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PREFACE 

The method of complementary energy for the analysis of planar frames 

loaded normal to the plane is presented in this thesis. A cantilever 

basic structure is adopted and the cross-sectional vectors of the near 

end are chosen as the redundants. These are then defined in terms of 

applied loads and redundants of the whole system. The complementary energy 

is expressed in a matrix form. Minimiza_tion with respect to each of the 

redundants yields a sufficient number of simultaneous algebraic equations 

for the solution. 
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CHAPTER I 

INTRODUCTION 

1-1. Statement of the Problem 

A structure lying in one plane and loaded normal to it is defined 

as an Order II structure. The analysis of frames of this type by means 

of complementary potential energy is the subject of this study. The 

investigation is restricted to frames consisting of straight, bent, or 

curved members having either constant or variable cross-sections. The 

causes of deformations may be forces, moments, displacements of supports, 

temperature variations, or changes in volume of the material. 

1-2. Limitation of the Problem 

The analysis is based on the following assumptions: 

1. One of the principal planes of each member coincides with the 

plane of the structure. 

2. The material of the structure is homogeneous, isotropic and 

continuous. 

3. All deformations are small and elastic. 

4. The material obeys Hooke's Law. 

5. The moduli of elasticity and rigidity are known numbers. 

1 
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1-3. Historical Review 

The principle of complementary energy, first stated by Engesser in 

1889 is a generalization of Castigliano's theorems on least work presented 

in 1873 (1). A rigorous presentation of the principle as applied in the 

theory of elasticity has been given by Sokolnikoff (2). Formulation, 

proofs, and applications of the theorem of minimum complementary energy 

for statically loaded structures with minute deformations may be found 

in the works of Argyris and Kelsey (3), Brown (4), Hoff (1), Langhaar (5), 

Pippard (6), and others. Westergaard (7) used this principle in a general­

ized form in the solution of buckling and vibration problems. Charlton(8) 

approached the problem from a new perspective, employing the law of con­

servation of energy as a starting point. Libove (9) extended the theory 

to include structures with finite deformations. Berman (10) applied the 

complementary energy method in matrix form to planar structures loaded in 

the plane, and Li (11) analyzed a truss as a rigid frame by the same 

method. The extension of the method of complementary energy to the 

analysis of frames of Order II is developed herein. 

1-4. Notation 

The symbols adopted are defined where they first appear and are 

arranged alphabetically under Nomenclature. 



CHAPTER II 

BASIC STRUCTURE 

2-1. General 

The frame to be analyzed is made "statically determinate" by temporarily 

releasing an adequate number of actions. 1 The structure thus formed is 

called a "Basic Frame" (Fig. 2-1). If a frame has n degrees of redundancy, 

n releases will be required. The suppression of each internal action at a 

given cross-section of a frame corresponds to one release. The solution of 

a statically indeterminate frame will be considered achieved when the actions 

at the chosen releases (redundants) are found. 

2~2. Coordinate Systems 

Three coordinate systems are introduced: the reference system, the 

member system, and the element system (Fig. 2-2). Each one consists of a 

right-handed set of orthogonal axes. The first is oriented so that the 

X and Y axes are in the plane of the structure with the origin arbitrarily 

located. This system is referred to as the "O" system and all terms 

associated with it are labeled with an O superscript. 

The Z axis of the second is parallel to the Z axis of the O system 

while its X axis is a straight line originating at end i of the member and 

1rn this dissertation "action" will indicate a gen~ralized force 
and "displacement" will refer to a deflection or a rotation. 

3 
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0 Cut 

6 Member 

{w} Vector of 
Loads at a 

, XO 
Point 

Figure 2-1. Basic Frame 

directed through the other end j. All quantities in this system are 

distinguished by the superscript M. The angle measured from the X axis 

of the O system to the X axis of the M system according to the right hand 

rule is designated by Q (Fig. 2-2). 

The third system is required only in the derivation of the flexibil-

ities of a curved member. Its Y-Z plane is the plane of the cross-section 



XO G) 

Figure 2-2. Coordinate Systems 

at any point along the member, and its X axis is normal to the cross­

section at that point and passes through its centroid. Related terms 

are characterized by the superscript E. ~ is the angle measured in the 

X=Y plane from the M system to the element system (Fig. 2-2). 

It i~ assumed that the shear center of any cross-section coincides 

with its centroid. 

5 
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2-3. Cantilever Basic Structure 

The cantilever basic structure (Fig. 2-3) is fixed at end j and free 

at end i. ~' , P~ are applied forces normal to the plane, and 

QM 
l' 

Moments 

treated 

column 

. , QM are applied moment vectors in the plane of the member. 
s 

-J: and 'M: , and force J:1 are the member redundants and are iax iay · iaz 

as arbitrary loads. Collectively they are designated by the 

matrix {if1i·a} • The moments and force at j (11: , 'M: and J: ) Jax Jay Jax 

can be expressed as a function of the applied loads and member redundants 

utilizing the static equilibrium of the cantilever. 

Figure 2-3. Cantilever Basic Structure 



Force and moment vectors are positive if acting in the positive 

sense of the appropriate reference system. 

2-4. Cross-Sectional Elements 

G) 

• Indicates a force in 
the positive Z direction 

xq 

Figure 2-4. Cross-sectional Elements at Point q 

The torsional moment, bending moment, and shearing force at any 

section q of member a due to end actions {~a} are given by 

7 
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E(H) 
13 sin 13 0 1 0 M J! T -- = cos -yqi qa 1.ax 

ME(H) -sin 13 13 0 0 1 
M Ji! cos x 
qi qa 1.ay 

NE(H) 0 0 1 0 0 1 ef: qa 1.az 

(2-1) 

M M 
where xqi and yqi are the coordinates of the shear center at point q with 

respect to end i in the member system. Symbolically, Eq. (2-1) may be 

written as 

{w!~)} = [w:'] [r:1] [Itia} (2-la) 

where [r:~1 is the transmission matrix that transfers the end actions in 

the M system to point q from point i, and[w!M] is the rotation matrix at 

point q that rotates these actions into the element coordinate system • 
.. 

Similarly, the cross-sectional ·e~~ments at q due to applied loads on 

the cantilever are 

(2-2) 

in which the sununation is taken only over the segment to the left of q 

(Fig. 2-4). By superposition the total actions at q due to end actions 

and applied loads are: 

(2-3) 

2-5. Deformations of Basic Structure 

For an elastic member the total displacement at the end i is the sum 

of the partial displacements caused by successive applications of the loads 



and of the member redundants. These may be found by employing 

Castigliano's first theorem, which gives 

where 

(/)~ 
1.ax 

'/JM 
iay 

denotes 

M e:. 1.az 

the total 

the M system, 

denotes the total 

the M system, and 

= au a 

7 1.ax 

au 
a =---al/.1 iay 

au 
a =---

oif! 
1.az 

rotation at 

rotation at 

i of member a about the X 

i of member a about the Y 

9 

axis of 

axis of 

M denotes the total deflection at i of member a in the Z direction e: . 1.az 

of the M system. 

The strain energy U stored in member a is given by 
a 

u "'u . + ub d' +uh a torsion en 1.ng sear 

or 

U = l [l(TE )2 
a 2 qa 

s 
+ t] (2-4) 

where G and E are the moduli of rigidity and elasticity respectively, GJ is 

the equivalent torsional rigidity, A and I are the area and moment of in-

ertia of the. cross-section, and k is the shear constant for the section. 

Substitutingfrom Eq. (2-1) into Eq. (2-4) the displacements at i 
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due to end actions {~a} become 

0~(H) = oUa 
= J: fM + J: f~ + N~ f~ 1.ax ~ 1.ax iaxx i.ay 1.axy 1.az 1.axz 

1.ax 
··"· 

,i;,· ... ,. 

0~(H) o·Ua 
= J: I! + J: I! +J: fM = iay oJ'! 1.ax 1.ayx iay i.ayy 1.az iayz (2-5) 

iay 

/!(H) oUa 
= J: if.azx + {ay 

fM + J: I! = 1.az or!! 1.ax iazy 1.az 1.azz 
1.az 

or in matrix form 

0~(H) = I! I! f~ J: 1.ax 1.axx 1.axy 1.axz 1.ax 

r/}:(H) fM I! f~ J: i.ay iayx i.ayy 1.ayz i.ay 
(2-6) 

M(H) e. 1.az f~ 1.azx £1: 1.azy f~ 1.azz J: 1.az 

which may be written as 

{ ~~!H) J = [if.a] { ~a} (2-6a)' 

where the coefficient matrix is symmetrical and its terms are as given in 

Table 2-1. A typical coefficient {: , defined as an end flexibility, 1.ars 

denotes the displacement of i of member a in the direction of the r axis 

of the M system due to a unit cause at i in the direction of thesaxisof 

the M system, all other causes being zero. 

The displacements at i due to a load vector{~a} at paint t. (Fig. 2-4) · 

may be found in a like manner if the static equivalent of{~a} is placed 

at point i and the partial derivatives are taken with respect to these 
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equivalent end forces. The interval of integ:r.a.tion. for the energy 

expression is tj. 

TABLE 2=1. ALGEBRAIC EXPRESSIONS FOR FLEXIBILITY COEFFICIENTS 

f~ f 2 ds f . 2 l3 ds = cos lo GJ + sin 
1.axx EI 

s s 

fM 
"" f sin 13 cos j3 ds - f sin j3 cos l3 ds 

iaxy GJ EI 
s s 

f~ 1.axz = f (x sin 
s 

j3 cos j3 - y cos 2 13)~; - f (x sinl3 cosl3 + y si/ 13):; 

£1: 1.ayy 

f~ iayz 

s 

~ f sin2 13 ~; + f co/ 
s s 

= I (x si.n2 i3 - y sin 
s 

13 cos 13) ~~ + J (x co/ j3 + y sin P cos [3):i 
s 

sin 
2 ds 

j3 - y cos 13) GJ + 1 2 
(x cos[3 + y sinf3) ~}+ k /. ds 

8 E.. "s GA 

The static equivalent of {w~a} at point i. is 



{ SWM } =[ MJ [w'M) ita r it ta 

that is 

= 1 0 

sJ! 1.tay 0 1 

0 0 

Thus 

' 
= 

au 
= __!__ 

asJ!t 1. ax 

' au 
a = = 

osrf:t 
i ay 

' au 
a = = osJ.1 

1.taz 

I 

1 

TM 
ita.x 

TM 
itay 

M 
77 itaz 

12 

(2-7) 

t1 taz 

where U is the energy stored in member a from t to j, due to the loads at a 

point t, and where T~t , i'!-t , and 1. ax 1. ay 

point i resulting from the same cause. 

i: 1.tay 

M 
77itaz 

= 

M' 
f. 1.ayx 

i 

f~ 1.azy 

-n~ are the load functions at 
· 1 1.taz 

This gives 

f~ ' 1.axz 

M' 
f. 1.ayz 

M' 
f. 1.azz 

sJ: 1.tax 

sJ: 
1.tay 

(2-8) 

sJ.1 1.taz 
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or 

(2-8a) 

I 

where the coefficients~ are the same algebraic expressions as those of 1a 

~ shown in Table 2-1, except that in this case all the integrations are 
i.a 

performed over the interval tj. If several loads are applied on the span, 

the total load functions are obtained by superposition. Therefore, 

= E 
t 

and the total displacements at end i of member a are 

or 

vl! 1ax 

M 
~iay 

= 

'1i.ay + 

M 
') iaz 

[AM} =[M} ia via 

l! :iaxy 

f~ 1azz 

(2-9) 

(2-10) 

(2-lOa) 

The derivation of fle~ibilities and load functions for a parabolic bar 

is given in Appendix A, and values are tabulated for the bar configuration 

used in the example problem. 



CHAPrER III 

TOTAL COMPLEMENTARY POTENTIAL ENERGY 

3-1. General 

The total complementary potential energy is defined as the sum of 

the complementary strain energy U* and the complementary potential energy 

of the prescribed displacements V*. In equation form this may be written 

as 

m'< = U* + V* (3-1) 

Here U* represents the area above the stress strain curve (Fig. 3-1), 

and is given by 

U* = f fa e (er) dcr dv 
V O 

for a uniaxial state of stress. 

Stress 

E Strain 

Figure 3-1. Stress-Strain Curve 

14 
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When a three-dimensional state of stress exists in an elastic body, this 

equation must be replaced by 

! (\,:;: 
c dcr + 

O y y 

d 'T 
xy 

f \z 
+ /yz 

0 

d 'T 
yz 

+ f Tzx 
f"zx 

0 

In Eq. (3-1) 

d T /~ dv zx 

(3-2) 

where wk are specified displacements and Wk are the forces required to 

maintain these displacements. 

A structure is in a true state of stress when not only the equilib-

rium conditions are satisfied but also the requirement of compatibility 

of deformations is fulfilled. For variations in stress when the system 

is in its true state of equilibrium, the total complementary potential 

energy n* has a stationary value. Because the stationary value is a 

minimum when the system is in stable equilibrium, the complementary 

energy principle may be stated as follows: The total complementary 

potential energy is a minimum with respect to variations in stress when 

the system is in a state of stable equilibrium (1). That is 

6 (U* + V*) = 0 (3-3) 

thus au* av* 
owk owk + awk awk = 0 (3-4) 

Since the 6Wk are not all zero and are independent of each other 

= 0. (3-4a) 
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or substituting fr.om Eq. (3-2) 

(3-5) 

Thus the partial derivative of the complementary strain energy of an 

elastic system with respect to a force at which there is a prescribed 

displacement is equal to that displacement. 

~ Compatibili.!;Y, 

For a given redundant structure the equations of equilibrium may 

be established first. The complementary strain energy 1J'1, and the 

complementary potential energy of the prescribed displacements Vi, can 

both be expressed as functions of loads and redundants only, since the 

other forces may be eliminated by using the relationships in the equa-

tions of equilibrium. The compatibility conditions, which are the same 

in number as the redundants, are then obtained by minimizing the total 

complementary potential energy with respect to each of the redundants. 

Thus 

oU* 
OJ\ = r 

k 
(3-6) 

where rk are the specified displacements at the redundants and will 

either be zero or have some known values. 

3=.]. Redundants 

The vector of member redundants { -J;.a} is a function of loads on 

the frame and some of the structure redundants. At end i of member a, 

this vector represents the static equivalent of the applied loads and 

structure redundants that affect the member and therefore may be 
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written as 

J sw?l (3-7) 

where 

RO 
k 

.) 

[wM0] is the rotation matrix from the 110 11 system to the "M11 system, 

[-ro J is the linear transmission matrix for member a, 
a -

rw~} are the load vectors at ends j of the loaded members, 

statically equivalent to the applied loads on the members, 

and 

[ R~ } is the vector of structure redundants. 

For example, the frame in Fig. (2-1) has two structure redundant 

vectors { R~ } and { R~} at cuts (I) and (;) and member & only is loaded. 

The member redundant vectors{H~1} and { H~5} are given by 

1 
M.l 

l. x 

1 
M.l l. y 
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where 13 is a 3 x 3 unit matrix, and o3 is a 3 x 3 null matrix, 

3-4. Complementary Strain Ener_gy 

Since for linearly elastic structures the complementary strain energy 

is equal to the internal strain energy, then by Clapeyron's theorem (13), 

the complementary strain energy of member a is given by 

U* 
a 

= (3-8) 

in which w:a are the externally applied loads on member a and w~a are the 

corresponding displacements. Substituting Eq. (2-lOa) into Eq. (3-8), 

and Eq. (3-7) substituted into Eq. (3-9) yields 

Since 

then 

and 

u* 
a 

= - H 1 ~ 0 
2 ia 

(3-10) 



The:refo:re 

.,. 1 
{ M rJ M } l [HO }T { 0 l U" = 

2 Wta Lwta + 2 . ,; . a _ 1.a 1.a J 

1 { H~ l T ~~ J {H~ \ +-2 ia J 1.a 1.a J 

that is 

u* 1 
r ~ f { M 1 = l ta w ta_ · a 2 

or 

Substitution of the value of HO from Eq. (3-7) yields 
ia 

or 

1 +-2 

19 

(3-11) 

(3-lla) 

(3-llb) 



1 { WM fJwM } +l u'l'( = a 2 ta l ta 2 

Denoting 

and 

f
oP I oP ass I aSR 

- - - --- ·- ---

O I o 
O!aRS I OI a RR 
~ I 

Eq. (3-12) may be expressed as 

T u: = % { W~a J [ w~a} + ! 
T 

1 

SW~ 
J 

0 0 ~~r ---· ·-·- -----· -·-·- - ----

I 
T I -

l ~ [r~ J [u~.J: [r~ J 

I 

~ ___ I_ -~ ___ I ___ 0 __ _ 

o I o I o 
OlaS'T/ I OlaSS I OlaSR 

-- - --1- -- - t -- -
Clio I Clio I Clio 
aRv I aRS I aRR 

T 

~~J[r~J 

1 

sw0 
j 

20 

-l ~J·· 
J ' 

kf \.._ ..,, 

(3-12) 

(3-13) 

The total complementary strain energy of the entire structure is then 

the summation of the complementary energies of the individual members. 

Thus 

[~.}}:.} 
T -... 1 E 1 I I u" = +- 1 0 0 0 1 

2 a 2 --- --1- --1- --- (3-14) 

SW~ OI IOI IOI SW~ 
J sv J SS I SR J 

--- -- -- -- --

I I 

RO I 

~ k OIRV I OIRS OIRR 
where 1·· 1 

[Ol~J 

-
I: La~= a 
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The redundants { ~} are determ.ined by the use of Eq. (3-6) . However, 

before the partial differentiation° u: can be carried out, {wt} must be 
a~ 

expressed in terms of[~} This operation is possible but becomes 

intractable. By using the equation for the deflection curve for the 

"basic cantilever" the displacements {wta} at the load points can be 

stated in terms of {Wta} and the member redundants [~a} , but since 

{ ~a} are functions of the structure redundants {~}the expression for 

r: {W } T {wt 1 quickly reache: forbidding proportions. The necessity 
a ta aJ 

for differentiating this matrix pioduct in the energy equation is 

circumvented by developing an alternate matrix formulation. This deriva-

tion is carried out in the next chapter, and comparison of the new 

oU* expression with Eq. (3-14) shows that O can be evaluated without 
o~ 

explicitly expressing { Wta} T {w ta} in terms of { ~ }· 



CHAPTER IV 

ALTERNATIVE DERIVATION OF COMPLEMENTARY 

STRAIN ENERGY 

4-1. General 

Instead of grouping the static equivalents of the on-span loads 

at the "free" end of the bar, their effects could be treated separately 

in the positions at which they occur on the span, At every point of 

loading there will be a displacement caused by each of the loads. The 

energy expression therefore would require the generation of a full 

influence coefficient matrix. The general procedure for dealing with 

concentrated loads on a span is to introduce an imaginary node at each 

load point thereby creating members with no loads between the end 

points (10), The increase in the number of members to be dealt with is 

an obvious drawback of this method, A further disadvantage occurs if 

the span is subjected to distributed loads, for i.n this instance, these 

loads mu.st be approximated by concentrated loads before tl:ie node points 

are assigned. However, by the use of generalized forces, Meek (12) 

showed that the definition of influence coefficients ari.sing from such 

loadings can be extended to cases where loads occur between selected 

node points of a structure. 

22 
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4-2. Generalized Forces 

A generalized force is any group of statically interdependent 

forces that can be completely defined by one symbol (13). The corre-

spondi.ng displacement must be taken in such a way that the result of 

the product of the generalized force and the increment of the corre-

spending generalized displacement will be the work. This means that in 

the case of a distributed load, if the load intensity is taken as the 

generalized force, the corresponding generalized displacement will be 

the area between the original position of the beam and its deflected 

position (Fig. 4-1) and is found by taking the partial derivative of the 

strain energy with respect to the load intensity. 

pdx 
I 
I 

Generalized Load p 

Ji,::::.:-":":''.'"'+...._..~.,...~/~~~~~"'.':-~-:--~-,-,:,,.-,,~-:;-:~;---~-----

~ ····~· ''J~~~\(:.(·--~-···~~ 
L Generalized Displacement 

Figure 4-1. Generalized Displacement Due to 
Uniform Load 

£!_-3. Generalized Displacements of Basic Structure 

The basic structure (Fig. 2-3) is acted upon by the applied loads 



{Jf } _ { M M 
ta - Qtax Qtay (t = 1, 2, 3, .. , ) 

and the member redundants 

JI 1 
iaz J 

The torsional moment, bending moment, and shearing force at any 

section q of member a are given by 

= 

1'1 + I:: bE QM + ~ bE 
t qtxx tax t qtxy taz 

A typical 

di.rec tion 

direction 

E 
N qa 

= 

= 

+ 

+ E bE 
t qtzx 

influence coefficient 

of the element system 

of the member system; 

+ 

E is b qtyx 

due to a 

bE. is 
q1xy 

direction of the element system due. to a 

direction of the member system~ 

M E bE 
Qtay + t qtyz 

E + b .. q1.zz 

(4-1) 

-;1 
taz 

QM 
tay 

+ E bE 
t qtzz 

~ taz 

the action at q in the Y 

unit cause at t in the x 

the action at q in the x 

unit cause at i in the Y 

The summation~ in determining.the cross-sectional elements at q 
t 

on the basic cantilever is taken over the interval i q. 
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The total complementary strain energy of member a is given by 

u1, = u,,. + u,,. + u~·-
a torsion bending shear 

that is 

u~~· 1 J[rE \2 = l 
a 2 ( qa ! 

s \ / 

A.E ME \2 A.E , E \2 El iN + +· \ \z (4-2) 
qx qa l qy \ qa l 

I \ I _ _J 

where 

A.E ds 
= = 

qx GJ angular deformation of the differential element 

d . h XE d" . sin t_e 1rect1on~ 

A.E ds 
angular deformation of the differential element = = 

qy EI 

ds in the YE direction~ 

A.E kds 
linear deformation of the differential element :=: = qz GA 

ds in the ZE direction. 

The generalized displacements corresponding to the generalized forces 

on the member are 

.)1 
tax 

rJI 
tay 

M w 
taz 

M 
W. iax 

ou·k 
a 

= OPM 
taz 

OU* 
a =--

a:tl: iax 

= rotation at t of member a. about the X axis 

of the member system, 

= rotation at t of member a about the Y axis 

of the member system, 

deflection at t of member a in the Z 

direction~ 

= rotation of i of member a about the X axis 

of the member system, 



M 
w 

iay 

= 
OU* a 

aJ:1 1.az 

= rotation a.t i of men1ber a about the Y axis 

of the member system, and 

= deflection at i of member a in the Z 

direction 

that is 

Thus 

M 
'W taz 

M 
w. 1.ax 

M 
Ti,!. iay 

\ / '..'.:IE \ ?.NE 
E ) !' E oM .,., 1 E u_ 

A . + ' ---9.§. "Ar., )'· + I N' -~ _..9.§l 
\M cJQ \- . oQ qx / \ qa tax qy; . qa. tax 

E \~ A I 
"qz/ 

\ 
\ 

i\.E \ 
qx} + ,. 

,E 
fl. 
qz 

\ 

1 E \ 
II. J 
qz/ 

E \ 
), ) qz .· 

\ 
AE ) 
qz 

J l 
iri!M = J·s l(''TEqa bE AE \ + (~ bE AE \\ + (NE bE i\.Eq· z}\ J 

tax ~ qtxx qxJ \ qa qtyx qy/ \ qa. qtzx 

(t = 1, 2, 3, ... ) 

26 



'WM !~TE bE E ) 
I .Fi: E 11.E \ + /~E E AE \ J = \x + \~a b b qz} tay s \ qa qtxy qtyy qy/ \ qa qtzy 

(t = 1., 2, 3, . ) 

J1 J~~ bE 
\ (~ bE 

\ I 
bE A!z)] - 11.E ) + /\.E I + I NE 

taz i qa qtxz qx \ qa qtyz qy) \ qa qtzz s \ 

(t = 1, 2, 3, ) 

, w~ax - f. [T!a 

"~ay - f. [ T!a 
M w. 1.az 

Substituting the values from Eq. (4-1) into the above, and omitting 

the superscripts for the sake of brevity, the displacements become 

w = i 'b (b . M. + b . M. + b . N. tax s ,_ qtxx qi.xx 1.ax q1.xy 1.ay q1.xz 1.az 

+r:b Q +r:b Q +I::b p )11. t qtxx tax t qtxy tay t qtxz taz 'qx 

+ b ( b . M. + b . M. + b . N. qtyx q1.yx 1.ax q1.yy 1.ay q1.yz 1.az 

+r:b Q +~b Q +r:b P )A t qtyx tax c qtyy tay t qtyz ·taz qy 

+ b ( b . M. + b . M. + b . Ni. az) qtzx q1.zx 1.ax q1.zy 1.ay q1.zz 

+ I: b Q + I: b Q + I: b P . ) A J t qtzx tax t qtzy tay t qtzz taz qz 

w = f lb ( b . M. + b . M. + b . N. tay 8 l qtxy qi.xx 1.ax q1.xy 1.ay q1.xz 1.az 

+I:b Q +l::b Q +r:b P )11. t qtxx tax t qtxy tay t qtxz taz qx 
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+ b (b . M. + b . M. + b . N. qtyy qiyx iax qiyy iay qiyz iaz 

+r:b Q +I:b Q +I::b p )fl 
t qtyx tax t qtyy tay t qtyz taz qy 

+ b ( b . M. + b . M. + b . N. qtzy qizx iax qizy iay qizz 1az 

+ f bqtzx Qtax + f \tzy Qtay + f \tzz ptaz) \z] 

'W = taz f ~ t (b . M. + b . M. + b . N. s [q xz qixx iax qixy iay qixz iaz 

+ I; b Q + r: b Qtay + I: b ptaz) /1. 
t qtxx tax t qtxy t qtxz qx 

+ b ( b . M. + b qiyy M. + b . N. qtyz qiyx iax iay q1.yz iaz 

+ r: b qtyx Qtax + r: b Qtay + r: b p ) fl 
t t qtyy t qtyz taz qy 

+b (b· M. + b. M. +b. N. qtzz qizx iax qizy iay qizz iaz 

+ f bqtzx Qtax + f b qtzy Qtay + f bqtzz ptaz) \z] 

The displacements at the free end of member a wiax' wiay~ and wiaz 

a.re given by similar equations, except that the subscript t i.n each 

28 

coefficient in front of the parentheses is replaced by the subscript i. 

These displacements may_ be expressed in matrix form as 



29 

{"tat ~qta]T~~~q1~· · · ~qta} · -T~qtaf['J~qiaj{wta} 

I 

(4-3) 

in which typical submatrices are of the form 

~qta ]T [\] ~qja] (j = 1, 2, 3, ... ) 

where 

[bqtJ = b 
qtxx b 

qtxy 
b 
qtxz 

b 
qtyx 

b 
qtyy b 

qtyz 

b 
qtzx 

b 
qtzy 

b 
qtzz 

and 

[\] = A. 0 0 
qx 

0 A. 0 
qy 

0 0 A. 
qz 



where 

Eq. (4-3) may be written in abbreviated form a.s 

= llf; I i/; j · tat 1 tai 

. - --- I -- '.. --lf I \]; 
iat I ' ia~ 

r:t·1 
L ia 

(4-3a) 

[ VJ J is the influence coefficient matrix of displacements , tat 

at points t due to generalized forces acting at the 

points t of bar a, 

[l+\aJ is the influence coefficient matrix of displacements 

at the points t due to member redundants of bar a, 

[ ii; J is the influence coefficient matrix of displacements Tiat 

at i due to generalized forces acting at the points t 

of bar a, and 

[ l/J l is the influence coefficient matrix of displacements 
ia~ 

at i due to member redundants of bar a. 

4-4. Complementary Strain Energy 

Since the structure is assumed to be elastic the complementary 

strain energy is equal to the strain energy stored. in member a. There-

fore 

(4 ... 4) 

Substitution of Eq. (4-3a) into Eq. (4-4) gives 
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(4-5) 

Carrying out the indicated matrix multiplication, 

and substituting for{Hia} from Eq. (3-7) . 

(4-6) 

or 
T T 

2u* = {W } n,, J {W } + f SW~ } ,1r,. l {W J 
a ta L:tat ta l ~ L:t'iat_i ta 



where 

[Ptat] = 

[fiat] = 

[Ptai] = 

[fiai] = 

[ tJ!taJ 

[r~ JT 

[~\aJ 

[c.uMO 

0 
~ 

+ 

sw0 
j 

T 

] [ lj;iaJ 

[c.uMO J ~~ J 
~~ JT [J10 JT [ tJ!iaJ EMO] ~~ J 

Combining the matrices of Eq. (4-7) 

1 u* = a 2 

SW~ 
J 

T 

'±'iat 
(p x t) 

ptai 
(t x p) 

f iai 
(p x p) 

w 
ta 

(t x 1) 

SW~ 
J 

~ 
(p x 1) 

sw0 (4-7) 
j 

(4-8) 

where p equals three times the sum of 0 0 
the SWj vectors and Ri vectors 

on the structure. Examination of Eq. (4-7) shows that this new [g;,J 
matrix is also synunetrical. 

If the load vector contained all applied loads on the structure 

and there were n such loads, then Eq. (4-8) would become 
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..,_ l 
T 

u" = wt --;p I ~, w a 2 :.... tat tai t 

(n x n~ (n x p) (n x 1) 
--- -- -- ---

0 

I SW~ SW. 
J J 

RO If iat 
I T, ~ k 
I 

\r·. . 
~ ia 1. 

(p x n) (p x p) (p x 1) 

in which in the appropriate places, 

[ ,Jj J now has n minus t rows and columns of zeros 
.i: tat 

[ :ftai] has n minus t rows of zeros, and 

I lV. J has n minus t columns of zeros. 
L - 1.at 

(4-9) 

The total complementary energy stored in the entire structure is 

then 

1 T 
u* :;:: ~ u* = 

8:;-1 
lftt I 

p - w (4-10) 
a a 2 ti t 

~I __ -· 

I SW~ 
J 

J 

:Pit I 'f'u 

~ 
I 

~ I _J . J 

where 

iftt I 
T i.J; I Ptai ~f ti ~ tat (4-11) 

I 
I 

I 

--- -- --·-1- = -·- - ---+· --- -~---
a 

p I if(ii lll Jj 
it I ..,. iat .;, iai 

The lower elements of the influence coefficient matrix in Eq. 

(4-10) can be partitioned further so that 
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may be replaced by 

Hence 

1 u~'( = 
2 

SW~ 
J 

T 
(4-12) 

r 1 
The subscript S is used to identify those terms associated with ~ si:,.;r~ ~ • 

I, J J 
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CHAPIER V 

SOLUTION OF STRUCTURE REDUNDANTS 

5-1. Differentiation of the Complementary Strain Energy 

The triple multiplication indicated in Eq. (4-12) yields 

and differentiation with respect to one of the redundants gives 

:~ ~ ! [l'PRJ { wt} + [ftR JT {Wt}+ [?RS] [ swn 

+ [fsR]T [ swn + 2 [fRR] { ~u 
Since the [t J matrix is symmetrical, 

which can be combined into compact form to give 

35 

(5-1) 

(5-2) 
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OU~\" 
= 0 0 I 0 wt (5-2a) 

c)~ -- r ~- --·-

0 I 0 sw? 
_J__j __ J 

---

fRt 
I -
I ':J!RS I tRR ~ 

5~2. Comparison of the Energy Expressions 

Since Eqs. (3-14) and (4-12) both represent the total complementary 

strain energy of the structure, 

T 

wt f tt I i\s I iftR wt 

- -+- -f-- --
sw0 

lfst I ifss I fsR sw? 
J J 

--- --+ _I __ 

~ If Rt I lf Rs ! lf'RR ~ 

T 
1 

sw? 
J 

o lo I o 
-;- I a-1-:_-
s I SS I :SR 

-I -1--
°"R. I aRS I 'h 

(5-3) 

Examination of the last three of Eqs. (4-3) and Eqs. (2-10) reveals 

that they are equivalent, thus 

(5-4) 

and 

(5-5) 

In Eq. (4-12) 



{Wt} is the vector of all externally applied loads, and 

[tu]= lfs_s- ~sRl = ~ ~~ r [•~or ~iaJ [wM0][r~1 
~RS I tRRJ . 

while in Eq. (3-14) 

{ } [ o J T { o} J1-,. o JT Ir, MO l T { t'll l. 
ctsv = r 1) = ! L~ a Lw - -V a .u 
ct . 

RV 

and 

[:: + tl . [rof [£0] [ro] 

= f ~~ r r1° r [~J [J1°J r~l 
Therefore 

and 

{ 1} 

·[~s~- :~fsRJ = .lass __ :_ ~s~J 
'Jr RS ! If R."R. ctRS I ctRR 

I 

These can be arranged in the following form: 
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(5-7) 



o I o I o wt 0 L 0_1_~ 1 (5-8) 
-- ----

fst I o I 0 sw? asv I 0 I 0 sw? -
-+-1 J I- +- - J 

PRt I PRS I PRR ~ ~v I ~s I aRR ~ 
From Eq. (5-2a) the left side of Eq. {5-8) is equal to 

therefore by Eq. (5-~) 

OU* = o i_o I o 1 (5-9) 

a~ -- -- --

0 I 0 
I 

0 sw? 
J r-,~ 
~ aRv l~s 1'1m 

5-3. Compatibility Equations 

By minimizing the total complementary potential energy with 

respect to each of the redundants, it was show.n that the partial 

derivative of the complementary strain energy is equal to the pre-

scribed displacement at and in the direction of the associated 

redundant. When~ is an internal redundant, compatibility requires 

that no relative displacements occur at the imaginary cut, therefore 

rk = O. Similarly, when~ is a redundant at an unyielding support, 

it is obvioµs that rk = O. 

In the case of a redundant at a support having a known initial 

deflection or rotation, rk is that displacement. 

By permitting k to assume in turn all the index values of the 
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redundants, Eq. (5-9) yields 

0 
I 

0 
__ I 

0 

-~>1 
= { rk} (5-10) 

---" 

0 I 0 I 0 

y-- - -JJ ~v ~s I et RR 

which may be solved to give the redundants of the entire structure. 

Thus 

(5-11) 

or 

(5-12) 

Once the structure redundants are known, the actions at i of any 

member can be determined readily by the use of Eq. (3-7). The reactions 

at j can then be calculated by statics. 



CHAPIER VI 

APPLICATION 

Planar Frame Loaded Normally 

The two-bay planar frame loaded normally (Fig. 6-1) has been 

solved on the IBM 1620 computer. All members have equal EI values of 

150,000 k-ft 2 and EI/GJ = unity. The shear effects in the calculations 

of the flexibilities are excluded by setting kEI/GA.: O. The curved 

members are parabolic in shape. 

Three support conditions are considered in the analysis of the 

example problem: 

1) fixed supports at A, B, and C, 

2) pinned support at Band fixed supports at A and C, 

3) supports A and C fixed and displacements 

tP = 0.02 ft. ' r;P = 0.05 rad., 90 = 0 at B. 
z x y 

The resulting values of the structure redundants and member redundants 

are listed in Tables 6-1 and 6-9, respectively. 

Tables 6-2 and 6-9 illustrate the step by step formulation of the 

problem (condition (1) ) • The procedure for analysis on the computer 

is given in Appendix B. 

Eq. (5-11) is used to solve for the redundants, condition (1). 

Since all supports are fixed 
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Parabdlic 
Curve 

~ Condition 1 - Fixed · ~ ./""'c 
2 - Pinned . ~ 
3 - Displaced 

Figure 6~1. Plane Frame Loaded Normally 
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Condition 

1 

2 

3 

{ sw~2} = 

TABLE 6-1 

STRUCTURE REDUNDANTS 

Location of Redundant 

0 
k-ftMix 

Base of Member 1 -79.37 

Base of Member 5 -79.37 
-

Base of Member 3 0 

Base of Member 1 -140.00 

--

Base of Member 3 594.09 

Base of Member 1 -437.04 

TABLE 6-2 

DEVELOPMENT OF H? MATRIX 
ia 

Redundant 

0 
k-ftMiy 

17.02 

-17.02 
- -----

0 

46.74 

kips N 

-5. 

-5. 

-1. 

-9. 

0 
iz 

09 

09 

18 

41 

-------

0 42. 20 

195. 77 
I 

-31 .. 
·-· 

10 

42 

------------------

{ sw~4 } = 1 0 4 0 = 40 

0 1 10 0 100 

0 0 1 10 10 

{ H~a} = [ 40 100 10 
o o o loo o} 40 100 10 M. 1 M. 1 N. 1 IM. 2 M. 2 N. 2 1. X 1. y 1. Z1 1. X 1. y 1. Z 
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Therefore 

j~o] 
'- J 

+ 

Cuts 1 and 2 are introduced at the base of members 1 and 5 respectively, 

thereby providing the six releases necessary to render the structure 

"statically determinate". This furnishes the vector of red.undants. 

= { M~. 
l.l.X 

{SW~} is the column matrix 

subjected to external loads 

loads on the members. This 

0 
M .. 

1.1.y 

0 
N .. 

l.l.Z 

of load vectors at 

and is statically 

0 
M.2 

l. y 

ends j of all 

equivalent to 

the members 

the applied 

vector is obtained by premultiplying the 

actual load vector on each member by the transmission matrix necessary 

to transfer the static effects of the loads to end j of that member. 

The construction of 

sw0 
j 

which is used in setting up the computer solution is demonstrated in 

Table 6-2. 

The flexibilities and load functions for the various members in 

their own systems are next calculated and listed in Table 6-3. The 

rotation matrices shown in Table 6,-4 are required in transforming these 

values from the member system to the reference system. The reverse of 

this operation can be accomplished with the transpose of the tabulated 

matrices. 
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TABLE 6-3 

FLEXIBILITIES AND LOAD FUNCTIONS IN 'W' SYSTEM 

--------------------·--·--------····---·-·--.,-~---·------------·---.. ,---------·-<-~D-···~~-----·-

Member E I L~a] E I 1-v~ l L 1.a ~ 
--------·- ·-------·-·-

1, 3, 5 10 0 0 0 

0 10 50 0 

0 50 333.33333 0 
-

-56.54607~ r-L56.56164l 

219.646021 573.03370 

3157. 3710 .J I ~403. 97lcu 
----~----------------·---·-----·· ---·-- --~.,,·~--··-----~ 

2, 4 0 

21. 9M-602 

219.64602 

21. 964602 

0 

-56.546076 

TABLE 6-4 

ROTATION MATRICES 

~·- --~-·----------

Member l 2, 4 3, 5 
------------ ·~---··--· 

- I 0 1 0 1 0 

:J 
-1 0 0 0 1 

0 0 1 0 0 
- -

1 

0 -1 0 

1 0 0 

0 0 

-------'---------'-------·----~--------·-------
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In order to formulate the [a~ matrix the flexibilities and load 

functions in the "O" system are calculated from the equations 

and 

The resulting values are shown in Table 6-5. 

TABLE 6-5 
-------------·--- ·- ·--·-

FLEXIBILITIES AND LOAD FUNCTIONS IN "O" SYSTEM 

Member E I [f~a] E I [v~aJ 

- - -
1 10 0 .-so 0 

0 10 0 0 

-50 0 333.33333 0 - ~ -

- - -
3, 5 10 0 50 0 

0 10 0 0 

50 0 333.33333 0 - - .__ -

,__ 
2, 4 21.964602 0 -56.546076 156.56164 

0 21. 964602 219.64602 573.03370 

-56.546076 219.64602 3157 .3710 9403. 9710 
~ -



These matrices are expanded to the form 

lo I o l ~- _ _J_ __ -
o I o 

-v. I £. 1.a 1.a 

A linear transmission matrix for each member is established next. 

This matrix transfers to the end i of a member all effects that influ­

ence the composition of the particular member redundant. Si.nce [' H? l l ia) 

is premultiplied by [r~J, and {H~a} includes all the{sw~} and{~} 
vectors of the structure, the transmission matrix ~~a] (Table 6-6) 

contains zeros in appropriate locations wherever that portion of the 

{ H~a} matrix does not influence the member redundant. 

The transmission matrices are expanded. to the form 

and are used to calculate [a~] from Eq. (3-14). Table 6-7 demonstrates 

the computation of [a~ J . All other [a~ J matrices in this problem are 

calculated in a similar manner. 

Summation over the entire structure gives 

from which 

L o"Rv 

Finally, 
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TABLE 6-6 

LIJ\TEAR TRANSMISSION MATRICES 

[ r~1] = " 1 0 0 
'~ " ""' / ~ // 

0 0 0 1 0 0 

/ ' ',. 
'~, ·, 

/ ' ·, 
,, // ',, 

: / ', 0 0 1 

[ r~2] :::: ~ 
,, 

-, 1 0 -10 
~' 

/ 

"'-, / 
/ 

', ' / 
' ' 0 0/ 0 1 0 0 

/ 
/ 

~' 

"',, / 

// "', 0 0 1 

1 0 0 1 0 0 1 0 -10 1 0 -10 

0 1 0 0 1 -20 0 1 20 0 1 -20 

0 0 1 0 0 1 0 0 1 0 0 1 

[ 0 J -1 0 0 
I "' 

-1 0 10 l r., = 
'~ / v+ 

""' ' / 
'-,, 

/0~ 
0 -1 20 0 0 -1 20 

// ~' / "'-, /' ',""' ,, 0 0 -1 0 0 -1 

[r~5] = 
~' 

/ ', (,,, -1 0 10 // 
~o '"" / 

·~ // 

0 ,, }~ 0 -1 0 

/ '~ //~ / ·~ 

// '·,.,,, / ',,'-, 
0 0 -1 



ro] La2 = 

= 

11 0 0 0 ~r - ---- --
~ 1 ~o( 
01 / ~ 
ol~ // 
0 /0""-
o I/ ""-
o I 1 o o 
01 0 1 0 
0 -10 0 1 

o I~"- // 
O o: I // """ O I/ , 

TABLE 6-7 

DEVELOPMENT OF [a~J MATRIX 

~ I o j; o I o l ~ Io o ~ o o lo o o o o oJ 
56.561641 21.964602 o l -56.546076 o I~/,~/ 1 o -10 ~ /' 
73.03370 I O 21.964602 i 219.64602 0 I 0/ 0 1 0 1 0 0 
403,9710 l-56.546076 219.64602 / 3157.3710 0 I ~I/ ~IO O 1 / ~ 

o looolooo o o o looo 
--0- -+~- -/-~,-"'--~- ------------------------- ------------ --l--1:--/ 

I , / , - -- --------------- " / o . /o/~ /o~ _____ --.::-o-===--------- /o~ 
0 // ~ I / ~ -------------------------------- ------- // ~ 

156.56-16-4----+-1~--"' // l"~, /// 21.964602 0 -276.19210 ,~, // 
573.03370 I /0:~ I o, I O 21.964602 219.64602 I /0 
7838.3546 / "'- I ~- 1 -276.19210 219.64602 6484. 7528 // ~ 

~ l">o/ I" o ~ .[ -< ----_: •• o. __ . 1 '": o/ t~-:so(J<o('j <=~=o -··· ~-~~ [<o~ 
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becomes 

1956.5616 l.9646l O -376.1921 10.0000 0 -50,0000 0 - _[ } 
ilx -l O ' 

573.0337 ~9646 419.6460 0 10.0000 0 
ily 

'-

505.0210 ~'- lll51. 419 -50.000) 200.a:m 0 
ilz 

-,"------, 
0 

1956.5617 ~1.9646 O -376.1921 i5x 
"-----

-573.0337 Symmetrical ~.9646 
0 
i5y 

505.0170 
"------"----- 0 , __ 

i5z 

This set of equations is solved to give the structure redundants listed 

in Table 6-1. 

The member redundants are next found by substituting the values of 

the structure redundants ~ in Eq. (3-7). 

Sample calculations for member 2 are shown in Table 6-8 and the 

values of the member redundants are listed in Table 6-9. The member 

redundants for the other two support conditions are shown in this table 

al.so. 



TABLE 6-8 

CALCULATION OF REDUNDANTS FOR MEMBER 2 

1 o o \ / ~ / 1 o -10 \ I 
O l O O O O l O \0 

o o 1 /\ /~o o 1 I 

40.0000 
100.0000 

10.0000 
40.0000 

100.0000 
10.0000 

-79.3685 
17.0244 

- 5.0864 
-79.3685 
- 5.0864 

r 

[

28.5043 

= 17.0244 

-5.0864 
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TABLE 6-9 

MEMBER REDUNDANTS 

Redundant 

Condition Member J: J: J: 
l.X 1.y l.Z 

k-ft k-ft kips 

(1) 1 17.02 79.36 -5.09 

2 -28.50 17.02 -5.09 

3 0 22.99 9.83 

4 -11.50 15.30 -4.91 

5 -17.02 28.50 5.09 

(2) 1 46.74 140.00 -9.41 

2 -45.89 46.74 -9.41 

3 0 -11. 78 1.18 

4 5.89 -41.48 -0.59 

5 -46.74 45.89 9.41 

(3) 1 195. 77 437.04 -31.10 

2 -126.05 195. 77 -31.10 

3 0 -172.10 -42.20 

4 86.05 -326.21 21.10 

5 -195.77 126.05 31.10 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7-1. Summary 

The analysis of planar frames loaded normal to their plane, by the 

use of the complementary energy principle, is presented in this study. 

Each member is treated separately as a basic cantilever. The 

actions at i, the "free" end of the cantilever, resulting from inter-

action with adjoining members are treated as member redundants. These 

are expressed in terms of all applied loads and structure redundants. 

Summation of the complementary strain energy of each member gives the 

complementary strain energy for the entire frame. When this is added 

to the complementary potential energy of all prescribed displacements 

of the structure the total complementary potential energy TI* is obtained. 

The compatibility conditions are obtained by minimization of this 

function with respect to each of the redundants. 

The complementary strain energy is represented in two forms: 

U* 

and 

1 = ~. 
2 a· 

1 +-2 
1 

SW~ 
J 
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~+-0-1 0 

aSv 

Q' 
Rv 

I ass ·t-asR 

~R;l aRR 

1 

SW~ 
J 

(3-14) 
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1 T 
U* == 2 wt 'Ptt I . i'ts I 'ftR wt (4-12) 

--1---+--
sw0 

'f'st 
I 

Pss I fsR SW~ 
j I J -~ ___ J_ -

~. If Rt 
I 

if RS 
I 'fRR ~ I 

In the first ·equation, the flexibility portion of the [ O! J matrix remains 

constant for a given structure and the v values can be taken from 

tables, if available, or can be calculated separately. Although the 

first term in the expression is not readily differentiable, for reasons 

explained in Chapter III, it was shown in Chapter V that it is not 

necessary to perform this differentiation when solving for redundants. 

Thus a structure can be efficiently analyzed for various loading condi-

tions by Eq. (5-9) derived from this formulation. 

In the second form, Eq. (4-12), differentiation of the [t] matrix 

is straightforward. In a practical problem, however, this procedure 

would entail calculating a different influence coefficient matrix for 

each member under each type of loading, hence would be inefficient for 

analysis of a structure for several conditions of loading. 

General expressions. for end flexibilities and influence coeffi-

cients for load functions of a planar curved member are given in 

Chapter II. These expressions are evaluated for the case of a rarabolic 

bar and the derivations are given in Appendix A. A numerical example is 

included to demonstrate the theory presented. 

7~2. Conclusions 

The formulation of the energy expression, Eq. (3-14) offers two 
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major advantages: 

1. It presents the load function matrix in a form suitable for 

the systematic solution of a given frame under various load conditions 

without undue algebraic or numerical work. Hence, it is not necessary 

to start calculations from the beginning if the load system on the 

structure is changed. 

2. By the use of the concept of generalized forces, the load 

function matrix is prepared without the necessity of creating ficti­

tious nodes at points of application of each load. 

The second formulation, Eq. (4-12), allows the calculation 

of the work expression without the requirement of evaluating the 

displacements at load points or expressing these deformations as 

functions of the redundants. 

Combination of these two formulations in one method greatly 

simplifies the construction of the compatibility matrix equation. 

7-3 Extensions 

The theory developed in this research could be extended to: 

1. The solution of space frame problems. 

2. The investigation of planar frames subjected to vibrations 

normal to the plane. 

3. The investigation .of structures.composed of materials with 

nonlinear behavior. 

4. The solution of plate problems by finite element techniques. 
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APPENDIX A 

FLEXIBILITIES AND LOAD FUNCTIONS 

A-1. Derivation of Deformation Influence Coefficients 

Flexibilities and load functions for a planar parabolic member 

loaded normally are derived in this section. 

The end flexibility matrix of a member is one which when post­

multiplied by a unit vector gives the displacements at the near end 

due to unit values of the near-end actions. The algebraic expressions 

for the coefficients for a general planar member are given in Table 

2-1 of Chapter II. It is to be noted that the integration is over the 

complete length of the member. 

A. load function influence coefficient matrix [ f ' J can be developed. 

When this is post-multiplied by the near-end vector which is the static 

equivalent of a unit load vector at a given point, · the product will be 

the end displacements due to the unit load vector. The coefficients of 

this matrix have the same algebraic expressions as those shown in Table 

2-1, except that the integration is now over only the segment extending 

from the point of loading to the far end of the member. Thus the two 

matrices are identical if the unit load vector is applied at the near 

end. 

In this section the expressions given in Table 2-1 are integrated 

for the particular case of a parabolic arc Fig. A-1 over the interval 
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from the point of loading to the far end. The coefficients thus obtained 

may be used either as the end flexibilities or the load function in= 

fluence coefficients by substitution of the correct limits. A separate 

matrix must be generated for each concentrated load vector. 

For the case of a uniformly distributed load, the load functions 

for a unit load must be integrated over the interval of loading and the 

results multiplied by the load intensity. In a numerical problem this 

is easily accomplished by using Simpson 1 s one-third rule, which is 

precise up to third degree curves. 

The algebraic derivation is given in A-2 of the appendix. All the 

coefficients are in the member system; therefore the superscript Mis 

omitted. 



A-2. Algebraic Derivation 

Figure A-1. Parabolic Arc 

The equation of the parabola shown in Fig. A-1 is 

4hx 
y = L 2 (L - x) 

This may be represented in parametric form by 

Lt 
x =-

2 

y = ht (2 - t) 

For any point q along the curve, the limits of integration become 

2C 
t = 1 to t = 2 

and 

L 
dx = 2 dt 
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(A-2 .1) 

(A-2. 2) 

(A-2. 3) 

(A-2.4) 



Denoting the angle between the X axis and the tangent at q by~. 

where 

therefore 

tan~ = ~ = 
dx 

4h 
L 

( 1 - t) 

L cos ~ = 
4hj(l-t) 2 2 + a 

sin ~ = 

L 
a=-

4h 

ds = 
dx 

cos~ 

1 - t 

d s = 2h j (1 - t) 2 + a 2 d t 

Changing the variable of integration from t to u by letting 

1 - t = u 

gives 

cos ~ = L 

4h~2 + a2 

u 
= Ju2 2 + a 

sin ~ 

and 

dt = -du 

t herefore 

ds = du 

2C 
The new limits of integration are now (1 - """i:') to (-1) thus 
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(A-2.5) 

(A-2. 6) 

(A- 2. 7) 

(A-2.8) 

(A-2.9) 
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f 1 
f (x) dx = f 2 

g(t) dt 
C 2C 

G (u) (-du) 

L 

2C - -L 
G (u) du 

All integrals will therefore be of the form 

f y G 
(u) du 

-1 

where 

2C 
y = 1 - -

L 
( -1 s;; y s; 1) (A-2 .10) 

I 

The integrals necessary for evaluation of the coefficients f. 
ia 

are given in Table A-2.1. The symbols listed in the third column were 

used in preparing the computer program and are helpful in shortening 
I 

the expressions for f. , while at the same t iroe preventing the meaning 
ia 

of the equations from being obscured. 

For members with constant EI, GJ and GA~ if the ratios EI/GJ and 

kEI/GA are denoted byµ and p respectively, the influence coefficients 

are reduced to the values given in Table A-2.2. 



1 

u 

2 
u 

3 
u 

TABLE A-2 .1 
I 

INTEGRALS FOR EVALUATION OF f. 
ia 

f y :;' du Symbol 

-1 Ju2 + a 2 

log(y+J)+•2 \ DU 
-1 + 1 + a 2 -} 

) l + a 2 - J 1 2 + a 2 UDU 

! [Y II + a2 +J1 + a2 - a2 (Du)] u2nu 
~[N + .2 )3 -(Ji + .2 n- .2Q; + .2 _ Ji + .2J U3DU 

u4 i; (t N + .2 +Ji+ .2)- 3:20N + .2 +~ 

4 
+ k._ (DU) 

8 

u6 i (; Jl + a 2 +J1 + a 2J- ~ (r Jl + a 2 +fi + a~ 

+ 5~: Cy .J; + .2 +Ji+ .2)- 5~: (DU) 

U4DU 

U6DU 

DUIN 
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EI x Coefficient 

I 

£. 1.axx 

I 

£. 1.axy 

I 

£. 1.axy 

I 

£, 
i.ayy 

I 

f. 1.ayz 

I 

£. 1.azz 

TABLE A-2. 2 

DEFOR..11'.fA.TION INFLUENCE COEFFICIENTS FOR A CANTILEVER PARABOLIC BAR 

Values in terms of Symbols in Table A-2.1 

µL 2 

Sh (DU) + 2h (U2DU) 

L z (µ - 1) (UDU) 

2 
µ~ [z(UDU) 

2 

I 2µh (U2DU) 

I 

- (DU) - (U2DU) ]+ L 4 [(u2DU) - (UDu)]- 2h2 ~U2DU) - (U4DU)] 

L2 
+ Sh (DU) 

I 1-; .11 3 I µLh 0u2nu) - U3DU) - !{ (UDU) - (U3DU)D+ ~6h [<nu) - (unu)] + L~ ~unu) - (u3nu8 

I L :h {µ [(Du) - 4 (UDU) + 6 (U2DU) - 4 (U3DU) + (U4Du5] + ~~ [<Du) - 2 (UDU) + (U2DU) J 
i 

I 
i 
! 

2 
+ 4 ~UDU) - (U2DU) - (U3DU) + (U4DU)] + 16~ [(U2DU) - 2 (U4DU) + (U6DU)] 

L 

+ 16r (DUIN) J 
L 

°' w 



A-3. Flexibility Data for Parabolic Cantilever 

Influence coefficients for end flexibilities and load functions 

for a parabolic cantilever beam of constant cross-section are presented 

in Table A-3.1 This beam configuration (Fig. A-2) is used in the numer-

ical example. The coefficients were evaluated from the equations given 

in Table (A-2.2). 

Deformations are shown by arrows with a slash. Double-headed 

arrows indicate rotations and the single-headed arrow denotes a de-

flection. The positive directions are as shown. 

Table A-3.1 DEFORMATION INFLUENCE COEFFICIENTS PARABOLIC CANTILEVER, 
CONSTANT SECTION 

Data: L = 20 ft. h = 4 ft. EI= 1 
GJ 

lli = 0 
GA 

End Flexibilities: 

f. = 21. 9646/EI f. 
J.XX iyy 

f. = 0.0000 f. ixy iyz 

f. =-56.5461/EI f. 
J.XZ J.ZZ 

Load Function 

Location CL EI T EI T 
ix iy 

0 -56.5461 219.6460 
.1 -26.6490 178.2136 
.2 - 6.0480 141.5352 
.3 6.9035 109.3002 
.4 13.6851 81. 2722 
.5 15.6561 57 .3034 
.6 14 .1129 37.3430 
• 7 10.3515 21.4418 
.8 5.7313 9. 7477 
.9 1.7319 2.4967 

1.0 0 0 

= 21.9646/EI 

= · 219.6460/EI 

= 3157 .3710/EI 

EI 'YJ . 
J.Z 

3157 .3710 
2639.1469 
2151.8574 
1703.5174 
1298.7262 

940.3971 
631. 2004 
374.8180 
177 .1248 
47.4409 

0 
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Figure A-2. Geometry and Definition Sketch Parabolic Cantilever 
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APPENDIX B 

COMPUTER ANALYSIS-

A computer program for the analysis of the class of frames 

investigated in this thesis was written for the IBM 16201. Since the 

storage capacity of the computer is only 20,000 binary digits, the program 

was subdivided into six phases. 

A macro flow diagram (which follows) illustrates the basic logic of 

the process used in the solution of the problems. Input data required 

for each phase are indicated below. The member redundants constitute the 

output of the final phase. 

INPUT DATA - PHASE I 

Information Needed in Phase II 

M, N, MA, NA, MB, NB, AM, BM 

M, N Rows and columns of expanded matrix 

The next four numbers indicate the number of rows and columns that 

matrices A and Bare to be shifted. The last two are the multipliers 

of A and B. 
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Member Number and Shape, Number of Loads. and Coordinates in Reference 

System 

MM 

MS 

NL 

MS, NL, XI, YI,. XJ, YJ 

member number 

member shape 

number of loads 

The last four numbers indicate the coordinates of the i and j ends 

of the member • 

Member Properties 

/EMU, RO, H, ETA 

EMU the ratio EI/GJ 

RO the ratio kEI/GA 

H they ordinate at mid-point of the member 

in its own system 

ETA the ratio EI/EI0 

Location and Values of Applied Loads in the Member System 

XL, QX, QY, P 

XL x ordinate of the load 

The other three numbers are the values of the applied loads. 

INPUT DATA - PHASE II 

Output of Phase I 

M N MA NA MB NB AM, BM (Same as first card of Phase I) 
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I , J, FO (I, J) 

I, J location of matrix element 

FO(I, J) flexibility coefficient in reference system 

/I, ENUO(I) 

I location of matrix element 

ENUO(I) load function_ in r::_erence system _______________ J 

INPUT DATA - PHASE III 

Coordinates of Member and Number of Influences for 

Transmission Matrix 

------·--.-----·-----
YA, NI 

XA, YA coordinates of end i of member a 

NI number of redundant vectors plus the number of 

statically equivalent applied load vectors at 

ends j of members 

Influence Constant and Coordinates 

C, XB, YB 

c O, 1, or -1 depending on how member a is affected by 

the influence 

XB, YB coordinates of the influence 

INPUT DATA - PHASE IV 

/ 
IM, N number of rows and columns in output from Phase II 
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Output of Phases II and III 

I, J, B (I, J) 

I, J location of matrix element 

B(I, J) load function or flexibility coefficient 

/ I, J, A(I, J) 

I, J location of matrix element 

A(I, J) element of expanded transmission matrix 

INPUT DATA - PHASE V 

Matrix Selection Details 

M, N, MA, NA 

M, N number of rows and columns needed from the structure 

flexibility matrix 

MA number of rows ignored 

NA number of elements in load vector 

Structure Flexib.ility MatriJ::es 

I, J, A (I, J) 

I, J location of matrix element 

A(I, J) element of structure flexibility matrix 

Prescribed Displacements 

(r, W(I) 
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Load Vector 

/ I I' s (I) 

Details for Solution of Simultaneous Eguations 

M2, N2, MA2, NA2 

M2 number of redundants 

N2 number of columns of augmented matrix 

MA2, NA2 number of rows and columns omitted from structure 

flexibility matrix 

INPUT DATA - PHASE VI 

/, IM, N number of rows and columns in transmission matrix 

. Vector of Loads and Structure Redundants 

I, SRO(I) 

structure redundants are output of Phase V 

Transmission Matrices 

.,/I, J, RAO(!, J). 

I, J location of matrix element 

RAO(!, J) element of transmission matrix 

I/, MM' MS ' NL ' XI ' YI ' XJ' y J 

(same as second card of Phase I) 



_____ §, ______ ~ 
Read Data Card for Phase II prog~ 

Read Member number, Member sha~pe 
number of loads, X and Y coordi­
nates of i and · -,-------·-

Compute Member lengths and orientations 
and rotation matrices 

Readµ,, p, h~ 

Read load location, and load ve~:) 

I Compute flexibilities in "M" system J 
(!unch Data Card for Phase I~ 

Compute flexibilites in "O" system J 
Punch flexibilities in "O" system 

0 

Yes 

Compute load functions for all loads_1· 
on span and rotate into 110 11 system 

Punch load functions in "O" system 

No 

Yes 

.. 
Read rows and columns in expanded load :function and flexibility 
matrix,30~_ an_d column shift of' A ~nd B, con~tant multipliers. 
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Read Matrix A) 

Shift A to required posit~~] 
and multiply by constant 

Read Matrix B 

Shift B to required position 
and multiply by constant 

Compute C = A + B 

No 

Yes 

Read Coordinate of. i end of member J 
and number of influences 

Read constant and coordinates of 
influence 

Compute transmission matrix to 
member from influence and shift 
over one row and down one column 

Set RAO(l, 1) = 1. 

) 
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( Punch I, ,J, RAO(I, JD 
No 

Yes 

c~·~ 
Read Matrix-;) 

r, ----- ·--- L __ ----) 
\_Read Matrix A 

] Comp~] 

Compute ct = AT B A l 
c- Punch ct 

Yes 

Read M, N, MA, NA 

Read ct's 



Read Prescribed Displacements~ 

~ Read Load Vect~;;-~~ 

I ll 
Compute w i = w i - OL ij S j I 

I 
~~~R_e_a_d~M_2_,_N~2-'~MA._2_,~N_A_2~~~ ,--I- J 

~--S-elect f "JmJ ·-

I Solve Simultaneous Equations I 
for Structure Redundants 

~ Punch Structure Redundants ~ 

Read M, N 

Read Vector of loads and 
Structure Redundants [ SRO] 

(. Read transmission matrix [RAoJ) 

Compute[T] =(Mo] ~Ro]==i-

Rea,d Member number, shape, ~~mber oi) 
loa,ds, coordinates of Member ends 

* ---·· 
I Compute rotation matrices l 
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