
number in any interval.

A run consists of at most 10,000 energy bundles with an execution
time of 4 to 5 minutes per 1,000 energy bundles.

The number of energy bundles received is proportional to the ener-
gy and thus the intensity. Recall from chapter II that reflectances are
ratioes of intensities. Thus the biangular reflectance of any test speci-
men in the direction (8, o), wiph { being the angle of incidence, relative
to the biangular reflecténce of the sample in the specular direction under
the same irradiation conditions and receiving acceptance angle, is just
the ratio of the corresponding numbers of energy bundles.

Therefore

Pha (V38®  n(yi0,0)
Pp, (¥3¥:0) — N(y3y,0) (4-28)
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where N(¢,6,¢) is the number of energy bundles received about the direction
:(e’¢) when § is the angle of incidence. Notice equation (4-28) is just
representation (3) of data, discussed in chapter II, and the second mode
of MCR data presentation. All data presented from this research will be
based on this equation.

The changes of reflected distributions with the variation of the
discussed parameters may be seen in Figures 4-21 to 4-24.”MIn Figures
4~21 to 4-23 the second form of MCR data presentation i;'éiggéed whilé in
Figure 4-24 the first mode is illustrated. Figure 4-21 indicates this
model follows the appropriate trend for g/A. That is as o/\ increases,
the reflected distribution becomes more non-regular. Figure 4-22 illus-
trates the spread of the distribution with the ratio of g/a. This is con-
sistent with the assumption that if the energy bundle gets into the V-
groove, a more non-regular characteristic will result. Thus the larger
the ratio o/a, all else being equal, the higher the first incidence point
is on the rounded V-groove. 1Included on part a of this figure is the
Ideal or Lambert distribution. Figure 4-23 illustrates the efféct of
variation of parameter P. Recall that as P approaches one, the amount of
roundness at the peaks decreases. Notice that increasing the parameter P
has a similar effect as decreasing the g/a ratio. The difference is that
the change in P more drastically effects the curvature of the peak. Figure
4-24 is presented to indicate the actual difference the change in the angle
of incidence has on the distribution shape and maximum magnitude. Notice
that the distribution becomes more slender and tall as the angle of inci-

dence increases. This is consistent with experimental observation.
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Closure
It must be remembered that this model represents only an artificial
resemblance to the actual fact. It is an attempt to make progress in under-
standing how and why rough surfaces reflect as they do and in particular to
look at the region not explicitly covered by the more appealing diffraction
theory, that is the region g/A ~ 1. The results will hopefully yield sug-
== gestions as to what surface parameters might be measured for accurate pre-

diction of the reflected energy distribution for all wavelengths.



CHAPTER V
COMPARISON OF MODEL TO EXPERIMENTAL RESULTS

.Chapter IV has been used to develop the model, thus setting the
stage to consider its usefulness. Before actually considering a compar-
ison of the model with published experimental data, a brief statement of
the purpose for this will be made.

All theories and models for whatever physical phenomena they are
supposed to describe must face the test of conforming to reality. Thus
by fitting the output of the MCR digital computer program to experimental
data, statements may be made concerning the parameters vital to a thorough
understanding of the effect of rough surfaces on the reflected distribu-
tion. Heretofore the only surface characteristic actdally presented in
a reflectance measurement was the RMS roughness, o. This dimension has
been used in the model. In addition, an RMS peak to peak dimension, 5,
has been used in lieu of the autocovariance length introduced in the
theories available. Also a peak roundness parameter, P, has been intro-

duced. The usefulness of these parameters in describing the reflected

energy distribution must be examined.

Experimental Considerations

. Before attempting to match the experimental data, consideration

must be given to the set-up of the apparatus and what the resultant data

61



62

from this apparatus truly represents. Three points must be discussed.
They are 1) the conditions of surface illumination and viewing, 2) de-
tected distribution distortion due to finite aperture sizes and 3) optical
roughness.

1) All experimental methods use combinations of collimated and focused
beams for the incident and reflected energy. It is important to determine
if the surface under investigation is totally or partially covered by the
field of view of the incident and/or viewing optics. If the surface is
totally covered by the incident beam, it is said to be over-illuminated,
otherwise it is said to be under-illuminated. Similarly if the area
viewed by the receiving optics is larger than the surface under examina~
tion, it is said to be over-detected, otherwise under-detected. In
either of the "over" cases, the corresponding projected area varies as
the cosine of the angle between the surface normal and the direction of
interest. In either of the ";nder" cases, the area viewed is varied,

but the surface always intercepts the total area viewed by the corres-
ponding optics. The Figure (5-1) illustrates the commonly used experi-
mental situations. The interpretation of the detector output depends
upon which combination is used in the experimental situation. For
example, in the over—illuminated, under detected situation for a diffuse
surface, if §y is fixed, the detector output would be constant as 6 is
varied. If 6 is fixed and § is varied, the detector output will vary

as the cosine of y.

2) Since finite angles of acceptance are necessary in actual experimental
apparatus, a certain degree of distortion will be exhibited (13, 65).

The angle of acceptance; as used in this discussion, is the generating




Figure 5-1.

Illustration of Detection-Illumination Conditions

€9
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angle of the solid angle cone of radiation, incident or received. This
is particularly evident when the reflected emergy distribution displays a
'sharp increase such as would be encountered with a large regular compo-
nent. A simple model may be constructed in an attempt to account for this.
Assume that the area viewed by the detector is circular and of radius c.
Also for simplicity, assume the sensitivity is uniform across this area.
Assume the reflected beam is also uniform and circular of radius b. The
output of this detector will be directly proportional to the area common
to both the beam and the detecting area. Figure 5-2 illustrates the geom-
etry, with the shaded area representing the area in common.
If u = y/c, then

2 2
'n=tan'1 g_:.i}'_ = tan ] l___u_]

¢ n el | L] e /r-—uz}

Thus the shaded area is

= (e - P TR + (B - ex /TR

Normalizing S to the detecting area yields

oty <3[R

N “c

oo s (@) Q)] - TR o2

2
where X =c \V[KE> -1+ u2

Notice if ¢ = b, x = y and

Fy = % [cos-lu - u /T T3%]
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Figure 5-3 illustrates the various expected responses for various
combinations of ¢ and b.

Both of these items will be used in the discussions that follow.
3) When reflectance expefiments are conducted, attempts are made to meas-
ure the RMS roughness. Recall that roughness as used in this investigation
indicates a statistical description for an isotropic randomly rough sur-
face. Other surface descriptions such as waviness, tool markings, and re-
latively infrequent minute cracks or flaws are considered so big or widely
spaced as to be excluded from the roughness measurements of interest here.
Also the surfaces are considered free of contamination. Profilometry is
thé most common method used for evaluating the roughness of a surfage.
Other methods areAavailable (66). If the surface irregularities are very
deep or closely spaced or the material of the surface is soft, this method
yields very unreliabie results. That is, the physical dimension of the
tipped stylus cannot actually follow the surface, or its weight destroys
the actual contour. Therefore, as would be expected, great difficulty has
been experienced in attempts to fit the regular component of the theory of
Davies, for example, to data in the regions when this theory should be valid.
As an alternative, the theory is used to determine another roughness meas-
urement. This dimension is termed "kMS optical roughness" Oy and is ob-
tained by measuring the reflectance at very long wavelengths and small angles
of acceptance (13, 14, 65 and 54). As could be expected, these numbers are
larger than are obtained by mechanical means by from 1.2 to 3 times. In the

analysis of this investigation, the optical RMS roughness will be used.
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Example for Comparison

In order to determine the usefulness of this model, it was com-
pared to expérimental data published by other investigators.

The first data considered were that presented in reference (13).
Birkebak used the under-illuminate, over-detect method with angles of
acceptance of approximately two degrees. The two test samples considered
were aluminum coated ground glass and roughened nickel. The data are
presented as a ratio of two biangular measurements similar to the second
output listing of the MCR digital computer pfagram discussed previously
in Chapter IV. The only usable surface characteristic ;tated by Birkebak
is the RMS optical roughness. Thus decisions had to be made as to the
magnitudes of g/a and P. Figures 5-4 to 5-8 illustrate the comparisons
for various pieces of data. The data of Figure 5-4 was taken on an
aluminum coated ground glass sample with colk = 0,.58. The MCR output
for o/a = 0.5, g/A = 0.6 and P = 0.4 fits quite well. Similarly for a
nickel sample and g /A = 0.6, the MCR output of o/a = 0.5, g/A = 0.6 and
P = 0.5 is in good agreement (Figure 5-5). Figure 5-6 is an illustration
of the direct superposition of the regular and non-regular components.
For the angles of acceptance given by Birkebak, the regular response
function was fitted to the spiked portion. The output of MCR was fitted
to the remainder of the figure. This figure is plotted for a test sam-
ple of aickel with g /A equal to 0.32 and MCR output of o/x = 0.3,
5/5.= 0.5 and P = 0.5. A similar procedure was used to fit the regular
response function and the MCR output to another nickel sample as illus-
trated in Figure 5-7. Figure 5-8 is the final piece of data presented

by Birkebak in which the output of MCR and the regular response was fitted.
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Aga;n the fit is quite good.

The second set of data considered for comparison was that pre-
sented in reference (l4). ‘The material used in the experiments of these
investigators, Torrance and Sparrow, was a nonconductor, fused polycrys-
talline magnesium-oxide ceramic. The acceptance angles of approximately
two degrees in an under-illuminate, under-detect experimental set-up was
used.

The analysis for non-conducting material is somewhat more com-
plicated than for a conductor. The reason for this is that there is a
contribution to the received energy due to a volume effect. This effect
is available when considering reflection from metals but the magnitude
of this component is quite small due to the large absorption coefficients
associated with metals. In the case of dielectrics, this contribution
may be sizeable. 1In agreement with other investigators (24, 31), it is
assumed that this volume contribution is diffuse for the analysis used
in this work.

As in the previous case, the data are presented as a ratio of bi-
angular reflectances. A graphic comparison may be made from Figures 5-9
and 5-10. These data were taken on the same sample at two angles of in-
cidence and two different wavelengths. The conditions of the surface and
the variables used in the MCR digital computer program appear in the
figures. In Figure 5-9, the volume effect is represented by a constant
value. The difference between 5-9 a and b is only the angle of incidence.
In Figure 5-10, in addition to the volume effect and the rough surface
effect, a sizeable regular component may be noted. This componént was

fitted exactly as was done in the preceding examples. The difference
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between Figures 5-9 and 5~10 is that the wavelength was increased from
0.54 to 1.5y and the difference between 5-10 a and b is the angle of
incidence. It may be noted thét the values used in MCR were chosen in
accordance with the data available from this publication and tﬁat the
fit is quite good.

A portion of the data presented in reference (16), by Herold and
Edwards, was considered next. These investigators used an under-illumi-
nate, over-detect method with very large angles of acceptance: incident
3.40, emergence 4.7° shadowed to 4.1°. With acceptance angles of this
size and inparticular with the receiving angle larger than the incidence
angle, the resultant detected distribution will not be truly representa-
tive of the actual distribution. Data were taken on six samples of which
only the F-40 sample of aluminum coated sintered bronze and sandblasted
aluminum were used for comparison. For the F~40 sample, these investiga-
tors aid not state any surface characteristics other than that it was
"very diffuse and highly reflective". Therefore no information was avail-~
able concerning the surface parameters. The best fit of these data is
presented in Figure 5-11. As in the preceding examples, once a close fit
was made for one set of parameters, only the parameter that was experi~ -
mentally varied, in this case the angle of incidence, was altered. As
can be seen in this figure, the fit is not as good as in the preceding
examples, but still indicates an appropriate general trend.

By far the worst fit was made with the sandblasted aluminum sam-
ple. Herold and Edwards correlated the "specular" component with the
theory of Davies using an RMS optical roughness of 0.8u. The incident

wavelength was 5.0y yielding a ob/k of 0.16. A graphical comparison can

~
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be made with Figure 5-12. Notice that the vegular component was fitted as
before, and except for the 20° incident case, the fit is generally poor.
As a final example, the data presented in reference (65) was
considered. Francis used an under-illuminate, under-detect method with
extremely large angles of acceptance of 6.40 incident and 5.3° receiving.
The sample for consideration was sandblasted stainless steel (type 302).
The results of the comparison are presented in Figures 5-13 to 5-16. The
RMS optical roughness and the wavelength considered appear on the figures.
The parameters o/a and P were determined for the 30°'ang1e of incident
case illustrated in Figure 5-13. These numbers were then used throughout
the remainder of tne calculations. The regular components were of course

included.

Closure

A smoothness factor was introduced in Cihapter IV which was an
assumed strong function of the angle of incidence and weakly dependent
on the surface characteristics. For the examples considered, this func-
tion was not necessary. That is, to fit the data, A of 0.15 was used,
thus F was approximately equal to one.

A word must be said concerning the error involved in this type
of analysis. As was discussed in Chapter III, the error must be stated
with a confidence level. As a representative eiample, a 907 confidence
level was chosen and the data used for Figure 5-5 was considered. The

results appear in Table 5-1.
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TABLE 5-1

EXAMPLE ERROR BAND OF MCR FOR 90% CONFIDENCE
LEVEL AND 10,000 SAMPLES

[ Lits Error
10 670 +3.0%
20 650 +3.2%
30 580 13.4%
40 410 +4.0%
50 270 t4.6%
60 150 *7.0%

Thus there is 90% confidence that the position of the points on the solid
curve are true to within the stated error bands. These error bands are

at least as good as the experimental error.



CHAPTER V1L

FINAL STATEMENTS

This research has been an attempt to contribute to the soiution
of the problem of understanding the effects of EOugh surface characteris~
tics upon reflected distributions. In doing so, the artifice of a pene-
tration depth for first incidence was introduced. The localization circle
(used.to determine this penetration depth and whose radius is the wave-
length of the incident radiation) was quite unique and basic to this
research and when associated with this model of the surface is seemingly
adequate. A theoretical analysis using this assumption may be fruitful.

Table 6-1 is a compilation of the experimentai and MCR parameters
used. It may be seen from this table that a wide range of surface charac-
teristics have been investigated. And since the MCR output fit these
data quite well, except for one case, it may be inferred that not only a
peak to valley dimension be measured, but also peak to peak dimension.
In addition, another in-surface pafameter seems esgsential for an accurate
description of the total reflected distribution. This dimension is in
the plane of the surface and is representative of the portion of the surface
that is contributing to the regularly reflected component. Though not an
object of this investigation or an output of MCR, some general statements

may be made concerning this parameter:
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TABLE 6-1

Sample 1 A () o,/ /A o/a P
Al-g.g. (1) 10 1.0 0.58 0.60 0.5 0.40
Nickel (1) 10 1.0 0.60 0.60 0.5 0.50
Nickel (1) 10 1.5 0.32 0.30 0.5 0.50
Nickel (1) 10 6.0 0.23 0.30 0.5 0.60
Al-g.g. (1) 10 4.0 0.15 0.15 0.5 0.50
MgO  (2) 10 0.5 1.02 1.00 5.0 0.30
MgO  (2) 45 0.5 1.02 1.00 5.0 0.30
Mg0  (2) 10 1.5 0.34 0.34 5.0 0.30
Mg0  (2) 45 1.5 0.34 0.34 5.0 0.30
A.S.B. (3) 20 2.5 0.30 8.0 0.97
A.S.B. (3) 40 2.5 0.30 8.0 0.97
A.S.B. (3) 60 2.5 0.30 8.0 0.97
Al (3) 20 5.0 0.16 0.16 8.0 0.95
Al (3) 40 5.0 0.16 0.16 8.0 0.95
Al (3) 60 5.0 0.16 0.16 8.0 0.95
Al (4) 10 5.0 0.282 0.282 0.4 0.62
Al (4) 30 5.0 0.282 0.282 0.4 0.62
Al (4) 60 5.0 0.282 0.282 0.4 0.62
Al (4) 10 3.0 0.47 0.47 0.4 0.62
Al (4) 30 3.0 0.47 0.47 0.4 0.62
Al (4) 60 3.0 0.47 0.47 0.4 0.62
Al (4) 10 2.0 0.705 0.705 0.4 0.62
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TABLE 6-1 (continued)

Sample y () ) go/A o/A ola P
Al (4) 30 2.0 0.705 0.705 0.4 0.62
Al 4) 60 2.0 0.705 0.705 0.4 0.62
Al (4) 10 1.5 0.94 0.9 0.4 0.62
Al )] 30 1.5 0.94 0.94 0.4 0.62
Al (¥ 60 1.5 0.94 0.94 0.4 0.62
Al-g.g.(1) - Aluminum Coated Ground Glass - From Birkebak
Nickel (1) - Roughened Nickel - From Birkebak
MgO (2) - Magnesium Oxide Crystal - From Torrance & Sparrow
A.S.B. (3) - Aluminum Coated Sintered Bronze - From Herald & Edwards
Al (3) - Sandblasted Aluminum - From Herold & Edwards
Al (4) ~ Sandblasted Alumipum - From Frahcis

1) That portion of the surface that would be represented
by this parameter is effectively flat.
2) This portion of the surface must éffectively increase

as the wavelength increases.

Neither of these parameters have received much attention experimentally

and to this investigator, these parameters are vital information when

presenting reflectance data. An analysis similar to that presented in

Appendix D might be used to determine a and this flatness parameter by

one experimental measurement.

Evidently the state of the surface must be specified in a statis-

tical manner. In an attempt to establish a Monte Carlo model for reflec-
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tion, it was assumed that the surface roughness, g, and the density length,
a, were Rayleigh distributed random numbers. The assumed Rayleigh distri-
bution for the roughneés parameter, g, is apparently not too bad. Thig
may not have been an accurate assumption for the density length, since to
fit experimental data a portion of the surface has to be assumed flat.
Experimental effort must be exerted in an attempt to measure these in-
surface parameters such that a more accurate distribution function may be
considered. Also it may be noted that the reflected enerxrgy distribution
is dependent upon the curvature of the surface near the peaks as indicated
by the variation of the parameter P. Though an extremely difficult task,
the development of a method to estimate this type of parameter, even in a
statistical fashion, would be a great help in further study and theoreti-
cal analysis of the problem of predicting the reflected energy distribution.
By examination of the graphical illustrations of the examples
considered, it is evident that the model presented in this research can
be made to represent experimental data. In fact, if the oo/h ratio is
known and the g/a ratio and P can be determined from one set of data,
the wavelength and angle of incidence of the radiation may be varied and
MCR will yield a close approximation to the contribution of the reflec-
tion from the rough portion of the surface. Thus this theory is regarded

as suffciently justified since it can predict a qualitative picture.
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APPENDIX A

DIFFRACTION THEORY (67)

Huygens - Fresnel

Huygen, the first proponent of the wave theory of electromagnetic
radiation, described propagation of wave disturbances in the following
fashicn: Every point on a wavefront propagating from a source is a
source of secondary wavelets and the wavefroant at any instant of time
later is the result of the superposition (envelope) of these secondary
wavelets. Fresnel accounted for diffraction by assuming that these
secondary wavelets mutually interfere. This combination is generally
referred to as the Huygens-Fresnel Principle. To understand this state-
ment, consider the spherical, monochromatic wavefront of radius r, at
some instant in time, propagating from P to P'.

Deleting the time vafiation, the disturbance at Q may be re-
presented by (A exp (ikro) )/ro. Using the Huygens-Fresnel principle,
this point (Q) is now the source of a secondary wavelet and its contri-
bution to the total disturbance at P' is

Aeikro ikr

du = K(a) T -E'_- ds
(o]

where K (o) is called an inclination or obliquity factor which describes
the variation with direction of the amplitude of the secoandary wavelet.

Thus the total disturbance at P' is
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ikr ikr.
o = Ae °“‘-§ K (@) d5 .

Kirchhoff
Kirchhoff put the Huygens~Fresnel theory on sounder mathematical
grounds and showed that this principle yields an approximate form of an
integral solution to the homogeneous wavé equation.
Consider a monochromatic scaler wave

V(x,y,z,t) = U(X,Y,Z)e-th

where @ = k ¢. In a vacuum the space dependent portion satisfies the time-
independent wave equation

@ +kHu =0, @-1)
This equation is usually referred to as the Helmholtz equation.

Now assuming U and any other function U' have continuous first
and second partial derivatives within and on the surface, we may invoke

Greens' Theorem to obtain

r 2, 2 __P(gg'__ag
J‘J (uwu' ~ u'gu)dv = J u 50 u dn)dS. (A-2)
Note gi is the derivative along the inward normal. If, in addition U’

also satisfies the Helmholtz equation, the left side of (A-2) vanishes,

yielding

u' -é&) -
J’J‘ u 30 u 3n ds = 0. @-3)

k . . , . ,
i r/r, and noting that a singularity exists at r = 0, if

Assuming U' = e
the fiducial point is within the surface S, the integration must exclude
this point due to the aforementioned continuity requirements. Thus equa-

tion (A-3) has the fomm
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ikr _ikr
) (E - & ou ] = -
{jf + J‘ﬂ» !:u 2@E )-% 2las-o, (A-4)
s s!
where S§' is the region around the singular point. Assume S8' is a spheri-

cal region of radius ¢. Then equation (A-4)may be put in the form

[u2 (3““) _e ] as
an \r r on
' s

ike ike
e 1 e ou 2
- - e m-_)-_ _} -
J‘I{ue ( e € on J € &, (4-3)
where 3 is the element of the solid angle. Note in the limit as ¢ ap-

proaches zero, the right side of equation (A-5) has the form

Lim J‘J‘ueike N = 4mu
€—0

. ikr ikr
1 3 (e .e " au
e Y S yj‘[uan r ) r dn :[ ds. (4-6)

s

This is the integral theorem of Helmholtz and Kirchhoff in general form.
Notice that the Kirchhoff approach uses in a general fashion the Huygens-
Fresnel Principle, but is not restricted by éules governing the contri-
butions of different elements of the propagating surface of the distur-
bance. Kirchhhoff went on to show that his theorem may be reduced to an
approximate and simpler form which is gssentially equivalent to ;he for-
mulation of Fresnel and yielded additional infofmation about the obliquity
factor.

The major drawback to obtaining the Fresnel approximation is in
the assumptions made concerning the behavior of U and ou in the immediate

on
vicinity of the edge of the aperture. These assumptions are
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. (i)
. _ (D ou _ gu
in A U=1U and 3n n
, Ju
in B U=20 and 30 =0 (A-7)

where A.represents the region of the aperture, B represents the region on
the non-illuminated side of the bcreen in which region A is and U(i) is the
incident wave disturbance. Equations (A-7) are known as the Kirchhoff's
boundary conditions and are the basis of the Kirchhoff's diffraction theory.
The consequences of this assumption have been discussed in the literature
and have been found tp be in error on the boundaries of the aperture (68).

Nevertheless, the Kirchhoff theory is considered entirely adequate
as long as the wavelength of the radiation is quite small in comparisoa
with the size of the aperture or diffracting obstacle. When this last

requirement is not true, more refined methods must be used and of the

cases considered, only a few have resulted in solutions.
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APPENDIX B

RAYLEIGH DISTRIBUTION DISCUSSION

For the model discussed in this research, the height distribution,
for example, cannot range from -« to +o . From the mathematical model
discussed in Chapter IV, the height distribution can range from 0 to += .
Thus a nonsymmetrical distribution seems in order. No physical reasoning
yields a requirement for the distribution. Thus intuition was the majér
factor in the decision to use a Rayleigh distribution. This distribution
seems adequate when the probability of a perfectly flat surface is zero
and any height may be expected. Also the majority of the heights con-
sidered should be nonsymmetrically positioned between 0 and «.

The Rayleigh distribution may be derived from two normal distri-
butions, both with a mean of zero and the identical variances. Consider

the two normal distributions

y 2 2
1 1 -87/(207)
F 30,0) = e ds
1(y1 ) oVvam j_m

y .2 2
L j1 2 e t7/(20") dt.

Fz(yZ;OsG) = o Von e
Vi o202 Yo .2, 2
Let  G(y,,¥,:0) = - - J‘ 1 -587/(20%) dSJ‘ 2 -t7/20" 4
2nig - -

But since s and t are independent
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y y 2 2 2

1 1 2 -(t 20

G(y1>y2’0') = 5 j‘ j e ( +8) /2 dtds.
2no co Ye oo

Consider the following change of variables:

o
2 SZ + t2

X

= s
Z = tan Y

S

it

X COs 2

t X sin z ,

i

Thus the Jacobian of transformation (69) is

a(s,t)
dsdt = 3, 2) dxdz
as 38
oxX oZ
= dxdZ = xdxdZ.
a3t
ox dZ

So

y y o2 2
G(¥,»Y,,0) = — L 172 gomx /207 geqg.
1772 Z'n'cy2 o o

Integrating z from 0 to 27
-x2/202

y
G(y,,0) = L 1 xe dx.
1 2
o~ Yo

Thus by definition the probability density function is

2, 2
g(x,0) = 3% e X /20 (B-1)

o
where now the random variable x is related to two normally distributed ran-

dom variables Y1 and Y, by the relation

Tyt ey, (3-2)
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Equation (R-1) is the density function for a Rayleigh distributed random
variable. The cumulative Rayleigh distribution follows inmediately from

the definition:

‘

X 2, 2 2,2
F(x,0) =f <‘Y§> e Y /207 4y a1 - eX /20 L L. (8-3)
o O-

The expected or mean value is

o , 2 o2 2
o) <[ (%) 7w - \ff -

[¢)

The first moment is zero as it is supposed to be and the second moment or

variance is

E(x - u)z

Var (%) =J (x - p)g(x,o0)dx
o

4 - N\ 2 2
\-“"—"2 )o = 0.429¢",

)

A means to generate numbers distributed in a random fashion accord-
ing to this Rayleigh law follows immediately from the above derivation.
That is, one needs only to have sets of normally distributed random numbers
and‘then using (8-2), the Rayleigh distributed number may be obtained. To
generate fhe normally distributed random numbers, the subroutine, GAUSS,
suggested by IBM was used. When these were determined, equation(B-2)
yielded the appropriate Rayleigh distributed random variable.

It seemed desirable to check the output of this procedure. It
must be remembered that due to the finite number of the random variables
considered, exact fit with the actual distribution function is impossible.

Thus what is next presented is only an indication that the random variables

are distributed correctly.
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The computer program which appears at the end of this appendix was

used to check the resulting distribution. The outputs of this program
were counted as to those between 0 and 0.50, 0.50 and o, ----, 2.0c and
infinity. Five different starting numbers were considered. The results

appear in the following table.

TABLE B-1

CUMULATIVE RAYLEIGH DISTRIBUTION USED IN MCR AND THE IDEAL

X 1 11 111 1111 11111 AVG AF

0 - 0.5 0.124 0.100 0.101 0.112 0.114 0.110 0.1175

0.5¢ - 1.00 0.258 0.281 0.280 0.255 0.251 0.265 0.2760

1.00 - 1.5¢ 0.278 0.288 0.278 0.285 0.282 0.280 0.2819

1.5¢ - 2.00 0.210 0.182 0.196 0.202 0.222 0.190 0.1893

2.0 - © 0.130 0.149 0.145 0.146 0.131 0.140 0.1353

Five runs of 1,000 points each were considered. Column 1 exhibits
the collection regions of the generated random numbers. Because of the
manner of collection (dependent on g), the only variable is the starting-
numbers IX. The next five columns are the relative number collected per
region. Column seven is the avérage over the 5,000 points considered.
The last column designated, AF, is the theoretical relative number that
should be in each region. As can be seen, the agreement is quite good

considering the sample size. This was deemed acceptable agreement.
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20

25
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30

100

CUMULATIVE RAYLEIGH DISTRIBUTION PROGRAM

READ (2,15)

(Z)
-
s

FORMAT (lF10.
K1

K2

K3

K4

K5

AM

V2

ic

DO 10 I=1,1000

DO 20 J=1,2

CALL GAUSS (IX,S,AM,V)

V2 = V2 + V*V
CONTINUE '

sV2 =  SQRT(V2)
IF (SV2 - 0.5*S) 1,1,2

K1 = Kl +1

GO TO 9

IF (Sv2-S) 3,3,4

K2 3 K2 +1

GO TO 9

IF (SV2 - 1.5%S) 5,5,6

K3 = K3+ 1

GO TO 9
IF (SV2 - 2.*8) 7,7,8
K& = 1
GO TO 9
K5 =
V2 = 0.0
IF (I-IC) 10,25,25

IC = IC . 100

WRITE (3,30) I,SV2,K1,K2,K3,K4,K5
CONTINUE

FORMAT (15, F12.7,515)

CALL EXIT

-
-
(=)
HOOOOOOON~

Q-
o o

N u RN o

!
B
+ ~

" END



APPENDIX C

MCR COMPUTER PROGRAM

Legend

The following definitions are provided to clarify the coding in the

following computer program.

Code Symbol Meaning

SOA Characteristic parameter of the total surface

SOL ™ Characteristic roughness-wavelength ratio for total surface
P Dégree of roundness

PSI Angle of incidence

AN Real portion of the index of refraction

AK Imaginary portion of the index of refractiom

IX Starting number for random number generators

N Total number of points for the rum

NCO : Number of points run before first data is printed

NCOL Interval (number of points run) of data printout after NCO
ASF_ Smoothness factor

SOL1 Input SOL (see above)

SO0Al Input SOA (see above)

AM Required mean of Gaussian distributions

PSIM5 Angle of incidence minus five dégrees

PSIPS Angle of incidence plus five degrees

101



Code Symbol
PH

PSI1

KP(I)
KPP(I)
KLOST

KTRAP
K1R
K2R
KR
K4R
soL
SOA
RSOA
HOS
X0A

H1
H2
Bl
B2

51

s2

102
Meaning
Direction in which energy bundle is traveling
Angle of incidence in radians

Number of energy bundles in region I, 1 s I < 36
(5 degree intervals)

Number of energy bundles in region I where 1 < I < 10
(1 degree interval from PSIM5 to PSIP5)

Number of energy bundles lost through the surface by
refraction

Number of energy bundles lost on fifth reflection
Number of energy bundles that escape after one reflection

Number of energy bundles that escape after two reflectioms

Number of energy bundles that escape after three reflections

Number of energy bundles that escape after four reflections
Height to wavelength ratio per energy bundle
Height to width ratio to energy bundle
Reciprocal of SOA

Normalized depth of penetration-height ratio
Normalized V-groove vertex position

Left hand center of curvature for rounded portion normal-
ized by o

Right hand center of curvature for rounded portion normal-
ized by o

Radius of curvature of left hand rounded portion normal-
ized by a

Radius of curvature of right hand rounded portion normal-
ized by a :

Slope of left hand side of V-groove

Slope of right hanﬂ side of V-groove



Code Symbol
X1

X2

X3

TO

T20

Y1B
Y2B
XSR1

XSR2

YP
PROB

PROB1

BNX

BNY

103

Meaning

Horizontal coordinate of the left hand transition point
from rounded portion to V-groove normalized to a

See X0A

Horizontal coordinate of the right hand tramsition point
from rounded portion to V-groove normalized to a

See S1
TO times TO

Horizontal component of the unit normal to the left hand
portion of the V-groove

Vertical component of the unit normal to the left hand
portion of the V-groove

Vertical component of the left hand tramsition point from
rounded portion to V-groove normalized to o

Vertical component of the right hand transition point from
rounded portion to V-groove normalized to o :

Horizontal coordinate of the intersection of HO with the
left side of surface normalized to a

Horizontal coordinate of the intersection of HO with the
right side of sutrface normalized to a

Horizontal coordinate of .shadow boundary normalized to a
Vertical coordinate of shadow boundary normalized to o
Random number selected for PROBl decision

Probability that the energy bundle strikes left hand side
of surface first

Horizontal coordinate of the intersection of energy bundle
with surface normalized to a

Vertical coordinate of the intersection of energy bundle
with surface normalized to O

Horizontal component of the unit normal to the surface at
the point of intersection (X,Y)

Vertical component of the unit normal to the surface at
the point of intersection (X,Y)



Code Symbol
RY

RX
PSIR
CAN
SAN

PSIF

PROBR

RAT(I)

RSOL
T
D

ALOSM

ALOSP

Y3(X,H1,B1)
Y4(X,H2,B2)
PL

X1¢

X2C

YI

Z1

104
Meaning

Vertical component of the reflected direction
Horizontal component of the reflected direction
Angle of reflectance measured from the vertical
Cosine of the local angle of incidence at the point (X,Y)
Sine of the local angle of incidence at the point (X,Y)
Local angle of reflection
Local reflection coefficient
Random number selected fof R decision .

Indicates direction of reflektance; that is right to left’
or lefr to right

Ratio of the number of particles in compartment I and the
maximum number of particles in a compartment

Reciprocal of SOL
Slope of symmetrically positioned V-groove
Complement of T

Maximum wave length of energy bundle when the angle of
incidence is less than TD normalized to O

Maximum wavelength of energy bundle when the angle of
incidence is greater than TD normalized to O

Equation for rounded portion of left side normalized to o
Equation for rounded portion of right side normalized to o
Limiting value of P for regular surface configuration

Intersection of the left rounded portion and the line
Y = 0 (irregular surface configuration) normalized to a

Intersection of the right rounded portion and the line
Y = 0 (irregular surface configuration) normalized to. a

Horizontal compoment of the direction of the local incidence

Vertical component of the direction of the local incidence
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. no
( srarr ) e
\rP(I).KPP(I).
etc,

READ
SOL,SO0A, P
PSI, AN, AKX

N

yes

END

Call COUNT

WRITE
SOL,SO0A, P

, Call SELEC
I =20 . yes

no

Cal. RTOL

COMPUTE

SOL, SOA ‘
SET I =1+ 1

Call PENET
Call SURF1
J | -

Call APROB

Call LTOR

Count it

Call FRECO
eft ,
Side First Call XYLFT 1
o
’ Call REFLT
no
Call XYRIT |—o J=0 |—dJ=J+1 Call SURF2

Figure €~1, Flowchart of MCR,



MAIN PROGRAM - - - MCR
DIMENSIGN KP(40) HRAT(40) HKPPI10)
READ (143) SDA,SOL,P,PSIsANyAK
3 FORMAT {6f10.0)
READ {142) IX,N,NCOy,NCOl ,ASF
2 FORMAT (416, F6.0)
WRITE (345) SOL, SOA, PSI ,P,yAN,AK
S FORMAT (1H1l, 6X, *SIGMA / LAMDA =%, 1F12.5, / 4 7Xy 'SIGMA / A

1 =ty 1F12459/¢7Xs* INC-ANGLE =%, L1F12.59/97X,'P
2 =%y 1F12.5¢/7X+*REF. [INDEX =%,1F12.5, /4 TX,"ABS. INDCX
3, 1Fl12.5)
SOoL1 = soL
SDA1 = SOA
AM = 0.0
PSIMS = PS1 - 5.
PSIPS5 = PSIL + 5.
PH = PST / 57.29578
PSI1 = PH
DO 1 I = 1040
KPLI) = 0
1 CONTINUE
DO 15 J7=1,10
KPPL{JT) = 0
15 CONTINUE
KLOST = 0
KTRAP = 0
K1R = 0
K2R = 0
K3R = 0
K4R = 0
DO 955 1 = 1eN
vSOoL = 0.
VSOA = 0.

DO 7 IIl=1y2
CALL GAUSS (IX, SOLl. AM, VI
VSOL = VSOL + V¥V
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CALL GALSS (IX, SOAl, AM, VP)

VSOA = VSOA & VP*VPp
7 CONTINUE
SOL = SQRT (VSNL}
S0A = SQRT (VsSUA)
RSOA = 1. /7 SOA
CALL PENET (SOA, SOL, PH , HOS)
HO = HOS*P
CALL SURF1 (SUA, XDA, IX, Hly H2, Bl, B2y Sly S2y X1, X2,

1 X3, TG, T2C, ANX, ANY, P, Y28, Y1B, RSOA)
CALL APFOQB (SOA, P, HO, XSRl,s XSR2, XP,YP, Sl, PH, Bl, Hl, RS0A,
1 vY1lB, Xl, Y2B, B2, H2y, X3y S2, PROBl, ASF)
CALL RANDU (IX, 1Y, PROB)
IX = 1Yy
IF {PROB - PROBl) 10,10,20
10 CALL XYLFT(PH,y Sly IXe XP, YP, XSR1ly Y1B, Py SOA, X1y Hly HO,
1 Bl, RSCA, X, Y)
GO T0O 30
20 CALL XYRIT(PH, IX, HO, Y2B, P, RSOA, X3, XSR2, S0A, XOA, HZ2, B2,
1 X,Y)
30 DO 888 J = l+4
CALL SURF2 (X,Y.P, SOA, 1IX, X1, Hl, Bls Sl, ANY, ANX, B8NY, BNX
1 o XOA, X34 S2y H2y 824y RS0QA)
CALL REFLTY (BNX, BNY,PH , RX,RY,PSIR)

CAN = ABSI{RX#BNX + RY#BNY)
IF (CAN - 1.} 80+81,81
81 PSIF = 0.0
GO 70 53
80 SAN = SQRT(1l. - CAN*CAN}
IF{CAN) 51452551
52 PSIF = 90.
GO 10 53
51 PSIF = 57.29578 * ATAN{SAN/CAN)

53 CALL FRECO (AN, AK, PSIF,BNX, BNY, R}
CALL RANDU (IX, 1Y, PROBRI}
Ix = 18 4

L0T



31

32
41

42
43
44
45

100

101

102
103

104

46
47

48
888

9399
943

945
944

IF (R - PROBR)
KLOST =
GO TO 9969

IF (XO0A - X)
CALL RTOL [ SDA,

1 PSIR, RSOA, Y1B.

K =
GO 10 44

KLOST =
GO TO 999

CALL LTOR { SDA,

1 PSIR, RSOA, YiB,

K =

31432432
KLOST + 1

41942443 _
Py X9 Yy XDA, S1, S2y Hl, H2, Bl, B2, X1, X3,
Y28)
1

KLOST + 1
Py Xy Yy XO0A, S1, S2, Hl, H2, Bly B2, X1, X3,

Y28B)
2

IF (Y = P ) 46446445

CALL SELEC (KP

PSIR,PSIM5, PSIP5, KPP)

IF (U - 2) 100,101,102

K1R = KIR + 1

60 TO 999

K2R = K2R + 1

GO TO SS9

IF (J - 4) 103,104,104

K3R = K3R ¢+ 1

GO T0 999

K4R = K4R + 1

GO T0 999

IF (K-1) 47447,48

PH = -{PSIR + 180.) / 57.29578
GO 10 888

PH = (180. = PSIR) / 57.29578
CONTINUE

KTRAP = KTRAP + 1

PH = PSI1

IF (I-N) 9434948, 948

IF (1 — NCO)

9355,9459945

WRITE (3,544) NCO

FORMAT(//7/4 SXy

*AFTER'y 1T7,* BUNDLES, THE REFLECTED DISTRIBUTIO

801



IN IS AS FOLLOWS®)
GO YO 930

948 WRITE (3,547) N

947 FORMAT ( ////7+ 5Xy YAFTER A TOTAL OF*, I7, * BUNDLES THE FINAL D
LISTRIBUTICN IS")

NCO =

S30 WRITE (3,901)

WRITE (3,900} (KP{JI}sJI=1:35,2)

CALL COUNT (KP4RAT)

WRITE (3,903) (RAT(I{) o 1I=1+435,2)

WRITE (3,902)

WRITE (3,9C0) (KP{J2) 4 J2 = 2436,2])

WRITE (3,903) (RATH{III) » [11=2,3642)

WRITE (3,6961) PSIM5,PSIPS, (KPP(J3), J3=1,10)

961 FCRMAT [/, 2F10.5, 1018, /)

WRITE (3,958) KLOST,KIR, K2Ry K3R, K4R, KTRAP
NCO = NCO + NCOl

955 CONTINUE

900 FORMAT (7x , 1816)

901 FORMAT(' REGIONS® y4X¥1%y5X"3%, 5Xy'5%y 5Xe" 7%y SX9*9%',4Xy"11°
Le4Xe®13%, 4Xs%15%, 4Xe'17%, 4Xy'19', 4X,"%21%, 4X,%23"%, 4X,'25%', 4X
299277,y 4Xo%29%, 4Xe'31%', 4X,'33", 4X,'35')

902 FORMAT (1HO ,'REGIONS®y 4X,%2%, S5Xs%4%, 5X9'6%y 5X43'8%y 4X,'10",
14Xe212%, 4Xe%14%9 4Xe%'16%y 4X,%18%, 4X,4%20%, 4X,4'22%, 4X,'24', 4X
29%26%, 4X4'28%y 4X9'30', 4Xy'32%, 4X,%34%, 4X,'36%)

903 FORMAT(7X, 18F6.3)

998 FORMAT (1k0, 3X, *LOSS NUMBER THROUGH THE SURFACE*', 19,/,

1 4X, 'ESCAPE NUMBER AFTER 1 REFLECTION *, I7,
2 4X, *ESCAPE NUMBER AFTER 2 REFLECTIONS', 17,
3 4Xy "ESCAPE NUMBER AFTER 3 REFLECTIONS®, IT7,
4 4Xy 'ESCAPE NUMBER AFTER 4 REFLECTIONS®*, 17,
S 4X, *NUMBER TRAPPEOD IN THE V-GROOVE®' , [10)
CALL EXIT
END

N

N NN N

601
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20

30

40

100
101
102

50

60

10

SUBROUTINE PENETY (SOA,SOL,P + HOS)

T = ATAN(2 .%*S0A)

RSOL = 1. /7 SOL v

 §1) = 15707963 - T

IF {(TD - P } 40,410,110

ALOSM = (SQRT{1l. + 4.%SOA*SCA)) / (4.*%¥S5S0A%*S0A)

IF (RSOL-ALOSM) 20,20,30

HQS RSOL * (SQRT{1l.0 + 4, *SOA*SOA) - le)

GO TQ 90

HOS le — RSOL #+ SQRT{RSOL*RSOL - (l./(2.%S0A})
1 *(1. /(Zo*SOAi))

60 TOQ 90

BETA = 0.5% (P- (TD))

A = COS(BETA)/((COS(BETA) + 2.*SOA*SIN(BFTA))
1 & CCS(T) )

8 = - COS{P+T) /. COSIP-T)

X088 = Bx((SIN(BETA) / COS{BETA)) + 1./(2.%S0A))
D = {X08 = (le/(2.%50A)))*%2 + 1.

E = (SINIBETA) * {2.%X0B - 1l./SOA) / COS(BETA}) + 2.
F = le —(A%A /7 (COS(BETA)*COS{BETA)))

G = A*E -2.%(A%*B /{ COS(BETA)*COS(BETA)))

H = D — B%E + B¥*B/(COS{BETA)%*CQS(BETA)}

ROOT = G*¥G + 4.%F%H

IF (ROOQT) 100,100,101

ALOSM = —G/{2.%F)

GO T0 102

ALOSM = (-G + SQRT( RQOOQTY Y)Y /7 (2.%F)

IF (RSOL - ALQSM) 50,50,60

HOS = {RSOL*=A ) + B - RSOL

G0 10O 90

Z = le /7 (2. * SOA)

ALQOSP = Z / COS(P)

If (RSOL - ALOSP) 70,70,80

HOS = RSOL * SIN(P) + 1. = (COS{P)/SOAY* SIN(P)-RSOL

1 + COS(P}%* SQRT{ COS{PI*{{2.% RSOL*SBA) - COS(P))/ [(SDA%*SDA))
GO 10 90

011



80
1

85
90

HOSP =

le — RSOL + SQRT(RSOL*RSOL - (1./(2.%S0A))

#(1./(2.%S0A)})

PC =
IF{(P-PC1E5,85,70
HOS =
RETURN

END

ATAN{2 #SOA%{ HOSP # RSOL - 1.))

HOSP
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SUBROUTINE SURF1 (SOAy XOA, IXs Hle H2y Bly B2y Sle 52¢ X1y X2y

1 X3, 7O,
C(sS)

ALS)
Y3{XsHyB)
Y4(XyHyB)

120,

Wu hon

ANXy ANY, P, Y28, Y1B, RSOA) .
(SOA - P2SOA) / (SQRT({1l. + S*S) - 1l.)
(P¥SQRT(1le. + S%S)} - 1l.) / {(SQRT(l. + S*S) - 1.)
H + RSOA * SQRT({B¥B - Xx*X)
H # RSOA ¥ SQRT(B*B = (X = le)*{X - 1l.))

CALL RANDU (iX,1Y4X0A)

IX

-—
=

Iy

IF (XO0A — 04005) 141,3
IF {X0A — 0.995) 4,41

ANY
ANX
S1
S2
H1
H2
Bl
B2
D1
D2
X1
X2
10
120
X3
Yl8
Y28

RETURN
END

i

O O LSO LI (IR | TN L O LA (A O T T L}

XOA / SQRT(XDA*XOA + SOA*SOA)
SQRT (l. — ANYZANY)
SOA / X0A

SOA / (l. — XODA)
A(S1)

A(S2)

cis1)

c(s2)

SQRT(1. + S1%S1)
SQRT(1l. + $2%52)

sl * Bl / D1

XOA

ANX / ANY

TU*TO

1. - S2 * B2 /7 D2
Y3 (XL 4H1,81)

Y4{X3 ,H2,B2)

(441
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10
11
35

40
45

50
100

SUBROUTINE APRUOB (SOA,P , HOS,

1 Hly, RSCA, Y1B,
ANL(X)
AD1 (X)
ZIN(X]
AN2 ( X)
Z1PN{X)
AAA

F =
)

Xp

Ye

PMO1

IF (PH - PVMC1

XpP =
YpP =
IF (HGCS - v18)
XSR1 =

XSR1ly, XSR2, XP, YP, S1, PH, 81,

Xly Y2B,y B2y H2, X3, S2, PROBN,ASF)
{XSR1 = SOA*(P — HOS)®SIN{(X} / COS{X))
l. = XSR2 + XSR1 - ANL{(X)
FEANLIX)} /7 (F2=ANL(X) + ADL(X))
(xe — SCA%(P — YP)IESIN(XY / COS(X})
FEAN2IX) /7 (FXANZ2(X) + ADL(X))
ASFESIN(PH) *SIN{PH) /{COS{(PH) * COS(PH))

EXP{AAA)
0.0
0.0

1570796 — ATAN(S1)

596496
81 * COS{PH)

Hl ¢ RSOA ® SQRT (81*%Bl — XP&XP)

192+3
SQRY {(Bl1*B1 -

(HOS - H1)*(HOS -~ H1)*SDA%*SDA)

B2#B2 —~ [HOS - H2)%(HNS - H2) * SNA * S0OA

— HDS) / S2

GO 70 8

XSR1 = X1

GO 70 8

XSR1 = (L. - HOS) * SOA / Sl
[F (HOS - Y28) 10,420,430

ROOT 2 =

XSR2 = l« = SQRT{ROOT2)
G0 70 11

XSR2 = X3

G0 To 11

XSR2 = le — SOA*(1l.

IF (PH — PMOLl) 35435440

PROBN = ZIN(PH)

G0 TO 100

IF (XSR1 - XP) 45945,50

PROBN = ZIN{(PH)

G0 Y0 100

PROBN = Z1PN(PH)

RETURN

END
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SUBROUTINE XYLFT (PSy S1, IX, XP, YP, XSR1ly Y1B, Py SOA, X1B8,Hl,
1 HC,y Bly RSCA, X, Y)

PSIC = 1.5707963 — ATAN(S1)
CALL RANDU (IX,[Y,RA)

IX = 1y

AB = COS(PS) /7 SIN(PS)

IF (PS = PSIC) 5,646

111 = 1

IF (XSR1 = XP) 5,7,7

XSR = Xp

HOS = YP

GO TO 8

HOS = HO

XSR = XSR1

IF (HOS — Y18B) 1:8,8

Y2MY} = ABXXSR + (HOS - P)*S0OA
YQMY1 = AB%X18 + (Y18 - P)*S0A
RBAR = YQMYL1 / Y2MY]

111 = 2

IF (RA - REAR) 8+20,10

COA = SOA*{P — H1l) + RA*{AB%*XSR + (HOS — P)*%S0OA}
D = 1« + AB%*AB

ROOT = Bl1¥B1%*D — COA*COA

IF (ROOT) 20,20,21
IF {IIl - 2) 23,22,22

X = 0.0

Y = P

Gd YO 100

X = X18

Y = Y18

GO 10 100

X = (AB*COA - SQRT(ROQGT)) / D
ROOT2 = BL¥Bl — X*X

IF (ROOT2) 20,20,50

Y = H1l + RSDA*SQRT(ROOT2)

G0 YO 100
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10 X
1 7/ (AB — S1)
Y
100 RETURN
END

((P — 1.)%S0OA + RA®{AB%®XSR + (HOS - P)*S0DA))
~S1*X*RS0A + 1.

1A



1

8

9

10

20

21

300
100

SUBROUT INE XYRIT (PS. IX, HOS, Y28, P, RSOA, X2By XSR, S3A, XO0A,
1 H2, B2y X, Y)

AB = COS{PS) 7/ SIN(PS)

CALL RANDU (IX,IYsRA)

IX = Iy

IF (HOS - Y28) 1,10,10

Y2MY1l = (P — HOS) + AB*(l. - XSR)*RSOA

YQMY1 = {28 - HOS) + AB*(X2B — XSR)#RSOA

RBAR = YQMY1 /7 Y2MYl

IF (RA - REAR) B,9,10

X = (SOA%X0A + (l. — XOA)#(AB*¥XSR + HOS#SOA + RA%
1 (AB*(1. - XSR) + SOA®(P ~ HOS))))/ (SOA + ABx{1l. - XOA))

Y = lo - ‘10 - X) / (lo - XDA)

GO 10 100

X = X2B

Y = Y28 -
GO 70 100 o
COA = SOA*(HOS - H2) + AB*XSR + RA%([AB*(l. - XSR) +
1 SOA*{P - HCS))

PARTL = AB*COA + 1le.

PART2 = COA*COA + 1. — B2%B2

0 = l. + AB#AB

ROOT = PARTL*PART]1 - D*PART2

IF {ROOT) 20+20,21

X = l.

Y = P

60 TO 100

X = (PART1 — SQRT (ROOT)) /7 D

ROOT3 = B2%#B2 - {1. - X)*{l. - X)

IF {ROOT3) 9,9,300

Y = H2 ¢ RSDA%SQRT (ROOT3)

RETURN

END



102

101

201

301

20
30

40
50

SUBRQUT INE SUR
1 BNX,XO0A,X3,
PL =
IF { P~PL) 102
IF (X3.LT.X0A.
IF {(XOA.LT.X1)
IF (X3.LT.XCA)
GO 70 9

X1C

x2C

IF (X.LT.X1C)
IF (XeLT.X2C)
GO 1O 60

X1C

IF (XeLT.X1C)
IF (X.LT.X0A)
IF (XelT.X3) G
GO Y0 60

x2cC =
IfF {X.LTaXx1)
IF (XeLY.X0A)
IF (Xe.LT.X2C)
GO 10 60

IF (X-X1 ) 10
BNX

BNY

GO TO 1C0
IF (X - X0OA) 3
BNX

BNY

GO Y0 100
IF (X - X3) 5
T2

BNX

BNY

GG TO 100

W on

o

It

]

[T

F2{ Xy Y, P, SOA, IX, X1y Hl, Bl, Sit,
S2s H2, B2, RSOA)
RSOA*(SQRT{1l. + RSOA*RSOA) - RSOA)
29,9
ANDXOALT.X1) GO TO 101
GO TO 201
GO TO 301

SURT (B1#%Bl — H1*H1*SOA*S0A)

le = SQRT{B2%B2 - H2¥H2%SOA*SOA)
GO TO 10
GO TO 600

SQRT {B1%*Bl - Hl*H1%SOA*SDA)
GO Y0 10
GO TO 600
0 TN 50

l« = SQRT{H2%B2 - H2%H2*SOA*SDA)
GO 10 10
GO TO 30
GO TO 600

110,20
X / Bl
({Y — HL) /7 B1)%50A

0,30,40
ANX
ANY

050460
ATAN{S 2)
=S IN(T2)
COS{T2)

ANY , ANX+BNY,

L11



60 BNX
BNY
GO 10
600 BNX
BNY
Y
100 RETURN
END

100

Wonou

-(1l. - X} / B2
((Y - H2)/B2)%50A

o= O
* o @
[N o Ne]

81t



30
32

33

31
34

35
100

SUBRCLTINE REFLT (YN 4ZN 4P 4RYRZ,PSIR)

YI = SIN(P]

Z1 = -COS(P)

RY = (1e=2.%YNEYNI®EYI ~ 2. %ZN*YN#Z I
RZ = =2 EYNRINEYI+(1o—2.%¥ZN*IN}*Z1

IF (RY) 30530,31
IF{(RZ) 32,+33,33
PSIR = —-{180.0 —{ATAN(RY/RZ))*57.,29578)
GO Ta 1¢Q

PSIR = ATAN(RY/RZ)%57.29578

60 10 1CC

IF {RZ) 34,435,35

PSIR = 180.+{ ATAN{RY/RZ))%57.29578

GO 70 100
PSIR
RETURN
END

(ATANIRY/RZ))*¥57.29578

611

—




120

aN3

Nani3Yy

*Z / (dd + S¥) = .|

Tdd = S¥ = d3

(727 +47Z%((d)CV)LUDSx"C+(d)2H+(d)CV} 1
/ (22242500 d)2V)IIUDSE*Z2~(d)29+(d)2V) = 144 06
0°0 = 7 g%

0¢ 0L 09
(d}SDD / (dINIS%(dINIS = 7 0%

0%4GH 40y (°06 - 1Sd} 31

((d)SUDX(d)ISUD+LdISOIx(tdIZV)ILHOSH C+(d)Z8+(d)2V) / 1

((d)S0D%(d)SOI+¢d)S0OI%((d)2cV)ILubS%x°Z~(d)2g+(d)2V) = Sy

BG6L°LS / 1Sd = d

({dINISEZIJINIS + MNUxdvVY <+ NUVaNV-((d)}8V)I180S)%6°0 = (d)28

((dINISH(IINIS - MNVaAY - NvaxNv+((d)}gVv)ILIHDS)IxG*0 = (d)ev

CHxE(NVANVR®Z)+Cx2( (dINISH(JINIS — AVXIV — NVaNV) = (d)av

(U NG ANB TSIV ENY) 023¥3 INTILINDAGNS




10

21

22

24
23

20

30
40

43

42
44

50

1

SUBROUT INE RTOL(

SOAe Py XPy YP» XOA,

Xle X3, PRy RSCA, Y1B, Y2B)

X18
X28B
PS
R
IF (YP = Y2B)5,5,
PSIL =
GO 10 7

PSIL =

Wow it n

X1

X3

PR / 57.29578
{COS(PS) 7/ SINLPS))
10

—{1.570796 + ATAN(S2)

-{1.570796 + ATAN(((1

1F (PS — PSIL) 9056,6

IF {Y1lB - YP) 24,
PSIP

GO 70 23

PSIP

GO 10 23

PSIP

AL

Q2

BE

PSIPP

IF {(PS - PSIP
XC

YC

GO 70 60

IF (PS5 — PSIPP) 4
PART1
D
RODT
IF (ROOT) 50442,4
XC =

GO T0 44
XC

YC

GO T0 60
XC

|}

20

Wi o~ onon N

21922
-1.570796

—({1.570796 + ATAN(((YP — Y1B)/(XP - X1B))*S50A))

ATAN(L(YP - H1)/ XP)*

Sley S2y Hly H2,

« — XP)/7{YP — H2))} * RSODA))

—ATAN {{{XP - X1B)/(YLIB=YP})#RSDA )

SOA)

XPEXP + (YP -HL1)*x(YP - H1)*SOA%*SOA

ATAN (Bl / SQRT(Q2 -
-(1.570796 - (BE - AL
v20,30

{SOA — YP%*SOA + R¥)XP)
R®{XC — XPI*RSOA + YP

0940,50

R¥XP - (YP — H1)%*S0DA
. + R¥R

B1¥B1%*D — PART1#PARTI
3

(R*PARTL + SQRT(ROOT)

R%#PARTY /7 D
R#{XC - XP)*RSOA + YP

0.0

B1%B1))
»

/ (R ¢+ S1)

) / D

Bl, R2,

Te1



90
111
60

10

21
22

24
23

20

30

YC

60 10 60
WRITE{(3,111)
FORMAT (5X,*
xp

Yp

RETURN

END

PR
HECK

How

le + P

o PSIL

- PS=',F10.5y 3Xy 'AND PSIL=%*,F10.5)
XC

YC

SUBROUTINE LTOR ( SOA, P, XP, YP, XOAy Sls S2¢ Hl, H2, Bl, B2,

1 X1, X3, PR,
X1i8

X28

PS

R

RSO

A, Y1B, Y2B)

X1

X3

PR /7 57.29578
{CASI{PS) /7 SIN{PS))

IF (YP - Y1B)5,5,10

PSIL
GO 10 7
PSIL

1570796 & ATAN (S1)

1.570795 + ATAN((XP/ (YP ~ H1))*RS0OA)

IF (PS - PSIL) 646,90

IF (v2B - YP)
PSIP

GO 10 23

PS1IP

GO 10 23
PSIP

AL

Q2

BE

PSipPP

iF (PS - PSIP

XC
YC
GO T0 60

24,

]

) 30

IF (PS - PSIPP) 5

21,22
1.570796

ATANL ((X2B - XP) / 1Y2B - YP))*RSODA)

1.570796 + ATAN(((YP — Y2B) /7 (X2B - XP))*SOA)
ATAN {(((H2 - YP) / {l. = XP)) * SDA)
(H2-YP)*{H2-YP) *SOA*S0OA + (l.-XP)*(1l.-XP)

ATAN (B2 /7 SQRT(Q2 - B82%82))

1.570796 - (AL + BE)

020,20

(SOA — YP%SDA - S2 + R#XP) / (R - S2)

R*{XC — XP)*RSCA + YP

0,940,440

44\



40 PARTI l« + R¥R%XP — (YP =~ HZ2)%*R*S0OA

D = RXR ¢ 1. )
PARTZ2 = REREXPEXP + lo. — B2%B2 — 2.%({YP-H2)*R&XPxS0OA +
1 (YP—E2)%(YP-HH2)*SUA*SDA
ROOT = PART1*PART1 — D*PART2
IF (ROOT) 50942443

43 XC = {PART]1 - SQRT(ROOT)) ¢ D
GO 10 44

42 XC = PART1 /7 D

44 YC = R¥({XC — XP)*RSDA + VP
GO T0 60 4

50 XC = 1.0
YC = le + P
GO T0 60

90 WRITE(3,111) PR 1 PSIL
111 FORMAT (5X,' HECK — PS=',F10.5, 3X, 'AND PSIL=',F10.5)
60 XP = xc
Ye YC
RETURN
END

1 XA



SO0 W N

SUBROUTINE SELEC (KyPSIL,PSIM5,PSIP5,KK)

DIMENSICN K{40) ,KK(10)

1 = ABS(PSI) / S.
IF  (PSI) 1,1,2

M = 2% + 2

K{M) = K{M) + 1

GO 10 3

M = 2% + 1

K{M) = K{M}) + 1

IFEPSI.GT.PSIMS5,AND.PSELTPSIPS)
RETURN

MM = PSI — PSIMS + 1.
KK(MM) = KK(MM)} + 10
RETURN

END

GO TO 4

71



9
10

20

SUBROUTINE COUNT (K , RAT)
DIMENSION K(40),D(40), RAT(40)
J = 1

DO 10 1I=1,36
DIF =
IF (DIF) 9,9,10
J =
CONTINUE

CwJ) = K(J)}
DO 20 Kl=1,36

D(K1)
RAT(K1)
CONTINUE
RETURN
END

K{J) = K1}

1

K{K1)
D{KL1l}) / DtJ)

s¢l



50

SUBROUT INE RANDU{ IX, 1Y, YFL)

iy = IX * 65539

IF (1Y) 54646

IY = IY + 2147483647 + 1
YFL = IY

YFL = YFL * 0.4656613€E-9
RETURN

END

SUBROUT INE GAUSS (IX,S,AM,V)
A = 0.0

DO 50 I=1,12

CALL RANDU (IXsIY,Y)

IX = Iv
A = A+ Y
v = (A—-6.0)%S + AM

RETURN

SAMPLE CATA
Oel 0.6 10.0 0.1

1111 1000C 1000 1000 0.15

4.0

971



SAMPLE OUTPUT

SIGMA / LAMDA = 0.10000

SIGMA / A = 1.00000
INC-ANGLE = 10.00000

= 0.60000

_h_w___REF. INDEX _ ___= 0.10000
ABS. INDEX = 4. 00000

AFTER. 200 _BUNDLES, THE REFLECTED DISTRIBUVTION IS AS FOLLOWS
REGIONS 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
20 26 25 23 14 9 9 4 4 3 2 0 1 1 1 J 2 9

0709 _1.000 0.962 0.885 0.538 0.346 0.346 0.154 0.154 0.115 0.077 0.0 J.038 J).038 0.038 2.0 .0 J.)

REGIGONS 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
18 17 9 4 3 1 0 0 1 0 ) 0 o 5 9 2 b 2
0.692 0.654 0346 0.154 0.115 0.038 0.0 0.0 0.038 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2
 5.00000__15.0CCCO 59 40 20 102 50 40 50 5 60 50

__ LUSS NUMBER THROUGH THE SURFACE 5
ESCAPE NUMBER AFTER 1 RZFLECTION 193
ESCAPE NUMBER AFTER 2 REFLECTIONS 2
___ESCAPE NUMBER AFTER 3 REFLECTIUNS 0
ESCAPE NUMBER AFTER 4 REFLECTIONS [+]
NUMBER TRAPPED IN THE V-GROOVE 0

AFTER 400 BUNDLES, THE REFLECTED DISTRIBUTION IS5 AS FOLLOWS
REGIONS 1 3 5 7 9 11 13 15 11 19 21 23 25 27 29 31 33 35
_48 48___ 54  __41 32 26 17 7 0 2 1 2 1 5 0
0.889 0.889 1.000 0.870 0.593 0.481 0.315 0.130 0.130 0.055 0.031 0.0 0.037 2.019 0.037 2.019 2.0 0.0
_REGIONS 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 36 36
33 24 13 12 6 1 3 0 1 ) 0 ) ) 0 ) ] 3 9
0.611 0.44% 0.241 00222 0alll 0.019 0.056 0.0 0,019 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2
5.00000 15.0CC00 100 70 60 180 70 80 130 120 120 80
L0SS NUMBER THROUGH THE SURFACE 10
ESCAPE NUMBER AFTER 1 REFLECTION 386
___ESCAPE NUMBER_AFTER 2 REFLECTIONS 3
ESCAPE NUMBER AFTER 3 REFLECTIUNS 1
ESCAPE NUMBER AFTER 4 REFLECTIONS 0
NUMBER _TRAPPEC IN_THE V-GROOVE 0

Lzl



APPENDIX b
DETERMINATION OF THE IN-SURFACE PARAMETERS

The discussion that follows is representative of only a first
approximation to determine by experimentation the parameter a and a flat-
ness parameter introduced in Chapter V.

Consider a rough surface as presented in Figure D-1. The total
macroscopic surface area is AowithA.representing the area of A0 that is
effeétively flat. Assume a uniform monodirectional radiant flux, F, in-
cident on the surface at some angle §. The increment of incident energy
that will make a contribution to the non-regular component is

dE = FdA cos y (D-1)

Thus the radiant intensity upon reflection is

. R
dy = ~ g(y;6,9) dE
where R is a reflection coefficient and g(¢;9,¢) is a‘distribucion para-
meter. So the total contribution to the radiant intensity due to the non-

regular component from an isotropic surface is

J =J\dJ =J % g(},8,p) F cos y dA

RFA 4
o A
= — 8({,6,9) (1 - Ao> cos

The energy received in the solid angle dy from the non-regular reflection

is
128



Figure D-1. Schematic nf Rough Surface

6C1
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RFA ’ A
= 8({;0,¢) cos y (1 - X;)dm (D-2)

]

E

The increment of incident energy that will contribute to the reg-

ular component is of the form of equation (D~1). The reflected energy is

then
E2 =L[pdE = pF A cos §
Therefore, the total energy received is

REAO A
e g(y;8,0) (1 - :“_o> cos § dw

+ pF A cos § 6(y - 0) O(p)

-___—__—_ -_ .EA_ .
s R = ey - —ﬂiﬂ*—zﬂl ¢ ) G+ 326G - 0 3o

If§=0andg=20

R _ ré_(' - Re(¥:4,0)dw) +_Rsmum]
o LA prT ) ot
.4 Wp- Ba&nﬁgkgléw
<. A B ;- Re(y,y,0dw (D-3)
pTr

By requiring a small acceptance angle

A .
A

o |

(D-4)
. This approximation should be quite good for metals since R= p. For non-
metals, Equation (D-4) may not be very good since R > p. The quantities
R and p are the general and ideal reflection coefficients for the material
of interest.

The determination of the quantity R from an analysis such as MCR
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must be handled carefully and at this point may be done only in approxi-
mate fashion. The actual non-regular reflected distribution is not known.

A diffuse approximation of N cos (62 + ¢2)%

is quite mathematically un-
wieldy. For the analysis that follows, a parabolic approximation will be
used. The total number of energy bundles reflected into the hemisphere

above the specimen surface is

m m
. 4 2 2
i (202 60 e e e @-5)

m
1.2288 , wm=/7 -¢

From the MCR analysis only 10,000 of the total NT were received between a
range of 6 of 90° to -90° and the range of ¢ of 2.5% to -2.5°. Changing
the ¢ limits on equation (D-5) defines N to be approximately 105. There-
fore NT is approximately 1.2 X 105. Using the data from Figure 5-6, ap-
proximately 6,500 energy bundles were received about the regular reflection

angle (i.e. 1,500 from the non-regular component and 5,000 from the regu-

lar). Thus

= 6,500 .
- 222 -
R = 125,000 0.052

The reflectance of nickel in the wavelength region where this data was
taken is of the order of 0.8.

A = 0.065A
o

Thus for the particular example presented, approximately 6% of the total

area of the surface is contributing directly to the regular component.
As stated previously, this analysis is a gross approximation and

probably somewhat premature. That is, this research was conducted so as

to aid in the development of a more general theory of reflection and this
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coming theory must be used to carry out an analysis of the form presented

here.



