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GHAPTER I 

GENERAL THEORY 

1. IN'rRODUCTION 

The differential scattering o( ions by atom.s or molecules in the 

1-6 
energy range of kev has been studied in a number of cases. The 

scattered particles have been analyzed at "moderately large" angles of 

deflection (around 5°). It has been observed that the plot of differ-

ential cross sections for various processes, such as, electron capture, 

electron strippings, etc., exhibits, in many cases, pronounced reso-

nances. Recently many theoretical accounts for these phenomena have 

been given with some success by means of classical and semi-classical 

7-15 methods, as well as by some modified norn's methods. A unique 

d d 16 + metho has been eveloped more recently by B. Roth for the H + H 

electron· capture process. Essentially this is a perturbation .method 

with more emphasis placed on the nuclei. As the Coulomb wave function 

for the collision becomes modified by the presence of the electron, 

the electron configurations of the initial state and the capture state 

are coupled together strongly over the region where the interatomic 

interaction is great. While there are still some discrepancies between 

the observed electron capture probability, P , vs collision energy 
0 

curve, nevertheless, the theory almost pin-points the observed reso-

nance peaks and anti-peaks. 

1 
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In the present paper Dr. B. Roth's theory has been extended formally 

for many-electron atoms. A symmetric formulation is given to allow 

coupling among mqre than two electronic configurations, for it is specu-

lated that such a thing might happen on various occasions. In Chapter 

II the ptoblem of the He+ H+ ~He++ H electron capture process has 

been studied in detail. Calculations of resonance peaks and anti-peaks 

were compared with great success, with the experimental data of Ziemba, 

3 et al. Some qualitative discussions on the general shape (mainly the 

damping) of P vs energy curve have also been ventured. In Appendix A 
0 

the interatomic i~teraction terms, using hydrogenic wave functions, have 

also been evaluated, and calculations in connection with the He and H 

atoms have been made. 

2. THE HAMILTONlAN OPERATOR 

Consider two atoms of nuclear masses M1 and M2 and atomic numbers 

z1 and z2 • the Hamiltonian operator for such a system in atomic units 

is, 

-;;; = 

+ 

--"' 
where R1 , 

--", 

Rl: 

--R2: 
-->. 

I 
r.: 

J 

r .. : 
l.J 

-LA + l A + 
21'11 R1 2M ' R · · 2 2 

z2 
n 

+ I' _1_ 

I t2~-t~I rij 
ij 

_,,, _,,. 
Rz' r. and r .. are 

J l.J 

The position vector 

The position vector 

l'he position vector 

n n 
. l 
+ 2 I tii 

i=l 
-I 
i=l 

I'= II i \~ j 

ij i j 

respectively as follows: 

of nucleus 1 

of nucleus 2 

.th of the J electron 

The distance between the .th electron and the ]. 

(1) 

.th electron J 
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n: The m,1.mber of electrons of the system 

At large interatomic distances where the two atoms may be realized 

as two non-interacting systems, assume that nucleus 1 and n 1 electrons 

form a stable atomic system (atom 1) and nucleus 2 and n2 electrons 

form another system (atom 2). Furthermore, if there is no ionization, 

one may subdivide~ into the following groups: 

where 

H = H (Ri_, "Itz) 

= 

n1 n1 nl 

t .I. (l) 
+I zl . I 1 

!},. ~ -I(I) ~ l. 
i=l ( l) l. ij=l l.J 1.=J 

n2 

f l (2) ~k 
k=l 

n2 

+ I (2) 
k=l 

1 

riK 

f .. 
vj 

(2) 

t(l) represents the summation over the electrons of atom 1, and 

~(Z) represents the summation over the electrons of atom 2. 

--1,. (2) .th th 
and ck are the position vectors of the l. and the k electrons of 

atom 1 and atom 2 as measured from their corresponding nuclei. 

It has to be noticed that there are only n 1 + n2 + 2 particles in 

the two-atom system. Consequently, there are only n1 + n2 + 2 independ-

ent position vectors. In the subsequent discussion, however, the follow-

ing vectors will all be used: 

r'. ' r .. ,,.,.k' r. ( 1) ' 7k(2)' -t. (2) ' -:k< 1) ' Rl' R2' lt1' ' R2' ' ---;_ . ,R, R' 
l. l.' 'o1 l. .,, 1 .,, l.J 
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where 
~ (1) -", ~ 

~ ( 1) 
(Ml + nl) Rl =MR +L 1 1 1 

i=l 

n2 

(M2 ) ....;).' + n2 R2 
~ + I' (2) -:;, (2) = HzR2 

I k 
k=l 

___.. _... _.,,_ =-it .. - ~ ~ .,-->,. ~ 

+ij = r. ~ r. ck - r. = R - Ci + rk 1 J ],. 

__,. __,. 
="' l;'i = Rl - r. 

1 

_.,,_ 
"'""""" ? ck 

::; R2 - k 

Among the fol.lr separate operators only h 1 and h2 can be expressed 

_... ~ (1) 
in terms of mµtually independent coordinates, namely R1, ri and 

_.. ___.. (2) 
R2 ,Ck • Consequently, if cp 1 and cp2 are some eigenfunctions of h1 and 

h2 respectively, then it follows that cp1cp2 is also an eigenfunction of 

the operate~ h 1 + h2• However, since His a function of R1 and R2 , the 

eigenfunction of the operator~ cannot generally be expressed as the 

product of the eigenfunctions of h 1 , h2 and H. 

c12""te.ro.f ~~u 
Of ei·h,~ I 

0 

Figure 1. The Coordinate System 
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.. 
3. SOLUTION TO THE SCHRODINGER EQUATION 

If Eis the total energy of the two-atom system, then the correspond-

ing Schrtldinger equation is 

,jr = E,jr (4) 

or, 

(4a) 

In case of atomic collision one seeks for the solutions to the above 

equation with the following asymptotic form: 

,jr = I + S, (S) 

where I stands for the incoming wave 

and S stands for the scattered wave. 

Since V vanishes at large interatomic distances, one therefore 

obtains the following equations for I and S, 

(H + hl + h2) 00 I= EI 

(H = h. + h2) S = E'S 
l CilP 

R .... oo 

(6) 

In other words, both I and S, solutions to equation (6), must be some 

linear combinations of ~00 , where ~00 is an eigenfunction of the operator 

R . ..,. oo 

To solve the equation (5) for the collision problem, one may first 

expand ,i, in terms of the eigenfunctions of (H + h1 + h2), and then 

solve equation (4a) ·treating Vas some perturbation. The solution so 

obtained will then be regrouped into I and S for large interatomic 

distances. Consequently, there are two key considerations in the above-

mentioned approach~o the atomic collision problem: (1) to find a 



suttable set of approximate eigenfunctions {~°"] of (H + h1 + h2) 00 , (2) 

to solve (4a) using the chosen set 1as the basis for expansion of w· 

4. ~HE aoRN APPROXIMATION 17 ,is 

Usually there is no closed-form expression for~' where f is an 

6 

eigenfunction of (H + h1 + h2), except in the limiting c,ase when R tends 

to infinity. If at large interatomic distances atom 1 and atom 2 are in 

some de~inite states, for example a and b, then one may write the 

following equat~on for the eigenfunction of (H + h 1 + h2) where cp (l) 
oo a· 

( -(l)) d cp <2) (--") h d" . f . ri an b ck are t e correspon ing atomic wave unctions. 

~"° = f = (R' )cp a< i) <~ < i) )cpb <2> <tk> o> 
where 

Hoo Foo (R') = eab Foo (Ri_) 

h ( 1) (~ ( 1)) = e (1) ( 1) 
loo cpa ri a cpa 

h cp (2) (c. (2)) = e (2)cp (2) 
200 b ~k b b 

E = ~ + (1) + (2) 
"'ab ea eb 

and where 

Hoo = H R.-> oo 

hloo ::;: h 
1 

R .... co 

h2oo = h 2 
R.~ oo 

(7a) 

(7b) 

(7c) 

Furthermore, the asymptotic condition on F requires that in the 

center of mass system, 

~...:,. 

iKooR I iKooZ I 

F (R') = e = e 
(Sa) 

for an incoming plane wave, and 

iKab R' 
F (R) = e R' fa.1, (6) (Sb) 
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for the scattered wave, and 

K 2/2 = E ~ ( (l) + (2)) ab µ ea eb (Sc) 

·~ 
where the subscript 'co'' indicates that both atoms were in the ground 

states for the incoming wave. 

As a first approximation one may take 

(i]j = F ca')cp <1) c:t 0 ))cp <2) ct<2))} 
ab co a 1 b · k 

as a complete set of eigenfunctions of (H + h1 + h2). 

Now, one may expand v as follows: 

V = l i]jab = l Fo.b (R' )cpa ( 1) <r:( 1) )cpb (2) (,(2)) (9a) 

ab ab 

].·v __ '7, iKabR' ( ) (l) (2) (2) 
= ( e ~ + e R ' foo ( e) ) cp o 1 ( r: ) cp o (' ) 

(9b) 

By substituting the above-expansion for v into equation (4a) and solving 

for the F8 b's, treating Vas a perturbation term, one has the following 

set of simultaneous equations: 

'°' . HF ab = L < a 'b' Iv I V > ( 10) 

ab 

where 

(lOa) 
By taking 

iK7.' (1) (1) (2) ~(2) v = e 00'-' cp ct )cp ({: ) 
O l. 0 k 

(11) 
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equation (10) becomes reduced to the normal form of Born approximation. 

Therefore, the validity of Born approximation rests heavily on the 

completeness and the orthonormality of the chosen set of expansion [~
00

}. 

However, although it is quite obvious that the set is complete, its 

orthonormality is not always beyond question. 

5. THE ORTHONORMALITY OF ~ab's 

In order that any set of eigenfunctions of (H + h1 + h2) be ortho-

normal in the space of all the electronic as well as the nuclear coordi-

nates, the following condition must be satisfied: 

(Cl'la') (12) 

It is clear that in the region wherelR1 - R'2 1 is small, the ortho

normality of the set of section 3 is very doubtful. This explains the 

failure of Born approximation in treating some atomic collision processes. 

Unless some approximate forms are to be used for the ~'s, integral (12) 

cannot be evaluated analytically. Fortunately, such analytical evalua-

tions are not always necessary to establish the criterion. To further 

clarify this point, let us consider the following examples: 

a. (ground state) 

Referring to their electronic states before the impact, designate 

Has atom 1 and H+ as atom 2. Let W(r) be the ground state wave function 

for the hydrogen atom, 

...>. 

F W (r) = ~ 
00 Ci 

Foo W (c) = 

Concerning the energy of the two-atom system, t and t I are 
Cl' Ci 

degenerate electronic configurations. On the other hand, they do form 
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definite states at large interatomic distances, The non-vanishing 

contribution to integral (12) comes, therefore, from the region where 

the two nuclei are close together, as can be seen in the following 

integra 1; 

<ode/>= f ~c/c <l>Ci', dr = e-R [t R2 + R + 1] 

It has been noticed that the following two linear combinations of 

electronic configurations (LCAO, linear combination of atomic orbitals) 

form a much better orthonormal set for the qi's. 16 

± -->.,, --'-- ...>.. +-
F (R') (W(r) ± W(r)) = ~-

oo ~ 

The success of the above LCAO's in treating the hydrogen-proton 

collision problem can be accounted for in the following manner, Firstly, 

the orthonormality of the two LCAO's is secured by the fact that the two 

electronic configurations W(~) and W(c) are orthonormal states for large 

interatomic distances. 

j'(W(r') + W(c')) (W(r) - W(()) dr = 0 , R>>l 

Secondly, for small r's the two LCAO's coincide with the singlet and 

+ 19 the triplet Reitler-London wave functions for H2 , 

b. He(l) + He(Z)+ ~ He(l)+ + He(Z) (ground state) 

Let U(t°1 , iS) and V(() be the spatial wave function for He and 

+ He respectively, and 8(123) = 
1 
2 

spin eigenfunction. The following six electronic configurations for the 

two-atom system are energy degenerate configurations, They form definite 

electron capture and electron exchange states for large values of R, 



10 

( 1 O) = u --"- _,. 
(r2r3) v 

_:,.. 

(C 1) s (2 3 1) 

(2 O) = u cr;t;_) v ~ 2) <C2) s (3 1 

(O 1) 
_.. ~ 

= u <C1C2) v 
.....,. 

(r3) s (1 2 3) 

(1 1) = u ...... ~ 
<,2C3) v (~) s (2 3 1) 

(2 1) = u ~ ....>.. 

CC3C1) v (r;) s (3 2 1) 

Different methods have been used to couple the above six configurations 

in order to form an orthonormal set. However, drastic approximations 

must be used at various stages of calculation and the results are not as 

20 
good as in the hydrogen-proton case. 

+ + 
c • He + H .... He + H (ground state-ground state electron 

capture) 

The energy levels before and after the electron capture, unlike 

· the above cases, are not equal. According to strict Born approximation, 

the electron capture probability is extremely small. However, experi-

mental results indicate differently, The following three configurations 

are almost degenerate ones: 

where 

(O O) 

(O 1) 

(1 1) 

~ ~ = UHe (r 1r 2) S (1 2) 
____,,. _.,l. 

= DHe+ (r2) W (C 1) s (1 2) 

and where 

UHe: Ground state atomic wave function of He 

UHe+: Ground state atomic wave function of He+ 

E = E 
00 

ev 
- El 1 = Eo O - Eo 1 = 24.595 



It can be shown by direct integration that the transition prob

+ 
ability between the two He + H configurations (01) and (11) is very 

11 

large and highly oscillatory in the region of small values of R. There-

fore, they should be almost be considered as one configuration. 

k [(01) + (11)] = k (UHe + (r;) W (c;_) + UHe+ (r;_) W (Cz)) S (12) 

The other combination 

is ruled out, since 

< S (12) I S ' ( 12) > = 0 

The normalization constant N can be evaluated in the following manner. 

For large collision parameters the interatomic distance is always large 

so that 

J[(Ol) + (11)]* [(01) + (11)] drid~ = 2 

1 

J:-l' = 1/(2)~ 

On the other hand, for small collision parameters the interatomic distance 

could be very small in time. Consequently, because of the high transition 

probability between the two He++ H configurations 

J[(Ol) + (11)]* [(01) + (11)] dr 1dr2 ~ 4 

N = ~ 

In general, N should have a value between~ and(~)\ 

If there exists a group of electronic configurations of the two-

atom system, which form definite states for large values of R with 

close laying energy levels, then some LCAO's among these configurations 

must be chosen such that their orthonormality be secured for all values 
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of R. To solve the collision problem, a set of Q1 s based on this LCAO's 

will give better results than those of Born approximation, 



CHAPTER II 

He+ H+ ~He++ H COLLISION 

1. THE WAVE EQUATION 

The Hamiltonian for the system in the center of mass coordinate 

system of the two atoms is 

-L ::;: 2µ,1 6 + l 41 + l 6 £ + L + L + L + L + ..1.... .. < 13) ~ R · 2 2 2 ~ R r 1 r 2 C1 C2 r 12 

where 

µ :::: ~e ~/(~e + ~) 

The following form fort, the solution to the wave equation corre

sponding to~, can be used for the electron capture process if one 

neglects the center of mass correction, 

t = F (R) cp + F (R) cp 
o o e c 

(14) 

where (Cf. Sec. 4, c, Chapter I). 

The spin eigenfunction is omitted, for it is unchanged throughout the 

entire collision process. 

Corresponding to the electronic configurations (OO), (01), and (11), 

may be subdivided as follows (Cf. Sec. 1, Chapter I): 

(00): ~ :::: H + hHe + V (OO) 

13 



(Ol):~ = H + h(Ol)He+ + h(Ol)H + V(lO) 

(ll):1 = H + h(ll)He+ + h(ll)H + v(ll) 

where 

1 2 = - 6 + -
h(Ol)He+ 2 1 rl 

1 2 
h(ll)He+ = 2 62 + r 2 

h =lti +L 
(Ol)H 2 2 ~2 

_ 1 1 
h(ll)H - 2 6 1 + c;:-

and where 

I I +---
~2. r,'2.. 

Therefore, in place of equation (10) one has, 

HF = V(O/O)F + V(O/C)F 
0 0 0 C 

HF = V(C/O)F + V(C/C)F 
C C O C 

where 

H = H + K2 /21-L 
0 0 

l, 
H = H + K /2µ 

c c 

According to equation (Sc) 

K2/2µ - K2/2µ = E + - E + 
o c He H 

14 

(15) 

(16) 



where EHe+ and EH+ are the ionization energies of the He and H atoms. 

Further 

V(Olc) = V(clO) 

= k {f(Ol)V 11o)(OO)dtldt2 + J<11)v(ll)(OO)dtldt2 } 

= i J(Ol)V(lO)(OO)dt 1dt2 

= i f(ll)V(ll)(OO)dt 1dt2 

V(clc) = i {J(Ol)V(lO)(Ol)dt 1dt2 + J(ll)V(ll)(Ol)dt 1dt2 

+J(Ol)V(lO)(ll)dt 1dt2 + f(ll)V(ll)(Ol)dt 1dt2} 

= i { (ll)V (ll) (ll)dt1dt2 + j'(Ol)V (lO) (ll)dt 1dt2} 

2. THE CASE OF STRONG COUPLING 

A more simplified version of equation (16) may be obtained by 

imposing upon it the following assumptions : 

I. V(0/0) = (C/C) 

II. K = K 
O C 

15 

The justification of these assumptions will be discussed later. Equation 

(16) now becomes 

HF = V(O/O)F + V(C/O)F 
0 0 0 C 

( 17) 

According to equation (9) the asymptotic conditions of F and F 
O C 

require for large values of R that 
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iKoZ iKoR 
F e +-e __ f (8) 

0 R 0 

iKoR 
F e 

f (8) (18) c R c 

By adding and subtracting the coupled equations (17), one arrives 

at the following de-coupled forms: 

H (F ± F) = tV(0/0) ± V(C/0)]- (F ± F) 
0 0 C - 0 C 

One as s 'LIID.e s for solutions to the above equations that 

F +F 1 
(I + SC+ (R)) = 2 0 c 

F = F = t (I + SC (R)) 
0 c 

where I is essentially the Coulomb solution to the ope:t;'ator H for 
0 

incident wave and Sis that for scattered wave, i,e., 

I iKoZ 
- e 

S - (eiKR/R) x f(9) 

( 19) 

(20) 

It is evident that this solution is compatible with the asymptotic 

condition (18). C±(R) are functions of Rand approach to constants 

(complex in general) as S approaches to its asymptotic form. For col-

lision energies in the kev range, the difference between Sand its 

asymptotic expression becomes vanishingly small when the values of R go 

beyond the Bohr radius of the atom. Therefore, it is reasonable to 

assume that the C(R)'s are slow varying functions such that their second 

and higher orde:t;' derivatives are negligible. On substituting equation 

(20) into equation (19), 

H (I+ sc±(R)) = (V(O/O) ± V(C/O))(I + sc±(R)) 
0 

since 

HI=HS=O 
0 0 
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and 

Therefore, equation (20a) beqomes 

<2~) (SLIC±(R) + (VS) (y' C±(R)) = (V(0/0) ± V(C/.0)) (I + sc±(R)) (20b) 

-1 If one neglects terms of order K and retains only terms containing 

C(R) and dC(R)/DR's in equation (20b), then one obtains the follwoing 

differential equation for the C;s. 

dC±(R)/dR = 1/2ik(V(O/O) ± V(C/O))(C±(R) = 2I/S) (21) 

Since I is a much faster oscillating function than the C's, the 2S/I 

term contributes negligibly when equation (21) is integrated, then 

. dci"(R)/dR = lh.ik(V(0/0) ± V(C/O))C±(R) 

c±(R) = e-(i/2k)(cpo(R) ± Cc(R)) 

where 

cp (R) = J8" V(O/O)dR 
0 0 

co (R) = ~ V(C/O)dR 
c O 

(22) 

(23) 

Now one is ready to evaluate the electron capture probability P • 
0 

According to equations (14), (18) and (22), P is given as 
0 

p 
0 

lF/x 2 2 = lF 1 + lF 1 
O C 

Since by our assumption (Cf. equation (14)) 

lF 12 + lF 12 = lf(0)12 
O C 

Therefore, 

P = sin2 cp /2.k 
O C 

co = cp (00) ·c c 
(24) 
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The energies corresponding to the maxima and minima of P are given by 
0 

solving the equation 

1 
~ /2k = -2 nTI, n ~ 1, 2, 3, , .• c (25) 

with odd n's corresponding to maxima and even n's to minima. A useful 

i;-elation between k, which is the center of mass system of He and H in 

atomic units, and the collision energy E, which is in the laboratory 

system in kev's, can be derived as follows: 21 

k = 
K cm ~(CM)* 

~ µ. 

·~=(CM) = M V (CM) 

VH = ~ V * V = 5 lab ' lab 

Therefore 

Table 1 and Figure 2 give a comparison of the calculations based upon 

equation (25) and the experimental results of Ziemba, et al. 3 

The ground state He wave function obtained by Hylleraas, employing 

the variation method, is used to evaluate the interaction terms of 

equation (23). One must bear in mind that the justification of the 

variation method rests solely on the ground state ionization energy. 

How~ver, on account of the ionization energy of an atom, the behavior 

of the "tail" part of the atomic wave function is not very critical. 

Therefore, the meaningfulness of the Hylleraas wave function in the 

evaluation of the interaction term is at times debatable. This 

contributes to some discrepancies in Table 1. 



TABLE I 

COMPARISON OF CALCUIATED K WITH MEASURED K* 
..... - ....... 

N=2 
L'ik 

N = (2) 
Ak 

N = 1.6 
~ 

n K(calc) L'ik** k(exp) k(calc) Ak** · · ·k(exii> · kk(c:aic) Ak** k(exp) k(exp) 

l(Max) 1.044 +0.088 + o. 7% 1.480 +o.444 +43% 1.293 +0.257 +25% 1.036 

2(min) 0.516 -0.059 -10.2% 0.738 +o.163 +28% 0.640 +o.075 +13% 0.575 

3(Max) 0.347 -0 .077 -18% 0.498 +o.074 +17% 0.431 +0.007 +1.6% 0.424 

4(min) 0.258 -0 .062 -19% 0.369 +o.049 +15% 0.320 0.000 0.00% 0.320 

5 (Max) 0.208 -0.058 -22% 0.286 +0.040 +15% 0.259 -0.007 -2.6% 0.266 

6(min) 0.172 -0.049 -22% 0.246 +o.025 +11% 0.213 -0.008 -3.6% 0 .221 

7(Max) 0.149 -0.046 -24% 0.212 +o.017 + 8. 7% 0.185 -0.010 -5.1% 0.195 

* The evaluation of integral (23) is given in Appendix A which includes electron-electron interaction. 
It is interesting to know that the electron-electron interaction is about 16% of the total 
interaction. 

** fik = k(calc) - k(exp) 

I-' 
\0 
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Nevertheless, it is quite clear that the N = 2 set gives a better 

account of the experimental data of high collision energy, and the 

N = (2)\ set gives a better account of the experimental data of low col-

lision energy. (This is in agreement with the argument of Sec. 4, c, 

Chapter I.) In general, N will mainly depend upon how close the two 

nuclei get (the impact parameter), and consequently,. N will depend upon 

the collision energy or K. (For reasons mentioned in the last paragraph, 
0 

no attempt has been made to establish a functional relation to Non K 
0 

based upon the Hylleraas wave function of He atom.) 

For the best over-all fit with experimental data, N should have a 

value of aro~nd 1.6. Interestingly, if one neglects the electron-

electron interaction V(C/0), N would have to be approximately 1.35, 

.l.: 
which is under the theoretical lower bound of N, (2) 2 = 1.41 to get the 

best fit. 

3. THE DIFFERENCE BETWEEN V(0/0) and V(C/C) 

If one drops assumption I of the last section, equation (17) 

becomes 

= (V(ij)) F
F o) 

where 

V(0/0) 
(V(ij)) = V(C/0) 

c 

V(C/0) l 
V(C/C) 

(26) 

It can be shown that this coupled equation also gives exact resonance 

between the electronic configurations~ and~. 
O C 

If (a .. ) is a diagonalizing matrix of (V(I/J)), equation (25) can 
l.J 

be decoupled so.that 



a 11H F + a 12H F 1 W+ (R) G+ (R) = -0 0 0 C 2ik 

a21HoFo + a22Ho:Fc 
1 - (R) (R) = - w G 2ik (27) 

where 

G+ (R) = allo + al2Fc 

G (R) = a2 'i_F o + a22F c 

and 1'r are such that 

IV(0/0)-W V(C/0). 
0 

V(C/0) V(C/C)-W 

Therefore, 

l-r(R) = f (V(0/0) + V(C/C) ± ~[V(0/0) - V(C/0)] 2 + 4V2(C/0) 

In general the a .. 's are functions of R. Since, for collision 
1J 

energy in the kev range, the F's approach their asymptotic expression 

very rapidly, it is again reasonable to assume that the a .. 's are slow 
1J 
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varying functions. Therefore equation (27) can be written approximately 

as follows: 

(28) 

Here again one assumes for solutions to the above equations that 

and imposes upon the C's the same asymptotic conditions. One obtains, 

consequently, the differential equations for the C's. 

or 

:R c±(R) = 2ik w±(R)c±(R) 

- L cp=c(R) 
2k = e 

(30) 



i.e., 

cp±(R) = JR w±(R')dR' 
0 

To evaluate the electron capture probability, let 

(aij) = (aij) -l 

+ -
Fo = QlllG + Ql21G 

+ 
Fe= a21G + Ql22G 

Therefore, 

w+ 

:-) (aij) = (V(ij)) 
0 

On,e set of a's is given by 

Qlll/Ql12 = V(C/0)/(W+ - V(C/0)) = (W+ - V(C/C))/V(C/0) 

Ql22/Ql21 = (W--V(0/0))/V(C/O) = V(C/0)/(W- - V(C/C)) 

(31) 

For large values of R, V(0/0) - V(C/C) vanishes more rapidly than 

V(C/0). Therefore, in the limiting case 

F 
0 

F 
c 

+ -
= G + G 

+ = G - G 

Consequently, 

where 

P = sin2 cp'/2k 
0 

cp' = ~ 1/fv(O/O) - V(C/C)J 2 - 4V2(C/O)dR. 

(32) 

(33) 

Therefore, the removal of assumption I of the last section will 

23 

not change the resonance pattern of P curve. Furthermore, judging from 
0 

the comparison of Table 1, the value of cp' ought to be very close to 
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that of~' i.e., V(O/O)'i-81J(C/C). This semi-empirical consideration 

justifies our asst,1mption I. 

4. THE CENTER OF MASS CORRECTION 

Different authors have shown that the expansion oft in equation 

(14) is not an exact solution to the operator even in the asymptotic 

· h h , · . . h 11, 14 , 16 reg1on were t e 1nteract1on terms van1s • For improved approxi-

mations, correction terms, known as the center of mass correction, have 

to be introduced. For the present problem one may use the method due 

to Roth. 16 In place of F (R) and F (R) one should write F (R') and 
O C O 

+ F (R") •. R' is approximately the distance from the protc;m H to the c 

center of mass of He atom and R" is approximately the distance between 

+ the center of mass of H to that of He • For small angle scattering 

0 
(elab around 5 , for example) the following relations hold approximately 

true. (Cf. equation (3), Chapter I) 

1<it' ........... 
- k(r rz) ft = KR + 1 

·KR' = KR - k(r1 + t2) ~ 
For configuration (00) 

KR~' ~...,s.. ...( 
~ t) /\ = KR - k(r1 R 

·2 

·KR" ...>. - Cz) i = KR - k(r1 
For configuration (01) 

i<~' ~ ..... ...... c;_) /', 

= KR k(r2 R 

KR" = KR k(r2 z;l) 'i 
For configuration (11) 

Since the C's are slow varying funct;i.ons, one may write for. the center 

of mass correction functions F and F as follows: 
0 c 

-'"' ~ /\ 

F (R') = F (R)e 
-ik(r1 + rz) R 

configuration (00) For 
0 0 .. 

I\ 

F O (R") F (R)e 
ik(ri - (z) R 

For configuration (01) = c 
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-ik(t - c) a 
F (R") = F (R) e 2 l 

c c 
For configuration (11) 

Therefore, equation (14) becomes 

iK(i\ - t 2) R iK(r2 + !\) ~ 
~ = F (R')(OO) + F (R)[(lO)e + (ll)e ]_ 

O C 

and equation (19) becomes 

H0 F0 = V(O/O)F/R) + [VR(C/0) + iVI(C/O)JF/R) 

HcFc = [VR(C/0) - iVI(C/O)]F0 (R) + [VR(C/C) + iVI(C/C)]Fc(R) (34) 

where 

. + J(11)V 11 (OO)cos k(r'°1 + t;_)~ dt 1dt2 

= ~ J co1)v 10(00) cos k(i2 + t2)R dt 1 dt2 

v1(C/0) = ~ J(Ol)V 10(QO)sin k(~ + ( 2)R dt 1dt2 

VR(C/C) = ~ [J(Ol)V10(10) dt 1dt2 

+ J (Ol)V 10( 11) cos k(r;_ + "(1 - ~ - °t2)a dt 1 dt2} 

VI(C/C) = i J(Ol)V10(ll)sin k(~ + ti_ - r"'z - "(2)~ dt 1dt2 

In view of the remarks of the last section, assume once again that, 

unlike the cases in sections 2 and 3, equation (34) can only be de-

coupled partially by ·adding and subtracting the coupled equations 

H (F + F) = (V(0/0) + VR(C/O))(F + F) 
0 0 C O C 

- iVI(C/O)(F - F) + iVI(C/C)F 
O C C 

(35) 

H (F - F) = (V(0/0) - VR(C/O))(F - F) 
0 0 C O C 

If one assumes for solutions to the above equations of the coupled 

form those given by equation (20), the equation for the C's becomes 



de+ 1 + + 
dR = Zik {[V(0/0) + VR(C/O)]C - iV1(C/O)C- + iV1(C/C)(C -C-)} 

(36) 

:~ = 2~k [[V(0/0) - VR(C/O)Jc- + iVI(C/O)C+ - iVI(C/C)(C+-c-)} 

Unless all the imaginary parts of the interaction term vanish, the 

above equations do not lead to sinusoidal solutions for the C's of the 

form 

ieo/k e . 

~ real-valued function 

Rather, the real-valued function should be replaced by a complex 

function i,p. 

where both z± and g± are real-valued functions. 

Equation (24) becomes, 

. + + . 
l.Z -g l.Z 

P = (e - e 
0 

+ = 1 ( -2g + -2g 2 e e 

.+ 
-g ) (el.Z -g - e -iz -g ) /4 

( ++ -) + 
- e- g g cos (z 

According to equation (24) the P vs collision energy curve will 
0 

(37) 

(38) 

oscillate between 1 and O. On the other hand, one would expect some 

damping of this curve due to the real-valued exponential factors. 

Furthermore, the center of mass correction damping should be approxi-

26 

mately symmetrical about the line P = \. P vs collision energy curves 
0 0 

+ + in the H + H and He+ He , etc., cases where similar nuclei are involved, 

all show damping of this kind. In case of He+ H+ collision a different 

kind of damping on the P vs collision energy curve has been observed. 
0 

3 Experimental results of Ziemba et al., indicated a strong asymmetric 

damping of P curve near the low energy and (about 1 kev) where only the 
0 
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peaks of P are strongly damped. A qualitative discussion on the origin 
0 

of this asymmetric damping will be given in the next section. 

5. PARTIAL COUPLING 

If one assumes only ground state transitions, then 

E E llev 0 _41amu 
He+ - H+ = = 

:Now let 

K - 6K = K 
C O 

Then the law of conservation of energy requires that 

l_ K2 l (K - 6K) 2 = .41 
2µ. 0 .. 2µ. 0 

or 

AK = 0.41/k 

for 6K is a small quantity and t.K2 is negligible. 

For collision energies in the kev range, Kc is of the order of 

1,000 and 6K is of the order of 1. However, from a pure wave-

mechanistic point of view, the smallness of AK does not give a complete 

justification of assumption II as given in Section 1 of this chapter. 

If one assumes monochromatic waves for both F and F , the coupled 
O C 

solution of the form given by equation (20) is not compatible with the 

asymptotic conditions of F and F , since they will be completely de-
o c 

coupled due to their different wave numbers. 

Although there is no exact theory about the collision diameter for 

atomic collision, it is reasonable to assume that the strong coupling 

between atomic states~ and~ occurs only within a small region, with 
O C · 

a diameter of the order of one 5ohr radius (= 1 in amu) around the 
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22 + 
nucleus. It is interesting to note that in the case of He+ H col-

lision, F (the initial wave) and F (the captured wave) differ only by 
O C 

a few wave lengths within the sphere of one Bohr radius for collision 

energies of kev range. In this region both F and F must be described 
O C 

as wave packets with band widths governed by the uncertainty principle 

where 6k is approximately the band width of the wave packets and 6R can 

be interpreted as the collision diameter for the electron capture process. 

Unless 6K = 0, coupling between F and F can only be achieved 
O C 

partially through the overlapping of the two wave packets. Since the 

wave number difference 6K is inversely proportional to k and in turn 

inversely proportional to the collision energy, the overlapping between 

F and F will increase as the collision energy increases. This explains, 
O C 

at least qualitatively, the asymmetric damping of the P vs. collision 
0 

+ energy plot in the He+ H case. For relatively low collision energy, 

the overlapping between P0 and Pc is very small, and the scattered wave 

is essentially in the initial state~. 
0 

creases, the overlapping becomes greater. 

will then rise. 

As the collision energy in-

Therefore, the peaks of P 
0 

6. CONCLUSION 

The close agreement in Table 1 between the observed P peaks and 
0 

anti-peaks and the theoretical values reflects the validity of the 

theory developed in Chapter I and the simplifying assumptions made in 

the last few sections. It is interesting to know that in the experi-

3 ments of Ziemba et al., P was determined by measuring the fraction of 
0 
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neutral scattered hydrogen atoms, without regard to states of excitations 

. + 
of both Hand He • The seemingly over-simplified assumption, namely, 

that all the atomic states are ground states, leads, however, to sur-

prisingly good results. This can be explained by considering the orthog-

onality of the excited states. According to the argument and remarks in 

the last section, the ground state wave function* and any excited state 
0 

wave function V will have nuclear wave functions F and F with almost 
n o n 

identical wave numbers. This (act enables them to be coupled together 

very strongly for small interatomic distances. Therefore, for small 

interatomic distances these states will be coupled together to form an 

al.most single state rather than two or more orthogonal states. As the 

interatomic distances grow larger, the coupling between them will become 

weaker and eventually vanish at infinity. However, meanwhile the inter-

atomic interactions will also diminish and bec'ome negligible. One has 

to bear in mind, though, that the above remarks hold true only, as 

indicated in the last section, in the case of relatively large collision 

energies (in the kev range). 

One should also know that the theory so far developed applies 

equally well when more than two atomic states are involved. In this 

case the matri;x: equation (26) should be properly extended to rank n, 

where n is the number of states involved. In general, numerical evalu-

ations will be needed to solve the appropriate equations. 

To account for the exact shape of the P vs collision energy curve, 
0 

both the effect of c~nter of mass correction as well as partial coupling 

have to be considered. Equation (36) has to be solved for C± and g± in 

order to find the center of mass corrected P expression (equation (38)). 
0 
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Furthermore, this P has to be further modified by the effect of partial 
0 

coupling. 
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APPENDIX A. THE EVALUATION OF INTERACTION TERMS 

1. THE ELECTRON-NUCLEUS INTER.ACTION 

If one substitutes intq integral (lOa) an appropriate expansion of 

•· for example equation (11) for the Born approximation, integral (lOa) 

will be reduced to a more manageable form, one which contains some linear 

combination of the following general terms: 

where 

V(a'b'/ab) = V0 (a'b'/ab) + U(a'b'/ab) 

(1)* . 
Vo(a'b'/ab) = fcpa, (~ (l))cpb~2)* (~(2)) Vocpa (1) (~(l)) 

cpb (2) <C: (2)) 1:(1) dt. (1) r/2) dt/2 ) 
l. l. k 

TI(l) dt (l) TI( 2) dt (2) 
i i k k 

Zl .,. \' (2) 
(i) ·~ c. . 

l. k 

and where 
,, 

< a'b'/V/• >='I V(a'b'/ab)Fab(R) 

ab 

(39a) 

(39b) 

According to the "v" terms involved in the corresponding integrals, 

V (a'b'/ab) and U(a'b'/ab) are called the electron-nucleus and the 0 . 

electron-electron interaction terms respectively. Usually the 

33 
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predominant term is the nucleu~-electron interaction term, which will be 

discussed subsequently, The evaluation of the electron-electron inter-

action terms will be given in the ne~t few sections. 

For relatively light atqms where the hydrogenic wave functions al;'e 

good approximatio~s to their atomic wave functions, the introduction of 

elliptical coordinates will further reduce equation (39) 

R 

I; = (r + 0/R 

11 = (r - C) /R 
R3 

dt = 8 <s2 - 1l2)dsdT1d''.J 

Figure 3. 'l:'he Elliptica 1 Coordinate 

In many cases the introduction of the elliptical coordinates will 

even enable one to integrate the interaction terms analytically. Some 

of the most common integrals involved in such an analytical integration 

are tabulated in Appendix B. As an example, let's consider the (00)-+(11) 

transition iq He+ H+ collision. The hydrogenic wave functions are 

3/2 .. err 
He: UHe (1;') =~ e Q' = 1.69 1/2 ' 

TT 

(Hylleraas wave function) 

+ = 63/2 '"Sr He : UHe+(r) 1/2 
e . 

TT 

H W(r) =_L_ 
TTl/2 

e-r 

Since 

v 2 L = - --
0 r2 '1 



one writes for V (R) 
0 

where 

u1 ~ 2<C0 > ~ = 1.69 

~ = 2 ~ = 2 

V (00/11) = 9,57e-R - 4.16e- 4R - 2.46e- 4 •69R 
0 

·~ = 1 

.... R -4R -l.69R -4.69R 
+ 2.69 e -e + 1 59 e · -e 

R • R 

-4.69R -4R -l.69R -R 
.. 14.28 e .. e 

R 
+ 10.96 

e ~e 
R 

J V(OO/ll)dR = 3.92 

2. THE INTERATOMlC ELECTRON-ELECTRON INTERACTION 

The Coulomb interaction vik between the ith electron of atom 1 

th 
and the k electron of atom 2 is 

35 

If the atomic wave functions of atom 1 and atom 2 are expressible in 

terms of Slater type wave functions, i.e., expressible in terms of single 

electron wave functions, then the electron-electron interaction term of 

equation (39) contains factors of the following general form: 

(l)* ......_ (2) ;r>. -->.. I ;r' 
U. (r.)Uk (~'k·)U. (r.)Uk(~1k,) = f i i . i i 

. rik 

(40) 
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where U. (l)(r':) and U (Z)('c') are the single electron wave functions of 
1 1 k k 

the electrons i in atom 1 and kin atom 2 before the atomic impact. !he 

primed functions are single .electron wave functions after the atomic 

impact. 

Provided that there is no ionization, the electrons can undergo 

the following transitions after the impact: 

(1) Simple elastic collision 

u<2) <ck> .... u<2> <c') 
. k 

(2) Simple excitation 

u<2) <c) .... u' <2) <'t) 
k k 

(3) Electron. exchange without 

u<l)(t'.) .... u<2)(~) 
1 1 

u<2) <t') .... u<l) (~) 
k k 

excitation 

(4) Ele~tron exchange with excitation 

u<l) (;.) .... u' (2) <C) 
. 1 1 

u<2)(~) ~ u'(l)(~) 

(5) Electron capture 
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Furthermore, according to the l•values (angular momentum quantum 

number) of the single electron wave functions before and after the atomic 

impact, the transition may be classified as ss ~ ss, ss·~ sp, .•• etc., 

processes. 

3. SPEClAL CASES 

If some symmetries exist either around.atom 1 or around atom 2, 

integral (40) can be greatly reduced by integrating over the polar 

angles of the atom with the symmetry property. For example, in cases 

of types (1), (2)~ and (s)·a ss ~ s~ transitions, the single electron 

wave functions in (14) are independent of rk. 

express vik as 

Vik= (ri2 + rk2 - 2rirk cos 8)\ 

2 
dti = ri sin ei d9i d~i 

Let 9. 
1 

After integrating over ei and ~i' equation (14) becomes 

V1.k(a'b'/ab) = Ju<1>*u'<1>u<2>*u'<2>v (r.r )r.dr.dt 
00 1 k 1 1 k 

where 

In general, if the single electron wave functions in integral (14) 

are independent of either one of the four variables ri, rk' Ci' "k' 

similar integrations about proper polar angles ar.e always possible. 

For example, if C. is the missing variable, then integral (14) is 
i 
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reducibLe to the following formi 

V ( a ' b ' I ab ) = .. fu (1 ) ~ u ' ( 1 ) u ( 2 ) ~~ v 
em,e'm' em,e'm' 

where 

v em, e 'm' 

where 1, m, l', m' are the 1-values of the single electron wave functions 

em e 'm' 
and y , y are the corresponding angular momentum eigenfunctions. 

As an example, let's consider the He+ H+ (00).., (11) case" 

U (00/11) = f UHe(rl) UHe(rz) UHe+(r2) W(Cl) 

rl2 

It can be seen that V (00/11) involves a Type (S)a transition. By 

integrating over all the electronic coordinates, one has 

U(00/11) = .1027e- 5 •38R + l.97e-R + .087 (e- 5 •38R-e-R)/R 

+ 1.78 (e- 1 •69R - e-R)/R 

Therefore, 

I V(00/11)41<.=0.63 



APPENDIX 'lh SOME USEFUL . IN'!EGRALS 

) ~· _p('(' u. er = •"• e 

11' ll') = Ni e-~r 

()!,. 3fa 
N.=--rr, Y.z. 

f? 3/a. N2 = ___._ __ _ 
~ Va. 

1. (c. 0 )=Su(r)V(f)dt= 

3. 

4. 

5. 

7. 

. l c+)= f u<..r)U'(5')dt.. 

= 2.3 (0\~)3/2. {e-~R [ (._ot.2.- R2.)()(.R-4 ct.~] 
R(o{2- ~z.) r 

-t- e -0(~ [ ( <X 2 - ~ 1.) ~ R - 4 ex?>] } 

(o.-+)= 5 LL(r)J.,L(~) dt. 

= e _D(~ [ t o(2. R2 -i" ()( R-t I J 
<.. b .. ) = ~ 1J (~) tJ <:. r) dt = ( o..+) o< - ~ 

= e-Jal< [-+ {2 ~,. + ~Ix ;- I ] 

( ~-t) = ~ LL(r~ U(~) dL 

·== o<e-a1.~(l-1-°"~)= 1-~Cie_\)l.~(l+o<.R) 

\ ;'J= l \0 dt 

-2o<..R ( )] =+[1-e ot..R+I 

( ~) = ( -V-Cr) V (~) dL 
r J r 

= ~ e. - 'R ( I + ~ R) 

8. ( 0+)=- ( {J(r)t!(~)dt 

f ) f 
= -L [ I - e -2.~~ (} R-+ 1 ) J 

R 

9 . ( ~°) = ) .u.lr) 1<.n cl"L = 

39 
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(. 0 

jo. ( "f) =) ~(r~ V-(r) dt 

II. ( ~·)=S ..U.(Y")U-(S) dL 
5 

2.?.(°"'e//2. S'o(. -~R -cxR[ i 2. (°"2.-~2.y~ 1 e - e o(-;_@ (<-t-cx]} 

Q lr) {l' ( f) d t 
r 
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