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PREFACE 

The advent of artificial earth satellites has made the subject of 

satellite antennas a very important one. It is difficult to experi­

mentally ·design such antennas because of the difficulty of duplicating 

the ionosphere in a laboratory . Therefore theoretical examinations of 

antenna paramatets such as the -current distribution and impedance have 

been undertaken by many people. This thesis contains a theoretical 

treatment of the current distribution on an infinite .antenna. It is 

found that the current decays fast enough that the distribution on the 

infinite antenna would be a good approximation to the distribution on 

a long but finite antenna. 

I wish to ·express my gratitude to my thesis adviser, Dr. K. R. 

Cook, for his valuable assistance and guidance during my doctoral studies. 

I also wish to thank Mr . Lorens. Bearce of the Naval Research Laboratory 

for his advice and support in the form of a contract. Others who have 

helped me .are Bruce Edgar and Robert Buchanan with many illuminating 

conversations, Dr. R. G. Mcintyre with whom I learned something -about 

functional analysis, and the other members of my advisory comnittee, 

Professors. W.. ,·L. Hughes, R. L. Cummins, and L. W. Johnson, with advice 

and encouragement t hr oughout my doctoral studies. 
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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem. Within the past decade considerable 

interest has been generated in the use of cylindrical antenna structures 

for diagnostic techniques as well as connnunication systems for satel-

1i tes orbiting .in the ionosphere. The cylindrical antenna has proven 

to be an excellent tool for diagnostic experiments designed to provide 

experimental data describing certain parameters of the upper ionos-

phere. However, in order to make quantitative interpretations of such 

data, certain parameters of the antenna must be accurately known. In 

general, these critical parameters rely on one cqnnnon bit of infor-

mation, that being the current distribution existing on a cylindrical 

antenna when situated in an homogeneous anisotropic plasma. When used 

as a diagnostic or conununication tool, accurate information must be 

available as to the input impedance of the antenna structure, which in 

'-
turn depends on the current distribution. In particular it is desired 

to know how the impedance of a dipole antenna varies with length of the 

antenna and with the plasma parameters. This is a very difficult prob-

lem, especially when it is realized that no completely satisfactory 

solution has been found in free space when the dipole is longer than 

about one-half wave length. Therefore one is led to examine a simpler 

problem in the hope that it can be solved to some order of approxi -

mation, and that this solution can be extended to obtain an estimate of 

1 



the dipole impedance. 

It is basic to the solution of boundary value problems in antenna 

theory that the current distribution in the antenna and the electromag­

netic fields external to the antenna are uniquely determined by each 

other. The more .conunon approach is to assume a current distribution 

and find a solution to the inhomogeneous Helmholtz equation by the 

Green's function - Fourier Transform techniques. This is a powerful 

method and has yielded many satisfactory field solutions for particular 

problems. It should be kept in mind that this method is not exact 

insofar as the assumed current distribution may not be exact, and the 

·integrations may involve approximations. 

2 

The method o·f first solving for the fields from the homogeneous 

Maxwell•s equations and the boundary conditions at the antenna and at 

infinity, is more exact but also more limited. There are very few geo­

metrical arrangements which admit exact solutions to the homogeneous 

Helmholtz equation, since most arrangements do not fit entire coordinate 

,surfaces. One such entire coordinate surface is the infinite circular 

cylinder. The appropriate cylindrical coordinate system is shown in 

Figure 1. 

Thus it appears that the infinite antenna is the preferred structure 

to consider. An infinite antenna is an infinitely long perfectly con­

ducting cylinder with a prescribed electric field located in a finite 

slot, as in Figure 1. The model to be .chosen for the ·ionosphere is an 

anisotropic, incompressible plasma, as discussed in Chapter II. Losses 

in the plasma do not alter the system of equations to be solved, so 

are included, except for certain explicit results which are more easily 

obtained if the losses are made zero. Because of the separability of 
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the differentia1 -equations involved, the antenna is chosen aligned with 

the ·earth•s magnetic field. 

x 

E = 0 z 

z 

R 

= fdcp, z) 

Figure 1. Infinite Antenna in Three 
Coordinate.Systems. 

The inhomogeneous wave equation fer this medium is derived for 

sources composed of arbitrary electric and magnetic currents and charges 

in Chapter II. However, the-electric 'field distribution in the finite 

slot is taken to be part of the boundary-conditions, so that the 'Wave 

·equation for the ·infinite antenna problem becomes an homogeneous 

fourth-order di.fferen:t1a1 equation. That is, all of the source· terms 

which make .the wave· equation inhomogeneous a.re set equal to zero. · The 

·finite slot is further specialized in Chapter III to be a narrow cir-

. cumferential slot with only a longitudinal electric field in the slot. 

The problem con~idered in ·this re~earch is that of finding the 

,electromagnetic ·fields which satisfy the wave equation of the medium, 



boundary conditions on the antenna, and the boundary conditions at 

infinity. This simplified problem is subject to analytic treatment, 

and approximate ·expressions for the ei.ectromagnetic fields near the 

antenna but some distance from the source are derived in Chapter IV. 

Finding the impedance from a known electromagnetic field distri­

bution is really a separate problem ·from finding the fields; however, 

the basic approach which should be taken is outlined at the close of 

Chapter v. 

1.2 Previous Work in the Area. The input impedance of an arbi­

trarily oriented, long cylindrical antenna in an anisotropic homo­

geneous ionosphere has been analyzed recently by several investigators 

(Katz in, 1961; Brandstatter, 1964; Ament, 1963, 1964). All of these 

papers have .the disadvantage that extensive numerical integration is 

necessary to obtain fairly accurate results. Also, these papers have 

bypassed the difficulties of theoretically determining the current dis­

tribution by assuming a sinusoidal distribution with a particular wave 

number. Their results will therefore remain in question until it can 

be shown that the assumed distribution is close to the actual. 

4 

In Brandstatterts work it was assumed that, due to the anisotropy 

of the external medium there should be two sinusoidal current distri­

butions, linearly superimposed, on a cylindrical antenna, and the wave 

numbers chosen for the distributions were those associated with the 

ordinary and extraordinary plane waves propagating in a direction paral­

lel to the axis of the antenna. Ament originally chose to use an 

"average" wave number, assuming only one dominant mode for the current 

distribution on the antenna. However, in the 1963 paper, Ament found 



another wave number through a var iat ional formulat i on of the impedance 

of the cylindrical dipole. These assumed wave numbers will be dis­

cussed in Chapter IV. 

The possibly · s i mpler problem of an arbitrarily oriented electri­

cally short cylindrica l antenna has received a great deal of attention. 

Only a few of the more recent papers are mentioned here. 

Balmain ( 1963, 1964) and Bla i r ( 1964) independently solved the 

quasi-static differential equation for electromagnetic fields a4jacent 

to the antenna, and obtained closed form sol utions for the input imped­

ance, va li d for most frequencies below HF. 

5 

Stor ey (1963) disc~ssed the design of a cylindrical antenna which 

was used on an Aerobee ionospheric probe. His optimum design was based 

on the effect tne ionospheric particles would have on the antenna im­

pedance. 

There has been some concern shown about a certain "infinity 

catastrophe" in the impedance of a small dipole by Staras (1964). This 

and other qqesti"<ims . about the validity of the formu l ation of the prob­

lem have been raised by Felsen (1965) and de Wolf (1965). 

1.3 Outline of the Method of Solution. The pr imary problem under 

consideration is the determinat i on of the exterior fields produced by 

a specified f i eld di str ibution in a s l ot in the wall of a perfectly 

conducting circular cylinder, surrounded by an anisot ropic pl asma. The 

same inf i nite antenna problem, except for a medium of free space, has 

been considered by Papas (1949), Silver and Saunders (1950), and North­

over (1958). The same general approach will be fo l lowed here, although 

the anisotropy of the medium for ces some phases of the problem to be 
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treated differently. 

Basically, the approach is to construct a solution of Maxwell• s 

equations that assumes the prescribed value of the tangential electric 

field over the cylinder and that satisfies a radiation condition at 

infinity. The ·radiation condition can not be expressed simply in terms 

of "outgoing waves" at infinity in the anisotropic case. This is quite 

in contrast to the case of isotropic media, and the discussion of this 

topic in Chapter III forms an important part of this paper. 

The procedure is to find basic sets of cylindrical waves, or eigen­

functions of the homogeneous wave equation to be developed in Chapter 

II, which satisfy the radiation condition at infinity. These eigen-

functions generally do not also satisfy the boundary condition on the 

cylinder so a superposition is required. Both the t::prtgential electric 

field over the cylinder and the field in space are synthesized in the 

fonn of a Fourier integral representation. The coefficients involved 

in this representation are known for the surface field. The coef­

ficients of the representation for the space field are determined by 

the requirement that its tangential components at the surface of the 

cylinder shall reduce to the Fourier representation of the field pre­

scribed over the surface. 

Once the representation for the field in space is completely 

specified, the next step is to evaluate the integral. This type of 

integral is usually treated by asymptotic techniques, with results 

valid over certain restricted ranges of the parameters. One may attempt 

the saddle point method, used by Papas (1949) and Silver and Saunders 

( 1950), or the branch cut integral method, used by Northover (1958). 

The branch cut method is used in this paper primarily because the 



saddle point is extremely difficult to determine, and even if found 

would be difficult to use in obtaining a solution. 
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CHAPTER II 

DERIVATION OF THE WAVE EQUATION 

2.1 The Permittivity·Tensor. The equation relating .the ·mot;ion of 

electrons in a plasma to the impressed electric and magnetic fields can 

be·written 

where: 

.Ly -
dt -

.Y. = velocity of electrons 

n = electron density 

m = electron mass 

q = charge on electron 

v = collision frequency 

(2.1.1) 

Equation 2.1.1 is called the momentum transfer equation and it 

and two similar equations for ions and neutral particles are necessary 

to fully describe .the 0plasma. · A number of approxiinations are usually 

made at this point: to get a simplified version.of Equation 2.lol. For 

the·particular ,case under consideration, these are as follows: 

1. It is assumed that the effects af ions and neutral particles 

are negligible, so that only Equation 2 .1.1 of t;he system 

of three·momentum transfer equations need be considered, 

2. Equation 2.1.J!. is linearized by assuming that the .static 

magnetic 'field is much larger ·than the impressed tlme varying 

8 
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field. That is, ]. is approximately given by .Jio, 

3. It is assumed that the VP term is negligible. This amounts to 

ignoring the compressibility of the plasma and is an useful 

approximation only if the plasma is not too dense or not too 

hot, 

4. It is assumed that steady state has been reached, so that all 

the variables have an exp(iw t) time variationo 

These are connnon assumptions, and are discussed in detail in a 

number of plasma physics books, including Uman ( 1964). 

After applying these assumptions, Equation 2. L 1 becomes 

iu.«n .Y, == q f + q .Y, X .!10 - ·vy (2.L2) 

Equation 2ol.2 may be solved for y in terms of I· 

(2.1.3) 

where 

v + iW 
(.l) 

0 
rv + i w)'= + a ( \) + iW) 4 + wa w \ g g 

/\ (2. 1.4) y == 

- w \) + iW 0 
( \) + iw)a + wa ( \) + iw)2 + wa 

g g 

0 0 1 
\) + iW 

One of Maxwellos equations is 

(2. LS) 

where .:Lis due to,the motion of the electrons in the plasma, and is 

related to the impressed electric field by 



\ 

. na 
. J = nnv = .ll9.... I'> • E 

- ;.;i.:. m Y - (2.1.6) 

Combining Equations 2.1.s and 2.1.6 gives 

f" + ria"v 
'v x .!! - iW e0 f I - - J • ! = 0 

iW e0m (2.1. 7) 

The t-erm in brackets in Equation 2.1.7 is called the,relative 
I 

permittivity tensor, and is usuk!ly wdtten 

A 

K= iKu 

0 

where ·for a lossless plasma 

Ku 

K.33 

where 

0 

0 

0 

= 1 - X .. 
1 i_ ya 

= 
1 

= l -

and 

XY 

-

x 

ya 

W. 
y = ....& w 

with w = e; (the,electron plasma p 0 frequency) 

qB9 
(the ,electron cyclotron w =~ g m frequency) 

(2.1.8) 

(2.1.9) 

(2.1.10) 

(2 .. l.,11) 

(2.l.13) 

(2~1 .. 14) 

10 
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The effects of collisional damping can be incl uded by replac ing 

x by x 
1 - iZ and y by 

y 
( 2.1.15) 

1 - iZ 

where z \) 

-
(J) 

(2.1.16 ) 

It should be pointed out that a plasma always has some loss, and 

a valid model for a plasma should include these losses. This will get 

rid of some physically unrealistic mathematical phenomena that arise in 

problems concerning lossless plasmas. This means that the term \J should 

be ,carr ied along in all the analytical expressions, although it is 

permissible to let it be arbitrarily small in the final result. It is 

somewhat easier, however, to do as much algebra as possible for the 

lossless case and then use the change of variable in Equations 2.1.15 

to introduce losses into the system. This will be the approach taken 

in thi s thesis. 

2.2 Wave Equation for an Anisotropic Plasma with Sources. 

Maxwell•s equations in an anisotrop i c medium for arbitrary electric 

and magnetic ·currents and charges may be written. 

,'\ 

'ii x H = J + iW €0 K • E 
- -e 

'ii x E = J - i W µ o H 
- -m 

( 2. 2. 2) 

(2.2.3 ) 

'ii • (2.2.4) 

The common factor exp ( i w t) has been suppressed in the above 

equa tions. The ,subscript e refers to electric sources whi le the 
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subscript m refers to magnetic sources. In a temperate plasma with the 

static magnetic field aligned with the z axis, the relative permittivity 

" tensor K is given by Equation 2.1.8. The procedure to be used in this 

chapter for separating the fields into their components and obtaining 

a wave equation satisfied by one field component will not work if the 

static ·magnetic field is not aligned with the z axis. It is always 

possible, of course, to choose the coordinate system such that the 

static magnetic field is aligned with the z axis, and so the derivations 

in this chapter are always valid. Solutions to the wa've equation to 

be der ived may be very difficult to obtain, however, unless the con-

·ducting surfaces and sources possess rather simple geometrical relation-

ships to ·the axis defined by the static magnetic field. This point 

wi l l become more ·evident later. 

Maxwell•s equations will now be manipulated to obtain the differ-

ential equation satisfied by one component of the electric or magnetic 

fieldso Once this component is isolated, the other five field compon-

ents may be obtained in terms of it without great difficulty. 

It will be convenient to separate the vectors and vector operators 

into their transverse and longitudinal compqnents. 

E = E + E a - -t z -z ( 2. 2.5) 

H = l!t + H a z -z (2.2.6) 

'i1 'i1 + 0 
= a oz t -z (2.2.7) 

With this notation 

(2.2.8) 
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where 'vt x a = 0 because a is not a function of the transverse co--z -z 

ordinates. 

" It can be shewn·that the elements of K, Equation 2.1.8, are invar-

ient under the transformationf:J;'om cartesian coordinates to.any ortho-

gonal cylindrical coordinate.system with the same z axis. A coordinate 

system is chosen such that one transverse axis is parallel to !t and 
I\ 

the ·other transverse axis perpendicular to !e Then the ,term K • ! 

can be·written in matrix form as 

Ku. -iKu 0 E -t K:1..1.!t 

" (2.2.9) K ~ != iKu K.1..1 0 0 iK.12!t 

0 0 K33 E K3Jf; 
z z 

and in vector fo:i;-m as 

A 

K • E = K, 1 Et + iK.12a x Et+ K33E a 
- - - -z - z-z 

(2.,2 .. 10) 

The transverse portions of Equations 2.2.l and 2.2o2 can now be 

written as 

o~ 
- a x ('v E - :;:---) = J ' - iW µ.oH -z t z vz -tin -t 

while.the longitudinal portions are 

(2.2.13) 

'vt x !t = a [~ iw µ 0 H + J J -z z zm 
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Equations 2.2.3 and 2.2.4 become, after some-simplification 

oH 
v ·ff+..:...!= 

t --t: oz 

oE p 
~1. 'i\ • ~· + iK1.2Vt • .!z x ~ + 'K33 oz z = -;! 

The next step is to eliminate~ and l!t from these-equations, 

leaving two equations in two unknowns, E, and H. This is not difficult z z 

but is·rathe;i:--tedious, so .several steps will just be-outlined. Taking 

the·cross product of .!z and Equations 2.2.11 and 2.2.12 and th;en taking 

the.t~ansverse.divergence·of the-result gives 

"ol!t; 
9 11 H - V • - - V • _az x !L...e + iw·1 0K1.1.l:lt • a x L t z . t oz - t -~ -z ·····~ 

(2.2.17) 

The.dot product of a with Equations 2.2.13 and 2.2.14 yields, 
-z ' 

after some.simplification, 

.!z. 9t x l!t - iW e0 K3 JE + J z ze 

= - iW µ0 H + J . z zm (2.2.20) 

Equations 2.2.15, 2.2.16, 2.2.19 and 2.2.20 may be used in Equa­

·tions 2.2~17 and 2.2.18 to eliminate.the transverse fields. Then 



~a Kfa 
(va + ~ + k~ [K11 - -]) H = 

t oz2 . Kii z 

oE 
z 
~ 

K;i.aoHz ~ P 
= --+~( e) w µ.o Kii oz oz Kii €0 

(2.2.21) 

(2.2.22) 

It will be convenient to rewrite the above two equations using 

operator notation. 

(2.2.23) 

(2.2.24) 

The .constants are 

K.1. 2K33 
a.1 ,:: .. w €0 Kii 

K.1. a 
a2 = w IJ.o Kii 

and S.1. and Sa are the tenns involving sou:rces in Equations 2.2.21 and 

2.2.22 respectively. 
.1. 

L.1. - • · This gives 

To eliminate H, operate on Equation 2.2.23 with 
z 

(2.2.25) 

15 
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Equations 2.2.24 and 2.2.25 are now combined to yield 

(2.2.26) 

If the ·assumption is made that all operators commute, then the 

last equation can be operated on by L1 and the wave equation satisfied 

l:>y the longitudinal E field for this anisotropic medium is 

(2.2.27) 

The longitudinal H field satisfies the same differential equation 

except that the -source term is 

(2.2.28) 

21 3 The Green's Function Approach. The wave equation of Section 

2.2 is in the ·form 

LE = f 
z e 

(2.3.1) 

There are two fundamental methods of solving this linear equation, 

where Lis the linear operator, f a given vector or function, and E 
e z 

an unknown vector or function. One method is to construct the inverse 

operator L-1 ; so that 

(2.3.2) 

This is the Green's function approach. The other method is to use the 

spectral representation of the operator L, as discussed in Chapter I. 

The second method ' is the one used ·.in this thesi~ and :perhaps it should 

be mentioned b:r,i.efly why the Green's . function approach was not used. 

As i,s weH kr1own; Gree.n's function G(.£, ·.t') 111ust satisfy both the .. 

~.nhomogeneous__wave equation 



LG(.£,.£')= - 6(.£ - .£') (2.3.3) 

and the boundary conditions imposed on E. In Equation 2.3.3, the z 

·vectors.£ and.£' exteJ;id from the origin to .the point of observation 

and the ·source point respectively, and 6(.£ - .£') is the three dimen-

sional impulse ·function. Friedman (1956) shows that if L can be sepa-

rated into the sum of three ·connnutative operators, one in each co-

ordinate ·variable, the Green•s function and final spectral represen-

tation can be ,constructed for L from a knowledge of the spectral re-

presentation of each of the operators into which L was separated. Un-

17 

fortunately, the ·operator L has coupled terms such as ll:02 (oil. 2 , so that 

this method of separation of variables is:·not directly applicable. One 

could get around this by defining a change of variable such that Lis 

decoupled. However, in this case .the boundary surfaces must also undergo 

this coordinate transformation. It thus appears that whatever gains 

were made ·originally by choosing a simple .cylindrical boundary aligned 

wlth the ,z axis would be lost at this point. It should be evident from 

this discussion that finding the Green•s function for this medium and 

geometry by this general approach is very difficult indeed. 

A slightly different method of finding the Green•s function, or 

at least using it to ,solve equations like Equation 2.3.2 is presented 

by Wait (1959). lb.is technique depends on the use of Green•s theorem 

which Wait wrote in the .special form 

~[G(:r., :r.•) v•E.(:r.•) - E.(:r.•) v'G(:r., .i:•)] dv• 

"' = 

\ I [G(.[, :r.•) 
s, 

oG(.£, '.£' ) 
on J ds• (2.3.4) 
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where n is the outward directed normal to the.surface surrounding the 

radiating structure. By using ·the boundary conditions on the perfectly 

conducting cylinder and those at infinity, Wait is able to write the 

explicit form of Equation 2.3.2 rather easily. However, this technique 

works only if the differential operator describing the medium is va, so 

that Green•s theorem in the form of Equation 2.3.4 can be used to advan­

tage. Th~s is not the case in an anisotropic medium. There should be 

an analog to Equation 2.3.4 for the operator L, but even if this analog 

could be found, there is no guarantee that the explicit form of Equation 

2.3.2 would follow easily. 

It thus appears to this author, after an examination of both 

methods, that the .technique of superposition of elementary eigenfunc-

·tions is easier to apply to this particular problem than the Green's 

function approach because of some-of the difficulties outlined above. 

2.4 The Homogeneous Wave Equation. For the particular problem 

outlined in the Introduction, the general wave equation for this medium, 

Equation 2. 2. 27, can be considerably simplified. First, it is assumed 

that the·external fields are produced entirely by a specified electric 

field distribution in a slot in the surface of a perfectly conducting 

infinite.cylinder •. Since there are no source currents or charges any­

where, the source terms of Equation 2.2.27 go to zero, making it a homo-

geneous wave equation. The problem is now to solve a homogeneous dif-

ferential equation with non-homogeneous boundary conditions. That is, 

with·the.boundary conditions 

LE = 0 z 



E = f1(~, z) inside the slot z 

= 0 outside the slot 

(2.4.2 ) 

(2.4.3 ) 

If it were desired to solve the other type of problem, an inhomo-

geneous differential equation with homogeneous boundary conditions, 

19 

then a source of specified currents would have to be placed exterior to 

the unslotted cylinder. This other type of problem will not be con-

sidered in this thesis. 

The .second assumption to be ·made is that all fields and currents 

have an exp(iw t -- ikz) variation. . This special t i me and z var iation 

does not really restrict the allowable spatial and time variations of 

the fields, since they can always be represented by a Fourier seri es or 

a Fourier integral, as long as they are piece-wise continuous . 

Under these assumptions, Equations 2.2.21 and 2.2.22 become 

'vaE + aE = bH 
t z z z 

(2.4 . 4) 

'vaH + cH = dE t z z z 
(2.4.S) 

where 
K33 

a -- (- ka + k~ K.a) 
K.a 

(2. 4. 6) 

ikKuw µ.o 
b = K11 

(2. 4.7) 

Kf a 
c - - k1 + k~ (K.1...1. ~ K11) (2. 4. 8) 

K1aK33 
d = ikW Co 

K11 
( 2.4.9 ) 
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Eliminating H between Equations 2.4.4 and 2.4.S gives the uncoupled 
z 

fourth-order homogeneous wave equation, 

V4E +(a+ c) vaE + (ac - bd) E = O 
t z t z z 

Since the transve:r;se Laplacian V~ is a commutative operator, the 

wave equation may be factored into the form 

(2.4.11) 

Comparing the last two equations shows that Af +A~= a+ c and 

AfAi = ac - bdo These two relationships yield the following equation 

which is quadradic in A~ 2 ~ 

Ai, a - ( a + c) Af, a + ( ac - bd) = 0 (2.4.12) 

This equation is called the dispersion relation (Allis, 1963). 

Solving for Af, a by the quadradi c formula gives 

Af,a = !(a + c) .::!: t Jca + c) 2 - 4(ac - bd) 

=tea+ c) .::!: t Ja - c) 2 + 4bd (2.4.13) 

After substituting from Equations 2.4~6 through 2.4.9, this 

equation becomes 

+! 
- 2 

(2.4.14) 
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This equation expresses the transverse wave numbers A.1 and Xa in 

terms of the longitudinal wave number k. The real and imaginary parts 

of these wave numbers determine·the propagation and attenuation of waves 

in this mediumo It may be noted that for each longitudinal wave number 

ki there are two transverse wave numbers X1, 2 (k1).. Also, it is pos­

sible ·for t..1112 to be complex when k is real, and conversely, for A~ 2 

to be real when k is complexo 

As mentioned earlier, the main object of this boundary value pro-

blem · is to find those. specific wave numbers k. which correspond·to 
1 

components of the.current distribution. The last equation will be use-

ful later when examining various possible waves to make sure they are 

physically plausible. 

2.5 The Transverse Field Components. Once a solution E ·of the z 

wave equation has been obtained for a particular set of boundary con-

ditions, the other five field components can be,found in terms of Ezo 

This is a case where the fields cannot be separated into independent: 

TE and TM modes .. There are degenerate cases, however, where the·two 

coupled second-order wave equations, Equations 2.4.4 and 2o4.5 become 

uncoupled and the possibility of independent TE and TM modes ariseso 

This would be when 1;> = d = o. From the expressions for band d, and 

the plasma parameters discussed in Section 2.1, it is seen that there 

are three conditions for which b = d = Oo 

l. Y = O (isotropic plasma) 

2. Y = = (birefringent plasma) (2 .. 5.1) 

3. X = O (free space) 
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E and H can be determined in these limiting cases from the now z z 

uncoupled second-order wave ·equa.tions. The equations in Section 2. 2 

can then be used to ;determine-the transverse fields. 

If band dare not zero, then H and the four transverse-fields , z 

can be -specified in terms·of E. This has been done by Allis (1963), z 

Likuski (1964), and Mushiake (1965), -so,a -rather brief development will 

be.given here. 

It will be-convenient to.construct a matrix equation which-can be 

solved for the transverse .components in terms o.f the longitudinal com ... 

ponents .. Two equations which are used for this are obtained by t~king 

the cross product of .!z with Equatiens 2.2.11 and 2.2.12 and realizing 

that a x a x _A= - _A. -z -z 

(2 .. 5.2) 

VE + ikEt = - iW µ 0a x .!!... t z - -z L, 

The ·seurce.current terms have been dropped from these equations 

for simplicity; however, they cause no particular theoretical difficulty 

if carried along •. The last :two equations and Equa.tions 2 .. 2.11 and 

2.2.12 may now b~ put into·matrix form. 

·--ik 0 0 - iW µ.O ft \JtEz 

U) eaK:i. 2 - ik iW CoKi.1 0 .!!t "t8z 

0 iW µo - ik 0 a x !i: a x 'i7tEz -z -z 

- iW e 0 Kii 0 w CciK.1a - ik a x~ a x "7tH -z -z . ·Z 

· (2.5.4) 
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By inverting-this matrix equation a solution.for the transverse 

fields ls ob~ained in·terms of the longitudinal fields. 

The ·.cofactor matrix is 

Au A:1.a A:1.3 A:1.lf 

Aa.1. Aaa A23 Aalf 

[A] = (2.5.5) 
A31 A32 A33 A3lf 

Alf:1. Alfa Aq.3 Alf!J. 

where 

\ 
A:1.a = A34 = k 2W eoK1a 

A1q. = •A32 = -iw e0[k~(K:1.f - Ka) -'1.,1, + ·k2K:1.:1.] 

Aa 3 = -Alj,1 = ito µ,o (k~ - k~K:1.1) 

Aa:1. = A43 = -k~W µ,0K1.a 

and the determinant is 

where 

The· inverse of a mattix is the transpose of the -cofactor matrix 

divided by the-determinant. Thus the transverse fields can be written 
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E -t 'ii E 
t z 

!!t 1 
[Al 

'vtHz 
(2.5.7) =n 

a x !t a x 'ii E 
-z -z t z 

a x !!t a x 'iJtHz -z -z 

It will be convenient to split Ez, the solution to the wave 

equation discussed earlier, into two parts, one part for each trans-

verse wave number. 

E = E + E Z Z1 Z2 (2.5.8) 

From this equation and Equation 2.4.4 and 2.4.5 it can be seen that 

Hz = h1E + h2E · Z1 Z2 (2.5.9) 

where 
a - xz d 

h. i (i 1, 2) = = = 
l b "-~ c .. 

(2.5.10) 

l 

Then from Equation 2.5.7, the transverse electric and magnetic 

fields for one of the transverse wave numbers can be written 

1[ (a-1i.~)] ir (a-"-~)] 
!ti = i5' A1.1 + A2.1 T 'iJtEzi + D lA31 + Al.j.1 T 1!.z x 'ii tEzi 

(2.5.11) 

!!ti = i[A,., + Au ( a~A: )hEzl + i[A,, + A,, ( •:"1 )]!l.z x 9 tEzi 
(2.5.12) 
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From Equation 2o4~13 it can be shown that 

a - Af = - c + Af ( 2~5 ~ 13) 

The coefficients of Equations 2~5Gll and 2~5~12 may now be 

written as 

$i = i [ A,1 

.,, 

k~Ku A~. l . 1 

(k2 .. k~K:1..1) 2 - ktKf z 

(2.,5016) 

The transverse gradient can be split into its component vectors-

in cylindrical ,coordinates. 

oE a oE 
z ~ z VtEz - a ~ + ~ -- -r or r o:p 

Using the vector relationships a x a = a and a x a = -·a. -z -r -cp -z -cp '""T 

it is now possil,:,!e to write the components of the transverse fields 

as follows~ 



oE oE yi:IE yoE 
E = S ~ + 19 za 2.. ~ .1. za 

r 3 or i~-r ocp -;-~ 

H 
r 

(2.5 .. 20) 

(2.5,.22) 

In·these equations,.each component of the transverse electric 

and magnetic fields is given explicity in terms of the longitudinal 

electric field with an exp(iw t - ikz) variationo 
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CHAPTER III 

DOMAIN OF THE WAVE EQUATION 

3 1 1 Definition of Domain, Basically, the domain of a different-

ial operator Lis that set of functions u which satisfy certain bound-

ary conditions, and are such that both u and Lu satisfy certain con-

tinuity or integrability conditions . A complete defin i t ion of L and 

its domain thus requires not only that Lu= o, for example, but also 

the conditions satisfied by u . For precise notation a different 

symbol for the operator should be used each time the cond i tions on u 

are ,changed. Usually, however, the same letter is used for the dif-

ferent i al operator under all conditions, but the boundary condi tions 

satisfied by u are always specified in addition. Friedman (1956 ) has 

an excellent discussion of this material. 

The operator equation and boundary condit i ons f or the infinite 

antenna may be written as follows: 

where 

LE = (Va+ A2)(V2 + \?)E = 0 
z t; 1 t .:z 

E (r = a) = f 1 (cp, z) inside the slot 
z 

E (r = a ) = 0 outside the slot 
z 

E (r 9 z) satisfies the radiation condition z 
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(3 .L 2) 

(3.1.3) 

(3.1.4) 



There are also, of course, the related requirements that Af and 

AJ satisfy the dispersion relation, Equation 2.4.12, and that 

E (r =a)= o. cp 
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It is evident that finding the domain of Lis equivalent to solving 

the infinite antenna problem. 

3o2 Eigenfunctions and Elementary Wave Functions of the Wave 

Equation, It will be convenient to define the eigenfunctions ezj as 

those functions which satisfy Equation 3.1 •. l, but which may not indi-

vidually satisfy any of the boundary conditions. Ac~ua!ly the eigen-

functions of primary interest will be those which satisfy the radiation 

conditions to be discussed later in this chapter. The total E field 
z 

is then built up of these eigenfunctions by summation or integration 

techniques such that the boundary conditions on the antenna are satis-

· fled. 

There are four linearly independent eigenfunction solutions to 

the ·fourth-order equation Le = o. One set of these eigenfunctions 
z 

are the Hankel functions of order n and of the first and second kindso 

e 
Zi 

e za 

e 
Z:3 

e 
Zlf 

= 

= 

= 

H( 2 )(A1r) 
n 

H(1 \Aar) 
n 

i ( w t - kz + ncp) e 

e i ( w t - kz + ncp) 

e i(w t - kz + ncp) 

8 (2)(\ar) 0 i(w t - ·kz + ncp) 
n 

(3.2.l) 

These are the only Bessel functions which represent wave motion and 

will be used here for that reason. 



The special case of azimuthal symmetry is given by n = 0 in the 

above expression. It·is convenient to choose a slot in the antenna 

such that an azimuthally symmetric electric field exists in it. The 

infinite antenna problem with this circumferential slot will now be 

solved for that portion of the fields which are azimuthally symmetric., 

In the isotropic case (Stratton, 1941) this n = 0 portion of the total 

field is the dominant part, although no similar analysis has been 

performed in the anisotropic case. This would be a good area for 

future ·investigation. 

The·slotted antenna now appears as in Figure 2, with its orien-

tation to vat"ious coordinate.systems. 

x 

E (r = z 

z 

e R 

Figure 2e Infinite Anten..11.a and Cylindrical and Spherical 
Coordinate Syste,ms. 
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The eigenfunctions of Le = O may now be written as z 

e H~.1.)P,.1.r) i ( w t - kz) = e 
Z.l. 

H~ 2 ) P,.1.r) i(w t - kz) e = e 
Z2 

(3.2.2) 

e = H~.1.)(Aar) ei(w t - kz) 
Z3 

e = H(a)(A ) i(w t - kz) 
Zi+ 

a . ar e 

Somewhat different results occur for the special case of 

(3.2.3) 

This is still a fourth-order differential equation, but now only 

two of the eigenfunctions in Equation 3.2.2 are independent; those 

containing H~ 1 )(:> .. r) and H~ 2 )(Ar). Two new eigenfunctions of the 

abo~e equations are needed to span the space or to form a complete 

set of solutions of the fourth~order operator. It may be shown by 
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direct substitution that these eigenfunctions are rHl1 \Ar) and rHf \ Ar). 

These new functions are the generalized eigenfunctions of the operator 

L (Friedman, 1956). Generalized e.igenfunctions (of rank 2) of an 

operator Mare those functions uo where Mu•/ 0 but M2 uo = o. Strictly 

speaking, rH£ 1 )(Ar) is a generalized eigenfunction of the operator L 

for A! 'f Ai and an eigenfunction for Af = Ai, but this need not be 

included in the terminology. The s.et of eigenfunctions and general-

ized eigenfunctions for Equation 3.2.3, denoted by primes, are there-

fore given by 



e1 = Z1 

e1 = za 

H~1 ) (A.r) 

H~ 2) (A.J;") 

i ( w t - kz) e . 

e l(wt-kz) 

i(W t - ·kz) e 

(3.2.4)' 

The term "elementary wave function" will now be defined as a 

linear ·sum of eigenfunctions. · For A.I f= A.i , the elementary wave 

function is 

(3.2.5) 

while ·for Af = Ai the elementary wave function is 

The ·e:xp(iw t - ikz) variation is to be understood in all field 

descriptions where H does not -explicitly appear. 
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Both of the elementary wave ·functions e.z and e~ have four unde­

termined coefficients. The specified values of Ez and Ecp on the an­

·tenna can be used to yield two relations between these four coefficients. 

·This problem thus has the connnon characteristic with other problems 

in wav~ ·motion tha.t in an infinite medium the ·wave ·equa.t-ion and the 

·boundary conditions on any conduQting.structures do not by themselves 

determine the.solution uniquely. However, any well .. formulated ma.the-

matical problem which has a phy-sical basis should possess a unique 

. solution •. Sonnnerfeld (1912) appears to be the first to recognize this 
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difficulty, and has proposed additional restrictions on the behavior 

of the waves at infinity. In isotropic problems there are only two 

eig.enfunctions in the elementary wave function, and when the Sonnnerfeld 

radiation condition is applied, one of the two eigenfunctions will be 

discarded. After a' suitable radiation condition is defined for aniso-

tropic media later in the chapter, two of the four eigenfunctions in 

the elementary wave function will be rejected, resulting in an unique 

solution. 

Two points on terminology should be mentioned here. First, the 

total field E , satisfying all boundary conditions, will be built up 
z 

of elementary wave functions satisfying the boundary conditions on 

the antenna. Second, in the literature (Harrington, 1961) the terms 

"eigenfunctions" and "elementary wave functions" are used interchange-

ably. This is satisfactory in isotropic problems, because after ap-

plying the radiation condition, the elementary wave function reduces 

to one eigenfunction. However, in the anisotropic -case it will be 

convenient to examine each eigenfunction individually for the radi-

ation condition, but the total field will be formed from an elemen-

tary wave function or two eigenfunctions. 

3.3 The Radiation Condition in Isotropic Mediar Most wave 

motion problems considered in the literature have dealt with iso -

tropic media. A number of mathematicians have examined the question 

of the proper boundary condition at infinity, the so-called radiation 

condition. It is only from this extensive groundwork laid for the 

isotropic case that one can hope t-0 define a suitable radiation con-

ditlon for anisotropic media. This i ·s not .to imply that no more work 



needs to be done concerning-the radiation ·condition for isotropic 

media. For example, Dolph (1956) outlines a number of difficulties 

which mathematicians have with the Sommerfeld radiation ·condition, 

parti'cularly wi-th normal mode theory and backward scattering by the 

Schwinger varia-tional principle,. He .then ·discusses a "Dirichlet" 

principle for the wave equation as a possible way of .avoiding the 

Somme-r·feld radiation ·condition entirely. Of course, ,this then re­

quires a complete knowledge of initial conditions-, something at least 

as dHftcul.t to work with as the radiation ·condition. 

· For the purpose.s of this thesis, the original .statement of. 

Sommerfeld (1912} concerning uniqueness may be formula.ted as follows: 

The function u is uniquely specified throughout all space if 

(i) u·.is specified at all points on the closed surface s, 

(ii) u ·has contlnuous second derivatives on and outsides, 

(iii) 'v2u + k 2u = O (the scalar Helmholtz equation) on and 

outside s, 

(iv) Ru··remains bounded a·s R~cx:,, uniformly in all directions, 

(v) R(iku + · ~)--+O as R~co, also uniformly in all directions~ 

In the last :two conditions R is the distance from any fixed 

point, which is taken to be the origin of a spherical coordinate 

system. Conditlon (iv) is Sonnnerfeld•s "condit:ion of finiteness" 

(Endlichkeitsbedingung); condition (v) ls his "radiation condition" 

(Ausstrahlungsbedingung). This ensures that at: great distances from 

the .source the field represents a divergent traveling wave. · The 

. algebraic sign betwen the two terms is for an exp(+ iW t) tlme 

33 
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variation. The function u is called the scalar radiation function. 

Usually conditions (iv) and (v) are taken together as the Sonunerfeld 

radiation condition. Atkinson (1949) appears to be the first to offer 

a rigorous proof for this statement. It seems that Sonunerfeld argued 

the validity of his radiation condition for physical or somewhat non-

rigorous reasons. It does seem quite obvious from a physical view­

point that waves should be of order 0(1/R) for large R, and that the 

waves should exhibit outward wave motion. This intuitive approach 

was probably the reason for the delay between Sonunerfeld•s original 

statement and its proof. 

There are other, essentially equivalent, ways of expressing 

conditions (iv) and (v). Atkinson, for example, proves that both 

conditions (iv) and (v) are given by either of the statements 

Re- ikR[(ik -i )u + : J-o as R-~ (3.3.1) 

R3eikR [(ik - i) u + ~] bounded as R-- 00 (3.3.2) 

The radiation condition can also be formed from vector functtons . 

The vector Helmholtz equations for~ and Bare 

(3.3.3) 

(3.3.4) 

Silver (1947) starts with these equations (actually, the vector 

Helmholtz equations including electric and magnetic sources) and 

uses a Green•s function technique to obtain the following vector 

radiation condition. 



(1) R!, R!! remain bounded as R~ oo 

Again, condition (1) is regularity at infinity, ·While .condition 

(2) ensures that radiation consists of divergent waves. 

· Wilcox (1956) was able to prove that ·regularity at infinity is 

a consequence of the divergent waves requirement so that only a 

single statement is needed. This he called the SilvermM«ller·radi-

ation condition and wrote as 

where 

R [ !,R x ('v x .!D + ik.Y, J -o as R--oo 

uniformly in all directions. 

.Y. =J .. i(w e: + ic-)! or Jiw µ~ 

(3.3.5) 

(3.3.6) 

By analogy with Sonunerfeld•·s formulation, U is called a vector 

radiation function. 
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In addition to a number of other important results, Wilcox (1956) 

proves the following .expansion theorem. 

Let£.(!.) be a vector radiation function for a region R > c where 

(R, e, cp) are spherical coordinates. Then .!L(.S.) has an (unique) 

expansion 

.!I. (.S.) 
ikR 

- L-
R 

00 

L (3.3.7) 
n=O 

which is valid for R > c, and Im k .2: o, and which converges absolutely 

and uniformly·in·the parameters R, e, and~ in any region R .2: c + e > c. 

The series can be differentiated term by ·term with respec,t to R, e, 
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and cp any number of times and the ·resulting series all converge ab-

solutely and uniformly. ·The proof .of this theorem is not given here, 

but the result will be useful later when examining yet another ·form 

of the radiation condition. 

· It might be pointed out that the Cartesian components of .!!. 

satisfy the scalar Helmholtz equation so that problems involving 

·vector radiation functions may be reduced to problems involving 

scalar wave functions. However, the additional constraint of 'il • U = 0 

must be satisfied before any arbitrary scalar wave functions u, u, x y 

and u -can be .combined to form a vector wave·function. z 

There is one subtle but important point in the hypothesis of all 

this work on the three dimensional radiation condition. That is the 

requirement that all sources and scat:tering surfaces be contained 

within a .sphere of finite ·radius. This excludes suc'h special but 

non-trivial cases as the ·infinite .cylindrical antenna and the infi· 

nite biconical antenna. This point seems to have been ignored by 

several workers in the area (Papas, 1949; Silver and Saunders, 1950; 

Northover; 1958), as they have explicitly or implicitly used the 

· radiation condition as outlined above on the infini t-e cylindrical 

antenna •. From the physical viewpoint this is probably all right: 

since it is still physically plausable that waves travel ·outward. 

However, .from the·mathematics·viewpoint, the ·relaxation of this part 

of the hypothesis may make it difficult or impossible to prove any 

theorems on uniqueness using the same general approach. 

Thus one is led to·reexamine .the whole question of uniqueness, 

in the hope that a form of the radiation condition can be found which 
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does not depend on the requirement that all sources and scattering 

surfaces be contained within a bounded sphere. Historically, the 

radiation condition has been defined by properties of the individual 

electric or magnetic fields. This has resulted primarily from physi-

cal reasoning about how these fields ought to behave, and was later 

put ·into precise mathematical form which follows closely the ·original 

-reasoning process. It appears to this author that this line of 

thinking has been carried about as far as is practicable and will not 

yield a suitable radiation condition .for either certain special cases 

in isotropic media or for more general cases in anisotropic media. 

The alternate physical approach which will be discussed next is that 

of energy stored in the fields. This is evidently at least as basic 

a consideration as that of wave motion. The radiation condition so 

deduced does not :depend on the·form of Maxwell•s equations for homo-

geneous, isotropic media. Therefore it -will be ·written for a more 

general media and specialized when .necessary to the isotropic case. 

3.4 The.Radiation Condition in Anisotropic Media. The time 

.average .complex power flow across a closed surface Sis given by 

the ·integral of the .complex Poynting Vl';:lctor over that surface 

(Harrington, 1961). 

p = f ! x 1!* • d.!i. 

s 

(3.4.1) 

The aster.isk signifies the complex conjugate value. The real time 

average power flow is given by the real part of P while the imagi-

·nary part represents energy stored in the electric and magnetic 
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fields. Applying the divergence theorem to Equation 3.4.1 gives 

J~x!!*' d!, = f9 ! x .!!* dV. 

s v 
(3.4.2) 

where 'v . ! x .!!* = .!!*. 'v x ! - ! . 'v x H~~ - (3.4.3) 

The ·curl of ! and.!!* may be replaced by - · iW .!! and (iw Q)* + J.* 

from·Maxwell•s equations. Thus, Equation 3.4.2. becomes 

d~ = f [ I w( - B !J* + ~ , Q*)] dV - fa , iJ.* dV 

v v 
(3,4.4) 

From this equation, the time-average Poynting theorem, the iden-

tification is usually made that the time-average amount of; energy 

stored in the electric field is (Harrington, 1961) 

1 !. . . W = - Re E • D* dV e 2 . - -
. v 

(3 .4.5) 

The time-average energy stored in the·magnetic field is then 

(3.4.6) 

With these ·definitions, Equation 3.4.4 contains a factor 2iw(W - W ). e m 

These equations are valid in a region where there are impressed 

current sources J.. Any current induced because ·of a finite.conduc-

tivity of the medium·is included in ]2*. In an anisotropic media 

D = e0K. ! where R is given by Equation 2.1,8. It can be seen by 

a careful inspection of Equations 2.1.8 and 2.1.4 tha·t the elements 

of R, written in matrix form as [K .. ], can be written as the sum 
lJ 
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of an hermitian matrix [h. j J plus Z times an antihermi tian matrix [a .. J, 1 . lJ 

where Z = v/w. 

(3.4.7) 

The expressions for hij and aij have been worked out and are 

tabulated in the literature (Kelso, 1964). It may be noted that if 

[h.j] is hermitian, then h .. = h*ji' which also implies that h.1.1, h 22 , 
1 1 J . 

and h33 must be pure real. Similarly, if [aij] is antihermitian, 

then aij = - a~. and a11 , a 22 , and a33 are pure imaginaryo 
Jl 

The integrand of Equation 3.4.5 can now be written as 

With the introduction of Equation 3.4.7, this becomes 

D* = €0 ~ 
i,j 

h*EE"~+z ij i j . € 0 ~ a* E E"~ 
L iJ i J i,j 

(3.4.8) 

(3.4.9) 

Since [hij] is an hermitian matrix and [aij] is an antihermitian 

matrix, some conclusions can be drawn about the sununations of the 

above equation. First, the terms h!jE .E~ are considered. When i = j 
1 1 J 

the terms are all real, since the diagonal elements h .. of an hermitian 
lJ 

matrix are always real, and since the product EiEj equals the square 

of the magnitude of Ej and is therefore real. For if j, the terms 

hfjEiEj can be paired off with hjiEjEf. Since hij = hji, it can be 

seen that 

(3.4.10) 



Therefore, it may be concluded that the first summation in Equation 

3.4.9 is pure real and hence contributes to the integral in Equation 

3 .4.5. 

Similarly, the properties of an antihermitian matrix (diagonal 

elements are imaginary; aij = - aji) may be used to show that the 

summation involving aij in .Equation 3 . 4.9 is pure imaginary . 
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For the sake of synunetry in the field equations, the permeability 

wi ll also be written as the sum of an hermitian matrix [µij] plus Z' 

times an antihermitian matrix [a1), where Z' = v, /w. 

(3.4.11) 

The real part of the Poynting theorem, Equation 3.4.4, can be 

written as 

- Re Jr. . 
v 

:f.*dV = Re f (!, x J!*) • dS 

s 

dV + Re 1w zj L_ •l/fHJ dV 

i,j 
V (3 . 4.12) 

Since the summations involving a .. qnd a!j are pure imaginar y, 
lJ 1 

i times these summations wi 11 be real, so that the Re notation in 

front of the last two integrals is redundant. This equation is in-

terpreted to mean that the real power supplied by the sources within 

a region is equal to the real power leaving the region plus the power 

dissipated within the region. It can be seen that the only contri-

bution to the absorption comes from the antihermitian parts of [Kij] 

and [µ• 1jJ. Equation 3.4.12 also shows that for Z = Z' = 0 
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(i.e. v = v• = O), the fields do not suffer absorption. 

The sum of the time-averaged energies stored in the electric and 

magnetic fields is 

(3.4 . 13) 

As shown earlier, this integral is strictly real, so the condition 

that the real part be taken is unnecessary. 

Suppose now the medium is isotropic with a non-zero conductivity. 

Then from Equation 3.3.7, and Im k > o, it can be seen that the vector 

radiation functions f and B have an exponential decay with increasing 

radial distance. It is not hard to show from elementary calculus 

that for such field variations 

J[hijE.E~ + µ .. HiH~] dV < ~ l J lJ J 
v 

(3.4.14) 

where the integration is over the entire three-dimensional space 

except for a finite region containing the sources. Thi s equation 

essentially states that when steady state conditions are r eached, 

the energy supplied by the source is offset by the energy diss i pated, 

and the total energy stored in the electric and magnetic fie l ds is 

f inite. It can be shown that this finite energy condition is equiva-

lent to the Sommerfeld radiation condition in isotropic media. How-

ever, it can also be shown that this statement results in uni que 

field representations for anisotropic media, so only the more general 

proof will be given. It will be necessary to invoke the powerful 

methods of functional analysis to handle such a problem, and a 

statement of the Uniqueness Theorem can be made after a suitable 



t~rminology has been defined. This Uniqueness Theorem is similar 

to ·one proposed by Wilcox (1963),. as well as the nature of its proof. 

Its extension to lossless media has not been considered elsewhere to 

thds author•s knowledge. 

An antenna may be considered as an obstacle O (not necessarily 

bounded) in the unbounded Euclidean space R3 so .that the region O 

is the set of all points such that O = R3 - o. Maxwell•s equations 

for time harmonic fields are 

V x _H - iW e 0K • E = J 
- -e 

· V x ! + i w µ. o.!! = J 
,n 

in O (3.4.15) 
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These equations define a linear operator L, such as the bracketed 

term in Equation 2.2.27, on a linear vector space. A linear vector 

space S has the properties that: (1) Any two,elements x and yin S 

may be added, and the result is an element z in S; (2) The operation 

of addition is conunutative and associative; (3) S contains a unique 

element called the null or zero element; ( 4) For any x in s, there 

exists an element (- x) such that x + (- x) = o. Abstractly, an 

operator Lis a mapping which assigns to a vector x in a linear 

vector space S another vector in S which we denote by Lx. The set 

of vectors x for which the mapping is defined is called the domain 

of L. The set of vectors y which are equal to Lx for some x in the 

domain is called the range of the operator. Equations 3.4.15 may be 

used to define in Sa complex scalar product. The complex vectors 

! and.!! which satisfy such a complex scalar product are said to be 

Lebesgue square integrable on n, (now the volume of integration), 
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and denoted by 12 (0). Such a linear vector space·with a complex scalar 

product is.called a Hilbert space. 

The· problem is now to find the domain of L ( the vector ! = ~ or .!!) 

where 

and 

LE = f (J ., J . ) - -e-e -m 

LH = f_(J J ) 
- '"""h -e ' -in 

nx!=O onoO 

~[hijEiEj + µijHlllj] tr{< m 

0 

(3.4.16) 

(3.4.17) 

(3.4.18) 

(3.4.19) 

In Equation 3.4.18, 20 denotes the ,boundary of O on which the 

. tangential electric field goes to .zero. Equation 3,4.19 will be 

.called the Wilcox radiation condition to distinguish it from the wave 

motion formulation of Sonnnerfeld. 

The precise statement of the Uniqueness Theorem is as follows. 

Theorem 1. If hij and µij are bounded, Lebesgue·measurable 

functions of position, and if w f O and real, then the steady state 

·solution! of Equations 3.4.16-19 exists and is unique for every 

source· field f(J ., J ) in 1 2 (0). 
- -:-e -m 

The·proof of this theorem is found in Appendix A • 

. Thus it is seen .tha.t the· Wilcox radiation condition causes the 

·fields to be uniquely specified for rather general media, sources, 

and conducting·surfaces, but with non-ze1;o·losses. The question of 

uniqueness as the losses go.to.zero will be cdnsidered next. 

3.5 Extension of the Wilcox Radiation Condition to •Lossless 

Media. To see·why such an extension is necessary, consider the 

_I 
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eigenfunctions of the infinite antenna problem, Equation 3.2.2. The 

longitudinal wave number k and the ti-ansverse ·wave numbers Ai and 11. 2 

are related by Equation 2.4.14 where they occur only in the squared 

form. For a lossy medium both k 2 and Af 2 will be complex, in general. 
' 

Therefore a choice of square·root has to be made. It is evident that 

the ,fields near the antenna. have the proper ·decay if the square ,root 

of k 2 is chosen such that 

Im k < o, z > 0 

(3.5.1) 
Im .k > o, z < 0 

Next :the radial variation has to be.considered. The large 

·argument formulas·for·the Hankel functions are 

H(i) (Ar) --) 2 (i)-·n 
n irrAr Ar-+'CIO 

iAr 
e (3.5.2) 

(3.5.3) 

If, for the.sake ·.of illustration, the .square roots of Af 2 are 
. ' 

chosen such ·that 

(3.5.4) 

become unbounded for large·r. Such unbounded field variation is 

obviously not Lebesgue square integrable and so ·is rejected from the 

set of possible ,solutions. Meanwhile, the other Hankel functions, 

H~~)(Air) and H~ 2 )(A2 r), experience an exponential decay in the :radial 

.direction. This radial·decay plus the.longitudinal decay due to 
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Im k r O yields eigenfunctions which are in L2 (n). Thus two of the 

.four eigenfunctions remain, and these, together with the two boundary 

conditions Ez = Ecp = 0 at r = a will yield a unique solution. 

Now suppose the losses go to zero. A simple analysis will show 

that if k is real, then none of the four eigenfunctions of Equation 

3.2.2 are in L2(0). The same is true of any eigenfunction for which 

the transverse wave number is real. Such eigenfunctions are bounded 

at infinity, but still correspond to states of infinite energy. Three 

gemeral types of waves which fall into this category are plane waves, 

spherical waves, and cylindrical waves. These types of waves are 

admittedly idealized, but have proved quite useful in solving a 

broad class of fields problems. Therefore, one wants to keep such 

waves as possible solutions to the wave equation, and modify the 

Wilcox radiation condition as necessary to do this. 

First, a rule by which such bounded waves not in La(O) may be 

included in the possible domain of L will be given. Then the mathe-

matical properties of such waves will be discussed. 

Friedman (1956) gives a rule for uniquely defining the Green's 

function G of a second order differential operator over a semi-

infinite or infinite interval. He uses the "outgoing waves" concept 

to choose the proper square root of the squared eigenvalue when it 

is complex, and then uses the principle of analytic continuation to 

define G for a real eigenvalue. A similar·rule for eigenfunctions 

may be stated in the terminology of this chapter as follows. 

Rule. Suppose that Lis a differentlal operator which is in 

the limit-point case at infinity; then the eigenfunctions e . for L 
ZJ 

are defined by implicitly requiring that e . vanish for large values 
ZJ 



of r if 11.f 2 are complex and Im 11.1 < o, Im 11. 2 < O. For real positive 
' 

values of 11.f, 2 , the eigenfunctions are defined as the limit of ezj 

for complex values of 11.1 2 as 11.1 2 becomes real. 
' ' 

A differential operator Lis said to be in the limit-point case 

at infinity if the differential equation without bounda.ry conditions, 

represented by Lu = o, has at least one solution which is not of in-

tegrable square in an interval containing infinity. 

Even for the case of equal wave numbers, 11.f = Ai, it may be 

seen that this rule eliminates exactly two eigenfunctions of the 

four in Equation 3.2.4 without any confusion. For 11. 2 complex, the 

exponential decay of the Hankel functions will dominate any multi-

plying factor of r. Therefore the two eigenfunctions satisfying the 

rule (and the Wilcox radiation condition) are H~ 2 )(11.r) and rHi 2 ) (11.r). 

The same two will be the eigenfunctions for real positive 11. 2 even 

though neither are then in L2 (0). 

The choice of square root of 11.f 2 made in the rule appears 
' 

rather arbitrary, so some explanation is in order. The choice was 
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made such that the Hankel function of the second kind, Equation 3.5.3, 

should have an expdnential decay for larger. If at the same time 

Re 11. ~ o, then this Hankel function represents outward phase travel 

for an exp(+ iW t) time variation. In isotropic media the two roots 

of the squared wave number, proportional t o the first radical in 

Equation 3.3.6, lie in the second and fourth quadrants. Thus it is 

always possible. in such media to have a wave number with a positive 

real part and a negative imaginary part. Therefore in Friedman's 

rule, the requirement that the imaginary part of an eigenvalue be 
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negative is identical to saying the rE;ial part is positive, or that 

the eigenfunction behaves like outgoing waves at infinity. (Friedman 

chose an ex~(- iW t) time variation so his inequality signs are actually 

opposite to those given here). Therefore as an anisotropic medium 

becomes isotropic the rule stated here reduces to the rule stated 

by Friedman, as it should •. However, in anisotropic media, choosing 

the sign of the imaginary part of X1 2 does not automatically fix the 
. ' 

.sign of the 'real part •. The real part may be positive or negative 

depending on the frequency and the plasma parameters, as can be seen 

·from a numerical investigation of Equation 2.4.14. This implies 

that the phase variation of each eigenfunction will be either inward 

or outward, depending on the parameters. This is an interesting 

change from the·isotropic case. However, the question is whether 

this change is important or not, or if the direction of phase .travel 

in anisotropic media has the same meaning as ?n isotropic media. 

The answer is no, the phase behavior of these eigenfunctions has little 

or no correlation with such things as direction of power flow in dis-

sipative anisotropic media. This may be argued from several view-

points. 

First, it should be emphasized that the individual eigenfunctions 

have little physical meaning by themselves. Only ·the total field ! 

may be reasonably expected to show an outward flow of energy. Second, 

the direction of energy flow and the direction of phase.travel are 

not necessar~ly the same,in anisotropic media. Hines (195la, b, c, 

d, 1952) has made an exhaustive study of energy flow in various types 

of media. He -concludes that the Poynting theorem.(non time averaged) 

is not as representative of the expected flow of energy in some 
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media as the Macdonald theorem (Macdonald, 1902) •. The use .of the 

Poynting vector in dissipative anisotropic media leads to a rather 

dismaying picture in which different bits of energy in the wave·may 

move in different directions. The motion may be very disorderly and 

complicated. Even under the best conditions, the energy in a bit of 

a wave oscillates through a cycle, energy being absorbed at one time 

and regenerated at.a later time. 

The Macdonald vector gives an alternative expression for the energy 

of the wave. One example where it differs from Poynting•s vector is 

that when a constant current flows in a wire, a slight modification of 

Macdonald• s expression leads to ·the conclusion that the· energy is 

flowing in .the wire, whereas the Foynting vector arguments indicate 

that energy must flow into the wire from the surrounding medium. In 

the notation of this section, Macdonald•s theorem gives, for the energy 

of an electromagnetic wave, 

1 1 0 1_[(!. x .!!) + z at<~ x .!!)J -2..o+l ot - 2 (~\(oQ) ] dV at') ot 
s \ 

(3.5.5) 

where~ is the vector potential, given by~= V x ~. The bracketed 

expre$sion in the integral on the left-hand side is called the 

Macdonald vector. 

There is a third technique for determining the direction of energy 

flow, called the packet method (Kelso, 1964) o This approximate method 

gives a direction different from the Poynting vector or Macdonald 

vector method. For some.special cases it appears that the packet 

method is more realistic than the two energy theorems. 
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A complete .discussion c;>f the·packet method and Macdonald•s theorem 

is l;>eyond the -scope of this thekis. The main reason for introducing 

them-ts to suggest that in a dissipative anisotropic medium the exact 

character of the movement of a bit ·of energy is not :known, nor can it 

I be known ·from a purely mathematical approach. 

Therefore, with Wilcox (1963), one concludes tha·t phase infor-

ma,tion is irrelevant in defining ·the domain of L in an anisotropic 

medium, and that only ·the-finite energy condition-has undisputed 

meaning. The •only real requirement on the,rule for choosing eigen-

·functions is that it agrees with the isotropic case·when the aniso-

tropy goes to ·zero, and as mentioned earlier, this has been accom-

pli$hed. 

Now that ·the rule has been established which produces an ·extended 

domain of L, the·type·of wave -introduced by this extension can be 

·discussed. The domai-n-of-L in'Cludes only those -functions belonging 

to L2 (0) or having·finite ·energy. These are .called eigenfunctions 

and have their corresponding eigenvalues k. and A1 2 (k.). The •extended 
l - ' l 

domain of L-contains the domain of L·plus a restricted class of funct-

ions not belonging to L2 (0). Tllese new functions are.called improper 

eigenfunctions,corresponding to a set of improper 'eigenvalues. As 

has been pointed out, the only time-the-rule.for choosing an unique 

·set of functions is satisfied by functions not in L2 (0) is when 

there a-re no losses. This implies that only real positive, eigenvalues 

are· improper eigenvalues and conversely. According ·to Friedman (1956) 

the e.i-genfunctions fo,:m the ·discrete spectrum of L while the improper 

eigen~unctions form·the continuous spectrum. 
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The·physical significance of the·eigenfunctions and improper 

eigenfunctions will become·more·evident after the infinite.antenna 

problem is solved in the ,next chapter. However, from Friedman (1956) 

the.statement may be·made that·in general, the ·eigenfunctions produce 

·surface waves which are·exponentially damped in the direction trans­

verse to·the direction in which the wave is moving. The ·improper 

eigenfunctions produce ,space waves; that is, waves which cause energy 

to be ·transported away from any radiating sources without being con­

fined to ·the .near vicinity of some, surface. 



CHAPTER IV 
•.. 
'l 

INTEGRAL SOLUTION FOR THE DOMAIN OF THE WAVE EQUATION 

4.1 Formulation of the Integral. The material given in the 

previous two chapters may now be used to find integral expressions 

for the·fields external to an infinitely long antenna aligned with 

a static magnetic field in a plasma, and excited by a narrow cir-

-cumferential slot. The general procedure is similar to that used 

by Silver and Saunders ( 1950) and Northover ( 1958). The wave 

equation of the medium, the differential operator L, is given by 

(4.1.1) 

Here, e (r, k) is the elementary wave ·function from which E (r, z) z z 
is to be .const1;ucted, 'v~ is the transverse ~Laplacian, and "-i and 

"- 2 are ,the-transverse wave numbers obtained from the dispersion 

relation and are given by Equation 2.4.14. 

The slot may be considered to be arbitrarily narrow with a 

voltage V0 across it. The longitudinal electric field is assumed 

zero on the surface of the antenna except for the slot. The trans-

verse electric field component E~ is assumed to be-zero on the.su1;­

face of the antenna and also within the slqt, Thus the boundary 

conditions on the antenna are 

E (r = a, z) = V0 6(z) z 
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(4.1.2) 



E (r = a, z) = 0 cp (4.1.3) 
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Ecp(r, zhas well as the other field components, Hz' Hep' Hr and 

E are .given in terms of E (r, z) by Equations 2.5.9, 2.5.19, 2.5.20, r z 

2.5.21, and 2.5.22. Both the tot,;11 electric and magnetic fields 

satisfy the Wilcox radiation condition, or the ·finite energy condition, 

Equation 3 .4.19. 

(4.1.4) 

In this equati(?n, 0 is the entire three dimensional space except 

·for ·the region occupied by the antenna • 

. According to the arguments presented in Section 3.5 the square 

roots of Af a may be chosen such that 
' 

(4.1.5) 

Only two of the.four eigenfunctions of Equation 4.1.1 satisfy 

Equation 4.1.4 so that the elementary wave·function of Equation 

3.2.5 becomes, after renaming the.coefficients, 

(4.1.6) 

From Equation 2.5.19 with no cp variation one finds an expression 

fore cp· 

(4.1.7) 

In these equations A, B, YJ. a, and A.1, a are all functions of 
' ' 

the longitudinal wave number k. The ,exact functional form of A 

and Bis yet to be determined. 
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An arbitrary z dependence may now be built up by superposition 

of the elementary wave·functions over various values of k. Regarding 

k as a complex quantity, different representa.tions can be obtained 

according to .-the path· in the complex k plane along which k is allowed 

to vary. In the pre~ent case where the field at r = a is to be fitted 

to a Fourier integral along-the.surface ·of the-cylinder, the path 

along the real k axis is indicated. 

That ·is, since 

(4 .• 1.8) 

it is desi~able to write for each field component integrals of the 

form 

(4.1.9) 

Since Equation 4.1.9 is just a direct Fourier transform., the 

·inverse transform can be written 
CX) 

e,(r, k) = ~rr~~ E,(r, z)eikzdz 

Therefore, on the antenna, 

and similarly, 

e (a,.k) 
z 

e (a 
cp ' 

QO 

1 I ( ikz = 2n V0 8 z)e dz 

_co 

( 4.1.11) 

(4.1.12) 



Comparing the last two equations with Equations 4.1.6 and 4.1.7 

evaluated at-r = a yields the following.pair of equations. 

(4.1.13) 

Solving these equations for A(k) and B(k) yields 

A(k) (4.1.14) 

(4.1.15) 

Aft~r' factoring out and canceling a term common to both Y1 and 

Y2 , which are given by Equation 2.5.15 1 the total longitudinal 

ele~"t:ric field of Equation 4.1.9 can be written as 

H~ 2 ) P-ar) 
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[ a( ' ) (),, r J. [ 1.'i +f ( k)] 
0:, (2) 

::'..'.'..~ H, (A,a) A, 
(2) 

H1 (ti.za) 

[Ai+f (k) ]] . 

tta e-ikzdk 
E (r, z) = 

Zrr om [n(')c>.,a) H~z)U,,aa) [Af+f(k) ]] 
z [11.f+f(k)] 

, Hl 2 ) U1-1a) A1 
(2) Aa H1 (Aaa) 

(4.1.16) 

where 
· a a 

i;(k) = k - ko + -----
-k2 + k~K1;1. 

(4.1.17) 

.--·-
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As a quick check on boundary conditions it may be noted that, when 

r = a, the integral in Equation 4.1.16 reduces to the integral in Equa-

tion 4.1.8, as it must. 

It might be pointed out that the E (r, z) found by evaluating z 

Equation 4.1.16 is guaranteed to identically satisfy the original wave 

equation of the medium, Equation 2.2.27, but will not necessarily sat-

isfy the finite energy condition. This may be shown by considering 

what is meant by the spectrum of L (Friedman, 1956). A number k 

is said to belong to the spectrum of the operator L if L(k) does 

not have a bounded inverse. If k belongs to the spectrum of L, there 

are the two following possibilities: either there exists a non-zero 

function u in the space over which Lis defined such that Lu= o, 

or no such function exists. In the first case, k is an eigenvalue in 

the discrete spectrum of Landu is an eigenfunction or is in the 

domain of L. In the second case, k is in the continuous spectrum of 

L, and u is an improper eigenfunction or is in the extended domain 

of L. 

An example of a continuous spectrum can be obtained from the 

isotropic infinite antenna problem. Northover ( 1958) evaluates the 

isotropic equivalent of Equation 4.1.16 and finds that an asymptotic 

expression for the total longitudinal electric field for z large and 

r moderate is 

4n e-ikzlog(~)---1 _____ _ 

z r [log( 2k~2)]2 

The number k is in the continuous spectrum 

and there · is no discrete spectrum. This function satisfies the 



boundary condition on the antenna because at r = a, Ez(r, z)N = o. 

However, Ez(r, z)N do~s not satisfy the scalar Helmholtz equation 

except in the limiting case as z goes to infinity. This is a result 

of the asymptotic techniques used in evaluating the integral. It 

could be shown by going back to the original integral that E (r, z)N z 

does not satisfy the finite energy condition, for no losses. There-

fore, Ez(r, z)N is an improper eigenfunction. 

In going from the·isotropic to the anisotropic case, one might 

therefore expect to also find a continuous spectrum. It is con-

ceivable, of course, that the anisotropy might also introduce ele-

ments into the discrete spectrum. This point will be considered in 

Section 4.4. The exact nature of the continuous spectrum is one of 
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the main difficulties in the theory of differential operators. It is 

difficult :to tell if a particular differential equation plus boundary 

conditions wi 11 have a continuous spec·tt.,.µn or not, wiithotit ac.tuaUy solv.:,. 

fng fbr the ,domain· .of tbe operator~. : Orie clue · to the nature of the spec-

trumis given by Friedman (1956) in that, at-least for a rather broad 

class of problems, poles of the integral solution to this differential 

equation plus boundary conditions give rise to the discrete spectrum 

while branch line integrations yield the continuous spectrum. 

The usual method of handling integrals such as Equation 4.1.16 

is ·to deform the path of integration into the complex k plane and 

apply the-Cauchy integral theorem. Poles in the·integ:rand are-evalu-

ated by resi,~UeSiand thei~ntegrals along any branch cuts are ·evaluated 

by asymptotic techniques. This is a valid approach as long as the 

integrand is an analytic function of k over the entire half plane 

into which the path of integration is deformed exc~pt at a finite 
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number of poles. One difficulty which appears in this integral 

expression for E and which does not appear in the corresponding iso­
z 

tropic problem (Northover, 1958), is that the integrand is not analytic 

everywhere. For some complex k, A1 = A2, and the integrand of Equa-

tion 4.1.16 assumes the indeterminate form 0/0. This exceptional 

case is the result of the eigenfunctions not spanning the space for 

this value of k. 

Because the dispersion relation, Equation 2.4.12, is quadradic 

in k 3 and A3 , there will be two pairs of values of k for which A1 = Az. 

These will be called~ k1 and~ k 3 , and their properties will be con-

sidered later. Thus the integrand of Equation 4.1.16 becomes inde-

terminate at two points in the complex half plane where it is desired 

to apply the Cauchy integral theorem. By the definition of analytic, 

that an analytic function is defined and differentiable at all points 

of some region, it is seen that the integrand is not analytic for 

k = ~ k1 or~ k 3 • Therefore it is seen that the Cauchy integral 

theorem can not be applied around the half plane. It can be applied, 

of course, in a region excluding these undefined points but an integral 

around such a region will not necessarily give the desired value of 

E ( r, z). 
z 

At this point, then, it seems necessary to go to some other 

formulation which does not have this non-analytic problem. This par-

ticular situation has not arisen in any previously considered problem 

in the literature, to this author's knowledge. Therefore some dis-

cussion of the modification of the integral solution is in order. As 

mentioned earlier, the di fficulty is 9aused by the eigenfunctions of 

rank one not spanning the space. Therefore the proper way around 
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this difficulty is to use a set of eigenfunctions which do span the 

space. This requires the use of the generalized eigenfunctions dis-

cussed in Section 3.2. From Equations 3.2.6, 4.1.4 and 4.1.5 it may 

be argued that the proper elementary wave function satisfying Equation 

4.1.1 is 

(4.1.18) 

This wave function is composedof a linear sum of one eigenfunction 

and one generalized eigenfunction. Such a sum spans the space, by 

which is meant that any function satisfying the differential equation 

and the associated boundary conditions may be constructed from such 

an elementary wave function. Now fork i ~ k1,3, both wave functions, 

Equations 4.1.6 and 4.1.18, span the space. It seems reasonable that 

the solution for the total field i exterior to the antenna should be 

the same, no matter which wave function was used to construct it, 

with the possible exception of a contribution from a neighborhood of 

+ k1 3. This difference would be because one wave function spans - ' 
the space there and the other does not. 

Starting with Equation 4.1.18 and going through the same procedure 

as follows Equation 4 . 1.6 the following integral expression for E is 
z 

found. 

E (r, z) z 

(4 .1. 19) 
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It may be ,seen that when r = a the bracketed terms in the integrand 

become equal so that.this integral reduces to the integral in Equation 

4.1.8. Thus the longitudinal E field takes on its prescribed values 

on the surface.of the antenna. The tangential Ecp field will be ·forced 

to·be zero at ·r = a because of the relation which has been used, simi-

lar to the second of Equations 4.1.13. The wave function satisfies the 

Wilcox radiation condition so that the total field found by a sum-

mation of this wave.function will also satisfy this condition. The 

wave.function is a solution, in a generalized sense, of the wave equa-

tion, and an integral over this solution to find E is guaranteed to z 

also be a solution. It·may be noted that for r fa, the integrand of 

Equation 4.1.,19 can riot possibly be indeterminate. 

This integral formulation for Ez thus satisfies the wave equation, 

the boundary conditions, and has the desired analytic properties. 

Unless the use of generalized eigenfunctions introduces some new 

requirement not prominently diE;icussed in the literature, this is all 

that.can be required of a solution.to ·the infinite antenna problem or 

to any other problem. This would seem .to be a fertile area of investi-

gation, a mathematical description of when generalized eigenfunctions 

are.necessary, and an orderly procedure of using·them to solve.the 

class of problems of which this infinite antenna problem seems to be 

a member. Such far ranging questions are beyond the·scope·of this 

thesis •. Therefore, it will be .considered that Equation 4.1.19 

represents the desired integral.solution for Ez, and the·remainder 

of this Chapt:er·will be devoted .to obtaining asymptotic approximations 

to the·functional form of E. z 
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4. 2 The Riemann Surface · in the Complex k Plane. As has been 

mentioned, the integrand of Equa~ion 4.1.19 is analytic everywhere. 

However, it is not single valued in the k plane. This means that a 

multisheeted Riemann surface has to be defined such that the integrand 

will be analytic and single valued on each sheet. The original path 

of integration in Equation 4.1.19 is taken along the real k axis from 

-=to+=. Cauchy•s integral theorem can be applied to the region 

between this path and any other path starting and ending at the same 

points as long as both paths lie entirely on the same sheet. In order 

for the original integral to be convergent, a particular sheet -must be 

chosen so that the integrand vanishes exponentially as z-+=. The 

exponential decay is handled by requiring Equation 3.5.1 ta hold. For 

the sake of explicitness only the half space z > 0 will be considered 

so that Im k < 0 is always the proper inequaltty. This requirement, 

taken with Equation 4.1.5, will guarantee the convergence of the inte-

gral when the path of integration is deformed into the lower half k 

plane. 

· In conunon with .the isotropic problem (Northover, 1958), branch 

points of the Rtemann surface occur for those values of k, called k1 

and klf, for which A1 = O and A,2 = o. This is easily seen by consid­

ering the value of Af ask describes a small circle about k1 in the 

k plane. 

It will be shown that!: k1 and!: k3, yietding t..f = "i, are also 

branch points. To do this, suppose Equation 2.4.14 is written as 

Af = C + .fo 
A~ = c - VD 

(4.2 . 1) 



Since the radicand Dis a fourth order polynomial ink, it has 

four zeros and can be·written 

(4.2.2) 

Letting k .trace a small circle about ::t. ki or.:!:: k3 will produce 

the resuit 

(4.2.3) 

This is equivalent to 

(4.2.4) 

It ·is evident that the integrand of Equation 4.1.19 assumes a 

new value when Ai and 71. 2 are interchanged. This means that the 

small circle must have passed through a branch-cut and arrived back 

at the same value of k on a different sheet. The origi.nal choice of 

which transverse wave number went with which .eigenfunction was ar-

bi t:rary but must -remain fixed for the ·integrand of Equation 4.1.19 

to be single valued. 

Before these branch points are actually· located in the k plane, 

their functional form should be known •. Thus a small digression will 

be made here to examine ki, 3 and thien k 1 ; II. 

The transverse wave numbers being equal implies that the 

radical in Equation 2.4.13 is zero, or that 

(a - c) 2 = - 4bd 

'.Caking the square root gives 

(a - c) = + 2J:;;; ~ .:!: .Jc.k 2 k~ 
-l 

(4.2.5) 

(4.2.6) 
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or 
(4 . 2.7) 

From Equations 2.4.6, 2.4.8, and 4.2.7 there is obtained the 

following rela tlonship. 

Introducing the normalized plasma- and gyro-frequencies, Equation 

2.1. 12, the plasma parameters, Equations 2.1.9-11, and the effects of 

collisional damping, Equation 2.1.15, into the above equation and 

using the quadradic formula gives 

k1,3 = ~l~J[Jya + X - 1 + za + iZ(2 - X) ~ Jx - 1 + za + iZ(2 - X)] 

(4.2.9) 

Here, + k1 3 are chosen with negative imaginary parts, and -k1 3 
' ' 

are chosen with positive imaginary parts. It may be seen from this 

equation that for Z = o, ki and k3 are real for X > 1, complex conjugate 

for X < 1 and X +ya> 1;:and purely imaginary for X +ya< 1. This 

sign information is shown in Figure 3 . For the sake of explicitness, 

Z will be ,considered to be sma11 so that the inclusion of non .. zero losses 

will only slightly perturb ·ki and k3. That is, for Z j O and X > 1, 

k1 and k3 will have a relatively large real part and a relatively 

small imaginary part. 

It will be shown later in the chapter that the total longitudinal 

field E/r, z) contains terms with factors such as exp ( -ikif) multi-

plying other functions of z and r. If ki 3 are purely imaginary 
' 

( for Z = O), the exp(-ik1,3z) variation causes Ez (r, z) to be cutoff 

or evanescent in the z direction. Such a field would not be expected 
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to induce a significant amount of current in the antenna soJDe ap-

preciable distance from the source. Therefore this part of E ( r, z) 
z 

might be neglected if this is the only desired result. If k1 , 3 are 

.complex for Z = o, then the associated field component carries no 
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real power (Allis, 1963). A more complete discussion along this line 

will appear after E (r, z) has actually been evaluated. 
z 

The other set of wave numbers which form branch points are found 

from the zeros of Af° 2 • In Equation 2.4.12, if (ac - bd) = o, then ' -

one of the,roots of the equation is A2 = o. Setting (ac - bd) = 0 

gives the following equation in k. 

(4.2.10) 

Solving .this equatfon: for k 2 gives 

(4.2.11) 

This is the Appleton-Hartree equation withe= o. It specifies the 

wave numbers of the medium's two possible plane waves when these 

waves are propagating parallel to the static magnetic field. These 

wave numbers can be expressed in terms of X, Y and Z as follows. 

2 
kl II 

' 
= k~ [1 ~ X(l - Y2 + Z2 )(1 ± Y) - iXZ(l + Y2 + Z2 ± 2Y)J 

(1 y2 - za)2 + 4z2 (1 - ya - z2)2 + 4z2 

(4.2.12) 

For Z = o, this reduces to ·the simpler expression, 

kf - x - y2 
! XYJ 

k~ II = 
' l - yz z = 0 

/ 

(4.2.13) 
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It may·be noted that k1 II are either real or pure imaginary for 

' 
no losses. There is no possibility of them being complex, as there 

is for k.1 3 for-certain ranges of the plasma parameters. 
' 

The sign info:pnation in Equation 4.2.13 is plotted in Figure 4. 

The branch points.::!:. kl' :!: kII, :!: kit .:!: k 3 are shown in Figure 5 

for small losses and approximately· for the plasma parameters ·bounded 

by X = 1 and 1 - X - Y2 -.XY = o. Within this r,egion the wave num-

bers of ·Equations 4.2.9 and 4.2.12 are .nearly real for small z. As 

the·plasma- and gyro•frequencies vary, these wave numbers will assume 

-different'.Values, of course. -This does not affect the evaluation of 

the· integral since .the· information about a wave number being nearly 

real or nearly· imaginary is used only after the asymptotic formulas 

are ·obtained. 

Figure 5 also shows the branch cuts which have been chosen to 

separate the sheets of a Riemann surface. As far as the single 

valuedness requirement is concerned, ·the locations of these branch 

cuts are almost completely arbitrary. They can lie along curves 

between k.1 and k3, and between t 1 and k11 , or -they can pass from 

these branch points to the point at infinity along rather arbitrary 

curves. The locations of these cuts are more limited by the desire 

to evaluate the integral in Equation 4.1.19 without undue difficulty. 

Since the original integration is over the·real axis, no branch-cuts 

should cross the axis. If a cut did cross the real k axis, the 

·integrand would not be.single .valued along its original path of inte-

gration. Since each pair of branch points is synnnetrical about the 

origin, this means that all the branch cuts must extend from their 

branch points to the-point at infinity. The exact :nature of these 
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of Integration. 
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cuts might be determined by requiring that the integral in Equation 

\ 4.1.19 cohverge for all values of k on the ·original path of. integration 
\ 

and on the corresponding-sheet of the Riemann surface. It may be 

assumed that k has an arbitrarily small negative · imaginary part along 

the original path of integration, in which.case Im A1 < o, Im Aa < o, 

and convergence is guaranteed. 

A rather detailed study of branch cuts and integrations on a 

four sheeted Riemann surface has been .done by .Banos and Wesley (Part I, 

1953; Part II, 1954). In Part I they require, in the notation of 

this section, that Im A1 < 0 and Im A< 0 at every point in the half 

plane,into which the path of integration is deformed. This gave them 

a parametJ'iC curve·for each branch cut. It turned out that the inte ... 

gral was difficult to·evaluate along these ,cuts and that the solutions 

did not possess certain desired analytic properties, or at least 

such properties could not be proved. Therefore they reexamined the 

problem to see if other branch cuts. could be·used. In Part II they 

point out that as long as rand z are·finite the integral will con-

verge for more.arbitrary branch cuts, including the ones shown in 

Figure 5 as half~lines parallel to the imaginary axis. They made 

, sueh a choice of cut and this made ·evaluation of their integral much 

easier. 

Of course, the integral solved by Banos and Wesley (1954) is 

not the same as Equation 4.1.19, but the argument for the choice ,of 

branch cuts in each case is identical. That is, the cuts are .speci-

fied by the,conditions 

(4.2.14) 

.1 



The original path of integration may now be .deformed as shown 

in Figure ·5. Starting on the •real axis at k-+-- 00 , the proposed path 

follows, first, the ·semi-circle at infinity in the third quadrant, 

next the,contour C3 completely around the lower branch cut for k 3, 

then the .contours CI' Ci, and CII and, finally the semi-circle at 

infinity in·the ·fourth quadrant terminating on the real axis at 
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k~+oo. By Cauchy•s theorem, the proposed path is completely equiva-

lent to the original pa.tJ;i along the real axis except for the resi-

dues of any pole type singularities lying between the two paths. 

Furthermore, i:t .can be readily shown (Banos and Wesley, 1954) that 

the contribution over the semi-circle at infinity in the lower 

half-plane vanishes, with the result that the original integral can 

be expressed as a sum of 'several branch cut integrals plus the .sum 

of residues.at any poles present. 

(4.2.15) 

Determining·the location of any poles present and evaluating the 

residues at these poles can be done·independently of the branch cut 

calculations, and therefore ·will be considered later. 

All of the branch points are determined by the behavior of 

A1 2, which come from a fourth order dispersion relation. This im­, 
plies that the.Riemann surface consist$ of four sheets, whic:h·may be 

arbitrarily numbered as shown in Table I. 

The interconnection diagram for the ·four sheets of the Riemann 

surface ·is shown in Figure 6. It may be.seen from Equation 4.2.4 

i 
that wpen the.cuts associated with ki or k3 are crossed, both A;1. 



TABLE I 

ARGUMENTS ·op i\.i AND Aa ON THE VARIOUS SHEETS 

OF THE RIEMANN SURFACE 

Sheet: 

1 

2 

3 

4 

Cut 1 Cut 3 

Im i\.;1. 

+ 

+ 

Cut I 

Im la 

+ 

+ 

Cut II 

Figure 6. The Riemann Surface of Four Sheets in the k Plane. 
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and "-a change sign. Therefore, one can pass from sheet 1 to sheet 4 

and back as well as from sheet 2 to sheet 3 since in these transfers 

the sign of the imaginary parts of both A1 and 11.a change sign. How-

ever, in going across the cut associated with k1 only A1 changes 

sign, so one can move between sheets 1 and 2 and between sheets 3 

and 4. A similar situation holds for k11 • 

4.3 Evaluation of the Branch Line Integrals. The procedure 
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outlined in the preceding section for splitting the original integral 

for E (r, z) into the sum of several integrals along the branch cuts 
z 

plus possibly some residues does not yield integrals which can be 

evaluated exactly in closed form. It does yield integrals for which 

asymptotic approximations exist in certain regions of space; for ex-

ample, near the antenna but far from the source. Obtaining these 

asymptotic forms for various regions of space and for varying system 

parameters such as plasma- and gyro ... frequencies is a long and tedious 

process, so the following presentation will .not be complete. It 

would seem that a computer solution would be the only way to obtain 

a complete solution for all possible parameters. However, integrals 

such as Equation 4.1.19 do not lend themselves to computer solutions, 

and besides, it is not clear that such a computer solution would be 

as useful as the asymptotic forms. This is because the asymptotic 

expressions clearly show the most impol;'tant characteristics of the 

solution in an analytic form, characteristics which may be obscured 

in a group of curves. 

Only one branch line integral will be evaluated in detail, that 

associated with k1 , and the other expressions will be inferred from 



this one. The technique to be ·used is basically the same as used 

by Northover {1958). The integral of Equation 4.1.19 is to be 

evaluated along both parts of the contour c1 in the directions indi­

cated. Using the change of variable, 

(4 .. 3.1) 

the integral I 1 can be written as 

-- iVo -ik z[ 
- -2 e I 

TIZ 
co 

(4.3.2) 

where (2) ai 2\lar) H0 P.-11r) P.t1 + f(k)J [A~+ f(k)] 
NL = + !. 

(2) 
A11 a: H~ 2)(A2a) Aa H1 (r..11a) 

(4.3.3) 

(2) 
H0 (l11a) [Af1 + f(k)J Hi 2\Aaa) [A~+ f(k)J 

DL 
= Hi1 )(A11a) 

+ 
H~ 2 ) 0,2a) t...11 Az 

(4.3.4) 

These are simply·the bracketed portions of the numerator and 

denominator of Equation 4.1.19 evaluated on the. left..;hand side. of 

c1• Similar expressions hold for-the right..;hand side. Since k1 is 

not a branch point for A. 2 , Aa does not change value in crossing ·the 

cut and so does not need a distinctive subscript to indicate which 

side of the branch line is being ·considered. 

The asymptotic evalu~tion of Equation 4 .• 3.2 is a rather tedious 
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process and is carried out in some detail in Appendix B. An outline 

of the procedure and the results will be given here. 

It is desired to find the fields close to the antenna, so that 

the current distribution can be computed from the relationship 

I(z) = 2na[H~(r, z)]r = a (4.3.5) 

This current distribution can then theoretically be used to find 

the input impedance of the infinite antenna as well as a starting 

point for estimating the current distribution on a finite dipole. 

The assumption has already been made that there is no azimuthal 

variation of E, which is a reasonable assumption only for antennas z 

with radii small compared to a wavelength. This asymptotic evalu-

ation will thus be made for the antenna radius a arbitrarily small. 

This assures that DL ~ DR' which eases the evaluation of Equation 

4.3.2 considerably. 

The integration of II is split into two ranges, 0 ~ S <Kand 

K < S ~ 00 where K has to be taken large enough to make 

<< f: (4.3.6) 

Over the first range, the range of primary contribution to the inte-

gral, it is further assumed that z is large enough to make ~/z << 1. 

Using these assumptions, it is shown in Appendix B that II is ap ­

proximately given as 

(4.3.7) 
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The·primed transverse wave.nunibers are "average" values chosen to 

,represent the actual wave n"U.Jnbers over the entire path of integration, 

c1• The values used by Northover (1958) and which are also used here 

are 

. i 
A! a(k1) = Ai a(k = k1 - - ) 

' ' z 
(4.3.8) 

That is,· the arguments of the_ log and Bessel functions, both slowly 

varying functions for small arguments, are evaluated for 13 =land 

then factored out of the ·integration as constants. 

The quantities F1 and F2 are rather involved functions of the 

plasma parameters X, Y, and z, whose -functional form depends on the 

·branch point being ·considered,, hence Fi, 2 (k1). They can be -deter­

lllined by working backwards through Equations B.47, B.40, B.37, B.35, 

B.34, B.31, and B.30. 

Because of the.symmetry between k1 and k11 it may be argued that 

the integral III will have .the ,same forma,s Ir, with simply an inter­

change of k1 and k11 , and Ai and Az. Therefore, 

V0 a 2 . "k Y11.~a ikII 
~ e- 1 Ilz log(~) J 0 (11.:r)[Fi(k11 ) + ~ Fa(k11 )] 

(4.3.9) 

In this equation, A1 a are given by Equation 4.3.8 except that 
' 

kr is replaced by k11 • 

Appendix B also contains a solution for the line integral around 

the branch point k1. From Equation B.55 the ·integral, 11 is approxi-

mately given by 



yX!a ik1 
+ a 2 log(--r-) J 0 (Xlr)[F1(k1) +-;-- F2(k1)]] 

(4.3.10) 

The ·integral involving the contour C3 around k 3 will be identical to 

the above equation except fol;' the· interchange of k1 and k3. 

I 3 ~ 

yX~a· 
+ a 2 log(--r-) 

ik3 
J O (X1r)[Fdk3) + - Fa (k3) ]] z 

(4.3.11) 
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The total integral around all the branch cuts is now found by sununing 

11 , In, 11 , and l3. The residue portion of the ·original integral, 

Equation 4.1.19, will be considered in the next section. 

Now that the asymptotic solutions to the various branch line 

integrals have been obtained, these solutions should be checked in 

the differential equation, Equation 4.1.1. Because of the nature of 

asymptotics, it would not be expected that every solution would 

exactly·satisfy the differential equation, but all asymptotic solutions 

should at least approximately satisfy it. Checking first Equation 
. I 

4.3.7, it is seen that the ·only radial variation is J 0 (A1 r). The 

transverse wave numbers X1 a in the differential equation have·to be 
' 

evaluated for the integration, or according to Equation 4.3.8. The 

differential equation operating on I 1 is thus 

(4.3.12) 
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MI contains all the factors of Equation 4.3.7 which do not vary with 

r. It happens for this solution that, after conunuting operators, the 

term (7~ + A! 2 ) J 0 (A!r) is identically zero, in which case Equation 

4.1.1 is identically satisfied. A quick examination will show that 

the .same argument holds for III in Equation 4.3.9. 

Checking now the solutions I 1 and I3, it is seen that they con­

tain a J 0 (Alr) term which satisfies the differential equation exactly, 

and a rJ1 (A:r) term. rhe ·second order operator (9~ + A~ 2 ) operating 

on rJ1 (A;r) does not give a zero result. Therefore, a closer look 

must be taken at this proposed solution. Note that the transverse 

wave numbers are evaluated according to 

(4.3.13) 

and also with k1 replaced by k3. The solution I1 is asymptotic as z 

gets very large. In this asymptotic limit, the above expression be-

comes 

(4.3.14) 

But, by definition, 

(4.3.15) 

Now Equation 4.1.1 can be written as 

(4.3.16) 

It is not hard to show that the operator (7: + A~~) operating twice on 

t rJ1 (A 2r) does give a zero result. This implies that the portion of 
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' the solution involving rJ1 (A 2r) is truly asymptotic in the sense that 

it satisfies the differential equation to a better and better approxi-

mation as the distance from the source is increased more and more. 

4.4 The Discrete Spectrum. The branch line integrals of the 

previous section constitute the continuous spectrum of the operator L 

given by Equations 4.1.1-4. The discrete spectrum of Lis found by 

evaluating Equation 4.1.19 at the poles of its integrand. In the con-

text of this type of problem, the elements of the continuous spectrum 

are called space waves and those of the discrete spectrum are called 

surface waves (Friedman, 1956). Generally speaking, surface waves are 

tied to a surface in some fashion while space waves are not. Histor-

ically, the space wave portion of the solutions to many boundary prob-

lems is the portion which has been experimentally verified and about 

which there exists little disagreement;. On the other hand, the nature 

of and even the existance of so called surface waves have been topics 

on which disagreement has existed for at least the past sixty five 

years. Stratton (1941) discusses some of the points in question. 

What amounts to a debate on the meaning of the term "surface wave" 

between such people as Wait, Barlow, Cullen, and Zucker appears in 

Silver (1963). The debate ended without agreement being reached. With 

this kind of background, a rather cautious approach is taken toward 

the subject of surface waves in this chapter. 

The definition proposed by Zucker (Silver, 1963) for surface 

waves is as follows: A surface~ is a source-free solution of 

Maxwell•s equations over an interface. It satisfies the radiation 

condition at infinity and boundary conditions at the interface. 
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When the source is removed from the infinite antenna, it becomes 

an infinite cylinder. This would suggest that, to obtain surface 

waves, an alternate procedure to solving the integral expression by 

residues would simply be to solve for the fields exterior to a cylinder. 

The solution should be the same, at least for large distances from the 

slot on the antenna. 

The people who investigated the infinite antenna in an isotropic 

medium (Northover, 1958, etc.) found only a space wave contribution. 

According to Sommerfeld (1947) and Goubau (1950), a surface wave will 

exist on a long cylinder only if the surface of the cylinder is modified 

or if the cylinder has a finite conductivity. They argue that a surface 

wave cannot exist over a perfectly conducting cylinder because such a 

wave, in the language of Chapter III, would be an improper eigen­

function. As discussed in Chapter III, this is not always a valid 

reason for discarding such a wave. This is a point of academic interest 

only, of course, because such a model could never be built and tested. 

However, it appears to this author that the reason for surface waves 

not appearing in the isotropic infinite antenna problem is more prob­

ably that a circumferential slot does not launch surface waves than that 

such a wave could not exist even if launched. 

Moving now to the anisotropic case, at least two papers (Johnson 

and Cook, 1965; Mushiake, 1965) have considered the infinite cyl inder 

problem. The Johnson and Cook paper suggested that the longitudinal 

wave numbers k1 and k3 were associated with surface waves. This 

analysis was questioned by Sesha:dri (1965), and the alternate infinite 

antenna approach performed earlier in this chapter shows that k1 and 

k3 are actually associated with space waves. The reason this 



misunderstanding arose can be seen from Equation 4.1.16 . A necessary 

condition for ki 3 to belong to surface wave structures is that the 
' 

denominator of the integrand be zero for these values of k. This is 

not a sufficient condition because the numerator of the integrand may 

be zero at the same points as the denominator, in which case there is 

no pole. This is what happens for ki and k3. 

Another wave number, k 2 = k 0~, has been suggested by both 

Johnson and Cook (1965) and Mushiake (1965) to belong to a surface 
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wave. This same wave number was used by Ament (1964) in his impedance 

calculations for a dipole antenna, although he arrived at it in a some-

what different fashion. This wave number has the advantage that it 

reduces to ko as the plasma becomes free space. Of course, k1 and k11 

have the same advantage. It is not obvious from Equation 4.2.9 that 

either ki or k3 has such a property, but this is not important because 

the analysis from which they come is strictly valid only for X, Y j O 

anyway. 

Unfortunately, both papers made the same error mentioned earlier 

in assuming that a necessary condition was also a sufficient one. To 

show this consider that either the integral representation of Equation 

4.1.16 or Equation 4.1.19 is valid away from the branch cuts. If k2 

is a pole then both integrands should show this, and likewise if k2 is 

not a pole . It would not be expected, of course, that both integrands 

would have the same value at nonsingular points. From the infinite 

cylinder formulation it appears that ka may be a pole asymptotically 

as the radius goes to zero, so this will be the limiting case to be 

considered. 
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1he integrand of Equation 4.1.19 will now be -examined to .see if 

k = k2 is a pole, or if the integrand is unbounded fpr k = k2 ~ It may 

be noted from Equation 4.1.17 that k2 is a pole of f(k). For k near 

ka, f(k) >> Af or Ai, and since f(k) is then a .connnon facto~, it can 

be divided out. The integrand is :then 

H~ 2 )(A1r) 
(2) 

r H1. (Air) 
+-

(a) a AaH~ 2) O~aa) 
N X1H1 (l1a) 
D ~ 

H~ 2 )(A'1a) (2) 
H1 (Aaa) 

(4.4.1) 

(2) 
+ 

A2H~ 2 )(A 2a) A1H1 0,1a) 

(2) (a) r JJ1 (A2r) rH1 (A2r) 

';' (2) 
.!.. 

a--+-eO H;1. P-aa) (2i/rr"A2) 
(4.4.2) 

This equation has been obtained by using Equations B.13 and B.14 

and ri~glecting ·the terms which go to zero as the radius a goes to zero. 

It is evident that Equation 4.4.2 is not unbounded even .for the radius 

identically zero. This would imply that k2 is not a pole of the·inte-

grand and hence there is no guided wave ~ith this longitudinal wave 

number. 

Making-the same small argument approximations, the integrand of 

Equa.tion 4. 1.16 becomes 

= 
(rra/2i)[H~ 2)(X1r) - H~ 2)(Aar)J 

Aa 
alog(~) 

(4..4.3) 
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The denominator goes to ze.ro with the radius a, but the numerator 

does too, with the result that the integrand is not unbounded at k-= ka. 

Thus from both integral representations it is seen that k2 is not a 

part of the spectrum. 

The next question to consider is the possibility of other values 

of k being members of the discrete spectrum. This is a difficult 

question to answer because of the transcendental nature of the funct-

ions involved. However, aft;er a considerable amount of analytic and 

computer work, it appears to this author that there are no real values 

of kin the discrete spectrum for a lossless medium. This implies 

that any members k .of the descrete.spectrum of Lare either complex 

or purely imaginary •. Allis (1963) shows that waves with a complex 

propagation constant ·in a lossless medium carry no real power. It is 

hard to imagine much use·for this type of wave. The purely imaginary 

longitudinal wave numbers would correspond to waves cutoff or evanes-

cent in the z direction. This type of -wave is useful in matching 

boundary .conditions at some discontinuity, but would not contribute· to 

the current distribution some distance from the source. 

The conclusion is that the discrete spectrum of Lis null in the 

sense that there are no surface waves propagating along the cylinder 

·with little or no attenuation in the direction of travel. 

Therefore, from Equation 4.2.15 it is seen that the total electric 

field iswrit:ten as the sum of the four integrals II' III' 11 , and I3. 

The 111ain characteristics of E (r, z) are the exponential and the 1/z 
z 

factors. This is more clearly illustrated by writing Equation 4.2.15 

in the abbreviated form 
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(4.4.4) 

where the G,terms are the ·functions of r, z, X, Y, and Z given in 

Equations 4.3.7, 4.3.9, 4.3.10, and 4.3.11. 'Ihe current distribution 

will be obtained from this expression in the next chapter. 

/ 



CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

5 .1 Summary. Chapter II starts with basic concepts of plasma 

physics and cont:a.ins the derivation of the wave equation for an aniso­

tropic plasma •. A short discussion is given on why·Green•s funct.ions 

were not used to solve this wave equation. The wave equation is then 

put :into a special form suitable for solving by Fourier transform 

techniques. -Most of this material is in the literature, and this 

chapter ·forms the basis for the more original work in the-following 

chapters. 

Chapter III forms an important part of this thesis by setting 

forth a rigorous discussion of tlte boundary condition at infinity. 

Most of these concepts 11$ve been presented elsewhere by-various people, 

but this chapter represents the first relatively complete discussion 

of radiation conditions in both isotropic and anisotropic media. In 

reading a good deal -of literature relating to the solution of Maxwell•s 

equations in an exterior region, it appears that most people do not 

bother to state the particular form of the radiation condition they 

are using, nor do they explain- how it .applies to their particular-prob­

lem. This could easily lead to misunderstandings by the uninitiated. 

One interesting.example of this is in the problem of propagation along 

an infinite .circular cylinder in an isotropic medium (Stratton, 1941; 

.Goubau, 1950). Both Stratton and Goubau make the same choice of square 
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root, which requires them to use Hankel functions of the first kind, 

H( 1 )(Ar), to ensure the "proper behavior" of the·fields at ·infinity. 
n 
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However, Stratton uses an exp(-iw t) time convention while Goubau uses 

an exp(iw t) convention. This means that Stratton has waves traveling 

away ·from the cylinder while Goubau has waves going toward the .cylinder. 

This difference.does not automatically imply ·that one of the develop-

ments is wrong, because both men have satisfied the Sonunerfeld radi-

ation condition. The ,source ·is located at z = .. co, so that "outward 

phase travel" means only that the phase travel is in the+ z direction. 

-The · Sonunerfeld radiation condition has nothing to say about a radial 

component of phase . travel ·e_i ther toward or away from -the .cylinder. 

Goubau is apparently using the Poynting vector argument that power 

should flow inward to supply the losses in the cylinder, and therefot"e 

appears to be on finner ground philosophically than is Stratton. The 

-results are ·fonnally the same, of course, because the time variation 

does not appear in ·th~ir detenninantal equations. It is unfortunate 

that nelther researcher explained exactly what .condition at infinity 

should be ·required, and how their particular solution satisfied this 

condition. 

It was pointed out in Chapter III that :the usual statement of 

Sonunerfeld•s radiation condition involving boundedness and outward 

traveling:phase ·is not necessarily adequate in anisotropic media. 

Reasons for this as well as statements by several authors to this 

effect were cited. A finite energy condition, named the Wilcox radi-

ation condition after the man who suggested it, was shown to be a 

suitable statement of the boundary condition at lnfini ty for both -i so-

tropic and anisotropic media. A rule for extending ·this Wilcox 
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radiation condition to lossless media was adapted from the concepts 

contained in Friedman (1956). 

The work of Chow (1962) might be mentioned here to show that 

.complete agreement does not yet exist on these points. Chow claimed 

to have justified the ·validity of Sommerfeld•s radiation condition in 

anisotropic media. Unfortunately, he does not state anywhere just what 

he means by the Sommerfeld radiation condition, sa that one cannot say 

he is wrong by requiring outward phase travel. The paint is that one 

needs to be careful in stating the radiation condition used in a par .. 

·tioular situation so that there can be no .confusion on·the part of 

the·reader. 

Chapter IV contains a formulation of the integral solution to·the 

infinite antenna problem, as well as an asymptotic evaluation of this 

integral. Both the formtJlation and the evaluation are important con-

tributions to the theory of wave propagation in plasmas •. The most 

important part of the farmulation is the recognition of the fact that 

generalized eigenfunctions must be used to ,span .the space of the differ-

ential operator. There are several ways to argue ·this point, bu,t per-

haps the.simplest is the·following. In general, a nth-order differential 

equation without baundary·conditions has to haven independent solutions 

before a solution to the differential equatian with boundary condition~ 

can be found. ·These boundary conditions have to give exactly n re-

lations between then independent solutions for the solution to the 

differential equation with boundary conditions to be unique. For 

k f .::!: k.1. 3, the, four expressions in Equations 3. 2.1 are four independent 
' ' 

solutions to Lez = o. However, fork=.::!: k.1.,3, A.1. = "a, and these 

·four expressions reduce to only two independent solutions of Lez = o. 
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This means that two more independent solutions must be found, and 

these turn out to be the generalized eigenfunctions. 

It should be mentioned that the term "solution" has been used to 

mean two different things in the preceding paragraph, as has the word 

"eigenfunction" earlier. The solution (eigenfunctions) of the differ-

ential equation only is obviously not the same as the solution (eigen-

functions) of the differential equation plus boundary conditions. It 

should be clear from the context in each case which meaning is intended. 

The asymptotic expression for the longitudinal electric field 

close to the antenna but far from the source was given in Equation 

4.4.4, and is repeated here for convenience. 

E (r, z) = 
z 

(5.1.1) 

This field has a continuous spectrum only or is composed entirely of 

space waves. The most interesting part of this result is that every 

term of the total longitudinal electric field has a basic variation of 

1/z times an exp ( -ikz) factor. The G functions also contain a z 

variation, an example of which is GI of Equation 4.3.7. 

y\~a ik 
GI= a 2log (~ 2-)J0 (\lr)[FI (kI) + ~ F2 (kI)] (5. 1. 2) 

Here, \l, 2(kI) are functions of z, Equation 4.3.8, while F1 , 2( kI) a r e 

not functions of z or r. 

The next step in finding the current distribution is to find 

H (r, z), which from Equation 2.5.21 for no~ variation is 
~ 

oE oE 
H ( r, z) = 62 ~ -+ 61 ~ 
~ or or (5.1.3 ) 



The k1 portion of E/ir, z) has a single factor involving r; 

J 0 (A1r). The Al in the argument of the Bessel function means that 

this k1 portion is part o.f Ez1 (r, z). Now the k1 portion of Hcp(r, z) 

can be.found as 

• K '' 2 1W €a .1.1A.2 

(5.L4) 

It may be noted that H (r, z) has approximately the same z 
cp 

variation as E (r, z) for large z. The only difference is that 
z 

Hcp1(r, z) has a A~ 2 AlJ1 (11.lr) factor while Ez 1(r, z) has a J 0 (A1r) 

term, and the z variation of both functions becomes negligible for 

large z. 

Performing the appropriate differentiation for each part of 

E (r, z) to obtain H (r, z), the current distribution I(z) can be z . cp 

written from Equation 4.3.5 as 

I ( z) = 2na [ Hep (r, z) \. = a 

2 [ Va]. [G' ,.ik1z + G' ~ik11 z + G' .. ik.1.z + G,30 ... ik3z] = TTa ~ 2z le I Ile .1.e 

(5.1.5) 

where, from Equation 5.1.4 

86 
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G' = I 

-iw $ 0 K3..1.A:•.. . YA!a . . ikI a . , . • 
. a log(-2 )[-\1Jd\1a)J.[F.1(kI)+- Fa(kI)] 

( a aK )a •Ka z . k -ko 11 -ko 1a (5.1.6) 

• • • Similar expressions for GII' G1, and G3 are easily obtained by 

· the same procedure. 

The current distribution I(z) has a basic 1/z times exp(~ikz) 

variation plus terms whic:h decay as 1/z 2 , 1/z 3, etc., for z large. 

The exponential term carries the phase variation while the factors of 

1/z :simply ·indicate that :the antenna is radiating, which ·requires the 

magnitude of the current to decrease away·from the source. 

Only the wave numbers which are real for zero losses can make a 

significant contribution to the current distribution some distance 

·from the ,source. ·Depending on the plasma- and gyro.:.frequencies, one 

to three of the ,four wave numbers may be complex or imaginary and 

therefore can be neglected for large z. The wave numbers k.1 and k3 

can be -neglected for X < 1 for this reason. This line of reasoning, 

.together with possibly a computer evaluation of the G·functions of 

Equation 5.1.1; will give the current distribution for each value of 

X .and Y. 

It is interesting to note that the real part of k3 is opposite 

in Sign to the ·real part of k1 • This implies that the phase variation 

of one component of the wave is away from-the-slot source while the 

other is toward it. In isotropic media, a wave with phase travel toward 

the source could be discarded because there is no source at infinity 

to produce .such, a wave. · Th,i s same argument may or may not be valid 

for this anisotropic problem. It is conceivable that because of the 

·interrelated nature of k1 and k3, one wave .traveling outward may 

·actually· produce another wave 'traveling· inward. One example where 
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something like this does happen is in radial waveguides (Harrington, 

1961). 

The wave numbers k1 and k11 are those of plane waves in this 

medium, and would therefore be expected to appear in the solution to 

an antenna problem even for arbitrary orientation of the antenna with 

respect to the magnetic field. The appearance of the wave numbers k1 

and k3, on the other hand, is somewhat unexpected. Although they do 

come from the mathemat\cal formulation in a natural fashion, some 

caution in their use is in order. Their portion of the total field 

may be vanishingly small as compared with the k1 II portions, or such 

' 
waves may exist only for the antenna within a very small cone about 9 = o. 

In either case they would not be of much use in computing the imped-

ance of an antenna. It will be interesting to examine the experimental 

current distribution of antennas in the ionosphere when such experiments 

are performed to see if there is evidence of more than the two plane 

wave wave numbers. This, of course, will be the final test in deter-

mining the usefulness of k1 and k3. This whole analysis is invalid 

for Y = o, so examining k1 3 for this limiting case can not give an 
' 

answer to the question of their existance. 

Lo and Lee (1966) have also considered this same problem of an 

infinite antenna aligned with the static magnetic field in an aniso-

tropic incompressible plasma . At the time of this writing, this author 

had only a brief correspondence item at hand, which, of course, is 

not enough on which to base a full comparison of results. A few 

preliminary remarks can be made, however. It appears from their 

results t hat they may have used a rotating coordinate system. This 

could easily change many of the details involved in obtaining a 
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solution. That is, the elementary eigenfunctions may look different, 

as well as the integral solution. The final form of their solution 

and the one presented here.should be the same when referred to either 

the rotating or ordinary cylindrical coordinate systems, at least to 

within the limits of the asymptotic approximations made in evaluating 

the integrals. The z variation of the fields should be the same in 

both coordinate systems. 

They say that their branch cut integrals yield two current waves 

with propagation coefficients K k and Kbk 0 , where r o .x, 

K = K11 + K:1.2 Kl., = K:1..1. - K12 r (5.1.7) 

From Equation 4.2.11, however, it is seen that 

kl =J; r ko kII =~ k 0 

This implies that one of two things are true. Either Lo and Lee (1966) 

found wave numbers which are different from those of plane waves in 

the medium or else their paper contains typographical errors. This 

author would suppose the latter to be more probable. 

They also connnent that the integrand of their integral solution 

changes its basic form with variation of plasma paramet:erso They say 

that part of the time the integrand consists of two double-valued 

functions, and the rest of the time of one double-valued function 

with .four branch points plus two single .. valued functions. This 

statement also implies a different formulation from the one used by 

this author because the form of the integrand of Equation 4.1~19 doE;os 

not have. to be changed for varying plasma pa:ramete:rso 
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The fact that other people are working on the infinite antenna 

problem would imply that this is not a problem without interest. Some 

,comment is therefore in order on the ·particular merits of this thesis. 

It seems that the main·contribution of this thesis has been the lang­

uage and techniques applied to the· infinite antenna problem ·with a 

secondary·contribution of a partial solution to this problem. This 

partial solution is the part which is mathematically· interesting; the 

·remainder iis primarily writing and running a computer program and 

plotting·the data obtained, not a trivial task in itself. The power­

ful tools of functional analysis have only been used in the solution 

of field problems for perhaps the last :ten years. · As the .class of 

problems under consideration becomes more complex, the advantages of 

functional analysis become more ·pronounced. ·A careful investigation 

of the infinite antenna problem has required as much or more·functional 

analysis than this author has seen applied to any other physical prob­

lem. The use ·of the continuous spect:r;um·is not really unconunon but 

the use of generalized eigenfunctions may prove to be.a first, at 

least for this type of problem. Therefore, it is felt that the par­

·ticular solution obtained is of secondary importance to the rather 

general methods used in obtaining this solution. 

5.2 Reconunendation for Further Study. The model ·Chosen for the 

ionosphere is the simplest possible that still includes anisotropy. 

The medium ·in ·the .near ·Vicinity of a dipole on a satellite will prob­

ably be much more .complex than indicated by this model. There will 

be a sheath around the antenna, fo:i;- example. There may also·be 

acoustic waves (Cook and Edgar, 1965). These ·factors, as well as 
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possible nonlinear effects and ion modes, may change the current distri ­

bution and the impedance drastically. The infinite antenna problem 

should be examined in an anisotropic compressible plasma, first without 

a sheath and then with one. It will probably be some time in the future 

before effects other than sheaths and compressibility can be satis­

factorily considered. 

Once a model is chosen, a problem can be posed as a differential 

equation and a set of boundary conditions. A solution can be obtained 

by the powerful methods of functional analysis, as in this research. 

This area of mathematics is very much a research area, and the topics 

of higher order differential equations and generalized eigenfunctions 

need a great deal more examination. 

Perhaps the most obvious next step is to find the impedance of 

the infinite antenna. There are at least two distinct approaches to 

finding the impedance of an antenna. One is to integrate the radial 

component of Poynting•s vector over the surface of a large sphere. 

This integration yields the radiated power, and division by V2 / 2 gives 

the rad\ation conductance. This approach was used by Papas ( 1949 ) in 

the isotropic ·infinite antenna problem. Northover (1958 ) looked a t 

this approach again and was able to verify some of the assumptions 

which Papas made. This requires solving the integral express i on for 

t he E fie l d for large r and/ or large z and conver ting t he solution to 

spherical coordinates. 

Using this Poynting vector method for the infinite antenna in an 

ani sotropic medium has some disadvantages. As mentioned in Chapt er 

III , t here is some question about Poynting•s vector a ctual ly represent­

ing t r ue power ·f l ow. Also, the field solutions obtained earlier in 
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this chapter are only valid near the antenna. It would require a good 

deal of work to obtain the asymptotic form of E ( r, z) suitable for z 

larger and z, convert to spherical coordinates, and integrate this 

asymptotic expression over a sphere. 

The second approach uses the Lorentz reciprocity theorem or its 

modernized form, the reaction concept (Richmond, 1961). The Lorentz 

reciprocity theorem, neglecting .magnetic currents, is given by Collin 

( 1960) as 

£<!£,. x l!, - !:., x !!,. ) • d.!i = i?· . .:!,. - .!:,. • :.!2)dV 

(S.2.1) 

Collin actually derived this result for synunetric permittivity and 

permeability tensors, but the same form applies for the antisynunetric 

permittivity tensor of this problem if one set of solutions, say ~2 

and B2 , are found in the transposed medium. That is,~ and lit are 

solutions to Maxwell• s equations when the static magnetic field is 

in the positive z direction while ~2 and B2 are solutions for the 

magnetic field reversed. The volume Vis bounded by the closed sur-

faces. 

Richmond (1961) uses this theorem to obtain the following formula 

for the self impedance of an antennao 

LI 12 
J • ~2 ds (S.2.2) 

In this formula, cO is the surface of the antenna and:.! is the 

current density along ·the antenna. This current density is easily 

found from the current distribution, for which Equation 5.1.5 i s 
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suitable for large z. The current I is the input current at: the antenna 

tenninals which gives rise to :I• The field ! 2 is the field produced 

by;[, when the magnetic field is reversed and the perfectly conducting 

surface of the antenna removed. This means, of course, that ! 2 (a, z) 

is not identically zero for any z. 

From this discussion it may be seen that finding the impedance of 

the infinite antenna is not a trivial task, and may be of the same 

order of difficulty as finding the current distribution. This would 

certainly make a good research topic. 
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APPENDIX A 

PROOF OF UNIQUENESS THEOREM 

The uniqueness theorem, Theorem 1, is repeated here for convenience. 

Theorem l. If ho . and µ., . are bounded, Lebesgue measurable funct-
lJ lJ 

ions of position, and if tu f: 0 and real, then the·steady state solu-

tion ! of Equations 3.4.17-20 exists and is unique for evecy source 

field f(J, J) in 12 (0). - -e -m 

The proof given here is essentially tbe same as t:hat presented 

by Wilcox (1963) except that an attempt has been made to include more 

explanatory material than was presented by Wilcox. 

There are two distinct:: questions to be answered by this proof. 

First, does a solution exist and, second, ·is it unique? The system of 

Equations 3.4.16 may be given as one operator equation, Lx = a. Fried-

man (1956) proves that the solution to Lx = a is unique only if the 

soJ.ution to Lx = 0 is trivial. This will be one part of the proof, 

showing that there are .no nonzero solutions to Lx = o. 

Friedman then goes on to prove that! the solution to Lx = a exists 

if/the 'range of Lis closed, and if and only if a is orthogonal t:o 

every solution of the adjoint homogeneous equation Laz = o. The 

adjoint system is obtained by replacing all anisotropic materials by 

materials for which Ka is the transposed form of K. Showing that 

these requirements on the range of Land on a hold will be the other 

100 
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part of the proof. 

Wilcox (1963) assumes that the components of the permittivity ten-

sor are real-valued. This ensures that the quadratic fonn for the 

energy density is positive definite. However, the energy density was 

shown in Chapter III to also be positive definite for a hermittian 

permittivity. Since the positive definite energy density appears to 

be the factor actually used in the proof, this author has left the 

real-valuedness requirement out of the statement of the theorem. 

Several definitions must be made at this time. 

L2(0) = The set of all vector fields F such that Fis Legesque 

on O and I ,£:(.,:)' :v < oo. -

0 . 
measurable 

L2 ('v x; 0) = The set of vector fields .E such that .E and 'ii x l: 

are in L2 (O). 

L~ ( 'v x; 0) = The set of vector fields which belong to both 

L2 ('il x; 0) and the set for which.L .E • 'ii x Q dV 

=L Q • 'ii x .E dV, for all Qin L2 ('il x; 0). 

The last definition is motivated by the integral identity 

Io ! · V x :£ dV - f O :£ • V x ! dV = I~ I! x ! . :£ ds (A. l) 

~.. ,·. 

where I~ I! x ! · :£ ds = 0 (A.2) 

generalizes the boundary condition "!l x .E = 0 on oO''. If .E and 

'ii x .E are continuous in the closure of O ( the closure is the smallest 

closed set containing 0) and if?() is sufficiently smooth, then 
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F c L~(~ x; 0) implies 

[ ~f x K • !!! ds " a 

for all ,se which are continuously differentiable in the closure of O, and 

it follows that !l x ! = 0 on cO. · The integral boundary condition is 

more flexible than the pointwise one and is useful in approximation 

methods. 

The currents J and J are in L2 (0) for every! in Li(V x; 0) and -e -m 

li in L2 (V x; 0). Since the operator L of Equations 3.4.17, 18 involves 

two functions which are each in L2 (0), it is said that Lis defined on 

the Hilbert space La(O) x 1 2 (0) = HS which is formed from the Cartesian 

product of the Hilbert space L2 (0) with itself. However, the domain 

of this linear operator(! and li) is not all of La(O) x La(O) but is 

D(L) = L~(~ x; 0) x L2 (V x; 0) (A. 3) 

The same ideas are expressed in the: following definition of strict 

solution. 

Definition. The fie l ds! and li define a strict solution of the 

steady state problem for the region O and source fields le€ La (O) and 

~ e L2 (0) provided that!€ L~(V x; O), li c L2 (V x; 0) and Maxwell's 

Equations 2.2 . 1-4 hold almost everywhere in O. 

Wilcox was able to prove that for! and li strict solutions t he 

following energy, inequality theorem holds. 

I [h .. E E* + µ H. H~~]dV < CI (I J I 2 + I J I 2 )dV 
lJ i j ij 1 j - J,. -e , 

0 . 0 

< 0:, (A.4) 

where C is a determined constant depending on the medium parameters. 
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It is also required that hij' µij' and w satisfy the hypothesis of 

Theorem 1. This inequality has been called the Wilcox radiation con-

dition in this thesis. It may be considered equivalent to the state-

ments ! c 1g(v x; 0) and li c La (V x; 0). This energy inequality theorem 

will not be proved here, but the result will be useful in proving the 

uniqueness theorem. 

From the energy inequality theorem, it may be shown that 

fnc1 .!:I'+ I .!.!l' )dV::: Ci fo<1 ,r.l' + I :I,.i')dV (A • .S) 

where Ci is another determined constant depending on the medium para-

meters. 

Since La (O) is a Hilbert space, the norm in this space may be 

defined as 

(A.6) 

Uniqueness may now be shown. Let f, li and!', li' be strict 

solutions of the problem corresponding to source fields le,~ and 1;, 

~ ,respectively.Then the differences f - !', li - H• define a strict 

solution with source fields J - Jw 9 J - J•, because Maxwel l •s equa-
-e -e -ni -ni 

tions are linear. Therefore, Equation A.5 can be written 

I l! - !' II a + 11 li - li' ll 2 < Ci <II le - l~. l la + l l ~ - ~ 11) 2 

(A. 7) 

If!, li and f', li' are strict solutions with the same data le, liu 

then Equati on A.7 with J = J•, J = J• implies E• = !, li = li'· This 
~ -e -nt -nt -

means that the solutions! and li are unique. 
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To prove the ,existence of a solution the range of the operator, 

R(L), must be shown to be the entire Hilbert space La(O) x La(O). The 

range is by definition the set of all dements obtained when L acts 

on all of D.,.the ·domain of L. Now using the hypothesis of Theorem 1 

' it is desired to show that the closure of the range, R(L) = L2 (0) x La(O)o 

But R(L) is a closed linear subspace .so that 

·-.1 -where [R(L)] is the orthogonal complement of R(L) and<:9denotes the 

orthogonal sum of the two closed (also complete) linear subspaces. ·Let 

:!•, .!!' be orthogonal to R(L) in L 2 (n) x La(O), which means that 

L [E• • J + Hv • J ]dV = 0 · for all fields _E in Li ( 'v' x; 0) ,. H in - -e - .:.ui 

n 
(A.9) L2 ('v' x; 0). 

Write Maxwell•s equations in the form 

J. = (V x H). -·iw e0Ki.E. 
e1 - 1 J J 

(A.10) 

J . = (1:7 x !) . + iw µ, •• H. 
m1 1 lJ J 

(A.l.1) 

Take the two cases 

! = .f. with .f. e Li(V x; O), .!! = O 

and ! = o, .!! = g with g c L2 (V x; 0) 

f Combining these two cases with·MaxweU•s equations and Equation 

, A.9 gives the pair of identities 

~rfE;(IID <oKij)Pj + Hi(~ x .f)l]dV ~ 0 
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(A.12) 

for all .f. e Li('il·x; O), g e La('il x; 0) 

It .should be evident from the formulation that the above·identities 

express exactly·the .same thing as was given in the definition on strict 

solution although this is called the definition for a "finite energy 

solution." Wilcox proves the equivalence-in a Lemma, but the proof is 

short and elementary, and therefore ·will not be included here. 

Equations A.12 say that!',.!!' is a finite energy solution ot an 

~a na A A 
adjoint problem with -w, K , µ. (the transposes) replacing w, K, µ. but 

with source fields J, J = o. But the conditions for the energy 'in­
-e -m 

equality to hold are the,same for the adjoint problem so that!',.!!' 

is a strict solution of the adjoint problem. Since da, ~ = o, then 
-.1. 

by·Equation A.4, !' = .!!' = o. This proves that [R(L)] is 1:he null 

space and hence R(L) = La(O). x La(n) •. A set S is dense in a Hilbert 

space HS if the •clo1;1ure of S coincides with the whole space HS, which 

means that R(L) is dense in La(O) x La(O). It was said earlier that 

the -solution to Lx = a exists if the range of Lis closed, and if 

and only if a is orthogonal to every solution of the adjoint homogen­

eous equation Lax= o. The second part of this has Just been proved, 

so now the closure of the·range must be considered • 

. Let J, J be ·in·La(O). From the preceding.remarks there exist 
-e -m 

.sequences of fields [E J in Lg ('il x; 0), [H J in La ('il x; 0) such that -n -n 

their sources [J ], [J J converge in La(O) x L2 (0). These -e,:n -m,n 

sequences are .therefore Cauchy sequences, hence, by settring 

-E -_E• = E -·E and similarly for the other quantities in Equation 
-n ""."j' 



106 

A.7~ there results 

II~ - ~5!1 2 = II~ - l!jlla < Ci(llle,n - de,jll 2 + 11~,n -1m,jll') 

(A .. 13) 

From this it follows that the sequences [E ], [HJ are Cauchy sequences -n --.n 

in L2 (0) Since the right side of Equation Ao13 tends to zero as n,j- 00 • 

But since L2 (0) is a complete set the above sequences of fields con-

verge to a limit field which lies in L2 (0), namely 

H - H as n-co --:n 

Each E, H is a strict solution with source fields J , J and 
--.n -.n -e,n -m,n 

are therefore also solutions with finite energy which means that Equa-

tions A.12 hold for each E, H and their corresponding source fields. 
-n -n 

But since all fields E, H converge in L2 (0) then Equations A.12 -n -n 

hold as n -co for the limit fields and their sources. Therefore ~, 

.!.! is a solution with finite energy and thus also a strict solution 

with source fields J.~ J and is unique. The above argument shows -·e· -m 

that: R(L) is a closed linea:ir subspace and is therefoire equal to its 

dosureo That is, R(L) = R(L) in the space 1 2 (0) x 1 2 ((2). Therefore 

R(L) = L 2 (0) x 1 2 (0) 

so that the range·is both closed and complete. This concludes the 

proof of Theorem 1. 



APPENDIX B 

BESSEL FUNCTIONS 

Bessel's equation of order n is 

z .2-(z ~) + (z 2 - n 2 )y = o 
dz dz 

(B.1) 

Two independent solutions to this equation for n = 0 and n = l are 

where 

00 

Jo (z) -~ (-l)m (.!)~m - L..- (m? ) 2 2 
m=O 

(B.2) 

00 

( 2 n N0 z) =; log 2 Jo(z) L m+1 
+ 1 (-0 

TT (m!) 2 

z 2m 
(2) cp(m) (B.3) 

00 

-~ (-l)m 
- L_ m! (m + 1) ! 

m=O 

y = 1.781 

log y = 0.5772 
. m 1 

cp(m) =."' -·L- n 
n=l 

m::;::l 

(B.4) 

00 , 

2 lL~-l)m z am+.1 
- - - - •· (-) [cp(m)+cp(m+l)] 

TTZ . TT m! (m+l) I 2 
m=O 

(B,5) 

(B.6) 

For the expression of wave phenomena, it is convenient to define 

linear combinations of the Bessel functions, 
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H( 1 )(z) = J (z) + iN (z) 
n n n 

(B. 7) 

H( 2 )(z) = J (z) - iN (z) 
n n n 

called Hankel functions of the first ap,d second kinds. Only the Hankel 

:!;unctions have the possibility of remaining bounded for arbitrarily 

large complex argument z. Both the Bessel and Neumann fu:n.ctions J (z) 
n 

and N (z) will become ,unbounded as the complex z goes to infinity. 
n 

Ratios of Hankel functions are often encountered in integral 

solutions for the fields around an antenna. One such ratio is 

H~ 2 )(z) J 0 (z)J1(z) + No(z)N1(z) 
= 

Hl 2 \z) Jf(z) + Nf(z) 

2-i 
TIZ 

Jf(z) + N.f(z) 
(B.8) 

where use has been made pf the Wronskian of Bessel•s equation, which 

is 

J (z)N•(z) - N (z)J•(z) n n n n 
2 (B.9) 
TIZ 

The inverse ,ratio also is used. 

H} 2 \z) 
2i 

Jo(z)J1(z) + N0 (z)N1(z) TIZ 

H~ 2 )(z) 
= + 

Jg(z) + N~(z) J~(z) + N~(z) 
('$.10) 

The small argument forms of the Bessel and Neumann functions are 

Jo(z) 1 
z-+0 

(B.11) 



Jdz)---·--! 
z-o 

(B.12) 

N1 ( z) -z-_-i,.-...,..Q~ 
2 
TTZ 

Using Equations B.11 and B.12, the Hankel function ratios become 

H~ 2 \z) 
-z[log Cf) + ~] Hi 2 ) (z) 

i 
z-+O 

(B.13) 

Hl 2\z) 1 i 

H~ 2)(z) 
+ 

2 z-+0 z log cf) z[log Cf)J2 
TT 

(B.14) 

Comparing the exact values of these ratios with the approximate 

values given in Equations B.13 and B.14 (Jahnke and Emde, 1945) shows 

that these approximate values are accurate to within about 3 per cent 

for z ~ 0.1. Usually, in using such ratios, the imaginary part is 

neglected in making the small argument approximation. This should be 

done only when necessary becausei it introduces at least;: a 3 per cent 

error in magnitude unless I z I~ 0.001. 

It will also be convenient to determine these ratios for a 

negative argument (-z). Equation B.2 does not change when z is 

replaced by -z. The only part of Equation B.3 which changes is the 

log term. That is, 

log(- f) = log(f) + in = log(y Jzl) + in + iarg(z) (B.15) 

The choice of plus sign on the in term is arbitrary. It is motivated, 

however, by the fact that z = Aa has an argument -n,:; e,:; o, at least 

fork near the real axis. The principal value of the logaritl:un is 
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defined for -TI~ e ~ TI, and adding TI to the argument of z falls within 

this range while subtracting TI from the.argument of z does not. There-

fore, 

No(-z) = No(z) + i2Jo(z) (B.16) 

A similar examination of Equations B.4 and B.5 shows that 

J;1.(-z) = - J;t.(z) (B.17) 

(B.18) 

The ratio of the Hankel functions of negative argument can now 

be ·written. 

H~ 2 \-z) J~(z) - i(N0 (z) + i2J 0 (z)) 
(2) = 

H;1.. (-z) -J1 (z) ~ i(-N1 (z) - i2J1 (z)) 

.ii 
-9J 0 (z)J;1.(z) - N0 (z)N;1.(z) TIZ 

;:: + (B.19) 
9 J f ( z) + Nf ( z) 9 J f ( z) + Nf ( z) 

zlog(yz/2) + i3Tiz/2 (B.20) 
z-+-0 

(2) 
H1 . (-z) [-3J;1. (z) + iN;1. ( z)] [3Jo(z) + iN 0 (z)] 

H~ 2\-z) 
= 

[ 3Jo(z) - iNo(z)] [3Jo(z) + iNo(z)] 

i6 
-9J 0 (z)J;1.(z) - N0 (z)N;1.(z) TIZ 

= (B.21) 
9J~(z) + N~(z) 9Jfl(z) + N~(z) 

1 3i 
(B.22) z-+0 

zlog(f') ~ z(log(f)) 2 
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The integrand of Equation 4.3.2 may now be investigated. The 

transverse wave numbers on the two sides of the branch cut are ·related 

as follows: 

(B.23) 

As the radius of the antenna gets very small, the first term in 

the denominator, Equation 4.3.4 goes to zero while the second term 

goes to infinity. This may be seen by comparing Equations B.13 and 

B.14 as z goes to zero. This second term does not involve A.1., and 

since A2 does not change across this cut, DL 
. 

DR. Both numerator 

terms of Equation 4.3.2 have a common member containing A2, so when 

the indicated subtraction is performed, this A2 term disappears. 

Thus the integrand of Equation 4. 3. 2 becomes, in the small radius 

limi t 1 

NR NL . 
DR DL 

where 

Pf + f(k)] 

[A~ + f(k)J 

J 0 (A.1.r) - iN 0 (A.1.r) 3J 0 (A.1.r) - iN 0 ( A1r) 

(i2/na) 

1 
yX2a 

A~alog (~) 

,. K2 
ko 12 

+ 

(i2/na) 

i 

2 yA 2a 
;A~a[log (~)J2 

(B.24) 

f(k) = k2 - kg + ----- (B.25) 

The first of Equations B.24 .contains a small imaginary term in the 

denominator which is neglected in th~ second equation. The most 

rapidly varying factor of this equation, the integrand of Equation 
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4.1.19, is Ai. The term k 2 which appears in A~ may be written 

(B. 26) 

The first bracketed ta.rm of A~, Equation 2.4.14, becomes 

2 J.<33 
+ ( 2ik ! + .§..:) (- + 1) 

Iz 2 K11 z -

(B. 27) 

The bracketed term under the radical of Equation 2.4.14 becomes 

(B.28) 

For suffic:i.ently large z the S2 /z 2 term may be ignored, so ,that 

Ai can be written as 

(B. 29) 

where 

(B.30) 
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(B.31) 

The radical may be approximated, for b1 ort the same order of 

magnitude as ba, and e << z, as 

(B.32) 

Then Equation B.29 becomes 

(B.33) 

where 

(B.34) 

(B.35) 

The other transverse wave number squared, ">,_f, can be found by 

' a ....: this same procedure. However, A1 - 0 fork= k1 by definition, so 

the equivalent to Equation B.33 is 

where (B.37) 

Turning now to the other terms in Equation B.24, it may be 

noted that 

f(k) • kfi(K11 - 1) - 2ik1 ~ (B.38) 

Therefore the bracketed ratio in Equation B.24 is 



Af + f(k) • ikI ~ b5 + k~(K11 - 1) - 2ik1 ~ 
A~+ f(k) b3 + ik1b4 ~ + k~(K11 - 1) - 2ik1 ~ 

(B.39) 

Rationatizing and neglecting terms in a2 /z 2 , this equation becomes 
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Af + f(k) • [k~(K11 - 1) + ikI ~(b5 - 2)J[b3 + kg(K33 - 1) -ik1 ~(b 4 - 2)] 

A~+ f(k) [b3 + k~(K11 - 1)] 2 

~ kg(K11-l)[b3+kg(K33-l)]+ikI !~bs-2)(b3+kg(K33-l))-{b4-2)k~ (K11-l)] 

[ g 3 + k ~ ( KH - 1 ) ] 2 

= b6 + ik1 t b z 7 

The integral of Equation 4.3.2 may now be written as 

Vo . ,, loo i -1is1z -- e z 2n 
0 

(B.40) 

(B.41) 

In this integral, log(yA 2a/2) and J 0 (A1 r) are slowly varying 

functions of a compared with the a and exp ( -a) fac t ors, at least for 

the small arguments which have been assumed . Therefore it is possible 

to find some value of a between zero and infinity for which these 

functions take on an "average" value. This "average" value can 

then be used to represent these functions over the range of a from 

which most of the contri bution to the integral arises. That is, the 
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range of integration can be .split into two ranges, 0,::: S < Kand 

K,::: a,::: 00 where K has to be taken large enough to make 

(B.42) 

Some Sin the range O ~ S < K will then give a suitable average 

value for log(y\2a/2) and J 0 (\1r). To be able to compare the results 

for this . anisotropic formulation to the isotropic antenna problem 

(Northover, 1958) the ·same choice of a = 1 will be made. This is a 

reasonable choice because it evaluates these slowly varying functions 

where the multiplying factor is approximately at its 1/e value, and it 

would appear that approximately half the value of the integral would 

come ·from O,::: S < 1 and the other half from S > 1. For more rigo-

rous arguments, one is referred to the original paper (Northover, 1958). 

Equation B.41 thus becomes 

where A~ = Jb3 + ikI 

\1 ~ = I z 

Thus 
v 2 oa . k · -1 Z 

II~ -~ e I 

blj, 

z 

( B.43) 

(B.44) 

(B. 45 ) 

( B.46) 

Since K is not small, this may be further approximated as 

(Northover, 1958) 

0 
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( B. 47) 

To evaluate 11 , the integral around the contour C1 , the same 

procedure ·is followed except that the transverse wave numbers on the 

·two.sides of the ·branch cut are.now related as 

(B.48) 

The denominators of the integral Equation 4.3.2 are approximately 

given, when the radius a is small enough that the Hankel function 

ra.tio involving A1 is much smaller than the· inverse ratio involving 

"-2, as 

DR,; [- 1 + 
i J [A!+ f(k)] 

(B.49) ylaa yA2a 11. 2. 
Aaalog(--r) -Aaa[log(--r-)] 2 . 2 

1T 

DL,; l I 

Ji l [A! + f(k)J 
(B.50) 

. YA2a 2 YA a a A 
. A2alog(--r) - l 2a[log(~)J 2 

Q 
2 

1T 2 

For a quite . small, DR ~ DL, as was the ·case in the previous 

integral. The .numerator tepns involving l 1 may: be subtracted one from 

the other. 

.!.. [Jo(A1r) - iNoCA-1r) - Jo(A1r) 
- 2i 

. nA1 a 

2J 0 (A1r) l [Af + f(k)] 

j A1 

= inaJ0 (A1r)[Af + f(k)] (B.51) 



Then, 

The numerator term involving \ 2 becomes 

= y\ 2 a 
alog(-r-) 

(B.52) 

NL~ yA2a [\f + f(k)] 
D - A2nrJ1(A2r) - ina 2 Aflog(-r-)J0 (\1 r) 
L [A~+ f(k)] 

(B.53) 

Evaluating Equation 4.3.2 for the first term of Equation B .. 53 

for small Azr gives 

I 1 (first term) = iVo "k loo -1 iZ -e 
2nz 

0 

(B.54) 

where A~ indicates that A2 has been evaluated fork= k1 - i(l/z)o 
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The other part of Equation Bo53 is identical in form to Equation B.24 

s;o the portion of the integral 11 due to this part will be the same 

as I 1 in Equation B.47 except that k1 is replaced by k1 everywhere. 
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Therefore, 

(B.55) 

where gi is the appropriate function of a, z, k1 , and the plasma para-

meters. 
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