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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem. With the advent of high-speed 

computers, a new approach to network analysis and _synthesis has evolved. 

The new approach is based on the dynamical description of a physical 

system, generally referred to as the state model or state-space 

description of the system. The state model is composed of a set of 

differential equations explicit in the first derivatives of the state 

variables and a set of algebraic equations. 

(1.1.1) 

j = 1, 2, ••• ' p 

ljJ. (t) = i-th component of the vector of state variables 
]. 

ri(t) = i-th component of the vector of forcing functions (drivers) 

Ci (t) = i-th component of the vector of remaining system variables 

The state model most commonly considered is the linear time-

invariant case. Equations 1.1.1 become matrix differential equations 

whose coefficient matrices have constant elements. 

1 
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..2.. 111( t) = A !11( t) + B r( t) 
dt J;. - J;. - -

(l.1.2) 

=.< t > = £ 1< t > + £. .::,( t > 

where: 

x(t) - = n by l vector of state variables 

r(t) = m by l vector of forcing functions -
!:_(t) = p by l vector of remaining system 

A = n by n coefficient matrix 

B = n by m coefficient matrix 

.£. = p by n coefficient matrix 

£. = p by m coefficient matrix 

(drivers) 

variables (outputs) 

A good treatment of the characterization of a system by the 

state-space method is given in Chapter 3 of Tou (l). 

There are several books which are devoted entirely to the subject 

of the state space. Probably the most comprehensive and rigorous 

treatment is presented by ·Zadeh and Desoer (2). 

Although the state-space approach is relatively new in engineering, 

there are many papers which discuss the subject. Almost all of the 
·, 

current literature is• however, concerned with the problem of analysis 

rather than synthesis. The classical network theory treats both the 

analysis and synthesis of networks. Similarly, it would be desirable 

to find a synthesis procedure for the state-space model to complement 

the methods of analysis. 

In classical network synthesis, the problem is to find a physical 

network which is described by a given function of the Laplace transform 

variable, s. The procedures for testing a Laplace function for 
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physical realizability are well developed for one-port networks. 

Van Valkenburg (3) and Weinberg (4) give conditions that a function 

be positive real and conditions that the network realization of the 

function be composed of certain combinations of resistors• capacitors, 

and inductors. 

In this thesis the author has considered the state model, Equation 

l.L2, with r(t) and c(t) being scalar functions of time. (m, p = 1) 

~ iµ(t) = _A _1/J(t) + _B r(t) 
dt .... 

c(t) = £ !(t) + D r(t) 

The problems investigated are the following: 

1. Is it possible to find a one-port passive 

r(t) as the input voltage and c(t) as the 

r(t) as the input current and c(t) as the 

has a state model of the form of Equation 

Q 

~(t) = i ?!,Ct) + i v(t) 

i( t) = !!, ~( t) + G v( t) 

or 

k,(t) = ~~(t) + e i(t) 

v(t) = t~(t) + R i(t) 

(1.1.3) 

network having 

input current (or 

input voltage) which 

1.1.3'? 

(l.L4) 

(1.1.5) 

2. If such a network realization is possible, will it be an LC, 

RC, RL, RLC, or RLCT network'? 

In the theorems and proofs which follow, it is assumed that the 

reader has an understanding of classical one-port network analysis 



and synthesis. An elementary knowledge of linear-graph theory is also 

assumed. 

l. 2 Previous Work in This Area. The references mentioned in 

Section 1.,1, Tou (1) and Zadeh and Desoer (2) 9 provide a good summary 

of the current state-of-the-art of state-space analysis. A straight

forward and systematic procedure for formulating the state model of a 

network is given by Blackwell and Grigsby (5). 

The previous work which has considered the synthesis of the state 

model has been confined primarily to technical papers. Dervisoglu ( 6) 

has developed a method for realizing the A-matrix (as defined by 

Bashkow ( 7 )) for a special class of RLC networks. He has found 

necessary and sufficient conditions that a given matrix be realizable 

as the A-matrix of an RLC network, but the conditions are quite 

restrictive. 

The paper by Morgan (8) treats the problem of state variable 

synthesis. However, he assumes the realizability of the network and 

develops a synthesis procedure which uses state-variable feedback. 

Brockett (9) discusses the effect of state-variable feedback on the 

poles and zeros of the transfer function of a control system. The 

effect of state-variable feedback on the pole-zero configuration and 

the proper feedback for optimal control are examined. 

Kalman (10, 11) derives some rather theoretical conditions that 

a system of state equations describe an N-port network having an N by 

N impedance matrix which is non-negative real •. These are general 

conditions which.guarantee that no eigenvalue of the coefficient 

matrix of his state model can have a positive real part; and hence the 

4 



state equations can be realized. An example of his realization 

procedures as appli,ed to LC driving-point synthesis is provided. 

The theory of matrix transformations and canonical matrices is 

summarized in a paper by Browne (12) and Chapters 15 and 17 of (13) by 

the same author. A comprehensive and thoroughly understandable 

treatment of canonical matrices is given by Gantmacher (14). Proofs 

of the existence of transformations between canonical forms of a 

matrix are done by Turnbull and Aitken (15). 

Holmes (16) has done some work on applications of the rational 

canonical form of the state equations to control systems. He derives 

a method, which is used by the author in this thesis, for obtaining 

the transfer function from the state equations. 

1.3 Outline of the Method of Solution. The author has answered 

the two questions posed in Section 1.1 by finding conditions on the 

coefficient matrices(! or~ which correspond to realizability 

conditions for driving-point functions in classical network synthesis. 

The conditions are found by performing a linear transformation of the 

state equations and then inspecting the coefficient matrices of the 

transformed equations. 

Linear nonsingular transformations are found such that A and B 
,., 

are each transformed to the rational canonical form. If!!.= .E.'i... and 

x = .9.'i... in Equations 1.1.4 and 1.1.s, respectively, then 

i = p-1 ! t 'i... + i-1 d v = C y_ + D v 
-i 

5 

(l.3.1) 

i = !:_.E_y_+ G v = !;!,y_+ G v 



i = st 1 ! 2. Y.. + g_-1 !. i = c Y.. + .£ i 
"'"2 

6 

(l.3.2) 
v = ~£.l. + R i =fl.+ R i 

where 

0 0 0 0 --a n 

l 0 -a 
n-1 

0 l 

£1 = 
0 

0 0 -a2 

0 0 0 0 l -a 1 

0 0 0 -b n 

l 0 -b 
n-1 

0 l 

£2 = 
• • 

0 -b 2 

0 0 0 l -b 1 

Inspection of Equations l. 3. l .and l. 3-. 2 gives some necessary 

conditions for the state model to be realizable as a one-port network. 

To find necessary and sufficient conditions for realizability, 

another nonsingular transformation, :l. =!.~,takes the rational 

canonical form to the Jordan canonical form. 

• T-1 T-1 -1 z = c T z + D v = J z + T D v 
-i -i 

i = H T z + G v = H T z + G v --- ......... .-

(1.3,3) 
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-1 c u z + u-1 E i J u-1 E i z .= u = z + - ~ -i - """'l .-
(l.3o4) 

v = KU z + R i = K U z + R i - ......... -- ..... --
where: 

J 0 0 " 0 
""'21 

0 J 
-i2 

J = 0 

"""'l 

0 

0 0 0 J 
"""'2k 

$. 
1 

l 0 . 0 0 

0 $. 
1 

l 

~i= 
0 

l 

0 0 a. 
1 

Next form a matrix S: 

0 0 0 
en --c 

0 

l 0 
Cn-1 --co 

0 l 

s = (1.3 •. 5) 

0 
C2 

co 

0 0 1 
cl 

0 --c· 
0 



where the ci' s are specified. combinations_ of the ai I s and bi I s. The 

matrix S is then transformed to its Jordan canonical form 1 J • 
. --3 

An inspection of the diagonal blocks of J and J provide the 
-i ~ .. 

necessary and sufficient conditions for realizabilityo 

A discussion of the procedures for obtaining the canonical forms 

of matrices is given in Appendices A and Bo 

Various tests have been devised by the author for determining the 

type of network which can be realized. Inspection of the original 

state model, inspection of C and C, and a short computation using 
-1 -i . 

the coefficients of J provide necessary and sufficient conditions for 
-i 

an LC realization. 

To test for an RC (or RL) realization, an inspection of J and 
"""'2 

a short computation involving the coefficients of J and J are 
-1 """'2 

necessary and sufficient. 

If neither the LC, RC, nor RL conditions.are satisfied, then the 

realization must be of the RLC or RLCT type. 

No attempt is made to find the values of the components of the 

realization network, since the problem has_ now been reduced to the 

well-defined procedures of classical synthesis. 

B 



CHAPTER II 

DERIVATION OF THE CANONICAL 

STATE EQUATIONS 

2.1 Theorems Relating the State Eguations to Classical Network 

Functions. The author has formulp,ted and proved several theorems 

which facilitate the correlation between the abstract mathematical 

equations and physical systems. These theorems are also used in some 

later proofs. First, some terms will be defined. 

Definition 2.1.1. When G is equal to zero in Equation l.l.4, we have 

i explicit in the state variables only. This set of state equations 

will be called the ,!_-equations. 

x=Ax+dv -
(2.1.1) 

i = h x -.-

Definition 2 •. 1.2. When R is equal to zero in Equation 1.1.s, then v is 

a function of state variables only. These equations are designated the 

!-equations. 

~ = B x + e i -
(2.2.2) 

v = k x 

9 
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Definition 2.1.3. A passive one-port network is said to contain a 

driving-point circuit _2t capacitors if. when an ideal voltage source 

is connected to the. input terminals• there exists a circuit consisting 

of the voltage source and one or more capacitors. 

Definition 2.1.4. A passive one-port network contains a driving-point 

cutset of inductors if, when an ideal current source is connected to ---------
the input terminals, there exists a cutset formed by the current source 

and one or more inductors. 

The passive one-port networks discussed throughout this section 

are assumed to contain no circuits of capacitors or cutsets of 

inductol"s. 

Definition 2.1.s. Let e. be the voltage across capacitor c •• 
1 1 

Let 

(j>j be the current through inductor Lj. 0. and (j>. will be referred to 
1 J 

as the i-th and j-th state variables of the network. 

To write the state model for a system of n state variables, we 

have 

c1 0 

0 

0 .. 

ck 

\+1 

0 

0 

0 

L 
n 

• e 
l 

bk 
= 

~ktl 

• 
(j>n 

i 
l 

• 

ik 

vk+l 

• 
.., 

n 

(2.1.3) 
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where: 

i. is the current through C. • (j = 1, 2, •••• k), and 
J . J 

VR, is the voltage across L1 , (R. = k + l, 0 ••• n) • 

In writing this state model• it is assumed that the system 

contains a minimum number of reactive elements. For example, if there 

are two capacitors in parallel, they are first combined into one 

equivalent capacitor, etc. A state model of a system is said to be 

of order n when the system contains exactly n reactive elements and 

vice versa. 

To obtain the I-equations, it is necessary to express the 

capacitor currents (i1 , ••• , ik) and the inductor voltages 

c~k ' •••• v) as functions of the input voltage, v, and the state 
. +1 n 

variables (e 1 , ••• , ek, $k+l' ••• , $n). The input current, i, must 

be expressed as a function of state variables only. 

To obtain the V-equations, the requirement is that the capacitor 

currents and the inductor voltages be expressed as functions of i and 

the state variableso v must be expressed as a function of state 

variables only. 

Theorem 2.1.1. The V-equations can be written for a one-port network 

if and only if the network contains a driving-point circuit of 

capacitors. 

Proof: 

l. Assume the network contains a driving-point circuit of 

capacitors. 

2. Then v =lei, where capacitor Ci is in the driving-point 
i 
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circuit. Therefore vis a function of state variables only. 

3. Every capacitor current and inductor voltage (i1 , •••, vn) can 

be written as a function of i • v, and the state variables. 

i. = f ca, 4>, i, v) • j = l, 2, 0 0 0 t k 
J - -

v!l, = g ca. <1>, i, v) 
' 

R, = k + 1, • • • • n· - -
4. By statement 2, v = v( a), so we can write -

i. = f ca, 4>, i) 
' 

j =· l, 2, •••• k 
J -· -

v R, = g (!,, 1, i) 
' 

JI. = k + 1, 
d O d ' 

n 

s. Therefore, the V-equations can be written for the network. 

6. Assume the network contains no driving-point circuit of 

capacitors. 

7. Apply an ideal voltage source v to the input. It is possible 

to choose a tree consisting of v, all of the capacitors, and 

a portion of the resistors. The cotree then is composed of 

the inductors and the remaining resistors. 

8. The currents through the resistors in the cotree can be written 

as 

~c =f(e.4>.v) - -
The voltages across the resistors in the tree can be written 

as 

~T = g ( !, !, v) 

The current through v (which is i) can be written as 
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i = h <kc, !) = h < !• !• v) 

9. Therefore• in general, v is a function of i; and hence the 

V-equations cannot be written. (For a more complete discussion 

and proofs of statements 7-8• see Biackwell and Grigsby (5).) 

10. By logic, if A implies B, then B implies A. Therefore, if the 

V-equations can be written, the network contains a driving-

point circuit of capacitors. 

Theorem 2 .1. 2. The V-equations can be written for a one-port network if 

and only if the input impedance has a zero.at infinity. 

Proof: 

A well-known fact from classical network analysis is that the 

input impedance of a one-port network has a zero at infinity if and 

only if the network contains a driving-point circuit of capacitors. 

The theorem follows immediately from this fact and Theorem 2 .1. l. 

Theorem 2.1.3. (dual to Theorem 2.1.l) The I-equations can be written 

for a one-port network if and only if the network contains a driving-

point cutset of inductors. 

Proof~ 

1. Assume the network contains a driving-point cutset of 

inductors. 

2. Then i = l ~j• where inductor Lj is in the driving-point 
j 

outset. Therefore, i is a function of state variables only~ 

3. Every capacitor current and inductor voltage can then be 

written as 
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i, v) = f (6, •• v), - - j=l,2., ••• ,k 

v9.. = g (!, i• i, v) = g (6, •• v) 1 - - 1 = k + l, •••• n 

4. Therefore, the I-equations can be written. 

5. Assume the network does not contain a driving-point cut set of 

inductors. 

6. If an ideal current source is applied to the input, it is 

possible to choose a tree such that all of the inductors, 

part of the resistors, and the current source are in the co-

tree. The tree then consists of the remaining resistors and 

all of the capacitors. 

7. The currents through the resistors in the cotree are 

kc = f (2_, !, i) 

The voltages across the resistors in the tree are 

YRT = g ( !, !, i ) 

The voltage across the current source is v and can be written 

as 

v = h (!R_T, ~) = h(6,.,i) -· -
8. Therefore s in general, i is a function of v, and the I-

equations cannot be written. 

9. Therefore, if the I-equations can be written, the network 

contains a driving-point cutset of inductors. 

Theorem 2 a lo 4. The I-equations can be written for a one-port network 

if and only if the input impedance has a pole at infinity. 
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Proof: 

The input impedance of a one-port network has a pole at infinity 

if and only if the network contains a driving-point cutset of 

inductors. Using Theorem 2.lo3, the theorem follows immediately. 

Theorem 2.1.s. The I-equations and the V-equations cannot both be 

written for a given one-port network. 

Proof: (by contradiction) 

Assume both the I-equations and the V-equations can be written. 

Then by Theorem 2.1.2, the input impedance has a zero at infinity. By 

Theorem 2.1.4, the input impedance also has a pole at infinity, an 

impossibility. 

If the network does not contain either a driving-point circuit of 

capacitors or a driving-point cutset of inductors, then G "# 0 and 

R '¢ 0 in Equations 1.1 0 4 and 1.1.5, respectively, and neither the 

I-equations nor the V-equations can be written. 

2. 2 Reduction of the Coefficient Matrices to Rational Canonical 

Form. A nonsingular linear transformation,~= £.z., is found such 

that p-l AP= C , the rational canonical form of A. (See Appendix A 
- .....,.._ -1 

for a discussion of the rational form and the method for finding P.) 

In general 

c 0 0 
-11 

0 c 
-12 

.£1 = (2.2.1) 

0 

0 0 c 
-lk 
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where each of the submatrices has the form 

0 0 0 -a 
r; i 

1 0 -ar.: • -1 
•1 

0 1 
c . :::; (2o2a2) 
-11 

0 -a 
2 

0 0 1 -al 

k 
O < z;;. < n, 

........ 1 - ~ r.i = n 
i = 1 

The reduced characteristic function of A is 

r-1 
A . + """+a A+ a] 

r•,~1 r 

r = max [r;, i J ~ i = l 9 2' 0 a O ~ k 

For the present times assume that 1; l = r = no Then C 
-1 

contains 

only one block of the form C , • The case where c has more than one 
-11 -1 

block will be considered in the next section. 

Similarly, find another nonsingular linear transformation, 

x = .9a y_, such that Sf l ~ Q ::: Ei ~ the rational canonical form of Ba 

c 0 0 
-2. l 

0 c 
-22 

.£e = (2.2.4-) 

0 

0 0 Sii 

where each of the submatrices has the form 



0 0 

l 0 

0 1 
c . = 
-2.l. 

0 

0 < E;.. < n, 
- l. -

0 

0 

0 1 

Q, 

l 
i = 1 

-bf;.. 
l. 

-b F;, -1 
l. 

-b 
2 

-b 1 

E;., = n 
l. 

The reduced characteristic function of Bis 

( ) = ( )s [ s s-1 J ~2 A -1 A + b 1 A + ••• + bs-I A+ b5 

17 

(2o2o5) 

(2.2.6) 

It is also assumed that ~n contains only one block of the form C .• 
~ ....121. 

2. 3 Definition of the Canonical State Equations. When the state 

variable xis transformed by a linear, nonsingular, n by n coefficient 

matrix !'._,t the state model is also transformed. Replacing~ by !'._l_ in 

Equation 1.1.4 gives 

(2.3.1) 
i = .h_f.l_ + G v 

Multiplying the top equation by P- 1(since Pis nonsingular) 

produces 

(2.3.2) 
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where X. is an n by l vector which defines the state variables of the 

transformed state model. 

De£ine the new coefficient matrices 

p-1 AP= C = n by n coefficient matrix 
- -- .;;a. 

p-l d = D = n by l coefficient matrix 

h P = H = l by n coefficient matrix 

Then 

• y = C v + D v 
-- --1 .. .... 

(2.3.3) 
i=!!,x_+Gv 

The other state model is similarly transformed by the linear• 

nonsingular matrix .9.• an n by n coefficient matrix. Replacing.?!. 

by .9.X. in Equation l.l.5 gives 

(2.3.4) 
v=~£_x_+Ri 

Multiply the first equation by .9.- 1 and define the new coefficient 

matrices 

Q-l B Q = C = n by n coefficient matrix ... -- ~ 

.9.-1 e = E = n by 1 coefficient matrix 

k Q = K = l by n coefficient matrix --- -
Then 
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(2.3.5) 
v=~z.+Ri 

Equations 2.3.3 and 2.3.5 with 'Ji.. as the vector of state variables 

will hereinafter be referred to as the canonical form of the state 

equations. 

Now. consider the cases where C and C contain more than one 
-1 -"2 

block of the form of C,. and 9~·, respectively. 
-~1 --1 

Assume that then by n matrix C can be partitioned into sub
-1 

matrices as in Equation 2.2.1. The submatrices C • ••~, C have 
-u -:Lk 

dimensions I'; 1 by ,; 1 • ••• , l';k by z;;k, respectively• where 

k 
l 1;,=n .• 

i: l 1 

Then-dimensional state vector 'Ji.. can be partitioned into k 

subvectors • each with dimension I; i. 

'Jl.. 
1 

(2.3.6) 

Partition D and H such that they are conformable to .£i• Then 

Equation 2.3.3 becomes 
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• c 0 0 D X.1 • l.1 -i.1 -1 .. 
0 c E.-i Li -i.2 Li 

0 = • + v 

• 0 

• 0 0 .£1k ~ ~ ~ 

i = [ 11 !!e 0 ~J X..1 + (Gl + G2 + ••• + Gkj v 

~ 

(2.3.7) 

Equation 2.3.7 has a k by k diagonal coefficient matrix _£11 so 

it can be divided into k equations, each having the fol'T!_I of Equation 

• ti. l.j = c1. l.j + v 
-J -:J 

i. = ~ Lj + G. v (2.3.8) 
J J 

j = 1. 2, •••• k 

The procedµre for physically realizing the k sets of equations 

is now stated in the form of a theorem. 

Theorem 2.3.l. If each set of equations is realizable (j = 1 1 2, ••• 9 

k), then Equation 2.3.3 is realizable ask one-port networks connected 

in parallel. 



Proof: 

Assume that each set of equations is realizable as a one-port 

networko 

il_ ik-+ 
k 

v+ j = l ~ 2 ••• v+ j = k 
' l i. 

j = l J 

Figure 2.3.l, One-Port Realizations for Equations 2.3.B 

Now Equation 2.3.3 is realized by connecting the k one-ports of 

Figure 2.3.l in parallel. 

--
i2 ~ 

i ~ i1~ 
,. 

v+ j =l j = 2 j = k 

I 

--

Figure 2.3.2. One-Port Realization When £1 Ci:mtains More Than·One 
Block 

= 

Similarly, the n by n matrix ~ can be parti:tioned such that all 

non-zero submatrices are square and on the main diagonal. Partition 

21 

i 

l,., ~· and !S, such that they are each composed of JI. subvectors • each of 

dimension ~- (j = 1 1 2 1 •••, JI.). Then Equation 2.3,5 can be written as 
J 
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• 0 0 E 
l.1 

c .. .0 
~--i1 -i 

• 0 c E l.i -i2 ~ -i 

= • ... i 

0 0 0 • 
• 
'l3, 0 0 c lP.. ~ ""'2 R. 

v = [~ K ~] l.i + (R + R + • • • + RR.) i 
""'2 1 2 

~ 
0 

where (R1 + R2 +•••+RR.)= Rand ~j is a square matrix of 

order E; • ( j = 1, 2 , ••• • R.) • 
J 

Divide Equation 2.3,9 into R. sets of equations, each having the 

form of Equation 2.3.5. 

• c E i l.j = I.j + 
-ij --j 

v .• = K. X.j + R. i (2.3.10) 
J -J J 

j = 1, 2, 0 0 I t R, 

Theorem 2.3.2. If each set of equations is realizable (j = 1, 2, •••, 

R.), then Equation 2.3,5 is realizable as R. one-port networks connected 

in series. 

Proof: 

Assume each set of equations c~n be realized as a one-port network. 



i -+ i - i __. 

a R. 
v+ j = 1 ••• v+ j = R. t l v. = v 

l . R. 
j 1 J -· 

Figure 2.3.,3. One-Port Reallzations for Equations 2.3.10 

Now Equation 2.3.5 is realized by connecting the R. one-port 

networks of Figure 2.3.3 in series. 

i~vf} I [ ~j 

i ._. 
• 

= 1 = 2 v+ j = R. 
R. 

v+ 

Figure 2.3.4. One-Port Realization When C Contains More Than One 
""'"l Bloc~ 

2.4 Relation of the Canonipal State Equations to Classical 

Network Functions. Define the polynomials p(>.) and q{>.) such that 

they are polynomials with the highest degree term having unity 

coefficient. 
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p().) (-l)n <I>().) ).n + n-1 ). + = = a ). + .•.•• + a a n-1 (2.4.l) 
1 1 n 

q{).) (-l)m <I>{).) ). m + b 
m-1 

+ b + b i;: = ). + , ci·o A 
2 l m~l m 

(2.4.2) 

In all the preceding discussions m and n have been equal. How-

ever, as will be shown, the degrees of p{).) and q{).) may differ by one. 



Assume Z(.>..) = pOJ/q(A)o The correlation between classical 

n.etworks and the state model.is now stated in the form of a theorem. 
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Theorem 2o4olo If Z(s) is a positive real function, then it is 

realizable as the classical input impedance of a one-port network. The 

resulting network has Equations 2.3.3 and 2.3.5 as canonical state 

equations. 

Proof: 

pO) and q(A) are the reduced characteristic functions (within 

a factor of -1) of Equations 1.1.4 and 1.1.s, respectively. They are 

invariant under the transformations ~ = .£. Y.. and ~ = Q z: There can 

be any number of state-space models with coefficient matrices which 

have the same reduced characteristic functions. All of these state 

equations can be reduced to the same canonical state equations. 

There are many one-port networks which have the same classical 

input impedance, Z(s); but for some given one-port, the input impedance 

is unique. 

Therefore, if a network realization is found which has input 

impedance Z(s) = p(s)/q(s), then the network is a realization of the 

canonical state equations. Hence, as far as the classical theory, 

which considers only external characteristics of the network, is 

concerned, the network is also a realization of Equations 1.1.4 and 

1.1.s. 

Figure 2.4.l shows diagrammatically the relationship of the state 

model and classical networks. 

The previous discussion has implicitly assumed that G and Rare 

non-zero. However, in general, this is not the case. If A and B are 



• x = A x + ••• -1 
etc. 

x = p v 
-1 ..... 

State Models 

• x = A x + 
-i 
etc. 

0 •• 

x = p l. 
-2 

•• 0 

••• 

Canonical State Equations 

• x.=.£x.+ ••• 
etc. 

pO) I qO) 

bridge between state space 

and classical theory 

Z(s) = ~~s~ 

• x = A x + 
-3 -
etc. 

Classical Networks Which Have Input Impedance Z(s) 

••• 

Figure 2.4.1. Block Diagram Showing the Relation Between Classical 
Networks and the State Model 
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not both available, then another method for obtaining pO.) and qO) 

must be found. The procedure is stated in the form of a theorem and 

proofo 

Theorem 2o4o2a The rational canonical matrices C and C --or actually 
J. -i 

p(A) and q(A)--can always be found from the given state model. 

Proof~ 

Case Ia If G i- 0 in Equation lo lo 4 and R i- 0 in Equation lo L 5, 

then pO) and q(A) can be found by reducing! and!, respectively, to 

rational form. 

Case Ila Assume that Equation LL4 is given with G = Oa Then 

we have the I-equations as defined in Section 2.1. 

a 

x = A x + d v 

(2.lol) 

i = h x 

Only C can be found by canonical reduction of f:.· Therefore, ..., 
pO) is available by inspection. The canonical form of Equation 2.1.1 

is 

Let the canonical state model be solved by Laplace transform 

theory for I(s) in terms of V(s)o In classical theory, the input 

impedance is Z(s) = V(s)/I(s); and the input admittance is 1/z(s) = 

I(s) /v< sL 
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s !(s) - if..(o+) = £, !(s) + £. V(s) 

(2.4.4) 
I(s) = !:!_ 'J_(s) 

As is customary, assume initial conditions are zero, Z,(o+) = o. 

Solving the first equation for !,Cs) and substituting into the second 

equation gives 

-1 I(s) = H Cs U - C) D V(s) 
~ ....... .....i1 ... '.\ 

:l, .. \, ',I 1, 

,' 1 
I(s)/v(s) = !!, (s £ - ~ ),\, £. 

(2.4.5) 

From elementary matrix theory, the invers~1 of a matrix is equal 
\I 

to the adjoint of the matrix divided by the determinant of the matrix. 

I ( s) - !:!. adj [ s £ - £1 J £. 
VlSJ - det Ls £ - £1] 

(2.4.7) 

It is proved by Holmes (16) that det [s U - C ] is equal to p(s), 
- -n 

where p(s) is as defined in Equation 2.4.L Assume that V(s) = p(s). 

Then 

q(s) = I(s) = H adj [s U - C] D _. ..... ...., .... 

If C is of order ni the elements of adj [s U - C] are polynomials 
-1 - -i 

of degree n - lo Therefore if p(s) is of degree n, then q(s) will have 

degree m = n - 1. 

The polynomial q(s) can be found by ordinary methods of Laplace 

transformation and matrix inversion. However, Holmes has developed an 

algorithm for evaluating the coefficients of q(s) which involves only 

multiplication of constant matrices. 



It is already known that m must be greater than n 9 from Theorem 

2.1.4. The I-equations are given so ZO..) = p(>.)/qO..) has a pole at 

infinity; implying the degree of pO) is greater than the degree of 

q{A). 

Case III. Assume that Equation 1.1.5 is given with R = a. Then 

q(>.) can be found by canonical reduction of B. The canonical state 

equations are 
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(2.4.9) 
v = 15.l. 

Solving as before by methods of Laplace transforms gives 

Z(s) = ~ = K [s U - C r 1 E = .!5. adj [s £ ~ £2] ~ 
I\ s J - - -£ det [ s £ - ,S] ( 2. 4.10) 

Then • we have 

q(s) = I(s) = det [s U - C] 
- -:2 

(2.4.11) 

and 

p(s) = V(s) = K adj [s U - CJ E 
- -- -'2. -

(2.4.12) 

By Theorem 2.1.2, Z(s) has a zero at infinity. The:refore, p(s) is 

of lower degree than q(s); and Holmes' algorithm can be applied to find 

p(s). 

Therefore, both p( >.) and q (A) can always be found for a given state 

model; and the degrees of p(A) and q(A) differ by one at most. 



CHAPTER III 

DEVELOPMENT OF A REALIZABILITY TEST 

The author has developed an algorithm which, after a transformatiop 

of the canonical state equations, gives necessary and sufficient con-

ditions that a set of state equations be realizable as a one-port 

network. 

3.1 Necessary Conditions for Realizability. There are some 

necessary conditions which can be checked by inspection of C and C 
-1 -"'2 

of Equations 2.3.3 and 2.3.5 1 respectively. If the state model is 

realizable, then 

1. All of the coefficients, a, 1 s and b,'s, are real and positive. 
1 .1 

m and n differ by one at most. 

3. The lowest powers of p(A) and q(A) differ by one at most. 

4. There are no missing terms in p(A) and q(A) between the 

highest and lowest degree terms unless all even or all odd 

terms are missing. 

The state model is realizable as a one-port network if and only 

if Z.(s) = p(s)/q(s) is a positive real function. In thi~ statement it 

is assumed that p(s) and q(s) have no common factor. If they have a 

common factor, then define Z(s) = p'(s)/q'(s), where p'(s) and q'{s) 

have no common factor. 

The properties of a positive real function F(s), which is a 

29 



quotient of rational polynomials, are tabulated on page 106 of 

Van Valkenberg (3)o 

If F(s) is positive real, all polynomial coefficients are real 

30 

and positiveo For the state modelt the aivs and bi 1 s are the polynomial 

coefficientso Therefore, the last column of both .£1 and C~ must have 

all nonpositive elementso 

The highest and lowest power of the numerator and denominator 

polynomials differ by one at mosto This statement is equivalent to 

conditions 2 and 3 above on the polynomials p(A) and q(A). The order 

of matrices ..£1 and .£z must differ by no more than one. The number of 

successive zeros at the top of the last column of £1 and £z must differ 

by no more than oneo 

If F(s) is positive real, then there must be no missing terms in 

numerator and denominator polynomials unless all even or all odd terms 

are missingo This condition is obvious in C and C. The last column -1 -Q . 

of both matrices may contain zeros only in the top rows of the last 

column or all alternate rows of the last column must be zero, starting 

with a zero in the last rowo 

3o2 Jordan Canonical Form for the Coefficient Matripeso From the 

rational canonical form® the reduced characteristic function and the 

elementary divisors of a matrix are found by inspectiono The 

coefficients of the rational form are always realo The main diagonal 

elements of the Jordan canonical form of a matrix are the eigenvalues 

of the matrix~ which are 9 in generali complexo The Jordan form is not 

always a diagonal matrix, but for the purposes of this thesis a 

diagonal form is n.ot necessary o 
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We would like to find a nonsingular transformation matrix.!. 

such that T- 1 C T = J , the Jordan canonical form of c,. (See 
~1 - -1 - .. 

Appendix B for a discussion of the Jordan form and some methods 

for finding T. ) 
. -

When .£1 has only one block of the form of Equation 2. 2 •. 2 1 we have 

where 

J l. = 
-1 

and is of order vi. 

p( ).,) 
n 

= ). + al ). n-1 

J' 
-i 1 

0 

0 

a. 
1 

0 

0 

0 

+ 

0 
. Vl 

al) 0 = - -

1 

J 
-i.2 

a. 
1 

•• 0 + 

a2) 
V2 

0 

1 

a 
n-1 

••• 

0 

0 

O . !!.1k 

0 

0 

1 

k 
. " 

0-<\:)k, ll"i=n 
. I i = 

(3.2.1) 

(3.2.2) 

(3.2.3) 

The ai's are distinct eigenvalues of .£1 (i.e., ai ¢a.if i ¢ j), 
i J 

where ai has multiplicity "i· 

Similarly, find a nonsingular transformation matrix U such that, 



for S:e having only one block, we have 

-1 
u s £ = ~ = 

where 

J2. - ]. 

and is of orderµ .• 
1 

= 

s. 
1 

0 

0 

1 

lJ 
Ll 

0 

0 

s. 
]. 

qO.) = m m-1 A + b1 A + ••• + b 

0 

1 

0 

J 
L2 

0 

0 

l) 

1 

B. 
1 

m-1 
A + b 

m 

0 

µl µ µ. 
= ( A - 81 ) ( A - S2 ) 2 o o o ( A - - B • ) J , 

J 
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0 

(3.2.4) 

0 

(3.2.5) 

j 

l µ. = m 
i = 1 1 

(3.2.6) 

The Si's are distinct eigenvalues of~, where Bi has multiplicity 

µ •• 
1 

Next, form the matrix 2., where 



0 0 0 

1 0 

0 1 

s = 

where 

C, : (-l)i 
J. 

0 

i 

0 

0 1 

i + 1 
( -l)i+l ( \ b \ 

Ci: l a2k+l 2i-2k-l - l 
k = 0 k = 

C• = (-l)i 
J. 

i = o, 1, 2, ••• , n 

i 

l (b2k+l a2i-2k - b2k 
k = 0 

i = o, 1, 2, ••• , n 

in Equations 3. 2. 8 through 3. 2 .10 • 

a = b = 1 
0 0 

a = o, 
R, 

n < R, < 0 

b = o, m < R, < 0 
R, 

a2i-2k+1)} m = 

33 

(3.2.7) 

m + 1 (3.2.8) 

m = n 

(3.2.9) 

n + 1 

(3.2.10) 



Find the nonsingular transformation matrix W such that 

-1 w s w = J = 
-- -3 

where 

J 3. -1 

and is of order n .• 
1 

= 

0 

y. 
1 

0 

0 

0 

1 0 

y. 1 
1 

0 

0 

0 

1 

y. 
1 

0 

0 

O J 
-'31 

34 

(3.2.11) 

(3.2.12) 

3.3 Necessarz. and Sufficient Conditions for Realizability. The 

necessary and sufficient conditions that the state model be realizable 

as a passive one-port network are now stated in the form of a theorem. 

Theorem 3.3.1. If the necessary conditions of Section 3.1 are satisfied, 

then the state model is realizable as a one-port network if and only if 

1. The real part of every 8i in~ is nonpositive. 

2. If any 8i is pure imaginary (real part of 8i = O), then µi 

is unity; and the following condition is satisfied: 

0 - B.) p(A) 
1 q<'IT 

"= $. 1 

> 0 and real (3.3.l) 
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3. If any diagonal element, yi• of !!,a is positive and real, it 

must appear in a submatrix of even order (i.e., n. 
1 

is even 

if yi is real and positive). 

y. 1 0 0 
1 

• 0 y. l 0 
[:i :J 1 , etc. (3.3.2) 

0 0 y. 
1 

l 

0 0 0 y. 
1 

Note: A sufficient condition that Statement 3 be satisfied is 

c • > 0 , ( i = 0 , l, ·~ •• , n) 
1 -

Proof: 

The conditions of Theorem 3.3.l are equivalent to the necessary and 

sufficient conditions for positive real character of a function which is 

the quotient of two rational polynomials. The positive real conditions 

due to Van Valkenberg ( 3) are summarized below. 

Definition 3.3.l. F(s) = f(s)/g(s) is a positive real function if and 

only if 

A. F(s) is real whens is real. 

a. F(s) has no poles in the right-half plane. 

c. Imaginary axis poles of F(s) are simple; residues evaluated 

at these poles are real and positive. 

D. Re F(jw) > o, 0 < w < ~. .... -· -
If the necessary conditions of Section 3.l are satisfied, then 

(A) of Definition 3.3.l is satisfied. If the coefficients of f(s) and 
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g(s) are real, then F(s) is real when s is real. 

The poles of Z(s) = p(s)/q(s) are the values of s for which q(s) 

is Writing Equation 3.2.6 with ;\ replaced bys ... 
zero" gives 

/1 
j 

q(s) ( s - ( s - 82 /2 (s 
µ. 

l (3.3.3) = 81 O O d - s.> J, µ. = m 
J J. i = 1 

The zeros of Equation 3.3.3 are 81 , 82 , ••• , Sj. If the real part of 

Si (i = 1, 2, .... j) is nonpositive, then there are no poles of Z(s) 

in the right-half plane. Therefore,(!) of Theorem 3.3.l is equivalent 

to (B) of Definition 3a3.l. 

If the real part of some 8. (l < i < j) is zero, then the pole of 
l. - -

Z(s) at s. is pure imaginary. The pole at 8· is simple ifµ. is unity. 
l. l. l. 

If µi is unity, then the residue evaluated at Si is given by 

(s - 8.) £i..tl 
J. q(s) 

s = s. 
l. 

(3.3.4) 

Therefore, (2) of Theorem 3.3.1 is equivalent to (C) of Definition 

Let 

F(s) = ~ = 
m1(s) + n 1(s) 

g s m2 ( s) + n2 (s) (3.3.5) 

where m1(s) = even part of f(s) 

n1 (s) = odd part of f(s) 

m/s) = even part of g(s) 

n2 (s) = odd part of g(s) 

In order that Re F( jw) > 0 for all w, it is necessary and 

sufficient that 
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s = jw 

have no real positive roots of odd multiplicity. 

A(w2) 2 2 p-1 = co w p + c 1 ( w ) + 0 0 0 + c 
p-1 

w2 + c 
p 

(3.3.6) 

where p = max [m, n] 

The coefficients defined by Equations 3.2.8 through 3,2.10 are 

identically the c. 9s of Equation 3.3060 The ordinary methods for 
1 

finding the roots of A(w2 ) are by factoring or by using Sturm's 

theorem (see Guillemin (17)). 

If the ci's are put into a matrix .2,, as defined by Equation 3.2.7 1 

then the Jordan form of S has the roots of A(w2) displayed on the main 

diagonal. The eigenvalues of .2, are the roots of 

If any of the y.'s are real and positive, this fact is found by 
1 

inspection of~· The Yi's are distinct (because .2, is a rational form 

with only one block), and the multiplicity of each Yi is ni• Each 

block, ~i (i = l, 2 1 ooo, t), of !!.3 is of order ni; so the multiplicity 

of each root of A(w2) is immediately obvious from !!_3• Therefore, (3) 

of Theorem 3.3.l is equivalent to condition (D) of Definition 3,3.l. 

An equivalent condition to (B) and (C) of Definition 3,3,l is the 

following: 

B'. If F(s) = f(s)/g(s), then f(s) + g(s) must be a Hurwitz 

polynomial. 

The author has developed a test on the coefficients of p(A) and q(A) 
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which produces the same information as (1) and (2) of Theorem 3.3.1, 

which is, in turn, equivalent to (B'). Define 

r(A) =AP+ d1 Ap-l + ••• + d A+ d 
p-1 p 

(3.3.8) 

r(A) = p(A) + q(A) if m ¢ n 

::: p(A) +q(A) if m = n 
2 

where p = max [m, n], and each di is the sum of one ai and one bi. 

Let 1jl(s) = m(s)/n(s), for p even (or n(s)/m(s), for p odd) where 

m(s) = even part of r(s) 

n(s) = odd part of r(s) 

Then r(s) is a Hurwitz polynomial if the continued fraction expansion 

below has every o. (i = 1, 2, ••• , p) positive and real. 
1. 

1ji( s) = 01 s + 
1 

1 

+ ..1..... o s 
p 

(3.3.9) 

A complete proof of the conditions on the d.'s for the general 
1. 

p-th order polynomial to be Hurwitz is quite laborious. The author 

has done a weak induct ion proof, one step of which is produced below. 

After doing the solution up through p = 6, a pattern has formed such 

that the general condition can be stated. 
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An equivalent statement to (1) and (2) of Theorem 3.3.1 is the 

following: 

1 1 • For p > 3 and odd: 

d d d k = 1 2 p - l 
1 2k > 2k+1' ' ' 0 0 0

' 2 

for p .::_ 4 and even: 

p 
•••• - - 1 

2 

d d d d d d 2 d 
l 2 p-1 > 3 p-1 + 1 p 

for p..::, 2. the necessary conditions are also sufficient. 

Proof: (for p = 6) 

1 1 
iJJ(s) = d s + --------------------------

1 

1 

[I]2 
s + 1 

a 1 [III] 

d1[III]2 l 
[I] [VJ s + 

[I] [VJ 2 
s + l 

a 1 [III] [VI] 

[VI] s 
d6[I.J [IV] 

where: [I] = d1 d2 d3 

[II] = d 1 d4 - as 

[III] = d3 [IJ - a1 [II] 



[IV] = <ls [I] - d 2 
1 d6 

[VJ = dl [II] [III] [I] [ IV] 

[VI] = [I] [IV] - dl d 6 [IIIJ2 

(1) 01 > 0 ~ L > 0, satisfied because d. > 0 (i = 1, 2, ••• , 6) 
dl l. -

d 2 
(2) 02 > O~m> Q=;>[I] > 0 ~d1 d2 > d3 

[IJ2 
(3) o3 > 0 => di [III]> 0 =>[III]> 0 ~d3[I] > d 1[II] 

(4) o4 > O =>di[III] 2 > 0 :::;> [VJ > 0 =>d [II] [III] > [I] [IV] 
[I] [V] l 

( 5) o O ·.· [I] [VJ 2 > o=>[VI]> o.-=>[I] [IV]> d d6[III] 2 
5 > ==> d 1 [III] [VI] 1 

=*"[IV] > 0 

(6) 06 > o~d g]\Iv] > o, satisfied if o2 and o5 > o 
6 

(7) Substitute the results of (5) into (4) 

[IV] > 0 :::;>[II] > 0 

(8) Go back to (3) 

divide by d 3 
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d1 d5 2 
d1 d2 + 

d1 d4 

d3 
> d3 + 

d3 

use results of ( 7) 

.::::::;>dl d2 + 
d1 ds d1 d5 

d3 
> d3 + d3 

=>d1 d2 > d3• satisfied in (2) 

Therefore, conditions on the d. 's come from ( 2) , ( 5) , and 
1 

(7). 
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With respect to C , C, J , s, and J , the necessary and sufficient 
-1-2-2- -3 

conditions that the state model be realizable are summarized below 

(assuming p(A) and q(A) have no common factor): 

Necessary Conditions: 

2o 

3. 

The last column of C and the last column of C have all 
-1 -2 

nonpositive elements. 

The orders of .£1 and~ differ by one at most. 

The number of successive zeros at the top of the last column 

of .£1 and the top of the last column of C differs by 
-2 .. no more 

than one. 

In both C and _Q,,, the last column contains zeros only in the 
-1 ~ 

top rows, or alternate rows of the last column a;r>e zero., 

beginning with a zero in the bottom row. 



Necessary and Sufficient Conditions~ 

lo If any diagonal element, yi, of !!_3 is positive and real, it 

must appear in a submatrix of even ordero 

[:i :J y. 1 0 0 
1 

' 0 y. 1 0 
1 

, etc. 
0 0 y. 1 

1 

0 0 0 y, 
1 

A sufficient condition for this to be true is that ci ~ O, 

(i = O, 1, 2, ooo, n) in So 
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This statement and either one of the following two statements must 

be satisfied. 

2, The di's defined in Equation 3.3,B must satisfy 

d1 d2k > d2k+l' k = 1, 2, ••• , p; 1 , for p ~ 3 and odd 

1, 2, e o o , .E.. - 1 
2 

d1 d2 d > d d + d 2 d 
p-1 3 p-1 1 p 

for p > 4 and even 

for p _< 2, the necessary conditions ( d, > 0) are also sufficient, 
1 -

3. The real part of every 8, in J is nonpositive. If any 8, 
1 -2 1 

in J 2 is pure imaginary (Re 8i = 0), then µi is unity and 

A = 8. 
1 

> 0 and realo 



CHAPTER IV 

TYPES OF REALIZATIONS 

After the state model is found to be realizable, it is desired 

to find whether the realization network will be LC, RL, etc. The 

author has formulated a set of tests for determining the type of 

network which can be synthesized. The tests are applied in the order 

in which they are given. 

4.1 Test for LC Realization. A non-constant, rational function 

F(s) is realizable as a one-port LC network if and only if it is an 

FLC function. An FLC function is defined as follows (due to Weinberg 

(4), page 209): 

Definition 4.4.1. F(s) is an FLC function if and only if 

1. Its poles and zeros are simple and occur only on the imaginary 

axis in the complex plane. 

2. Its poles and zeros alternate on the imaginary axis (separation 

property). 

3. The constant multiplier is positive. 

Properties of F1c functions: 

1. Re F(jw) = 0 

M1(s) N1(s) 
= N2(s) (or M2(s) ) 
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M(s) is an even polynomial 

N(s) is an odd polynomial 

3. The point at infinity is either a pole or a zero. 

The above conditions for an FLC function will now be translated 

into state-space notation. 

Theorem 4.4.1. If either Equation 1.1.4 or Equation 1.1.5, or both, 

is given (R, G ¢ 0), there cannot be an LC realization for Z(A). 

Proof: (by contradiction) 

Assume that the state model has an LC realization. Then Z(A) 

has either a pole or a zero at infinity. 

If Z(A) has a pole at infinity, then, by Theorem 2.1.4, the I-

equations can be written. This implies G = O, a contradiction. 
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Similarly, if Z(A) has a zero at infinity, then, by Theorem 2.1.2, 

the V-equations can be written; implying R = O, a contradiction. 

Theorem 4.1.2. The state model can be realized as an LC network if 

and only if 

1. The realizability conditions of Chapter III are satisfied. 

2. The last columns of both C and C have zeros in alternate 
-1 -2 

rows, starting with a zero in the last row. 

3. > 0 

> 0 (if q(A) has a zero at the origin, i.e., 

A = 0 
if q(A) is an odd polynomial). 
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Proof: 

If the realizability conditions are satisfied for Z{),), then 

both p(A) and q(A) are Hurwitz polynomials. By Theorem 4.1.1, an LC 

realization is possible only if R, G = O. The degrees of p(A) and 

q(A) differ by one, as was pointed out in the proof of Theorem 2.4.2. 

To satisfy statement 2, if an¢ O, then bm = 0 and vice versa. This 

says that if p(A) is an even polynomial, then q(A) is an odd polynomial 

and vice versa. 

If p(A) is even (an¢ 0) and is Hurwitz, then its zeros are 

simple and pure imaginary. If p(A) is odd (an= 0) and Hurwitz, then 

p(A)/A is an even polynomial as in the previous statement. The zeros 

are still simple and pure imaginary (the origin being a trivial case). 

See Van Valkenberg (3), page 122. The same statements can be made.for 

q(A) when it is an even (or odd) polynomial. 

Therefore, the poles and zeros of Z(A) are simple and occur only 

on the imaginary axis. 

(A2 + a12) (A2 + a22) (A2 + ak2) 
Z(A) = ---------------

( A2 + a12> cA2 + a22> cA2 + aj2> 

ko 2 k2J.. 2 k,A 
J = A + T+ + ••• + 

(A2 + 6 2) 0 ,2 + 6 .2> 
1 J 

The A term is present if Z(A) has a pole at infinity. 

The k0 /A term·is present if there is a pole at 1the origin. 

A = 0 

j 
, i = 1, 2, ••• , 2 

-6 2 
i 

(4.1.1) 

(4.1.2) 

(4.1.3) 

(4.1.4) 



46 

The constants, k2i(i = O, 1, 2, ••• , j/2), are positive if and 

only if the poles and zeros of Z(A) alternate along the imaginary axis. 

The constant multiplier of Z(A) is always unity because of the 

way p(A) and q(A) are defined. 

Therefore, Theorem 4.1.2 is equivalent to the FLC conditions of 

Definition 4.1.1. 

4.2 Test for RC (or RL) Realization. The state model is 

realizable as an RC (or RL) network if and only if Z(A) is an FRCZ 

function or an FRCY function. The following definitions of FRCZ and 

FRCY functions are due to Weinberg (4): 

Definition 4.2.1. Z(A) is an FRCZ function if and only if 

1. All the zeros and poles of Z(A) are simple and lie on the 

negative real axis or at the origin of the complex plane. 

2. The poles and zeros alternate on the nonpositive real axis. 

3. The lowest critical frequency, i.e., the one at or nearest 

the origin, is a pole. The highest critical frequency, which 

may be at infinity, is a zero. 

4. The constant multiplier is positive. 

Definition 4.2.2. Z(A) is an FRCY function if and only if 

1. All the zeros and poles are simple and lie on the negative 

real axis or at the origin. 

2. The poles and zeros alternate on the nonpositive real axis. 

3. The lowest critical frequency, which may be at the origin, is 

a zero. The highest critical frequency, which may be at 

infinity, is a pole. 
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4. The constant multiplier is positive. 

The partial fraction expansions for FRCZ and FRCY functions are 

k1 k3 kn 
FRCZ = ko +). + + a • o + 

+ ).1 ). + A3 ). ). 
(4.2.1) 

+ n 

(4.2.2) 

FRCY 
(~).~is an FRCZ function.) 

An alternative and equivalent statement for Definitions 4.2.1 

and 4.2.2 is stated by Weinberg (4) in terms of the partial-fraction 

expansions. 

Definition 4.2.3. Z().) is an FRCZ function or an FRCY function if and 

only if Equation 4.2.1 or Equation 4.2.2, respectively, satisfies the 

following conditions: 

1. All the poles are simple and lie on the negative real axis 

or at the origin of the complex plane. 

2. All the residues (ki's) and the constant term (k0 in Equation 

4.2.1 or k00 in Equation 4.2.2) are real and non-negative. 

3. No pole at infinity is present. 

The conditions of Definition 4.2.3 are now translated into 

conditions on the state model and on the canonical matrices C , C , 
-1 """"2 

and J • 
""""2 

Theorem 4.2.1. Z().) cannot be an FRCZ function if only Equation 1.1.4 

is given, with G = 0. 

Proof: 
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The I-equations are given. By Theorem 2.1.4, there is a pole at 

infinity. 

By Definition 4.2.1, ZO.) cannot be an FRCZ function since it has 

a pole at infinity. 

Theorem 4.2.4. Z(A) is an FRCZ function if and only if 

1. ~ is a diagonal matrix having diagonal terms which are non

positive, real, and distinct; i.e., 

2. 

J = 
~ 

(A -

3. n < m 

Proof: 

0 

B) p(A) 
i q[XT 

0 

B. ..::. 0 ' l. 

A = B 
i 

0 

(4.2.3) 

0 

B 
m 

i = 1, ••• ' m 

> 0 and real, i = 1, 2, • •• ' m (4.2.4) 

Show that these are equivalent to the conditions of Definition 

4.2.3 for an FRCZ function. 

The B. 's of Equation 4.2.3 are identical to the A.'s of Equation 
l. l. 

4.2.1 and are the zeros of q(A). If the B.'s are distinct, then the 
l. 

poles of Z(A) are simple. If every B. is nonpositlve, all poles lie 
l. 

on the negative real axis or at the origin. 

When the 8. 's are distinct, Equation 4.2.4 is the formula for the 
l. 
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residues evaluated at the poles of Z(A). Equation 4.2.4 has real 

answers when all the zeros of p(A) and q(A) are real. The constant 

term is non-negative (zero or unity) because of the way pO) and q(A) 

are defined. 

If n ~ m, the degree of p(A) is less than or equal to the degree 

of q(A). Therefore, Z( 00 ) is zero qr unity; and hence there is no 

pole at infinity. 

Theorem 4.2.3. Z(A) cannot be an FRCY function if only Equation 1.1.5 

is given, with R = O. 

Proof: 

The V-equations are given. By Theorem 2.1.2, Z(A) has a zero at 

infinity. 

By Definition 4.2.2, Z(A) cannot be an FRCY function since it has 

a zero a:t infinity. 

Theorem 4.2.4. Z(A) is an FRCY function if and only if 

1. The matrix 

is diagonal with diagonal terms which are all real, non-

positive, and distinct; i.e., 

0 0 0 

0 '3i 
!!J+ = a .. (4.2.5) 

2 

0 

0 0 a 
m 



2. 

B • < O for i = 1, 2 , ••• , m 
1 

> 0 and real 

i=l,2, ••• ,m 
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p(}.) 
q[5:T > 0 and real (4.2.7) 

>.. = 0 

3. n < m + 1 

Proof: 

The poles of Z(>..) are at the origin and at the zeros of q(>..) and 

so are the poles of Equation 4.2.2. If the B·'S are distinct and non-
1 

zero, then the poles are simple. If every B. is negative, all poles 
1 

lie at the origin and on the negative real axis. 

Equation 4.2.6 gives the residues evaluated at the internal poles 

of Z(>..)/>.. since the Bi's are distinct and non-zero. The residue 

evaluated at the pole of Z(>..)/>.. at the origin is given by Equation 

4.2.7. 

Z( A)/>.. has no pole at infinity if the degree of p( A) is less 

than or equal to one plus the degree of q(>..), i.e., if n ..'.:. m + 1. 

This condition is automatically satisfied if the state model is 

realizable. 

4.3 Type of Realization if Not Realizable as an LC or RC Network. 

If the state model satisfies the realizability conditions of Chapter 

III but does not satisfy Theorems 4.1.2, 4.2.2, or 4.2.4, then the 
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realization network must be of the RLC or RLCT type. 

If Z(A) is a minimum function, then the methods of Brune ideal 

transformers, Bott-Duffin, or Darlington can be applied to find the 

realization network. In terms of the canonical matrices, Z(A) is a 

minimum function if 

1. The realizability conditions are satisfied. (Z(A) is a 

positive real function.) 

2. Re a. 
J. 

# 0 for i = l, 2, 
• • 1;11 ' 

k in Equation 3.2.3. 

Re s. 
J. 

# 0 for i = l, 2, ... ' j in Equation 3.2.6. 

m = n and an, b # o. m 3. 

At least one of the y •IS of Equations 3.2.11 and 3.2.12 is 
J. 

4. 

zero. 

These requirements are equivalent to the following classical 

conditions for a minimum function: 

l. F(s) is positive real. 

2. F(s) has no poles or zeros on the imaginary axis. 

3. F(s) is real, finite, and positive for s = 0 ands= 00 • 

4o F(jw) = 0 for at least one finite real frequency, w1 • 



CHAPTER V 

ILLUSTRATIVE EXAMPLES 

Some examples are given to illustrate the procedure for testing 

a state model for realizability and for finding the type of network 

realization which is possible. The examples are chosen to illustrate 

systems of various order and type. 

Example 5;1. Second-Order System With i a Function of v 

The state model is given by 

i = [ -1 
( 5 .1.1) 

+ v 

x = [ ::] = [-: _: J [ ::] + [:] i -
[1 

0] [ ::] 
(5.1.2) 

v = + i 

For this first example, the steps will be carried. out in 

considerable detail, although many of the operations are almost 

trivial. 
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~=[-5 l] 
3 -3 

B = [-1 l] 
3 -3 

To find P such that P-1 AP= C , let 
-- -1 

p = [p 'A p] 
-1 - -1 

= [ 10 -53 J 

[: :J 
= [o -12] 

1 -8 

Therefore, p(A) = A2 + 8A + 12. 

Also, 
A 2 p = [ 

2 8 J = - 8 A p. - 12 p 
- -1 -24 - -1 -1 

(A2 + 8 A+ 12 _!!) p1 =~and p(A) = A2 + 8A + 12 

Similarly, find Q such that Q- l _! g_ = ~ ~ 

9. = [q,. ! !l, l = r: -: J 

Q-1 = ! [: : J 
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Q-1 B Q = C - [O OJ 
- - - -2 - 1 -4 

Therefore, q(A) = A2 + 4A, 

The canonical state equations are 

. U:J = [: -~:1t:J + [: J Y... = v 

[-1 s][::J +v 

(5.1.3) 
i = 

i = [ :: ] = [: _:] [ :J + [:Ji 
v = [ l -l J [: J + i 

(5.1.4) 

Next, find a matrix T such that T-l C T = J • The roots of q(A) 
£- """2 

are A1 = 0 and A2 = -4. 

[S + 4 QJ !i = .2. ' 

C · T = 0 
-2 """'2 

T = [T, T] = 
-i """2 [: : J 

! [ _: : J 



r1 c T = J - [o o J 
-2 - -2 - 0 -4 

Form the matrix~' where (using Equation 3.2.9) we have c0 = 1, 

c1 = 20, and c2 = O. 

s = [: _:J 
Check the Realizability Conditions: 

Necessary Conditions: 

1. The last column of c1 and the last column of c2 have all 

nonpositive elements. 

2. The order of C equals the order of C • 
-1 -i 
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3. There is one zero at the top of the last column of £2 , There 

are no zeros at the top of the last column of £1 , 

4. There are no zeros in the last columns of £1 and~ except in 

the top row of C. 
-2 

Necessary and Sufficient Conditions: 

1. 

2. 

All of the c.'s are non-negative. 
1 

p(A) _ A2 +BA+ 12 = 
q(A) - A2 + 4>. 

>. p(A) 
q(A) 

A = 

o. + 4) p(A) 
q{A) 

). 

(A + 2) (A + 6) 
>. 0. + 4) 

= 3 

0 

= 1 

= -4 
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Therefore, the state model is realizable. 

Check for the Type of Realization: 

1. Cannot be LC since i is a function of v. 

2. ~ is a diagonal matrix; and the Si's are real, distinct, 

and nonpositive. The residues evaluated at O and -4 are 

positive and real, and m = n. 

Therefore Z(A) is an FRCZ function, and the realization network 

is RC. 

Example 5.2. Third-Order System With i a Function of v 

The state model is 

. 
xl -1 -1 1 x 1 

l 

x = X2 = 0 -2 0 x2 + 1 v -
x3 -1 -1 0 x3 1 

i = [o -1 1]' 
(5.2.1) 

xl + v 

x2 

X3 

. 
Xl -1 0 0 Xl 1 

. 
X2 = 0 -1 -1 X2 + 1 i 

0 

-1 0 -1 1 X3 X3 

(5.2.2) 

v = [o 1 -1 J xl + i 

x2 

x 
3 



-1 -1 1 

A= 0 -2 0 

-1 -1 0 

Find P to reduce A to rational form. Let 

1 

P1 = 1 

0 

P = [n An A2 n J = 
•1 ' - £.1 ' . - .. 1 

0 

-1 1 p = - -2 
2 

-1 

0 

p-1 A P = C = 1 
-- -1 

0 

1 -2 2 

1 -2 4 

0 -2 4 

2 -2 

2 -1 

1 0 

0 -2 

0 -3 

1 -3 

[

-2 

= -8 

-6 

p(A) = A3 + 3A 2 + 3A + 2 = (A 2 +A+ 1) (A+ 2) 

-1 0 0 

B = 0 -1 -1 

-1 0 -1 
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Let 

1 

S.1 = 0 

0 

1 -1 1 

Q = [q B q B2 q.] = 0 
-1' - -1' - -1 

0 1 

0 -1 2 

1 1 -1 

g_- 1 = 0 2 -1 

0 1 0 

0 0 

-11 Q-l B Q = C = 1 0 -3 
- -- --2 

0 1 -3 

Now find~ from q(A), the reduced characteristic function of S· 
Method 2 of Appendix B will be used. 

ljJ(A' µ) = q(µ) - q(A): µ2 +µ(A+ 3) + (A 2 + 3A + 3) 
µ - A 
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0 -1 3 0 0 -1 

CO,) = 0 -3 8 + (), + 3) l 0 -3 

l -3 6 0 l -3 

l 0 

:J + 0. 2 + 3}1. + 3) 0 l 

0 0 

0 0 -1 · l O O 

C'(A) = l O -3 + (2A + 3) 0 l O 

O l -3 

2 0 0 

C"(A) = 0 2 0 

0 0 2 

l -1 l 

C(-1) = 2 -2 2 

l -1 l 

l O -1 

C'(-1) = l l -3 

0 1. -2 

2 0 0 

C"(-1) = 0 2 0 

0 0 2 

0 0 l 
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Form the transformation matrix from the first columns of the three 

above matrices. 

1 1 1 

2 1 0 

1 0 0 

0 0 1 

0 1 -2 

1 -1 1 

-1 1 0 

= 0 -1 1 

0 0 -1 

Form the matrix~' where c0 = 1, c 1 = 3, c2 = O, and c 3 = 2. 

0 0 -2 

s = 1 0 0 

0 1 -3 

Check for Realizability: 

The last columns of C and C have all elements negative, and 
-i ""'"2 

they are of the same order. Therefore, the necessary conditions are 

satisfied. 

The sufficient condition on Sis satisfied; all c.'s are non
J. 

negative. 

3 
= 3, d3 = 2 
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3 = 9 > - = d3 2 

as required. Therefore, the state model is realizable. 

Type of Realization: 

1. Cannot be LC because i is a function of v. 

2. Cannot be RC because J is not a diagonal matrix. 
--z 
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3. Therefore, Z(A) can be realized as an RLC or RLCT network. 

Example 5. 3. Fourth-Order System With i Not a Function of v 

. 
Xl 0 0 -1 0 Xl 1 

. 
0 0 5 -5 0 X2 12 X2 

= 12 + v . 
X3 6 -6 0 0 X3 0 

. 
0 18 

X4 0 0 X4 0 
5 

= [1 o] 
( 5. 3 .1) 

i = Xl 0 0 Xl 

X2 

X3 

X4 

Choose 

1 

l 
E.1 = 

0 

0 

Then 

1 0 0 0 

1 0 -3 0 
p = [p ' A p ' A2 p ' A3 p ] = 2 

-1 --1 - -1 - -1 0 0 0 9 

0 
18 

0 -27 
5 -5-
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1 0 0 0 

0 0 1 ..§__ 
p-1 = 6 18 

2 -2 0 0 
3 3 

0 0 
1 
9 

0 

0 0 0 -9 

P-l AP= C 
1 0 0 0 

-· -1 0 1 0 -10 

0 0 1 0 

pO.) = A'+ + 10A 2 + 9 = 0.2 + 1) 0.2 + 9) 

D1 1 

D2 0 
D = p-I d = = 

D3 
2 
3 

D4 0 

H = h P = [H 
- -- 1 H2 H3 H4] = [l 0 0 O] 

The canonical state equations are 

. 
Y1 0 0 0 -9 Y1 1 

. 
Y2 1 0 0 0 Y2 0 

= + v . 
0 -10 2 

Y3 0 1 Y3 3 . 
Y4 0 0 1 0 Y4 0 

(5.3.2) 
i = [1 0 0 oJ Y1 

Y2 

Y3 

Y4 



The algorithm given by Holmes (16) is used to find q(A), which in 

turn gives S· 

b 
3 

Therefore, 

0 

~= 1 

0 

Using Equation 3.2.8, we find 

Re Z(jw) = O. 

Check the Realizability Conditions: 

0 0 

0 -4 

1 0 

c. = 0 (i = 
J. 

o, 1, 2, 3); i.e.' 

C and C have zeros in alternate rows of the last column, 
-1 ~ 
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beginning with a zero in the last row. The orders of C and C differ 
-i -i 

by only one. Therefore, the necessary conditions are satisfied. 



64 

Every ci is non-negative (i = O, 1, 2, 3). 

Therefore, the state model is realizable. 

Type of Network Which Can be Realized: 

The last columns of c1 and £i satisfy the LC conditions. 

15 = 4 

= 9 
i+ 

>.. = 0 

Therefore, the realization network is LC. 

Example 5.4. Fifth-Order System With v Not a Function of i 

. 
xl -2 -1 -1 -1 2 xl 2 

. 
1 3 1 X2 1 ~1 X2 0 

.. 
-1 -2 -1 i X3 = -4 1 X3 + 0 

. 
X4 -1 -4 -1 -2 1 X4 -1 
. 
X5 -2 -2 -2 -2 3 X5 0 

(5.4.1) 
v =[o -1 3 1 o] xl 

X2 

X3 

X4 

X5 
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Transform A to the rational canonical form. (This transformation 

is done in Example A.1.3 of Appendix A.) 

1 -2 1 1 0 

0 1 1 0 0 

p = 0 -1 -1 0 1 

0 -1 -1 -1 -1 

0 -2 0 0 0 

0 0 -3 0 0 

1 0 0 0 0 c . 
-11 

0 0 

£1 = 0 1 2 0 0 = 0 c 0 
-12 

0 0 0 -1 0 0 0 c 
13 

0 0 0 0 -1 

The canonical state equations are partitioned into three sets of 

equations corresponding to the three blocks of c1 • 

. 
Y1 . 
Y2 = 
. 
Y3 

0 0 -3 Y1 

1 0 0 y + [p-1 .~.J1 
0 

2 
1 2 y 

3 

vl = [k _!: J 1 Y1 

Y2 

'Y3 

• [ l] [p-1 ] • Y4 = - Y4 + ~ i 1 

i 

(5.4.2) 

(5.4.3) 
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y s - [--1] y s + [P-1 e] 3 i 

V3 = [k P]g y S 

(5.4.4) 

The state model is realizable if and only if Equations 5.4.2, 

5.4.3, and 5.4.4 are each realizable. 

Look at Equation·5.-4.2. There is an element in the last column of 

£.ii which is positive. Therefore, one of the necessary conditions for 

realizability is violated; and the state model given by Equation 5.4.l 

is not realizable. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary. This thesis considers the problem of synthesizing 

a system of linear differential equations known 'as the state model. 

The model which is investigated has a scalar input, or driving 

function, and a scalar output. The network realization is a passive 

one-port network with the scalar input and output functions of the 

state model being the driving-point voltage and current. 

The method of solution utilizes linear transformations of the 

state variables, The first. transformation takes the coefficient 

matrix of the state model to the rational canonical form. The trans

formed state equations are denoted as the canonical- state equations 

or the canonical state model. The second transformation takes the 

coefficient matrix of the canonical state model to the Jordan canonical 

form. 

From the rational form of the coefficient matrix, we obtain its 

reduced characteristic function, p(A). Using p(A) and the canonical 

state model, another polynomial q(A) is found. If the state model is 

realizable as a one-port network, then the classical input impedance 

of the network is the ratio of p and q, expressed as functions of s. 

This is the important correlation between the state model and the 

classical network theory. A block diagram showing the relationship 
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of the state equations to the classical s-domain networks is provided. 

Necessary and sufficient conditions that the state model be 

realizable as a one-port network are derived. These conditions require 

inspections of the transformed coefficient matrices and some short 

computations using p and qo The realizability conditions are equivalent 

to the conditions in classical theory that a function be positive realo 

Procedures are derived for determining the type of network 

realization which is possible. These tests also involve inspection 

of the canonical matrices and, possibly, computations with p and q. 

The author's procedure for testing the state model is actually an 

algorithm. The steps in the algorithm are as follows: 

1. The state equations are transformed to canonical forms (both 

rational and Jordan forms). 

2. The coefficient matrices of the canonical forms are inspected 

to see if the state model is realizable. 

3. A check is made for realizability as a one-port LC network. 

4. A test is made to see if an RC (or RL) realization.is 

possible. 

6.2 Conclusions. There is a strong correlation between the 

synthesis of the state model and classical network synthesis. This 

is certainly to be expected since a given network can be described in 

terms of state variables or in terms of the s-domain variable. 

There is a great deal more information available about a network 

when it is described by the time-domain state model than when the s

domain description is used. The state model gives information about 

the internal behavior of a system as well as the external character

istics. 
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It seems that a procedure could be developed which would synthesize 

a network directly from the state model. However, even in the one-

port case, problems arise when we specify not only the terminal charac

teristics but also the internal topology of the network" 

More complications would certainly arise when the input and 

output functions are not scalars, but rather are n-dimensional vector 

functions. Even in classical theory, the characteristics and realiza

bility conditions for an n-port network are not well-defined. An 

investigation, even if it is highly theoretical, of realizability 

conditions for a general n-port network, using the state-space approach, 

might also provide a better insight into the s-domain representation 

of n-ports. 

One outstanding advantage of the state model is that it consists 

of matrix differential equations whose coefficient matrices have 

constant elements. When the elements of the coefficient matrices are 

constants (instead of functions of s), a digital computer can be 

utilized for performing multiplications, inversions, factoring of 

polynomials, etc. Finding the transformation matrix which gives the 

rational canonical form is also a mechanical procedure which might be 

done on the computer. 

6.3 Recommendations for-Further Study. The first problem which 

might be investigated is the feasibility of writing a computer program 

for the algorithm outlined in this thesis. It should be possible to 

read in the coefficients of the state equations and have the computer 

do the complete check for realizability. 

Another area for further study is the synthesis of a network 
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directly from the state model. This might also involve some trans

formations of the state variables to get the coefficient matrices into 

some standard, recognizable form. 

A somewhat more lengthy, and probably more difficult, problem 

is the case where the input and output are not scalar functions. Two

port synthesis should not be overly difficult. However, the general 

n-port case, with the topological considerations involved, might prove 

to be a rather formidable obstacle. 
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APPENDIX A 

REDUCTION OF MATRICES TO RATIONAL 

CANONICAL FORM 

Some properties of the minimum polynomial of an n-square matrix 

A will first be discussed. Define: 

1. f(A) = IAQ - Al = characteristic function of A. 

2. Dn_1(A) = greatest common divisor of all the (n - 1)-rowed 

minors of [AU - A]. - -
3. ~(A)= f(A)_/Dn_ 1(X) = reduced characteristic function (or 

minimum polynomi~l) df A. 

Properties of $(A): 

a. $(A) = 0 

b. $(Al= 0 is the scalar equation of lowest degree which 

is satisfied by A. 

c. Every root of fO:) = 0 is also a root of $0) = O. 

A method for finding Dn_/71.) and $0.) is given by Gantmacher (14) and 

is summarized below: 

Let B(A) = Dn_ 1(A) C(A) = adjoint matrix of A. 

Then !(A)= [bik(A)], where bik is the algebraic complement of the 

element (A<5.k - a.k). 
1 1· 
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C(A) = reduced adjoint matrix of A, 

If o(A, µ) = (f(µ) - f0.))/(µ - A), ~hen !0) = 60£, ~)o Likewise, 
. ' 

ipO, µ)=(qi(µ) - 4>0))/(µ - A), and s._(1,,) = ip0£, !::_). 

If B(A) is known, then Dn-l 0.) is easily found; and likewise 

C(A) and qi(A) are easily foundo The procedure will be illustrated 

with an exampleo 

Example Ao 1.1. 

Let 

A = 

B(A) 

3 -3 2 

-1 5 -2 

-1 3 0 

f(µ) - . f(A) 

µ - A 

= A2 + (A - 8) 

10 -18 

= -6 22 

-6 18 

A + 

12 

-12 

-8 

= (A 2) 2 (A - 4) 

0 2 - BA + 20) U 

3 -3 

+ (A - 8) -1 5 

-1 3 

1 0 0 

+ (A 2 - BA+ 20) 0 1 0 

0 0 1 

0-3)0-2) -30~2) 20-2) 

= -(A-2) (A-1)( A-2) -20-2) 

-(A-2) 3(A-2) (A-6)0-2) 

2 

-2 

0 
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Therefore, D2(A) = A - 2 (the common factor in !(A)). Now 

A-3 -3 2 

CO.) = -1 A-1 -2 

-1 3 A-6 

= f(A) = (A - 2) (A - 4) 
A - 2 
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A summary of the theory which underlies the reduction to rational 

canonical form is given below. Some examples are then used to 

illustrate the theory. 

First, some definitions, due to Ayres (18), are given. 

Definition A.l. If A is an n-square matrix and Xis an n-dimensional 

vector and if g(A) is a polynomial of minimum degree such that 

g(A) X = .2_, then with respect to A the vector Xis said to belong to 

g(A) 0 

Definition A.2. If, with respect to A, the vector X belongs to g(A) 

of degree p, the linearly independent vectors 

0 0 0 ' (A. 1) 

are called a chain having X as le~der. 

To find the matrix P such that P- 1 !! =.£,th~ rational 

canonical form, a chain of vectors is found as in Definition A.2. 

These vec-tors are taken as the first p columns of the transformation 

matrix P. The vectors of Equation A.l constitute a basis of a linear 

vector space of dimension p. 
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If p = n, the vectors constitute a basis of the entire n-space; 

and they will be taken as the columns of P. Then ~(A)= f(A), and·C 

contains only one block of the form of £1 • 

0 0 0 -a 
p 

1 0 -~-1 

0 1 

£1 = (A. 2) 

0 0 

where 

l 

• • • + a p-1 
A + a 

p 

If p < n, there is a common factor Dn_ 1(A) in all of the (n - 1)-

rowed minors of A. Then C will have more than one block of the form 

of S and 

When p < n, a vector Y independent of the vectors in Equation 

A.l can be found. Assume that the set of p + q vectors consisting of 

Equation A.land the vectors 

2 Aq-1 Y, A Y, ~ Y, •.• , Y 

are linearly independent but that Aq Y is a linear combination of 

them. Then 

(A.3) 

where e1 and e2 are scalar polynomials; e1 of degree p - 1 at most and 
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e2 of degree q. Also, no scalar polynomial e2 of degree less than q 

satisfies Equation A.3. 

Now, e1 is divisible by e2 (see Browne (12), page 211), and we can 

write Equation A.3 as 

Let.~=!_ - ~(A)!· Then~ has the reduced characteristic, 

function e2 , and the set of p + q vectors consisting of Equation A.l 

and the q vectors 

(A.4) 

are linearly independent. 

If p + q = n, take the vectors in EquationsA.l and A.4 as the 

columns of P. If p + q < n, then the above procedure is repeated with 

another vector Z which is independent of the above vectors. The 

procedure is continued until a basis for then-space is found. Then 

·we have 

Q.l 0 0 

0 ~ 
p-1 A P = C = 

0 

0 0 c 
"""i<: 

where each £i. (i = l, 2, ••• , k) has the form of Equation A.2. 

Look back at Example A.1.1. Choose a vector X which belongs to 

cj,().). Let 



l 3 10 

x = 0 , A X = -1 , A2 X = -6 =6AX-8X 

0 -1 -6 

X and AX are linearly independent, but A2 Xis a linear 

combination of X and A X (p = 2 < n = 3) ·• The minimum polynomial of 

A can be found by observing that A2 X - 6 AX+ 8 X = o. - .... -
Therefore, (A2 - 6 A+ BU) X = .2_; and,<~)= ~2 - 6 ~ + 8. 

The vectors X and AX are taken as the first two columns of P. 
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To obtain the last column off., another vector!,, independent of X and 

A,!, must be found. 

Choose 

-1 

y = 1 

2 

The matrix 

l 3 -1 

0 -1 1 

0 -1 2 

has rank three, so Y is independent of_! and A!_, as required. 

Then 

-2 

A y = 2 = 2 y 

Now, [A - 2 U] Y = O,which means that D 0.) = ~ - 2. 
- - - n-1 



p = 

Example A.1.2. 

Choose 

1 

0 
x = 

0 

0 

[!, A!, Y] 

1 

p -1 
= 0 

0 

p-1 A p :::: c = 

A = 

A X = 

-1 

1 

0 

0 

-1 

1 

0 

0 

= 

0 

2 

3 

5 

5 

-2 

-1 

0 

1 

0 

1 

0 

0 

0 

1 

2 

3 

3 

-1 

-1 

-2 

1. 

1 

-8 

6 

0 

0 

0 

-1 

-1 

A2 X = 

-1 

1 

2 

0 

0 

2 

1 -1 

1 6 
, A3 X = 

3 4 

5 9 

These four vectors are linearly independent, so A4 X must be a 

linear combination of them. 

1 

15 

17 

33 

= 2 A3 X + 3 A2 X 
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l -1 l -1 

0 l l 6 
p = [X, AX, A2 X, A3 X] = -- ----- -- - - - 0 0 3 4 

0 0 5 9 

Therefore, [!4 - 2 !3 - 3 ! 2] ! = ~, and ¢0) = 11. 4 - 2 11. 3 - 3 11. 2 • 

From ¢(11.) we know that 

0 0 0 0 

l O O O 
c = 

0 1 0 3 

0 0 l 2 

This can be verified since 

-1 l -1 l 

l l 6 15 
A P = P C = 

0 3 4 17 

0 5 9 33 

Example Ao lo 3 

-2 -1 -1 -1 2 

l 3 l l -1 

A = -1 -4 -2 -1 l 

-1 -4 -1 -2 l 

-2 -2 -2 =2 3 

Choose 
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l -2 l -1 

0 l l 2 

x = 0 • A X = -1 • A2 x = -1 A3 X = ' - - -2 = 2A2 x - 3X 

0 -1 -1 -2 

0 -2 0 0 

Only x, AX, and A2 X at'e lineat:'ly independent. See if >. 3 - n2 + 3 
-=' -.::, ilMl::sl ,.... ... 

can be the minimum polynomialo 

-1 6 0 0 2 l 3 0 O l 

2 1 2 2 -4 1 2 l l -2 

A 3 - 2A2 + 3U = -2 -2 -3 -2 4 - 2 -1 -1 0 -1 2 

-2 -2 -2 -3 4 -1 -1 -1 0 2 

0 12 0 0 3 0 6 0 0 3 

3 0 0 0 0 

0 3 0 0 0 

+ 0 0 3 0 0 :::: 0 

·O 0 0 3 0 

0 0 0 0 3 

Therefot:'ei >. 3 - 2>.2 + 3 is the minimum polynomial• and 

Q. -3 

0 0 

1 2 

Choose 



82 

l -1 

0 0 

y = 0 
' 

A y = 0 = - y --
-1 1 

0 0 

Therefore,~= [-1) is a block of order oneo 

Choose 

0 0 

0 0 

z = l 
' 

AZ = -1 = - z 

-1 l 

0 0 

Therefore, £3 = [-1) is a block of order oneo 

l -2 l 1 0 

0 l 1 'O 0 

p = ex~ Ax, A2 X' y' Z] = 0 -1 -1 0 1 
~ .rad .. .... - - -

0 -1 -1 -1 -1 

0 -2 0 0 0 

Now 

0 0 -3 0 0 

£1 0 0 l 0 0 0 0 

c = b £e 0 = 0 1 2 0 0 

0 0 s 0 0 ·o -1 0 

0 0 0 0 -1 
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Check: 

-2 l -1 -1 0 

l l 2 0 0 

A p = p c = -1 -1 -2 0 -1 

-1 -1 -2 l l 

-2 0 0 0 0 



APPENDIX B 

REDUCTION OF A MATRIX TO JORDAN 

CANONICAL FORM 

B.l Reduction Directly to Jordan Form. Any n-square matrix A 

can be transformed by a nonsingular matrix T to the Jordan canonical 

form. 

T- 1 AT= J = 

where 

Cl., 
1 

0 

J = 
-i 

0 

Each J. is of order \lp where 
-1. 

k 

l 
i = 

0 

1 0 

Cl.. l 
l. 

\l. = n 
1 

1 

84 

0 

0 

0 

1 

0 Cl., 
l. 

0 

0 

0 

J 
-k 
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The ai's may, not be distinct, as will be explained in the next section. 

A non-derogatory matrix is defined to be one for which the 

characteristic function is equal to the reduced characteristic 

funct:ion. This means that the rational canonical form contains only 

one block. 

When A is non-derogatory, finding Tis relatively simple, once -
the eigenvalues are known. However,, when A is derogatory, finding!, 

directly from A becomes more difficult • 
. -

The remainder of Section B.l is devoted to the reduction of A to 

Jordan form when A is non~derogatory. In Section B.2 it is shown that 

when fl is derogatory, it can first be reduced to a rational canonical 

form containing k blocks; and then each of the k blocks can be reduced 

to Jordan form using the methods of this section. 

Two procedures for obtaining.! are presented. The first is the 

method used in basic matrix theory to reduce a matrix to diagonal 

form, with one extension.· The second method is due to Gantmacher (14). 

Method No. 1. For every eigenvalue A., [A - A, U] X = o, where 
1 - 1-- -

Xis the eigenvector corresponding to Ai. If there are repeated 

eigenvalues, 1!_1 is found from [fl - Ai£] f 1 = £.• Then [A - A. U] _x2 = 
- 1 -

! 1 • [! - Ai £] ]k = ~, ••• , [fl - \ ~.J ~ = ~-l, for Ai with 

multiplicity k. 

From this argument we see that, if~ can be found, the other 

(k - 1) vectors corresponding to Ai' along with ~, form a chain with 

~ as leader: 



If such a chain is found for each eigenvalue, the transformation 

matrix is· given as follows: 

where there are k distinct eigenvalues, and each eigenvalue Ai has 

multiplicity "i. 

Method No. 2. Form the function £(A) as defined in Appendix A. 

Since a,non-derogatory matrix!:., is assumed, we have f(A) = ,CA). 

f(µ) - f(A) 
o(A, µ) = ------- = 1'J(A, µ) = 

JJ - A 

¢(µ) - ¢0) 

JJ - A 

The column$ of Tare found from C(A) and its derivatives. - -

d 
where C'(A) = -- C(A), etc. 9 and the subscripts i and j indicate the 

- dA -
columns of £_(A) which are used (see Gantmacher (14), P• 164). 

Some examples are given below to illustrate the two procedures. 

Example B.1.1. 

f(A) = A2 - A - 6 - (A - 3) (A+ 2) 

,o> = fO) 
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Use Method 1: 

[! - 3U] T = 0 , choose ,!1 = [-: J - -1 

[1 + 2U] T = 0 ' choose T = [-: J - ---e """2. 

T = [T , T] [-: -: J -1 . l [ 1 _:] = ,!. -1 """2. 5 -7 

T-1 A T = J = [: _: J 
Example B.1.2. 

[_: :] f(A) = ,.2 - 611 + 9 = 0 - 3) 2 

A = 
<l>O) = fO) 

Use Method 2: 

iµ( t., µ) = µ + 0 - 6) 

C(A) = A + 0 - 6) U = [ 5 2 J + 0 6) [ l OJ 
- -2 1 - 0 1 

.£'O) = [01 1o] ' [ 2 2] £(+3 ) = -2 -2 ' 
C v ( +3) -- [lo o1] 

Choose 

T = [C (+3), C '(+3)] - [ 
2 l] 

-1 -1 - -2 0 
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[20 
T .. l - l --2 -

!,xample B.l.3. {Sarne matrix as in Example Aolo2) 

-1 0 0 0 

l 2 l 0 fO.) = ~0.) = :\ 4 - 2A 3 - 3A2 
A = - 0 3 2 -1 A2 0. - 3) ( A + 1) = 

0 5 3 -1 

Use Method 1: 

0 

l 
b., !,1 = £, choose !.i = 

-2 

-1 

0 

0 
AT = T , choose T = --e -1 """'2 

1. 

4 

0 

l 
[3U - A] T = o, T = 

- --3 --3 
l 

2 
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4 

-3 
[-U - A] T = O, T = - - -+ - -4 5 

6 

0 0 0 4 

1 0 1 -3 
T = [T , T , T , T] = -1 -2 -3 -4 

-2 1 1 5 

-1 4 2 6 

0 1 0 0 

0 0 0 0 

J = 
0 0 3 0 

0 0 0 -1 

Check: 

0 0 0 -4 

0 1 3 3 
A T = T J = 

0 -2 3 -5 

0 -1 6 -6 

Exampl.e B.l.4o 

3 -1 -4 2 

2 3 -2 -4 fO) = <PO) = A'+ - 2A 2 + 1 
A = 

2 -1 -3 2 = (A-1) 2 O+ 1)2 

1 2 -1 -3 

Use Method 2~ 
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C(A) = A3 + AA2 + (A 2 - 2) A+ (A 3 - 2A) U -· 
3 -3 -4 6 l 2 0 -4 

6 3 -6 -4 4 l -4 0 
£0) = + A 

2 -3 2 6 0 2 l -4 

3 2 -3 -3 2 0 -2 l 

3 -1 -4 2 l 0 0 0 

2 3 -2 -4 0 l 0 0 
+ 0 2 - 2) + 0 3 - n) 

2 -1 -3 2 0 0 l 0 

l 2 -1 -3 0 0 0 l 

C'O) = A2 + - (2A)~+ (3A2 - 2) ~ 

l 2 0 -4 3 -1 -4 2 

4 l -4 0 2 3 -2 -4 
= +n 

0 2 l -4 2 -1 -3 2 

2 0 -2 l l 2 -1 -3 

l .0 0 0 

0 l 0 0 
+ C3x2 - 2) 

0 0 l 0 

0 0 0 l 

0 l 0 0 0 -4 0 8 

8 0 -8 0 0 0 0 0 
.£( +l) = ' 

S:.,(-1) = 
0 0 5 0 0 -4 5 8 

4 0 4 0 0 0 0 0 
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8 0 -8 0 -4 4 8 -8 

8 8 -8 -8 0 -4 0 8 
C'(+l) = ' 

C'(-1) = -4 0 -4 0 -4 4 8 -8 

4 4 -4 -4 0 -4 0 8 

0 8 -4 4 

8 8 0 -4 
[c1(+1) 1 C '(+1) 1 feC-1) 1 C •(-1)] = 
- -i -2 0 4 -4 4 

4 4 0 -4 

This can be simplified by dividing out a (+4) in the first two columns 

and a (-4) in the last two columns. 

0 2 1 -1 ·l 1 0 0 

2 2 0 1 0 1 0 0 

T = 
' 

J = 
0 1 1 -1 0 0 ... 1 1 

1 1 0 1 0 0 0 -1 

Check: 

0 2 -1 2 

2 4 0 -1 
AT=TJ= 

O l -1 2 

l 2 0 -1 

B.2 Transformation From Rational Canonical Form to Jordan 

Canonical Form. When then-square matrix A is non-derogatory, the -
methods of Section A.2 are used to find the Jordan form. Even when A 

is non-derogatory, it sometimes appears easier to first make a 

reduction to rational form. There are two good reasons for doing 
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l. In general, the Jordan form cannot be obtained by rational 

operations since the characteristic roots (or eigenvalues) 

are, in general; complexo The reduction to Jordan form 

involves the determination of the eigenvalues. The charac-

teristic fµnction f().) 9 from which the eigenvalues are 

obtainedi is immediately obvious from the rational form. 

2. The rational form, since·it·contains only (2n - 1) non-zero 

terms at most, is easier to manipulate than the matrix A, -
which has n2 non-zero terms at most. For matrices of order 

greater than four, the amount of work saved in either of the 

two methods of Section B.l is considerable if the reduction 

to Jordan form starts with C instead off:.: (Obviously, if :L 

is the Jordan form of A and C is the rational form of!:,., then 

J is the Jordan form of c.) - -
The matrix used in Examples A.l.2 and B.1.3 will be used to 

illustrate the above remarks. 

Example Bo2olo 

-1 0 0 0 0 0 0 0 

l 2 l 0 l 0 0 0 
A :: and C = 

0 3 2 -1 0 l 0 3 

0 5 3 -1 0 0 1 2 

From c, we have -
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0 3 

3 5 
C T = .2.· !1 = t .9.. !2 = !1 • !2 = -·-1 

2 l 

-1 -1 

0 0 

0 0 
[,S_ + ~) !3 = £., !,3 = [£- 3!;!) !,.. = .2., !,.. = 

3 l 

-1 l 

0 3 0 0 

3 5 0 0 
T = [T t T , T ' T J = -1 '"""2 -3 -. 2 l 3 l 

-1 -1 -1 l 

0 l 0 0 

0 0 0 0 

J = 
0 0 -1 0 

0 0 0 -3 

Check: 

0 0 0 0 

0 3 0 0 
C T = T J = 

0 2 -3 -3 

0 -1 l -3 

When! is derogatory, it is much easier to find J from C than to 

find d., directly from !• The two reasons given above are still valid; 

and, of e.ven greater importance, Methods l and 2 of Section B.l cannot 
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be applied in this cased 

When·'!:;, is derogatory, the· eigenvalues corresponding to· the various 

blocks of J will· not be distinct o A summary of. the reason for this -
statement wil-1 be· given. (For a more complete explanation, see pages 

89-94 and·pages 141-144 of Gantmacher, (14).) 

From Appendix A• we know that f(A) = Dn_ 1(A) ~(A).· Every root of 

fO) = 0 is also a root of ~0) = O·. Therefore, every root of Dn_ 10) = 0 

is also a root of ~(A)= o. 

Let A( A) be a matrix whose· elements are polynomials in A. AO) 

is of order n and has rank r ~ n. Let Dj (A) be the greatest common 

divisor of all minors of order j in· A{A), (j = 1, 2 1 ••• 1 rL 

Form the series 

Each polynomial in the. series is di.visible by the succeeding 

polynomial. 

0 ••• i OJ r 

The polynomials i 1 O.), i O) 1 ••• , irO) defined in Equation B. 2. 2 
. 2 

are called the invariant polynomials of A( A). 

A(A) is always equivalent to a canonical diagonal matrix which is 

of rank r. 

• 0 

0 

• 
0 

0 

0 

0 
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In the s.equence of invariant polynomials, Equation B. 2. 2, every 

polynomial from the second onwards divides the preceding one. 

Decompose the invariant polynomials into irreducible factors: 

0 •• 

(B.2.3) 
0 0 0 

{ >dk> ... >t >1 k- - - k-

k = 1, 2, •••• s 

0 0 0 

where E; 1 0.) , E; 2 0.) s ., • o , E; / >-) are all of the di st inct irreducible 

factors that 

All the 

occur in i 1(A), ~··, ir(>-). 

cl powers among [E;1(>-)] , ••• , 
1 

[E; 0)] sin Equation B.2.3, 
s 

as far as they are distinct from unity, are called the rl~mentary 

divisors of the matrix A(>-). 

For every elementary divisor, [,.(>-)Jk 1 i of A contained in 
1 -

D 1(A), there is an elementary divisor, [E;.(>-)Jk 2 , of A contained in 
n- .1 -

¢0..) 9 where k'.' > k • There are blocks in J which correspond to both 
~- l -

of the elementary divisors [,.(>-)Jk 1 and [~.(>-)Jk 2 • Call these 
. 1 . 1 

blocks Jo and Jo. The eigenvalues of! corresponding to J. and J. are 
-i. -'.) -:J. -'.) 

identical. For example: 

l 0 0 l -1 

0 l -2 3 -3 

A = 0 0 -1 2 -1 

1 .... 1 l 0 l 

l -1 l -1 2 
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fO.) = 0. - 1)4 (A + 1) 

<1>0.) = 0. - 1) 2 (A + 1) 

Dn-:- 10.) = 0. - 1)2 

The elementary divisors are (A - 1) 2 , (A - 1)2 • ( A + 1). Then 

0 0 -1 0 0 1 1 0 0 0 

1 0 1 0 0 0 1 0 0 0 

c = 0 1 1 0 0 and J = 0 0 -1 0 0 

0 0 0 0 -1 0 0 0 1 1 

0 0 0 1 2 0 0 0 0 l 

Some other examples are now given which illustrate the 

transformation from .£ to Jo 

Example .Bo 2. 2. (Same A as in Example A.1.3) -
-2 -1 -1 -1 2 0 0 -3 0 0 

1 3 1 1 -1 1 0 0 0 0 

A = -1 -4 -2 -1 1 and C = 0 1 2 0 0 

-1. -4 -1 -2 1 0 0 0 -1 0 

-2 -2 -2 -2 3 0 0 0 0 -1 

The last two blocks of Care - already in Jordan form so work on .£11 • 

0 0 -3 

.£11 = 1 0 0 

0 1 2 

<!>(A)= A3 - 2A2 + 3 =(A+ 1) (A 2 - 3A + 3) 

0. + 1) 0. 
3 

--+ 2 j f") ( A 

~(Atµ)= µ2 + µ(A - 2) + A2 - 2A 

3 
2 
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C(A) = A2 +(A· 2) A+ (A 2 - 2A) U - - -
0 -3 -6 0 0 -3 l 0 0 

= 0 0 -3 + (A - 2) l 0 0 +(A2 -2A) 0 l 0 

l 2 4 0 l 2 0 0 l 

3 • 13 
- -+ J -2 2 

3 

C ( -1> = -3 c c! + J. /'!:> - ! + J. 13 
-1 1 -12 ·T- -2 T 

1 
1 

3 . 13 - - - J -2 2 

c 3 . 13) 1 . fi 
(- - = - - - J --1 2 ]2 2 2 

1 

3 
3 . It 3 . 13 --+ J - - - - J -2 2 2 2 

T -3. 1 j ./3 1 . ./3 = --+ - - - - J-- 2 2 2 2 

1 1 1 

-1 0 0 

J = 0 3 + . 13 0 - J --11 2 2 

0 0 3 • 13 
,.- J T 
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Check: 

-3 -3 -3 

C T = T J 3 
3 

j Is 3 
j 13 = --+ - 2- --11 - - -11 2 2 2 

l 3 
j Is 3 j 13 -+ 2 - - -2 2 2 

Therefore, 

-1 0 0 0 0 

0 3 • 13 
0 0 0 -+J 2 2 

J = 0 0 3 • 13 0 0 -- J -2 2 

0 0 0 -1 0 

0 0 0 0 -1 

Exam~ le B • 2. 3 • 

1 -1 1 -1 

-3 3 .. 5 4 
A = 

8 -4 3 -4 

15 -10 11 -11 

Let 

1 1 -3 

0 -3 8 
x = A X = A2 x = , __ ,_ -0 8 -16 

0 15 -32 

5 

-15 
A3 X = = -3A2 X - 3A X - X 

24 

51 



Since the sum of the eigenvalues of! must equal the trace of f;.t 

we can find the other elementary divisor. 

>-4 = trC!) + 3 = 1 + 3 + 3 - 11 + 3 = -1 

The elementary divisors are ( A + 1) 3 and ( A .+ 1) \· 

!)i, 
·1. 

0 0 -1 0 

l O -3 0 

c = 
O l -3 0 

0 0 o -1 

The last block is already in Jordan form so work 6n 

c = 
-1 

l 

0 0 -1 

l 0 -3 

0 1 -3 

[C + U] T = .2.,. T = 2 [C + U] T = T , T 
-1 - 4 -i. -i. ~ -1 ~ -

l 

3 

[C + U] T = T ' T = 3 
-1 - -3 -2 -3 

1 

1 2 3 0 -1 3 

T = 2 3 3 T-1 = -1 2 -3 

l l l l -1 l 

2 

= 3 

l 
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-1 l 0 

0 -1 1 

0 0 -1 

Therefore I 

1 0 0 

0 -1 1 0 

J = 
0 0 -1 o 

0 0 0 -1 

Example B. 2. 4o 

A final example is a 6 by 6 matrix which has 

By reduction to rational form, it is found that 

= (A + 2) (A - 2) 0 + 3) 

Other elementary divisors are found to be (A+ 2), 0 - 2)f and 

0 + 2). Therefore, 

0 0 12 0 0 0 

1 0 4 0 0 0 

.£1 0 0 
0 1 -3 0 0 0 

c = 0 c 0 = 
--'2 

0 0 0 0 4 0 

0 0 ,£3 
0 0 0 1 0 0 

0 0 0 0 0 -2 
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.£3 is already in Jordan form. Corresponding to C -2 is 

J = r-: :J -2 

Corresponding to C -1 is 

-2 0 0 

!l.1 = 0 2 0 

0 0 -3 

Therefore, 

-2 0 0 0 0 0 

0 2 0 0 0 0 

J 
-1 

0 0 
0 0 -3 0 0 0 

J = 0 !l.2 0 = -. 
0 0 0 -2 0 0 

0 0 J -3 
0 2 0 0 0 0 

0 0 0 0 0 -2 



VITA 

Marvin Emmett Daniel 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: STATE-SPACE SYNTHESIS OF PASSIVE ONE-PORT NETWORKS 

Major Field: Engineering 

Biographical: 

Personal Data: Born near Dexter, Kansas, December 19, 1938, the 
son of Emmett P. and Eva M. Daniel. 

;Education: Attended grade school in Dexter, Kansas; graduated 
from Dexter High School in 1956; attended Arkansas. City 
Junior College, Arkansas City, Kansas; received the 
Bachelor of Science degree in Electrical Engineering from 
Kansas State University in January, 1961; received the 
Master of Science degree in Electrical Engineering from 
the University of New Mexico in June, 1963; completed 
requirements for the Doctor of Philosophy degree in May, 
1966. 

Professional experience: Employed by Boeing Airplane Company, 
Wichita, Kansas, during the summers of 1959 and 1960. 
Employed by Sandia Corporation in the design and development 
of field test equipment from February, 1961, until September, 
1963. Employed by the School of Electrical Engineering of 
Oklahoma State University since September, 1963, as an 
instructor. 

Professional organizations: Member of the Institute of Electrical 
and Electronic Engineers, Phi Kappa Phi, Eta·Kappa Nu, and 
Sigma Tau. 


