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PREFACE 

This paper will be concerned with results related to inverse arc 

maps and a decomposition of continua that contain a topological 2-cell. 

Chapter I is an introductory chapter giving the definition of the above 

mentioned maps and definitions of related terms. The material of 

Chapter II is concerned with :revealing some fundamental properties of 

an inverse arc map. This chapter presents some sufficient conditions 

on a space X for a map f defined on X to be an inverse arc map. A well 

known factorization theorem by G. T. Whyburn is extended for the inverse 

arc map. It is shown t~.at some properties of X and subspaces of X are 

determined if f is an inverse arc map defined on X. Chapter III 

extends the notion of an inverse arc map and shows some properties of 

indecomposable continua. and their relation to continuous and monotonic 

mapso 

In Chapter IV a decomposition of the closed 2·cell into nonlocally 

connected continua is established. In conjunction with this a contin-

uous and monotonic inverse arc map f is. determined with domain the 

closed 2-cell, M, and range an arc, L, such that if ye L then f~1(y) 

is nonlocally connected. Also, Cnapter IV reveals a characterization 

of an inverse arc map. As further results to Chapter IV, Chapter V 

establishes more general results for decompositions of general spaces. 

This chapter shows that every 2-manifold, M, can be represented as the 

union of uncountably many mutually exclusive nonlocally connected 
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continua and there exists a continuous and monotonic inverse arc map, f, 

defined from M onto any arc L such that if y € L, then f-1 (y) is a 

nonloca.lly connected subcontinuum of M. The su,mmary of all results is 

given in Chapter VI. 

Numbers in brackets refer to the bibliography at the end of the 

paper. For example., [5-p, 127] refers to bibliography reference number 

five, page :i.27. 

It is a pleasure to acknowledge my gratitude to Professor O. H. 

Hamilton for the experience of working with a man who is both an 

accomplished mathematician and a skillful teacher; to members of my 

advisory committee; Dr. L. Wayne Johnson, Head of the Department of 

~.a thema ti.cs, for my staff assistantship., and for his encouragement in 

my studies; to the National Science Foundation for the fellowships 

that I have received; and, most of all, to my family, Caryl, Mark, 

J'ody, Amy» Jenny, a.nd Hutch. 

iv 



TABI.E OF CONTENTS 

Chapter Page 

I. INTRODUCTION 0 • • 0 0 • 0 • • O ct 411 ,ct O 0 0 0 0 0 • • • 1 

II. SOME PROPERTIES OF INVERSE ARC MAPS O • 0 O O O O O O O O 5 

III. SOME PROPERTIES OF INDECOMPOSABI.E CONTINUA AND TBEIR 
RELATION TO CONTINUOUS AND MONOTONIC MAPS •••••••••• 20 

IV. THE DECOMPOSITION OF THE CLOSED 2-CELL INTO NONLOCALLY 
CONNECTED CONTINUA. • • • • • • • • • • • • • • • • • • • • 

V. DECOMPOSITIONS OF GENERAL SPACES • . . 0 0 0 D . . . .. •• 57 

VI. SUMMJIBY O O • 0 q O O O 000000 . . 000000$00 •• 70 

BIBLIOORAPfil' 0 0 0 0 0 . . • • 0 0 0 0 0 • • • 0 0 0 0 • • • • • • 72 

v 



CHAPTER I 

INTRODUCTION 

This paper will be devoted to certain results in connection with 

inverse arc maps and decompositions of continua that contain topological 

2-cells. The following definition of an inverse arc map is stated. 

· Definition 1.1: If Xis a space and f is a map such that f(X) = Y, 

then f is an inverse arc map if and only if for each arc Lin Y there 

exists an arc L1 in X such that f(L1 ) = L. 

All spaces in this paper will be assumed to be Moore spaces 

satisfying Axiom O and Axiom 1. If A is a subset of the space S then 

the notation F(A) will be used to represent the set of boundary points. 

of the set A in S. If Lis an arc from the point a to the boint b then 

Lis denoted by the arc (ab). The results in this paper rely heavily 

upon material in Whyburn [5] and in Moore [ 3 ]. 

In Chapter II some fundamental properties of an inverse arc map are 

given. Among these are some sufficient conditions for a continuous and 

monotonic map to be an inverse arc map. It is well known that a contin

uous function f can be factored into a composite map f = f 2f 1 where both 

factors are continuous, f 1 is monotone, and f 2 is light, [5~p, 141]. A 

theorem in Chapter II is proved showing that if f is a continuous 

inverse arc map then f 2 in the above composite is also an inverse arc 
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map. 

Chapter III assumes X and Y are spaces and that a function f such 

that f(X) ~ Y is a continuous and monotonic map. Attention is given to 

studying the :ind.ecornposabili ty of subsets of X if Y is indecomposable, 

and the :indecomposabili ty of Y if X is indecomposable. Some theorems 

consider the case Y == I where I is the unit interval. It is shown that 

if f(M) = I and Mis indecomposable then there are at most two points of 

I, x1, x2, .such that f-1 (x1) and f-1 (x2 ) are subcontinuua of M. Some . . 
extensions to the factorization theorem, [5-p, 141], mentioned in 

Chapter II are derived. In connection with P. M. Swingle's definition 

of finished sum of continua, [4], some theorems are proved concerning 

finished sums of indecomposable continua. 

Chapter IV is devoted to showing a decomposition of the closed 

2-cell into the union of uncountably many nonlocally connected continua. 

Once this decomposition is obtained then a map f is defined from the 

closed 2~cell onto I such that f is a continuous and monotonic inverse 

arc map. Thus J [ 5=p, 127] implies that this decomposition of the closed 

2-cell is an upper semi-continuous. decomposition of the cl~;sed 2-cell 

into nonlocally connected continua. At the conclusion of Chapter IV 

a characterization of an inverse arc map is given. 

The contents of Ch~pter V are directed, mainly, toward showing some 

general consequences of Chapter IV. In particula~ it is shown that if 

M is a 2=manifold, as defined in [ 6-p, 95], then M can be represented 

as the union of uncountably many mutually exclusive nonlocally connected 

continua. For this decomposition of M there exists a continuous and 

monotonic inverse arc map, f, defined from M onto any arc E such that 



if y ~Ethen f-1(y) is one of these nonlocally connected subcontinua of 

M. 

The definitions which are pertinent to this paper are as follows: 

Definition 1.2: [ 3-p, 379] A point set Mis said to be aposyndetic 

at the point p if and only if p belongs to Mand for each point x of M 

distinct from p there exists a domain with respect to M which contains p 

and is a subset of a connected subset of M - x which is closed relatively 

to M. 

Definition 1.3: A continuum Mis a hereditarily indecomposable 

continuum if and only if every subcontinuum of Mis an indecomposable 

continuum. 

~finition 1.4: A point set Mis hereditarily locally connected 

if and only if ever1 subcontinuum of.Mis locally connected. 

Definition l.~~ A continuum Mis said to be unicoherent if and 

only if it is true that if it is the sum of two continua their common 

part is a continu~. A continuum Mis said.to be hereditarily unico

herent if and only if e,rery subcontinuum of it is unicoherent. 

Suppose G is an upper semi-continuous collection of mutually exclu= 

aive closed and compact point sets filling up a space S. If the 

elements of G are called "points •1 and every region with respect to G 

is called a ''region''., then [ ;-p, 28o] implies that with this definition 

of point and region, Axioms O and l of Moore are satisfied. 

Definitio=n 1.6: Let the space referred to in the preeeeding 
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paragraph be called S' and referred to as the hyperspace of 8 associated 

with the u.pper semi-continuous collection G. 

Definition 1.1~ The point set Mis locally peripherally connected 

at the point p if and only if for every region R relative to M contain

ing p there exists a region R1 relative to M such that p € R1 S R1 SR 

and F(R1 ) is connected. 



CHAPTER II 

SOME PROPERTIES OF INVERSE ARC MAPS 

Let f be a continuous and monotonic map from a compact space X 

onto a space Y. This chapter will be concerned with: 

(1) condit:Lons that can be placed on the space X so that f 

is an inverse arc map, 

(2) properties induced on f-1 (L). if L is an arc in Y, when 

f is an inverse arc map, and 

(3) a factorization theorem related to a factorization theorem 

by G. T. Whyburn. 

An important, comment is that since X is compact and since all spaces 

considered are assumed to satisfy Moore's Axioms O and 1 unless other= 

wise stated)> it then frJ.l.lows that a continuous map, f, from X into Y is 

necessarily closed. This fact is used repeatedly throughout this 

thesis. 

It is natural to expect that some type of local connectedness on 

the space X would be sufficient for f to be an inverse arc map. However, 

an effort was made to study the problem under weaker conditions than 

local connectedness by asm,iming X to be locally compact i locally peri= 

pherally connected, and connected. Theorem 2.1 shows that these 

,~cmditions on X imply ·tha.t X is locally connected and therefore nothing 

is gained by assuming them. 
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Theorem 2.1~ If Sis a locally compact, locally peripherally 

connected, and connected space, then Sis locally connected. 

Proof: Suppose there exists a point p e S such that Sis not 

locally connected at p. Let Ube any domain containing p. By Axiom 1 

of Moore and the hypothesis of the theorem there exists a domain D such 

that p ~ D s; D s U such that Dis compact while F(D) is connected. Let 

C be a component of D. The reference [ ; .. p, 18], impliE;?s that F(D) con-

tains a limit point of c. 

Let C be the component of D that contains p. The point set C is 
p p 

not a domain since Sis not locally connected at p. Tperefore there 

exists a sequence of distinct points ( p ) converging sequentially to p 
n 

where p0 e en, n = 1,2, ••• , and (C0 J is a collection of mutually 
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exclusive components of D. Again by Axiom 1 of Moore and the hypothesis 

of the theorem we know there exists a domain D1 such th~t p € D1 S D1 c: D 

and D1 is compact while F(D1 ) is connected. Since {P0 ) converges 

·sequentially to p, there exists an integer N such that for every n > N, 

1 
p 0 € D1 • Let CP be the component of n1 

component of D1 · containing p for n > N. . n 

containing p and c1 the 
Pn 

Note that c1 c:: c. From the 
p - p 

preceeding paragraph it is known that c1 has a limit point in F(D1 ). 
Pn 

· Now consider the set X:,:;: F(D1 ) U [ U cl ] U c1 • The point set Xis a 
n.>N Pn p 

connected point set since it is the union of a collection of connected 

poiut sets having a ·point in conunon.. Therefore X c C which contradicts .... p 

the assumption that p I. C , n > N. Thus the theorem is proved. n p 

An interesting question in connecti.on with the previous theorem is 

the following: If a. space Sis connected and locally peripherally 



connected must it also be locally compact? The following example shows 

the an~wer to this question to be in the negative. 

Example lt Consider the Moore space, X, satisfying Moore's Axioms 

O and 1, with the sequence of coverings of regions, fGn}' where for 

each positive integer, n, Gn = (S(x,e): ~ < 1/n, x e E2J. Now let 

K = (x1, x2, ••• ) be a sequence of all points of E2 whose coordinates 

2 are both rational. Let x consist of the set of points in E. 

Let Y ~ (i: x e E2 and at least one of the coordinates of xis 
irrational). Now define the sequence of coverings of Y, (G~}, where 

for each positive integer, n, 

G~ = {s(x,e): S(x,e) e Gn and [s(x,e) n {iylxi)J = ¢}. 
The importance of defining, the. sequence of coverings, 1·(G '.], as . . n 

7 

above, is in showing that the space Y will satisfy Moore's Axioms O and 

1, especially Axiom 1 part 4. 2 The space Y is connected since in E 

• between any two points there exists an arc such that every- point on this 

arc has a:t least one coordinate · which is irrational. Thus, this arc 

lies in Y and Y is therefore arcwise connected which implies that Y is 

connected. 

The space Y is locally peripherally connected since inside of every 

2 sphere in E lies a rectangle such that any point on this rectangle has 

at least one irrational coordinate. This rectangle is therefore in Y 

and it follows that Y is locally per_ipherally connected. 

The· space Y is not locally compact since given any S(y,e) in Y, 

there exists i € K 3 i will be a limit point of S(y,e) in X. Thus, 

S(y,e:) in Y will contain an infinite subset with no limit point in Y and 

therefore, the space Y is not locally compact. 
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Theorem 2.2 gives a sufficient condition that a function be an 

inverse arc map. 

Theorem 2.2: If Xis a hereditarily locally connected space and 

f is a continuous and monotonic map such that f(X) = Y, then f is an 

inverse arc map. 

. -1( ) Proof: Let L be any arc from a' to b' in Y anc,i consider f L. 

The poirit set f-1(L) is a subcontinuum of X since f is monotonic. 

Let a € f-1 (a 1 ) and b e: f-1 (b'). The subcontinuum, f-1 (t), is locally 

connected since Sis hereditarily locally connected. Therefore, 

[ 3-p, 84]implies f~1(L) is arcwise connected. Let L1 be an arc from 

a to bin f-1(L). The point set f(L1 ) contains a' and b' since a, b € t 1 

and, f(L1 ) <_;; L since t 1 5 f'-1 (1). The point set f(L1 ) is a subcontinuum 

of 1 since f is a closed continuous map. Theref'ore, f(L1 ) = L since L 

is irreducible w.ith respect to being a continuum containing both a' and 

b ' • Thus the theorem is prov~d . 
. ' 

Theorem 2!.2,: If Xis a hereditarily locally connected .space and 

f is a continuous and monotonic map such that f(X) = Y, then if J is a 

simple closed curve in Y there exists a simple closed curve J1 s; X such 

that f ( J1) '"' J'. 

Proot: Let J be a simple closed curve in Y and a', b' € J such 

that a 1 / b 9 • The referenc;!e, [ 3-p, 44], implies J' = L:i_ U L2 where 

Li, i = 1, 2, is an arc from a' to b' such that 11 n L2 = fa', b'}. 

Theorem 2.2 implies there exists arcs 11 , 12 s; X from the point a to 

the point b such that: 
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(1) f(L1 ) = L1 and f(L2) = L2, 
(2) f(a) = a' and f(b) = b', and 

(3) 11 n 12 s r·1(a') n f-1(b'). 

Let c1 € L1 ... f-1{a') U :f'-1 (b') and c2 € t 2 - f .. 1 (a') U f-l(b'). 

Consider the subarc {c1a) of L1 and the subarc (c2a) of L2 • Since 

(c1a) and(a.c2 ) are intersecting arcs there exists a subarc (c1c2 )a of 

(c1a).U (ac2 ) from c1 to c2 • The point set f-1(a') n (c1c2 )a 1 ¢ 
since (c1c2 )a is connected. Similarly there exists an arc (c1c2 )b such 

that f(b') n (c1c2 )b j ¢. The point set (c1c2 )a U (c1c2 )b = J1 is a 

simple closed curve since J1 is the union of two arcs having only their 

end points in common. The reference, [5-p, 165], implies that simple 

closed curves are invariant under monotone maps. Therefore f(J1 ) = J. 

The following example is given to show that the hypothesis of 

Theorem,2.2 is not necessary for the map f to be an inverse arc map. 

In this example f is an inverse a;rc map, continuous and monotonic, but 

the space is not hereditari1y locally connected. 

Exam~le 2: Let the space X be a subspace of E2 (Figure 2.1) such 

tha"t; X is composed of the union of the points in the closure of 

{(x,y): y = sin 1/x, o< x < 1/~} and the points in the closed interval 

K = {(x,O): 1/~ ~ x ~ 2}. 

Define f: X ~ X such that: 

(1/~,o) if (x,y) ex - K 

f((x,y)) = 
(x,o) if (x,y) € K 
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( 0, 1) 

x 

( 0, 0) 

(1/n:, 0) 
! 

(2, 0) 

( 0, ~ 1) 

Figure 2.1 

It can easily be seen that the map, as defined, is a continuous. 

and monotonic map from X into X which is an inverse arc map but Xis 

not hereditarily locally connected. 

The ex~mple below points out the,t there exist spaces X and Yanda 

continuous and monotonic map f .such that f(X) = Y, and that f is not an 

inverse arc map. 

Exampl~: Let the space X be the same as the space X in Example 

2. Let,Y = {(x,O) o·~ x. ~ 2}. Let f be the map of X onto Y such that 

f( (x,y)) "" (x,O). It is easily seen that f is a continuous and mono

tonic map of X onto Y but one observes that for the arc 

L:.: { (x,O) : O ~ x ~ 1}, X contains no arc L1 such that f(Lj) = L • 

. Therefore f is not an inverse arc map. 

A trivial result following directly from the definition of a 
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function is now stated. If f is a monotone continuous map from a com-

pact space X onto a space Y and if Lis an arc in Y and there exists an 

arc L1 in X such that f(L1 ) = L, it will follow that for every y € L, 

f-1 (y) n Ll f ¢. 

Theorems 2.4, 2.5, 2.6, 2.7, and 2.8 that follow show results of 

properties imposed on subspaces of the space X when f is a continuous 

monotonic inverse arc map. 

Theorem 2.4: If Xis a compact space, f is a continuous and mono-

tonic map such that f(X) = Y, and Lis an arc in Y such that there 

exists an arc 11 in X where f(L1) = L then for every y € L, there exists 

··l . . 
p € f (y) n 11 such that ifR is any region containing p there will 

exist a point y1 € L, y1 1 y, such that Rn f~1(x); ¢ for every x in 

the arc (yy1 ). 

Proof: Let L be an arc in Y from a' to b' and y any point of L 

-1< -1c ) and 11 an arc· in X from a to b where a€ f a') and b € f b 1 • 

Consider f-l(y). Then t 1 n r-1 (y) I¢. Let p be the last point of 

intersection of f'-1(y) and 11 on 11 in the order from a to b. Consider 

any region R containing p. Now se:).ect a region D such that p € D s; R 

where D does not. contain b. · One should now focus his attention on the 

subarc (pb) of the arc (ab). 

Suppose F(D) does not intersect the arc (pb). This implies that 

(pb) = {(pb) n D} U {(pb) - n} separate which contradicts (pb) being 

connected. Therefore, let p1 be .the first point o;f (pb) in the inter

section of F(D) and (pb). Then the sqbarc (pp1 ) of L1 is contained 

entirely in R,since p e: D £ R. 



Select y1 € L such that f(p1 ) = y1 , The reference [5-p, 165), 

implies that arcs are invariant under monotonic maps. Therefore 

f(pp1 ) = (yy1 ). Then, if x € (yy1 ) then f-1 (x) n (pp1 ) i ¢ and there

fore, since (pp1 ) £ R; it is true that f-1 (x) n R i ¢. 
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Theorem 2.5: I~ Xis a compact space, f is a continuous and mono-

tonic map such that f(X) = Y, Lis .an arc in Y such that there exists an 

arc, 11 , in X such that f(L1 ) = L, and L - y =AU B separate, for each 

y € L then the set, H, of all limit points of f-1 (A) in f-1 (y) is a 

continuum. 

Proof: Let L be an arc in Y from a to bandy€ L. Theorem 2.4 

implies __ that there exists a point p ~ f-1(y) such th&t for each 

region R containing p there exists a pointy1 € L n A such that 

Rn f-1 (x) I¢ for every x in the arc (yy1 ). Leth€ Hand consider 

a sequence of regions, (R ), closing down on h. Therefore, there 
n 

exists a point y1 € L n A such that R1 n f-1 (x) I¢ for every x in 

the arc (yy1 ). ~ick a point a1 € f-1 (y1 ). Since f-1 (y1 ) is closed 

there exists a positive integer n2. such that Rn2 n f-1 (y1 ) = ¢. Pick 

a point a2 € Rn2 • In general, if ai-l has been defined such that 

ai-l € f - 1 (x) for some x € (yy1 ), then there will exist a positive 

integer n . such that R n f-1 (x) = ¢. Pick a point a. € R In this 
i ni . i ni 

way a sequence of distinct points, {a }, is obtained which is converging 
n 

sequentially to h. With each a is associated f-1 (x) = f-1 (f(a )) = M. 
n n n 

For each positive integer, n, M is a compact continuum since f is 
n 

monotonic. Also for each positive integer, n, the point a € M. The n n 

reference, [3-p, 23], implies that the limiting set~ of the sequence 
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sets .. {Mn), is a continuum. 

* Let R be a region containing p and suppose R n {Mn J = ¢. Utilizing 

Theorem 2.4 as mentioned in the preceeding paragraph it is known that 

R n r-1 (x) ,:j, ¢ for every :x; E: (yy1 ), where y1 e: A. Thus for every positive 

integer, n., it follows that Mn= f .. 1 (:x;) for some x e: {y1a), Since y 'f y1 , 

there exists a region D containing y such that (y1a.) n D = ¢. Now f-1(D) 

is open in X and h e: f""1 (y) ~ r-1 (D) while r-1 (D) n · (Mn( = ¢ since 

· D n (y1a) = ¢. Tlb.is contradicts h being an element of the limit set of 

* . 
( Mnl and thus R n {M J :J ¢ and p c M • n n 

The set, h~h is a union o.f continua each of which contains p and 

therefore h~Ff4h is connected. Since H = h~gMh it is true that H · is 

connected. Any point of f-1 (y) that is a limit point of H must neces-

sa.rily be a point of H and therefore H is also closed. Thus H is a 

continuum. 

Theorem 2.6: If Xis a compact space and f is a continuous and 

monotonic map such tbat; 

(1) f(X) = Y, 

(2) Lis an arc in Y from a' to b', 

(3) . there exists an arc t 1 from a to. b in X such that f(L1 ) = L, 
.. 1 . . 

(4) every subcoliection of ff (y)J, as y varies over L, is 

semi-closed in r"'1(L), 

(5) pis the last point of intersection of L~ from~ to b with_ 

:f-1(y) for a given ye L, and 

(6) L - y =AU B separate, 

then p U f-l (B) is locally connected at p. 
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Proof: It is understood that f(a) = a' and f(b) = b'. Consider 

the point p and the set p U f-1 (B). Let D be any domain relative to 

p U f-1(B) containing p and then pick a region R1 relative top U f-1(B) 

such that p € R1 ~ D. Let p1 be the first point of intersection of the 

arc (pb) with F(R1 ) from p to b. Consider f(p1 ) and the separation of 

L such that L - f(p1) = A' U B' separate, y € A'. It follows that y y 

H = f-1(A') n (p U f-1(B)) is open relative top U f-1(B) since f is y 

continuous. The half open arc {(pp1 ) - p1} is contained in H. The set 

R = R1 n His a region relative top U f-1(B) such that p € R c: D and 

Rs f-1{wf(pl))- f(pl)}. This implies tna.t Rn f-1 (x) I¢ for each 

x € arc { (yf(p1 )) - f(p1 )}. 

If there exists no x € arc {(yf(p1 )) - f(p1 )} such that f-1 (x) -

RI¢ then R = f-1{(yf(p1)) - f(p1)} n {PU f-1(B)} which is connected 

since f is a monotonic map, and therefore p U f~1(B) is locally connect-

ed at p. 

On the other hand if one supposes that there exists a point 

x € {(yf(p1)) - f(p1)} such that f-1(x) - R 1 ¢ it naturally follows 

that there is a finite or an infinite number of such x. If there is 

only a finite number of such x then let x1 be the first one from y to 

f(p1 ) on the arc (yf(p1 )). It is seep that {(yf(p1 )) - x1} = A; U B'' 

separate, y € A', and H1 = f-1(A') n {PU f-1(B)} is a region relative 
y . y 

top U f-1(B) which is connected since f is a monotone map and 

p € H1 s; R 5 D. From this it follows that p U f-1 (B) is locally connect

ed at p. 

Otherwise, if there is an infinite number of x € {(yf(p1 )) - f(p1 )} 

such that f-1 (x) - RI¢ then let [an} be a sequence of points of L, 
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* (an) 5 B, converging sequentially toy. Theorem 2.4 implies there 

exists a positive integer, N, such that for every n >Nit follows that 

f-1 (a0 ) n R r ¢. If there is an x € arc (aNy) such that f-1 (x) - R 1 ¢ 
pick one such x and name it b1 • Let aN+r .be the first point of 

[(an)* n (b1y)J from b1 toy. Aijain if ti'..re is an x < (aN+r1y) such 

that f-1 (x) - R ./¢pick one such x and name it b2 • In general if bn 

has been defined let aN,t.r be the first point of [ {an l * n (bny)] 
. . n '. . . 1 

from bn to y. If there is an x € (a.N+r y) such that. r· (x) - R r ¢ 
n 

pick one such x and name it bn+l" By this process we get a sequence 

of distinct points (bn) which also converges sequentially toy. 

It is important to note that if at any time in the above construe-

tion there . exrsts no such x, say at the aN+r point, then L - aN+r . 
. · ;. . i -l . -l i+l 

= MY U N separate, y € My' ',This implies that f · (MY) n (p U f (B)) = H2 

-1( is a re~ion relative to p U f B) and p. € H2 SR S D. The region H2 

is connected since f is monotonic and therefore the theorem is true. 

The sequence of points, {b ), is now reconsidered in conjunction 
n 

with the sequence of sets, {f-1 (bn)}. The reference (5 - p, 11] states 

that there exists a subsequence, {f-1 (b0 _)}, of {r-1 (bn)} which is 
. i 

convergent. Let xi € {r-l(bn.) ..;, R}. · Since r·1(L) is compact it is 
. i . 

clear that some subsequence of (xi J, s~y · ,(xij}, converges sequentially 

to some point x. Obviously this point, x, is in f-1(y) and x ~ R, so 

x., p. 

Consider the convergent sequence of sets {r .. 1 (b0 _)}· The hypo-
! iJ ·. 

thesis implies that the collection of sets that make up the sequence, 

{ f-1 (bn. _)}, is semi-closed. The limit set of the sequence of sets, 

{f-1 (b iJ)}, contains at lea.st the points x and p. Since neither x nor 
nij 
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pare elements of {f-1 (b )}*, the semi-closed property of this collec-
nij 

tion of setE1 is contradicted. Therefore, there does not exist an 

infinite number x in { (yf(p1 )) .. f(p1 )} such that f-1 (x) - R :/ ¢. Since 

all other possible cases have already yielded p U f'"1(B) locally connect-

ed at p the theorem is therefore proved. 

Theorem 2.7: If Xis a compact space and f is a continuous and 

monotonic map such that: 

(J.) f(X) = Y 

(2) Lis an arc from a' to b' in Y, 

(3) t 1 is an arc from a to bin X, 

(4) f(a)=a',f(b)=b', 

(5) f(L1 ) = L, 

(6) y and y1 are points of L such that L - y =AU B separate 

and ·y1 is between· y and b ', and 

(7) pis the last point of 11 from a to bin r"'1 (y), 

then the point set p U f-1{(yy1 ) - y} is aposyndetic at p. 

· Proof: Let x ·e p U r""1{ (yy1 ) - y}, x .J p. Theorem 2.4 implies that 

pis a limit point of f-1{(yy1 ) - y}. Therefore p U f-1{{yy1 ) - y} is 

connected since f is monotonic and pis a limit point of f~1{(yy1 ) - y}. 

uit y2 € { (yy1 ) - y} such that f(x) = y2 • If y2 = y1 then 

f-1{(yy1 ) - y1} n {PU f-1 {(yy1 ) - y}} =Risa connected region relative 

top U f=1{(yy1 ) - y} containing p, since f is monotonic and continuous. 

However,:x; i R. Thu.s p U f-1{(yy1 ) - y} is aposyndetic at p. 

Similarly, if y2 i y1 then f(x) = y2 where Y2 € {{yy1 ) - Y}• 

The point set { (yy1 ) - y2} = AY U Byl separate, y £ Ay' y1 € Byl" It 
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follows that r=1 (AY) n {PU f-1((yy1 ) - y)} is a connected region rela

tive top U f-1{(yy1 ) - y} containing p and not containing x, which again 

implies p U f-1{(yy1 ) y} is aposyndetic at p. 

Definition 2.1: · If Mis a subset of a spaces, then Mis locally 

arcwise separate at a point p € M if and only if for each region R 

relative to M containing p then there exists a region R1, p € R1 ~ R, 

and an arc Lin S such that R1 - L =AU~ separate. If Mis locally 

arcwise separate at each of its points then Mis said to be locally . 
arcwise separate. 

Theorem 2.8: If Xis a compact space and f is a continuous and 

monotonic map such that: 

(1) f(X) = Y, 

(2) Lis an arc in Y from a' to b', 

(3) 11 is an arc in X from a to b such that f(L1 ) = L, and 

(4) f(a) = a', f(b) = b', 

-1 then f (L) is locally connected or locally arcwise separate at every 

point of 11 • 

rroof: Let p € 11 such that p I a, p 1 b. Suppose f-1 (1) is 

not locally connected at p. Let D be any domain relative to f~1 (L) 

containing p. Let R be a region such that p €Rs; R £;; D and a, b IR. 
The point set F(R) is not empty since f 91 (t) is connected. Let p1 be 

the last point of intersection of F(R) on the subarc (ap) of the. arc 

t 1 from atop. Let p2 be the first pQint of intersection of F(R) on 

the subarc (pb) of the arc. t 1 from p to b. Thus the a.re (p1p2 ) is 

obtained such that the open arc {(p1p2) - p1 - p2} = Rs; R. Since 
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r=1 (1) is not locally connected at.p,then R =AU B separate where, say 

H sA. The point set A - Hr¢ for if A - H =¢,His a connected 

region containing p such that p € H c: D which would contradict f-1 (L) 

being not locally connected at p. Therefore R - H = (A - II) U B 

separate and it follows that r·1 (L) is locally arcwise separate at p. 

If p ,::: a or p = b the argument is similar except the subarc H 

intersects F(R) in one and only one point. 

The following theorem is motivated by a factorization theorem 

concerning continuo1,,1s functions proved by G. T. Whyburn, [ 5-p, 141], 

Theorem 2.~: If A is compact, f is a continuous inverse arc map 

such that f(A) ~ B, and f(x) = f 2f 1 (x) is a factorization off where f 1 

and r2 are both continuous, then f 2 is i3-n inverse arc map. 

-Proof: Let L be an arc in B from a too. Since f is an inverse 

arc map, there exists an arc L1 s A such that f(t1 ) =Land a, be L1 

such tha.t f(a) '"" a, f(b) ""b. Now consider f 1 (L1 ) S fl (A) as a space 

and f 1 restricted to L1 is a continuous closed map from the locally 

connected space t 1 onto the closed connected space f 1 (11 ). Thus, 

[ 1-p, 200] implies r1 (t1 ) is loc1:1,lly connected. Therefore, [3-p, 84] 

implies there e4ists an arc 11 s; r1 (L1 ) from a'= r1 (a) to r1 (b) = b'. 

l\Tow f,.,, (L~) is a sub continuum of L since f 2 is a continuous closed map, 
,::: l. 

b:;"t since L is irreducfble with respect to being connected and contain-

ing both a and b, it follows that f 2(L1) = L. Therefore, the existence 

of subarc 11 of r1 (A) shows that :r2 is an inverse arc map. 

The following theorem is an extension of a theorem by G. T. Whyburn. 
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Theorem 2.10: If A is compact and f is a continuous inverse arc . 

map such that f(A) = B, then there exists a unique factorization 

f(x) = f~ll (x) 

such that 

t 1(A) = A' 

where f 1 is continuous and monotonic and 

r2(A') = B 

where r2 is a light continuous inverse arc map. 

Proof: 'J;1he reference,[5~p, 141], proves the above stated theorem 

with the exception of showing f 2 is an inverse arc map. Theorem 2.9 

proves that r2 is an inverse arc map. 



CHAPTER III 

SOME PROPERTIES OF INDECOMPOSABLE CONTINUA AND THEIR 

RELATION TO CONTINUOUS AND MONOTONIC MAPS 

Let X and Y be topological spaces and fa continuous and monotonic 

map such that f(X) = Y. This chapter will pay considerable attention to 

the study of two general questions connected with the map f. 

(1) If Y is indecomposable what can be said about X? 

(2) If Xis indecomposable what can be said about Y? 

In addition, attention will be given to P. M. Swingle's, (4], 

definition of a finished sum of a finite set of indecomposable continua. 

The first theorem is a simple result concerning a pseudo arc as 

defined by E. E. Moise, [2]. 

Theorem 2.1: If Lis a pseudo arc constructed from a point a to a 

. point b then the only subcontinuum of L containing both a and b is L. 

!:!:2£[: Let Y1, Y2, ••• , Yi, ••• be the sequence of chains used in 

tb.e construction of L. Suppose there e:x;ists a proper subcontinuum, M, 

of L such that M contains both a and b. Let x € (L - M) and S(x,8) be a 

sphere about x such that S(x,8) n M = ¢. The definition of the construe-

tion of the pseudo arc implies there exists a positive integer, i, such 

that the diameter of the links of the cha.in Yi is r < 1/i < 6. Let y 

* * * be a link of Y. such that x € y c S(x,B). Since Yi - y =AU B 
1 -

20 



separate where a € A, b e B, it follows that Ms AU B separate and 

Mn A f, ¢~Mn B. Therefore, M =(Mn A) U (Mn B) separate which 

contradicts M being connected. Thus M =Land the theorem is proved. 

Theorem 3.2: If Xis compact and f is a continuous and monotonic 
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map such that f(X) = Y where Lis an idecomposable continuum which is 

irreducible about the points a and b, and if a€ f~1(a), b € r-1(b) then 

there exists an irreducible subcontintium, Li' of X with respect to 

containing both a and b such that f(L1 ) = L. 

J:!!£Of: The space f-1(L) =Xis a compact continuum since f is 

··.· ,.,.,,,e>0nt.inu.ous· 'and monotonic. The reference'i (3-p, 16 ], implies there exists 

an irreducible subcontin1:1um of X with respect to containing both a and 

b. Since Xis compact f is a closed map. Therefore, f(L1 ) = L since L 

. - -is the on:ly sub continuum of L containing both a. and b • 

.Q._orollar_y,: 2,.,1: If the same hypotheses as in Theorem 3.2 are 

a.ssu.rned exce·pt that L is assumed to be a pseudo arc constructed from a 

point a·to a point b then there exists an irreducible subcontinuum, L1, 

of X with respect to being connected and containing both a and b such 

Theorem ?!.2.: If Xis compact and f is a continuous and monotonic 

map such that f(X) ~ Y where Lis an indecomposable continuum, then 

there exists an indecomposable subcontinuum, i 1, of X such that f(L1 ) = L. 

Proof~ Ag~in., the definition of the spaces implies that the map is -
a clQsed continuous map. The reference., \(3-p, 59], implies that there 

exists two pointsJ a and o in L, such that Lis irreducible from a to b 
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in L. Since f is continuous the sets f-1(a) and f-1 (b) are disjoint 

closed subsets of X. ~tis noted that Xis a continuum since f is 

monotonic. The reference, [3-p, 15], implies that X contains an 

irreducible continuum, L1, from fr1 (a) to f-1 (b). Since 11 n f-1 (a) 1 ¢, 
11 n f-1(b) ~ ¢, f(L1 ) is a continuum, and Lis irreducible about a and 

bit follows that f(L1 ) = L. 

Now suppose L1 = AU B where both A and B are proper subcontinua 

of 11 • Since 11 is irreducible from f-1 (a) to f-1 (b) then without loss 

of generality it is assumed that (L1 n f-1(a)) 5 A and (L1 n f-l(b)) SB. 

Therefore, f(L1) = L = f(A) U f(B) where f(A) and f(B) are both proper 

subcontinua of L since b j f(A) and a/ f(B). This contradicts L being 

indecomposable and the theorem is proved. 

Corollar.z _j.2,: If the same hypotheses as in Theorem 3.3 a.re 

assumed except that Lis assumed to be a pseudo arc then there exists 

an indecomposable subcontinuum, L1, of X such that f(L1) = L. 

Theorem 3.4: If Mis a compact space and f is a continuous and 

monotonic map such that f(X) = N and N has no cut points, then if xis 

a cut point of M then f(M - x) = .N. 

Proof: The hyperspace M' of M whose elements are the elements of 

the collection{ f-1(y)}, as y varies over N, is homeomorphic to N. There

fore, if y ~ N then M'- y' is connected in M' since y does not separate N. 

* Let x € y' and consider M - x. Suppose M - x =AU B separate. Each 

element of M'- y' is contained entirely in A or in B since each element 

of M'~ y' is a subcontinuum of M. From the definition of a region in 

* . * M' it is implied that A' = (A - y' )' and B' = (B',.. y' )' are each 



regions of M' and M' - y' = A' U B' separate in M'. Now since y' does 

* not separate M' in M' it can be assumed that A' is empty and A~ y' • 

Therefore, f(M ~ x) = f(A) U f(B) = N. 

Corollary 3.~: If Mis a compact space and f is a continuous and 

monotonic map such that f(M) = N and N is an indecomposable continuum 

then if xis a cut point of M then f(M - x) = N. 

The following three theorems give results related to composants 

of continua. 

Theorem 3.5: If Xis compact and f is a continuous and monotonic 

map such that f(X) = N and N is an indecomposable continuum, then there 

exists an indecomposable subcontinuum L1 s; X such that if Lis a compo

sant of L1 containing a point p then f(L) is a subset of the composant 

of N containing f(p). 

Proof~ Let L1 be the indecomposable subcontinuum of X implied to 

exist by Theorem 3.3. In the proof of Theorem 3.3 points a and bare 

points of N about which N is irreducible and L1 is an irreducible sub= 

continuum of X from f-1 (a) to f-1 (b). 

Let L be the composant of L1 to which the point p belongs. Let 

y ~Land Ly a proper subcontinuum of L1 containing both p and y. 

Since f is a closed continuous map then f(Ly) is a subcontinuum of N. 

Now LY does not intersect both f-1 (a) and f-1 (b) since L1 is irreducible 

from f-1(a) to r=1(b). Therefore,"f(L) is a proper subcontinuum of N 
y 

containing both f(y) and f(p). By definition of a composant, for every 

y € L, f(y) and f(p) are elements of the same composant of N. Therefore, 
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f(L) is a subset of the composant of N to which f(p) belongs. 

Theorem 3.6: If Lis a composant of a compact continuum, M, con-

taining a point p, M contains. more than one composant, and His a 

proper subcantinuum of M such that H;: L; then every component of L - H 

is nondegenerate. 

Proof: Let x € (L - H) and y € (M - L). Let R and R be two x y 

regions such tha.t R n R =¢and x € R, y € R. Also the region R x y x y x 

is restricted such that R n H = ¢. This can be done since His x 

closed. 

Let N be the component of R containing x. The reference, [3-p, 18], 
x 

implies tha.t N is nondegenerate. Since x € L there exists a proper sub-

continuum N1 of M such that x € N1 s; L. Now, N1 UN is a proper subcon

tinuum of M since y i N1 U ;N and since N1 UN is the union of two 

continua with x € N1 n N. ?herefore:, by the definition of composant 

and the region R, it follows tha.t N £ (L - H). 
x 

The component T of L - H containing x must then contain N and 

therefore, Tis nondegenerate. 

Theorem 3.7: If Lis a composant of an indecomposable continuum, 

M, and His a proper subcontinuum of M such that H £; L then L - His a 

nondegenera:te connected set. 

Proof: Theorem 3.6 implies that L ... His nondegenerate. Suppose 

L = H =(AU B) separate. The reference,.(3-p, 25], implies that (HU A) 

and (HUB) are connected. Also the reference, (3-p, 58], implies every. 

point of M - Lis a limit point of either A or B. Therefore, 
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M = (Ii U A) U (H U i) where both (Ii U A) and (H U i) are proper subcon-

tinua of Mand this contra.diets M being indecOlJlPOSable. 

The next three theorems give results obtained in considering the 

continuous mapping of certain spaces onto the unit interval, I. 

Tb.eor~m 3.8: If Lis a pseudo arc from a point a to a point band 

Lis mapped continuously onto the unit interval. I such that 

r Ci) = p Ca~x) 
p ca,i) + p (ii',i) 

then t"'1 G)., y Et I, is totally disconnected. 

Proof: Suppose there exists c EI such that f•l(c) contains a. 
I 

nondegenera.te component, .H. Tlle pseudo arc, L, is considered imbedded 

in/. This can be done without loss of generality since {2] implies 

that all pseudo a.res are topologically equivalent. Let a= (a,o), 

b = (b,O) and the pseudo arc is constructed from a to b. 

= x : 
p <S:,i). 

i = 
p (b,x) 

= c e: r} 

..... 
0 _ =Kc Rea.ls} 

1 - c 

{ 2 2 2l 2 2] f\ = (:x:1 ,:x:2) "" x . (x1 - a) + x2 = k .<x1 .. b) + x2 , 

k 4! Reals} 

Therefore, 60 is a conic. Reference {2] implies H is a pseudo arc · 

itself\ However, H is defined such that. H is a subcontinuum of Sc which 

contradicts H b.eing a pseudo a.re since wery subcQntinuum of Sc is locally 

connected. The th~orem is p~ovedo 
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Theorem l_ •• 9: If M is a compact connectE;?d nondegenerate metric 

space then there exists a continuous map f such that f(M) = I where I 

is the unit interval and f~1(o) and f-1(1) are each nondegenerate sub-

continuum of :M. 

Proof: Let H1 and H2 be nondegenerate subcontinua of M such that 

(H1 n H2) = ¢. Let G be the collection of subsets of M made up of H1, 

~, and single points of M - (H1 U H2 ). The reference, [ 5-p, 122], 

implies G is an upper semicontinuous decomposition of M. Let M' be 

the hyperspace of the decomposition, G. 

Let f(M) = M1 be the continuous map such that if 

x € H1, i = 1,2,. then f(x) =i Hi or if x € {M - (H1 U H2)} 

then f(x) == x'. Since M is connected we know that M' is connected. 

Therefore, [ 5-p., 34] implies that g, g(M') = I, is a continuous map where 

if B1 and~ are considered as fixed points of M' and x' e M' then 

p(HI, x') 
g(x) = ------

p(Hi,x') + p(H2,x 1 ) 

Now, consider the composite continuous map gf, (gf)(M) = I, Then 

~1( ) -1( ) f O = H1 and f l ~ H2 which suffices to prove the theorem. 

Corol~;,ry; 3 .•• 4) If M is a pseudo arc then there exists a continuous 

map f such that f(M):;;: I where I is the unit interval and r""1 (o) and 

f-1 (1) are each nondegenerate subcontinuum of M. 

The~rem ,~!Q.: If Mis an indecomposable cont~nuum and f is a 

continuous map onto the unit interval I such that f(M) = I, then there 

are at most two points of I, x1,x2, such that f-1 (x1 ) and f-1(x2 ) are 

subcontim;,a, of M. 
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PrQ2f~ Suppose there exists three points of I such that the inverse 

image of each is a subcontinuum of M. Let c be one of these points such 

that c, OJ c, 1. Since I - c ~ (AU B) separate it follows that 

M - f-1(c):,,: {r=1(A) U f=1(B)} separate. The reference [ 3-p, 25], 

implies {f-1 (A) U f~1(c)} and {f-1 (B) U f•1 (c)} are each proper subcon

tinuum of Mand M =: {r=1(A) U f .. 1(c)} U {r""1 (B) U f~1 (c)} which 

contradicts M being indecomposable. 

Theorems 3.11} 3.12, and 3.13 give fundamental results related to 

continuous and monotonic maps. In particular Theorems 3.11 and 3.13 

give results that will be used to prove later theorems in this chapter. 

The results of these three theorems are obtained by putting further 

restrictions on the space X. 

Theorem_.2.ll: If Xis a compact indecomposable continuum and f is 
==-=m ; .,.,.,,,..., 

a continuous and monotonic map such that f(X) "" Y, then Y is a compact 

indecomposable continuum. 

froof: Since f is a closed continuous map, Y is a compact continuum. 

Suppose Y is decomposable into proper subcontinua A and B. Then 

X = {r-1(A) U r=1(B)} where f-1 (A) and f-1(B) are both proper subcontinua 

of X which contradicts X being indecomposa.ble. 

£.orol].,ary j.5: If X is a hereditarily indecomposable continuum a.nd 

f is a continuous and monotonic map such that f(X) = Y, then every non-

a.egenerat,e s1ibcontinua. of Y is indecomposable, that is, Y is hereditarily 

indecomposable. 

~:rh.e,2.rem_..2,?12) If X is a hereditarily unicoherent continuum, f is 
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a continuous and monotonic map such that f(X) = Y and His a subcontinuum 

of X then f restricted to His both continuous and monotonic. 

Proof: Restricted to H, f is trivially continuous. Let 
VZS\'"I' .-

p € f(H) ~ Y. Since f is monotonic on X then f-1(p) is a subcontinuum 

of X. The point set f~1(p) n H 1 ¢ implies that f~1(p) UH is a sub-

continuum of X. Since Xis hereditarily unicoherent it then is true 

that f-1(p) n His a subcontinuum of H. Therefore, f restricted to H 

is both continuous and monotonic. 

~heorem j.~3: If Xis a compact and hereditarily unicoherent 

continuum and f is a continuous and monotonic map such that f(X) = L 

where Lis an indecomposable continuum, then there exists an indecom-

posable hereditarily unicoherent subcontinuum, t 1 of X such that 

f(L1 ) ~Land f restricted to L1 is both continuous and monotonic. 

Proo:t_~ This result follows directly from Theorem j.3 and 

Theorem 3,12. 

The next .two theorems give extensions of Theorem 2.10. 

~~ 2.14: If Xis compact and f is a continuous and monotonic 

map such t,hat f(X),,,.,, L where Lis an indecomposable continuum and 

f(x) = f;:/l (x) is the factorization mentioned in Tlleorem 2.10 then 

there exist indecomposable subcontinua t 1 5 X and t 2 ~ A' such that 

f(L1 ) = r2(t2 ) = L. 

Pr,QQf~ Theorem 3.3 implies the existence of L1 and if L2 = r1(t1 ) 

t.hen Theorem. 3 .11 implies L,, is an indecomposable sub continuum of A'. 
:1. 
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TJheorem 2,.,1,2: If X is a compact and heredi tarily unicoherent con

tinuum, f is a continuous and monotonic map such that f(X) = L where L 

is an indecomposable continuum, and f(x) =·f2f 1 (x) is the factorization 

mentioned in Theorem 2.10, then there exist compact indecomposable 

subcontinua 11 s; X and L2 s; A' such that f(L1 ) = f 2(L2) = L where f 

restricted to t 1 is both continuous and monotonic and f 2 restricted to 

L2 is continuous and light. 

Proof: Theorem 3.14 gives the candidates for the desired t 1 and t 2 . 

1I'heorem 3.13 implies that f meets the desired requirements restricted to 

r.1 • Since [5-p, 141] has proved that f 2 is both continuous and light 

then t 2 meets the desired requirements restricted to 12 • Thus 11 and t 2 

satisfy the requirements of this theorem. 

P. M. Swingle, (4], gave the following definition. 

Definition j.l.: The set Mis the k·finished sum of a set of 
k 

••• , MkJ, if and only if M = iylMi and Mj 

for each fixed j, l ~ j S k, as i varies over the set, 

{ 13 2, o H ' j "' l, j + 1, o o O ' kJ o 

The following three theorems involve the above definition. 

- M. '1 ¢ 
l. 

Jheorem 3.19~ If Mis the 2-finished. sum of hereditarily indecom

posable contimJa, M1 and M2,j such that M1 n M2 'f ¢, then there exists at 

least one point in M1 n M2 which is a limit point of both M1 - M2 and 

M,-, ~ M1 • 
IC, ' 
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~roof: Suppose that no point of M1 n M2 is a limit point of both 

l\ = ~ = H and ~ = M1 = K. Thus H n K = ¢. Therefore, D = (M1 U M2 ) 

- (HU K) is a domain relative to M1 U M2 such that D s;:; M1 n ~ and 

D ~¢since M1 U M2 is connected. The reference, [3-p, 58], implies 

domains D and H rela;ti ve to M1 both intersect every- composant of M1 • 

Therefore., let m1 e Hand x ~ D such that m1 and x both belong to the 

same composant of M1• Let N1 be a proper subcontinuum of M1 such that 

(x U m1 ) ~ N1 S M1• Similarly consider the points m2 e Kand x e D 

lying in the same composant in M2 and N2 a proper s1,1bcontinuum of M2 

such that (m2 U x) S N2 S ~· 

The supposition implies that if y € F(D) then ye F(H) or ye F(K) 

but y ~ {F(H) n F(K)} since H n K = ¢. Let r1 be the component of 

D n N1 that contains x and similarly define r2• The reference, 

[3~p., 18], implies {F(Il) n F(H)} "f ¢ ~ {F(I2) n F(K)}. Thus 

Il = r2 '! ¢ 'f I2 .. Il. Since x € (Il n I2) then x e (fl n !2) and 

Y1 U "f2 is therefore a subcontinuum of M1 n M2. Since "f1 U "f2 

contains no point of either Hor K then "f1 U "f2 S: M1 n M2 S: M1 • The 

fact· that Y1 - Y2 r/, ¢ 'f "f2 - "f1 implies Y1 U Y2 is a decomposable 

subcontinuum of M1 • This contradicts M1 being hereditarily indecompos~ 

able and thus the theorem is proved. 

Th.eorem...,..2,.]-1: 
k 

M ""' .1 t1M." M. is an 1.\;;I: 1, l. 

If Mis the k-finished sum of indecomposable continua, 
k 

inclecomposable continua, 1 ~ i s k, and 1Q1M1 "} ¢ 
k 

then M has at most one cut point which is necessarily an element of iQlMi. 

k 
Proof~ Let j be an integer, 1 ~ j ~ k, and x € M. = .n1M .• There= 

J l."" l. 

fore, M = x,:,;: (M., U • • • U M. l U M '+l U • • • U M_ ) U (M . = x). Since Mj 
.Ji., J= ,l --.a: J 



is an indecomposable continuum then Mj - xis connected and therefore 

M - xis a union of connected point sets all of which have a point in 

common since Thus M - xis connected and M contains no cut 

point in M -

If M has no cut points then the theorem is proved. Now suppose 

p € iQlMi is a cut point of M. For each integer j, 1 ~· j ~ k, let 

Hj = Mj - p. The point set Hj, 1 ~ j ~ k, is a connected subset of 

M since no single point separates an indecomposable continuum. The 
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point set M = p =AU B separate since pis a cut point of M. The point 

set H.» 1 ~ j ~ k, lies entirely in A or in B since Hj is connected. In 
J . 

addition suppose p1 j p1 r p, is a cut point of M. Since p1 € M - p then 

p1 € A or p1 € B. Without loss of generality assume that p1 € A. The 

reference, [3=p, 25], implies p U Bis a continuum containing p and 

p U B S;M = Pi• For every j, ls: j s: k, such that HjS A., Hj • pl is 

connected since [ 3 .. p, 60], states that if Tis the sum of countably 

many proper subcontinua of a compact indecomposable continuum Mj, then 

Mj = T is connected. In this case T = p U p1 and Mj - T"" Hj - p1 . 

Therefore, A - p1 is the union of a finite number of connected point 

sets. Since pis a limit point of Hj, 1 ~ j ~ k, such that HjS: A 

then pis a limit point of all such Hj - p1 • Therefore M - p1 = 
(A= p1 ) U (p U B) is connected since M - p1 is a finite union of 

connected sets each one of which has a common limit point p. This contra= 

diets the point p1 being a cut point of Mand the theorem is proved. 

k 
Tp.eore~,..2.1§~ If M ~ 1~1M1 is the k-finished sum of indecomposable 

continue. such that M.:; l ~ i So'. k, is an indecomposable continuum and M 
1 

h:s.s a cut point, p, then p = 111Mi. 



k 
~: Theorem 3.17 implies p € iQ1M1• Suppose there exists 

k 
another point p1, p1 1 p, such that p1 € 1g1M1. Let Hj = Mj - p, 

l :;;; j :!!:: k. The point set Hj is connected for each j, 1 :;;; j :;;; k, 

since no point of the indecomposable continuum Mj separates M .• The 
k k J 

point set M ~po jy1 (Mj ~ p) = j~lHj and p1 € Hj for each j, 
k 

1 ~ j:;;; k, since p I p1 and P{ e iQlMi. Thus M - pis connected since 

M - pis the union of connected sets having the point p1 in common •. 

This contradicts p being a cut point of Mand the theorem is proved. 

Theor~m ,2.12: If Mis the 2-finished sum of the indecomposable 

continua M1 and M2 and M1 n M2 #¢then either there exists no two 

points between which Mis an irreducible continuum or M1 n M2 contains 

no domain relative to M. 

~oof: Since M1 n M2 , ¢ it follows that Mis a continuum. 

Suppose there e:dsts two points a and b such that M is irreducible 

about (a,bJ and there exists a domain, D, relative to M such that 
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D 5 M1 n M2 • The points a and b cannot both belong to either M1 or M2 

for if so M would not be an irreducible continuum about (a,b]. There

fore, without loss of generality, say a€ (M1 - M2) and be (M2 - M1 ). 

The point sets M1 e,nd M2 are proper subcontinua of M containing a and b 

respectively since Mis the finished sum of M1 and~· The reference, 

[3-p, 60], sta.tes the following theorem. "If a and b are two points, 

Mis a continuum which is irreducible from a to b, and Tis a proper 

subcontinuum of M contai.ning b, then M ... Tis connected." Therefore, 

since M2 is a proper subcontinuum of M containing b, this theorem 

implies t:hat M1 = M2 is a connected subset of M. In addition M1 - M2 
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is a connected subset of M1 • 

Since~ - M2 is a domain relative to M1 then M1 - M2 intersects 

every composant of the indecomposab~e continuum~· Let x1, x2 be two 

points of M1 - M2 such that x1 and x2 are in different composants of M1 • 

Let x € D and consider the subcontinuum (M1 - ~) S M1 • Since 

D S M1 n M2 then x J (~ - M2) since no point of Dis a limit point of 

M1 - M2• Therefore, (~ - M2) is a proper subcontinuum of M1 contain

ing x1 and x2• This contradicts x1 and x2 being in different composants 

of M1 and therefore, either there exists ino two points of M such that M 

is irreducible from one to the other or ~l n M2 contains no domain 

relative to M. 



CEA.PTER IV 

THE DECOMPOSITION OF THE CLOSED 2-CELL 

INTO NONLOCALLY CONNECTED CONTINUA 

This chapter will be devoted to answering the following questions. 

(1) Can a closed 2-cell be decomposed into the union of an uncount-

able number of mutually exclusive nonlocally connected compact 

continua? 

(2) Does there exist a continuous and monotonic inverse arc map 

which maps the closed 2-cell onto an arc? 

(3) What other characterizations of the inverse arc map can be 

given? 

These three questions will be answered in the material that follows. 

As motivation, the following example is cited. 

Exarr.!E1-e 4: Consid.er the subspace S of Euclidean three space made 

up of the cross product of the ~.1osure . of { (x, y): y :.,; sin 1/x, 0 ·< x ~ 1} 

and the closed interval t"o ,1] on the z axis. Let (xaJ, a e ,', ·be a well 

ordering of the reals on the closed. interval [0,1]. Let 

P.TJ, ''" fx : X E S and X(X is the third component of x°J • 

From this it is seen that S ~-. l I A where the index setJ-t\, is 
CX'[:'f'CX I 

uncountable. To make the above more meaningful one needs to observe 

that. this example shows that the compact continuum Scan be expressed 

o,s the union of an uncountable number of mutually exclusive compact 
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continua no one of which is locally connected. 

Examples of the above type-are not hard to construct but, are more 

of a problem in Euclidean two space. This question will be answered 

later in the chapter. At the moment the above example will be extended 

one step further. Let f be a map such that f(S) = I, where I is the 

closed real interval [O,l], be a map defined such that f(Aa) = xa• It 

is apparent that this map is both continuous and monotonic. However, 

one can also notice, intuitively, just how bad this map is, since the 

preimage of every point, even though a continuum, has uncountable many 

points at which it is not locally connected. One might expect that if 

f is a continuous and monotonic map such that f(X) = Y and Lis an arc in 

Y then there would have to exist at least one pointy€ L such that f-1 (y) 

is locally connected. Example 4 shows that this is not the case. 

In the previous paragraph it was mentioned that a similar example 

would be exhibited in Euclidean two space. This example will be given 

in the form of a theorem. In this theorem the space M will be a closed 

2-cell. 

Theorem 4.1.: If M is a closed 2-cell, M = I X I, thE\ln M is the 

union of uncountably many mutually exclusive nonlocally connected 

continua. 

Proof: Let M =AU BU C where A= {r x [0,1/4]}, 

B = {r x (l/4, 3/4)}, and C = {r x [3/4, 1]}. Before a complete 

description of the decomposition is given the following list of defini-

tions is presented pertaining to Mand its partitions already described. 

~finition 4 .l: If (x,O) e: I then the point (x,l) is_ called the 



associated point of the point (x,O). 

Definition 4.2: An S-arc is an arc L = L1 U 12 U 13 such that: 

(1) 11 is an arc from a point pin A to a point q in C - {Ix (1}}, 

(2) 12 is an arc from q to a point r in~ - {Ix {ol}, 

(3) 13 is an arc from r to a points inc, 

(4) Lin {Ix (yJ} is a single point for each y, 1/4 ~ y s 3/4, 

i = 1,2,3, 

(5) If 11 n {Ix f3/4J} = (x1 , 3/4) then 12 n {Ix {3/41} = (x2,3/4) 

such that x1 < x2, 

(6) If 12 n {r x ·fl/4J} = (x1, 1(4) then L3 n {r x (1/4J}"" (x2,1/4) 

such that x1 < x2 , 

(.7) Lin {r X -(oJ} =¢,Lin {IX {1J} = ¢, _.i = 1,2,3, unless 

otherwise stated. 

Definit~on 4~: !i ~emi-S, ~ is an arc L = Ll U 12 sueh that: 

(l) 11 is an arc from a point pin A to a point q in C - {r x (1Jf, 

(2) 12 is an .arc from q to'a point r. in A -·{I x {o1}, 

(3) L1 n {r x (y-J} is a.single point for each y such that 

1/4 s y s 3 /4, i = 1, 2, . 

(4) if L1 n { I X ( 3/4 Jf = i(x1 , 3/4) then_,.,L2 n { ~ X ( 3/4 ! .= (x2,3/4) 

such t~t x1 < x2, . 

(5) Lin {Ix (01} :11: ¢, L1 n {r x {1J} = ¢, i = 1,2;,unless other-

wise stated. 

If Lis a semi-8 arc and if (x1, 1/4) = p and (*2, 1/4) = q are the 

two points of intersection of Land {IX {1/41} then the subar~ (pq) of 

L along with the subarc (pq) of the arc { I X ( 1/4 J} forms a simple 
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closed curve. With each semi-S'arc there is associated such a unique 

simple closed curve. With this in mind the following definition is 

made. 

Definition 4.4: If 11 and 12 are semi-S arcs then it is said that 

L2 ~ inside of 11 if and only if the associated simple closed curve of 

12 is a subset of the closed region bounded by the simple closed curve 

associated with 11 • 

Definition 4.5: If 11 and 12 are semi-S arcs such that 12 is inside 

of 11 then the closure of the region bounded by the associated simple 

closed curve of 11 minus the open connected set bounded by the associated 

simple closed curve of 12 is called the U-set formed by the semi-S arcs 

11 and 12 • 

Definition 4.6: If C is the U-set formed by semi-S arcs 11 and 12 

then C n {Ix {1/2J} is the union of two disjoint arcs each of which we 

call a U-bar formed by semi-S arcs 11 and L2 • 

Definition 4.1: If L1 is a semi-S arc then the closure of the 

region bounded by the associated simple closed curve intersected with 

{Ix (.1/2J} is an arc called the semi-S !:!.£.~formed by the semi-S 

arc 11 • 

This completes the list of definitions to be used to define the 

desired decomposition. rn the definition of this decomposition no two 

defined arcs will be all.owed to :intersect and no defined arc will be 

al.lowed to intersect { (lJ x I}. 

First, an S-arc is constructed from the point (O,O) to its associated 



point (0,1). Let the closed region bounded by this arc and the arc 

{{oJ x r} be named T. Now, M =TU (M - T). The remaining definition 

of the construction will be done entirely in (M - T). The closed two 

cell, (~), will be decomposed in such a way as to induce the desired 

decomposition on M. 

Next, from the point .(1/2, 0) a semi-S arc is constructed inside 

the semi-S arc already constructed and then from the end point, which 

is in { A - f I x f oJJ}, of this semi-.S arc an S-arc is constructed to 

the associated point of (1/2, 0) such tbat the simple closed curve 

associated with this S~arc does not intersect the region bounded by 

simple closed curves which are associated with any of the existing semi-

S arcs. The construction of the S-arc mentioned last in the preceeding 

sentence will be referred to as constructing an S-arc to the right. It 

is important to note at this time tbat the compact continuum bounded by 

the S-arc from the polnt (o,o) to the point (0,1), the arc from the 

point (1/2.p o) to the point (1/2,1), tlle arc {[o, 1/2] x r1J}, and the 

arc { [ 0, 1/2] x (OJ} is homeomorphic to the closed 2-cell. 
1 
So also is the 

closure of the complement of this continuum relative to (M - T). 

Attention is focused on the points (l/4, 0) ~nd (;/4, 0). From the 

point (1/4, o) a s~mi-S arc is constructed inside the semi-S arc begin

ning at the point ( 0, 0) and then it is extended with the construction 

to the right of an S-arc to the associated point of the point (1/4, 0). 

From the point (3/4, 0) an arc is constructed to the associated 

point of (3/4, 0) such that this arc is the union of two semi-S 

arcs and an S=arc. Each of the two semi-S arcs will be inside 

distinct serni=S arcs of the a.re beginning at the point (1/2, 0) and 
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then these will be extended by the construction to the right of an S-arc 

to the associated point of the point (3/4, O). 

In generalJ suppose the construction has been defined successfully 

at the (n - l.) level, i.e. the constructions have been made beginning at 

( I n-1 ) n-1 points k 2 ,o 9 O <k ~ 2 • The problem now is to describe the 

construction at then level. At the point (1/2n,O) construct an arc to 

the associated point of (l/2n,O) which is the union of exactly on~. 

semi-S arc inside the single semi-S arc beginning at the. po_int (o.,o) and 

an s ... arc to the point (1/2\1) constructed to the right. For k "" 2 the 

construction is complete. Therefore, for k .:: 3 an .arc is, constructed 

beginning at the point (3/2n,O) which is the union of exactly the same 

number of semi-S arcs that begin at the point (2/2n,o) each one of which 

is inside a distinct semi-S arc beginning at the point {2/2n,O) and an 

S-arc constructed to the right to the point {3/2n,l). It follows that 

from the point (k/2n,o) where k is odd an arc is constructed to the 

point (k/2n,1) which is the union of exactly the same number of semi-S 

arcs that begin at the point (k-l/2n,o) each one of which 1s inside a 

distinct semi-S arc beginning at the point (k-l/2n,O) and ~n S-arc con

structed to the right to the point (k/'~.n ,1), This inductively defines 

the foundation of the decomposition to be discussed. Figures 4.1, 4.2, 

and 4.5 should help to clarify the preceeding definition. 

Even -though the basic portion of the foundation for the desired 

decomposition ha.s been described, one further restriction must be placed , 

on the construction of some of the arcs already described. If it is 

assumed that the S-arc beginning at the point (O,O) is to be as shown 

in Figure 4.1 then adjustments will be as stated below. 
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1-Level 

( 0, 1) (1/2, 1) (1, 1) 

c 

------- -- ---~ .... ---------

-----..--- -- ___ ......,. 

A 

(0, 0) . (1/2, 0) (1, 0) 

Figure 4.2 
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2-Level 

(0, 1) (1/ 4, 1) (1/ 2, 1) (3/ 4, 1) (1, 1) 

c 

B 

- ~- - -.-.-. 

A 

(0, 0) (1/ 4, 0) 0/2, 0) (3/4, 0) (1, O) 

Figure 4.:, 



Consider the compact continuum consisting of the point~ of the closure 

of { (x,y): y = 1/16 sin 1/x, O <x ~ l/41t}. Le.t f be a trans.lation 

defined on this compact continuum such that f(x,y) = (x,y + 1/8. Let 

D s;A be the image of the translation, f. The point set Dis not 

. -1( ) . . locally connected since f D is not locally c.onnected •. ~he point set 

2 -1 ·· · . 2 D does not separate E since f (D) does not sep~rate E. · It is a-well 
. . 

known theorem that there exists a monotonic decreasing sequence of 
. 2 CIO • 

closed topological 2-cells (D' J, in E· · such that · n1D1 = D, n1• n (M - T) n · n::: n . 

is a subset of the interior of. A LJ· { (a,y) : . x = o, 0 < y < 1/4}, and D~ 

is contained entirely in the interior of D~_1, n = 2,.3, •.• • • Thus. it 

easily follows that there exists a monotonically decreasing sequence of 

closed topological 2-cells, (~nJ, sucb that nQ·1Dn = D, D1 S {A - F(A)} U 

{ (x,~) ; x = 0, 0 < y < 1/4}, and Dn is' contained entirely in. the 

interior of Dn-l' ~ = 2,.3., ••• , relative to A. 

From the definition of Done knows that there exists no point 

(x,y) e: D such that y < 1/16 and there ·exists no point. (x,y) e D such 

· that y > 3/16. Consider the sequences of points of A sue~ that 

The sequence (c} converges to the point (o, 1/16) and the sequence (d J n n 

converges to the point (o, .3/16) since the sequence {<c2n+i):n:, ~6)} 

converges to the point ( 0, 1/16) and the sequence { ( ( 2n+l 1 :n: , t5 ) } 
converges to (o, .3/16). Therefore, there exists D01 such that 

(c5 U d4 ) n Dnl = ¢. Again, there will exist a Dn2 s Dnl such that 
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(c7 U d6) n Dn2 = ¢. In general if Dni ~s been defined for the points 

en and dn-l there will exist Dn(i+l) S Dni such that ( cn+2 U dn+l) n 
CX) 

Dn(i+l) = ¢. It also follows that 1Q1Dni = D. 

Now, the previous construction of the arcs in (M - T) will be 

considered. At this time the construction of the arcs beginning at 

the points (l/2n ,o), n = 1,2, ••• , will be altered. All that need be 

done is as follows: 

(1) In place of the subarc from the point (1/2n,O) to the point x, 
n 

where x is the point of intersection of the previously con-
n 

structed arc beginning at the point (l/2n,O) and the arc 

{r x (1/41}, the arc Ln' from the point (1/2n,o) to the point 

x, is substituted where L = L 1 UL~~ UL 3; 
n n n ··~ n 

(2) Lnl is an arc from the point (1/2n,o) to the poin~ e.i where 

ei € Dni n { ((4i!7·Jrc'y) : 0 s y s 1/16}; 

(3) L 2 is an arc from the point e. to the point f. where 
n 1 1 

fi € Dni n {(141; 5)rc'y) .i 3/16 Sy~ 1/4} and the arc (eifi) 

is a subarc Qf F(D :) which lies in the interior of A; m .. 

(4) tn3 is an arc from the point fi to the paint xn. 

Figure 4.4 will be. a guide as to what adjustments are being made. 

With this adjustment of the arcs beginning at the points (l/2n,O) 

one now proceeds to prove Theorem 4.1. This objective will be accomplish-

ed successfully obtaining the following four results: 

I. Associating with each point of {r x foJ} a compact subcontinuum 

of M; 

II. ff.bowing that the collection of subcontinu.a of M acquired in I 

is a collection of disjoint continua; 
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III. Showing that the set theoretic union of a11 · subcont:i,.nua . 

acquired in Mis exactly eqµal .to M; 

IV. Showing t~t each subcontinuum acquired in Mis nonlocally 

connec~ed at some point. 

- - - - - ...,_ - - -,- - - - '- - - -~ - -

A 

(1/8, 0) (1/4, 0) (1/2, 0) 
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I. Let X, n = 1,2, ••• , be the compact continuum bounded by the n 
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constructed arc beginning at t:he point (o,o), the subarc of {r x {o}} 
. . n . 

from the point_ (O,O) to the point (1/2 ,o), the constructed arc beginning 

at the point (1/2n,o), and the subarc from the point (O,l) to the point 

(l/2n,1) of the arc {r x {11}. The description of the construction of 

the arcs already established implies that the se~uence, (XnJ, is 

monotonic decreasing.· Reference [3-p, 14] implies tl:;tat the point set 
co 

nQlXn =Xis a compact continuum containing the point (o,o) and the 

point (0,1). Also by the construction of the arcs beginning at 

points (l/2n,O), n = 1,2, ••• , it foi1ows that D 5.:: X and that Xis not 

locally connected at points (O,y) where 1/16 ~ y ~ 3/16. Since the 

subcontinua T and X have points ·in common· then the.point set TUX is 

a continuum containing the point (o,o). At this time the subcontinuum 

TUX is associated with the point (o,o) for future reference. 

It is of importance to recognize t:tia.t at level n the closed region 

bounded by the arc beginning at points (k/2n,o) and. (k-l/2n,O) along 

with the arcs { (x,1) : k.-1/2.n ~ x ~ k/2.n} and { (x,O) : k-1/2.n :!i: x ~ k/2.n} 

is homeomorphic to a close~ a-ce1i. For each k, 1 :s: k ~ 2.n, let this 

compact continuum be named~· Now, with .each point (:x:,o) € {r x (ol} 

a compact continuum is associated in the following manner. If 

(x,o) € {r x (oJ} is a point such that x 1 k/2n for any k or n then 

there exists a unique k for each n = 1,2, ••• , such that (x,O) e Qk. 
n 

The description of the construction of the arcs already established 

implies that the sequence, fQ!l, is monotonic decreasing. Let 
CX) k 

Ax= nQlQn. Note the fact that for each n and a fixed point x there 

is a unique positive. integer k dependent upon both x and n. Reference 



[3~p, 14] implies that for each such (x,O) e {r x {oJ} the point set Ax 

is a compact continuum containing points (x,O) and (x,1). Therefore, 

with each such point mentioned in this paragraph the subcontinuum A of 
x 

Mis associated. 

Now, let the point (x,O) € {r X {oJ} be such that for some n and 

some k, x = k/2n. Then, as in the above paragraph, a compact subcon

tinuum Pk of M can be defined. . n 
. k . . 

Let Pn be the closed region bounded by the arcs beginning at the 

points (k+l/2n,o) and (k-l/2n,o) respectively along with the arcs 

{(x,1) : k~l/2° ~ x ~ k+1/2n} and {(x,O) : k-1/2n·~ x s: k+1/2n}. The 

point set P: is also homeomorphic to a closed 2-cell. 

If x = k/2N then at the N level P: is defined as well as for all 

larger values of n. . For all points (J<;,O) € { I x f o}} such that there 

exists some positive integers N and k, where x = k/2N, let the point 

set B = Q _ _pk be defined. Again, (3-p, 1~ implies that for each x e I 
x n-1\f" n .. 

of the type considered in this paragraph the point set Bx is. a compact 

(x,l). continuum containing the point (x,O) and its associated point, 

With each such point, (x,o) e {r x foJ} the compact continuum, Bx' 

is associated. 

So far a compact continuum has been associated with every point 

of the arc {r x (oJ} except tbe point (1,0). Let Sn be the closed 

topological 2-cell bounded by the arc beginning at the point 

(2n=l/2n,o), the arc {f1J X r}, the arc {<x,O): 2° .. 1/2° s: x s: 1}, and 
. 00 

the arc { (x,1) 2n-l/2° s: x ~ 1}. Let Y = nChSn. Again (3-p, 14] 

implies that Y is a compact subcontinuum of M containing the point (l,O) 

and its associated point (1,1). With the point (l,O) let the compact 

subcontinuum Y be associated. 



Now with every point (x,O) of the arc {r X f.oJ} a compact subcon

tinuu.m of M has been associated which contains the points (x,O) and 

(x,l). The next objective is to argue that this collection of sub-

continua of Mis a mutually exclusive collection. 
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II. Let R , R be any two of the above mentioned compact sub continua x y 

of M where the points (x,O) and(y,O) are associated respectively with Rx 

and Ry and x < y. The description of the construction of the arcs implies 
OO k OO k k k 

that R = n1E, and R =. n1F where the point sets E, F, n = 1,2, .•. , x n= n y n= n n n 

are the compact continua described in the construction above. Since the 

point set 

K = (k/2°: n is a positive integer, 0 ~ k ~ 2n1 

is dense in I there exist positive integers k1 , k2 , n1 , and n2 such that 

x < k1/n1 < k2/n2 < y where, say, n2 > n1 • From this the description 

k k rl. rl. of the construction implies that En2 n F n2 = Y'. Therefore Rx n RY ~ Y'. 

Thus it has been shown that the collection of subcontinua determined in 

I is a mutually exclusive collection. The question now is whether the 

set theoretic union of this collection is exactly equal to M. 

III. Let(M}, x € I, be the collection of subcontinua determined 

in I. The point set !J_M c: M since M c M for each x EI. Let x EM. 
xtrx - x -

The description of the construction implies that there exists a sequence 

J f k k (Xn, or a sequence .~), or a sequence fPn), or a sequence (Snl such 
oo _ ook _ ook _ <XI 

that x € n(hXn or x € 0Q1Pn or x e nQlQn or x E nQlSn or x e T. In 

any case there would exist some x € I such that x € M. Thus Mc IJ_M x - x~rx 
and therefore, M = II M. 

XtI x 

The point set M has now been represented as the u.nion of an 



uncountable number of mutually exclusive compact continua, M = t11M, 
· x~ x 

indexed by the real numbers of the unit interval I. However, the most 

important aspect of this decomposition is to show that for any x € I, 

M is not locally connected. 
x 

IV. Since the point set Xis not locally connected, the descrip-

tion of the construction of the decomposition implies that the point 

set TUX is nonlocally connected. Therefore, the set, TUX, which 

is associated with the point (o,o) is nonlocally connected. 

Before proceeding some preliminary observations are needed. Let 

x € I such that x 1 k/2n for any k or n. Since the set K is dense in 

J there will exist an odd integer k and an integer n such that Q! con

tains the point (x,O). Consider the first pair of U~bars looking from 

left to right from {foJ >< r} formed by the first two semi-S arcs 

beginning at the points (k/2n,o) and (k-l/2n,o). It is important to 

note that when Q~1 is selected it follows that the first pair of U-

bars formed by the first two semi-S arcs beginning at the points (k/2n+~o) 

and (k-l/2n+l,o) will. each be subarcs of distinct U-bars formed by the 

first semi~S arcs beginning at the points (k/2n,O) and (k-1/2n,o). This 

similarly is the case for any pair of U-bars formed at the n-1 level 

relative to then level. What this meane is that if~ has a collection 

oft mutually exclusive U-bars then Q~1 has a collection of at least 

t mutually exclusive U-bars each one of which is a subarc of one of the 

u-·bars in ~· Therefore, consider the point set Mx = ng1~. The first 

t U-bars at each level form t monotonic descending sequences of arcs 

from which [3~p, 14] implies there exist t disjoint nonempty inter-

sections lying in M. 
x 
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.The very important observation to be made is that because the set 

K is dense in I and because of the description of the decomposition 

. k k k k 
there will exist a~~ such that the point (x,O) € Qn+p S Qn and ~+p 

will have t + 2 mutua.lly exclusive nonempty intersections lying in M. 
x 

~ecause of these observations the following choices of points in M 
x 

can be made. 

In relation to x there exists a Glosed 2-cell, ~ 1, that contains 

at least one U-bar. From this U-bar pick a point P1 € Mx. This can 

be done since the previous paragraph points out that every U-bar con-

tains at least one point of Mx. There also exists an integer n2, n2 ·> n1, 

such that Q!2 bas more than one U-bar. In ~ 2 pick a point p2 € Mx where 

p2 is a point in a U-bar of~ which is not a subset of the U-bar from 

which p1 was selected. In general if the point Pm has been chosen there 

· will exist a Q!1 such that ~i has more than m U-bars. In ~i pick a 

- . - k point pm+l € Mx where pm+l is a point in a U-bar of ~i which is not a 

subset of a U-bar from which pr' r = 1,2, ••• ,m, was selected. In this 

way a sequence of distinct points, f pn J, of Mx is obtained. Since Mx 

- * ... -is compact and fpn} s; Mx then there exists a point p such that pis a 

- * -limit point of {pnJ • Alsop€ Mx since Mx is closed. 
k . k 

Now, consider the closed 2-cell, Q0 , and suppose that Qn contains 

at least two U-sets, c1 and c2• The description of the decomposition 

implies that 

~ n {r x (1/4,:;/41} = {c1 n {Ix [1/4,3/4JJ} u 

{<~ - c2 ) n (Ix [1/4,3/411} 

separate. To simplify this. expresion let W = { c1 n ( I x [ 1/4 ,3/4]]} 

and V = { ({ = c2 ) n {I x [ 1/4 ,3/4 ]J J which leads to 
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Q! n {r x [1/4,3/41} =VU w separate. 

Let R be any sphere containing the point p with diameter less than 

I - * - *.1.r1. l 8. Since pis a limit point of fpn} it follows that Rn fpnJ ; ?• 

- ~ - * Let x1, x2 €Rn fpnJ • In the selection of x1 and x2 one should make 

- - k sure that x1 and x2 do not belong to the same U-set of any~· This 

- * - * can be done since Rn fpnJ is infinite and therefore, Rn (pnJ 

intersects an infinite number of U-sets. Let n and k be positive 

k - -integers such that~ contains U-sets c1 and c2 and x1 € c1 and x2 € c2• 

Already it has been noted that Q! n {r x [1/4,3/4]} ~VU W separate 

where c1 S V and c2 s W. Because of the selection of the radius of R 

and since M c Qk it follows that Rn M = J (Rn M) n v} U 
· x- n x l x 

{(R.n Mx) n w} separate. Therefore, Mx is not locally connected at p. 

Thus the point sets M, where x 1 k/2n for any k or n, have been x 
shown to be nonlocally connected. Now consider the point set M, where x 
x ~· k/2N for some positive integers k and N. Also in this consideration 

the point set M1 is excluded. It has previously been defined that 
c:o k 

M = nN P. The description of the decomposition implies that for all x n= n 

n > N Pk = Fk U Gk 
· ' n n n' where Fk is the compact continuum bounded by the 

n 

arc beginning at the point (k-l/2n,O), the arc beginning at the point 

(k/2n,O), the arc {(x,O) : k-1/2n ~ x ~ k/2n}, and the arc 

{(x,l) : k-l/2n ~ x ~ k/2n}. The point set G~ is the compact continuum 

bounded by the arc beginning at the point (k+l/2° ,O), the arc beginning 

at the point (k/2n,o), the arc {Cx,O) : ~/2n ~ x ~ k+l/2n}, and the arc 

{(x,l) : k/2n ~ x ~ k+l/2n}. It is clear that F: n G: is exactly the 

arc initiating from the point (k/2N,o). 

The last sentence in the preceeding paragraph implies 
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M ~ n __ pk = [ n _ _Fk] U [ n ak]. The objective now is to argue that M 
·x n=N"' n _ n~N" n n.=N n. x 

is not locally connected. Also because of the last sentence of the 

preceeding paragraph it suffices, in t~is case, to show that nOi?! is not 

locally connected. 

k The description of the decomposition implies that FN+2 has at least 

2 one semi-S bar. Let this semi-S arc bar be B1• Also the description of 

the decomposition implies that F~+3 contains a semi-S arc bar, B~, such 

2 2 k 
that B2 S B1 • In general, FN+t' t = 2,3, ••• , contains a semi-S arc bar, 

2 2 2 2 2 [ ] Bt-l' such that Bt-l S Bt_2 S ... S B2 5 B1 • The reference, 3-p, 3 , 
• 00 2 C:02 (Dk. 2 k 

implies that tOiBt I¢ and tQlBt S nQ~n s; Mx. Therefore, from B1 S FN+2 
- CQ2 o:,k 

pick a point p1 e tQlBt S: nO~n s Mx. The description of the decomposi-

3 k tion implies F~+3 contains a semi-S arc bar, B1, distinct from any FN+2. 
- CIO 3 In a similar way as described above pick a point p2 e sQ1B6 S Mx. In 

general F:+t+l' t = 2,:3, ••• , contains a semi-S arc bar Bi'l-1, distinct 

In a similar way as described above 

In doing this a sequence of distinct 

closed and compact there will exist a limit point p € 

Since n1Fk is 
n= n 

CIO k - * n1F of fp ] • n= n · r 

An arg~~ent can now be given, as was given when x I k/2n for any k 
co k 

or. n, to show that n.OlFn and therefore Mx is not locally connected at 

the point p. This same type of consideration will suffice in the case 

of showing the previously defined compact continuum, Y, to be nonlocally 

connected. The continuum, Y, is associated with the point (1,0). 

Thus all fou~ results, I, II, III, and IV, have been accomplished 

and therefore the conclusion of the theorem follows. 
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The following lemma is proved using the notation of Theorem 4.1. 

Lemma 4.1: If y € I, y 1 o, yr 1, then M • M =AU B separate, y 

where A= UM and B = UM. 
x.q x Y-<x x 

?.2:0.9.t:: Theorem 4.~ implies that A n B = ¢. Also A and B are each· 

connected subsets of M since each is the union of a collection of 

connected sets and an interval. Without loss of generality suppose that 

p € A. Let Mt be the nonlocally connected continuum of the collection 

defined in Theorem 4.1 such that p € Mt. The description of the 
co !XI 

implies Mt= kQlNk and MY= iJJ1Ek and that decomposition in Theorem 4.1 

there exist integers rands such that N n E = ¢. The decomposition s r · 

of Theorem 4.1 implies that pis an interior point of N and that N s s 

intersects only points of sets M wl:lere x < y. This implies that p is 
x 

not a limit point of B. Similarly no point of Bis a limit point of A. 

'l1hus M - M ,..,. A U B separate. 
y 

Theorem 4.2: There exists a continuous and monotonic inverse arc 

. -1( map, f, such that f(M) = I and if y € I then f. y) is nonlocally 

connected. 

Proofi If p € M then define f(p) ~ x, x € I, if and only if p € M 
x 

in the decomposition of Theorem 4.1. Obviously this defines a monotonic 

1 map such that f(M)"" I and if' y € I the f'- (y) is nonlocally connected. 

Let (ab) be a subarc of' I from the point a to the point b. The map f 

maps the arc {(x,O) : a~ x ~ b} onto the subarc (ab) and therefore f 

is a.n inverse a.re map. Thus it remains only to prove that f is continuous. 

In order to prove that f is continuous it is sufficient to show that 



the inverse image under f of any open subinterva.~ of I is a domain in M. 

Let (ab) be any open subinterval of I, a IO# b, a I l 1 b. The 

definition off implies that r-1{(ab)} = a~<bMx. Lemma 4.1 implies 

M - Ma= AU B separate and M - ~=CUD separate. Without loss of 

generality suppose that f-1{(ab)} 5A and f-1{(ab)} c;; D. 'llle point set 

An Dis a domain relative to M since Lemma 4.1 implies that both A and 

Dare domains relative to M. Therefore f-1{(ab)} is a domain relative to 

M since f-1{(ab)} =An D. 

If a= o and b ~ 1 then f-1{(ab)} = M which is trivially a domain 

relative to M. If a= o, bf. o, and b 'I 1 then Lemma 4.1 implies that 

M - ~=AU B separate where A is exactly f-1{(ab)} and therefore, 

f-1{(ab)} is a domain relative to M. Similar argument if b = 1, a Io, 
and a I l. Thu~ f is continuous. 

The following definition is given in order to aid progress toward 

giving a characterization of the inverse arc map. 

Definition 4.1: Let X and Y be spaces. If f is a map such that 

f(X) = Y, then Y is s~id to have property Z relative to the map f if 

and only if for every arc Lin Y and every y € L there exists a region, 

U, relative to L such that y € U and such that y1, y2 € U there will 
y y y 

~l( ) -1( ) exist p1 € f y1 and p2 € f y2 such.that there exists an arc 

(p1P2 ) S f-1 (L). 

The res'\lltS of Theorem 4.2 are considered in proving the following 

theorem. 

Theorem 4.3: Let X and Y be·spaces. If f is a continuous and 
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monotonic map such that f(X) = Y and f has the property that for each 

arc, L, in Y, there exists at least one point of L such that its inverse 

image is locally connected, then f is an inverse arc map if and only if 

Y has property Z relative to the map f. 

Proof: Suppose f is an inverse arc map. Let L be any arc in Y 

and let 11 be an arc in X such that f(L1 ) ~ L. Let y € L. Let U be 
y 

any region relative to L containing y. Suppose y1 , y2 € Uy and consider 

r=1 (y1 ) and f~1(y2 ). Since f(L1 ) =Lit then follows that 11 n f-1 (y1 ) 

~ d ~ -1 -ic -1( ) 1' 'f' r 11 n f ( y 2 ) • Let pl €i: L1 n f y l ) and p 2 E L1 n f y 2 , The 

subarc (p1p2 ) of' 11 fulfills the requirements of the definition for Y 

to have property Z relative to f. 

On the other hand suppose Y has property Zand Let L be any arc 

in Y from a' to b'. Let the points of L be well ordered, ( x0), a € i. 

Since Y has property Z then for each xa there exists a region, Ga, such 

that if y1 , y2 e Ga then there exists p1 € f~1 (y1 ), p2 € f-1 (y2 ), and 

( , -1< ) an arc p1p2 .1 Sf L. The collection, [Ga}, is an open covering of 

the point set L. Since Lis connected there exists a finite chain of 

these sets from a' to b', say H1, H2, ••• ,Hn' where a' € H1, b' € Hn' 

and H. n I-I.. 'f' ¢ if and only if j = i + l. 
l J 

For each H. n H .. 1, j_ = 1,2, ••• , n-1, there exists a subarc of L, 
l l·r 

Ci' such that Ci s Hin Hi+l· The hypotl;lesis implies that for each c1 

-1( ) there exists a. point ci € Ci s Hi n Hi+l such ·that f c1 is locally 

connected, i = 1,2, ••• ,n-1. Attention is now focused on the n-1 points, 

-1( · =1( ) Property Z implies there exist points a€ f a') and p11 € f c1 . 

such that there exists an arc (ap11 ) s r=1 (L). Also for the same reason 



-1(· ) there exist points p12 € f c1 

exists an arc (p12p21 ) £.f-1(L). 

and p21 e f-1 (c2) such that there 

If (ap11 ) n (p12p~1 ) j ¢ then by 

picking the first point of intersection of (p12p21 ) with (ap11 ) from a 

to p11 and calling it x then the resulting arc (axp21 ) is an arc from 
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a to p21 • The plan is to continue thi$ tying-up process for n times 

assuming of course that with every step there is a nonempty intersection. 

If this intersection is always nonempty the result will be an arc (ab) 

lying entirely in f-1 (1) such that f(a) = a• and f(b) = b'. Let 11 = (ab). 

The point set f(L1 ) is a subcontinuum of L containing both a' and b' 

since f is continuous and closed and a, be 11 • Therefore, f(L1 ) = L 

since '[3-p, 40] implies that Lis irreducible with respect to being 

connected and containing both a' and b'. Thus f is an inverse arc map. 

However, suppose that (api1 ) is an arc from a to pil' for some 

i = 1,2, ••• , n-1. Since f(pil) = ci the hypothesis implies that f~1 (ci) 

is a locally connected continuum. The reference [3~p, 84], implies 

that r=1(ci) is arcwise connected. The hypothesis implies that there 

-l( ) ~1( ) exist p12 € f ci and p(i+l)l e f ci+l such that there exists an 

arc (p12P(i+l)l) lying entirely in f-1(t). Also since f-1 (ci) is arc

wise connected there exists an arc (p:1,1p12 ) in f'"1 (ci). Let x1 be the 

first point of intersection of (pilpi2 ) with (apil) from a to Pii· 
. -1 

Because of the preceeding sentence an ar~ (ax1pi2 ) exists inf (L). 

Now let x2 be the first point of intersection of (pi2p(i+l)l) with 

(ax1p12) from a to pi2 • Then the arc (ap12 ) exists in r=1 (L). 

Therefore by a finite number of steps, whether a nonempty intersection 

is obtained or not, an arc (ab) is obtained lying entirely in f-1 (1). 

Thus, let (ab)= 11 and as shown in the preceeding paragraph, f(L1 ) = L. 

Therefore, f is an inverse arc ~ap. 



CHAPTER V 

DECOMPOSITIONS OF GENERAL SPACES 

The contents of Chapter V are directed, mainly, toward showing 

some general consequences of Chapter IV. The decomposition of 

Theorem 4.1 will here after be referred to as, Decomposition~. Even 

more briefly in the theorems to follow, as~. 

Since~ shows that a closed topological 2-cell can be decomposed 

into the union of uncountably many mutually exclusive nonlocally con-

nected continua., the following theorem follows by an induction 

argument. 

Theorem 5,1: Ev~ry closed n~cell, n :ii!: 2, can be represented as a 

union of uncountably many mutually disjoint nonlocally connected 

continua. 

Theorems 5.2 and 5.3 are theorems fundamental in the proof of 

Theorem 5.4. 'I'heorem 5.l+ is the first result of this chapter concerning 

a nonloca11y connected decomposition of a general continuum. 

Theorem 5,2: If Mis a space, C is a closed topological n-ce.11 
n 

(n :a: 2), and Rn=l is the spherical boundary of C such that M - R 1 :::; 
n n-

A U B separa.te where A U Rn-l 

is isolated relat;ive to {R n-1 

~ C then no point 
n 

- P(M = en)}. 
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of {Rn-l - P(M -c0 )} 
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Proof: First, it is noted that the hYl)othesis implies that 

B = (M - en). If {Rn-l - F(B)} = ¢ theri the theorem is true. Otherwise, 

consider {Rn-l - F(B)} r ¢ and let x € {Rn-l .. F(B)}. Suppose that xis 

isolated relative to {Rn-l - F(B)}. Since Rp.-l is connected it follows 

that xis a limit point of Rn·l· Because xis isolated relative to 

{Rn-l - F(B)} there exists S(x,€) such that S(x,€) n {Rn-l - F(B)} = ¢. 
But also since xis a limit point of Rn-l there must exist a pointy€ 

R 1 such that yr x and y € S(x,€). This implies that y € F(B). This n-
will be true for every€> 0 and therefore, xis a limit point of F(B). 

Since FCB) is closed it follows that x € F(B), This contradicts the 

supposition that x € {Rn-l - F(B)}. From this the theorem follows. 

Theorem 5~3: If Mis a space, en is a closed topological n-cell 

(n ~ 2), and Rn-l is the spherical boundary of en such that: 

(1) M - Rn-l =AU B separate where AU R0 _1 = en and 

(2) {Rn-l - F{B)} ,# ¢ 
then there. exists a topological (n-1)-aell, cn .. l' .such that 

cn ... l S {Rn-1 - F(~)}. 

~: Let x €. {Rn-l .~ F(B)}. Suppose there does not exist any 

(n-1) ... cell, en-l' such that x € C0 _1 £: {R0 _1 - F(B)}. Theorem 5.2 

implies that xis not an isolated point of {R0 _1 - F{B)} relative to 

{Rn~l - F(B)}. Therefore, xis a limit point of {Rn-l - F(B)}. Let 

R be any region in the space M such that x € R. Since R 1 is 
n- an (n-1) 

sphere there exists a topological (n-1)-cell, cn ... l' such that 

x €en-ls Rn Rn-l'. The supposition implies that e0 _1 i Rn 

{Rn-l - F{B)}. Therefore, there must exist a point y € Cn-l n F(B) 
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which implies that xis a limit point of F(B). Since F(B) is closed it 

then follows that x € F(B) which contradicts the fact that x € 

{Rn-l - F(B)}. This implies the theorem is true. 

Theorem 5.4: If Mis a continuum, c2 is a closed topological 2-cell, 

and R1 is the spherical boundary of c2 such that: 

(1) c2 SM, 

(2) M - R1 = A U B separate where A U R1 = c2, and 

(3) {R1 - F(B)}; ¢ 
then (a) M can be represented as the union of uncountably many mutually 

exclusive nonlocally connected continua and (b) there exists a continuous 

and monotonic inverse arc map, f, defined from M onto any arc E such that 

if yet then r-1 (y) is a nonlocally connected. continuum. 

Proof: Theorem 5.3 implies that there exists an arc (ab) such that 

(ab) s {R1 - F{B)}. On this arc pick a point a1 between a and band then 

a point b1 between a1 and b. Let L be an arc from the point a to the 

point b such that L n R1 = fa, b} and ;r. - R1 is a. ~ubset of the· interior 

of c2• It is clear that LU (ab) aJ,ong with the complementary domain it 

bounds is a closed 2 ... cell itself. · Call this closed 2-cell T, and if the 

arc Lis associated with the arc {foJ XI}, the arc (aa1 ) with the arc 

{r x (11}, the arc (albl) with the arc {r1J x I}, and the arc (bbl) with 

J .} the arc l;r x {OJ in the closed 2-cell, I x. I, then, by the method in 

Decomposition~, the closed 2-cell T can be decomposed into the union of 

uncountably ~any mutually exclusive nonlocally connected continua. One 

notes that the nonlocally connected subcontinuum of T that will be 

associated with the points a and b will also contain L. 



60 

For clarity let T = U A , x € (bbl), where A is the nonlocally x x 

connected continuum associated with the point x, The point set c2 - T 

is connected since the arc L separated c2 into two connected sets and 

c2 - Tis one of these sets. Since the arc (ab) contains no limit 

points of M ~ c2 it follows that (c2 - T) U (M - c2 ) = M - Tis a 

connected set. It is true that M - Tis not closed since L £ T and L 

contains limit points of c2 - T. . The point set { (M - T) U AJ is a 

continuum since (M .. T) = (M - T) U L and { (M - T) U ~} = 

{ (M - T) U ~} since ~ contains L. This shows that{ (M - T) U AJ is 

the union of two closed connected sets. Also the point set 

{ (M - T) U ~} is nonlocally connected since~ is constructed as a non

locally connected subcontinuum of the closed 2-cell T. 

Now, let M be represented in the following manner. 

M = { (M - T) U AJ U { U Ax : x € f (bbl) - bJ} 

Considering the continuum { (M - T) U Aj as a single nonlocally connected 

subcontinuum of M, the desired decomposition of Min conclusion (a) is 

obtained. 

To obtain conclusion (b) the map f, f(M) = (bb1 ), is defined such 

that f{ (M - T) U ~} "" b and f(Ax) = x for each x € { (bb1 ) - b}. With 

this definition of the map fit follows, as in Lemma 4.1 and Theorem 4.2, 

that f is a continuous and monotonic inverse arc map such that if 

( . -1c y E bb1 ) then f y) is a nonlocally connected subcontinuum of M. Let 

Ebe any arc. Leth be a homeomorphism such that h{(bb1)}= E. There

fore, hf(M) = E and hf is the continuous and monotonic function called 

for by conclusion (b). 

Some of the theorems to follow demand another decomposition of the 
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closed 2-cell besides the one given in Theorem 4.1. A discussion will 

now be given to show that the closed 2-cell can be decomposed into 

uncountably many mutually exclusive nonlocally connected continua in a 

different way from that of Theorem 4.1. The only explanation given of 

this decomposition is to exhibit a figure, Figure 5.1, and from the 

information already given in Theorem 4.1 it will be clear that this 

decomposition will give the desired results. 

In reference to Figure 5.1, each nonlocally connected continuum 

will be determined in the same way as the nonlocally connected continua 

were determined in Theorem 4.1. That is, each of these continua will 

be associated with a unique point of the unit interval except for the 

continuum associated with the point (1,0). The only difference lies 

in the fact that instead of constructing an arc beginning at each 

point (k/2.~,o), a simple closed curve is constructed through each 

point (k/.2n,O) in tbe manner described in Figure 5.1. The continuum 

associated with the point (110) will be the union of the one obtained 

in the manner of Theorem 4.1 and the disk A. Let this continuum be D. 

It follows that Dis ~lso a nonlocally connected continuum. 

Notice, the continuum associated with the point (O,O) again is 

not locally connected and name this continuum H. The point set His 

not locally connected because of the manner in which the point like 

nonlocally connected continuum T has been imbedded in H. As mentioned, 

this construction will determine the desired decomposition of the closed 

2"ce11 in the same manner as the construction in Theorem 4.1 determined 

the desired decomposition. Let the decomposition obtained here be 

called Decomposition ~1 • 
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Figure 5ola 



Figure 5.lb 
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Decomposition ~l allows one to state and prove the following theorem. 

Theorem 5.5: If Mis a continuum, c2 is a closed topological 2-

cell, and R1 is the spherical boundary of c2 such that: 

(1) c2 SM, 

(2) M - .R1 =AU B separate where AU R1 = c2, and 

(3) {R1 - F(B)} = ¢ 

then (a) M can be represented as the union of uncountably many mutually 

exclusive nonlocally connected continua and (b) there exists a continuous 

and monotonic inverse arc map, f, defined from M onto any arc E such that 

if y €Ethen f-1 (y) is a nonlocally connected continuum. 

Proof: Let c2 be a closed 2-cell such that c2 s C~ where C~ is 

the interior of c2 • Now consider a Decomposition ~l of c2. Let 

N = (M ~ c~p U H' where H' is the homeomorphic image of the sub continuum 

Hin Decomposition ~1 • It follows that N is a nonlocally connected 

continut;tm since H' is a nonlocally connected sul;>continuum of c2. Now, 

let M be represented in the following manner. 

M =NU { U A~: x e (0,1)} U D' 

The point set A' is the homeomorphic image of the nonlocally connected 
x 

continuum associated in Decomposition ~l with the point (x,O), 0 < x < 1. 

The point set D1 is a homeomorphic image of the D subcontinuum in 

Decomposition ~1 • Therefore, this representation of M satisfies conclu= 

sion (a). 

Let f be a map defined on M such that f(M) = I, f(N) = (o,o), 

f(A ) = (x,O), and f(D) = (1,0). With this definition of the map fit 
x . 

follows, as in Lemma 4.1 and Theorem 4.2, that f is a continuous and 
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monotonic inverse arc map such that if ye l then f~1(y) is a nonlocally 

connected subcontinuum of M. Let Ebe any arc. Leth be a homeomorphism 

such that h(I) = E. Therefore, hf, hf(M) = E, is the desired continuous 

and monotonic function needed to obtain conclusion (b). 

Theorem 5.6: If M is a continuum,. c2 is a closed topological 2-cell, 

and R1 is the spherical boundary of c2 such that: 

(1) c2 SM and 

(2) M - R1 =AU B separate where AU R1 = c2, 

then (a) M can be represented as the union of uncountably many mutually 

exclusive nonlocally connected continua and (b) there exists a contin-
. 

uous and monotonic inverse arc map, f, defined from M onto any arc E 

such that .if y e E then {"1(y) is a. nonlocally connected continuum. 

Proof: This is a direct result of Theorem 5.4 and Theorem 5.5. 

A note of interest is that Theorem 5.6 implies that every 2-

manifold., M, as defined in [6]., can be represented as the union of 

u~countably many mutually exclusive nonlocally connected continua and 

there exists a continuous and monotonic inverse arc map, f, defined from 

M onto any arc E such that if y ~·Ethen f-1 (y) is a nonlocally connected 

subcontinuum of M. 

. . . . 2 
The following theorem gives a decomposition of E into nonlocally 

connected subcontinua of E2• 

Theorem 5.7: Euclidean two sp~ce can be decomposed into uncount

ably many mutually exclusive nonlocally connected continua. Also there 

exists a continuous and monotonic inverse arc map, f, from E2 onto E1 



such that the preimage of each point of E1 is a nonlocally connected 

continuum. 

Proof: In each closed 2-cell, {tn,n+l] x r}, n = o, ± 1, ± 2, ••• , 

construct a Decomposition 13. For each point c in the closed interval 
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n from n to n + 1, n = o, +_ 1, + 2, ••• , let A be the nonlocally connected ,....,. c 

continuum associated with the point (c,O) in Decomposition 13. If c = n 

for some integer n then let the continuwn L = An-l U An. The continuum c . c c 

L is a nonlocally connected continuum since An is a nonl9cally connected c c . 

subcontinuum of the closed 2-cell {[n,n+l] x r}. In this way with each 

point (c,o) in E2 a unique nonlocally connected subcontinuum of E2 is 

associated. 

Now, if c is a point .of the open interval 

integer n then let G = An U {(c,x):x> l or x c c 

from n ton+ l for some 

< o}. It follows that G0 

is a nonlocally connected subcontinuum of E2 since An is a nonlocally con-
e 

nected sub continuum of the closed 2-cell { Cn, n+ll x I}. If c = n for some 

integer n then let He = 10 U { (c;,x):x >1 or x < o}. Again, it follows 

that H is a nonlocally connected subcont:i,nuum of E2 since L is a non-e c 

locally connected subcontinuum of the <;"osed 2-cell {tn-1, ntl] X r}. 
Obviously, E2 "" ( U He: c is an integerj U f. LJ G c: c is real but c is not 

an integer1~ Therefore, the collection of nonJ,,ocally connected sub con-

tinua of E2 i {fHcJ U {G0 J}, is a decomposition of E2 into nonlocally 
. 2 

connected subcontinua of E. Figure 5.2 illustrates this decomposition. 

Let f, f(E~~) ·~ El, be a map defined such tr,i.at f(H0 ) "" c and f(Gc) = c. 

With this definition of the map f it follows, as in Lemma 4 .1 and Theorem 4.2, 

tha,t f is a continu,ous a.nd monotonic inverse arc map such that if c e E1 then 



(n,o) 

H n G n+c 

(n+c,o) 

G n+c 

G _d 
n'a 

G l 
n+r 

2 

Figure 5·,?. 

O<c<l 

l 2 t~ (c) is a nonloca.lly connected subcontinuu~ of E. Therefore, the proof 
'. 

is complete. 



Theorem 5.8: Euclidean n-space, n ~ 2, can be decomposed into 

the union of uncountably many mutually exclusive nonlocally connected 

continua.. 

Proof: 
2 

Theorem 5.7 implies that the theorem is true for E • 

Assume the theorem is true for Ek-l where k is some positive integer, 

k ~ 3. Consider the subspace Kc= {(x1,x2, ••• ,~_1,c): xi is real, 

c is a fixed real}, as a subspace of Ek for each real nu~ber c. The 

k-1 point set Kc is homeomorphic with E and therefore, the induction 

hypothesis implies that Kc can be represented as the union of uncount

ably many mutually exclusive nonlocally connected subcontinua of Ek-l. 

Since Ek-l is closed in Ek then the subcontinua. mentioned in the 

k previous sentence are· also·nonlocally connected subcontinua of E. 

Therefore, since Ek= UK as c varies over the reals the theorem is c 

i;;hen proved. 

Whyburn, J5-p, 125], proves the following theorem concerning the 

hyperspace M' .of an upper semi"'.'continuous decomposition B of' a space M. 

"If Mis locally connected, so al.so is M'". As a consequence of this 

theorem the following two theorems can be stated and proved. 

Theorem 5.9: If Mis a space and Gan upper semi-continuous 

decomposition of M, where M' is the hyperspace of M associated with 

G, then if M' can be decomposed into uncountably many mutually exclusive 

nonlocally connected subcontinua of M', so also can M. 

Proof: Let T' = {Ta), a e j\ be the decomposition of M' mentioned 

in the hypothesis. For each a, t5-p, 125] implies that Ta is a subcon

tinuum of M. The points of T' are elements of G (i.e. the collection 
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{g~ J, ~€+,is the set of points of T~ but for each~' ga s; M). 
~ ~ 

Since any subcollection of an upper semi-continuous collection is itself 

upper semi-continuous then the points of T' form an upper semi-continuous 

decomposition of Ta• Thus, in reference to Whyburn's results mentioned 

above it follows that since Ta is nonlocally connected in M' then Ta is 

not locally connected in M. Therefore, the decomposition T = {Ta), a € f, 
is one of the type desired for the space M. 

Theorem 5.10: If Mis a space and Gan upper semi-continuous 

decomposition of M, where M' is the hyperspace of M associated with G, 

and there exists a continuous map f' defined an M' with range an arc L 

such that the preimage of each point of Lis a nonlocally connected 

subcontinuum of M' then there exists a continuous map f defined on M 

with range L such that the preimage of each point of Lis a nonlocally 

connected subcontinuum of M. 

Proof: The continuous map f' decomposes M' into the collection 

{T;J, where ye L, f-1{y) = T;, such that for each ye L, T; is a 

nonlocally connecteo. sub continuum of M' • It follows by Whyburn 's theorem 

that T is a nonlocally connected subcontinuum of M. Therefore, let h, 
. y . . 

h(M) = M',be a map defined sµch that h(x) = g' e M' if and only if x e g 

in M. The reference, ( 5-p, 125], implies that h is a continuous map. Let f, 

f(M) = (f'h)(M) = L,be the continuous composite map from M onto L. Let 
1 . 

ye Land consider f- {y). 

f-1(y) = (f'h)-1(y) = b·lf (f')-1(y)] = h-l(T') = T l .. y y 

Again, since T' is a nonlocally connected subcontinuum of M', then 
y . 

[5-p,1851 implies that T is a nonlocally connected subcontinuum of M. y 

Thus the theorem is proved. 



· CHAPTER VI 

SUMMARY 

This paper is primarily concerned with two objectives, namely those 

of a study of some fundamental properties of a continuous and monotonic 

inverse arc map and the decomposition of the closed 2-cell into the union 

of uncountably many mutually exclusive nonlocally connected continua. 

The inverse arc map is defined and then in Cha.pter II some of the 

fundamental properties pertaining to this map are proved. In Chapter 

III the investigation of the notion of a.n inverse arc map is not pursued 

in detail, but the general theme of the inverse a.re map is maintained, 

lf f is a continuous and monotonic map such that f(X) ~ Y, then an 

investigation is made into the question of the effect on X if Y is an 

indecomposable continuum; and conversely into the question of the effect 

on Y if Xis an indecomposable continuum. 

One of the principal results of this paper is in Chapter IV. If M 

is a closed 2-cell, that is, M =Ix~' then M can be decomposed into 

the union of uncountably many mutually exclusive nonlocally connected 

continua. As a consequence of this result, there exists a continuous 

and monotonic inverse arc map, f, such that f(M) = I and such that if 

y e: r then f-1(y) is nonloca.lly connected. Therefore, [5-p, 125] implies .. 
the collection {f-1 (y)}, ye I, is an upper semi~continuous decomposition 

of Minto uncountably many nonlocally connected continua. 
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Chapter V shows that if Mis a 2~manifold then M can be decomposed 

into the union of uncountably many mutually exclusive nonlocally connect-

ed continua. Also, there exists a continuous and monotonic inverse arc 

map, f, such that f(M) = I and such that if y £ I then r-1(y) is 

nonlocally connected. 

Some questions for further study are the following. What are 

some. other characterizations of an inverse arc map? Can an indecompos-

able continuum be decomposed into uncountably many mutually exclusive 

nondegenerate subcontinua? if M1 and~ are indecomposable continua 

and M1 n M2 ~¢then can M1 n M2 contain a domain relative to M1 U ~? 

2 Can E be decomposed into a collection of compact nond~generate indecom· 

posable subcontinua.? 
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