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PREFACE

The method of complementary energy for the analysis of planar frames
loaded normal to the plane is presented in this thesis. A cantilever
basic structure is adopted and the cross-sectional vectors of the near
end are chosen as the redundants. These are then defined in terms of
applied loads and redundants of the whole system.The complementary energy
is expressed in a matrix form. Minimization with respect to each of the
redundants yields a sufficient number of simultaneous algebraic equations
for the solution.
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{superscript)

iars

{(superscript)

(superscript)

NOMENCLATURE

A member.

Action influence coefficient.
Area of cross«section.
Modulus of elasticity.

Refers to the element reference system.

th . i o s .
rs element of flexibility matrix of member a at

end 1i.

th L, .
rs element of defermation influence coefficient

matrix.
Modulus of rigidity.

Equivalent torsional rigidity.

Column vector of reactive actions at end 1i.

Near end of member a.

Moment of inertia of cross=section.
Far eod of member a.

Shear constant.

Reactive moment.

Refers to member veference system.
Reactive force.

Refers to basic reference system.
Applied distributed ilvad.

Applied concentrated load.

Position of a general section on a span.

Applied moment in plane of member.
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F@ Transmission matrix.

R Redundant.

S Interval of integration.

SM Static equivalent moment.

SN Static equivalent force.

{SW} Static equivalent vector of actions.

t Location of generalized force ¢n basic structure.
T Twisting moment.

T {superscript) Refers to the tramnspose of a matrix,

U Strain energy.

L Complementary strain energy.

v Volume.

ka Complementary potential energy of prescribed

displacements.

W Generalized displacement.
W Generalized load.

X,¥Y,2 Coordinate axes.

¢4 Influence coefficient.

S Angle,

Y Constant.

Y (subscripted) Unit shear strain.

ol Variation.

(Zﬁ} Column vector of end displacements.
€ End deflection.

& Unit normal strain.

77 Deflection Load function.

8 Angle,



v}

™

f)

fzf’J”? ?L]]
[w]
{}

Constant, EI/GJ.

Vector of load functions.
Total complementary energy.
Constant, kEI/GA.

Unit normal stress.
Angular load function.

Unit shear stress (when subscripts are
axes).

End rotation of member.
Influence coefficients
Rotation matrix.
Column matrix.

Rectangular matrix.
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CHAPTER I

INTRODUCTION

1-1, Statement of the Problem

A structure lying in one plane and loaded normal to it is defined
as an Order II structure, The analysis of frames of this type by means
of complementary potential energy is the subject of this study. The
investigation is restricted to frames consisting of straight, bent, or
curved members having either constant or variable cross-sections. The
causes of deformations may be forées, moments, displacements of supports,

temperature variations, or changes in volume of the material.

1-2, Limitgtion of the Problem

The analysis is based on the following assumptions:
1. One of the principal planes of each member coincides with the
plane of the structure.
2. The material of the structure is homogeneous, isotropic and
continuous,
3. All deformations are small and elastic.
4. The material obeys Hooke's Law.

5. The moduli of elasticity and rigidity are known numbers.



1-3. Historical Review

The principle of complementary energy, first stated by Engesser in
1889 is a generalization of Castigliano's theorems on least work presented
in 1873 (1). A rigorous presentation of the principle as applied in the
theory of elasticity has been given by Sokolnikoff (2). Formulation,
proofs, and applications of the theorem of minimum complementary energy
for statically loaded structures with minute deformations may be found
in the works of Argyris and Kelsey (3), Brown (4), Hoff (1), Langhaar {5},
Pippard (6), and others. Westergaard (7) used this principle in a general-
ized form in the solution of buckling and vibration problems. Charlton (8}
approached the problem from a new perspective, employing the law of con-
servation of energy as a starting point. Libove (9) extended the theory
to include structures with finite deformations. Berman (10) applied the
complementary energy method in matrix form to planar structures loaded in
the plane, and Li (11) analyzed a truss as a rigid frame by the same

method. The extension of the method of complementary energy to the

analysis of frames of Order II is developed herein,

1-4, Notation

The symbols adopted are defined where they first appear and are

arranged alphabetically under Nomenclature.



CHAPTER II

BASIC STRUCTURE

2-1. General

The frame to be analyzed is made "statically determinate' by tempﬁrarily
releasing an adequate number of actions,1 The structure thus formed is
called a "Basic Frame" (Fig. 2-1). 1If a frame has n degrees of redundancy,

0 releases will be required. The suppression of each internal action at a
given cross-section of a frame corresponds to one release. The solution of
a statically indeterminate frame will be considered achieved when the actions

at the chosen releases (redundants) are found.

2-2. Coordinate Systems

Three coordinate systems are introduced: the reference system, the
member system, and the element system (Fig. 2-2). Each one consists of a
right-handed set of orthogonal axes. The first is oriented so that the
X and Y axes are in the plane of the structure with the origin arbitrarily
located. This system is referred to as the "0'" system and all terms
assoclated with it are labeled with an O superscript.

The Z axis of the second is parallel to the Z axis of the 0 system

while its X axis is a straight line originating at end i of the member and

1In this dissertation "action'" will indicate a generalized force

and "displacement' will refer to a deflection or a rotation.



Cut

Member

{W} Vector of
Loads at a
Point

Figure 2-1. Basic Frame

directed through the other end j. All quantities in this system are
distinguished by the superscript M. The angle measured from the X axis
of the O system to the X axis of the M system according to the right hand
rule is designated by 0 (Fig. 2-2).

The third system is required only in the derivation of the.flexibil—

ities of a curved member. 1Its Y-Z plane is the plane of the cross-section



Figure 2-2. Coordinate Systems

at any point along the member, and its X axis is normal to the cross-
section at that point and passes through its centroid. Related terms
are characterized by the superscript E. B is the angle measured in the
X~Y plane from the M system to the element system (Fig. 2-2).

It is assumed that the shear center of any cross=~section coincidés

with its centroid.



2-3, Cantilever Basic Structure

The cantilever basic structure (Fig. 2-3) is fixed at end j and free
. PM M .
at end 1i. 17 ° ¢ - Pt are applied forces normal to the plane, and
Q¥5 o e e 3 Qf are applied moment vectors in the plane of the member.
Moments M¥ and M¥ , and force N¥ are the member redundants and are
iax iay iaz :
treated as arbitrary loads. Collectively they are designated by the

column matrix {ﬁfa} . The moments and force at j GMM MM and N?ax )

jax® “jay
can be expressed as a function of the applied loads and member redundants

utilizing the static equilibrium of the cantilever,

Figure 2-3. Cantilever Basic Structure



Force and moment vectors are positive if acting in the positive

sense of the appropriate reference system.

24, Cross=-Sectional Elements

® Indicates a force in
the positive Z direction

® xq

Figure 2-4, Cross-sectional Elements at Point g

The torsional moment, bending moment, and shearing force at any

section g of member a due to end actions{ﬁ?é} are given by



= e T o - - A
TE(“) = cos B sin B O 1 0 uyM. M¥
aa v | qi iax
/'I h
ME(j) ~sin B cos B O 0 L XM. M¥
qa ) qi iay
wE | 0 o 1| lo o 1 o
_ qa | N 4L 1 Liaz ]
(2-1)

M . ‘ . \
where Xqi and ygi are the coordinates of the shear center at point q with

respect to end i in the member system. Symbolically, Eq. (2-1) may be

written as

- [e) [4] )

M . s . . ,
where rqi is the transmission matrix that transfers the end actions in
' . o EM] , .
the M system to point q from point i, and wq is the rotation matrix at
point g that rotates these actions into the element coordinate system.

Similarly, the cross-sectionél‘elgments at q due to applied loads on
the cantilever are

o] [

in which the summation is taken only over the segment to the left of g

(Fig. 2-4). By superposition the total setions at g due to end actions

and applied loads are:

{WE } ] {WE(H)} N {WE(L)} (2-3)
qa qa qa

2-5, Deformations of Basic Structure

For an elastic member the total displacement at the end i is the sum

of the partial displacements caused by successive applications of the loads



and of the member redundants. These may be found by employing

Castigliano's first theorem, which gives

M- ouU 4
iax
) E
Miax
ou
¢M a
iay
iay
Jﬂ _ aUa
iaz aNM
iaz
where
Qﬁéx denotes the total rotation at i of member a about the X axis of

the M system,

M . . . .
¢iay denotes the total rotation at i of member a about the Y axis of

the M system, and

é¥ 2 denotes the total deflection at i of member a in the Z direction

ia
of the M system,

The strain energy Ua stored in member a is given by

Ua = Utorsion + Ubending + Ushear

or

==
i

1 nE 2 ds E |2 ds E. 2 ds -
a 2 I:[(rqa) GJ +‘ ,[ <Mqa) EL + ok V/S‘)(Nqa) GA:l (2-4)

where G and E are the moduli of rigidity and elasticity respectively, GJ is

the equivalent torsional rigidity, A and I are the area and moment of in-

ertia of the cross-section, and k is the shear constant for the section.

Substituting. from Eq. (2~1) into Eq. (2-4) the displacements at i



due to end

LD

iax

M(E) _
Qiay -

éﬂ(H) -
iaz

or in matrix

LD |

iax

FAE

iay

éM(H)
iaz

wettons ]

become
g _ M
iax “laxx
iax
ol,
5M¥ iax “iayx
iay
U,
= PHax ‘iazx +
o
iaz
form
[ .
iaxx iaxy
fM
iayx iayy
£ £
iazx iazy

which may be written as

s
1a

[

N
ia

)

ool M
iay. “iaxy iaz “iaxz
MM M
iay iayy iaz “iayz
. f¥ + NM .
iay “iazy iaz Tiazz
£ :
1axz 1ax
£ :
iayz iay
£ N
1a4z2 iaz

10

(2-5)

(2-6)

(2-62)

where the coefficient matrix is symmetrical and its terms are as given in

Table 2-1. A typical coefficient f?ars’ defined as an end flexibility,

denotes the displacement of i of member a in the direction of the r axis

of the M system due to a unit cause at i in the direction of the saxisof

the M system, all other causes being zero.

The displacements at i due to a load vector{W%a} at pointt (Fig. 2-4)

may be found in a like manner if the static equivalent of{wﬁa} is placed

at point i and the partial derivatives are taken with respect to these
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equivalent end forces, The interval of integration for the energy

expression is tj.

TABLE 2-1. ALGEBRAIC EXPRESSIONS FOR FLEXIBILITY COEFFICIENTS
Mo 2 , ds 2 4 ds
iaxx ,[ cos” Boyt fsm B ET

i

S

M . ds . ds
f:iaxy f sin P cos B % w)Csn_n B cos BEI

M
iaxz

Hy
]

. 2 .\ds . o2 .ds
[(x sin B cos B - y cos” B X j: (x sinP cosP + v As‘ln B)EI )

i

M , 2 ds 2 ds
fi.ayy v{s:.n BGJ +chos BEI

M _f 2. . ds [ 20 Lo e gyd8
tayz © js (x sin"B8 - v sin B cos B) X +”S (x cos™B + y siaP CO/SB)EI
£ = f(x sin 8-y cos 288 4 [ (xcosp 4y oind) a1 [ &
tazz =~ J n y e GI T VoS Yy sin Vgt k,,fs Gh

The static equivalent of[wila} at point i is
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R Y ]
{Swita} - l_riJ {Wta f (2-7)

that is
_ v - i _ _ — . -
M'ﬁitax =1 0 Yit Qtax
M M
itay 0 1 it Qtay
M M
N_itaz 0 0 1 Ptaz
Thus
1
ML) aUa M
¢iax = = T itax
O e
1
M(L) aUa M
¢iay = = T itay
aSMbi{tay
ou'
M(L) “a M
€'az = = 7?itaz
” aSN}ftaz

'
where Ua is the energy stored in member a from t to j, due to the loads at

M . .
point t, and where T , and q??taz are the load functions at

itax® itay

point 1 resulting from the same cause. This gives

— —_ — ' R ' —_— . J—

fM fM éﬂ

itax | iaxx “iaxy iaxz 5 itax

t v t
: " " ; SM (2-8)
itay iayx Tiayy Tiayz itay

itaz iazx Tilazy ~iazz itaz
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or

M M M
{L/ita} = [giaJ {Swita} (2°8a)

!
. e M . .
where the coefficients fia are the same algebraic expressions as those of

f{a shown in Table 2-1, except that in this case all the integrations are
performed over the interval tj. If several loads are applied on the span,

the total load functions are obtained by superposition. Therefore,

M M ,
{yia} =f {yita} (2-9)

and the total displacements at end i of member a are

=] £ ! 5 !
iax iax iaxx iaxy iayz iax
M M M
iay iay + iayx iayy fiayz iay (2-10)
! ’OP.I £ £ £ .
| iaz] |/ iaz | | iazx iazy iazz | | iaz |

or

{Alga} ={Uli4a} + [fhfa} {Hlfa} | (2-10a)

The derivation of flexibilities and load functions for a parabolic bar

is given in Appendix A, and values are tabulated for the bar configuration

used in the example problem.



CHAPTER III

TOTAL COMPLEMENTARY POTENTIAL ENERGY

3-1. General

The total complementary potential energy is defined as the sum of
the complementary strain energy U¥* and the complementary potential energy
of the prescribed displacements V¥, In equation form this may be written
as

T = U* 4 V* | (3-1)
Here U%* represents the area above the stress strain curve (Fig. 3-1),
and is given by
' a
U* =f f € (0) do dv
v Yo

for a uniaxial state of stress.

Stress

£ Strain

Figure 3-1. Stress-Strain Curve

14
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When a three-dimensional state of stress exists in an elastic body, this

equation must be replaced by

0 (% "% "%
0% = I J/ dg ‘] = do ;j : do
G ( g% + cydy+ €, d

vi¥o o 0

. T _
/” xy £ ozx

: ; T T 4 T

+¢f0 ny d Xy . o T yz d vz + j; )V zx d zx / dv

In Eq. (3-1)

* = - {wk}w {wk} (3-2)

where w, are specified displacements and W

K are the forces required to

k
maintain these displacements.

A structure is in a true state of stress when not only the equilib-
rium conditions are satisfied but also the requirement of compatibility
of deformations is fulfilled. For variations in stress when the system
is in its true state of equilibrium, the total complementary potential
energy T has a stationary value. Because the stationary value is a
minimum when the system is in stable equilibrium, the complementary
energy principle may be stated as follows: The total complementary

potential energy is a minimum with respect to variations in stress when

the system is in a state of stable equilibrium {(1). That is

5 (U* + V¥) = 0 (3-3)
DU BV*
I'd 3 ] 6 , w————— = -
thu W wk: + 5 5Wk 0 (34}
k k
Since the ka are not all zero and are independent of each other
Dy VX -4
S + ) =0 (3-4a)
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or substituting from Eq. {(3-2)

ou*

= =y (3-5)
C)Wk k

Thus the partial derivative of the complementary strain energy of an
elastic system with respect to a force at which there is a prescribed

displacement is equal to that displacement.

3-2., Compatibility

For a given redundant structure the equations of equilibrium may
be established first. The complementary strain energy U¥ and the
complementary potential energy of the prescribed displacements V¥ can
both be expressed as functions of loads and redundants only, since the
other forces may be eliminated by using the relationships in the equa-
tions of equilibrium. The compatibility conditions, which are the same
in number as the redundants, are then obtained by minimizing the total

complementary potential energy with respect to each of the redundants.
Thus

o U

i = ~ 3""6

oR, Tk S
where v, are the specified displacements at the redundants and will

either be zero or have some known values.

3-3. Redundants

The vector of member redundants {H?a} is a function of loads on
the frame and some of the structure redundants. At end i of member a,
this vector represents the static equivalent of the applied loads and

structure redundants that affect the member and therefore may be
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written as

L L =

L

MO | . . .
[w J is the rotation matrix from the "0" system to the "M" system,
] is the linear transmission matrix for member a,

0

a
Y . 4
j?Wj'} are the load vectors at ends j of the loaded members,
statically equivalent to the applied loads on the members,
and

_0
{ Rk } is the vector of structure redundants.

For example, the frame in Fig. (2-1) has two structure redundant
vectors {R? }and {Rg‘}at cuts (1) and (2) and member A only is loaded.

The member redundant vectors{Hil} and {HiS} are given by

’

r ) — - -
1 1 10 | 0
{Hﬂ} = M| = Lw —Hosl I !03} Wi

J.1 ¢ ) R0
Mily R1 L
1 0
Nilz ' R2_

QD > J 0
My, R,
5
: 0
LNiSZ, L RZ,J
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wheve I, is a 3 x 3 unit matrix, and O

3 is a 3 ¥ 3 null matrix.

3

3~4. Complementary Strain Energy

Since for linearly elastic structures the complementary strain energy
is equal to the internal strain energy, then by Clapeyron's theorem (13),

the complementary strain energy of member a is given by

RS EANEARSRCAREN o)

J

in which W%a are the externally applied loads on member a and Wfa are the

corresponding displacements. Substituting Eq. (2-10a) into Eq. (3-8},

R AR A CARCA| R RN AR

and Eq. (3-7) substituted into Eq. (3-9) yields

AR S A R A

1 A M
SIENE

Since
"MO _T _ [woﬂ
then
_wMo T{vb.d}={7/(.) }
B ] ia . ia
and
T ) [2] - [
"ia | ia



Therefore

e
EA3

a
that is
*
Ua =
or
*
U =
a

Substitution of

[

or

N

Nf—

+

2T - .
M M 1 0 |T 0
{wta} {Wta} +7 {Hia } {Via}
1 ].0 ] [0 0 |
2 {Hia | {:1a] {Hiaj
r T
M M
(i) (e
1 [,0 T o | .0 (.
2 {Hia } Juia { fla] Jﬁ}<J
0
| Tia
WM "1" M -
P
o0 T
L) | e
A S qoh - O _,1_
A I VAN S -\
“ia) ia | ia] | ia}

N

11T : o [T] o |
—— e e e I_
SWQL 0P 0 £
j | “a ia, "ia
0
Bl

19

{3-11)
{3-11a)
(3-11b)

- 1
SWQ
J i
R
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r T S T . !
W 1 { .M M 1 T l
= = 0
Ua 2 twta}{wta} + 2 ,1 e __}N
sw° | sw°
J T T I3
0 [ro} {Uo }l [ro [fo Mro} 0
a ia a ial| a R
By |2 et Lrallalfl f
(3-12)
Denoting
2T ) - e
a ia aSv
Qp
| aRv/
and
- T —_ — —
0 o][ol _To | .0
[_ra_ EfiaJ ’}a} = | %ss | %asr
_.___M{__m ~
0 0
| %rs | %rr
Eq. (3-12) may be expressed as
T r “T [ —_ ~— -~
* _ 1| .M M | |
Up = 3 {wta}[wta} + % 1 0 0 | 0 1 (3-13)
ol o I o I o
SWJ “asv | %ass | “asr ‘Swj
_— - RS _._'__ 6 — _1_ ._..O_ e (;._,
-0 0 | |
_ M) %Ry | %rs | %arr| | Rk

The total complementary strain energy of the entire structure is then

the summation of the complementary energies of the individual members.

Thus
1 alTu] 1o 1T, o | 1]
v = ? f {.ta wta} +'E h}ﬁ wg_ﬁ»__o_ﬁw_ 9_ “}“> (3-14)
' 0 | 0
JSwj sV ss 1 SR Swj
0 | ! 0
B Pev ) %s | %r| | Rk
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’

The redundants {Rﬁ} are determined by the use of Egq. (3-6). However,

*
before the partial differentiation == can be carried out, {w 1 must be

ChN £l

. . 0 . s . .
expressed in terms of {Rk} . This operation is possible but becomes
intractable. By using the equation for the deflection curve for the
"basic cantilever" the displacements{wta} at the load points can be

stated in terms of {W } and the member redundants {H?a} s but since

ta

{H?a} are functions of the structure redundants {Rﬁ} the expression for

p¥ Pwta }T {Wtal quickly reachegyforbidding proportions. The necessity
a J

for differentiating this matrix product in the energy equation is
circumvented by developing an alternate matrix formulation. This deriva-

tion is carried out in the next chapter, and comparison of the new

o,

expression with Eq. (3~14) shows that QE% can be evaluated without
ORy

I 0
explicitly expressing {Wta} {Wta} in terms of {Rk}.



CHAPTER IV

ALTERNATIVE DERIVATION OF COMPLEMENTARY

STRAIN ENERGY

4-1, General

Instead of grouping the static equivalents of the on~span loads
at the "free'" end of the bar, their effects could be treated separately
in the positions at which they occur on the span. At every point of
loading there will be a displacemént caused by each of the loads., The
energy expression therefore would require the generation of a full
influence coefficient matrix. The general procedure for dealing with
concentrated loads on a span is to introduce an imaginary node at each
load point thereby creating members with no loads between the end
points (10). The increase in the number of members to be dealt with is
an obvious drawback of this method. A further disadvantage occurs if
the span is subjected to distributed loads, for in this instance, these
loads must be approximated by concentrated loads before the node points
are assigned., However, by the use of generalized forces, Meek (12)
showed that the definition of influence coefficients arising from such
loadings can be extended to cases where loads occur between selected

node points of a .structure.

22
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4-2, Generalized Forces

A generalized force is any group of statically interdependent
forces that can be completely defined by one symbol (13}, The corre-
sponding displacement must be taken in such a way that the result of
the product of the generalized force and the increment of the corre-
sponding generalized displacement will be the work. This means that in
the case of a distributed load, if the load intensity is taken as the
generalized force, the corresponding generalized displacement will be
the area between the original position of the beam and its deflected
position (Fig. 4-1) and is found by taking the partial derivative of the

strain energy with respect to the load intensity.

Generalized Load p

|
T
|

/

L_ Generalized Displacement

Figure 4-1. Generalized Displacement Due to
Uniform Load

4-3, Generalized Displacements of Basic Structure

The basic structure (Fig. 2-3) is acted upon by the applied loads



R
(W”tajm{qtax Qtéit.y Ptazj (t =1, 2,3, .. .)

and the member redundants

{Hﬁé} - {Mﬁéx M?éy N?az}

The torsional moment, bending moment, and shearing force at any
section q of member a are given by

E b M b Ml 4 pE

Tqa - gixx iax qixy iay gixz " iaz
E M v L B M ¢ o B [
X Z b ,
+ E bthx Qtax + £ bthy Qtay + N bthz Pgaz
: , ]
VI S U S v S S A (4-1)
qa qiyx iax qiyy iay qiyz iaz
E M E M E M
% 2
+ t bqtyx Qtax + ? bqtyy Qtay + £ bqtyz Ptaz
o= b ; E S S e
ga gizx iax qizy iay qizz iaz
E M E M E M
Py
+ E bqtzx Qtax + £ bqtzy Qtay + E bqtzz Ptaz

A typical influence coefficient bi is the action at g in the Y

tyx

direction of the element system due to a unit cause at t in the X

. . E . . . .
direction of the member system; bqi is the action at q in the X

Xy
direction of the element system due to a unit cause at i in the Y
direction of the member system.

The summation E in determining the cross-sectional elements at g

on the basic cantilever is taken over the interval 1 q.
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The total complementary strain energy of member a is given by

& = * * Ik
Ya Utorsion +‘Ubending + Lschear
that is
;OB N2 N2 i
o= & o E 2E (4-2)
a 2 qx iqa; qy | qa J q
where
E ds . . .
qu =% = angular deformation of the differential element
ds in the XE direction,
E ds s . ve e >
qu = 37 = angular deformation of the differential element
ds in the YE direction,
E kds . . . .
qu = @ - linear deformation of the differential element

E
ds in the Z~ direction.
The generalized displacements corresponding to the generalized forces

on the member are

U
WM =ﬁ=mi = rotation at t of member a about the X axis
tax aQM
tax
of the member system,
a %
WM = a, = rotation at t of member a about the Y axis
tay d QM
tay )
of the member system,
M oU*
W = —— = deflection at t of member a in the Z
taz DPM
zZ . .
ta direction,
M ou*
W, = 2, = ryotation of i of member a about the X axis
iax MM
oM.
iax

of the member

system,



that is

W
tax

tay

.
Ntaz

W,
lax

iaz

Thus

W
tax

aU"s‘:
W, = = = vrotation at i of member a about the Y axis
iay aMM
ey of the member system, and
ou*
WM = 2 = deflection at 1 of member a ia the Z
laz aNM
iaz . ,
direction
-/ g OT E oo/ o e b ® ax* \:
=:@/ (T a Eaﬂg kﬁx )+ iMEa Q 2 } +HN ; gaﬂi AEZE
s !\q tax ¥/ A4 tax D/ N9 Ry 9 /|
/ ot B ‘ T VAN \
=f [ E qa_ E M Zea E ) Bl E |
qa  goM qx/ = i qa 3 M qy; \qa oM az)
s _\ @Qtay OQtay PN thay /
o E \ aME \ / aN ] N —
s| L9 p qx / \ qa aPM qy / L ga BPM qz ;
L taz ‘taz ‘ ' ‘taz o
? E ot £\ g o e /8 Na )
= LT -2 / ?\ ~32 ;+f\N —3& )F
s\ o P NI el ) R 9%
p E E P X _
/. OT , oM ‘. oN e
1A= AR AN
sy 14 ©Mlgay 9%, 4 aMDjj_lay v/ | 98 1 ez,
L orE . OE NI v
=f(TE -—-ﬁé Y4 Tﬁi KE\}+QNE —d& F }
gqa qx i g8 qy, qa qz
S\ 0 iaz / 0 iaz / aN}a .

S

iTE bE

e

}\.E

b+ E oy
qa qtxx qgx &qa qtyx qy;

A ; I

\
y
£ ]

(t 1, 29 3,

E

+\N' b zE
\ qa qtzx gz

- )
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S f ;/TE pE B ) L AE E E B pE E }
tay gl 9@ “atxy gqx; |\ qa atyy qy/ \ qa qtzy gz
{(t=1,2, 3, )
A1 Mig & EV . [ E LE e\ /8 E 5 )]
& = J iT b A ) + M b AT tNT b AT
taz S-}‘qa qgtxz  gx; \ qa qtyz qy/ \ ga gqtzz qz/ |
t=1,2,3, .. .)
o v Vg e\ |
W =J (TE pEaE P+ e bt By {NE, ptE )
« lax s qa gixx qx; qa qiyx qy; \ ga qizx qzy

V. T 4 B “? / : ] B kY

W't =f (fE pE  E |+ U SO o S 1 N N
lay s \ qa qixy 4gx qa  4q1yy qy, \ 498 4qizy qz)
Mo lE B BN LR GE GE Y L[ pE R
iaz JL a ga qixz qx; \ qa qiyz 'qy/ %an qizz ng

Substituting the values from Eq. (4-1)} into the above, and omitting

the superscripts for the sake of brevity, the displacements become
{b (b. M, +b . M __+b . N
qtxx gixx 1lax gixy 1lay qixz iaz

+ b Q

gtxx “tax

™ M

+ X b Q + X b
t t

P A
qtxy “tay qtxz taz qx

+b <b,M. +b M. 4+b . N,
gtyx qiyx 1iax giyy 1iay qlyz iaz

Z b b b P A
+ t qtyx Qtax + E qtyy Qtay +.t ‘qtyz taz}

+b

3
£

(b, M. +b . M. +b. N,
gqtzx { gizx "iax gqizy iay gizz 1az)

.'}\-
+ E bqtzx Qtax + E bqtzy Qtay + E bqtzz Ptaz) qu
w.;f[b (b.M. +b . M. +b . N
tay s qtxry gixx 1lax qixy 1ay qixz 1az
\
+ g bthx Qax * E bthy Qtay + E bthz tazj qx.
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+ b ,(b Lo M, +b . M, +b . N,
gtyy\ qiyx iax qiyy iay givz iaz

Y

X z A
+ f bqtyx Qtax + + bqtyy Qtay + t bqtyz Ptaz ) qy
+ ( b ., M, +b . M. __+Db . N,
qtzy\ gizx iax qizy " iay qizz iaz
's,» 7\.
+ E bqtzx Qtax + E bqtzy Qtay + E bqtzz Ptaz} qz

W ==f[b {b.M. +b . M., 4+b . N,
taz qtxz | qixx “lax qixy “iay gixz “iaz

+

Q + X b Q
t

v 3
)
E bthx tax gtxy “tay + ? bthz Ptaz} \qx

¢

b (b.M, + b, M. + b . N,
qtyz qiyx ~iax qiyy iay qlyz ~iaz

+Z b +Z b +Z b IR
t qtyx Qtax t qtyy Qtay t qtyz tazj qy
+ (b Lo M, b . M, +b . N,
qtzz gizx 1iax gizy 1iay gizz 1iaz
%,
1A
+ E bqtzx Qtax + ? bqtzy Qtay + E bqtzz Ptaz} q;}

The displacements at the free end of member a w, , w, , and w,
‘ iax iay iaz

are given by similar equations, except that the subscript t in esch
coefficient in front of the parentheses is replaced by the subscript i.

These displacements may be expressed in matrix form as



]

{"eal

P [ fd -

[qt_ H[qla]’

[qla -+ Pycal - ]

in which typical submatrices are of the form

[aca]” Pl Pase]

where

~and

gtxx

bthX

bqtzx

bthy
b
qtyy

bthY

b
qtxz

bqtyz

b
qtz%_
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Eq. (4-3) may be written in abbreviated form as

4 H

% =[y y [

“ta V%at : Y eai wta {(4=3a)
— T"mhfig" —

Yia 7bia.t | " iai | Hla

where
[4%a£] is the influence coefficient matrix of displacements
at points t due to generalized forces acting at the
points t of bar a,
[gjtai} is the influence coefficient matrix of displacements
- at the points t due to member redundants of bar a,
[¢Gaé] is the influence coefficient matrix of displacements
| at i due to generalized forces acting at the points t
of bér a, and
[¢&aé] is the influence coefficient matrix of displacements

at i due to member redundants of bar a,

4-4, Complementary Strain Energy

Since the structure is assumed to be elastic the complementary
strain energy is equal to the strain energy stored in member a, There-

fore
,g 2 ta "ta (4-4)

Substitution of Eq. (4-3a) into Eq. (4~4) gives
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T
T 1 -
U‘a =2 wta. \//tat i l//tai wta} (435).
Hia Wiat ! k’jjiai Hia j

Carrying out the indicated matrix multiplication,

E = [, }T [LPtati | {Vea} * [M1a }T [Viat] {ea)
T T .
+{wta} [Ll/tai] {Hia} * {Hia } E‘Piaij {Hia}

and substituting for{Hia} from Eq. (3-7)

T el

B

2u% -tha} l}btat:l{ a +TW§)
0

0

B

e ) Frad] P12 { }

T

T E T B T b I
| J8

20, = {Wta }T@tatil {Wta} * } [\Ijlaq { ta}

N (4-6)

o u

or

e
M
0

Ry
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where
§;atj B L tatJ
_ _ T T
, .o CMO T [
_géat_ N _?a _] :9 | __¢
2] [Ved [# ] [0
| ~tai | ' tai B | |'a
— — T - - L
7 - {%o ] o J
| ~iai| a N B
Combining the matrices of Eq. (4-7)
T
- ]_r A & -
% _ =
V. = 72 Wia glat
(t x t)ﬁi
6_“ B
) SWj '
. |
Rk gpiat ‘
. (e xt) |
. J =

ot

i

Vel

SW

e O

]

¥(p x 1) ]

et 5]

",

*] B]

W ' (4~8)

where p equals three times the sum of the swj vectors and Rg vectors

on the structure, Examination of Eq. (4-7) shows that this new{}?J

matrix is also symmetrical.

If the load vector contained all applied loads on the structure

and there were n such loads, then Eq. (4-8) would become
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1 LT —-7_ - _
=2 We Yiat Yiai
(o xn), (0n=xp)
- ——t——
{ sw®
J
0 - :
Rk %Jiat \g’iai
! ) e =l (pxp)

in which in the appropriate places,

Y

_§7 ,| has n minus t rows of zeros, and
| +tai |

has n minus t columns of =zeros,

iat

{n x 1)

sl
J

0

R

0 x 1)

.y .
%%at] now has n minus t rows and columns of zeros
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The total complementary energy stored in the entire structure is

then

U

where

_ + 1

- § Us = 3
a T,

Vee | Vs

1

—

T \ -

V7 ¥

Yie | Y

T
r “ — - T r ~
W Vee | Yei| | Ve
- R T o
SW ; s
j N 3
Vie | ¥
|
0 0
)L | IR
7] T,
Vear | Yeas
|
-2 N
* |
Jr Jr
* +iai

(4-10)

(4-113

The lower elements of the influence coefficient matrix in Eq,

(4=10) can be partitioned further so that



e |

may be replaced by

Vs

Ve

Hence

Uk =

N

RS

34

(4-12)

4 1
The subscript S is used to identify those terms associated with {SW? E,



CHAPTER V
SOLUTION OF STRUCTURE REDUNDANTS

o-1, Differentiation of the Complementary Strain Energy

The triple multiplication indicated in Eq. (4-12) yields

e = 30w, V[0 o6 ) edind + (2 ) [ (o,
i I D [2) + [ }T@SQ EHS }T@-RS] fs0]
B2 [543 Dad (2] () Wi )

and  differentiation with respect to one of the redundants gives

@%%:@Rt}{ [\DtR (W) +[fas] 3]
o] (o) o (] (9]

Since theL%)] matrix is symmetrical,

55 [l [ o] (3] ] ()

which can be combined into compact form to give
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5-2,

S I AR

Voo | s | T

. "
W
SO
J
R,
. p

Comparison of the Energy Expressions

Since Eqgs.

strain energy of the structure,

T
d N — - - =
W EZ/tt1 LI}tsl tR W
SR [ [ P N A
0 T 0
SWeo @St ' qjss | Yor Swj >
SN R I R R I
0 | 0
L Ry | __ikx | %%s ‘ Q%R LR
T . ~T
M M :
-z {wta} {wta}+ ot ELL,I__O_
0 | |
SW %s | %s | %R
o ool
R R ks | e
Examination of the last three of Eqs. (4=3) and Egs,

that they are equivalent, thus

and

In Eq. (4~12)

RSN

[Hede[s]

(5-2a)

(5-3)

e o

(2-10) reveals

(5-4)

(5-53

36

(3-14) and (4-12) both represent the total complementary
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{Wt} is the vector of all externally applied loads, and

][l ffe BT T P

while in Eq. (3-14)
T

{aw}:[ro] (0] - E[["J ] {VM”

Ry

and ‘
FSS_ i J - [T 1]
%Gs | %
0 -T 0 T N
- pE T T RIFTR
Thereforé | . ‘
[@St {wt} = { %5y {1} (5-6)
\JJRJ "Ry }
and ' |

| Vss : Psr B %s : %p -7
Ves | ¥re s | me

These can be arranged in the following form:



“blo 0 |

gRt l s | \PRg_

Yee | o0 | o

i

0 ' 0 l 0
o%ljl 0 I 0

%y | %s | % |

From Eq. (5-2a) the left side of Eq. (5-8) is equal to

therefore by Eq. (5-8)

respect to each of the redundants, it was shown that the partial

oY
g

-~

%

oux -
= =[0 0 0 1
o) —L O O s
% 0 ’ ] 0 sw(j)&
T 0
kv | %Rs | %R | \Rlcc)J

Compatibility Equations

5-3.

By minimizing the total complementary potential energy with

{5-8)

(5-9)

derivative of the complementary strain energy is equal to the pre-

scribed displacement at and in the direction of the associated
redundant.

_ that no relative displacements occur at the imaginary cut,

rk=

it is obvious that r

deflection or rotation, r

0 ., . cqaqs .
When Rk is an internal redundant, compatibility regquires

therefore

0. Similarly, when Rﬁ is a redundant at an unyielding support,

k

= 0.

In the case of a redundant at a support having a known initial

k

is that displacement.

By permitting k to assume in turn all the index values of the

38
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redundants, Eq. (5-9) yields

0 | 0 ’ o077 (1} = {rk} (5-10)
0 ‘ 0 { 0 < SWJ‘?
I - _
fle’aRS‘aRR_ \Rﬁj

which may be solved to give the redundants of the entire structure.

Thus
[ozRv :CZRS] __1_ + EZRR]{R;:} = {rk} (5-11)

{Ri} " o ]-1 {rk } % ]-l % | %] E (5-12)

SWO
- d

Once the structure redundants are known, the actions at i of any

member can be determined readily by the use of Eq. (3-7). The reactions

at j can then be calculated by statics,



CHAPTER VI

APPLICATION

Planar Frame Loaded Normally

The two-bay planar frame loaded normally (Fig. 6-1) has been
solved on the IBM 1620 computer. All members have equal EI values of
150,000 k-—ft2 and EI/GJ = unity. The shear effects in the calculations
of the flexibilities are excluded by setting kEI/GA = 0. The curved
members are parabolic in shape;

Three support conditions are considered in the analysis of the
example problem:

1) fixed supports at A, B, and C,

2) pinned support at B and fixed supports at A and C,

3) supports A and C fixed and displacements

n° - 0,02 ft., 0° =0.05 rad., ©° =0 at B,
A X y

The resulting values of the structure redundants and member redundants
are listed in Tables 6-1 and 6-9, respectively.

Tablés 6-2 and 6-9 illustrate the step by step formulation of the
problem (condition (1) ). The procedure for analysis on the computer
is given in Appendix B.

Eq. (5-11) is used to solve for the redundants, condition ).

Since all supports are fixed



Parabolic
Curve

Condition 1 - Fixed ' ~ TF
' C
2 - Pinned : j>“/// \\\\\\
3 - Displaced \\\\

Figure 6-1. Plane Frame Loaded Normally
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TABLE 6-1

42

STRUCTURE REDUNDANTS

Condition Location of Redundant Redundant
0 0 0
k-ft'lix | k-ft iy | kips iz
1 Base of Member 1 -79,37 17.02 ~5,09
Base of Member 5 =79.,37 ~17.02 -5.09
2 Base of Member 3 ¢] 0 -1.18
Base of Member 1 -140.00 46 .74 -9, 41
3 Base of Member 3 594.09 0 42,20
Base of Member 1 -437.04 195,77 -31.10
TABLE 6-2
DEVELOPMENT OF Hga MATRIX
{sw(? {swc.’ } = |1 0 o] = 40
j2 j4
0 1 0 100
0 0 10 | 10
0 ! o o o Lo o0 0 |
{hia} = {40 100 10 + 40 100 10 ;Milx i1y M1z Moo Migy NiZZJ
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Therefore

o bons] [ 1] ] () = (0]

sW0

N

Cuts 1 and 2 are introduced at the base of members 1 and 5 respectively,
thereby providing the six releases necessary to render the structure

"statically determinate". This furnishes the vector of redundants,

{VRE } {_Mgix Mgiy Ng'.)iz M?Zx M?Zy N?Zz_}
{SW?'}iS the column matrix of load vectors at ends j of all the members
subjected to external loads and is statically equivalent to the applied
loads on the members. This vector is obtained by premultiplying the
actual load vector on each member by the transmission matrix necessary

to transfer the static effects of the loads to end j of that member.

The construction of

which is used in setting up the computer solution is demonstrated in
Table 6-2,

The flexibilities and load functions for the various members in
their own systems are next calculated and listed in Table 6-3. The
rotation matrices shown in Table 6-4 are required in transforming these
values from the member system to the reference system. The reverse of

this operation can be accomplished with the transpose of the tabulated

matrices,



TABLE 6-3

FLEXIBILITIES AND LOAD FUNCTIONS IN 'M" SYSTEM

Member E I [fM J E I F/M :}
14 N 1a
1, 3, 5 10 0 o | 0
0 10 50 0
0 50 333.33333 | 0
2, 4 " 21.964602 0 -56,546076 [156,56164
0 21.964602 219.64602 3 573.03370
-56.546076 219.64602 3157.3710 | | | 9403,9710
TABLE 6-4
ROTATION MATRICES
Member 1 2, 4 3,5
0 1 0] 1 0 0} -1 0
[wMOJ -1 0 o0 0 1 0 0 0
0 0 1 0 0 1 0 1




In order to formulate the [Qg} matrix the flexibilities and load

functions in the '"O" system are calculated from the equations

(2] - [+ [5.] [+]
EARREARPA

The resulting values are shown in Table 6-5,

and

TABLE 6-5

FLEXIBILITIES AND LOAD FUNCTIONS IN "O'" SYSTEM

45

Member ETI [?9 ] EI E?Q :
ia 1a
1 B 10 l 0 ’ =50 B 0
0 10 0 : 0o
~50 0 l 333.33333 ||| o |
3, 5 — 10 0 , 50 [ 0 |
0 10 0 0
N 50 0 333.33333 || o |
2, 4 [ 21.964602 0 ~56,546076 || 156.56164 |
0 21.964602 219.64602 ||| 573.03370
-56.546076 | 219.64602 3157.3710 ||{9403.9710 |
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These matrices are expanded to the form

0 : 0
o0 I o
7Jia | fia

A linear transmission matrix for each member is established next.
This matrix transfers to the end i of a member all effects that influ-

i . . [0
ence the composition of the particular member redundant. Since {Hia}
[0

. R 0 0 . o]
is premultiplied by [£a]’ and {Hia} includes all the {swj} and{Rk}

vectors of the structure, the transmission matrix [%ga1 (Table 6-6)
contains zeros in appropriate locations wherever that portion of the
{H?a} matrix does not influence the member redundant.
The transmission matrices are expanded to the form
1 | o
o0
and are used to calculate [@g] from Eq. (3-14). Table 6-7 demonstrates
the computation of [?2:1. All other [gg] matrices in this problem are
calculated in a similar manner.

Summation over the entire structure gives

B a a
from which

Eoky l Qké} and[?ké] are easily extracted,

T sl [+ ) - [

s
J
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TABLE 6-6

LINEAR TRANSMISSION MATRICES

o o]
i o~ —
] §
o — o
— o o
o o —
— [a]
8
o — o
— o O
o
o o~ —
g
o — O
— o o
o o —
< — o
_1 o 0_
It
3_
Q o
-

o o —
— o H
(] — o
¥
— o o
§
. \\\
,,/, /
. . \
~
o .
AN
/ ™

0 0
-1 20
0 1

1
0
0

=) o —
i ]
(@] 1 o
L)
— o o
i
\\\
/ \\\
N/
o




TABLE 6-7

DEVELOPMENT OF'[ég} MATRIX

0

1l o o o]fo | 0 0 000

of | |ise.56168 1 21 90us02] 0 | 36,5607 o 'L TN
00~ ~||156.56164 | 21964602 0 1 =56.546076| [0 I\ I\ |1
ol o 573.03370 | 0 21.964602 | 219.64602 [ {0 | 0 0 |0
o]~ O\ 9403.9710 |-56.546076 |219.64602 | 3157.3710 | |0 | / \\\]// o
o(\\\ Pz

0 0

0 , // \\>

01 0 0

Of 0 1 0

0-10 0 1

0l ~.

0] 0

101 s

I N 0 0 0 0 0 0]

0 {\\‘o////\\\\o//fﬂ \\\\\\\\'”“\~o T \o///

0 e O ) -

0 l//., \ e \ L — // \
156.56164 |~~~ |>~_ | 21,964602 0 =276,19210 ™~ -~
573,0337ol 0 L 0C 0 21.964602 219.64602 0
7838.3546-1 7 N | 7 \1-276.19210 219.64602 6484.7528 |- \\>>

0 l\ PR N B R \\__ o

0 | ol N o ol

3 N 0 I/// \ ///( _ \\ ///’7/ \\\“ ,/"‘ \\

0 = P TN

0 0 0. T ,,o(;

R N P e N

8%



49

becomes
’ |fi1. 9644 " e -l
1956.5616|l1.9646| 0 [-376.1921/10.0000{ O  |-50,0000 !’Mﬂx =Lo},
573.0337|| - 41.9646| 419.6460| 0  |10.0000|-200,0000 [M°
\\\\ ily
™~
505,0210 L1151, 419 ~50.0000 | 2000000 ~3666,6667Nglz
1956.5617 N [41.9646) 0 |-376.1921 M0
-573.0337 Symmetrical 41,9646 | ~419. 6460 M(i)sy
505.0170 11151419 0
. A ____lSZ

This set of equations is solved to give the structure redundants listed
in Table 6-1.
The member redundants are next found by substituting the values of

the structure redundants RE in Eq. (3-7).

EARES I

R

&~ O

Sample calculations for member 2 are shown in Table 6-8 and the
values of the member redundants are listed in Table 6-2, The member
redundants for the other two support conditions are shown ian this table

also,
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TABLE 6-8

CALCULATION OF REDUNDANTS FOR MEMBER 2

10 0 1 0 -101\ 1( 40.0000] [-28.5043
//// \\ /11100.0000
.

10.0000| =¢ 17.0244

/// \\\ //// //’\\ 40,0000
Lp 0 0 0 1 N 1100.0000 -5.0864
{

10.0000 }
-79.3685
17,0244
- 5.,0864
-79.3685
- 5.0864/




TABLE 6-9
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MEMBER REDUNDANTS

Redundant
Condition Member My M¥ NM
ix iy iz
k-ft k-ft kips
o) 1 17.02 79.36 -5.09
2 -28.50 17.02 -5.09
3 0 22.99 9.83
4 -11.50 15,30 -4.91
5 ~17.02 28.50 5.09
(2) 1 46.74 140,00 -9.41
2 -45,89 46.74 -9.41
3 0 -11.78 1.18
4 5.89 -41.,48 -0.59
5 -46.74 45,89 9.41
3 1 195.77 437,04 -31,10
2 -126.05 195.77 -31.,10
3 0 -172.,10 ~42,20
4 86.05 -326.21 21.10
5 ~195.77 126.05 31.10




CHAPTER VIIL

SUMMARY AND CONCLUSIONS

7-1. Summary

The analysis of planar frames loaded normal to their plane, by the
use of the complementary energy principle, is presented in this study.
Each member is treated separately as a basic cantilever. The

actions at i, the "free'" end of the cantilever, resulting from inter-
action with adjoining members are treated as member redundants. These
are expressed in terms of all applied loads and structure redundants.
Summation of the complementary strain energy of each member gives the
complementary strain energy for the entire frame. When this is added

to the complementary potential energy of all prescribed displacements

of the structure the total complementary potential energy ™ is obtained.
The compatibility conditions are obtained by minimization of this
function with respect to each of the redundants.

The complementary strain energy is represented in two forms:

T
1 [ M
h = =
v 2 E ta } {Wta}
T
1 N - - oA
S P I S B 0 BRI AL
0 0
SW ? %y | %s %R Myl
o — e e
B ) Prv [ %s D %r| | B

and
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T . R
e — _:L, ™ N 4 7
Ue o= o5 W S-Dtt | ‘Pts | gth Wy (4-12)
[ [ A{_ ~ — -
sy ||, : Yoo | Weg sy b
I T B
Be ) [Pre 1 Yas | ¥m &

In the first equation, the flexibility portion of the [&] matrix remains
constant for a given structure and the y values can be taken from
tables, if available, or can be calculated separately. Although the
first term in the expression is not readily differentiable, for reasons
explained in Chapter III, it was shown in Chapter V that it is not
necessary to perform this differeqtiation when solving for redundants,
Thus a structure can be efficiently analyzed for various loading condi-
tions by Eq. (5-9) derived from this formulation.,

In the second form, Eq. (4-12), differentiation of the[gi] matrix
is straightforward. In a practical problem, however, this procedure
would entail calculating a different influence coefficient matrix for
each member under each type of loading, hence would be inefficient for
analysis of a structure for several conditions of loading.

General expressions. for end fiexibilities and influence coeffi-
cients for load functions of a planar curved member are given in
Chapter II. These expressions are evaluated for the case of a parabolic
bar and the derivations are given in Appendix A. A numerical example is

included to demonstrate the theory presented.

7-2. Conclusions

The formulation of the energy expression, Eq. (3-14) offers two



)
y

o

major advantages:

i. It presents the load function metrix in a form suitable fo

5

the systematic solution of a given frame under variocus load conditions
without undue algebraic or numerical work. Hence, it is not necessary
to start caleculations from the beginning if the load system on the
structure is changed. |

2, By the use of the concept of generalized forces, the load

fuﬁcﬁion matrix is prepared without the necessity of creating ficti-
t.ious nodes at points of application of each load.

The second formulation, Eq. (4-12), allows the calculation
of the work expression without the requirement of evaluating the
displacements at load points or expressing these deformations as
functions of the redundants,

Combination of these two formulations in one method greatly

siwplifies the construction of the compatibility matrix equation.

7=-3 Extensions

The theory developed in this research could be extended to:

1. The solution of space frame problems.

2., The investigation of planar frames subjected to vibrations
normal to the plane.

3. The investigation of structures composed of materials with
nonlinear behavior.

‘

4, The solution of plate problems by finite element technigues.
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APPENDIX A

FLEXIBILITIES AND LOAD FUNCTIONS

A~1, Derivation of Deformation Influence Coefficients

Flexibilities and load functions for a planar parabolic member
loaded normally are derived in this section.

The end flexibility matrix of a membetr is one which when post-
multiplied by a unit vector gives the displacements at the near end
due to unit values of the near=-end actions. The algebraic expressions
for the coefficients for a general planar member are given in Table
2-1 of Chapter II. It is to be noted that the integration is over the
» complege length of the member.

A load function influence coefficient matrix [f ’].can be developed.
When this is post-multiplied by the near=-end vector which is the static
equivalent of a unit load vector at a given point, the product will be
the end displacements due to the unit load vector. The coefficients of
this matri# have the same algebraic expressions as those shown in Table
2-1, except that the integration is now over only the segment extending
from the point of loading to the far end of the member. Thus the two
matrices are identical if the unit load vector is applied at the near
end.

In this section the expressions given in Table 2-1 are integrated

for the particular case of a parabolic arc Fig. A-1 over the interval

57



58

from the point of loading to the far end. The coefficients thus cbtained
may be used either as the end flexibilities or the load function in-
fluence coefficients by substitution of the correct limits., A separate
matrix must be generated for each concentrated load vector.

For the case of a uniformly distributed load, the load functions
for a unit load must be integrated over the interval of loading and the
results multiplied by the load intensity. In a numerical problem this
is easily accomplished by using Simpscn's one=third rule; which is
precise up to third degree curves.

The algebraic derivation is given in A=2 of the appendix. ALl the
coefficients are in the member system; therefore the superscript M is

omitted.
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A-2, Alecebraic Derivation

Figure A=l1, Parabolic Arc

The equation of the parabola shown in Fig. A-1 is

= -ZL]:}% (L - X) (A.“
L

o

.1

This may be represented in parametric form by

X = Lt (A-2,

2

)
B2
S

y = ht {2 - t)
For any point gq along the curve, the limits of integration become

t=-2-E- to t =2 (A<2.3)

and

dx =

[ ] o

dt (A-2.4)



Denoting the angle between the X axis and the tangent at q by B,

tan B

cos B

sin B

where

ds

therefore

ds

Changing the variable of integration from t to u by letting

1 -t
gives
cos B
sin B
and
dt
therefore
ds

The new limits of integration are now (1 = 2% ) to (-1) thus

dx i -1

L

4h/(1 L

l -t

2

J(l - )% + a2

cos PB

ZhQ/U.- t)2 + a2 dt

u

L
4h\[52 4 g%,
u

:,:Ll 4= &

=2h qu + a2 du
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(A-2.5)

(A-2.6)

(A-2.7)

(A-2.8)

A-2.9)
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L 2 -1
f f x) dx = g(t) dt = f G (u) {(-du)
.

L
L-T
= G (u) du
-1

All integrals will therefore be of the form

Y
f G (u) du

-1

where

Y=1-2—§' (-1=vy<1) | (A-2.10)

1
The integrals necessary for evaluation of the coefficients fia

are given in Table A-2.1. The symbols listed in the third column were
used in preparing the computer program and are helpful in shortening
the expressions for f;a, while at the same time preventing the meaning
of the equations from being obscured.

For members with constant EI, GJ and GA, if the ratios EI/GJ and

KkEI/GA are denoted by p and f respectively, the influence coefficients

are reduced to the values given in Table A-2.2,



TABLE A-2.1

1
INTEGRALS FOR EVALUATION OF fia

Y £ du

—_—l Symbol
-1 VGZ + az

27 2
10g<\(+ Y +a )

-1 + Jl + az
JFE
%[Y \/YZ + a2 +/1 + a2 - a2 (DU)]
%“K«/ Y2 + a2>3 -<,\/l + a2>3}- azl;/?_—l-? - \[lm-:_ajz:J

2
1 372 2 2 3a 2 2 2
Z(YJY + a +Jl+a>~“8—'<YJY + a +Jl+a>
4
+§—aé— (DU)

2
1 2 2 2) 5a 3 /.2 2 2)
-6-<Y5,\/Y + a +Jl+a)»“§fz<Y ,\/Y + a +“/l+a/ﬁ
4 6
5a \/2 2 2\ 5a ‘
+ = <\{ Y +a” + l+a) e OO

N

LY \/YZ + a2 +Jl + a2 + a2 (DU)]

e
&

ony

U2pu

U3bu

U4DU

Ueby

DUIN
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TABLE A-2.2

DEFORMATION INFLUENCE COEFFICIENTS FOR A CANTILEVER PARABOLIC BAR

EI x Coefficient

Values in terms of Symbols in Table A-2,1

iaxx

iaxy
iaxy
fiayy
iayz

iazz

ur?

sn (DU + 2n(U20U)

 @-1) ()

2 2
“—g— [2@p) - @U) - (u2pv)]+ 1‘—5 [(uzpy) - (UDU):I- 212 [u2pU) - (U4DU):J
.2
2uh (U2DU) + & ()

uLh Euznu) - v3pw) - ${cwo) - (U3DU)H+ = (o - @]+ 22 [woy) - (w3DpD)|

2

L2
T.:.,é.h{ w[(OU) - 4(UDU) + 6(U2DU) - 4(U3DU) + (U4DU)]+ (DU) - 2(UDU) + (UZDU)—I

+ 4[@DU) - (u2DU) - (U3DL) + (U4DV)]+ 16h [(vzpw) - 2(u4DV) + (v6DV) ]
L

2

+ 160 (DUIN) }
L

€9



A-3. Flexibility Data for Parabolic Cantilever

Influence coefficients for end flexibilities and load functions
for a parabolic cantilever beam of constant cross-section are presented
in Table A-3.1 This beam configuration (Fig. A-2) is used in the numer-
icai example., The coefficients were evaluated from the equations given
in Table (A-2.2).

Deformations are shown by arrows with a slash. Double-headed
arrows indicate rotations and the single-headed arrow denotes a de-

flection. The positive directions are as shown.

Table A-3.1 DEFORMATION INFLUENCE COEFFICIENTS PARABOLIC CANTILEVER,
CONSTANT SECTION

Data: L=20ft. h=4ft., EL=1 KkEI =0
GJ GA

End Flexibilities:

f. = 21.9646/EL » . £, = 21.9646/EI
ixx iyy
£, = 0.0000 ' £, = 219,6460/EI
ixy tyz
£, =-56,5461/EL f, = 3157,3710/EL
1XZ 1zz
Load Function
Location CL EI T, EI T, EIT}.
ix 1y 1z
0 -56,5461 219.6460 3157.3710
.1 -26,6490 178.2136 2639,1469
.2 - 6,0480 141.5352 2151.8574
.3 6.9035 109.3002 1703.5174
A 13.6851 81.2722 1298.7262
.5 15.6561 57.3034 940.3971
.6 14.1129 37.3430 631.2004
.7 10,3515 21.4418 374,8180
.8 5.7313 9.7477 177.1248
.9 1.7319 2.4967 47,4409
1.0 0 0 0
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Figure A-2, Geometry and Definition Sketch Parabolic Cantilever



APPENDIX B

COMPUTER ANALYSIS

A computer program for the analysis of the class of frames
investigated in this thesis was written for the IBM 1620I. Since the
storage capacity of the compufer is only 20,000 binary digits, the program
was subdivided into six phases. | |

A macro flow diagram (which follows) illustrates the basic logic of
the process used in the solution of the problems. Input data required
for each phase are indicated below. The member redundants constitute the

output of the final phase.

INPUT DATA - PHASE T

Information Needed in Phase IX

M, N, MA, NA, MB, NB, AM, BM

M, N Rows and columns of expanded matrix

The next four numbers indicate the number of rows and columns that
matrices A and B are to be shifted., The last two are the multipliers

of A and B.
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Member Number and Shape, Number of Loads, and Coordinates in Reference

System

MM, MS, NL, XI, YI, XJ, YJ

MM member number
MS member shape
NL number of loads

The last four numbers indicate the cocrdinates of the 1 and j ends

of the member.

Member Properties

,//EMU, RO, H, ETA

EMU the ratio EI/GJ
RO the ratio kEI/GA
H the y ordinate at mid-point of the member

in its own system

ETA the ratio EI/EIO

Location and Values of Applied Loads in the Member System

///kLs QX, QY, P
XL X ordinate of the load

The other three numbers are the values of the applied loads.

INPUT DATA - PHASE IT

Qutput of Phase T

(/M2 N, MA, NA, MB, NB, AM, BM (Same as first card of Phase I)
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I, J, Fo(x, J)
I, J location of matrix element

FO(I,”.7) flexibility coefficient in reference system

/I s ENUO(I)
I location of matrix element

ENUO(I) 1load function in reference system

INPUT DATA - PHASE IIT

Coordinates of Member and Number of Influences for

Transmission Matrix

//XA, YA, NI
XA, YA  coordinates of end i of member a
NI number of redundant vectors plus the number of

statically equivalent applied load vectors at

ends j of members

Influence Constant and Coordinates

¢, XB, YB
C 0, 1, or ~1 depending on how member a is affected by

the influence

XB, YB coordinates of the influence

INPUT DATA - PHASE IV

i M, N number of rows and columns in output from Phase II




Qutput of Phases IY and IIX
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I, J, B(I, J)
I,J location of matrix element

B(I, J) load function or flexibility coefficient

I’ J? A(13 J)
I,J location of matrix element

A(I, J) element of expanded transmission matrix

INPUT DATA - PHASE V

Matrix Selection Details

M, N, MA, NA

M, N number of rows and columns needed from the structure
flexibility matrix

MA number of rows ignored

NA number of elements in load vector

Structure Flexibility Matrices

I, J, AT, )

1,3 location of matrix element

A(I, J) element of structure flexibility matrix

Prescribed Displacements

f/I, W(I)




Load Vector
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I I, S(I)

Details for Solution of Simultaneous Equations

M2, N2, MA2, NA2

M2 number of redundants

N2 number of columns of augmented matrix

MA2, NA2 number of rows and columns omitted from structure

flexibility matrix

INPUT DATA - PHASE VI

i M, N number of rows and columns in transmission matrix

. Vector of Loads and Structure Redundants

I, SRO(I)

structure redundants are output of Phase V

Transmission Matrices

/"

I, J, RAO(I, J)
I, J location of matrix element

RAO(I, J) element of transmission matrix

/MM, MS, NL, XI, YI, XJ, YJ

(same as second card of Phase I)




r

<?ead Data Card for Phase IT prograﬁ)

I
{

I —

<i:%ead Member number, Member shégé

number of loads, X and Y coordi-
nates of i and j

Compute Member lengths and orientations
and rotation matrices

'

<%ead o, 6, h,q j)

(ﬁead load location, and load vectort)

1

Compute flexibilities in "M" system

)
<?ﬁnch Data Card for Phase I;:)

2

Compute flexibilites in "O" system l

1
(Punch flexibilities in "O" system>

Are
any loads

on span

l Yes

Compute load functions for all loads
on span. and rotate into '0' system

1

<?unch load functions in "O" systeﬁj)

Is last member -

No Wrs/ed/

Yes

PHASE
1T

. § i
ead rows and columns in expanded load function and flexibilityj)

, row and column shift of A and B, constant multipliers.

]
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t

<:gead Matrix Aj>

/

Shift A to reqﬁired position
and multiply by constant

!

(:Read Matrix B:)

Shift B to required position
and multiply by constant

Compute C = A + B l
Y

<:funch matrix C:)

No

traverse

Yes

C

Read Coordinate of i end of member
and number of influences

C

Read constant and coordinates of
influence

)
)

Compute transmission matrix to
member from influence and shift
over one row and down one column

Is

No last influence
used

Yes

Set RAO(L, 1) = 1.

i
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{

<:¥Punch I, J, RAO(I, J):)

ast membe

traverse

Yes

Y

Read M, N
Y
Read Matrix B

I

Read Matrix A

!

Compute B A
i
T
Compute @ = A™ B A

'

<: Punch ¢ <:>

<:Read M, N, MA, NA<:>

¥

<: Read o's ::)

)
!
o
Select [&R ! RSJ

4
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<:Read Prescribed Displacements wij>

']

\
Read Load Vect S.
<: e oad Vector 5 /)

)

Compute W,1 =w, =%, . 8§, ‘
i i ij 73
' 1
<j Read M2, N2, MA2, NA2 j>
¥

Selectﬁaﬂ{] ‘

Solve Simultaneous Equations
for Structure Redundants

i

<: Punch Structure Redundants

HASE
Vi

(j Read M, N :)

Read Vector of loads and
Structure Redundants [SRQ]

T

<:'Read transmission matrix[RAQi)
i

Compute[T| =[RAO] [SRO]
!
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' Read Member number, shape, number of
loads, coordinates of Member ends

)

! ]

Compute rotation matrices

|

(Compute Member Redundants

Is

No

last member
raversed

Yes

End
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