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PREFACE

This paper %ill be concerned with results related to inverse arc
maps and a decomposition of continua that contain a topological 2-cell.
Chapter I is an introductory chapter giving the definition of the above
wentioned maps and definitions of related terms. The material of
Chapter II is concerned with revealing some fundamental properties of
an inverse arc map. This chapter presents some sufficient conditions
on a space X for a map f defined on X to be an inverse arc map. A well
known factorization theorem by G. T. Whyburn is extended for the inverse
arc map. 1t is shown that some properties of X and subspaces of X are
determined if £ is an inverse arc map defined on X. Chapter III
extends the notion of an inverse arc mep and shows some properties of
indecomposable continus and their relation to continuous and monotonic
naps »

In Chapter IV a decomposition of the closed 2~cell into nonlocally
cennected continua is established. In conjunction with this a contin-
uous and monctonic inverse arcvmap f is determined with domain the
cloged 2-cell, M, and renge an src, L, such that if y ¢ L then f”l(y)
is nenlocally connected. Also, Chapter IV reveals a characterization
of an inverse src map. As further results to Chapter IV, Chapter V
establishes more general results for decompositions of genersl spaces,
This chapter shows that every 2-manifold, M, can be represented as the

union of uncountably many muiually exclusive nonlecally connected

iii



continua and there exists a continucus and monotonic inverse arc map, f,
defirned from M onto any are L such that if y € L, then f“l(y) is a
nonlcecally connected subcontinuum of M, The summary of all results is
given in Chapter VI.

Numbers in brackets refer to the bibllography at the end of the
paper. For example, [5-p, 127] refers to bibliography reference number
five, page 127,
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advisory committee; Dr. L. Wayne Johnson, Head of the Department of
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that I have received; and, most of all, to my family, Caryl, Mark,

Jody, Amy, Jenny, and Hutch,

iv



TABLE OF CONTENTS

Chapter
I. INIRODUCTION . . o o ¢ o o o o o o ¢ o o o s o s o o =
IT. SOME PROPERTIES COF INVERSE ARC MAPS . o & o o s o s o

ITI. SOME PRCPERTIES CF INDECCOMPOSABLE CONTINUA AND THEIR
RELATION T¢ CONTINUOUS AND MONOTONIC MAPS . o o o « o

IV, - THE DECOMPUCSITION OF THE CLOSER 2~CELL INTG NONLOCALLY
CONNECTED CONTINIA e o o s v o o s 6 & 8 o o 9 8 o o

V. DECOMPUSTTIONS OF GENERAL SPACES . &+ o s o ¢ ¢ o s o o
‘VI ® S ‘&Jmﬁ.\févﬂﬁi’ e L] . o Q L ° L e ° L o © Ll L] o o e L o L4 o Q

E 11:3 LI {GG?{AF H\.j‘ e e & @ ©® o ©° o o e o o e 8 9 o o o @ a o o @



CHAPTER I
INTRODUCTION

This paper will be devoted to certain results in connection with
inverse arc maps and decompositions of continua that contain topological

2~cells., The following definition of an inverse arc map is stated.

Definition 1.1: If X is a space and f is a map such that £(X) = Y,

then f is an inverse arc map if and only if for each arc L in Y there

exists an arc L, in X such that f(Ll) = L,

All spaces in this paper will be assumed to be Moore spaces
satisfying Axiom O snd Axiom 1. If A ié a subset of the space S then
the notation F(A) will be used to represent the set of boundary points
of the set A in 5. If L is an arc from the point a to the beint b then
L is denoted by the arc (ab). The results in this paper rely heavily
upon material in Whyburn [5] and in Moore [3].

In Chapter II some fundamental properties of an inverse arc map are
given. Among these are some sufficient conditions for a continuous and
monotonic map to be an inverse arc map., It is well known that a contin-
uvous function f can be factored into a composite map f = f2f1 where bath

factors are continuous, f., i1s monotone, and f. is light, [5~p, 141]. A

1 2

theorem in Chapter II is proved showing that if f is a continuous

inverse arc map then f. in the above composite is also an inverse arc
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map .

Chapter III assumes X and Y are spaces and that a function f such
that £(X) = Y is a continuous and monotonic map. Attention is given to
studying the indecomposability of subsets of X if ¥ is indecomposable,
and the indecomposability of Y if X is indecomposable. OSome theorems
congider the case ¥ = I whefe I is the unit interval,‘ It is shown that
if (M) = I and M is indecomposable then there are at most two points of
I, %y, %, such that f'l(xl) and f'l(xg) are subcontinuue of M. Some
extensions to the factorization theorem, [5-p, 1#1], mentioned in
Chapter I are derived. In connection with P. M. Swingle's definition
of finished sum of continua, [ 4], some theorems are proved concerning
finished sums of indecomposable continua.

Chapter IV is devoted to showing a decomposition of the closed

=cell into the union of uncountably weny nonlocally connected continua.

"

)

Once this decomposition is obtsined then a map f is defined from the
cloged Z-cell onto I such that £ is a continuous and monotonic inverse
arc map. Thus, [ 5-p, 127 ] implies that this decomposition of the closed
2-cell is an upper semi-continuous decomposition of the closed 2=-cell
into nonlocally connected continua. At the conclusion of Chapter IV

a characterization of an inverse arc map is given,

The contents of Chapter V are directeds mainly, towerd showing some
general consequences of Chapter IV, In particular it is shown that if
¥ is a 2-manifold, as defined in [ 6~p, 95], then M can be represented
as the uvnion of uncountably many mutually exclusive ﬁonlccally connected

continua., For this decomposition of M there exists a continuous and

&

P

monstonic inverss arc wmap, f, defined from M onto any arc E such that



if y ¢ E then fml(y) is one of these nonlocally connected subcontinua of
Mo

The definiticns which are pertinent to this paper are as follows:

Definition 1.2: [ 3-p, 379] A point set M is said to be aposyndetic

at the point p if and only 1f p belongs to M and for each point x of M
distinet from p there exists s domain with respect to M which contains p
and is a subset of a connected subset of M - x which is closed relatively

to M,

Definition 1.%: A continuum M is & hereditarily indecomposable

continnum if and only if every subcontinuum of M is an indecomposable

continuum,

Definition 1.4: A point set M is hereditarily locally connected

jde

T and only if every subcontinuum of M is locally connected,

Definition 1.5: A continuum M is said to be unicoherent if and

only if it is true that if it is the sum of two continue their common
part-is a continuum. A continuum M is gaid to be hereditarily uwnico-

herent if and only if every subcontinuum of it is unicoherent.

Suppose G 12 an upper semi-continucus collection of mutually exclu-

24

g

£}

ive closed and compact point sets £illing up a space S. If the

Fe:

elements of G arve oalled "points” and every region with respect to G
is called s "region", then [ 3-p, 280] implies that with this definition

of point and region, Axioms O and 1 of Moore are satisfied.

Definition 1.6: Let the spsce referred to in the preceeding




paragraph be called S' and referred to as the hyperspace of S assoclated

with the wupper semi-continuous collection G,

Definition 1.7: The point set M is locally peripherally connected

at the point p if and only if for every region R relative to M contain=

ing p there exists a region Rl relative to M such that p ¢ Rl = El cR

and F(Rl) is connected.



CHAPTER II

SOME PROPERTIES OF INVERSE ARC MAPS

let £ be a continuous and monotonic map from a compact space X
onto & space ¥, This chapter will be concerned with:
(1) conditions that can be placed on the space X so that f

~

is an inverse arc map, (
(2) properties induced on fﬂl(L; if L is an arc in Y, when
f is an inverse arc map, and
"~ (3) a factorization theorem related to a factorizaticn theorem
by G. T. Whyburn.

An important comment is that since X is compact and since all spaces
congidered zre assumed to satlsfy Moore's Axicms O and 1 unless other-
wige stated, it then follows that a continuous map, £, from X into ¥ is
necessearily clesed., This fact is used repeatedly throughout this
thesis.

It is natural to expect that some type of local connectedness on
the space X would be sufficient for f tc be mn inverse arc map. However,
an effort was mede to study the problem under weaker conditions than
lecal connscetedness by assuming X te be loecally compact, locally peri-
pherally connected, and connected. Theorem 2.1 shows that these
conditions on X imply that X is.locally connec¢ted and therefore nothing

is gained by assuming them,

%



Theorem 2.1s If S is a locally compact, locally peripherally

connected, and connected space, then S is locally connected,

Prcof: Suppose there exists a point p € S such that 8 is not
locally connected a2t p. Let U be any domain containing p. By Axiom 1
of Moore and the hypothesis of the theorem there exists a domain D such
that p ¢ D C D ¢ U such that D is compact while F(D) is connected. Iet
€ be avcomponent of D. The reference [ 3-p, 18], implies that F(D) con=-
tains a limit point of C.

Let CP be the component of D that contains p. The point set Cp is
not a domsin since S is not locally connected at p. Therefore there
exists a sequence of distinct points [pn] converging sequentially to p
where p, € Cn, n=1,2;,.., and {Cn} is & collection of mutually
exclusive components of D. Again by Axiom 1 of Moore and the hypothesis

of the theorem we know there exists a domain Dl such that p € Dl E§D1

and Ei is compact while F(Dl) is connected. Since {pnj converges

c D

sequentially to p, there exists an integer N such that for every n >N,

P, € 3‘31.

component of D

Iet C; he the component of D, containing p and Cg the

1

n
| containing p_for n> N, Note that CIJ; € C. From the
preceeding paragraph it is known that c; has a limit point in F(Dl).

n
Now consider the set X = F{D_ ) U [ gﬁCl 1u Cl, The point set X is a
1 O P

connected point set since 1t is the union of & collection of connected

paint sets having & point in common. Therefore X'Q;Gp which contradicts

the assumption that p_ ¢ cp, n> N. Thus the theorem is proved.

An interesting question in connection with the previous theorem is

the following: If a space S is connected and locally peripherally



connected must it also be locally compact? The following exsmple shows

the answer to this gquestion to be in the negative.

Eiample 1: Consider the Moore space, X, satisfying Moore's Axioms
O and 1, with the sequence of coverings of fegions, {Gn], where for
each positive integer, n, G_ = {S(;,e)f € <1/n, X € B2}. Now let
K= {;a, §é, «++} be & sequence of all points of E2 whose coordinates
are both rational. Iet x consist of the set of points in Eg.

Iet Y = {%: X ¢ E- and at least one of the coordinates of X is
irrationalj. Now define the se;uence of coverings of Y, {Gé}, where
for each positive integer, n,

¢! = {s(z,e): 8(x,e) € G, and [SGTE—S n [itjl%'i]:l = ¢}.

The importance of defining.the sequeﬁce of coverings,=fG£}, as
above, is in showing that the space Y will satisfy Moore's Axioms O and
1, especially Axiom 1 part 4., The space Y is connected since in E2
. between any two points there exists an arc such that every point on this
arc has st least one coordinate which is irrational. Thus, this arc
lies in Y and Y is therefore arcwise connected which implies that Y is

connected,

The spsce Y is locally peripherally connected since inside of every

o

‘sphere in Eg lies a rectangle such that any poinﬁ on this rectangle has
&t least one irrational coordinate. This rectangle is therefore in Y
and it follows that ¥ is locally peripherally connected.

The space ¥ is not locally compact since given any S(;,e) in¥,
there exists x € K 3 x will be a limit point of S(¥,e) in X. Thus,
S(?,@} in ¥ will contain an infinite subset with no limit point in ¥ and

therefore, the space ¥ is not locally compact.



Theorem 2.2 gives a sufficient condition that a function be an

inverse arc map.

Theorem 2.2:  If X is a hereditarily locally connected space and
f is a continucus and wonotonic map such that £(X) = Y, then f is an

inverse arc map.

Proof: .Iet L be any arc from a' to b' in Y and consider fﬁl(L).

The point set f“l(L) is a subcontinuum of X since f is monotonic.

let a ¢ ful(a“) and b ¢ fnl(b“)a The subcontinuum, f"l(L), is locally

connected since S is hereditarily locally connected. Therefore,

[ 3-p, 84)implies fﬁl(L) is arcyise connected. Iet L, be an arc from

a to b in f”l(L). The point set f(L ) contains a' and b' since a, b € L

ol

l) 1

and, f(Ll) € L since Iy ¢ £ 7(L). The point set f(Ll) is a subcontinuum
of L since f is a closed continuous map. Therefore, f(Ll) = L since L

is irreducible with respect to being a continuum contalning both a' and

b'. Thus the theorem is proved.

Theorem 2.3: If X is a hereditarily locally connected space and
f is a continuous and monotonic map such that f(X) = Y, then if J is a

simple closed curve in ¥ there exists s simple closed curve Ji c X such

that £{J.) = J.
L

Proof: Let J be a simple closed curve in Y and a', b' € J such
that ' # b'. The reference, [ 3-p, 44}, implies J = Li U Lé where

L{, i=1, 2, is an arc from a' to b' such that Li n Lé = fa', b'}.

Theorem 2.2 implies there exists arcs LT’ L, € X from the point a to

2
the peint b such that:



(1) f{Ll) = L; and f(L2) = Lé,

(2) f(a) = a' and £(b) = b', and

(3) L NI,et™ (@) n (o),
‘ “l,., <1, % ISR [P
Let ¢, e L - f (a*) U £ (b') and ¢y €L, - f (a') U £ 7 (b'),

Consider the subarc (cla) of L, and the subarc (cea) of L,. Since

1

(cla) and.@cg) are intersecting arcs there exists a subarc (clc f

E)a °
. . -1,
(cla)-U (ace) from c, to c,. The point set f (a') n (clce)a # ¢

since (clc2)a is connected. Similarly there exists an arc (c

1% )b such

: \ - \
that £(b') N (chE)b # ¢. The point set (cl¢2)a U (clc2)b =J, is a
simple closed curve since Ji is the union of two arecs having only their
end points in common. The reference, [5-p, 165], implies that simple

closed curves are invariant under monotone maps. Therefore f(Ji) = dJ,

The following example is given to show that the hypothesis of
Theorem 2.2 is not necessary for the map f to be an inverse arc map.
In this example f is an inverse arc map, continuous and monotonic, but

the space is not herediterily locally connected.

Example 2: ILet the space X be a subspace of i (Figure 2.1) such
that X is composed of the union of the points in the closure of
{(x,y): vy = sin 1/x, 0< x < l/n} and the points in the closed interval

K = {(xjo): ifn € x < 2}0

Define f: ¥X - X such that:
(1/7,0) if (x,y) e X = K
f{<xsy)) =

(x,0) if (x,y) € K



10

(01)
X
(0,0) _
(1/x, 0) (2, 0)
(0,-P>
Figure 2.1

It can easily be seen that the map, as defined, is a continuous .
and monotonic map from X into X which is an inverse arc map but X is

not hereditarily locally connected.

The example below points out that there exist spaces X and Y and a
. continuous and monotonic maﬁ f such that f£{X) = Y, and that f is not an

inverse arc map.

Example 3¢ iet the space X be the same as the space X in Example
2. let ¥ = {(X,O) : 0's xS 2}. Iet f be the map of X ontc Y such that
f({x,y)) = (x,0). It is easily seen that f is a continuous and mono-
tonic map of X onto Y but one observes that for the arc

L = {(x,o) L 0Sx< 1}, X contains no arc L, such that £(L)) = L.

1

. Therefore £ is not an inverse arc map.

A trivial result following directly from the definition of a
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function is now stated. If f is a monotone continuous map from a com-
pact space X onto a space Y and if L is an arc in Y and there exists an

arc Ll in X such that f(Ll) = L, it will follow that for every y ¢ L,

f“l(y) N L, # @.

Theorems 2.%, 2.5, 2.6, 2,7, and 2.8 that follow show results of
properties imposed on subspaces of the space X when f is a continuous

monotonic inverse arc map.

Theorem 2.4: If X is a compact space, f is a continuous and mono-
tonic map such that f(X) = ¥, and L is an arc in Y such that there

exists an arc L. in X where f(Ll) = I, then for every y € L, there exists

1

p e £7y) n L, such that if R is any region containing p there will

exist a point y, € L, ¥y ¥, such that R N f"l(x) for every x in
1 1 ?

the arc (yyl)°

Progf: Iet L be an arc in Y from a' to b’ and y any point of L

and L an arc in X from a to b where a € f“l(a') and b e f"l(b’)°

Congider f“l(y). Then L, N f"l(y) # ¢. Let p be the last point of

1 an Ll in the order from a to b. Consider

any region R containing p. Now select a region D such that D € ﬁg; R

intersection of f"l(y) and L

where D does not contain b, One should now focus his attention on the
svbarc {pb) of the arc (ab).

Suppose F{D) does not intersect the arc {(pb). This implies that
(pb) = {(pb) N D} U {(pb) - 5} separate which contradicts (pb) being
connected, Therefore, let Py be the first point of (pb) in the inter-
section of F{D) and (pb). Then the subarc (ppl) of L. is contained

1

entirely in R.since p ¢ D c R.
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Select yi € L such that f(pl) = ¥,. The reference [5-p, 165],
implies that arcs are invariant under monotonic maps. Therefore
f(ppl) = (yyl). Then, if x € (yyl) then f-l(x) n (ppl) # ¢ and there-

fore, since (ppl) C R, it is true that f-l(x) NR#G.

Theorem 2,5: If X ;s a compact space, f is a continuous and mono-
tonic map éuch that £(X) = Y, L is an arc in Y such that there exists an
arc, L, in X such that f(Ll) =L,and L -y=AUB sepaggte for each
y € L then the set, H, of all limit points of f-l(A) in ffl(y) is a

continuum.

Proof: Iet L be an arc in Y from a to b and y € L. Theorem 2.4
implies that there exists a point p e f-lﬁy) such that for each
region R containing p there exists a point-yl € L N A such that
R N f'l(x) # ¢ for every x in the arc (yyl). Let h € H and consider
a sequence of regions, [Rn}, closing down on h, Therefore, there
exists a point y, € L N A such that R N f-l(x) # @ for every x in
the arc (yyl). Pick a point a, € f'l(yl). Since f'l(yl) is closed
there exists a positive integer ne'such that Rn2 n f-l(yl) = @. Pick
a point a, € R ., In general, if a has been defined such that

i-1

8; 4 € f-l(x) for some x € (yyl), then there will exist a positive
such that R_ N f_l(x) = @, Pick a point a, € R_. . In this
i n, i ny
way a sequence of distinet points, {an], is obtained which is converging

integer n

sequentially to h. With each a is associated £l (x) = f—l(f(an)) =M.
For each positive integer, n, Mn is a compact continuum since f is
monotonic. Also for each positive integer, n, the point a € Mn. The

reference, [3-p, 23], implies that the limiting set M, of the sequence
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sets {M_}, is a continuua.
n
*

Iet R be a region containing p and suppose R N {M } = ¢. Utilizing
Theorem 2. h as wentioned in the preceedlng paragraph it is known that
RN £ (x) # @ for every x € (yyl), where y, € A, Thus for every positive
integer, n, 1t follows that M_ = ful(x) for some x € (yla). Since y # Vi
there exists & region D contalnlng y such that (yla) ND=¢g, Now ful(D)
is open in X and h ¢ f l(y) cf l(D) while f l(D) n M } = ¢ since
DN (yla = ¢¢ This contradicts h being an element of the limit set of
. * '
M }and thus RN M} #@FandpeM.

n n n

The set, h%PMh is a union of continua each of which contains p and
therefore h%EEh is connected, Since H = ﬂéHMh it is true that H is
connected. Any point of f-l(y) that is a limit point of H wmust neces-

sarily be a point of H and therefore H is also closed, Thus H is a

continuum.

Theorem 2.6: If X is a compact space and f is a continuous and
monotonic map such that:
(1) £(X) =%,
(2) L is an arc in Y from a' to b’,
(3)’ there exists an arc L, from a to b in X such that f(Ll) =
(4) every subcollection of ff“l(y)}, as y véries over L, is
semi-closed in £ (L),
(5) p is the last point of intersection of L, from & to b with
f“l(y) for a given y € L, and
() L « y=AUB geparate,

then p U £t {B) is locally connected at p.
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Proof: It is understood that f(a) = a' and f(b) = b'. Consider
the point p and the set p U £ (B). ILet D be any domain relative to

p U f—l(B) containing p and then pick a region R, relative to p U f—l(B)

il
such that p € -R-l € D. Let Py be the first point of intersection of the
arc (pb) with F(Rl) from p to b, Consider f(pl) and the separation of
L such that L - f(pl) = A}; U B' separate, y € A;r. It follows that

H= f"l(A;r) n (pu f-l(B)) is open relative to p U f-l(B) since f is
continuous. The half open arc {(Ppl) - pl} is contained in H. The set

R=R, N His a region relative to p U f'l(B) such that p € -ﬁg D and

Re f%l{érf(pl))- f(pl)}. This implies that R N £ ~(x) # ¢ for each
are {(v£(p,)) - £(p;)}-

If there exists no x e arc {(yf(pl)) - f(pl)} such that f-l(x) -
R4 ¢ then R = f‘_l{(yf(pl)) . f(pl)} n {p U f'l(B)} which is connected

since f is a monotonic map, and therefore p U f"l(B) is locally connect-

X

m

ed at p.

On the other hand if one supposes that there exists a point
X € {(yf(pl)) - f(pl)} such that f'l(x) - R # ¢ it naturally follows
that there is a finite or an infinite number of such x, If there is

only & finite number of such x then let x., be the first one from y to

1
f(pl) on the arc (yf(pl)) It is seen that {(yf(pl)) - xl} = A;:r g
éeparate, y € A};_, and H, = f"l(A)'r) N {p u f-l(B)} is a region relative
top U f-l(B) which is connected since f is a monotone map and
p € Hl c R€ D. From this it follows that p U f"l(B) is locally connect-
ed at p.

Otherwise, if there is an infinite number of x € {(yf(pl)) - f(pl)}

such that £ 1(x) - R # ¢ then let i'a.n} be a sequence of points of L,



15

*
[an} € B, converging sequentially to y. Theorem 2.4 implies there

exists a positive integer, N, such that for every n. > N it follows that
f-l(an) NR#@. If there is an x e arc (ayy) such that £ (x) - R # ¢

pick one such x and name it b.,. Let a be the first point of
1 N+rl

*
[[an} N (bly)] from by to y. Again if there is an x ¢ (aN+rly) such

that f-l(x) - R # ¢ pick one such x and name it b In general if b

2.

. *
has been defined let aN&rn be the f%rst point of [[an} N (bnY)]

from b to y. If there is anx ¢ (a ) such that £ (x) - R # ¢

N+r y
n

pick one such x and name it b "By this process we get a sequence

n+l®
of distinct points {bn} which also converges sequentially to y.

It is important to note that if at any time in the above construc-

N+r, N+ i+l

= M, U N separate, y e M, This implies that f’l(My n(pU £1(B)) =

tion there exists no such x, say at the a point, then L - a

is a region relative to p U f"l(B) and p e i, g R€ D. The region H

2 2

is eonnected since f is monotonic and therefore the theorem is true.

"The eequence of points, {bn], is now reconsidered in conjunction
with the sequence of sets, {f-l(bh)}. The reference [5 - p, 11) states
that there exists a subsequence, {f"l(bn-)}; of {f-;(bn)} which is
eonvergent. Let x; € {f—l(bn;) - R}.' Since f-l(L) is compact it is
clear that some subsequence o; {xi}, say'[xij}, converges sequentially
to some point x. Obviously this point, x, is in f"l(y) and x ¢ R, so
x # p.

Consider the convergent sequence of sets {f-l(b )} The hypo-
thesis implies that the collectlon of sets that make up the sequence,
{f l(b )}, is semi-closed. The limit set of the sequence of sets,

lJ
{f l(b )}, containg at least the points x and p. Slnce neither x nor
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p are elements of {f'l(bn )}*, the semi-closed property of this collec=
tion of sets is contradicigd. Therefore, there does not exist an

infinite number x in {(yf(pl)) - f(pl)} such that f-l(x) - R# ¢; Since
8ll other possible cases have already yielded p U f'l(B) locally connect-

ed at p the theorem is therefore proved,

Theorem 2.7: If X is a compact space and f is a continuous and
monotonic map such that:

(1) £(x) =Y

(2) L is an arc from a' to b' in ¥,

(3) L, is an arc from a to b in X,

(#) f(a) =a', £(b) = 1",

(5) (L)) =L,

(6) y and y, ere points of L such that L - y = A U B separate
and yl is between y apd b', and

(7) p is the last point of L, froma tob in £y,

then the point set p U ful{(yyl) - y} is aposyndetic at p.

Proof: let xep U f-l{(yyl) - y}, x # p. Theorem 2.4 implies that
p is a limit point of ful{(yyl) - y}} Therefore p U f-l{(yyl) - y} is
connected since f is monotonic and p is a limit point of f"l{(yyl) - y}.

Let y, € {(yyl) - y}-such that f‘x) =¥y Ify, =V, then
fgl{(yyl) - yl} N {p U fql{(yyl) - y}} = R is a connected region relative
to p U fw¢{(yyl) - y} containing p, since £ is monotonic and continuous.
However, x ¢ R. Thus p U f“l{(yyl) - y} is aposyndetic at p.

Similarly, if y, # y, then f(x) = y, where y, € {(yyl) - y}.

The point set {(yyl) - ye} = Ay U Byl separate, y € Ay’ v, € Byl' Tt
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follows that fml(Ay) N {p U ful{(yyl) - y]} is a connected region rela-
tive top U fnl{(yyl) - y} containing p and not containing x, which again

implies p U fal{(yyl) - y} is aposyndetic at p.

Definition 2.1: "If M is g subset of a space 3, then M is locally

arcwise separate at & point p e M if and only if for each region R
relative to M containing p then there exists a region Rl’ D € ng; R,
and an arc L in S such that Rl - L =AU B separagte. If M is locally

arcwise separate at each of its points then M'is sald to be locally

arcwise separate,

Tﬁeorem 2,8: If X is a compact space and £ is a continuous and
monotonic map such that:

(1) (%) = ¥,

(2) L is an arc in'Y from &' to b',

(3) L; is an arc in X from a to b such that f(Ll) = L, and

(&) £(a) = a', £(b) = v,
then fnl(L) is loesally connected or locally arcwise separate at every

point of Ll.

Proof: Let p € L, such that p # a, p # b. Suppose»f-l(L) is

1
not. locally connected at p. Let D be any domain relative to f“l(L)
containing p. Let R be a reglon such that p e Rc Rg D and a, b £ R,
The point set F(R) is not empty sin;e fml(L) 1s connected. Iet Py be
the last point of intersection of F(R) on the subarc {ap) of the arc

L. from a to p. Let Py be the first point of intersection of F(R) on

1
the subarc {pb) of the arc Ll from p to b. Thus the arc (plpg) is

¢btained such that the open arc {(Plpg) =Py - Pg} = Hg R. Since
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£

1) is not locally connected at.p then R = A U B separate where, say
Heg A, The point set A - H# ¢ for if A - H= ¢, H is a connected
region containing p such that p ¢ H € D which would contradict f_l(L)
being not locally connected at p. Therefore R - H= (A - H) U B
separate and it follows that f—l(L) is locally arcwise separate at p.
If p=a or p=5> the argunent is similar except the subarc H

intersects F(R) in one and only one point.

The following theorem is motivated by a factorization theorem

concerning continuous functions proved by G. T. Whyburn, [5-p, 1413,

Theorem 2.9: If A is compact, f is a continuous inverse arc map

such that f(A) = B, and f(x) = f£.f,(x) is a factorization of f where f

2fl

and f2 are both continuwous, then f

1

5 is an inverse arc map.

Proof: Iet I be an arc in B from a to 5, Since f is an inverse

arc map, there exists an arc L, ¢ A such that f(Ll) =L and a, b ¢ L

1 1
such that f{a) = &, £(b) = b, Now consider fl(Ll) g;fl(A) as a space
and fl restricted to Ll is a continuous closed map from the locally
connected space Ll onto the closed connected space fl(Ll)° Thus,

[ 1-p, 200] implies fl(Ll) is locally connected., Therefore, [3-p, 84
implies there exists an arc Lig; fl(Ll) from a' = fl(a) to fl(b) =b',

Now f"{L£> is a subeontinuum of L since f, is a continuous closed map,
el

2
but eince I, 1s irreducible with respect to being connected and contain-

ing both a and b, it follows that £,(1) = L. Therefore, the existence

is an inverse arc map.

of subarc L! of fl{A) shows that f,

The following theorem is an extension of a theorem by G. T. Whyburn,
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Theorem 2.10: If A is compact and f is a continuous inverse arc
map such that £f(A) = B, then there exists a unique factorization
f(x) = fEfl(X)

such that

where fl is continuous and monotonic and

where f, is a light continuous inverse arc map.

2

Proof: The reference,[S-p, 141], proves the above stated theorem

with the exception of showing f, is an inverse arc map. Theorem 2.9

2

proves that f2 is an inverse arc map.



CHAPTER III

SOME PROPERTIES OF INDECOMPOSABLE CONTINUA AND THEIR

RELATION TO CONTINUOUS AND MONOTONIC MAPS

Iet X and Y be topological spaces and f a continuous and monotonic
map such that £(X) = Y. This chapter will pay considerable attention to
the study of two general questions connected with the map f.

(1) If Y is indecompcsable what can be said about X?

(2) If X is indecomposable what can be said about Y?

In addition, attention will be given to P. M. Swingle's, [ 4],
definition of a finished sum of & finlte set of indecomposable continua.

The first theorem 1s a simple result concerning a pseudo arc as

defined by E. E. Moise, [2]

Theorem 3.1: If L is a pseudo arc constructed from a point & to a

peint b then the only subcontinuum of L containing both a and b is L.

Proof: Iet ij YQ, ens 3 Yi, .« De the segquence of chains used in
the construction of L. Suppose there exists a proper subcontinuum, M,

of L such that M contains both & and b, lLet x ¢ (L - M) and S(x,3) be a
spbere sbout x such that 5(x,8) N M = §, The definition of the construc-
tion of the ﬁseudo src implies there exists é positive integer, i, such

thet the diameter of the links of the chain Yi is r <1/i <8. Lety

* * *
be a link of Y, such that x ¢ y ¢ 5(x,8). Since Y, -y =AUB

20



separate where a € A, b ¢ B, it follows that Mg A U B separate and
MNA#@+#Mn B, Therefore, M= (MN A) U (M N B) separate which

contradicts M being connected., Thus M = L and the theorem is proved.

Theorem 3.2: If X is compact and f is a continuous and monotonic
map such that £(X) = Y where I is an idecomposable continuum which is
irreducible about the points a and b, and if a ¢ f—l(g), b€ fgl(g) then
there exists an irreducible subcontinuum, Li’ of X with respect to

containing both a and b such that f(L,) = L.
1

Proof: The space f“l(L) = X is @& compact continuum since f is

- ~veentinuous-and monotonic. The reference, [3-p, 16], implies there exists
-an lrreducible subcontinuum of X with respect to containing both a and
b, Since X is compact f is a closed map. Therefore, f(Ll) = I since L

is the only subcontinuum. of L containiﬁg both & and b.

Corollary 3.1: If the same hypotheses as in Theorem 3.2 are

assumed except that L 1s assumed to be a pseudo arc constructed from a
point 8 to a point b then there exists an irreducible subcontinuum, Ll’
of X with respect to being connected and containing both a and b such

that (L

= L,

Theorem 3,3: If X is compact and f is a continuous and monotonic
map such thet £{X) = ¥ where L is an indecompossble continuum, then

there exists an indecomposable subcontinuum, Lly of X such that f(Ll) = L.

Proof: Again, the definition of the spaces implies that the map is
& cloged continuous map. The reference,\[5ap, 591, implies that there

exlste two points, a and b in L, such that L 1s irreducible from a to b



in L. Since f is continuous the sets f-l(a) and fnl(b) are disjoint
closed subsets of X. It is noted that X 1s a continuum since f is
monotonic, The reference, [3-p, 15], implies that X contains an
irreducible continuum, L , from frl(a) to f-l(b). Since L, n f"l(a) # ¢,
L, N £ (p) # g, f(Ll) is a continuum, and L is irreducible about a and
b it follows that f(Ll) = L.

Now suppose L, = AU B where both A and B are proper subcontinua

1
of L . Since L, is irredugible from f"l(a) to f"’l(b) then without loss
of generality it is assumed that (Ll n f”l(a)) C A and (Ll N f’l(b)) C B.
Therefore, f(Ll) = L= f{A) U £(B) where f(A) and f(B) are both proper
subcontinua of L since b ¢ £(A) and a ¢ f(B). This contradicts L being

indecomposable and the theorem is proved,

Corollary 3.2: If the same hypotheses as in Theorem 3.3 are

assuped except that L is assumed to be a pseudo arc then there exists

an indecomposable subcontinuum, L, of X such that f(Ll) = L.

Theorem 3.4: If M is a compact space and f is a continuous and
monotonic map such that £(X) = N and N has no cut points, then if x is

a cut point of M then f(M - x) = N.

Proof: The hyperspace M' of M whose elements are the elements of
the collection-{fal(y)}, as y varies over N, is homeomorphic to N. There-
fore, 1f v ¢ N then M'- y' is connected in M’ since y does not separate N.
let x ¢ y”* and congider M - x. Suppose M - x = AU B separate. Each
element of M'= y' is contalned entirely in A or in B since each element

o¢f M'« y' is a stbcontinuum of M. From the definition of a region in

¥ . *
M? it is implied that A' = (A - y' )" and B' = (B'= y' )' are each
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regions of M' and M' - y' = A' |J B! separate in M', Now since y' does
"
not separate M' in M' it can be assumed that A' is empty and Ac y' .

Therefore, £f(M - x) = £(A) U £(B) = N.

Corcllary %3.3: If M is a compact space and f is a continucus and

monctonic map such that f(M) = N and N is an indecomposable continuum

then if x is a cut point of M then f(M - x) = N.

The following three theorems give results related to composants

of continusa.

Theorem 3.,5: If X is compact and f is a continuous and monotonic
map such that f(X) = N and N is an indecomposable continuum, then there

exists an indecomposable subcontinuum L, € X such that if L is a compo-

1

sant of Ll containing a point p then f(L) is a subset of the composant

of N containing f(p).

Proof: ILet Ll be the indecomposable subcontinuum of X implied to

exiet by Theorem 3.3, In the proof of Thecrem 3.3 points a and b are

peints of N about which N is irreducible and L
1
(

1 is an irreducible sub-

continuum of X from fnl{a) to £ ~(b).

let L be the composant of L., to which the point p belongs. Let

1

y ¢ L and Ly 8 proper subcontinuvm of L., containing both p and y.

1

Since £ is a closed continucus map then f(Ly) is a subcontinuum of N,

Now Ly does not intersect both fal(a) and ful(b) since I, is irreducible
=} w] : .

from £ (&) to f ~(b). Therefore, f(Ly) is a proper subcontinuum of N

containing both f{y) and f{p). By definition of a composant, for every

y ¢ L, £(y) and f{p) are elements of the same compossnt of N. Therefore,
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f{L) is a subset of the composant of N to which f(p) belongs.

Theorem 3.6: If L is a composant of a compact continuum, M, con-
taining a point p, M conitains more than one composant, and H is &
proper subcontinuum of M such that H ¢ L; then every component of L - H

is nondegenerate,

Proof: ILet x ¢ (L -~ H) andy ¢ (M - L). Let R, and Ry be two
regions such that ﬁ; N §& = ¢ and x € Rx’ y € Ry' Also the region RX
is restricted such that ﬁ# N H=¢. This can be done since H is
closed, |

let N be the component of ﬁ% contgining x. The reference, [3-p, 18],
implies that N is nondegengrate° Since x € L there exists a proper sub-
continuum Nl of M such thaﬁ X € ng; L. DNow, Nl U N is a proper subcon-
tinuum of M since y §# N, U N and since N, U N is the union of two
continua with x € Nl N N. Therefore, by the definition of composant
and the region Exy it follows that N < (L - H).

The component T of L - H containing x must then contain N and

therefore, T is nondegenerate.

Theorem %,7: If L 1s-a composant of an indecomposable continuum,

M, and H is a proper subcontinuum of M such that Hg L then L ~ H is a

nondegenerate connected set.

Proof: Theorem 3.6 implies that I - H is nondegenerate. Suppose
L - H= (AU B) separate. The reference,[3-p, 251, implies that (H U A)
and (H U B) are connected. Also the reference, [3-p, 581, implies every

point of M <« L is a limit point of either A or B. Therefore,
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M={HUZ) U (HU B) where both (U &) and (H U B) are proper subcon-

tinua of M and this contradicts M being indecompossble.

The next three theorems give results obtained in considering the

continuous mapping of certain spaces onto the unit intervsl, I.

Theorem 3,8: If L is a pseudo arc from a point a to a point b and

L is mapped continuously onto the unit interval I such that

fVCZ) = p(=,%)
o(a,x) + o(b,%)

then fél(§7, ¥y ¢ I, is totally disconnected.

Proof': _Suppose there exists ¢ € I suqh that f'l(z) containg a
nondegenerété component, H. The pseudo arc, L, is considered imbedded
in ﬁe. This can be done without loss of generality since [2] implies
that all pseudo arcs are topologlcally equivalent. Let a = (a,0),

b = (b,0) and the pseudo arc is constructed from a to b.

o (8,%)

p(a,x) + o (b,

Let 8 = {(xl,xz) X ¢

#

J_{) =.C-EI}

8, = {(xl,xe) = X q(ifx)‘ = - =Ke Reals}
o (b,x) 1-¢
g - 2 2 .2 2 2
5, = {(xl,xg) =X ._(xl -a)" + x, =k L(xl = B)" + xzj,

ke Reals}
Therefore, Sc is a conic. Reference {2] implies H is a pseudo arc’
itself. However, H is defined such that H is a subcontinuum‘of Sc which
contradicts H being a pseudo arc since every subcontinuum of Sc is lecally

copnected. The theorem is proved.
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Theorem 3,9: If M is a compact connected nondegenerate metric
space then there exists a continuous map f such that £(M) = I where I
ig the unit interval and fﬂl(o) and fnl(l) are each nondegenerate sub-

continuum of M.

Proof: Iet Hl and H2 be nondegenerate subcontinua of M such that

(Hl N He) = ¢° Iet G be the collection of subsets of M made up of Hl’
H,, and single points of M - (Hl U Hg). The reference, [ 5-p, 1221,
implies G is an upper semicontinuous decomposition of M. ILet M' be
the hyperspace of the decomposition, G.
Let £(M) = M' be the continuous map such that if
x e Hy, 1 =1,2, then fx) = Hi or if x e-{M - (HllJ Hg)}
then f(#) = x', Since M is connected we know that M' is connected,

Therefore, [5-p, 341 implies that g, g(M') = I, is a continuous map where

if Hi end B! are considered as fixed points of M' and x' ¢ M' then
. [

D(Hi: X’)

g(x) = :
D(Hi)x') + D(Hé:x')

Now, consider the composite continuous map gf, (gf)(M) = I, Then

f”l(o) = H and f’l(l) = H, which suffices to prove the theorem.

Corollzry 3.4y If M is a pseudo arc then there exists a continuous

mep £ such that £(M) = I where I is the unit interval and fcl(o) and

-1
£ {1) are szch nondegenerate subcontinuum of M.

Theorem %.10: If M is an indecomposable continuum and f is a

continuous mep onto the unit interval I such that,f(M) = I, then there

] -
are at most two points of I, x,,%,, such that f “(xl) and f l(xq) are
o

lﬁ

subeontinve of M.
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Proof:  Suppose there exists three points of I such that the inverse
image of ezch is a subcontinuum of M. Let ¢ be one of these points such
that ¢ # 0, ¢ ¥ 1. Since I - ¢ = (AU B) separate it follows that
M - ful(c) = {fml(A) U fﬁl(ﬁ)} separate. The reference [ 3-p, 25],
implies {fal(A) U fwl(c)} and {f“l(B) U fgl(c)} are each proper subcon=
tinuum of M and M = {f”l(A) U f“l(c)} u {f“l(B) U f“’l(c)} which

contradicts M being indecomposable.

Thecrems 3,11, 3.12, and 3.13 give fundamental results related to
continucus and monctonic maps., In particular Theorems 3.11 and 3.13
give results that will be used to prove later theorems in this chapter.
The results of these three theorems are obtained‘by putting further

restrictions on the space X.

Theorew 3,11: If X 1s a compact indecomposable continuum and f 1s

& continuous snd menotonic map such that £(X) = Y, then Y is & compact

indecomposable continuum.

Proof: Since T is a closed continuous map, Y is & compact continuum.
Suppose Y is decomposable into proper subcontinua A and B. Then
X = {fml(A) U ful(B}} where f“l(A) and ful(B) are both proper subcontinua

of X which comtradicts X being indecomposable,

Corolisry 3,5: If X is a hereditasrily indecouposable continuum and

f is a conbtinuous and monotonic mep such that £{X) = ¥, then every non-
degenerate siubcontinue of ¥ 1is indecomposable, that is, ¥ is hereditarily

indecomposable,

Theorem 5,12: If X is a hereditarily unicoherent continuum, f is
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a continuous and monotonic map such that £(X) = Y and H is a svbcontinuum

of X then f restricted to H is both continuous and monotonic.

Proof: Restricted to H, f is trivially continuous. Iet
p ¢ f{H) € Y. Since f is monotonic on X then f-l(p) is a subcontinuum
of X, The point set f"l(p) NH# @ implies that £ o) U H 15 & sub-
continuum of X. Since X is hereditarily unicoherent it then is true
that fﬁl(p) N H is a subcontinuum of H., Therefore, f restricted to H

is both continuvous and monotonic.

Theorem 3.13: If X is a compact and hereditarily unicoherent

continuum and f is a continuous and monotonic map such that £(X) = L
where L is an indecomposable continuum, then there exists an indecom=
posable hereditarily unicoherent subcontinuum, Ll of X such that

£{L

} = L and £ restricted to L. is both continuous and monotonic.

1

vy
L

Procf: This result follows directly from Theorem 3.3 and

Theorsm %.12.
The next two theorems give extensions of Theorem 2.10.

Theorem 5.14%: If X is compact and £ is a continuous and monotonic

mep such that £{¥) = L where L is an indecowposable continuum and
Fx) = fgfj(x) is the factorization mentioned in Theorem 2,10 then
there exist indecomposable subcontinua L‘L c X and L? ¢ A' such that

f(Ll) = fg(LE) = I,

Procf: Theorem 3.3 implies the existence of L, and if L, = fl(Ll)

than Theorem 3,11 implies L. is an indecomposable subcontinuum of A',
£
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Theorem 5,15: If X is a compact and hereditarily unicoherent con-

tinuom, £ is s continuous and monotonic wap such that £(X) = L where L

is an indecomposable continuum, and f(x) z'fefl(x) is the factorization

mentioned in Theorem 2,10, then there exist compact indecomposable

gubcontinua Ll ¢ X and L2

restricted to Ll is both continuous and monotonic and f2 restricted to

L. is continuous and light.
o g

c A' such that f(Ll) = f2(L2) = I, vhere f

Proof: Theorem 3,14 gives the candidates for the desired Ll and L2°

Theorem 3,13 implies that £ wmeets the desired requirements restricted to

L. Since {5=p, 11} has proved that f, is both continuous and light

2
then f2 meets the desired requirements restricted to L2. Thus Ll and L2

satiafy the requirements of this theoren.
P. M, Swingle, [%], gave the following definition.

Definiticn 3.l: The set M is the k=finished sum of a set of

k
cee 5 M}, if and only if M = .U M, and My - My # ¢

subcontinua, [MJ s M N

?3
for each fixed J, 1 € J S k, as 1 varies over the set,

{19 25 coe g j = l; 3 4 15 coe 9 kjo

The following three theorems invelve the above definition.

Theorem 3,16: If M is the 2-finished sum of hereditarily indecom=

posable continua, M, and My, such that M, N M, # @, then there exists at
. & o

1

lesgt one peint in M, N MP which is & 1limit point of both M, - M, and
o o [

1
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Proof's Suppose that no point of Ml N M2 is a limit point of both

M, - M, = Heand M, - M, =K. Thus E N K = ¢. Therefore, D = (M, U M

- (EU K) 1s & domain relative to M, UM, such that Dg M, N M, and

D % ¢ since Ml U Mg is connected., The reference, [3-p, 58], implies

2)

domains D and H relative to M, both intersect every composant of M

1 1’
Therefore, let W € H snd xz ¢ D such that my and x both belong to the
same composant of Mlv Let Nl be a proper subcontinuum of Ml such that

4 v Similarly consider the points m, € Kand x € D

(XUml)_C;N c M

lying in the same composant in M, and N_ a proper subcontinuum of M

2 2 2

such that (my U x) g N, ¢ M.

The suppesition implies that if y ¢ F(D) then y ¢ F(H) or y ¢ F(K)
but y ¢ {F(H) n F(K)} since HN K = ¢, Iet I, be the component of
bnNn Ni | o
[3-p, 18], implies {F(Il) NF(E)} # ¢ 4 {F(IE) n F(K)}., Thus

that contains x and similarly define I The reference,

= - ~ a,! Ny &= - = N . - -y =

L -1, ¢ g I, - I;. Since x ¢ (Il n 12) then x € (Il N1I,) end
Il U IE is therefore & subcontinuum of Ml n M2° Since Il U Ie
contains no point of either H or K then -fl U f c_:'_. Ml n M2 c Ml' The

fact that I I F B F I - I implies I 3 I is a decomposable
subcontinvum of Ml° This contradicts Ml being hereditarily indecoupos-

able and thus the theorem is prowved,

Theorsy 3.17: I M 1s the k=-finlshed sum of indecomposable continue,

k
Moo )M, M, i an indecomposable continue, 1 € i € k, and Q. M, # ¢

k
then M has a2t most one cut point which is necessarily an element of ig M:.Ln

Procf: Let Jj be an integer, 1 £ J £ Xk, and x ¢ Mj - inMi° There-

fore, M = x = (mﬁ, U ooo U M JM U ..U Mk} U (Mj -~ %), Since Mj

J=1
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is an indecowposable continuum then Mj ~ X 1s connected and therefore
M - x is & union of connected point sets all of which have a point in
common since iélMi # ¢§. Thus M - x is connected and M contains no cut
polint in M - iélMio

If M has ne cut points then the theorem is proved. Now suppose
p 2 iélMi is a cut point of M. For each integer j, 1 € J < k, let
Hj = Mj = p. The point set Hj’ l¢J ¢k, is a connected subset of
M since no single point separates an indecomposable continuum. The
point set M - p = A | B separate since p is‘a cut point of M. The point
set Hjﬂ led gk, lies enti?ely in A or in B since Hj is connected. In
addition suppose p,, p; # p, is a cut point of M. Since p, €M - p then
P, € A or P, € B. Without loss of generality assume that Py € A, The
reference, [3=p, 25], implies p U B is a continuum containing p and
pUBCM- Py For every J, 1 <« J €« k, such that ng_ A, H,j ~ Py is
connected since [ 3-p, 60], states that if T 1s the sum of countably

maeny proper subcontinua of 2 compact indecomposable continuum M,, then

'j)
3" P

Therefore, A - Py is the union of a finite number of connected point

4,

Mj - T ig connected., In this case T = p U Py and Mj -~ T=H

setg, Since p is a 1limit point of HJ’ l¢ Js %k, such that Hj c A

then p is 2 limit point of all such Hj - p Therefore M = P, =

l.
(A - p1> U (p U B) ig connected since M - p, is & finite union of

connected sets each one of which has a common limit point p. This contra=

being & cut peint of M and the theorem is proved.

k
Theorex 3.18: If M = ig1M4 is the k-finished sum of indecomposable

[

continug such that M,, 1 <

5 < < k, 1s an indecoumposable continuum and M

has a out point, then = A M.,
A P 9 p‘J P lml 5
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Proof: Theorem 3.17 implies p € inMi. Suppose there exists
. k
another point p., p; # p, such that p, € ,0,M . Iet Hj = Mj - p,
1€ J% k. The point set Hj is connected for each j, 1 £ j < k,
since no point of the indecomposable continuum Mj separates Mj’ The
k k
oint set M - p = U. (M, = = M. H, and ¢ H, for each j

1% J<k, since p ¢ 123 and'pi'e iglMi. Thus M - p 1s connected since
M - p is the union of connected sets having the point Py in common,

This contradicts p being a cut point of M and the theorem is proved.

Theorem %,19: If M is the 2-«finished sum of the indecomposable

continua M, and M, and M, N M, # ¢ then either there exists no two

points between which M 1s an irreducible continuum or Ml N M2 contains

no domain relative to M.

Proof: Since M; N M, # ¢ it follows that M is & continuum.
R &,
Suppose there exists twe points a and b such that M is irreducible
about {a,bl and there exists a domain, D, relative to M such that

Dc Ml n Mgu The points a and b cannot both belong to either Ml or MQ

for if so M would not be an irreducible continuum about {a,b}. There=

forej without loss of generality, say a € (Ml - M2) and b € (M2 - Ml)°

The point sets Ml

respectively since M 1s the finished sum of Ml and M2° The reference,
[5»p, 6035 states the following theorem. "If a and b are two points,
M is a continuum which is irreducible from a to b, and T is & proper
subcontinuum of M containing b, then M - T is connected,"~'Therefore,
sinece Mg is & proper subcontinuvm of M contalning b, this theorem

implies That Mﬁ

e M? is & connected subset of M., In addition Ml - M2

32

and M, are proper subcontinue of M contalning & and b
) =
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is a connected subset of Ml’

Since Ml = M? is a domain relative to M . intersects

1 2

every composant of the indecomposable continuum Ml. Let X5 %5

points of Ml - M2 such that Xy and X, are in different composants of M1°

let x ¢ D and consider the subcontinuum (Ml - Mg) c M.
DgM, NN, then x é (Ml - ME) since no point of D is a limit point of

then‘Ml - M

be two
Since

M, - M,. Therefore, (Ml - M2) is a proper subcontinuum of M,

ing X and x,.. This contradicts X and X, being in different composants
=y

of Ml and therefore, either there exists mo two points of M such that M

1s irreducible frowm one to the other or Ml N M?

contain-

contains no domain

relative to M.



CHAPTER IV

THE DECOMPOSITION OF THE CLOSED 2-CELL

INTO NONLOCALLY CONNECTED CONTINUA

This chapter will be devoted to answering the following questions.

(1) Can a closed 2-cell be decomposed into the union of an uncount-
able number of mutually exclusive nonlocally connected compact
continua?

(2) Does there exist a continuous and monotonic inverse arc map
which maps the closed 2~cell onto an arc?

(3) What other characterizations of the inverse arc map can be
given?

These three guestions will be answered in the material that follows.

As motivation, the following example is cited.

Exampie 4: Consider the subspace S of Buclidean three space made
up of the crogs product of the closure of {(x,y): y = sin l/x, 0<x¢g l}
and the closed intervalETO,l] on the‘z axis. Iet {%3}’ & e'Tz be a well
ordering of the reals on the lesedlintervél [0,1]. ILet |
A = fXx: xe5 and X, is the third compohent of x} .

From this it is seen that 3 = where the index set,ﬂ", is

N

uncountsble. To make the above wore meaningful one needs to observe

that this example shows that the compact continuum S can be expressed

o
w

; the union of sn uncountable number of mutually exclusive cowmpact

3l
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continua no one of which is locally connected.

Examples of the above type.-are not hard to construct but, are more
of a problem in Fuclidean two space. This question wlll be answered
later in the chapter. At the moment the above example will be extended
one step further. Iet f be a map such that f£(S) = I, where I is the
closed real interval [O,l], be a map defined such that f(Aa) = Xy It
is apparent that this wmap is both continuous and monotonic. However,
one can also notice, intuitively, Just how bad this map is, since the
preimage of every point, even though a continuum, has uncountable many
points at which it is not locally connected. One might expect that if
f is a continuous and monotonic map such that f(X) = Y and L is an arc in

o

Y then there would have to exist at least one point y € L such that T~ V)

is locally connected. Example 4 shows that this is not the case.
In the previocus paragraph it was umentioned that a similar example
would be exhibited in Euclidean two space. This example will be given

in the form of a theorem. In this theorem the space M will be a closed

E“Cell o

Theorem 4,1: If M is & closed 2~cell, M = I X I, then M is the
union of uncountably many mutually exclusive nonlocally connected

continua .

Proof: Iet M= AU BU C where A = {I X [O,l/@]},
B o= {I x (1/%, 5f@>}, and C = {I X 3/, 1]}. Before a complete
description of the decomposition is given the following list of defini-

tions is presented pertaining to M and its partitions already described.

:

6

Definition 4,1: If (x,0) ¢ I then the point (x,1) is called the
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associated point of the point (x,0).

Definition 4.2: An S-arc is an arc L = Ll UlL,u L3 such that:

(1) L, is an arc from a point p in A to a point q in C - {I X {l}},

(2) L, is an arc from g to a point r in A - {I X {O}},

(3) L, is an arc from r to a point s in C,

3
(4) L, N {I X [y}} is a single point for each y, 1/4 < y < 3/4,

i=1,2,3,
(5) 121, 0 {Tx (383} = (xg, 3/%) then T, 0 {T x (3/43} = (x,3/4)

such that Xy <x2,

(6) If'L2 n {; x-{l/u}} = (xl, 1/4) then I N {1 X {1/4}} = (x2,1/4)
such ?hat Xy <1X2, " A
1) L, N {I X {o}} =, L, N {I X {1}} =g, i=1,2,3, uniesg

otherwise stated.

Definition 4.3: A semi-S arc is an arc L = L, U L, such that:

(1) L, is an arc from & point p in A to a point qin C = {I X {l}%}

(2) L, is an arc from q to'a point r in A ;'{I X {O}},
(3) L; N {I X {Y}} is a'single point for each y such that
1/ <ys3/Mh,i=1,2,
() 1210 {1 x {3/} =y, 3/8) then Dy 0 {1 x (3/4% = (xy3/%)
such thgt Xy <Zx2, . ’
(5) L, N {I X {OT} & ¢, L; N {I X {l}} = @, 1 = 1,2,unless other-
wise stated.
If L is a semi-3 arc and if (Xl’ 1/4) = p and <X2’ 1/4) = q are the
£wo points of intersection of L and {I X {l/h]} then the subarc (pg) of

L along with the subarc (pg) of the arc {I X {l/h}} forms a simple
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closed curve. With each semi-~S'arc there is associated such a unigue
simple closed curve, With this in mind the following definition is

made .,

Definition 4.4: If Ll and L. are semi-S arcs then it is said that

2

LE is inside of Ll if and only if the associated simple closed curve of
L2 is a subset of the closed region bounded by the simple closed curve

associated with Ll‘

Definition 4.5¢ 1If Ll and L2 are semi~-3 arcs such that L2 ig inside

of Ll then the closure of the region bounded by the associated simple

closed curve of Ll minus the open connected set bounded by the associated

simple closed curve of L. is called the U-gset formed by the semi~S arcs

2
Ll and Ly-
Definition 4,6: If C is the U-set formed by semi-S arcs Ll and L,

then € N {I X {1/2}} is the union of two disjoint arcs each of which we

call a U=bar formed by semi-S arcs Ll and L2°

Definition %.7: If L, is & semi-S arc then the closure of the

region bounded by the associated simple closed curve intergected with

{I X {1/2}} is an arc called the semi-S arc bar formed by the semi=-S

arc Ll.

This completes the list of definitions to be used to define the
desired decomposition. In the definition of this decomposition no two
defined arcs will be allowed to intersect and no defined arc will be
allowed to intersect {fl} X I}o

First, an S-arc is constructed from the point (0,0) to its associated
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point {0,1). ILet the closed region bounded by this arc and the arc
{[O] X i} be named T, Now, M= T U (M = T). The remaining definition
of the construction will be done entirely in (M - T). The closed two
cell, (ﬁ-zwﬁ), will be decomposed in such a way as to induée the desired
decomposition on M.
Next, from the point (1/2, 0) a semiuSLarc is constructed inside
the sewi-S arc already constructed and then from the end point, which
is inn{A - {I x {O}}}, of this semi-S arc an S-arc is constructed to
the associated point of (1/2, 0) such that the simple closed curve
associated with this S-arc does not intersect the region bounded by
simple closed curves which are associated with any of the existing semi-~
S arcs., The construction of the S-arc mentioned last in the preceeding
sentence will be referred to as constructing an S-arc to the right. It
is important to note at this time that the compact continuum bounded by
the S-arc from the point (0,0) to the point (0,1), the arc from the
point (1/2, 0) to the point (1/2,1), the arc {[o, 1/21 x rlj}, and the
arc {[O, 1/2] xfoi} is homeomorphic to the closed 2-cell. So also is the
closure of the complement of this continuum relative to (ﬁfﬁ”ﬁ),
Atfention is focused on the points (1/4, 0) and (3/4, 0), From the
point {1f%y 0) 2 semi=S arc is constructed inside the semi-S arc begin-
ning at the peint {0,0) and then it is extended with the constructiocn
to the right of an S-arc to the associated point of the point {(1/4, 0).
From the point {3/4, O) =an arc is constructed to the associated
point of (3/%, 0) such that this arc is the union of two semi-S
grcs and an S-are. Each of the two semi-S arcs will be inside

distinet semi~-S arcs of the arc beginning at the point (1/2, 0) and
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then these will be extended by the comstruction to the right of an S-arc
to the associated point of the point (3/%, 0).

In genersl, suppose the construction has been defined successfully
at the (n = 1) level, i.e. the constructions have been made beginning at
points (k/2%°1,0), 0<k £ 28" . Tne problem now is to describe the
construction at the n level, At the polnt (l/En,O) construct an arc to
the associated point of (1/2%,0) which is the union of exactly one.
semi~5 arc inside the single semi~S arc beginning at the point (0,0) and
an Se-src to the point (l/&n,l) constructed to the right. For k = 2 the
construction is complete. Therefore, for k = 3 an arc is constructed
beginning at the point (B/EH,O) wvhich is the union of exactly the same
number of seml«S arcs that begin at the point (2/2n,0) each one of which
is inside & distinct semi-S arc beginning at the point (2/2n,0) and an
S-arc constructed to the right to the point (5/2n,l). It follows that
from the point (x/gn,o) where k is odd an arc is constructed to the
point (k/En,l) which is the union of exactly the same number of semi-S
arcs that begin at the point (kwl/an,o) each one of which is inéide a
distinct semi~S arc beginning at the point (k«l/zn,o) and én S=arc con=
structed to the right to the point (k/2n,l), This inductively defines
the foundation of the decomposition to be discussed. Figures 4,1, 4.2,
and 4,3 ghould help to clarify the preceeding definition.

Even %hﬁugh the basic portion of the foundaticn for the desired
decomposition has been described, one further restriction must beé placédu
on the congiruction of some of the arcs slready described. If it is
assumed that the S-arc beginning at the point (0,0) is to be as shown

in Figure 4.1 then adjustments will be as stated below.
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Consider the compact continuum consisting of the poinfs of the closure
of {(x,y): y = 1/16 sin i/x, 0<x < l/hﬂ}-. Lét f be a translation
defined on this compact continuum such that £(x,y) = (x,y + 1/8; et
D c A be the image of the translation, f. The point set D‘is nqtv'
locally connected since f-l(D) is got locally connected. . The poiht'set
D does not separate E2 gince fnl(D) does not sepaiafe Ee. "It is a -well

known theorem that there exists a monotonic decreésing sequence of

o .
closed topalogical 2-cells {D;l}, in E* such that 0.D' = D, D; N (M - T)

is & subset of the interior of A U'{(a,y) t.x=0, 0<y< 174}, and D

is contained entirely in the interior of D! ., n = 2,3,..0, Thus.1it

1
easlily follows that there exists a monotonically decreasing sequence of

o ,
closed topological 2=~cells, {Dn}’, such that O.D =D, D, ¢ {A - F(A)} U
{(x,y) 1 x=0, 0<y <:l/4}, and D is contained entirely in the

interior of Dn n=2,3,..., relative to A.

l."
From the definition of D one knows that there exists no point
(x,y) € D such that y < 1/16 and there exists no point.(x,y) € D such

- that y > 3/16. Consider the sequences of points of A such that
= T"'"T"g 1.1y, 44 } |
fc"l} - {( 2n+l b1 4 ‘,1-6 gn) ¢ D= 5,7, 9; s e and

. L 2 3,1 . . . }
fdn} = ﬁ%ﬁﬂ;fj§~’16'+ Sn) ono= b,6,8,0 001
The sequence {cq} converges to the point (0, 1/16) and the sequence {dn}

converges to the point (0, 3/16) since the sequence {(1551%7;~3 %E)}

converges to the point (0, 1/16) and the sequence {(TEFIE%;w-,f%)}

converges to (0, 3/16)., Therefore, there exists D ; such that

7 : - . s .
(g U dh> N Dy = #. Again, there will exist a D~S Dnl suchvthat



e

(07 U d6) n Dn2 = ¢. In general if Dni has been defined for the points

c, and dnml there will exist Dn(i+l

Da(ir1) = ¢. It also follows that 104Dy = D.

)N

) € D,y such that (eppo U d gy
[oed

Now, the previous construction of the arcs in (ﬁf:"ﬁ) will be
considered. At this time the construction of the arcs beginning at
the points (1/2n,0), n=1,2,..., will be altered, All that need be
done is as follows:

(1) In place of the subarc from the point (1/2%,0) to the point Eﬁ,
where §£ is the polint of intersection of the previously con-
structed arc beginning at the point (l/2n,0) and the arc
{I X {l/h}}, the arc L , from the point (1/2",0) to the point
;ﬁ, is substituted where L, = Lnl U Ln2 U Ln5;

(2) L, is an arc from the point (1/2%,0) to the point:gi where

- 2 .
%y e 2y 0 {(qugiymy) ¢ 0 < v < 1/36);
(3) L, is an arc from the point gi to the point Ei where

. { 2 , } —~
fi € Dni N L(?m,y) ! 5/16 Sy s l/ll- and the arc (eifi)
is a subarc of F(Dni) which lies in the interior of A;

() L

n3 is an arc from the point ?i to the point.Eh.
Figure L.k4 will be a guide as to what adjustments are being made.
With this adjustment of the arcs beginning at the points (l/En,O)
one now proceeds to prove Theorem 4.1, This objective will be accomplish=-
ed successfully obtaining the following four results:
I. Associating with each point of‘{I-x {O}} a compact subcontinuum
of M; | | |

II. Showing that the collection of subcontinua of M acquired in I

is a collection of disjoint continua;



IIT.

Iv,

Showing that the set theoretic union of all subcontinua
acquired in M is exactly'equalvto M;

Showing that each subcontinuum acquired in M is nonloecally

connected at some point.

(1/8, 0) (1/4,0) (1/2, 0)

Figure 4.4

k5
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I, Iet Xn’ n = 1,2,;;., be the éompact continuum bounded by the
constructed arc beginning at the point (0,0), the subarc of {I X {O}}
from the point (0,0) to the point (1/2%,0), ﬁhe conétructed arc beginning
at the point (1/2%,0), and the subarc from the point (0,1) to the point
(1/2"%,1) of the arc {I X {1}}. The description of the construction of
the arcs already established implies that the éeqﬁence, {Xn}, is
monotonic decreasing. Reference [3-p, 14 ] impiies that the point set
nEan = X is & compact continuum containing the point (0,0) and the
point (O,l), Also by the construction of the arcs beginning at
points (1/2",0), n = 1,2,..., it follows that D C X and that X is not
locally connected at points (0,y) where 1/16 < y € 3/16. Since the
subcontinua T and X have points in common then the point set T U X is
a continuum containing the point (0,0). At this time the subcontinuum
T U X is associated with the point (0,0) for future reference.

It is of iwmportance to recognize that at level n the closed region
bounded by the arc beginning at points (k/En,O)band (k-l/En,O) along
with the arcs {(x,l) s k-1/2" < x k/an} and JL(x,o) : k=1/2" s x = k/en}
is hoﬁeomorphic t¢ a closed 2-cell. For eéch k, 1 £k < 2n, let this
compact continuum be named Qﬁ. Now, with each boint (x,O) e {I X {O}}
a compact continuum is associated in the following manner. If
{x,0) ¢ {I X {o}} is a point such that x # k/2n for any k or n then
there exists a unique k for each n = 1,2,..., such that (x,0) ¢ Qﬁo
The description of the construction of the arcs already established
implies that thé seguence, {Qﬁ}, is monotonic decreasing. Ilet
Ax =2 nﬁlQi' Note the fact that for each n and a fixed point x there

is a unique positive integer k dependent upon both x and n. Reference
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[3.p, 14] implies that for each such (x,0) ¢ {1 X {o}} the point set A_
is a compact éontinuum containing points (x,O) and (x,l). Therefore,
with each such point mentioned in this paragraph the subcontinuum AX of
M is assoclated.

Now, let the point (x,0) € {I X {O}} be such that for some n and
some k, X = k/2n. Then, as in the above paragraph, a compact subcon=-
tinuum Pﬁ of M can be defined,

let Pﬁ be the closed region bounded by the arcs beginning at the
points (k+1/2",0) and (k-1/2",0) respectively along with the arcs
{(x,l) s ke1/2% < x < 1«;»:-1/2“} and {(x,o) . k-1/2R € x < k+1/2n}. The
point set Pﬁ is also homeomorphic to a closed 2-cell.

If x = k/EN then at the N level PE is defined as well as for all
larger values éf n. For all points (x,0) ¢ {I X {O]} such that there
exigts some positivé integers N and k, where x = k/EN, let the point
set BX = nﬁ&Pﬁ be defined, Again, [3-p, 14 implies that for each x ¢ I
of the type considered in this paragraph the point set Bx is a compact
continuum containing the point (x,0) and its associated point, (x,1).
With each such point, (x,0) € {I X fo}} the éompact continuum, B_,
is associated.

So far a compact continuum has been associated with every point
of the arc {I X {O}} except the point (1,0), ILet 5 be the closed
topological Z-cell bounded by the arc beginning at the point
(2"-1/2",0), the arc {{1} X I}, the arc {(x,o) p 2%e1/2" < x g 1}, and
the arc.{(x,l) : 2%/ < x < 1}. let Y = nalsn, Again [3-p, 14]
implies that Y is a compact subcontinuum of M containing the point (1,0)
and its associated point (1,1). With the point (1,0) let the compact

subcontinuum Y be associated,
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Now with every point (x,0) of the arc {I X {O}} a compact subcon-
tinuum of M has been associated which contains the points (x,O) and
(x,l). The next objective is to argue that this collection of sub-

continua of M is & mutually exclusive collection.

IT. ILet Rx’ Ry be any two of the above mentioned compact subcontinua
of M where the points (x,0) and (y,0) are associated respectively with Rx
and Ry and x < y, The description of the construction of the arcs implies

>k ek k _k N
that Rx = nglEn’ and Ry = nQ Fn where. the point sets En, Fn’ n=1,2,,,,,
are the compact continua described in the construction above. Since the
point set

n s s g . ,n
K= {k/2" : nis a positive integer, 0 < k < 2}

is dense in I there exist positive integers k k2, n, and n, such that

1’ 2

x < kl/nl < ke/n2.< y where, say, n, >n,. From this the description
ot o k ko :

of the construction implies that Ep N Fn2 = ¢, Therefore Rx N Ry = ¢,

Thus it has been shown that the colleétion of subcontinua determined in

I is & mutually exclusive collection. The guestion now is whether the

set theoretic union of this collection is exactly equal to M.

IIT. Letfbgg,.x ¢ I, be the collection of subcontinua determined

in I. The point set UIM c M since M < M for each x ¢ I. Iet x ¢ M,
xel x ~ x =

The description of the construction implies that there exists a sequence
{Xh}, or a seguence {Qij, or a sequence {Pﬁ], or a sequence {Sn} such

— ™ - ® . @ e L @ —
that x e 0,X or x ¢ ngan or x ¢ N.Q orxe N.8 orxeT. In
any case there would exlst some x € I such that X € Mx’ Thus M g;X%IMX

and therefore, M 3.x%IMx'

The point set M has now been répresented as the union of an
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uncountable number of mutually exclusive compact continua, M = ngMx’
indexed by the real numbers of the unit interval I. However, the most
important aspect of this decomposition 1s to show that for any x € I,

Mx 1s not locally connected,

IV, Since the point set X is not locally connected, the descrip-
tion of the construction of the decoumposition implies that the point
set T U X is nonlocally connected. Therefore, the set, T U X, which
is associated with the point (0,0) is nonlocally connected.

Before proceeding some preliminary observations are needed. Ilet
x € I such that x # k/2n for any k or n. Since the set K is dense in
I there will exist an odd integer k and an integer n such that Qﬁ cone
tains the point (x,O). Consider the first palr of U-bars looking from
left to right from {{O} X I} formed by‘the first two semi-S arcs
beginning at the points (k/2",0) and (k-1/2",0). It is important to
note that when Q§+l is selected it follows that the first pair of U«

n+l

bars formed by the first two seml-S arcs beginning at the points (k/2 B

n+l,0) will each be subarcs of distinct U-bars formed by the

and (k-1/2
first semi-S arcs beginning at the points (k/en,o) and (k~l/2n,0). This
similarly is the case for any pair of U-bars formed at the n-l level
relative to the n level. What this means is that if Qi has @ collection
of t mutuwally exclusive U~bars then Q§+l has a collection of at least

t mutually exclusive U~bars each one of which is a subarc of one of the
C-bars in QE, Therefore, consider the point set Mx = nSiQﬁ. The first
t U~bars at each level form t monotonic descending sequences of arcs

from which [3-p, 14] implies there exist t disjoint nonempty inter-

gections lying in Mx“

0)
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The very important obgervation to be made is that because the set
X is dense in I and because of the description of the decomposition
there will exist a Q§+p such that the point (x,0) ¢ Qﬁ+p§; Qi and Q§+p
will have t + 2 mutually exclusive nonempty intersections lying in Mx'
Because of these observations the followlng cholces of points in MX
can be made,

In relation to x there exists q closed 2-cell, Qﬁl’ that contains
at least one U-bar. From this U-bar pick a point Ei € Mx' This can
be done since the previous paragraph points out that every Ufbar con=
tains at least one point of Mx' There also exists an integer Dy, n2'> 05
such that Qﬁe has more than one U-bar. In Qﬁe pick s point Eé € Mx where
Eé is a point in a U-bar of Qﬁe which is not a subset of the U~bar from
which Ei was selected, In general if the pbint 5& has been chosen there
-will exist a Qﬁi such that Qﬁi has more than m U-bars., In Qﬁi pick a
point 5§+1 € M_ vhere 55+1 is a point in a U-bar of Qﬁi which is not 5
subset of & U~bar from which 5}, r=1,2,.,.,m, was selected. In this
way a sequence ofvdistincﬁ points, {55], of Mx is obtained° Since MX
is compact and {Eﬁ}*.E;Mx then there exists a point 5 such that 5 is a
- limit point of {Eﬁ}*. Also p e M_ since M_ is closed.
Now, consider the closed 2-cell, Qﬁ, and suppose that QE contains

at least two U-sets, Cl and C2' The description of the decomposition

implies that :
k 1
{1 x [u/e,320} = {o 0 {1 x /s,3/40} U

@ - o) 0o x [a/,300)

separate. To simplify this expresion let W = {cl nofT x [1/&,5/&]}}

and V = {(Qﬁ - 02) n{I x [1/4,5/#]]} which leads to
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QSN {1 x [1/5,3/41} = VU W separate.
Iet R be any sphere containing the point 5 with diameter less than

. _ . .
1/8. Since p is a limit point of [pn} it follows that RN {p } # ¢,

—

— ¥ — —
Let %7, x, € RN {pn} . In the selection of x, and x, one should wmake

sure that §i and Eé do not belong t¢o the same U-set of any Qﬁ, This

— ¥ - %
can be done since RN {pn} is iInfinite and therefore, R N {pn]
interseects an infinite number of U-sets. Let n and k be positive

integers such that Qﬁ contains U~sets C., and C2 and x, € C. and x. € C

1 1 1 2 2°
Already it has been noted that QE N {I X [l/h,i/h]} = VU W separate

where Cl C V and C2

X ,
and since M_ < Q. 1t follows that RN M_= {(RN M ) N v} U

C W. Because of the selection of the radius of R

{(R<ﬂ MX) N W} separate, Therefore, Mx is not locally connected at 50
Thus the point sets M, where x # x/2" for any k or n, have been

shown o be nenlecally connected. Now consider the point set Mx’ where

X = k/ZN for some positive integers k and N. Also in this consideration

the point set M. is excluded, It has previously been defined that

1
@
MX = ngN Pi. The description of the decomposition implies that for all
n >N, Pﬁ = FE u Gi, where Fi is the compact continuum bounded by the

arc beginning at the point (knl/En,O), the arc beginning at the point
(k/an,O),‘the arc {(XJO) : k1/2" s x € k/En}, and the arc

: n n . k . .
1(x,1) ¢ kwl/E S x < k/2 . The point set Gn is the compact continuum
bounded by the sre beginning at the point (k+l/2n,0), the arc beginning
at the point (k/27,0), the arc {(x,O) : k/2% < x S k+l/2n}, and the arc
{(x,l) : k2% s x k+1/2n}, It is clear that Fﬁ n Gﬁ is exactly the
arc initiating from the point (k/QN,O).

The last sentence in the preceeding paragraph implies
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<o [ - B
o kT kJ~ : o .
MX =2 QNPn e nNFnW [n 1 The obJective now is to argue that Mx
igs not locally connected, Also because of the last sentence of the
[>]
preceeding paragraph it suffices, in this case, to show that nQNFi is not
locally connected.

The description of the decomposition implies that Fk has &t lesst

N+2
one semi-S5 bar. Let this semi-3 arc bar be Bi. Also the description of
the decomposition implies that F§+3 contains a semi-S arc bar, BS, such

that B2 C::BE° In general, Fk t = 2,3,.,.., contains a semi-S arc bar,

2 1 N+t
B° _, such that B> . ¢ B , < c B2 c B>, The reference, [3-p, 3]
t=l’ tel & Pran & 00 1° ’ P, ’
2 2 k

N s ;é

implies that n 1By 7 ¢ an thBt c ﬂNFn c M_. Therefore, from B ¢ Fy.,
o]

plck a point pl ﬂ B (= NFn c M, . The description of the decomposi=

tion implies FN+3 contains & semi~-3 arc bar, Bl’ distinct from any FN+2‘

In a similar way as described above pilck a point Eé € qnlBsEE < In

general P y T = 2,% ..., contains a semi~3 arc bar Bt+l, distinct

Nt L : 1
from any in F Foo F In a similar way as described above

N4t l\]'-t ARG | 2~
Hl

pick & point pt € ﬂ B c Mx’ In doing this a sequence of distinct
. o B o S g a3 g Fk 3
points {pr} is obtained such that {pr} ¢ F, € Mx' ince 0.F s

— —
closed and compact there will exist a limit point p € Jﬂan of {pr} .

An srgument can now be given, as was given when x # k/2" for any k
or n, to show that ﬂ Fk and therefore N is not locally connected at
the point p, This same type of consideration will suffice in the case

of showing the previously defined compact continuum, Y, to be nonlocally

connected. The continuum, Y, is associated with the point (1,0).

Thus all four resgults, I, II, III, and IV, have been accomplished

and therefore the conclusion of the theorem follows.
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The following lemma is proved using the notation of Theorem 4,1,

lemme 4.,1: Ify el, y# 0, y# 1, then M = M_ = AU B separate,

where A = xgny and B = y%xMX'

Proof:; Theorem 4.1 implies that AN B = ¢. Also A and B are each’
connected subsets of M since each is the union of a collection of
connected sets and an interval. Without loss of generality suppose that
P eA. Iet Mt be the nonlocally connected continuum of the collection

defined in Theorem 4.1 such that 5 e M The description of the

Lo
decomposition in Theorem 4.1 implies Mt knlNk and M = kOlEk and that
there exist integers r and s such that Ns n Er = (. The decomposition
of Theorem 4,1 implies that 5 is an interior point of NS and that NS
intersecté only points of sets MX where x <y. This implies that 5 is
not a limit point of B, Similarly no point of B is a limit boint of A.

Thus M - M& = A |J B separate,

Theorem 4,2: There exists a continuous and monctonic inverse arc
 map, f, such that (M) = I and if y € I then f (y) is nonlocally

connected.

Proof: If p e M then define £(p) = x, x € I, if and only if p ¢ M
in the decowposition of Theorem 4.1, Obviously this defines a monotonic
map such that f{M) = T and if y ¢ I the fwl(y) is nonlocally connected.
Let (ab) be a subarc of I from the point a to the pcint b, The map f
maps the arc {(x,o) : 8 € xS b} onto the subarc (ab) and therefore T
is an inverse arc wmap. Thus it remains only to prove that f is continuous.

In order to prove that £ is continuous it is gufficient to show that



Sh

the inverse image under f of any open subinterval of T is a domain in M.
Let {&b) be any open subinterval of I, a # O #b, a# 1 # b, The
definition of f implies that f"l{(ab)} = a<§~<be° Lemma 4.1 implies

M - Ma = AU B separate and M - Mb = C |} D separate, Without loss of
generality suppose that f“l{ (ab )} c A and f"l{(ab )} < D. The point set
AN Dis a domain relative to M since Temma 4.1 implies that both A and
D are domains relative to M. Therefore f“l{(ab)} is a domain relative to
M since f“l{(ab)} = AN D.

If 8= 0 and b = 1 then f“l{(ab)} = M which is trivially a domain
relative to M, If a = 0, b # 0, and b ¢ 1 then Iemma L.l implies that
M - Mb = A U B separate where A is exactly f“l{(ab)} and therefore,
f"l{(ab)} is & domain relative to M., Similar argument if b = 1, a # 0,

and a # 1. Thus f is continuous.

The following definition is given in order to aid progress toward

giving a characterization of the inverse arc map.

Definition 4.1: ILet X and Y be spaces, If f is a map such that

f{X) = ¥, then Y is said to have property Z relative to the map f if

and only if for every aré}L in Y and every y e L there exists a region,
Uy, relative to L such that y ¢ Uy and such that Yy, Vo € Uy there will
exist p, € fwl(yl) and p, € f“l(yg) such.that there exists an arc

=L,

The results of Thecrem 4,2 are considered in proving the following

theorem,

Theoren 4,%. Tet X and Y be spaces. If f is a continuous and



monotonic¢ map such that £(X) = ¥ and f has the property that for each
arc, L, in Y, there exists at least one point of L such that its inverse
image is locally connected, then f is an inverse arc map if and only if

Y has property Z relative to the map T,

Proof: Suppose f is an inverse arc map. ILet L be any arc in Y

and let L, be an arc in X such that f(Ll)

any region relative to L containing y. Suppose ¥y Vo € Uy and consider

= L, lety elL. Let Uy be

f“l(yl) and f“l(yg)u Since f(Ll) = L it then follows that L, N f“l(yl)
Fg#L N f“’l(y_a)° Let p; € L, N f“l(yl) and p, € Ly N f“l(ye), The
subarc (plpa) of Ll fulfills the requirements of the definition for ¥
t0 have property Z relastive to f.
On the other hand suppdse Y has property Z and Iet L be any arc

in ¥ from a' to b'. Iet the points of L be well ordered, {x }, o eT.
Since Y has property Z then for each Xy there exists a region, Ga, such
that if y,, ¥, € G, then there exists p, ¢ f-l(yl), Py € fnl(yz), and
an arc (plpg)gg ful(L). The collection, {Ga}, is an open covering of
the point set L. Since L 1s connected there exists a finite chain of

these sets from &' to b', say H, Ha,...,Hn,‘where a' eH, b ¢H,

l)
and H; N H, # ¢ if and only if j = 1 + 1,

For each Hi n Hi+l’ i=1,2,.,,, n-1, there exists & subarc of L,

Ci, such that Ci cC Hi n Hi+ The hypothesis implies that for each Ci

lo

. . o -1 \
there exists & peint N € Ci c Hi N Hi+ such that f (ci) is locally

1

connected, i = 1,2,...,n=1. Attention is now focused on the n-l points,

—y

c - °
17000 %)

Property Z implies there exist points a ¢ fml(aﬂ) and py; € f“l(cl)

such that there exists an arc (apll) g;fnl(L). Also for the same reason
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there exist points p,, € f“l(cl) and Ppp € f'l(ce) such that fhere

exists an arc (p12p21) g.fnl(L). If (apll) N (p12p21) # ¢ then by
picking the first point of intersection of (p12p21) with (apll) from a
to Pyq and calling 1t x then the resulting arc (angl) is an arc from

a to Doy The plan is to continue this tying-up process for n times
assuming of course that with every step there is a nonempty intersection.

If this intersection is always nonempty the result will be an arc (ab)

lying entirely in f"l(L) such that £(a) = a' and f(b) = b'. Iet L, = (ab).

The point set f(Ll) is a subcontinuum of L contsining both a' and b’

since T is continuous and closed and a, b ¢ Ll. Therefore, f(Ll) = L

since:[5mp, 40] implies that L is irreducible with respect to being
connected and containing»both a' and b'. Thus £ is an inverse arc map.
However, suppose that (apil) is an ar¢ from & to p;,, for some
i=1,2,..., n-1, Since f(p,,) = ¢, the hypothesis implies that f“l(ci)
is a locally connected continuum., The reference [3-p, 84}, implies
that fal(ci) is arcwise connected. The hypothesis implies that there
exist p,, € f”l(ci) and P(141)1 © f"l(ci+l) such that there exists an

arc (p. lying entirely in f'l(L). Also since f"l(ci) is arce

12P(i+1)1)

wise connected there exists an arc (pilpiz) in f—l(ci). Let x, be the

fir: int intersecti S i i
first point of intersection of (pilpiz) with (apil) from a to p,q
Because of the preceeding sentence an arc (axlpig) exists in f“l(L),

Now let X be the first point of intersection of (p with

12P(1+1)1)

, -1
{ax from a to p,,. Then the arc (apie) exists in £ ~(L).

1P52)
Therefore by = finite number of steps, whether a nonempty intersection
is obtained or not, &n arc (ab) is obtained lying entirely in f“l(L)n

Thus, let {ab) = 1, and as shown in the preceeding paragraph, f(Ll) = L,

Therefore, f is an inverse arc map.



CHAPTER V
DECOMPOSITIONS OF GENERAL SPACES

The contents of Chapter V are directed, mainly, toward showing
some general consequences of Chapter IV. The decomposition of
Theorem 4.1 will here after be referred to as, Decomposition B. Even
more briefly in the theorems to follow, as B.

Since B shows that a closed topological 2-cell can be decomposed
into the union of uncountably many mutually exclusive nonlocally con-
nected continua, the following theorem follows by an induction
argument.,

i

Theorem 5.1: Every closed n-cell, n 2 2, can be represented as a
union of uncountably many mutuvally disjoint noﬁlocally connected

continua.

Theorems 5.2 and 5.3 are theorems fundamental in the proof of
Theorem 5.4%. Theorem 5.4 is the first result of this chapter concerning

& nonlccally connected decomposition of a general continuum.

Theorem 5.2: If M is a space, Cn is a closed topological n-cell

{n 2 2), and R _, is the spherical btoundary of C_ such that M ~ R . =

A {J B separate where A |J Rnal a Cn then no point of {anl - F(M an)}

is isolated relative to {an,l - F{M - Cn)}.

o7
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Proof: First, it is noted that the hypothesis implies that
B= (M- c). If {Rn_l - F(B)} = ¢ then the theorem is true. Otherwise,
consider {Rn_l - F(B)} # ¢ and let x € {Rn_l - F(B)}. Suppose that x is

isolated relative to.{Rn_l -‘F(B)}. Since R, is connected it follows

that x 1s a limit point of Rn, Because x 1is isolated relative to

l.
{Rn-l - F(B)} there exists S(x,e) such that S(x,e) N {Rn-l - F(B)} = ¢.

But also since x is a limit point of Rn» there must exist a point y €

1

R such that y % x and y € S(x,e). This implies that y ¢ F(B). This

n-1

will be true for every € > O and therefore, x is a limit point of F(B).
Since F(B) is closed it follows that x € F(B). This contradicts the

supposition that x € {Rn-l - F(B)}, From this the theorem follows.

Theorem 5.3: If M is a space, Cn is a closed topological n~cell

(n 2 2), and R ., is the spherical boundary of C_ such that:

1

(1) M~ R ., = AU B separate where A U Rn; = C_and

1 1

(@) {r_, - r(B)} £ ¢

then there exists a topological (n-1)-cell, C, .p» such that
Cn—fl = {Rn—l - FCB)}

Proof: lLet x E-{Rnpl - F(B)}. Suppase there does not exist any
(n-1)-cell, C,.p» such that x e C_ . ¢ {Rnwl - F(B)}q Theorem 5.2
implies that x is not an isolated point of {Rn”l - F(B)} relative to
{Rnal - F(B)}. Therefore, x is a limit point of {Rnnl - F(B)}. Let

R be any region in the space M such that x ¢ R. Since R . is an (n-1)

1
sphere there exists a topological (n-1)-cell, C,.q» such that

xeC JCRNR__ The suppo;ition implies that C _, ZRN

=1 1’
‘{anl = F(B)}° Therefore, there must exist a point y ¢ Cn_=l n F(B)
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which implies that x is a limit point of F(B). Since F(B) is closed it
then follows that x ¢ F(B) which contradicts the fact that x ¢

{Rn—l - F(B)}. This implies the theorem is true.

Theorem 5.4: If M is a continuum, C, is a closed topological 2-cell,

2
and Rl is the spherical boundary of 02 such that:
(1) C,c M,
(2) M - R, = AU B separate where A U R, = C,, and
(3) {®, - F(®)} # ¢
then (a) M can be represented as the union of uncountably many mutually

exclusive nonlocally connected continua and (b) there exists a continuous
and monotonic inverse arc map, f, defined from M onto any arc E such that

if y € E then f-l(y) is a nénlocally connected continuum.

Proof: Theorem 5.3 implies that there exists an arc (ab) such that

(ab) g;{Rl - F(B)}. On this arc pick a point a, between a and b and then

1 between ay and b, Let L be an arc from the point a to the

point b such that L N R, = fa, b} and L - R

a point b
1 is a subset of the interior
of Cg. .It is. clear that L U (ab) along with the complementary domain it
‘bounds is a closed 2wcell>itself. Call this closed 2=-cell T, and if the
arc L is associated with the arc {{O} X I}, the arc (aal) with the arc
{I X {11}, the arc (a b)) with the arc {{1} X I}, and the arc (bbl)vwith
the arc {I X {O}} in the closed 2-cell, I X I, then, by the method in
Decomposition B, the closed 2-céll T can be decomposed into the union of
uncountébly many mutually exclusive nonlécally connected continua. One

notes that the nonlocally connected subcontinuum of T that will be

associated with the points a and b will also contain L.
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For clarity let T = U Ax’ X € (bbl), where Ax is the nonlocally
connected continuum associated with the point x, The point set C2 - T
is connected since the arc L separated C2 into two connected sets and

C, - T is one of these sets. Since the arc (ab) contains no limit

points of M - C, it follows that (C2 ~T)UM-C,)=M-Tis a

2 2)
connected set. It is true that M -~ T is not closed since LS T and L
contains limit points of C, - T. The point set {(M - ™Y Aﬁ} is a
continuum since (M - 7) = (M - T) U L and-{(M -T) Y Ag} =
-{(ﬁ—:—ﬁ) ] Aﬁ} since A contains L. This shows that{(M - T)U Ai}is
the union of two closed connected sets. Also the point set
{(M - T) U Aﬁ} is nonlocally connected since A.b is constructed as a non-
locally connected subcontinuum of the closed 2~cell T.

‘Now, let M be représentéd in the foilowing manner.

Mu{(M - T) uAb}u {UAX 1 X6 r(bbl) - b}}

Considering the continuum'{(M - T)U Ag} ag a single nonlocally connected
subcontinuum of M, the desired decomposition of M in conclusion (a) is
obtained. _

To obtain conclusion (b) lthe map £, £(M) = (bbl), is defined such
that f{(M - My Ab} =b and £(A ) = x for each x e{(bbl) - b}. With
this definition of the map f it follows, as in Lemma 4.1 and Theorem 4.2,
that f 1s a continuous and monotonic inverse arc map such that if‘

v € (bbl) then f"l(y) is a nonlocally connected subcontinuum of M. ILet
E be any arc. Let h be a homeomorphism such that h{(bbl)}-ﬁ E. There-
fore, hf(M) = E and hf is the continuous and monotonic function called

for by conclusion (b).

Some of the theorems to follow demand another decomposition of the
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closed 2-cell besides the one given in Theorem 4.1. A discussion will
now be given to show that the closed 2-cell can be decomposed into
uncountably many mutually exclusive nonlocally connected continua in a
different way from that of Theorem 4.1. The only explanation given of
this decomposition is o exhibit a figure, Figure 5.1, and from the
information already given in Theorem 4.1 it will be clear that this
decomposition will give the deslired results.

In reference to Figure 5.1, each nonlocally conpected continuum
wiil be determined in the same way as the nonlocally connected continua
were determined in Theorem 4.1. That is, each of these continua will
be associated with a unique point of the unit interval except for the
continuum associated with the point (1,0). The only difference lies
in the fact that instead of constructing an arc beginning at each
point (k/an,o), a simple closed curve is constructed through each
point (k/anyO) in the manner described 1in Flgure 5.1. The continuum
assoclated with the point (1,0) will be the union of the one obtained
in the manner of Theorem 4.1 and the disk A, ZIet this continuum be D,
It follows that D is also a nonlocally connected continuum.

Notice, the continuum essociated with the point (0,0) again is
not locally connectéd and name this continuum H. The point set H is
not locally connected because of the manner in which the point like
nonlocally ccnnected continuum T has been imbedded in H. As mentioned,
this construction will determine the desired decomposition of the closed
2-cell in the same manner as the construction in Theorem 4.1 determined
the desired decomposition. Iet the decomposition obtained here be

called Decomposition 81.



Figure 5.1a
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Decomposition Bl allows one to state and prove the following theorem.

Theorem 5.5: If M is a continuum, C, is & closed topological 2=

2

cell, and R, is the spherical boundary of C, such that;

1
1) ¢y,

(2) M - R, = A U B separate where A U R, = c

(3) {8, - F(®)} = ¢

then (a) M can be represented as the union of uncountably many mutually

o7 and

exclusive nonlocally connected continua and (b) there exists a continuous
and monotonic inverse arc wmep, f, defined from M onto any arc E such that

if y ¢ E then fml(y) is a nonlocally comnected continuum.

Proof: Iet Cé be a closed 2~cell such that Cég; Cgbwhere Cg is

the interior of CE. Now consider e Decomposition Bl of Cé, Iet
N= (M-~ Cé) U H' where H' is the homeomorphic image of the subcontinuum
H in Decompogition Bl. It follows that N is a nonlocally connected
coﬁtinuum since H' is a nonlocally connected subcontinuum of Cé. Now,
let M be represented in the following manner.
1v1.=1.\ru{UA;c ' X € (o,,1)} U D'

The point set Ai is the homeomorphic image ef the nonlocally connected
continuum associated in Decomposition B, with the point (x,0), 0<x<1,
The point set D' 1s a homeomorphic image of the D subcontinuum in
Decomposition Bl. Therefore, this representation of M satisfies conclu~
sion (a).

Let  be a map defined on M such that £(M) = I, £(N) = (0,0),
f(Ax) = (x,0), and :(D) = (1,0). With this definition of the map f it

follows, as in Lemme 4.1 and Theorem 4.2, that f is a continuous and
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monotonic inverse arc map such that if y ¢ I then f"l(y) is a nonlocally
connected subcontinuum of M. ILet E be any arc. Iet h be a homeomorphism
such that h(I) = E, Therefore, hf, hf(M) = E, is the desired continuous

and monctonic function needed to obtain conclusion (b).

Theorem 5.6: If M is a continuum, C, is a closed topological 2~-cell,

2
and Rl is the spherical boundary of C2 such that;
(1) C, €M and
(2) M- Rl = A U B separate where A U Rl = 02,

then (a) M can be represented as the union of uncountably many mutually
exclusive nonlocally connected continua and (b) there exists a contin-
wous and monotonic inverse arc map, f, defined from M onto any arc E

such that if y € E then f-l(y)vis a nonlocally connected continuum.

Proof: This is a direct result of Theorem 5.4 and Theorem 5.5.

A note of interest is that Theorem 5.6 implies that every 2-
manifold, M, as defined in [6], can be represented as the union of
uncountably many mutually exclusive nohlocally connected continua and
theré exists a continuous and monotonic inverse arc map, f, defined from
M onto any arc E such that if y ¢ E then f’l(y) is a nonlocally connected

subcontinuum of M,

The following theorem gives a decdmposition of E2 into nonlocally

connected subcontinua of EE.

Theorem 5.7: HBuclidean two space can be decomposed into uncount-
ably many mutually exclusive nonlocally connected continua. Also there

; s : . 2 1
exists & continuous and monotonic inverse arc map, f, from E- onto E



such that the preimage of each point of El is a nonlocally connected

continuum,

Proof: In each closed 2-cell, {[n,n+l] X I}, n=0,+1, +2,...,
construct a Decompeosition P, For each point ¢ in the closed interval
fromnton+ 1, n=20,+1, +2,..., let Ag be the nonlocally connected
continuum associated with the point (c¢,0) in Decomposition B, If ¢ = n
for some integer n then let the continuum Lc = Ag-l U A?. The continuum
Lc is & nonlocally connected ¢ontinuum since AE is a nonlocally connected
subeontinuum of the closed 2-cell {[n,n+l] X I}. In this way with each
point (c,0) in E2 a unigue nonlocally connected subcontinuum of E2 is
assocliated,

Now, 1f ¢ is a point of the open interval from n to n + 1 for some
integer n then let G, = Az U {(c,x):x3> 1lor x <5d}. It follows that G
is a nonlocally connected subcontinuum of E2 since Ag is a nonlocally con-
neoted subcontinuum of the closed 2-cell {[n,n+l] X I}. If ¢ = n for some
integer n then let B = L_U {(c,x):x >1 or x < o}. Again, it follows
that Hc is a nonhlocally connected subcontinuum of E2 since Lc is a non-
locally connected subcontinuum of the closed 2-ce11,{[n-l, n+l] X I}.

x
Obviously, E2 = { U Hc:c is an integer} U { U Gc:c is real but ¢ is not
an integer?f Therefore, the collection of nonlocally connected subcon-
tinua of EE, {fHC} U {Gc}}, is a decomposition of E° into nonlocally
connected subcontinua of Eg. Figure 5.2 illustrates this decomposition.

let f, f(EE) = El, be a map defined such that'f(Hc) = ¢ and f(GC) = C,
With this definition of the map f it follows, as in Lemma 4.1 and Theorem 4.2,

. : ; s . 1l
that f is & centinuous and monotonic inverse arc map such that if ce E™ then
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0<e<1
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Figure 5.2

fnl(c) is a nonlocelly connected subcontinuum of Eg. Therefore, the proof

is coﬁﬁlete.



Theorem 5.8: FEuclidean n-space, n 2 2, can be decomposed into
the union of uncountably weny mutually exclusive nonlocally connected

continua.

Proof: Theorem 5.7 impiies that the theorem is true for EE.
Assume the theorem ig true for Ek-l where k is some positive integer,
k 2 5; Consider the subspace K = {(xl’XE""’xk—l’c) t x; is real,
¢ is a fixed real}, as & subspace of Ek for each real number c. The
point set Kc is homeomorphic with EK"l and therefore, the induction
hypothesis implies that Kc can be represented as the union of uncount-
ably many mutually exclusive nonlocally connected subcontinua of Ekpl.
Since Ekwl is closed in Ek then the subcontinue mentioned in the
previous sentence are alsd ninocal1y connected subcontinua of Ek.

Therefore, since Ek = | Kc as. c varies over the reals the theorem is

then proved.

Whyburn, [5-p, 125}, proves the following theorem concerning the
hyperépace M' of an upper sémifcontinuous decomposition B of a space M,
"If M is locally connected, so also is M'", As a consequence of this

theorem the following two theorems can be stated and proved.

Theorem 5.9: If M 1s a space and G an upper semi~continuous
decomposition of M, where M' is the hyperspace of M associated with
G, then if M' can he decomposed into uncountably meny mutually exclusive

nonlocally connected subcontinua of M', so also can M,

Proof: Iet T' = {g&], o ¢, be the decomposition of M' mentioned
in the hypothesis., For each @, [5-p, 125] implies that T, is & subcon-

tinuum of M. The points of T' are elements of G (i.e. the collection
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c M),

fey ¥, m e ¥, is the set of points of T but for each 1, g, <

Sin?e any subcollection 6f an upper semi-continuous collection is itself
upper semi-continuous then the points of T' form an upper semi-continuous
decomposition of qm. Thus, in reference to Whyburn's results mentioned
above it follows that since q& is nonlocally connected in M' then qm is

not locally connected in M. Therefore, the decomposition T = {qa], o e‘T;

is one of the type desired for the space M,

Theorem 5.,10: If M is a space and G an upper semi~continuous

decomposition of M, where M' is the hyperspace of M associated with G,
and there exists a continuous map f' defined on M' with range an arc L
such that the preimage of each point of L is a nonlocally connected
subcontinuum of M' then there exists a continuous map f defined on M
with range L such that the preimage of each point of 1L is a nonlocally

connected subcontinuum of M.

Proof: The continuous map f' decomposes M' into the collection
{T;}, where y ¢ L, f"l(y) = T&, such that for each y é L, T; is a
nonlocally connected subcontinpum of M'. It follows by Whyburn's theorem
that Ty is a nonlocally connected subgontiquum'of M. Therefore, let b,
n(M) = M',be a wap defined such that h(x) = g' € M' if and only if x € g
in M. The reference, [5-p, 125],implies that h is & continuous map. Let £,
£(M) = (f'hj{M) = L,be the continuous compesite map from M onte L. ILet
y ¢ L and consider fnl(y). | .

£ y) = (e ) = w7 D ] = v e =
Again, since T! is a nonlocally connected subcontinuum of M', then
[Bwp,125] implies that Ty isva nonlocally connected subcontinuum of M.

Thus the theorem is proved.



- CHAPTER VI
SUMMARY

This paper is primarily concerned with two objectives, namely those
of a study of some fundamental properties of a continuous and monotonic
inverse arc map and the decomposition of the closed 2-cell intc the wunion
of uncountably many mutually exclusive nonlocally connected continua;

The inverse arc map is defined and then in Chapter II some of the
fundamental properties pertaining to this map are proved. In Chapter
III the investigation of the notion of an inverse arc map is not pursued
in detail, but the general theme of the inverse arc map is maintained.

If £ is & continuous and monotonic map such that £(X) = Y, then an
investigation is made into the question of the effect on X if ¥ is an
indecomposable continuum; and conversely into the question of the effect
on Y if Xvis an indecomposable continuum,

One of the principal results of this paper is in Chapter IV, If M
is a closed 2-cell, that is, M = I X I, then M can be decomposed into
the uvnion of uncountably many mutually exclusive nonlocally connected
continua. As a consequence of this fesult, there exists a continuous
and monotonic inverse arc map, f, such that £f(M) = I and such that if
y € I then f-l(y) is nonlocally connected. Therefore, Lﬁ-p, 125] implies
the collection {fnl(y)}, v € I, is an upper seml~continuous decomposition

of M into uncountably many nonlocally connected continua.

70



71

Chapter V shows that if M is a 2-manifold then M can be decomposed
into the union of uncountebly many mutually exclusive nonlocally connect=
ed continua; Also, there exists & continuous and monotonic inverse arc
mep, f, such that £(M) = I and such that if y € I then f—l(y) is
nonlocally connected.

Some guestions for further study are the following. What are
some other characterizations of an inverse arc map? Can an indecompos-
able continuum be decomposed into uncountably many mutually exclusive
and M., are indecomposable continua

1 2

. ) . . ]
and M, N M, # ¢ then can M, N M, contain a domain relative to M, U M,?

Can E2 be decomposed into a collection of compact nondegenerate indecomw

nondegenerate subcontinua? If M

posable subcontinua?
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