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CHAPTER I 

INTRODUCTION TO THE PROBLEM 

Introduction 

The increased sophistication of present-day and proposed fluid 

systems has demanded that the engineer employ increasingly complex 

methods of analysis for studying these systems. This is indeed true 

for the case of non-steady flows in fluid conduits. •ro the practicing 

engineer~ the presently available procedures for analyzing fluid trans­

mission lines may present one of the following p:roblemsg 

lo Perplexing mathematical detail when dealing with 

uu exact uu or distributed parameter models. 

2. All problems 9 except the most elementary~ demand 

extensive use of the digi t:al computer for both 

distributed model and graphical methods. 

3. Oversimplified lumped parameter models lead to in­

adequate answers for ma,..".ly typical problems. 

The analyst th1113 finds that, except for a few simple and special­

ized problems, it is very difficult to approach 01 exact answers vu. These 

problems do not 9 i.n any case, lessen the need for adequate transmission 

line models useful for the study of everyday fluid systems. 

A typical system may contain many components such as pumps 9 

valves, actuators 9 reservoirs, motors 9 etc. 9 generally connected 

1 



··"' :, 



together in some manner by fluid lineso A complete analysis of such a 

system must involve not only the components but also the fluid lines. 

This is particularly true for unsteady conditions where the effects of 

the fluid lines have~ in some cases, caused otherwise well-designed 

systems to be inoperableo 

In general, the area of study associated with the flow of fluids 

through conduits is called 0°Condui t Dynamics 00• A rigorous application 

of Conduit Dynamics to the study of a fluid line involves a complete 

study of the fluid itself plus a study of the effect which the pipe or 

conduit has upon the fluid. For example~ in making computations in­

volving the effect of fluid compressibility, large errors may occur if 

the compressibility effect due to the elasticity of the pipe walls is 

not included. 

Lumped and Distributed Systems 

2 

The physical properties of all real systems are distributed with 

respect to time and space. The extent or influence of this distributive 

effect varies greatly, depending on the particular system being studied. 

For the case of the fluid systems which will be of concern1 this dis­

tributive effect may or may not need be considered. In general~ those 

physical systems which are described by relations involving distributed 

parameters are called distributed parameter systems. The dynamical 

equations for distributed systems are generally partial differential 

equations. Those systems which do not involve distributed parameters 

are called lumped parameter systemso The dynamical equations for 

lumped systems are generally ordinary differential equationso If one 
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takes a distributed parameter system~ averages the effect of the dis­

tributed pa.rameter(s), and concentrates this average at some point, 

3 

then one has vv1umped 09 the system. The validity of approximating a dis­

tributed system by a lumped system or systems depends upon the operating 

conditions of the system and also upon the manner in which the lumping 

is performed. 

Mathematical Description of the Problem 

The exact description of the motion of a fluid for any type of 

fluid mechanics problem necessarily involves the simultaneous solution 

of the equations of change for the fluid. In mathematical terms, this 

description includes: (a) a continuity equation expressing the conser­

vation of mass, (b) an equation of motion expressing the conservation 

of momentum, (c) an energy equation expressing the conservation of 

energy~ and (d) one or more equations which relate the response of the 

fluid to thermal and mechanical stresses (equations of state). In addi­

tion9 it is necessary to prescribe the motion at the fluid boundary 

which, for the problem dealt with here, means one needs a description of 

the motion of the conduit walls. This may involve an additional set of 

equations of change for the conduit itself. 

An exact description~ i.e., an exact solution of the governing 

equations, is nearly impossibleo However~ by means of various simplify= 

ing assumptions, it is possible to arrive at solutions which yield 

rather good quantitative descriptions of the system being analyzed. In 

many cases, these simplifying assumptions are questionableo By means of 

the discussions which follow, an effort will be made to present~ in an 

organized manner, the work which has been accomplished by previous 
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investigatorse Indications will be made, where possible, of the appli= 

cation and limitation of the ideas$ 

If one adopts an Eulerian point of view~ that is~ if one defines 

the fluid motion relative to a fixed spatial coordinate system~ then the 

fluid equations of change may be written as follows (1). 

(a) Continuity Equation 

A mathematical statement of the conservation of mass for a fluid is 

(1.,1) 

= 
where p and v are~ respectively~ the instantaneous flui.d density and 

vector velocity in terms of the spatial coordinate location and timeo 

(b) Equation. of Motion 

The conBervation of momentum for the fluid is expressed by the 

force equation 

(L2) 

In this equation9 

F = vector body force pe:r unit mass 

p = total fluid pressure 

µ=shear viscosity 

µ' - dilitational viscosity 

µB = bulk viscosity 





where each is generally a function of the spatial coordinate position 

and time. 

(c) The Energy Equation 

The energy equation may be written in the form 

~3 c.,.,. orr 
Dt 

where tis the dissipation function (2,3) and q is the vector heat 

flux .. 

(d) Equation of State of Fluid 

5 

The equation of state of a fluid is the functional relationship be-

tween its pressure, density and temperature (i.e., its state variables). 

For a liquid, it is often written as 

where IC is the bulk modulus of elasticity of the liquid .. 

Simplifying the Equations of Change 

The problem of simplifying a set of equations of change is some-

times rather difficult from the standpoint that one needs to know some-

thing about the answer before the significance of various terms or 

variables being simplified or eliminated can be judged .. Often one can 

neglect what seem to be minor terms and completely eliminate the possi-

bility of mathematically predicting some physical phenomena in the 

process .. 

Previous studies of the dynamics of fluids in conduits have shown 
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the following trendsg 

L Thermal effects appear negl:tgible for liquids in many 

cases but not for gases. 

2. Except for extremely high frequencies, the bulk vis­

cosity may be neglected; however, it may be necessary 

to account for time dependent shear viscosity effects 

(viscoelastic effects). 

3o Nonlinear effects for acoustic type disturbances in 

liquids appear small or negligibleo 

With these trends in mind, the mathematical description will now 

6 

be simplified to a somewhat more tractable form~ keeping :b1 mind that~ 

principally~ liquids are being dealt with in this study. The stipula­

tion of negligible thermal effects for a liquid eliminates the energy 

equation as one of the describing relations~ thus leaving the equation 

of motion~ the continuity equation. and the state equation. If further, 

it is assumed that the bulk viscosity is zero and that the shear and 

dilitational viscosities are spatially indepemdent 9 then the equation of 

motion becomes 

which is the Navier-Stokes equationo The equations of change contain 

nonlinearities; however 7 it has been indicated that such effects a.re 

probably minor or negligible so the equations will now be linearizedo 

Assume 



!." s.,t, 
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(1 .. 4) 

where sub-0 denotes steady-state or time independent quantities (or at 

least slowly varying with respect to sub-1 quantities) and sub=l denotes 

the first-order acoustic or disturbance quantities. Introducing Equa-

tions (lo4) into the continuity~ motion and state equations, the desired 

linearized or first-order equations of change (assuming no body force) 

become 

Po ! ;, = -\lf? + )A i_ $ \l(V•V-1) - \lX'\lK Vil 
which will be called the first=order Navier-Stokes equation, 

(1.6) 

for the first-order continuity equation, and 

(1.,7') 

for the liquid state equationo 

Equations (1.5), (1.6) 1 and (1.7) are the first-order equations of 

change for a compressible liquid (neglecting thermal effects) and will 

be the basis of discussion for this treatise. 

Scope of Treatise 

The scope of this treatise on the dynamics of fluid transmiss:lou 

lines may be summarized as follows~ 

lo Comprehensively examine and review all literature 
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pertinent to the dynamics of fluid flow in closed 

conduitso 

2. Obtain an exact solution of the first-order equa­

t~ons of change to describe the dynamics of a viscous, 

compressible liquid in a closed conduit. 

3. Experimentally determine the validity of the exact 

solution. 

4. Develop a practical and accurate approximate model of a 

fluid transmission line which should be suitable for 

use by the practicing engineer. 

8 

One of the objectives of the writer in this work is to bridge some 

of the gaps between the areas of fluid systems engineering and acoustics 

which have recently been growing more closely allied, primarily due to 

the rapidly developing area of fluidics;. 

Computer Program Listings 

For the convenience of the reader, all pertinent computer programs 

used in performing the calculations for this work have been listed in 

Appendix C. 





CHAPTER II 

STATE OF THE ART 

Introduction 

Literature related to the subject of this treatise cuts across the 

boundaries of many fascinating disciplines. These include electrical 

transmission line theory, electromagnetic waveguides, acoustic wave­

guides, loudspeaker theory and the wave mechanics of elastic solids. 

To attempt a complete discussion of material from all of these areas 

would be completely beyond the scope of this work. However, some of 

the more significant results which perta1.n to the description of liquids 

as the working medium will be discussed. 

Distributed Parameter Models 

In Chapter I, , it was stated that the exact description of a fluid 

conduit involves the simultaneous solution of the equations of change 

.for the fluid. Studies of some previous investigators which are based 

upon solutions of some reduced form of Equations (1.5), (1.6), and 

(1.7) will now be given. 

Frictionless Model 

The starting point for studies of conduit dynamics is the one­

dimensional wave equation which was first derived by d 1 Alembert in about 

9 
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1750 in connection with his studies of vibrating strings. Joukowsky 

(4) and Allievi (5) are generally credited as first associating wave 

phenomena with water hammer problems in order that studies of the wave 

equation could be used in explaining pressure transients in conduits. 

The wave equation for a compressible liquid is derivable from Equations 

(1.5), (1.6), and (1.7) if one assumes that the viscous effects are 

negligible. The result is 

(2ol) 

where c is the isentropic speed of sound in the fluid and is given, for 
0 

a fluid, by 

(2 .2) 

v represents the fluid disturbance velocity in the direction of propaga= 

tion. Solutions to Equation (2.1) predict sinusoidal pressure and 

velocity disturbances propagating unattenuated with respect to space and 

time with a velocity c • If Equation (2.1) is solved for the case of a 
0 

suddenly closed valve on one end of a line with a constant pressure 

reservoir at the other end~ Figure 2.la, then the disturbance pressure 

will be of the form 

00 

f(+l = ~.k-tio(}~,L1 l si.,v{!'t ('LY1-1i-1: 1 
TI= I 

where v is the initial mean velocity in the pipe before flow stoppage. 
0 

Equation (2.3) is the mathematical expression for a square wave with 

period (41/c )~ see Figure 2.lbo Now examine the physical chain of 
0 

events which result in this pressure square wave. At the instant of 





_c_oNSTAN-T 
P2E5SURE 

{
\J~)t<o 

. I r· .V~y;. o,t~O 

2=0 Z=L 

(a) Conduit With Suddenly Closed Valve at One End, Reservoir 
Other End 

' 

l'ti 111"1" ~1)" 14 'tl' S't't' '°"" ,1r S'tl' . -

~ip~··. 

(b) Square Wave Pressure Variation at Suddenly Closed Valve 

p 

-t=-O 

t -~ - e 

t= ::!e 
4 

t ~Tp 
= 8 

c=O ~:L 
(c) Pressure History of Waves in Conduit for One=Half Period 

Figure 2 .1. Suddenly Closed Valve - Classical Water Hammer Problem 
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valve closure, the fluid at z = 1 is instantly stopped and the kinetic 

energy of the fluid is converted instantaneously (no friction) to poten-

tial energy (pressure). This positive pressure wave propagates toward 

z = 0 with velocity c and reflects back to z = 1 with zero pressure, 
0 

see Figure 2.lco The pressure wave then becomes negative and propagates 

again to z = 0 where it reflects with zero pressure back again to z = 1, 

thus completing one cycle of the pressure wave. 

It is evident from this discussion that the conduit of Figure 2.1 

has a characteristic 00 natural 19 frequency of oscillation fc = c /41. A 
0 

critical analysis of Equation (2.3), however, shows that this particular 

disturbance actually consists of an infinite number of discrete charac-

teristic frequencies fc = c (2n - 1)/41. In general, one may say that a 
0 

conduit will have an infinite number of characteristic frequencies, 

whose values depend not only upon c and 1~ but also upon the end condi­o 

tions for the conduito When one excites this system with some form of 

time variant non=sinusoidal disturbance, the system response will be the 

sum of the response of each characteristic frequency. T'ne extent to 

which a given characteristic frequency will be 11 excited 10 depends on the 

type of disturbance. In general, the 00 sharper 11 the disturbance~ the 

greater will be the extent to which the high frequency terms are ex-

cited. It is important to realize that the above results are very 

idealized and include neither the effects of friction or of pipe wall 

elasticity (these topics will be discussed later on). The results, 

however, indicate the upper limit of amplitude for a given disturbanceo 

Extensive treatments of the application of this simple theory to prac= 

tical problems may be found in references (6, ?, 8). These 





applications, in general, involve a graphical or numerical solution of 

the wave equation. 

Friction Effects 

When researchers (e.g., 9) performed experiments on models demon-

strating water hammer they found considerable discrepancy between the 

simple plane wave theory and actual resultso They found that when 

sudden flow changes were effected, the resulting pressure transients 

changed shape with time similar to the diagram in Figure 2o2• 

Figure 2.2. Actual Pressure Versus Time Plot for Suddenly 
Closed Valve 

It may be seen that, in the actual case, the sharp corners of the 

pressure trace are being 11 rounded off" and the amplitude is decaying 

with time. This phenomena results from dispersive and dissipative 

effects which are a consequence of viscosity~ pipe wall effects, etc. 

13 
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In general, they result from friction effects. It is interesting to 

note that the greatest dispersion and dissipation occur on the high 

frequency terms which are those terms responsible for the sharp corners 

of the pressure trace. To account for all dispersive and dissipative 

effects would require an exact solution of the governing equations. 

However, past researchers have obtained useful results by means of ap-

proximate solutions. 

Plane Wave Viscous Model 

It was demonstrated by Stokes that plane or unbounded waves do not 

satisfy the simple one-dimensional wave equation, but rather, due to 

viscosity, must satisfy 

(2.4) 

mquation (2.4) may be obtained from Equations (1.5), (1.6), and (1.7) by 

assuming one-dimensional effects only. Solutions to Equation (2.4) may 

be represented by 

where Y is a complex constant called the propagation constant or propa= 

gation fac~or and is givenj in general by 

(2.6) 

The quantity Y is the spatial attenuation factor since the term e±'(rz 
r 

represents the spatial decay or attenuation of the wave. The quantity 



,·. 
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w/f is called the phase velocity and is the actual velocity of propaga­
c 

tion of the disturbance. In general, the phase velocity does not equal 

c .. The value of Y for the solution given in Equation (2.5) is 
0 

,J .,;.,w 
}= 1 , I 

)(. 0 i +- 1. ,UV '),T 
3 ~0'2. 

w represents the angular frequency of the disturbance. 

(2 .. 7) 

Solutions to Equation (2.4) have been obtained by some researchers 

in an effort to account for dispersion and dissipation effects in water 

hammer (10). These solutions, however~ greatly underestimate the vis-

cous effect because Equation (2 .,4) accounts for shear o:nly in the 

direction of propagation (the z direction)., Much greater viscous ef-

fects are acting in the radial direction due to the fact that the fluid 

velocity must go to zero at the pipe wall .. One must conclude then that 

solutions to Equation (2.4) will not adequately describe the viscous 

effects in cox1duit dynarnicso 

Linear Resistance Model 

The approach that a great number of researchers have used is to 

modify Equation (1.5) by substituting in place of the viscosity depend= 

ent terms a friction term which is proportional to the velocity (6, '?, 

9, 11, 12, 13~ 14~ 15)o The resulting equation of motion is 

(2 .. 8) 

R1 is a resistance or friction coefficient often g-1 ven by the laminar 

flow resistance value~ or 
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. 
' 

(2.,9) 

r being the pipe radius. When Equation (2.8) is solved simultaneously 
0 

with the continuity equation and the equation of state, the same solu-

tion as in Equation (2.5) is obtained, except Y now has the value 

(2.10) · 

If the solution to Equation (2.8) is obtained for the case of a 

suddenly closed valve, the pressure versus time plot at the valve will 

look similar to Figure 2.3. 

p 

Figure 2.3. Pressure for Suddenly Closed Valve From 
Linear Friction Model 

Although this linear friction model does not give the exact answer, 

especially over a wide frequency range, it has good utility when 



. ··--..,. 
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experimental values of R1 may be determined and when the frequency range 

is limited. 

Two-Dimensional Viscous Model-Longitudinal Mode Only 

A model reported in the literature (16, 17) which more exactly 

describes the first-order viscous effects for the longitudinal mode of 

vibration only is a result of the solution of the following reduced form 

of the equation of motion 

(2.11) 

The resulting propagation factor is 

(~) (2 .12) 

where 

(2.13) 

and where J1(t;r) and J (~r) are, respectively, the first and zeroth 
0 0 0 

order Bessel functions (18) of the argument ~r. Brown (16) has ob­o 

tained the pressure history for the case of a suddenly closed valve 

using the solution to Equation (2.11). His results have much the same 

general shape as that of the experimental results of other authors, but 

the results are inconclusive since no supporting experimental results 

were included with the theoretical predictions. It can be concluded, 

however, that Equation (2.11) is a better representation of the true 

physical situation than the models previously discussed. From the 



'· 

; j -~ ·~ 

,;·;:ii 



standpoint of frequency response characteristics as reported by 

Oldenberger and Goodson (12), this theory follows very closely the ex­

perimental resultso Brown (16) and two other authors (19, 20) have 

solved Equation (2.11) for a fluid in which the heat transfer may not 

be neglected, thus it must be solved simultaneously with the energy, 

continuity and state equations. This results in a propagation factor 

18 

1= (2ol4) 

where now 

(2.15) 

and a is the Prandtl number (2,) and Y* is the ratio of specific heats 
0 

for the fluid. Th.is model has not been experimentally verified by re-

searchers so its validity must be regarded, at this time, as 

undetermined. 

Fluid Transmission Line Concept 

So far, only the discussion of time domain solutions of the equa-

tions have been given. If one were to begin the exact study of a fluid 

system in which several components were involved, then the time domain 

approach would be exceedingly difficult. A useful and simple approach 

when dealing with the frequency analysis of fluid conduits (or any 

fluid component) is that of the fluid transmission line(?, 12 9 2l)o 

Consider the fluid line to be representable as shown in. Figure 2.4 as a 

four-terminal system. If one solves the system equations for a conduit 
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- --
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Figure 2.4. Four-Terminal Representation of Fluid Conduit 

in the Laplace transform domain, then a rather simple set of equations 

relating the four transformed variables is obtained, thus 

(2.16) 

and 

(2.17) 

In Equations (2 .. 16.) and (2 ol7), V1 (s), V2 Cs), Pi (s), and P2(s) represent 

the ~place transform of the respective time functions ands is the 

Laplace variable. Also, 

(2.18) 

and 

(2.19) 

Zc is called the characteristic impedance of the conduit. The Y which 

appears in Equations (2.16), (2.17), and (2.19) is identical with pre= 

vious Y's except that here iw = s, the Laplace variable. The value of 
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Y, of course, depends upon the modelo It is important to note that this 

form of the transfer equations is the same for all of the previous 

models discussed, only the value of Y varieso The transfer equations 

for the four-terminal representation of Figure 2.4 will change, in 

general, when there is motion of the pipe wall and when we include the 

higher modes of propagationo Note also that the fluid velocities repre-

sented here are average values; that is, they have been integrated over 

the cross-section; thus, they are only dependent on time and the axial 

coordinate. 

The utility of valid transfer equationsinthe frequency analysis of 

a conduit system cannot be over-emphasized. If four-terminal transfer 

equations can be written for each element of a fluid system, then the 

total system performance may be analyzed by combining the equations into 

a new set of transfer equations which represent the entire systemo Sup-

pose, for example, that two components of a fluid system are arranged in 

series as shown in Figure 2.50 

-

P, 
--

_____...,_ 

I 1~ 2 

-

Figure 2.50 Series Arrangement of Two Fluid 
Components 

--

-
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Suppose that the transfer equations for element 1 may be expressed in 

the form 

R (s) = A, (s.) Res.) + 8,l.5) V,ts) 

and 

Writing these equations in matrix form gives 

[ g_ ] [AI B1 l [ R ] 
, V,. "' G,, D, . V, 

In a similar manner~ one may write for element 2, 

Substitution of Equation (2e22) into (2.23) yields 

or, by matrix multiplicationj 

(A2B1 + ~D,)l [ B l 
( B,C" + D, Dz.) • Vi 

(2.20) 

(2.21) 

(2.22) 

(2.24) 

(2.25) 
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One might, for convenience, write 

= 
(2.26) 

so that, effectively, elements 1 and 2 have been combined into a new 

element 3. The new element may be represented as shown in Figure 2.6. 

v I 3 v -- ----- -

3 

-- -

Figure 2.6. Combined Series Elements 

Methods similar to this have been employed to great advantage in 

the analysis of noise transmission in complex fluid system which in-

volve series and parallel elements (22). The matrix theory for four­

terminal elements has been worked out by Pipes (23) for various types of 

arrangements of the elements. 

In general, the matrix method approach is ideally suited to fre-

quency analysis studies of a conduit system. It allows very complex 

systems to be analyzed easily with a digital computer. 
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Lumped Models 

Up to now, only distributed parameter models of conduit systems 

have been discussed. Such models were found to be expressible in terms 

of transfer relations which lend themselves well to frequency analysis. 

In general, these distributed models are difficult to deal with in the 

time domain. This is a major handicap for many technically interesting 

problems such as problems involving conduit systems which contain valves 

closing or opening arbitrarily with time. In cases such as this, one 

may want only the time response of the system. In terms of the distrib­

uted parameter models, this means that the transfer relations for the 

system of interest must be transformed from the Laplace domain back 

into the time domain, or that some numerical or graphical procedure must 

be used to solve the system describing equations. The transformation of 

the transfer relations is very formidable; on the other hand, the 

graphical or numerical procedures are rather simple ways to analyze a 

system but lack the degree of generality usually desired in system anal­

ysis. Due to these drawbacks in the application of the distributed 

parameter models, lumped parameter approximations a.re often used in 

conduit system analysis. These models also have drawbacks which must 

be kept in mind. The major restriction which must be imposed on the 

lumped model of a distributed system is that it is valid only at low 

frequency. The method has been found to be valid, in most instances1 

only if the frequencies involved are not greater than about one-eighth 

of the first critical frequency of the lumped element. The exception to 

this restriction would be a system which has sufficient damping so that 

compressibility may be neglected. Now, examine some typical ways in 
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which conduit systems are lumped; first, consider the basic lumped ele-

ments, i.e., inertance, capacitance and resistance (7, 21, 24). 

Fluid Inertance 

Consider the fluid line shown in Figure 2o7• Assume that only the 

pressure and inertia forces are important and that compressibility may 

be neglected. 

~ ~ 

P, -,_: ---t...._ ____ I~v ____ J-_-__ :f P2 
x=o x=L 

Figure 2.7. Lumped Model Inertance Element 

Writing the equation of motion for this case gives 

-0 _ -0 _ o L dv I dv-
r, r2 - \o dt. =- ,.,. dt 

where v1 = v2 = v since the flow is incompressible. 

(2.27) 

The quantity p L 
0 

represents a fluid inertancee Before proceeding, it should be noted 

that Equation (2.27) is often found in various other forms in the liter= 

ature. It may be found also as 

where q is the flow rate and A is the cross-sectional area. For this 
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case, the fluid inertance is p L/A. Another form of Equation (2o27) is 
0 

where w is the weight flow rateo Notice that the inertancej I, is not 

the same in each case. Notice also that these equations are valid only 

for constant area lines. 

Fluid Capacitance 

Now consider a fluid line in which only compressibility effects are 

important, i.eo, inertia or inertance effects and resistance effects are 

unimportant. With respect to Figur·e 2.8, applying the continuity and 

state equations, one has, since Pl = p 2 = pj 

-p 

Cv t-P~ 

Figure 2.8. Lumped Model Capacitance 
Element 

Again, as was true for Equation (2.27), one could just as well have 

written Equation (2.28) in terms of q or w~ but the value of C would 

also have been different; thus~ 
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and also. 

Po9AL d.P_c d-P 
- r( dt - 1q di:. . 

Fluid Resistance 

Because of the large number of parameters which may affect the 

fluid resistance, it becomes more difficult in this case to write a 

valid theoretical relationship which holds for a wide range of flow and 

pressure variationso The usual approach, therefore, is to treat fluid 

resistance semi-empirically by defining the pressure drop due to re-

sistance between points 1 and 2 of a lumped resistive element as where 

Figure 2.9 .. Lumped Model Resistive 
Element 

v1 = v2 = v and R(v) is an experimentally determined function of veloc-

ity. Of course, if the pressure and velocity are steady, then R(v) is 

well known from information contained in standard fluid mechanics 

textbookso For the case of oscillating flow only (no net flow), one can 





27 

get a good value for the resistance coefficient by considering a low 

frequency approximation of the two-dimensional viscous distributed 

parameter modelo *-~·. 

Fundamental Lumped Model 

Combining the three basic elements yields the fundamental represen-

tation of a lumped line. Combining Equations (2.27) and (2.28) and 

Vj -
P, f••---• i---.---e 1 P2 

,,_ ............................. "'-~~~~~~~~~~--

Figure 2.lOo Fundamental Representation of 
Lumped Line 

considering also Equation (2o29), then one may write for the fundamental 
"\ 

repres'entation 

and 

C d.P, 
V,-lh = v dt . 

(2.30) 

(2o3l) 

Now, take the Laplace transformation of Equations (2 .. 30) and (2.,31), 

thus 
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R(s) - R (S) = srlr \.{es.)+ R (1r) v{(s) (2.32) 

and 

V,(s ') - 1,'2ts) = S Cv R cs). 

Writing these last two equations in the standard transfer form gives, 

and 

V'2.Cs)= V,(s)- sC,,. R(s). 

There are many possible ways of representing a conduit with lumped 

elements other than the representation of Figure 2.10. 

Equivalent Electrical Circuits 

One motivation for using lumped models, other than simplicity, is 

that they readily yield to simulation on an analog computer. Using a 

pressure-voltage analogy, the electrical equivalent of the fundamental 

lumped model becomes that shown in Figure 2.11. The values of Re, Le, 

and Ce depend upon what is made to be the analog of electrical current. 

Table I shows the analogous quantities for three possible analogs. 

Other circuits which are often used in an effort to improve the 

accuracy of representation are shown in Figure 2.12. 





• 

Electrical 
Quantity 

Analogous 

Conduit 
System 

Quantity 

Re/2 Le 

LI Re Le L2 

e, 02 

• l 1 • 

Figure 2ollo E~ectrical Analogy for 
Fundamental Lumped 
Conduit With Friction 

TABLE I. 

ELECTRICAL ANALOGS 

Voltage Current Resistance Inductance 
e 1 Re Le 

p v R(v) p L 
0 

R(y) p L 
0 p q A A 

R(v) L 
p w p Ag Ag 

0 

Re/2 Le/2 

• • 
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Capacitance 
Ce 

L/K: 

AL/K: 

p gAL 
0 . 

K: 

TI REPRESENTATION T REPRESENTATION 

Figure 2.12. Variations of Electrical Analogs 
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Method for Improving Lumped Model 

It was stated previously that a lumped model generally is valid 

only if the frequencies involved are not greater than about one-eighth 

of the first critical frequency of the lumped element. 

This restriction can be eliminated by using several '~lumps'° to 

simulate a conduito Suppose, for example 1 that the highest frequency 

encountered is about ten times too high for valid lumping; thenj if ten 

electrically equivalent circuits are used in series (after reducing Re~ 

Le, and Ce by a factor of ten), one is able to circumvent the original 

restriction. Figure 2ol3 shows the electrical analog for an n-segmented 

lumped model. 

Rein Lein 

T _J -~ 
Figure 2.13. Analog for n-Segemented Lumped Conduit With Friction 

In practice} it has been found that this model does lead to greater 

accuracy, but that the number of segments required becomes very great 

when the frequencies involved go beyond about the second critical value. 

Another method of lumping, invented to overcome this difficulty~ is 

discussed below. 





Tapered Models 

The representation of lossless fluid lines by a tapered lumped 

model is the subject of a patent by Paynter (25)0 The analog of an 

n-segmented tapered representation as presented in the patent is shown 

in Figure 2.14. The values of the l 9s and ~9s is dependent on the value 

of n and are given in Table II for values of n up to 5. 

c/J1Le c/J2Le C?n-1Le 'Pnle 

-· __ __.J_i_l c_e ___.J_t_2 c_e ____________ T!..-t-"_ce_ ..... 

Figure 2 .. 14. Tapered Lossless Analog 

TABLE II 

VALUES OF cp 9S AND yu s 

n~ 0 l 2 3 4 5 

lo 1.000 .250 .142 .099 .075 .061 

+1 , 541 .289 . 199 .152 .122 

•1 .750 .311 .205 .154 .124 ·~ .367 .218 .159 .127 

•• . 547 .244 .168 .131 

+3 .295 .182 .137 

h .452 .209 .146 

•• , 257 .160 

h .394 .185 

ta .229 
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It has been found that this tapered representation gives good re-

sults for any number of critical frequencies and the number of "lumps" 

or segments needed for an accurate representation up to a given fre-

quency is equal to 

N + 1 c 

where N is the number of critical frequencies below the desired cutoff 
c 

frequency. 

Conduit Wall Effects 

Thus far in the developments, the effects which the conduit wall 

may have upon the fluid dynamics have been neglectedo Depending upon 

the operating parameters of the system being analyzed, accounting for 

the effects of the wall may be very si.mply achieved or, on the other 

hand, may require an extensive mathematic treatment in order to get 

reasonable answerso Fortunately, most problems which are of concern can 

be handled with the simple treatment. Problems demanding a complex 

analysis usually occur only when dealing with extremely high operating 

frequencies. 

Simplified Analysis 

Korteweg in 1878 showed that wa.ve propagation was dependent upon 

both the elasticity of the fluid and of the conduit wall and that the 

resultant propagation velocity must be equal to or less than co It 
0 

has been shown (see, for example, Reference 7) that the actual sound 

velocity is 



'I 

r: 
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where Et is Young's modulus for the tube material and f is given by 

thin-walled tube 

f= 
thick-walled tube 

In Equation (2.35), D0 represents the conduit outside diameter and Di 

represents the inside diameter. All that is required in the simplified 

analysis is that one replace c0 with the c of Equation (2.34) in the 

analysis. 

More Exact Analysis 

There have been a. large number of papers written pertaining to the 

effect of conduit wall elasticity on the transmission characteristics 

of fluid within the conduit. Basically, conduits may be divided into 

two types with regard to the elastic characteristics of their wallst 

elastic flexible and elastic stiff. For a conduit with elastic flexible 

walls, it is assumed that pressure variations within the conduit can 

cause radial deformations which f!.2· !!£! cause corresponding axial dis= 

turbances in the conduit wall, i.e., all disturbances in the wall are 

localized and cannot propagate axially along the conduit wall. For 

elastic stiff walls, on the other hand, disturbances~ propagate 

axially along the pipe wall. Some of the authors who have made contri-

butions on the effects of conduit elasticity are Lamb (26), Jacobi (27), 

Morgan (28), Lin and Morgan (29), and Skalak (30). None of these 

authors have treated exactly a viscous fluid in this connection. An 





exact treatment of both flexible and stiff walls for a viscous fluid is 

outlined in Chapter VII. 

In general, the relations expressing the propagation velocity 

variation with frequency have trends as shown sketched in Figure 2ol5. 

Notice that only one mode transmits for all frequencies for the case of 

an elastic flexible wall, whereas two modes transmit at all frequencies 

for an elastic stiff wall. Note also that the limiting value for small 

frequency in both cases approaches the same value, c/c0 • This is the 

same value as predicted by the simplified analysis from Equation (2.34). 

One can see then that the simplified analysis is exact for low frequen­

cies for the zeroth mode (nonviscous fluid only). 
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CHAPTER III 

EXACT SOLUTION OF FIRST-ORDER NAVIER-S'IOKES EQUAT. 

Introduction 

In this chapter, a solution of the first-order Navier-St-.~~s equa-

tions, as developed in Chapter II, is given for a cylindrical, a.xi-

symmetric coordinate systemo This solution will be the mathematical 

foundation for the remainder of this treatise. 

Mathematical Formulation of the Problem 

For the purposes of this discussion~ consider a fluid conduit to be 

describable in terms of a cylindrical coordinate system as shown in 

Figure 3.1. 

x 

i! 

y 

Figure 3.1. Coordinate System 





Assuming that thermal effects are not important, the first-order equa-

tions of change for a liquid are 

which is the first-order Navier-Stokes equation, 

for the first-order continuity equation, and 

which is a liquid equation of state. Combining Equations (3.2) and 

(3.3) gives 

where c0 = 1K/fo is the isentropic speed of sound for the fluid under 

consideration. The Equations (3.1) and (3.4) are the equations of 

change in terms of the first-order variables v1 and Pl• It may be re-
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called from Chapter I that vi and p1 represent small perturbations from 

the zero-order conditions v0 and Po• The restrictions on these equa-

tions are: 

1. The fluid velocity (v = v0 + v1 ) at any point and time is 

much less than the velocity of sound in the fluid~ thus 

justifying omission of the nonlinear terms. 

2. Perturbations in the density are negligible compared to 

the average density; that is~ IPi I<.<. Po • 





3. Temperature effects are negligible. 

4. Fluid viscosity is spatially independent. 

5. The flow field is a.xi-symmetric. 

Solution 

To facilitate the solution of Equations (3.1) and (3.4), define a 

scalar potential~ and a vector potential V such that 

This means it is being postulated that the vector velocity is composed 

of the gradient of the scalar potential~ plus the curl of the vector 

potential~. Taking the divergence of (3.5) gives 

and also taking the curl of (3.5) yields 

The vorticity vector C associated with the perturbation velocity v1 may 

be written as 

and that C and¥ are related by 

For a.xi-symmetric flow, Chas only a component in the direction perpen­

dicular to )f and/k , thus in the @) direction, by virtue of Equation (3.8). 

It is necessary that Y have only a® component also, as may be seen from 





the relationship between C and Y given in Equation (309). Therefore, 

Since the operator V has only )Y' and lk components for rod-symmetric 

conditions, '\/ • Y == 0, which leads to 
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In summary, then, the divergence of the perturbation velocity vector is 

related to the scalar field~ by Equation (3.6); for axi-symmetric flow, 

the curl of the perturbation velocity vector, also referred to as the 

vorticity, is related to the vector field Y by Equation (3.11). 

Taking the divergence of Equation (301), the vorticity is elimi-

nated since the divergence of a curl is zero, and thus 

Substitution of (3.6) into (3.12) yields 

or 

From Equations (3.4) and (3.6) 

Taking the partial derivative of (3.13) with respect tot and 
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substituting op1/ot from ( 3. 14) gives 

Taking the curl of Equation (3.1), the result is· 

or 

By virtue of the vector identity 

and the fact that C and f have only@) components, Equations (3016) and 

(3.17) reduce to 

and 

Physically, Equation (3.15) is a viscous wave equation for plane or 

one-dimensional waves; thus,~ is a viscous plane-wave potential func-

tion. Equation (3.18) is a vorticity diffusion equation and (3.19) is a 

diffusion equation for the function y. By means of the substitution 

v1 ='v~ + \Ix Y the two coupled partial differential equations, (3.1) and 
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(3.4), which appear to be difficult to solve in original form have been 

transformed into two independent partial differential equations (3.15) 

and (3.19) of known solvable form. Equations (3.15) and (3.19) will now 

be solved. The solutions will be obtained in the Laplace domain for 

convenience. 

Applying the Laplace transformation to Equations (3.15) and (3.19) 

yields (assuming initial conditions zero) 

and 

"" "" where~ and Y are the transformed quantities. 

Solving Equations (3.20) and (3.21) by the method of separation of 

variables yields 

and 

where A and Bare constants of integration and Y is the separation con-

stant. J 0 (~r) and J1 (kr) denote the zero and first-order Bessel func­

tions of the first kind with arguments ~rand kr~ respectively. Also, 

the equations 

and 



\. ~ ... 
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relate the parameters, k, Y ~ and~ • It should be noted that the separa­

tion constant Y must be the same in Equation (3.22) and (3.23) since 1 

and~ must both contribute to the perturbation velocity. Now that~ 

and 1 are known, v1 can be found since 

"" D v; = V tp + Vx 111 

where V1 is the Laplace transform of v1 • Since 

and 

equation (3.26) becomes 

(3.29) 

The Laplace transformed velocity components may now be written as 

2;$ >j) { 1 ,("' \{'(' = ! 7- = - B~ J, (~'<') + A{ J, (k·d e 
c) '(' 

and 

~ ;;)V "'# { Boi'J.(~h AkTo(k'1')1 e,(~ Yi-:e-= @tP + 
c)'('+ 

-' ':. 

d~ Y' 





From the equality of the Y's in Equations (3.24) and (3025) 

It now remains to calculate the transformed pressu:re, thus from 

Equations (3.4), (306), and (3.23) 

or 

Equations (3.30), (3031), and (3.33) are the exact general simultaneous 

solution of the first-order axi-symmetric Navier-Stokes Equation (3.1), 

the continuity relation (3.2), and the equation of state for a liquid 

given by (3.3). The constants of integration, A and Band the parame­

ters (eigenvalues) Y, ~, and k are to be determined from the boundary 

conditions for a particular geometry. For a general case; that is, for a 

general set of boundary conditions, the transformed velocities and pres-

sure will become 

V,,. = -[ { 13., ~ J, t~-d +A,~~ s, (1:. v-)} e./" e 
'(\. 

VrP [ { B • ./n J. ((l,, 'C' )+ A. k,. .J.(l:,;t) 1 i ~ 
Y\. 

and 



I' 
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Y\ 

In the chapters which follow, boundary conditions will be applied 

to this solution for the case of a rigid cylindrical pipe and a cylin-

drical pipe with both elastic-flexible walls and elastic-stiff walls. 

The significance of each family of eigenvalues which result from the 

application of the boundary conditions will be discussed. Also, engi-

neering models will be developed which describe average velocity and 

pressure conditions in a fluid conduit, thus, simplifying the mathe-

matics. Experimental studies will be described which attempt to verify 

the mathematical models. 





CHAPTER IV 

APPLICATION OF THE EXACT SOLUTION 

OF A RIGID FLUID CONDU: 

Introduction 

The purpose of this chapter is to pr'esent a rather cuu,l'~-ce treat­

ment of the application of the exact solution of Chapter III to the case 

of a rigid fluid conduit. The existence of higher order modes with 

respect to wave propagation in a viscous liquid will be demonstratedo A 

complete discussion of these modes is left for Chapter VI. The major 

part of this chapter will be devoted to various aspects of the zeroth 

mode of propagation, such as the development of approximate forms for 

the zeroth mode characteristic parameters (eigenvalues), a development 

of the zeroth mode transfer equations and discussions of frequency and 

transient responses. It will be seen that the approximate value ob­

tained for the zeroth mode propagation operator corresponds to the 

values obtained by previous investigators through the solution of a 

reduced set of equations of motiono Also, the transfer equations ob­

tained are identical in form to those previously reported. 

Characteristic Equations for Eigenvalues 

In Chapter III, the general solution to the first-order Navier­

Stokes equation for a compressible liquid was found and expressed in the 
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Laplace domain form of Equations (3.34), (3.35), and (3.36) for 
,.···· 

respectively, the radial velocity, the axial velocity, and the pressure. 

In order that the solution can be complete for the case under considera-

tion, the proper boundary conditions must be applied. The eigenvalues 

k, Y, anda will be specified if the relationship between velocity n n rn 
and pressure is specified at the wall; ioe•, if the impedance at the 

wall is specified. The constants of integration A and B must be found · n n 

from an end condition for the conduit. This means that the fluid ve~oc-

ity at the conduit end must be expanded as a series of the eigenfunc- · 

tions and the coefficients determined. 

For the case of rigid conduit walls, it is required that both the 

radial and axial :(luid velocities go to zero at the pipe wall, r = r 0 • 

Applying these conditions to Equations (3.34) and (3.35) yields 

(4.1) 

and 

(4.2) 

Elimination of A and B by combining Equations (4.1) and (4.2) gives 
n n· 

kV\~\'\ Jj(~fo) = ,{VI' 
Jo ( ~VI 'fo) 

J', 'kri fo) 
J"o (.~~ 'f'o) 

which is the characteristic equation for the eigenvalues. The simulta-

neous solution of Equations (3.32) and (4.3) will yield the eigenvalues. 

The exact computation of these values can only be achieved by a numeri~ 

cal iteration procedure. A computer program has been set up to do this 

and the procedure and program are detailed in Appendix A. In general, 





it must be said that the exact evaluation of the eigenvalues is not 

amenable to hand calculations. Fortunately, it is easy to obtain 

rather good approximate values for then= 0 or "zeroth" mode eigen-

values. This will be discussed in the next section. 

In summary, it has been found that application of the boundary 

conditions at the conduit wall results in a characteristic equation 

which may be solved for the allowed values of the parametersQ , Y, rn n 
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and k. In general, there will be an infinite number of allowed values. 
n 

Each set of numbers corresponds to a mode of propagation. The summation 

of all of these modes, weighted properly by the constants of integration 

A and B, give the fluid velocity and pressure at any point in the n n 

fluid conduit. The constants A and B must be evaluated in terms of n n 

end conditions; that is, it is necessary that one know the r dependence 

of the velocity at some axial position z. The evaluation of these con­o 

stants will be discussed in more detail in Chapter VI. The significance 

of the modes will also be discussed more fully at that time. 

Approximate Form of Zeroth Mode Equations 

The difficulties in exactly solving for the eigenvalues from the 

characteristic equation was indicated in the previous section. If it 

were not for two facts, the application of the exact solution to every-

day engineering problems would appear difficult indeed. However: 

1. For most engineering problems, the influence of the 

zeroth mode is predominant. 

2. It is possible to get good approximate values for 

the zeroth mode eigenvalues~ 

With these two facts in mind, the approximate form of the zeroth mode 
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equations will be obtained. It will be seen that the approximate form 

of the zeroth mode propagation operator corresponds to that reported by 

several previous investigators. 

It may be assumed that, to a first approximation, the zeroth mode 

value for~ 0 r 0 is very small or small enough that J0 (~0 r 0 ) and J 1 (~0 r 0 ) 

may be approximated by their small argument values 

and 

The validity of this assumption may be judged on the basis of the 

comparison between exact values for Yr and the approximate value 
. 0 0 

which will be presented later in this section. 

Substitution of Equations (4.l+) and (4.5) into (4.3) gives 

or~ by substituting Equation (4.6) into (3.32) yields 

1- 2. Ji ( ke'fo) 

ko '(' t:> j o l \::'.o Y'o ) 

y'2 

To complete the approximation, since I!,, r is small~ k ~ i 111s/v for ro O O I 

isl<.<. c /v. This yields~ subject to the limitations 
0 

<.< 1. 

and 

(4 .. 4) 

(4.7) 



., 



that 

and 

where Y is given by Equation (4.7). 
0 

To evaluate the accuracy of this approximation, r and c/c have r o 
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been obtained by both the exact procedure of Appendix A and with the aid 

of Equations (4.7) and (4.8) for the zeroth mode. The results are shown 

plotted in Figures 4.1 and 4.2. Note that 

r = Real part of Yr r o 

r == Imaginary part of Yr e O 

°/e 
0 

= Normalized phase velocity 
F ~ nr =r 

F = Radial frequency number nr 

wr 
0 

c 
0 

'V D == Radial damping number nr =--. r c 
0 0 

,c 

Notice that the error for r is 
r 

much greater than the corresponding 

error for °;e • With the aid of these two figures, a judgment can be 
0 

made as to the validity of the approximate r based upon the use 
0 

intended. Suppose that it is desired to have an error in r no greater 
0 

than one per cent and the value of the radial damping number happens to 
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be .001. From Figures (4.1) and (4.2), it may be seen that the maximum 

radial frequency number can be about 1.0. For most engineering problems, 

the approximate value of r should suffice. 
0 

It should be recognized that the approximate value of Y just 
0 

derived is almost identical to that given by Equation (2.19) as reported 

by several previous investigators. The implication here is that the 

propagation operator given by these previous investigators, and which is 

recognized as being for the zeroth mode only, is really an approximation 

to the exact value of Y. 
0 

Now that the approximate, forms of the eigenvalues have been demon-

strated, they will be applied to the axial velocity and pressure in or-

der to obtain the corresponding approximate forms. 

The zeroth mode transformed first-order axial velocity and pressure 

may be written from Equations (3.35), (3.36), and (4.2) as (omitting the 

sub l for convenience) 

(4.10) 

and 

(4oll) 

Applying the approximation of Equation (4.5) to (4.10) yields 

(4.12) 

and similarly for Equation (4.11), using (3.32) and C4o5) gives 

Q ~o~ Po=-~ s 0oe. . 
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It has been shown that the exact solution as derived in Chapter 

III, when applied to the zeroth mode, can be reduced by using small 

argument values for J (~ r) and J1(Br) to give the propagation oper-
a 10 0 ro O 

ator derived by F. T. Brown, N. B. Nichols, and others. The results of 

these authors was reported in Chapter II. The corresponding approximate 

form for the zeroth mode velocity profiles was seen to be identical to 

the work of Sexl and Uchida. The results of Brown, Nichols, Sexl, and 

Uchida was obtained from the solution of a reduced form of the equations 

of motion. The conclusion is that the work of the above mentioned 

authors is an approximation of the exact solution presented herein. The 

accuracy of the approximation may be partially judged on the basis of 

Figures 4.1 and 4.2. 

In this section~ concern has been given only to the discussion of 

the zeroth mode of propagation, or, also called the fund -=-1--~1 __ or 

longitudinal mode. What about the effects of the highe-

calculations involved in working with the higher modes 

some, as may be seen in Chapter VI., Fortunately~ for r 

applications, the effects of these higher modes appeE 0 

A concept useful when performing engineering ce ng 

the zeroth mode will now be discussed. 

Derivation of Zeroth Mode Transfer Equations 

It is desirable, from an engineering point of view, to derive from 

Equations (4.12) and (4.13) a set of transfer equations which will 

describe the average conditions at some point z along the conduit in 

terms of the average conditions at z ~ z . 
0 
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In the previous section, it was found that the zeroth mode axial 

velocity and pressure can be expressed approximately as 

(4.12) 

and 

(4.13) 

Since only the zeroth mode is being discussed at this time, for the rest 

of this chapter ono 00 subscripts which refer to the zeroth mode will be 

omitted. Averaging Equation (4.12) across the conduit cross-section 

gives (the bar notation indicates the quantity has been averaged over 

the cross-section by integration from r = o tor= r 0 ) 

(4ol4) 

and 

Up to this point Y has been considered, for convenience, to have 

only positive values; but, in general, it will have both a positive and 

a negative value. Positive values of Y indicate waves progressing in 

the negative z direction and negative Y0 s indicate waves traveling in 

the positive z direction. Rewriting Equations (4.14) and (4.15) to in-

elude positive and negative values for Y yields 

(4.16) 
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and 

(4ol?) 

In Figure 4o4 is shown a diagram of a fluid conduit with appropriate 

end conditions. It may be seen that the boundary conditions which it is 

Yt_--1, ............ 
H 

Figure 4o4o Diagram of Fluid Conduit for 
Zeroth Mode Transfer 
Equations 

necessary to satisfy are 

and 

p 
2::o· 

Substitution of these boundary conditions into Equations (4.16) and 

(4ol7) gives a pair of equations from which B.t and B2 may be foundo 

Substituting these values back into Equations (4.16) and (4.17) yields 

the familiar form of the transfer relations 

V~= 'Vl c.osh1?; - R: sw~12: (4.18) 

Zc.. 
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and 

(4.19) 

where 

(4.20) 

Equations (4.18) and (4.19) are then the zeroth mode transfer equations 

relating the average transformed conditions at some arbitrary z to the 

average transformed conditions at z = Oo One may rewrite these rela .... 

tions in another convenient and familiar form relating the conditions 

at some other position 2, where 2 is oriented a +L distance from 1 in 

the z directiono See Figure 4.5. 

P, 

v, 
R 

.....__I ~ ___ ____,, • V2. 
r- L ---~1! 

i!., ~'2. 

Figure 4o5o Diagram of Fluid Conduit With Averaged 
Quantities at Each End 

This form is 

and 

Vz. = V. eosh r - B si:vhr 
Zc.. 
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(4.22) 

The quantity r appearing in Equations (4.21) and (4.22) is related 

to Y by 

and is often called the propagation operator. In Chapter II, it was 

noted that Y, the propagation constant, consists of a real part and an 

imaginary part, or 

I= rr +,:, le- . 
Therefore, 

Figure 4.6 shows the variation of rr, the spatial attenuation, with 

axial frequency number (wL/c0 ) for various values of the axial damping 

number (vL/c0 rJ' ). Figure 4.7 shows the variation of dimensionless phase 

velocity (c/c0 ) with axial frequency n:u.rnber. 

Notice that when working with a single fluid conduit, Equations 

(4 .. 21) and (4.22) show that by specifying <'i!-.n.I two variables, one can 

find the response of a third in terms of the fourth variable. This 

means~ for example, that if one specifies the impedance at one end 

(specify P and V for that end), then the response of P to V or V to P 

for the other end can be found. Further discussion of the use of trans­

fer equations was given in Chapter II. Notice also that Equations 

(4.21) and (4.22) are of identical form to those reported by several 

previous investigators. In general, the zeroth mode transfer equations 

will always be of this same form, only the value of the propagation 
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operator r will change, depending upon the original equations of change. 

These transfer equations have been presented by many previous workers 

and, ·thus, are not an original contribution of the writer. They have 

been derived in this section for the sake of giving a greater degree of 

completeness to this chapter. 

Zeroth Mode Frequency Response 

In this section, the frequency response of a fluid conduit with two 

types of terminations will be examined. The first will be for a termi-

nation impedance which is equal to the characteristic impedance of the 

line. The second will be for a zero termination impedance. 

Consider a fluid conduit as shown in Figure 4.5. Rearranging 

Equations (4.21) and (4.22), they may be written in an impedance form 

which gives the impedance of end 1 in terms of the terminal end imped-

ance, thus 

-Z,= Z~ CDshr + 2c swhr 
coshr t-(rz,./rzc.) swh r 

Specifying the special case of a termination impedance equal to the 

line characteristic impedance yields 

(4.24) 

which means that the impedance looking into end 1 will be the same as 

the line characteristic impedance. Figures 4.8 and 4.9 show the a..mpli-

tude and phase of Zc versus axial frequency number, Fnz = wL/c0 , with 
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the axial damping number, Dnz = vL/c0ri, as a parameter. This was 

computed from Equations (4.24) and (4.7). Notice that the amplitude for 

this case is a simple monotonically decreasing function with frequency 

number. There are no resonant conditions. If one specifies~ termi-

nation impedance other than z2 = zc, then there will occur resonant 

frequencies for the impedance looking into end lo 

As a particular example of a termination impedance other than Zc, 

consider the case where z2 = O .. For this case, 

z,= z~+a1vhr. (4.25) 

The amplitude of Zi = [p(t}p c V ]· for this case is plotted in Figure 
0 0 0 

4~10 as. a function of axial frequency number for various values of the 

axial damping number. Notice the influence of the damping number. As 

damping number increases, the resonant frequencies decrease. Also 

notice that, for a given damping number, the damping effect increases 

with frequency as evidenced by a decrease in resonant amplitude with 

each successively higher r~sonant frequency. This effect might also 

have been pre.dieted from !igure 4.6 which shows increasing attenuation 

with increase in the frequency. 

Zeroth Mode Transient Response 

In the previous section, a study was made of the application of the 

zeroth-mode transfer equations to the frequency response of a fluid con-

duit with two types of terminal impedances and some important implica-

tions were noted. Perhaps more practical or informative type of 

responses to study from an engineering point of view are the time 
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domain transients. The major problem, in this regard, is that the 

actual calculation of time domain transients are much more difficult 

than frequency type responses. In this section, the time domain re-

sponses of a fluid line with the same two types of terminal impedances 

as examined in the previous section will be discussed. 

It should be emphasized that by specifying the impedance at one end 

of the line the response of any one variable to any other variable for 

the line can be determined. This is not obvious from the impedance form 

obtained in Equation (4.23). Take first the case of a terminal imped-

ance Z2 = Zc• The line equations now become 

~ =- R cosh r- Zc. v, S~M~ r 

~~ = Z< 1 V, Coshr - ;. su,hr} · (4.26) 

Examination of Equation (4.26) will reveal that it is now possible, 

because of having specified the impedance at one end of the line, to 

- - - - - - -obtain the response of P1 to Vj, Pi to Pj, V1 to Vj or V1 to Pj• The 

- -time responses of V1 to P1 and P2 to P1 for impulses of Pi will now be 

discussed. From Equation (4.26) 

v, = 

and 

- - -r R= F? e 

are the response equations. Letting P1 be an impulse 

- 1 Vils)= -·-
2'c.Cs.) 

(4.27) 





and 

-r~)· 
RcS>)=. e . 
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(4028) 

To obtain the time domain responses, use is made of the inverse Laplace 

transformation, or 

From Equations (4 .. 27), (4.28), and (4.29) 

(4.30) 

and 

c,i._.:c.Q 

.0 ~) = ~1 es-I:- Fcs) d 
,~ '2,r'l s.. 

. . . 
c-~oo 

(4.31) 

The actual inversion of these equations is rather involved because of 

mathematica.:i difficulties. F. T. Brown has done an extensive amount of 

work in the calculation of fluid line impulsive responses along lines 

similar to those indicated by Equations (4.30) and (4.31) making the 

numerical-evaluation of these equations by the writer superfluous. 

Proceeding now to the case for which the terminal impedance is zero, 

the equations become 

and 
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It may be readily seen that one can now find the response of any one 

variable to any other. This is again due to having specified the 

impedance at one end of the line. For the purposes of this example, 

-the response of P1 to a unit step in Vi will be calculated. Thus, 

putting V1 = l;s~ 

(4 .. 32) 

or, in the time domain . 

c.t.loO 

f,1±) = ~t I z~rs) .fo,.,h fl~) e. &t d.s . (4.,33) 

c-.:..o 
Evaluation of Equation (4033) has been performed by a summation of the 

residues as described in Appendix Bo The results are plotted in Figures 

4.11, 4.12, 4.13 and depict the pressure history typical of water hammer 

for three values of the damping number. These figures clearly show the 

dispersive and dissipative effects which viscosity has upon the temporal 

response of a fluid line. The dissipation results in the attenuation of 

all frequency components with greater attenuation of the higher fre-

quency being evidenced by the fact that principally the fundamental fre-

quency remains after some finite number of oscillationso Dispersion 

results in the 0vtailing off 01 effect for each oscillation due to the 

faster traveling high frequency terms. 
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CHAPTER V 

EXPERIMENTAL VERIFICATION OF ZEROTH 

MODE TRANSFER EQUATIONS 

Introduction 

To determine the validity of the transfer equations developed in 

the previous chapter for the zeroth mode, an experimental study was 

designed and conducted. The experimental models were chosen on the 

basis of having the greatest possible control of the accuracy of the 

variables concernedo Both frequency response and transient responses 

were studied. 

Experimental Frequency Response 

To experimentally verify the zeroth mode transfer equations from a 

frequency response standpoint, the·apparatus schematically shown in 

Figure 5.1 was constructed. With this apparatus, the impedance at the 

reservoir end was maintained at zero. Because of the piston driver at 

the other end, the velocity there could be varied in a sinusoidal manner 

at frequencies from Oto about 100 cps. Since the piston amplitude and 

driver oscillation frequency were accurately controllable, the velocity 

of the fluid at the driver end was therefore precisely known. By posi­

tioning a pressure transducer near the piston, the impedance amplitude 

at the driver end could then be obtained from recorded values of 

72 
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pressure and velocity amplitudes by simply taking their ratio. 

Figures 5.2 and 5.3 display results of experiments performed with 

the above described apparatus. These figures also show the correspond­

ing theoretical predictions of the zeroth mode transfer equations which, 

for this case, reduce to Equation (4.25). Note the excellent agreement 

between the experimental results and the theoretical predictions of the 

zeroth mode equations. This fine agreement substantiates the validity 

of the zeroth mode transfer equations for the range of parameters 

given. 

Experimental Transient Response 

To examine the validity of the zeroth mode equations from a time 

domain point of view, an experimental model has been chosen which repre­

sents the conditions of the classical water-hammer problem. Figure 5.4 

shows the physical layout of this model. It consists of a line w:i.th a 

constant pressure source at one end and a fast acting valve at the other 

end. With the valve initially open, fluid flows from the reservoir 

through the line, valve and flow meter into a second reservoir. When 

the valve is suddenly closed, the transducer located at the valve can be 

used to monitor the pressure response to the step change in flow result­

ing from the valve closure. 

Figure 5.5 displays typical experimental pressure traces resulting 

from sudden valve closure with the above described apparatus. Compari­

son of these results with the theoretical predictions of Figure 4.11 

demonstrates, as for the frequency response case, an excellent agreement 

between theory and experiment. This further substantiates the validity 

of the zeroth mode transfer equations developed in Chapter IVe 
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As a result of the excellent agreement between theoretical and 

experimental results 1 it may be concluded that the zeroth mode transfer 

equations are a good model in the range of parameters of the tests con­

ducted. In terms of damping numbers and frequency numbers? the range 

for these tests was 

0 •. 5 ( Fnz < 10 .. 0o 





CHAPTER VI 

THE HIGHER MODES OF VISCOUS PROPAGATION 

Introduction 

In Chapter IV~ it was found that the application of the condition 

of zero fluid velocity at the wall of a rigid conduit led to a set of 

equations relating the parameters ~j k~ and Yo Solution of these equa­

tions yielded an infinite set of the eigenvalues with each set corre-

spending to a mode of propagationo The general expressions for the 

transformed velocities and pressure were given by Equations (3034), 

(3o35), and (3036) and consisted of a~ infinite summation of all the 

modeso The purpose of this chapter is to delve more completely into 

the mathematics and physical meaning of these modeso 

Discussions of higher modes of propagation of acoustic type waves 

are extensive in the literature (e.goj 26~ 27, 31); however, these all 

deal with waves where viscosity has been neglected. In this chapter, 

viscous propagation will be discussed. 

Higher Mode Eigenvalues for Rigid Conduit 

The characteristic equations for the eigenvalues of a rigid fluid-

filled conduit were demonstrated in Chapter IV to be 

kV\ ~V\ .J, ( ~Y\ '('0 ) :: .(.,.:2- .J1 (~.,_ 'fo) 
Jo(@"''f',) .Jt>(~'l\'fo) 
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and 

s v ::. 

For each set of values of s~ \J'l c0 and r 0 ~ there exists an infinite 

number of discrete values of the parameters Yr19 kn~ and ~n~ hence, 

eigenvalues. Each family of numbers~ represented by a value for n~ 

corresponds to a mode of fluid motion. Then= 0 or zeroth mode was 

discussed extensively in Chapter IV and found to be of considerable 

importance in the modeling of a fluid conduit. It was found that the 

most important of the parameters was Y9 the propagation constant~ and 

that 

where Yr represented the spatial attenuation factor and c = y1 repre= 
c 

sented the phase velocity of the disturbance. For the higher modes, Y 

is also important and has the same physical significance. 

By use of the procedure described in Appendix A~ Equations (6.1) 

and (6.2) have been solved for the Y0 s of three modes. Figure 6.1 shows 
wr 

a plot of Yr• r 0 versus the radial frequency number 9 ~~fora typical 
0 

value of the radial damplng number 9 r v_,Q Figure 602 shows the corre-

sponding dimensionless phase velocity~ c/c , for these three modes. 
0 

Figures 6.3 and 604 demonstrate the variat:i.on of the real part of Y and 

c/c with radial damping number for the first mode a It is important to 
0 

note that a discontinuity occurs in each of the higher mode values of Y. 

This discontinuity might be termed a cutoff frequency since it separates 

frequency regions of very high spatial attenuation and very low spatial 
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attenuationo Below this cutoff frequency~ the contribution of a partic-

ular mode to the over-all disturbance will be damped in a relatively 

short distance from its point of origin~ leaving only the zeroth mode 

to be propagated any significant distanceo This becomes very evident 

if an example is consideredo Take the case of a disturbance in the 

first mode in a pipe at a radial frequency number of loOo From Figure 

603, it may be seen that the spatial attenuation factor is Yr = 3o9o r o 

This means that in a distance of one pipe radius from the source, the 
=Y O r 

disturbance will have decayed by a factor of e r O or Oo02o Thus~ 

the disturbance (first mode)j in magnitude~ had decayed to two per cent 

of its original value. 

It is interesting to contrast the higher mode spatial attenuation 

and phase velocity for viscous propagation as shown in Figures 6ol 

through 604 with the corresponding no viscosity case as presented in the 

literature. For the case of no viscosity~ the spatial attenuation for 

each mode would be zero above the cutoff. frequencyo The zeroth mode 

would have zero spatial attenuation for all frequencieso The phase 

velocity for the case of no viscosity is zero below the cutoff frequency 

in contrast to a finite value of phase itelocity below the cutoff when 

viscosity is included. 

Velocity Profiles 

To get a better physical feeling for the higher modes~ the axial 

velocity profiles for the first few modes for a rigid fluid conduit will 

now be obtained. From Equation (3035)~ the general expression for the 

axial velocity in the Laplace domain was found to be 





Vie= I {B,J, J",(~.r) + A. k, J",(k.t )} i~ 
V\. 

The condition of zero axial velocity at the wall yields the equation 

which along with Equation (3035)~ gives 

J"I) CJ:~'<') 1 e /'fl c 
Jc,(~Vlfb) ~ 

The function F Cr) 1,d.ll be called the axial veloc::i ty profile zn 

function for the nth nodeo For a given damping number and frequency 
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number~ this profile function may be calculated for each mode as a func= 

tion of ro In general~ F (r) is complex~ having both real and imagi­
z:n 

nary partso This function has been calculated for four modes (Oi 1~ 2~ 

and 3) for various combinations of frequency number and damping number. 

Figures 6.5~ 606'.! and 6.7 display the results of these calculations. 

Note that the higher modes (l~ 2~ a.'1d 3) retain the same general shape 

for the various combinations of frequency number and damping m.1mbe:r. 

The zeroth mode profile~ on the other hand 9 has a shape whi.ch is highly 

dependent upon these two parameters. 

SerieB Ex.pansion 

Thus far all efforts have been concentrated on satisfying the 
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fluid conditions at the conduit wall and obtaining the results eigen= 

functions. What about satisfy:hig end c:ondition.s for a fluid conduit? 

Suppose that the transformed condition at the end z = 0 for a flu.id 

conduit is G(r); that is~ 

The problem is to calculate the coefficients in the expansion given by 

Equation (6.3); that is 9 to find B such that 
n 

G l'f') -= I B.,., {If\ ':Jo ( ~"' 'fo) F~V\('(' J , 
Vl 

(6.4) 

One might think that since F (r) is a linear sum of the eigenfunctions 
zn 

J (Qr) and J (k r) that this problem would be a simple extension of 
O rn O n 

ordinary Fourier-Bessel expansion methodso Such is not the case. This 

is because a set of normalizing functions is not obviouso Suppose that 

one could obtain a set of functions F 0 ) such that zm 

One could then multiply both sides of Equation (6~4) by the orthogonal 

functions F 1 Cr) and integrate to yield1 
zm 

1rt should be noted that this discussion makes no mention of the 
usual mathematical problems of com.rergence,i uniqueness~ etc o T'.he 
writer's purpose is not to examine the mathematical drilicacies 9 but 
rather to attempt to 01 get an answer 01 o 
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Thus far the writer has not found a set of normalizing functions 1 how-

ever, a scheme is presented below which will be seen to show all indica-

tions of satisfying the desires proposed of Equation (6)-i). 

Kaplan (32\ in his discuss:i.on of Fourier series has given the fol-

lowing theorem: 

Theorem Let f(x) be piecewise continuous for 

The coefficients of the partial sum 

of the Fourier series of f(x) are precisely those among 

all coefficients of the functions 

9V\l~l-= -Po+~c.os>( + ~,<;;lAJX+ ... + ~ COS'f\X ,j.- 'i111 s.:.u\M( 

which render the square error 

l r [ w) - SY\()()] t d )l. 
-lf' 

a minimumo Furthermore. the minimum square error E , n 

satisfies the equation 

E-o ~ F+<-~)J' di1 - '11' [ ~ ~., + ~:'.):i k '+ bk.') l 
-'11' l<""-l 

In a manner analogous to the preceding theorem 9 the coefficients 

of Equation (604) will be evaluatedo Assume that the coefficients of a 

partial sum, Sk ("f) ~ are knowu; that 

k 
Sk(Y').:: ~ BY,~V\ Jo(?\'\ro) ~VI ('f'), 

(6 .. 6) 

'f\a.o 

Define a aqua.re c.,rror as 





Hypothesize that the coefficients Bn are those that minimize Ek. This 

means that the coefficients can be evaluated one at a time~ starting 
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with B0 , by simply minimizing~ with respect to~· Suppose it is 

desired to find the coefficient Bk+l where the first k are known. Then 

1~ 2 

E1<.+1 = • [G£,,.l- s.il'l - B,., f 1<+1 J; ( ~., r,) F1, '"''l (v-)].,r. dY', CG.Bl 

If ~+l is to be a minimum with respect to Bk+l~ it is necessary to 

have 

~ Bk+I 

Applying the condition of Equation (6.9) to Equation (6.8) gives 

B1<+1 -
s:[Glr)- Sk('<"')}/\<~1 Jo(fk+i'fo) ~(t+i)C.,),Y',dr 

l 0 [1k+l J~(~ki-l'<'o) Fic~1)l'f')]~'f.Jy 

(6.10) 

This method has been used to evaluate the first six coefficients 

for the case of a piston oscillating in a rigid conduito Since this 

implies a constant velocity at the piston face~ G(r) == l was used for 

the boundary condition. The results of the calculatiori are tabulated 

in Table III. Utilizing these coefficients~ the six term approximation 

of the transformed axial velocity has been calculated for various axial 

distances from the piston face. The relationship describing this ap= 

proximation is given by the first six terms of Equation (6o3)o The 

results are graphically demonstrated in Figure 6080 Note the transition 

of the profile from flat at the piston to essentially the zeroth mode 

z profile beyond D = Oo5o The frequency number for these calculations was 
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0.2 which is well below the cutoff frequency for all of the higher 

modes. This explains why only the zeroth mode is propagated any great 

distance from the piston. 

TABLE III 

TABULATION OF THE FIRST SIX COEFFICIENTS OF THE: SERIES EXPANSION 
FOR A PIS'rDN OSCILLATING IN A RIGID CONDUIT 

(F = .2, D = .01) nr nr 

BY J (~ r ) :: 1.100 = 0.29571 
0 0 0 0 0 

Bi Y1Jo(~1r0 ) :::: o.4187 - 0.16861 

B~Y-a.J0 (~2.r0 ) :::: o.4951·+ 0.06531 

BaY! J 0 (~~r0 ) :: 0.5076 + 0.17561 

B4Y4J0 (~4r0 ) "' 0.5000 + 0.23311 

BsYsJ0 (~sr0 ) = o.4572 + 0.21741 

Experimental Investigation of Viscous Modes 

As a result of mathematically demonstrating the existance of the 
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infinite set of viscous modes of propagation, the writer became eager to 

obtain an experimental demonstration of their existance. By viewing the 

action of a birefringent fluid in the neighborhood of an oscillating 

piston in a plexiglass tube, the effects of the higher modes have been 

observed. 

Figure 6.9 schematically describes the experimental apparatus used. 
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The working fluid consisted of the following components by weight~ 

water - 85% 

milling yellow dye= la4% 

glycerine= 1306% 

2 
This fluid exhibited the property of optical birefrengenc e when in a 

state of shear stress. 

The test section was viewed between crossed polarizer planes with a 

light source behind the first polarizer. The piston was oscillated at a 

constant frequency of about 2 cps and several photographs were taken to 

record the visual effect. These photographs are displayed in Figure 

6.10. The patterns observed represent the state of shear stress within 

the fluid. Since the phenomena was viewed across a cylindrical tube, 

the observed effect was actually an integration of all the effects 

across the tube. The patterns were observed to change with time depend= 

ing upon the position of the piston. This accounts for the difference 

between the photographs. No record was made of piston pos:ttion when the 

pictures were taken. The important phenomena which is demonstrated by 

these pictures is that there appears to be a boundary effect near the 

piston which is damped out at a Z/D of about .5 measured axially from 

the piston face. The patterns for Z/D /'o.5 represent the state of shear 

stress of the zeroth mode only~ since all higher modes are da111ped out. 

The patterns for Z/D < o5 represent the state of shear stress for the 

sum of all the modes. 

Referring ·back to Figure 6 .8~ wh:i:.ch represented the near piston 

2A considerable amount of work with birefringent liquids has been 
done by Thurston (33). Frenk.el (34) also gives a. discussion of the 
theory of liquid birefrengenceo 
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velocity profiles obtained from a summation of a few modes, an interpre-

tation of the stress patterns obtained experimentally will now be giveno 

For the axi-symmetric case here being discussed 1 the transformed shear 

stress may be expressed as 

(6.11) 

The lines observed in Figure 6.10 represent the conditions for which 

"" 't" = constant. r~ -If one approximates T by 
rz 

lines of constant shear stress can. be obtained from the predicted near 

piston axial velocity profiles of Figure 6.8. Typical results of such a 

procedure are shown in Figure 6.11. Note the obvious similarity between 

the theoretical state of shear stress displayed in this figure and the 

experimental results shown in Figure 6.10. This excellent agreement be-

tween theory and experiment appears to substantiate the existence of 

these higher modes of viscous propagation as predicted by the theory. 

Discussion 

This chapter has been devoted to a theoretical and experimental in.-

vestigation of the higher modes of viscous propagation. The results may 

be summarized as follows: 

lo The higher modes were shown to have a relative cutoff 

frequency, below .which their spatial attenuation is very 
,• ,-

,, 
great. These modes demon,strate a finite phase velocity 

below this cutoff frequency which is opposed to the re-

sults which have been published concerning higher modes 
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of propagation neglecting 1riscosity (27). Above their 

cutoff frequency, the higher modes have spatial attenua­

tion, but of a much smaller rnagnitude than below the 

cutoff. 

2. The r dependent part of the axial velocity was found to 

be representable, for each mode') in terms of a profile 

function, Fzn(r), having, in general, a real and imagi­

nary part. The profile shape for the zeroth mode was 

found to be sensitive to values of the frequency and 

damping numbers. For the higher modes~ the general 

shape stayed much the same~ regardless of the values of 

these two numbers. 

3. In order to satisfy end c:ondit;:fons for a fluid trans­

mission line') it was found necessary to obtain a series 

expansion in terms of the velocity profile functions 

(eigenfunctions)" The coeffici.ents of this expansion 

were not obtainable by ordinary methods since a set of 

orthogonal functions (orthogonal to the eigenfunctions) 

was not knowr10 It was fou.,.'1.d to be possible 1 however~ to 

evaluate the coefficients one at a ti.me by a method of 

minimizing the square error. 'I"he absolute validity of 

this method is undetermined at this time~ but the results 

seem to demonstrate its practicalityo 

4o A flow visualization techxdque was used to obtain photo= 

graphic records of the state of shear stress near an 

oscillating piston in a tube. Interpretation of the 

results in terms of the theoretical pr·edict:lons seem to 
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validate the existence of the higher modes. 

To the best of the writer's knowledge~ the discussion of the higher 

modes of viscous propagation as given in this treatise is the first ever 

presented. It is hoped that it may represent an advance in the state of 

the art. 





CHAPTER VII 

NON-RIGID WALL EFFECTS 

Introduction 

The purpose of this chapter is to outline an analytical approach 

to the problem of determining the effects which non-rigid walls have on 

the transmission properties a viscous fluid carrying conduito Basically, 

there are four types of conduit walls: 

1. Rigid walls - Those walls which are assumed perfectly 

rigid and do not give under the influence of a pres-

sure force. This type of wall has an infinite radial 

impedance, i.e.'j P;v =oo. 
r 

2. Pressure release walls - Those walls which just con-

tain the fluid but exert no force on the fluid. This 

type has a zero radial impedance. 

3. Elastic flexible walls - Those walls which give under 

pressure and have some finite radial impedance but do 

not propagate a disturbance in the axial direction. 

4. Elastic stiff walls - Those walls which have a finite 

radial impedance and do propagate a disturbance in the 

axial direction. 

The model for a rigid conduit was developed in Chapter IV. The 

remainder of this chapter will be devoted to discussions of conduits 
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with elastic flexible and elastic stiff walls. 

Elastic Flexible Walls 

If one is studying the dynamic characteristics of fluid-filled 

elastic tubes, such as rubber, where the major effects are those due to 

tube inertia and tensile stress in the wall, then the equation of motion 

for the tube is (35) 

where 

h = tube wall thickness 

r = tube radius 
0 

Et = Young's modulus for tube material 

6 = wall radial deflection r 

pt = fluid pressure at tube wall 

Pt= density of tube wallo 

Applying the Laplace transformation to Equation (7.1) gives 

or 

Noting that the transformed radial velocity and deflection for the tube 

" wall are related by V t = S 6 ., the radial 1.mpedance for the tube wall 
r r 

becomes 
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(7.2) 
= 

V'r-1:. 

For these calculations, it will be assumed that the wall deflections are 

small compared with the tube radius so the conditions at the wall re-

quire that the axial fluid velocity be zero and the fluid radial imped-

ance at the wall equals the tube radial impedance. From Equations 

(3.30) and (3.33), the fluid radial impedance at the wall is 

The condition of zero axial fluid velocity at the wall yields from 

Equation (3.31) 

Combining (7.3) and (7.4-) to eliminate the arbitrary constants~ A and B 

yield 

which is the radial impedance of the fluid at the wall. Equating this 

to Equation (7.3) gives the charact:.eristic equation 

which~ along with the equations 





106 

completely relate the eigenvalues. E'er the case of a rigid wall, which 

was discussed previously, the eigenvalues were found to depend only upon 

two dimensionless parameters; the radial damping number and the radial 

frequency number. For the case now being considered, the eigenvalues 

are found to also depend upon the tube wall parameters, as might have 

been expected. 

Equations (7.6) and (7.7) have been solved to obtain Y for the 

zeroth and first modes. This was done for one set of the tube wall 

parameters and the results are displayed in Figures 7.1, 7.2, 7.3, and 

7.4 in comparison with the rigid wall results. The calculations were 

performed with the aid of an IBM 7040 by a procedure similar to that 

outlined in Appendix A. Examination of the graphical results reveals 

the following: 

1. For the zeroth mode, the spatial attenuation is increased 

due to the flexible wall as opposed to a rigid wali. The 

increase is so great in the higher frequency regions that 

one can consider the flexible conduit to act as a low-pass 

filter. The cutoff frequency corresponds approximately to 

the natural frequency of the tube wall. 

2. Also for the zeroth mode, the elastic flexible wall is seen 

to decrease the phase velocity with the minimum value 

occurring near the natural frequency of the tube wall. 

Statements (1) and (2) above appear to be generally valid regard­

less of the fluid and tube wall parameters. Examination of Figures 7.3 

and 7.4 show that, while there is a considerable effect of the elastic 

wall upon the first mode spatial attenuation and phase velocity, no 
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general statements can be made regarding the effects as was true for the 

zeroth mode. 

Elastic Stiff Walls 

The approximate equations of motion for a thin-walled elastic stiff 

pipe as given by Cin and Morgan (29, 36) are, neglecting rotary inertia 

effects 

and 

where the tube wall axial and radial particle displacements are given by 

the perturbation equations 

and 

For these equations, the following definitions hold: 

~~Poisson's ratio 

h = tube wall thickness 

K = shear constant (29, 36) 

G = modulus of rigidity. 
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These equations of motion were used by Lin and Morgan to study the 

propagation of disturbances in non-viscous liquids. Using these equa-

tions to find the wall impedance, the characteristic equation for propa-

gation in a viscous liquid will now be derived. To the best knowledge 

of the writer, this represents the first such discussion of the propaga-

tion in a compressible, viscous liquid contained within an elastic-stiff 

conduit. 

Transforming the equations of tube motion and assuming solutions of 

the form 

~ rl,1.c 
~~ ':. ~~o e 

~'(' = ~-ro e Jt ~ 

~ -= ;o e ,11; t:: 

where A indicates transformed quantities, yields, after eliminating 6z 
0 

and 1; , 
0 

and 
a.,= 

,,Cp?..:. 

1.- hh<o 
~-l::h Cp' 

f:.t: 
~-b (i-).1-) 
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Solving for the radial tube impedance gives 

(7.8) 

It should be recognized that Equation (7.8) is the counterpart of (703) 

which was the tube wall impedance equation for the case of elastic 

flexible walls. Proceeding in the same manner as previously done, 

that is, setting the tube wall impedance equal to the fluid impedance 

of the,- wall yields the equation 

(?o9) 

Equations (7.7) and (7.9) now completely describe the eigenvalues for 

an elastic-stiff viscous fluid carrying conduit. 

From this point, the calculations of the eigenvalues for various 

types of walls must be done with the computer in a manner similar to 

that employed earlier in this chapter. The eigenvalues have not been 

calculated for this case. 
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CHAPTER VIII 

DEVELOPMENT OF TAPERED-LUMPED MODEL 

Introduction 

In Chapter IV, a detailed discussion of a fluid conduit model based 

upon the zeroth mode transfer equations was given. In Chapter V, the 

validity of this model was experimentally established. It must be said, 

however, that despite its validity and accuracy, the model is mathe­

matically unwieldy when used to solve everyday engineering problems in 

the time domaino As an example, see Appendix B which describes the in­

verse transformation for the water hammer problem discussed in Chapter 

IV. A considerable amount of time and work was needed to solve this 

very simple case involving a single line. Practical everyday engineer­

ing problems may involve many lines interconnected with valves, accumu­

lators, etc. The frequency analysis of such a system can be handled 

with the aid of a digital computer, but a time domain analysis would be 

almost impossible. The need should be evident, therefore, for a simpli­

fied or approximate engineering model which would be useful in the time 

domain analysis of complex fluid systems. The approach taken here is to 

expand the hyperbolic functions, cosh f(S) and sinh r(s) which appear in 

the zeroth mode transfer equations, as infinite products of second order 

polynomial terms. This method is not new, having been reported most 

recently by Oldenberger and Goodson (12), but the approach taken here 

114 
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results in a set of tables or curves from which the engineer can obtain 

the proper coefficients to be used in the polynomial terms. 

Development of Model 

Recall that the conduit transfer equations may be written in the 

form 

~ (s) = R(s) cash res) - Zc.C~) Vi(s) st.'.Nhrcs) 

and 

For the solution of problems requiring a time domain analysis, inverse 

transformations involving the above equations are extremely time con-

suming. It becomes, therefore, desirable to develop valid engineering 

approximations to these equations if possible. 

Consider the possibility of expressing the hyperbolic operator 

functions in the infinite product forms. 

c.oshrcs) - ]'
0 

{ i + 2 Se, s/w..+ s'jw:t.. \ 

and 

(8 .. 2) 

The values of the constants P , y:, , w and w are to be obtained by 
~en ~sn en sn 

solving for the values of S at the zeroes of cbsh f(S) and sinh T'(S), 
n 

~ and w may then be found by noting that 
n 
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Figures 801, 8.2, 8.3, and 8.4 display plots of"° , 'I' , F , and F ~en ~sn en sn 

versus axial damping number. To use these plots, it is necessary only 

to calculate the dimensionless damping number for a line 

(8 .. 4) 

and then read off the corresponding values for~ and F. w is then n n n 

given by 

W'fl.= 

In the above equations 

v - fluid viscosity 

L = conduit length 

c0 - Isentropic speed of sound in fluid 

r - inside conduit radius. 
0 

Having now developed this approximate engineering model, its 

validity and limitations remain to be determined. 

Comparison of Exact and Approximate Models 

Since the engineering model which has just been developed is an 

approximation of the nexact 11 model or zeroth mode transfer equations, 

the measure of its accuracy can be easily determined by directly com-

paring the two models. This may be done by studying the frequency and 

transient responses for the two cases. Consider then the approximations 

of Equations (8.1) and (8.2) or 
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and 

Here r(s) is being approximated by sL/c in the sinh r(s) equation. 
0 

Figures 8.5 and 8.6 display plots of the amplitude and phase of 

cosh r(s) versus frequency number for two typical values of damping 

number. Also shown are the corresponding one-term approximations. 

Figure 807 and 8.8 show similar comparisons for two terms of the 

approximate model. The corresponding comparisons for sinh r(s) were 

not plotted since the results are much the same. 
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From the results of the frequency response comparison of the exact 

and approximate models~ it may be concluded that the use of a one-term 

approximation gives excellent results up to somewhat beyond the first 

critical frequency. The use of two terms of the approximation improves 

the result up to just beyond the first critical frequency~ but does not 

predict well the values around the second critical frequency. The use 

of more terms would improve the result around the second critical fre-

quency. It now remains to compare the exact and approximate models from 

a transient response standpoint. 

As an example~ consider the water hammer problem which was analyt-

ically studied by use of the zeroth mode transfer equations in Chapter 

IV and which was experimentally studied as described in Chapter V. 

Figure 5.L} shows the physical layout of the modelo The Laplace domain 

response for the pressure at the valve due to a V amplitude step change 
0 

in the velocity is found from Equation (4.32), or 
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The evaluation of the exact inverse of this equation, as discussed in 

Appendix B, was cumbersome and impractical for most cases. Therefore, 

then= 0 terms of the approximate model will now be used to predict the 

same pressure transients due to the sudden valve closure. Using the 

valve of the damping number for the line which was studied experimen-

tally, i.e., Dn = .02, it may be seen from Figures 8.1 and 8.2 that 

~co= o.oee 

Fco-= 1.S. 

Since c = 4400 ft/sec and 1 = 100 ft for this case 
0 

The response equation now becomes 

= 

The inversion of the above equation may be easily accomplished and 

yields 

= 
A _5.8t: • cu L) 
.1. f; e s (,.A) 11?!01: • 

This approximate solution is shown plotted in Figure 8.9 in compe,rison 

with the exact results given previously in Chapter IV. The approximate 

model appears to match well the exact result from a frequency standpoint 

and also in regard to the attenuation of the fundamental frequency com-

ponent. For many typical engineering calculations, results such as this 

would be welcome considering the difficult:tes encountered in obtaining 

exact answers. 





~.o 

Plt) 
foCo "V;. 

-1.0 

I 
I 
I 
I. 
I 
I 
I 
I 

-EXA.C..T SOLUTION 
----J>,.P?l.?.0')1.lM,6..,l"S SOLU,-10"1 (ONE 11:"-M) 

~ 
~ 
~ 

Figure 8.9. Comparison of Exact Solµtio:ti (Zeroth Mode) and One Term of the Tapered-Lumped 
Model for the Water Hammer Problem I-' 

I\) 
-..J 





Application of Model in Problem Solution 

In this section, use will be made of the approximate model in the 

solution of two typical problems. In this way, its utility can be 

demonstrated. 

Example Problem 1 

Consider the fluid system illustrated in Figure 8.10. Water is 

initially flowing from one reservoir through the line and valve into 

another reservoir. The vaJve is then closed in such a manner that the 

valve area versus time history is as shown in Table IV. The problem is 

to determine the corresponding pressure history upstream of the valve. 

The Laplace domain response equation for the pressure upstream of 

the valve in terms of the corresponding fluid velocity is the same as 

for the water hammer problem of Chapter IV. This response equation is 

Utilizing one term of the approximate model yields 

(8.6) 

For the problem here being considered, this response equation can best 

be solved in the time domain since the valve area history is a compli-

cated polynomial in time. Expressing Equation (8.6) in the time domain 

yields (including a linear flow resistance term, R1q(t)) 

(i+- '2 ~eo D/wco t D2 /~eo2 )-fl-i:)::-ib Dilt)- R1'bl-c), 
AL 





PRESSURIZED 
RESERVOIR 

FLUID 
LINE 

PRESSURE 
.TRANSDUCER 

UNITS: INCHES, POUNDS, SECONDS, RADIANS 

Pipe Dimensions 
L D. 3.875 '' 
Length 276.0" 
Wall Thickness O. 0625" 
Youngs Modulus of Elasticity 12 x 106 

Adiabatic Modulus of Elasticity of Fluid 32 x 104 
Atmospheric Pressure 8.7 (Static pressure maintained below 

valve during closure, psia). 
Fanning Friction Factor 0.012 
Initial Static Pressure at Valve 21.42 psia 
Fluid Density at Valve 0.036995 
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DOWNSTREAM 
RESERVOIR 

Figure 8ol0o Schematic of Physical Layout for Example Problem 1 

TABLE IV 

VALVE AREA DATA FOR EXAMPLE PROBLEM 1 

Effective Flow Area of Valve vs Time 

Time 
0.000 
0.010 
0.030 
0.050 
0.078 
().110 
0.142 
0.175 
0.205 
0.236 
0.261 

Area 
8.34 
8.30 
7.49 
6.36 
4. 74 
3.47 
2.39 
1.57 

.84 

.35 

.00 

~c.t) ~ Av 

9th degree equation of above points 

Area= 36,098,169T9,...27,651,150T8 + 5,290,046T7 

+662,432T6 -210,542T5 -41,747T4 + 16,928T3 -l,707T2 +9.226T +8.347 





Here, q(t) is the flow rate at the valve. 

Solution of Equation (8.7) has been carried out on the digital 

computer and the results are plotted in Figure 8.11. Also shown in this 

figure are results of an experiment carric,1 out at the Marshall Space 

Flight Center, Huntsville, Alabama. The analytical predictions agree 

well with the experimental results in the early stages of valve closure 

but deviate considerably in the later stages. This deviation is be-

lieved to be principally due to error in the analytical expression for 

the valve area compared with the actual valve area which occurred during 

the experiment. 

Example Problem 2 

For this example consider the simple hydraulic system shown in 

Figure 8012. It is assumed that the dynamics of the valve and load are 

described by the three equations 

(8.8) 

and 

(8.10) 

The constants of the system are given below. 

m = 0.0002 Jb-sec2 /in 

b = 0.01 lb-sec/in 

k = 50 lbJin 

A 
2 .. 0.2 in 

c = 0.00126 in 4/1 b-sec 
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z1 = 43. 16 -sec/in5 

p O = 0. 0000812 I b --sec2 /in. 4 

A,P = 500 psi 

L = 10 ft 

r = 0.2 in 
0 

-~- 2 
" = 10 ft /sec 

c = 1+500 ft/sec. 
0 
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A frequency analysis of the valve will be made by first neglecting 

line effects and next by including a one-term approximation of the line. 

Considering first no line effects, the Laplace domain equation describ-

ing the displacement of the valve in terms of the input Y is 

K Yes) (8.11) 

A plot of the amplitude and phase of X(iw)/Y(iw) is shown in Figure 

It is desired now to include the line effects by modeling it with 

one term of the approximate model. First calculating the line axial 

damping number to allow the use of Figures 8.1 and 8.2 for finding the 

line parameters ~ co and Wc.0 gives 

Thus, 

swh res) ~ sL/..c.o 
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Frequency With and Without Line Effects 
for Example Problem 2 





with 

This leads to 

and 

~c.o = (),OS, Wee, = 35.3.0 • 

Q, : 0-z. eosh r + R. 5LiJh r 
Zc. 
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(8.12) 

(8.13) 

Combining Equation (808), (809), (8olO), (8.12), and (8.13) gives a re-

sponse relation for X(s) in terms of Y(s) or 

(8014) 

where 

[ 1 '2~S s 2 Qrc.(SL)] + + --=;: + r? -;;r-. Wc..o Goc.c, ~ c... .A:-o 

±. [1+ 2 t;eo S + t;'2. J + _i (SL) 
Z L Wc.o Wcl" Z c ..Co 

The amplitude and phase of X(iw)/Y(iw) from Equation (8.14) is plotted 

in Figure 8.13 in comparison with the results of Equation (8.11) which 

was for no line effects. There is a dramatic difference between the 

results of neglecting and including line effects. The simplicity of 





using the approximate line model in this analysis is also apparent. 

Discussion 

In this chapter, an approximate engineering model of a fluid con­

duit, based upon infinite product expansions of the cosh r(s) ano 

sinh r(s) operators in terms of second-order polynomials, has been 

presented. The basic idea for this development was obtained from a 

paper by Oldenberger and Goodson (12). The writer has, however, ex­

tended the method to the extent that it is now possible to obtain the 

necessary polynomial coefficients from the curves presented herein. 

Thus, the method might now be considered a handbook engineering method. 

The validity of the method was examined by comparing it with "exact" 

model results from Chapter IV and also by demonstrating its ability to 

predict experimental results. The results of this examination may be 

summarized as follows: 

1. One term of the model well approximates the hyperbolic 

operators up to the first critical frequency. 

2. Two terms improve the approximation up to the first 

critical point and roughly (not well) approximate the 

hyperbolic operators up beyond the second critical fre­

quency. The use of more terms would improve the results 

:near the second critical frequency. 

3. The use of one term of the model gave good results in 

predicting the transient response representative of water 

hammer. 

4. The model was of good utility in solving two example prob­

lems, one which had supporting experimental data. 





CHAPTER IV 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

The problem of modeling a fluid transmission line has been treated 

in varying degrees of exactness. 

An exact solution of the first-order Navier-Stokes equation for a 

compressible liquid was obtained and found to demonstrate the existence 

of an infinite set of viscous modes of propagation. The zeroth mode was 

found to be predominate, with the higher modes being generated near 

boundaries. The extent of propagation for the higher modes depended 

upon the frequency since these modes had relative cutoff frequencies 

below which there was considerable attenuation. Through the use of a 

flow visualization method, the action of the higher modes near an oscil­

lating piston was experimentally observed. 

A conduit model based upon a cross-sectional average of the zeroth 

mode only was derived in terms of a set of transfer type equations com­

monly found in the literature. Experimental investigation of these 

equations proved their validity over a wide range of parameters, thus 

qualifying this as a useful engineering model. 

A third model, based upon rational approximations of the zeroth 

mode transfer equation model was derived and the parameters were ob­

tained and recorded. This model was demonstrated to have usefulness 
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where it is desired to study complex fluid systems and where the mathe-

matics involved in using the more sophisticated models would prove 

unwieldy. 

An analytical investigation into the effects of nonrigid walls was 

undertaken and demonstrated the dramatic and not-to-be-neglected effect 

which these walls can have. Calculations were made to determine the 

effect of an elastic flexible wall upon the wave phase velocity and 

spatial attenuation as opposed to a rigid wall. For the case presented, 

it was found that the spatial attenuation was increased by approximately 

a thousandfold and the phase velocity decreased by approximately 75 per 

cent in certain frequency ranges. 

are: 

Conclusions 

The conclusions which have been reached as a result of this study 

1. In general, the first-order (acoustic) disturbances in a 

viscous fluid transmission line consist of an infinite 

number of modes of viscous propagation. The excitation 

of each mode results from the necessity of satisfying 

boundary conditions. The extent of spatial propagation 

of each mode depends upon the frequency. 

2. The conduit model based upon a cross-sectional average of 

the zeroth mode only is valid at least for the range of 

damping numbers and frequency numbers 

0.0001 < D < 0.02 nz 

F < 10.0. nz 





3. The conduit model based upon rational approximations 

of the zeroth mode transfer equation model is useful 

for studying the dynamic response of complex fluid 

systems. 

4. Wall elasticity effects should be considered when 

modeling fluid tranmission lines with increases in 

the spatial attenuation of the order of 1000 and de­

creases in the phase velocity of the order of 75 per 

cent demonstrated for one case in this treatise. 

Recommendations for Future Study 

Areas wh.ich it is felt are worthy of future study include: 

lo Investigation of the effect of a net flow upon dis­

turbance propagation. This investi~ation should 

include laminar and turbulent flow. 

2. Investigate further the effects of nonrigid walls 

upon viscous propagation. 

3. Look into the effect of discontinuities and non=uniform 

cross-sectional area upon viscous propagation in a 

fluid conduit. 
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CALCULATION OF EIGENVALUES 

The purpose of this Appendix is to demonstrate the calculation 

procedure used to obtain the eigenvalues from the characteristic 

equations. 

Consider Equations (3.32) and (4.3), or 

(A.l) 

and 

(A.2) 

which are the characteristic equations for the eigenvalues of a rigid 

fluid conduit. In order that the calculations can be based upon dimen-

sionless numbers, define 

and 

G =Yr n no 

B = ~nro n 

l<i = k r n o 

FN = sr /c 
0 0 

DN = v/c r 
0 0 

where each is dimensionless. 
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Equations (A.l) and (A.2) now become 

... K'l. Bv.'2. I LN "2.. Gvt = "' + FN =- •• ..,. r' 
(Ao3) 

i+ 1(FN)(DN) 

and 

(A.4) 

The actual calculation here must be a numerical trial and error proce-

dure. Hence, define 

E= 

and start the calculation by assuming a value for B. This is then used 
n 

to calculate K and G from Equation (A.3). Knowing B, G, and~ (for 
n n n n 'n 

a given value of F and D) we can calculate E. In order to know how to 

adjust B, calculate dE/dB and adjust B from the equation 
n n n 

E 

where Bnl represents the new value and BnO the previous value. A list­

ing of the computer program used to perform these calculations is given 

on the following page. The data read in are: 

DN = damping number 

FNO = initial value of frequency number 

DFN = increment in frequency number 

FNM = maximum value of frequency number 

BOX= starting value of Real (B) 
n 

BOY= starting value of Imaginary (B ). 
n 





C CALCULATION OF HIGHER MODE EIGENVALUES 
COMPLEX B,F,CK,CK2,RJB,RJK,CT1,CT2,E 
COMPLEX TltT2,T3,T4,T5,DB,G2,G 

20 F0RMATC7F10e81 
21 FORMATl7Flle81 
22 FORMATl2X,FlleB,2El5e8t2X,2El5e8) 
1 READl5,201DNtFN0,DFN,FNM,BOX,BOY,ER 
2 WRITE<6,211DN,FN0,DFN,FNM,BOX,BOY,ER 

B=CMPLXIBOX,BOYI 
FN=FNO 

10 F=CMPLXCO.,FNI 
7 CK2=8**2+F**2-F/DN 

CK=CSQRTICK21 
IFIAIMAGICK21l3,4t4 

3 CK=-CK 
4 CALL JOORJllCK,RJKl 

CALL JOORJl(B,RJBl 
G2=B**2+F**2 
CTl=CK*B*RJB 
CT2=G2*RJK 
E=CT1,-CT2 
Rl=CABS(El/CABSICTll 
IFIRl-ERl6t6,5 

5 Tl=RJB*IB**Z/CK+CKl 
TZ=B*CK*I llet0el-RJB/B+RJB**21 
T3=2e*B*RJK 
T4=1B/CKl*G2*1<le,Oe)-RJK/CK+RJK**2) 
T5=Tl+T2-T3-T4 
DB=-E/T5 
B=B+DB 
GO TO 7 

6 G=CSQRTIG2) 
IFIAIMAGIG2)J8,9,9 

8 G=-G 
9 GX=REALI GI 

GY=AIMAGIGI 
CCO=FN/GY 
WRITE<6,221FN,GX,CCO,B 
FN=FN+DFN 
IFIFN-FNMll0,10,11 

11 GO TO 1 
12 STOP 

END 
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SUBROUTINE JOORJllZ,RJI 
C CALCULATION OF JOZ AND JlZ 

CO~PLEX Z,Jl,J0,TERM0,TERM1,Zl,Z2,PO,QO,Pl,Ql,PHO,PH1,FZ1,FZ2,RJ 
X•REALIZl 
Y•AIMAGIZl 
R•C,AeSI Z I 
IFIR-18.Jl00,100,110 

100 TERM1•Zl2e 
.Jl=Z/2e 
JO=lle,Oel 
TERMO=lle,OeJ 
A=l• 
AM=7e+R 

101 TERMO•TERM0*1-IZ/2el**21/A**2 
JO=JO+TERMO 
TERMl•TERMl*I-IZ/2el**21/IIA+lel*Al 
Jl=Jl+TERMl 
A=A+le 
JF(A-AMllOl,101,115 

110 IFIXllll,112,112 
111 Zl=-Z 

GO TO 113 
112 Zl=Z 
113 PI=3el415926 

Z2•8e*Zl 
IFICABSIZ2l-5000e)l20,120,121 

120 PO=lle,Oel-4e5/Z2**2+3675e/l8e*Z2**41 
Q0=-lo/Z2+37e5/Z2**3~59535e/(8e*Z2**51 
Pl=llet0e)+7e5/Z2**2-4725e/18e*Z2**41 
Ql=3e/Z2-52e5/Z2**3+6615e/18.*Z2**51 
GO TO 122 

121 PO=lle,Oel-4e5/Z2**2 
Q0=-1.122 
Pl=lle,Oel+7.5/Z2**2 
01=3. /22 

122 PHO=Zl-PI/4e 
PH1=Zl-e75*PI 
FZ1=2e/PI*Zl 
FZ2=CSQRTIFZ11 
AZl=AIMAGIZll 
IFIABSIAZ11-50elll6,ll6,l17 

116 JO=FZ2*1PO*CCOSIPHOl-OO*CSINIPHOll 
Jl=FZ2*1Pl*CCOSIPHll-Ol*CSINIPHlll 
IF1Xlll4,115,115 

114 Jl=-J 1 
115 RJ=Jl/JO 

GO TO 119 
117 RJ=IIOe,lol*Pl+Qll/lP0-10.,1.l*OOl 
119 RETURN 

END 
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VISCOUS WATER HAMMER PROBLEM 
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INVERSE LAPLACE TRANSFORMATION FOR 

VISCOUS WATER HAMMER PROBLEM 

In this Appendix, the method employed in the calculation of the 

pressure history for the viscous water 'hammer problem, as presented in 

Chapter IV, will be given. 

It has been shown (Chapter IV) tha t the transformed pressure re-

sponse output to a transformed velocity input is 

where 

and 

Putting V( s ) = -V / s , which represents the transformed input due to 
0 

sudden valve cl osure ; V bei ng the initial fluid velocity before 
0 
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(B.1) 
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closure, gives 

(B.2) 

The inverse transformation of Equation (B.2) may be written as 

f(t) = ~ fVo (·z.(s)\ (Swh res)) e S-b 7 
L 1_ \ s 7 co~ h res) 1 

Re<oc:dves 

This summation will now be evaluated. 

For convenience, Equation (B.3) may be written in the form 

(B.4) 

The poles which contribute residues to the above summa tion are given by 

COSh res)= 0 

or 

The corresponding r esidues are given by 

A lis ting of t he computer program writ t en to calc ulate and sum these 

residues is given on t h e following page . 





151 

C VISCOUS WATER HAMMER PROBLEM 
COMPLEX FClOOJ,Tl,T2,T3,T4Cl00JeFCC100J,TlC,T2C,T3CoT4CllOOl,SUM 
COMPLEX FN,FKNR0,FF,DIF1,FN1,E2,E3,FNN,E4,RJ 

2 FORMAT(I5,5Fl0e71 
11 FORMATC7X,Fl5e8,E15,8,El5e8l 
l READC5,21NM,DN,DT,TM~G,TO 

WRITEC6,21NM,DN,DT,TM,G,TO 
DO 1 N•l,NM 
Pl=3el415926 
A=N-1 
Pl•CA+e51*PI 
El=eOOOl 
FNN=CMPLX!El,Pll 
FN=FNN 

4 E2s-FN/DN 
FKNRO=CSQRTCE2l 
IFIAIMAGIE2lll3,14,14 

13 FKNRO=-FKNRO 
14 CALL JOORJllFK~RO,RJl 

FF=lle,Oel-2e*RJ/FKNRO 
ZERO=Oe 
E3=CMPLXIZERO,Pll 
E4•CSQRTIFFI 
IFIAIMAGIFF)l15,16,16 

15 E4=-E4 
16 FN1=E3*E4 

DIFl=IFNl-FN)/FNl 
DIF2=1CABSIFNll-CABSIFNll/CABSIFNll 
IFIDIF2-GJ6,6,5 

5 FN=FNl 
GO TO 4 

6 FINl=FNl 
Tl=FIN1**2/(IA+e51*PI1**2 
T2=FINJ/CDN*Tll 
T3=e5+T2*1le+Tl1**2/8e 
T41Nl=FCNl*lle+T3J 
FCCNl=CONJGIFINll 
TlC=FCINl**2/C IA+.5l*PI1**2 
T2C•FCIN)/CDN*TlCI 
T3C=e5+T2C*lle+TlC1**2/8e 

1 T4CINl=FC!Nl*Cle+T3Cl 
T=TO 

8 SUM=(Oe,Oe) 
DO 10 N=l,NM 

10 SUM=SUM+CEXPIFINi*Tl/T4CNl+CEXPIFCCNJ*TI/T4C(Nl 
WRITEC6tlllT,SUM 
T=T+DT 
tFIT-TMJ8,8,12 

12 GO TO 1 
17 STOP 
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C CALCU~ATION OF ZC 
COMPLEX CFN,G2,FKNRO,FF,G4,Z,RJ 

2 FORMAT(4Fl5.8l 
3 FORMAT(1Fl5a81 
4 FORMAT(2X,1Fl5e4,4X,El5.8,2X,El5,8) 
1 READ<5,21DN,FNO,DFN,FNM 

WRITE(6,3)DN 
FN=FNO 
PI=3.1415926 

90 CFN=CMPLXIOe,FNI 
G2=-CFN/DN 
FKNRO=CSQRTIG2) 
IFIAIMAGIG21l91,92,92 

91 FKNRO=-FKNRO 
92 CALL JOORJllFKNRO,RJl 

FF=ll.,O.l-2•*RJ/FKNRO 
G4=CSQRT(FFl 
IF<AIMAGIFFl 193,94,94 

93 G4=-G4 
94 Z=l./G4 

ZX=REAL!ZI 
ZY=AIMAG(ZJ 
AZ=CABSIZl 
PHZ=ATAN21( ZX ,zy l 
PHZD=(l80e/3.1415926)*PHZ 
WRITE!6,4)FN,AZ,PHZD 
FN=FN+DFN 
IF(FN-FNM)90,90,8 

8 GO TO 1 
9 STOP 

END 

C CALCULATION OF GAMMA 
COMPLEX CFN,G2,FKNRO,FF,G4,GAMA,RJ 

2 FORMAT(4Fl5.8l 
3 FOl:MAT(lF15.8l 
4 FORMAT(2X,1Fl5.4,4X,El5.8,2X,El5.8l 
1 RF.ADC5,2lDN,FNO,DFN,FNM 

WkITEC6,31DN 
FN=FNO 
Pl=3el415926 

90 CFN=CMPLX(O.,FNI 
G2=-CFN/DN 
FKNRO=CSQRTIS2l 
IFCAIMAGCG2l 191,92,92 

91 FKNRO=-FKNRO 
92 CALL JOORJlCFKNRO,RJl 

FF=Cl.,O.l-2.*RJ/FKNRO 
G4.=(SQR T <FF l 
IFCAIMAGIFFl 193,94,94 

93 G4==-G4 
94 GAMA=CFN/G4 

GX=REALCGAMAl 
GY=AIMAG(GAMAl 
CCO=FN/GY 
WRITE(6,4lFN,GX,CCO 
FN=FN+DFN 
IFCFN-FNMl90,90,8 

8 GO TO 1 
9 STOP 

END 
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C 'FREQUENCY RESPONSE OF LINE WITH CONST. PRESS. TERMINATION 
COMPLEX .CFN,G2,FKNRO,FF,G4,GAMA,RJ,COSHG,SINHG,POV 

2 FORMAT14Fl5o8l 
.3 FORMAT I!//, 15X, 1Fl5o 8 ,II. I 
4 FORMATl1Fl5o2,5X,1El5.8,5X,1£15o8l 
1 READ15,21DN,FNO,DFN,FNM 

WRITEl6,31DN 
FN=FNO· 
PI;;,3.o 1415926 

90. CFN=CMPLXIOo,FNl 
G2=-CFN/DN 
FKNRO=CSQRTIG2l 
IFiAIMAGIG2ll91,92,92 

91 · FKNRO=-FKNRO 
92 CALL JOORJl(FKNRO,RJ) 

FF=(l.,0.)-2e*RJ/FKNRO 
G4=CSQRTIFF) 
IFIAIMAGIFF) )93,94,94 

93 G4=-G4 
94 GAMA=CFN/G4 

CO~HG=(CEXP(GAMA)+CEXP(-GAMA)l/2o 
SINHG=(CEXP(GAMA)-CEXP(-GAMA))/20 
POV=GAMA*SINHG/(CFN*COSHG) 
RPV=CABSIPOV) 
RPVDB=20e*ALOG101RPV) 
PVX=REALI POV) 
PVY=AIMAG!POVl 
PHPV=ATAN(PVY/PVX) 
IF(PVX)6,7,7 

6 · PHPV=PHPV+PI 
7 PHrVD=PHPV*lBO./PI 

WRIT~(6,4)FN,RPVDB,PHPVD 
FN=FN+DFN 
l~!FN-FNM)90,90,10 

10 GO TO 1 
11 STOP 

END 

C CALCULATION OF ZEROES OF S!NHG 
COMPLEX FN,FKNRO,FF,DIF1,FN1,E~,E3,FNN,E4,RJ 

2 FORMATIF15e8,115,Fl5o8) 
3 FORMAT12Xr1Fl5.8) 
8 FORMAT(7X,3Fl5.5) 
1 READ (5,2)DN,NM,G 

WRITE(6,3)DN 
11 DO 7 N=l,NM 

PI=3.1415926 
T=fll 
Pl=T*Pl 
El=oOOOl 
FNN=(MPLX(El,Pl) 
FN=FNN 

4 E2=-FN/DN 
FKf;RO=CSQRT!E2l 
IF (AI MAG IE 2 l ) 13, 14, 14 

13 FKNRO=-FKNRO 
GU TO 4 

6 FNXl=REAL<FNil 
FNYl=AIMAG(FNl) 
D=lo+((FNYl/FNXll**2) 
ZET A=SQRT (lo /D) 
FUD=-FNXl/ZETA 
ALPHA=FNXl 
FND=Ff\lYl 

7 WR!TE16,8)DN,ZETA,FUD 
9 GO TO 1 
10 STOP 

END 
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C eLASTIC WALL FLEXIBLE 
COMPLEX B,F,CK,CK2,RJB,RJK,CT1,CT2,E 
COMPLEX Tl,T2,T3,T4,T5,T6,T7,DB,G2,~,EE 

20 FORMATC7Fl0e8,2F5e2) 
21 FORMATC7Flle8,2F6e3l 
22 FORMAT(2X,Flle8,2El5.8~2X,2El5e8) 
1 READ(5,20)DN,FNO,DFN,FNM,BOX,BOY,ER,Pl,P2 
2 WRITEC6,2l)DN~FNO,OFN,FNM,BOX,BOY,ER,Pl,P2 

B=<:MPLX ( BOX !..BOY l 
FN=FNO 

10 ~=CMPLX(O.,FN) 
7 CK2=B**2+F**2-F/DN 

.CK=CSQRT(CK2l 
IF(AIMAG(CK2l)3,4,4 

3 CK=-CK 
4 CALL JOORJl(CK,RJK) 

CALL JOORJl(B,RJB) 
G2=B**2+f**2 
CTl=CK*B*RJB 
CT2=G2*RJK 
E=CT1-CT2 
T6=(Pl*Cf**2ll+P2 
EE=E-CCK*CF**2))/T6 

. Rl=CABSCEEJ/CABSCEl 
IF(Rl-ER>6,6,5 

5 Tl=RJB*CB**2/CK+CK) 
T2=B*CK*l(l~,O.>-RJB/B+RJB**2l 
T3=2.*B*RJK 
T4=(B/CK>*G2*1 (le,Oel-RJK/CK+RJK**2) 
T5=Tl+T2-T3-T4 
T7=T5-CB*CF**2))/CCK*T6l 
DB=-EE/T7 
B=B+DB 
GO TO 7 

6 G=CSQRTCG2l 
IF(AIMAG(G2)l8,9,9 

8 G=-G 
9 GX=REAL(Gl 

GY=AIMAG(G) 
CCO=FN/GY 
WRITE16,22)FN,GX,CCO,B 
FN=FN+DFN 
IF(FN-FNM)l0,10,11 

11 GO TO 1 
12 STOP 

END 
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