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AN APPLICATION AND EVALUATION OF OPERATIONS
RESEARCH TO WATER SUPPLY RESERVOIR DESIGN

CHAPTER I
INTRODUCTION

General

A problem that has recently occupied the interest of
several eminent statisticians and engineers is the develop-
ment of a mathematical model or other suitable algorithm
for determining the design size of a water supply reservoir.

Men have been building reservoirs for alperiod in
excess of four thousand years. Little is known of the cri-
teria used in determining design capacity prior to the past
one hundred yet.'s, but it is assumed that such criteria were
no pbetter than the criteria used since the turn of the last
century. This procedure is a deterministic procedure based
upon the period of lowest streamflow in the total record of
streamflow available. Therefore, this procedure will not
allow high percentage developments of mean flow. The pro-

cedure is called the Rippl or mass-curve procedure.
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Need for Study

The increase in the per capita use of water and the
large population increases within the past few years have
brought the realization that we must effect higher percencige
yields from streamflow for water supply purposes. The time
is at hand when we must develop water resources to near
maximum potential. Much has been written about the reuse of
water. It would appear that near maximum potential develop-
ment of available supplies would follow closely, if not
precede, water reuse in priority. In addition, preferable
reservoir sites are being used for low percentage yield
projects. Therefore, future development of water resources
will be inhibited by current developments from the point of
potential reservoir sites.

The foregoing faqts are the motivation for developing
new and better criteria for reservoir design capacity.
Several models have been presented as suitable for such
purposes. Most of the mathematical work considers the storage
function as a stochastic process as opposed to the determin-
istic approach used in the mass-curve procedure. Unfortun--
ately, most of the theories advanced have not been applied to
streamflow data. In some cases, the models have been applied
to very simple discrete probability distributions. The
extreme example of such a distribution is the trinomial
distribution whére the streamflow may assume only one of

three values. Other examples that are frequently used are
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the Poisson distribution and the negative binomial distribu-
tion. Such distributions are not very realistic when applied
to streamflow.

Some investigators have approached the problem with
continuous probability distributions, assuming either normal
or uniform distributions. Still others have recognized that
streamflow generally follows the Pearson Type III or gamma
distribution, but they developed the theory bésed upon the
concept of an infinite dam. An infinite dam or reservoir is
capable of storing any excess and supplying any deficit.

Such a reservoir would indeed solve some problems.

The reason for using such assumptions as normal inflow
and infinite capacity is that an exact solution for a dam of
finite capacity with a gamma input is very complex. No
criticism of those presentations where these simplifying as-
sumptions are made i1s intended. Each contribution adds to
our rather meager knowledge of storage systems and helps to
understand the underlying processes. Therefore, each in-
vestigator has contributed to what 1s now known about storage
systems with stochastic inputs and various types of outputs.
There is a pressing need to evaluate the various models and

underlying theories.

Purpose

The purpose of this study is to evaluate the models
that have been proposed by applying them to observed stream-

flow data. Engineers need better methods for determining
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the size of a reservoir needed than those currently in use.
It would be desirable that an algorithm could be solved on a
desk calculator. Most government agencies and educational
institutions have digital computers. Many consulting engi-
neering firms do not have a Eomputer and only limited access
to one. This will probably change in the near future, but a
model amenable to solution on a desk calculator would fill a
very real need.

The emphasis in this study will be upon considera-
tions for the design of a single reservoir, but references
will be made to multiple reservoir design within a basin or
total basin management where applicable. If a model can be
shown to be applicable to one area, it may be applicable to

other more general areas also with minor modifications.



CHAPTER 1I
LITERATURE SURVEY

An appreciable amount of work has been done recently
by others to formulate criteria for the capacity design of
water supply reservoirs. The interest in this area appears
to be intensifying and doubtless more and better theories
will be presented in the future. Many important concepts
that impinge indirectly upon the various theories have been
set forth. In the interest of clarity and the purpose pur-
sued here, only those concepts that relate directly to the

subject will be discussed.

The Rippl Method

The method of determining reservoir size that is most
commonly used at present was proposed by W. Rippl (1) in
1883. Prior to 1883, the method of design was to assume a
reasonable size for a supply reservoir and further assume
that the reservoir was full at the beginning of the drought
period. By simple addition of the estimated monthly inflow
and subtraction of the estimated monthly withdrawals and
losses, the calculations were made of the quantity in the

reservoir at the end of each month for a period of a year.

5
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If the calculation showed a deficiency, that is a negative
quantity, the original assumed capacity was increased and the
calculations repeated (1). This procedure suffered many
faults that will not be discussed here as this is of his-
torical interest only.

The Rippl procedure was far superior to the previous
procedure both in the accuracy achieved and the labor neces-
sary to determine a design capacity. The Rippl procedure
consists of selecting the worst period of record from the
total available record and then determining graphically the
maximum deficiency that would result due to withdrawing a
continuous quantity of water from a given stream. The amount
of this maximum deficiency is obtained from the largest dif-
ference between a plot of cumulative streamflow versus time
and cumulative withdrawal versus time. An example is shown
in Figure 1. This procedure is illustrated in all texts on
water supply design and is therefore used by the majority of
consulting engineering firms and others engaged in water
supply planning and development.

The Rippl procedure suffers the following defi-
ciencies: 1. The analysis is based upon a particular
sequence of events (streamflow) which may never occur again
in the given order. 2. Almost nothing is known about the
probability of failure in the design. 3. In years that
streamflow is in excess of the worst period of record, a

large portion of the streamflow is going unused and allowed
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to spill. This is a luxury we shall not always be able to
afford. 4. The procedure was intended primarily for de-
termining within year or seasonal storage, although it was
suggested by Mr. Rippl that the consideration should not be
confined to a year. The need for the determination of over-
year storage requirements is evident for maximum or near
maximum potential development. In some areas, it has been
necessary to use a period of seven years to reevaluate the
potential of reservoirs that were designed on the basis of
one or two year droughts.

The Rippl procedure is still a wvalid procedure for
the development of a small percentage, say 30 to 40 percent,
of the potential of the stream. However, for a stream with
large variations in flow, this procedure will not allow near

maximum development.

Hazen's Method

The first attempl to overcome some of the defi-
ciencies of the Rippl procedure was made by Allen Hazen in
1914 (2). Hazen attacked the problem of the random varia-
bility of streamflow by constructing a Rippl diagram for
each year of record from fourteen streams and computing the
storage that would have been required in that year to pro-
vide assumed continuous drafts varying from 30 to 90 percent
of mean annual flow. These computations resulted in a fre-
quency distribution of estimated storage requirements, one

estimate for each year of record for a stated portion of mean



9
annual streamflow. From this frequency distribution a
probability distribution of storage requirements was de-
termined. Hazen assumed that this probability distribution
was normal and developed '"mormal storage curves.!" He then
suggested that the 95 percent dry year would in most cases
be adequate for design, and presented tables of generalized
storage requirements based upon the coefficient of wvaria-
tion of the annual streamflow and the percentage of mean
annual flow to be developed. Hazen's work was revised and
updated in 1930 by his son (3). Hazen's table of values is
shown graphically in Figure 2.

Hazen's procedure is not applicable where stream-
flow is regulated upstream by a reservoir. The procedure is
not directly applicable to irrigation storage where the pat-
tern of draft varies markedly. However, neither of these
limitations seriously affect this study where the interest
is municipal water supply. Few engineers working in the
field of water supply development use Hazen's criteria. The
reasons why Hazen's method is not used are not known. It
appears that his work in this area is not well known. In
addition, the method demands a larger reservoir capacity in
most cases than does the Rippl procedure.

The assumption of the normality of the distribution
of storage requirements would seem to cause storage volume
requirements computed by this procedure to be low. However,

Fiering (4) has shown that skewness of streamflow data is
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far less important than the coefficient of variation in de-
termining the range of storage requirements. Hurst (5)
reached an identical conclusion from studying several natural
phenomena including the flow of the Nile river and the stor-
age necessary to provide regulation thereof. Therefore,
Hazen's criteria is acknowledged by many to provide a good
first approximation to reservoir size although the streamflow

data may not be normally distributed.

Moran's Model for a Dam

A probability theory of dams and storage systems was
formulated by Moran in 1954 (6). The basic concept of the
approach is that with a prescribed probability distribution
for inflow and a prescribed release rule, an integral equa-
tion can be written for the amount of water in storage. This
integral equation may then be approximated by a system of
linear equations. The solution of these linear equations
will provide the probability distribution of the contents of
the dam. This probability distribution is the item of in-
terest to engineers as it will reveal the probability of the
dam being unable to deliver the desired draft.

Moran's original paper on this subject (6) was di-
rected toward storage for irrigation water. First, it was
assumed that water flowed in during the wet season and was
stored until the dry season when it was released. Next, it
was assumed the input was continuous and the release oc-

curred once at a given time.
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In a later paper (7) Moran modified the release rule
to allow water to be released at shorter increments of time,
for instance monthly releases instead of yearly, and pre-
sented a method of approximating a gamma distribution with a
discrete distribution. Subsequently, (8, 9) it was shown
that the original model could be used to approximate the
situation where the input and release were both continuous,
which is what occurs in a municipal water supply situation.

The model may be described as follows; Let Xy, the
streamflow during time t, be independent or without serial
correlation and be equal to 0,1,2,... with probabilities,
p0,§1,p2,... respectively, and let Z;, the dam contents, be
equal to 041,2,.....K at time t with probabilities
PysPyy-+.Py, and at time t+1 with probabilities Pg, Pq,...Py,
where K is the size of the reservoir. An amount of water M
is taken from the reservoir and M, Xt, K, and Zt are integral
multiples of some unit.

After the reservoir has been in operation for a
period of time, the probability distribution of dam contents,
4y, will have achieved a stable distribution so that

p!

i =Py fori=0, ..., K-M

From a recurrence relationship, Z{ will then be de-

fined by the system of equations
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PO = PO (po+...+pm) + Py (po+...pm_1) + ...PMpo

Py = PoPp+1 + Pipp + ...Pyp1 + PMr1Po
Pg-M = Po(ppt...) + ... + PR-M(pyt...)
and PK—M+1 = co e = PK = 0. c0o e e (2.1)

In this case O £ 2t £ K-M, and the distribution of Zy
can be found by solving the above equations. The equations
can be solved in several ways. For example, write a matrix
equation with the P; on each side of the above equations as
column vectors, say P and PR, and let T be the matrix of
coefficients on the right hand side of the equations. Then

Py, = TPg.
Since Pp is a vector whose coefficients sum to unity, TnPR
will yield the required solution as n increases. This is
most easily accomplished by successive squaring of T. T will
probably need to be successively squared six or seven times
to obtain the required solution (6). This is a fairly
lengthy process, although not difficult.

The best method, especially for desk calculators, is
to replace the final equation of (2.1) with Po + Py + cou
Pp_m = 1, which gives a set of non-homogenous equations, and
then use the process of straightforward successive elimination
of variables. This procedure should yield a solution in ap-
proximately two to three hours. One advantage of this method

of solution is that solutions for smaller values of K are
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given by omitting one equation at a time from the system.
For example, the solution for K one unit smaller than the
original K is given by omitting the equation for Pg_y_q,
the next to last equation, and setting Pyx_y-1 equal to zero
in the other equations. Thus one can see how the distri-
bution of Z4 varies with the size of the dam. This is pre-
cisely what the engineer needs to know. :

Several works (10,11,12,13,14,15,16,17,18) dealing
with the theory of dams and storage systems have been pre-
sented as a result of the interest created by Moran's work.
It has been pointed out that the dam contents, Z¢, is a
markov chain. The model has been viewed by various writers
as either gqueuing theory, inventory theory, or a random
walk. J. Gani (10) considered several storage problems in-
cluding both finite and infinite dams. Kendall (11) con-
sidered only infinite dams with a gamma input distribution
and developed a formula for the probability of non-exhaustion
when the inflow is only slightly greater than the demand of

the form

(-28(I-D))

T 1 o- ex
P P ()2 12

(2.2)

where S is the initial storage in the reservoir, I is the
annual inflow, D is the annual draft, Cy is the coefficient
of variation of the input, and p is the probability of non-
exhaustion. Kendall assigned little importance to the

formula because the finite capacity of the dam had been
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ignored and Moran's model had assumed that there was no
serial correlation between inflows.

Walter B. Langbein (12, 13) developed a procedure
from Moran's model which he called "probability routing."
This procedure uses a plot of inflow versus probability on
arithmetic probability paper and a plot of discharge versus
storage on arithmetic paper to obtain a graph of discharge
versus probability. This is an excellent technique for eval-
uating the capability of a reservoir already constructed.

For design purposes, it suffers the deficiency that the
discharge-storage relationship must be assumed in advance.

To elaborate on this point, two reservoir sites will have dif-
ferent depth-volume relationships. A particular reservoir
site is unlikely to have a depth-volume curve that is linear.
The spillways on most reservoirs are designed as Ogee weirs.

The formula for flow over an Ogee weir is

Q = cLHd/2
where Q is the flow, C is a constant, L is the length of the
weir and H is the depth of water above the weir. Therefore,
to use "probability routing" for design, one would need a
storage-discharge curve for each estimate of size.
Fiering (14) proposed an algorithm using Qqueuing

theory and simulation. He assumed that the inflow distribu-
tion was a truncated normal distribution and that the inflow

in any year was uniform throughout the year. This is not
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very realistic. However, his primary purpose was to intro-
duce economics into the models of Moran and Langbein.

Phatarfod (15) applied methods in sequential analysis
to a continuous time dam model based upon Moran's discrete
time model. The main objective was to derive the probability
of the time at which the dam becomes empty. The finite dam
of capacity K was considered by Phatarfod to have inputs that
were an additive process with stationary increments and a
continuous release at a unit rate except when the dam was
empty. Thus the dam process was considered a random walk with
barriers at Z = 0 and Z = K.

Phatarfod developed the characteristic function of the
time at which the dam becomes empty for the first time before
overflowing, and then the characteristic function of the time
at which the dam becomes empty for the first time regardless
of overflow in the meantime. He developed these character-
istic functions for inputs that corresponded to two discrete
probability distributions, namely the Poisson and geometric.
Prabhu (16) then applied Phatarfod's analysis to a continuous
input when the input distribution is gamma to obtain the
probability that the dam dries up before overflowing. The

equation takes the form

Ar e2u-(1-a) - e2K(1-a)
P 1 - o2K(1-a)

(2.3)
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where u is the initial content of the dam, K is the design

capacity and a is the mean input from the distribution of

the form
y Xt-1 e—X/a
at{?t)

The approximation is due to the fact that the nonzero real

(2.%)

root of the equation e™W = 1 - aw is wg = 2(1-a) when a is
close to unity. The error introduced is quite small when a
is between 0.7 and 1.k, )

Kirby (18) presented three markov chain storage models
for discrete time and inflow conditions. The addition to

Moran's model consisted of allowing the inflows to be

serially correlated.

Sequent Peak Procedure

The sequent peak procedure is a deterministic ana-
lytical procedure proposed by Thomas and Fiering (19). The
cumulative difference between inflow and draft is calculated
for a given period of streamflow record. As the calculations
progress, peaks (local maximum) and troughs (local minimum)
will occur. The maximum difference between peaks and troughs
is the minimum storage necessary to prevent a deficiency in
draft. It is assumed that the streamflow record will cycle
in T years and two cycles or 2T years of record is needed to

make the analysis.
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The advantages claimed for this procedure are that
the necessity for detefﬁining a value of starting storage is
removed and that each person computing storage requirements
will obtain the same answer as all other persons doing the
same computations. The latter point is trivial, but the first
point could erase some of the uncertainty that now exists in
deterministic procedures. The Rippl method assumes that the
reservoir is full at the beginning of a drought. At times
this is a rather unsound assumption. It is stated that the
sequent peak procedure is equivalent to a linear programming
solution for optimal overflow or waste pattern (20).

The sequent peak procedure is open to some of the
same criticism that the Rippl method receives in that it is
implied that the sequence of streamflow events will be re-
peated during the design life of the project or that a drought
of greater magnitude is unlikely to occur. These assumptions
appear inherent in any deterministic analytical technique.

These comments are not intended to imply that de-
terministic methods should be ignored or abandoned entirely.
Perhaps the most desirable algorithm would involve a combi-
nation of deterministic methods and probability. This might
not satisfy the theoreticians, but could be very practical
for engineering application.

Kartvelishvili (21) severely criticized the purely
statistical approach to describing river flow as a totally

chance event and ignoring the factors which cause the flow.
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He points out that some of the factors causing flow have a
stochastic character and some a deterministic character. He
proposes that the runoff process should be considered as a
random procéss and that a full solution to the regulation of
rivers by reservoirs can be obtained only on the level of the
theory of random processes.

Objections to probability methods are answered by
Kartvelishvili (21) as follows; 1. Probability theory should
not be considered as compensation for insufficient informa-
tion about hydrologic processes. ©Such a consideration would
imply that the probability would increase or decrease with
the development of the science, and would lead eventually to
simple confidence in the authenticity or impossibility of the
studied event. This would therefore negate the objective
character of probability principles, exclude probability
theory from the mathematical sciences, aﬁd assign it a role in
psychology. 2. Demands for proof of the accidental nature of
river flow are not logical because there does not exist one
fact confirming the deterministic character of flow, nor does
there exist one fact refuting the accidental character of the
process. 3., Chance should not be equated with unsystematic-
ness. The fact that regularities are observed in streamflow
does not mean that probability theory is inapplicable in the
study of streamflow and its regulation. Regularities ob-
served in streamflow, which some writers think contradict

probability theory, can be correctly reflected only by
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probability methods. Laws of accidental deterministic na-
ture, which place limits on the amount of streamflow, should
always be included in a study.

Some of the thoughts that Kartvelishvili expresses are
sometimes called the all encompassing term "engineering
judgement." For example, it is statistically possible to
have a flow several times greater than any flow ever ob-
served, but it is not very logical. Factors that he might
have mentioned that are deterministic in nature are soil type,
land slope, and total amount of rainfall expected. The oc-

currence of the rainfall is stochastic.

Mathematical Programming
Linear Programming

The application of linear programming to both de-
terministic and stochastic models for water-resources design
is cited by Chow (22). He gives an example for determining
the design capacity when the objective function is to maxi-
mize net benefits. This is a correct procedure for a given
project, but it is particularly difficult to generalize in a
study such as this as to cost and benefits when so many
factbrs involved in costs and benefits depend upon condi-
tions that could not be determined until a specific project
has been planned. Therefore, this particular model cannot
be compared with other models.

The model given by Chow is confined to a duration of

one year and it was assumed that there was no carry-over

¥
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from year to year. Thus, the stated model is useful for il-
lustrative purposes only. Chow states that the actual situ-
ation for the design of reservoirs is much more complicated.
Thomas and Watermeyer (23) used linear programming and dam
theory to formulate what they termed a stochastic sequential
approach to determine optimal reservoir capacity. The ob-
Jective function here also was to maximize net benefits.

A linear programming application to sizing a reservoir
when the objective function is to minimize the design ca-
pacity simplifies to repetitive solution of the continuity
equation for storage. Thus, the solution is analogous to the
sequent peak procedure mentioned earlier and is exactly the

same as a mass curve analysis of the entire streamflow record.

Dynamic Programming

Dynamic programming deals with the theory of multi-
stage decision processes. It is applicable to problems where
the consideration of time is essential and the decision se-
quence is important. Chow (22) cites several examples of
dynamic programming application to various hydroelectric
projects. The major contribution of dynamic programming,
that is the decision making, is absent to a large degree in
municipal water supply situations, but is very much present
in hydroelectric, irrigation, and flood control projects
where a decision on the amount of release must be made. In
municipal water cupply, the draft is nearly constant and a

decision on curtaiiment of draft hopefully infrequent.
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Therefore, dynamic programming loses much of its effective-

ness when confined to reservoir capacity design.

Storage Requirement Computations

A computation of the storage requirements for various
levels of streamflow regulation in the 22 major regions of
the contiguous United States was made by a select committee
of the United States Senate (24). Lof and Hardison (25) de-
termined that the storage requirements given in the report of
that study for high sustained-use of flows were erroneously
low 1n all of the regions. These low storage values were
caused by using linear extrapolation from low percentage
yields to high percentage yields whereas the function is not
linear. Therefore, they presented storage values to super-
sede the values determined by the select committee.

The procedure used in the computation was to plot
streamflow on log-probability paper and fit one of several
frequency distribution curves to the observed flow. The
curves chosen were normal, log-normal or Weibull. Storage
requirements were then computed by probability routing of
annual discharge (Langbein, 1958). They used an assumption
of constant draft rate, uniform flow within each year, and
independence between years. It was further assumed that at
a hypothetical delivery rate of 100 percent of mean annual
flow, a seasonal storage factor of 0.4 times the mean annual

flow would have to be added to the carry-over storage. Thus
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the total storage (seasonal plus carry-over) was obtained by
adding to the carry-over storage a seasonal adjustment.

The parts of this study that were of particular in-
terest to the writer have to do with the lower Arkansas-White
River region which encompasses the area studied by the writer.
The parts are: The frequency curve chosen for this region
was the Weibull. A coefficient of variation value of 0.45
was taken from a map prepared by the United States Geological
Survey. The practical maximum percentage of mean annual flow
that could be developed for this region was seventy-eight
percent for 98 percent of the time and eighty-four percent
for 95 percent of the time. The practical maximum flow was
defined as net flow after evaporation and was obtained by se-
lecting a point at which a slight increase in percentage
yield required much higher storage capacities. The feservoir
size and depth used in the computations were determined from
averages given by the Corps of Engineers and the Bureau of
Reclamation for reservoirs constructed from 1954 to 1960.
Evaporation losses due to the reservoir were assumed to be
the difference between evaporation from the reservoir and
the natural evapotranspiration loss from the same ground area
with its normal vegetation.

The results given in this study are not directly ap-
plicable to any specific project, nor were they intended
to be. The objective was to determine generalized storage

values and yields for a national overview.



CHAPTER III

STREAMFLOW DATA FOR THE STUDY

Data Selection

The input data for any study is important. The re-
sults obtained from any model, regardless of the degree of
sophistication, can be no better than the data put in. There-
fore, the data used herein were obtained from records of the
United States Geological Survey that were described as
"good." The streams chosen were selected without any intent
of bias, although the criteria were that there should be no
upstream regulation, drainage area should be less than 3,000
square miles, and the stream gaging station should be con-
fined to Eastern Oklahoma or Western Arkansas.

Upstream regulation will cause man made correlation
or persistence between flows. Drainage areas of less than
3,000 square miles comprise the majority of reservoirs built
primarily for water supply purposes.

The streamflows were reduced to cubic feet per second
per square mile (cfsm) by diviaing the observed flows by the
drainage area in square miles. The results of this compu-
tation (Table 1 for annual data and Table 2 for monthly data)

2k



TABLE 1
ANNUAL STREAMFLOW DATA

Number of
Years of _ Adjusted
record Stream X (o) Cv. skewness
28 Poteau River at Cauthron, Ark. 1.024 0.58 0.57 0.52
17 Lee Creek, Van Buren, Ark. 0.955 0.55 0.58 0.4
29 Fourche Maline, Red Oak, Okla. 0.973 0.59 0.61 0.63
31 Illinois River, Tahlequah, Ok. 0.863 0.47 0.54 0.25
19 Barren Fork, Eldon, Okla. 0.823 0.50 0.60C 0.4%2
39 Buffalo River, Rush, Ark. 1.153 0.57 0.50 0.47
37 Little River, Horatio, Ark. 1.362 0.59 0.43 0.43
26 Ouachita River, Mt. Ida, Ark. 1.682 0.73 0.43 0.45
28 Strawberry River, Eve. Shade 0.889 0.48 0.54 0.47
28 Kings River, Berryville, Ark. 1.036 0.53 0.51 0.48

X is the average annual mean daily flow in cubic feet per second per sq. mile.

o is the standard deviation of the average annual flow, cfsm.
Cv. 1s the coefficient of variation of average annual flow.

Adjusted skewness is the adjusted skewness of annual flow = Pearson's defi-

nition of skewness x(1 + 8.5).
, N

[
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TABLE 2
MONTHLY STREAMFLOW DATA

of
Months of _ Adjusted
Record Stream X o Cv. Skewness
34k Poteau River, Cauthron, Ark. 1.05 1.59 1.51 1.33
204 Lee Creek, Van Buren, Ark. 0.95 1.41 1.49 1.33
360 Fourche Maline, Red Oak, Okla. 0.96 1.56 1.62 1.51
372 Illinois River, Tahlequah, Okla. 0.88 1.17 1.33 1.65
228 Barren Fork Creek, Eldon, Okla. 0.83 1.20 1.45 1.65
468 Buffalo River, Rush, Ark. 1.16 1.53 1.32 1.29
432 Little River, Horatio, Ark. 1.38 1.70 1.23 1.05
312 Ouachita River, Mt. Ida, Ark. 1.69 2.00 1.19 1.17
336 Strawberry River, Eve. Shade, Ark. 0.91 1.27 1.39 1.33
336 Kings River, Berryville, Ark. 1.02 1.43 1.40 1.42
Notes:

definiti

X is the mean monthly flow in cubic feet per second per square mile.
o is the standard deviation of mean monthly flows, cfsm.
Cv. is the coefficient of variation of mean monthly flows.

Adjusted skewness 1s the adjusted skewness of mean monthly flows = Pearson's
on of skewness x(1 + 8.5).
N

9¢
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are interesting in that the means of the average annual flows
and the variance of the average annual flows are indistin-
guishable at the 99 percent confidence level. That is, they
derive from the same parent population. Therefore, the ex-
pected flows from an ungaged stream or stream section in this
area could be approximated by the value of cne cfsm for aver-
age annual_flow with a variance of 0.32. This 1s significant
because rarely would the best or most desirable site for a
reservoir exist at the exact site of the gaging station.
Consequently, an engineer could decrease or increase the ex-
pected stream discharge as he moves upstream or downstream
by the change in number of square miles of drainage area con-
tributing to discharge as a result of the move from the gage
site to the reservoir site. This is significant in basin
planning also. If a number of reservoirs are planned in the
basin, the drainage area contributing to the first reservoir
Wwill yield one cfsm and the contribution to the second reser-
voir will be one cfsm on the drainage area below the first
reservoir plus the release from the first reservoir, etc,.

The statistical tests used to test the means and vari-
ances for homogeneity are the Chi-square tests for homo-
geneity of means and Bartlett's test for homogeneity of

variances.
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Data Availability

The length of record of the ten streams studied varied
from 19 to 39 years. Synthetic data could have been gener-
ated to provide more data. Much has been written recently
about "operational hydrology" and simulation of streamflow.
There seemed to be little point in this study of generating
synthetic data that is statistically indistinguishable from
the observed data. It may be argued that if the observed
sequence is unlikely to ever occur again, then it is also un-
likely that any one of a set of one thousand or more sequences
generated would occur. It is claimed that the estimate of
the range of the deviations in streamflow and hence the range
in storage requirements can be improved by data generation.
Yevdjevich (26) states, "It is claimed that the range re-
liability is improved (or the information is increased) hy
this method. It should also be noted that this claim is a
point of controversy. --- Here 1is the essence of the contro-
versy: Can a problem solving technique yileld an increase in
information? The data generation method as a technique for
solving mathematical problems with stochastic variables may
be compared with the numerical finite differences method for
solving differential equations when both cannot be solved
analytically. As the numerical finite differences method does
not improve the information contained in ordinary or partial
differential equations, except to produce their solutions, it

may be expected that the same conclusion would be valid for
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the data generation method as currently used in solving
stochastic problems. --- Any claim that the data generation
method increases information should be subjected to a rigorous
mathematical statistical analysis." Data generation has a
proper role to play in the study of streamflow and stream-
flow regulation. The Rippl method and the sequent peak pro-
cedure can be easily applied to synthetic data. 1In fact, the
sequent peak procedure will require either data generation or
a repetition of the streamflow record, especially for situa-
tions where the streamflow record is short.

Few hydrologists would fail to concur that more data,
i.e., longer streamflow records, would be desirable. The fact
remains that we must begin any study with whatvis available to
study. Streamflow records are limited in length as a conse-
quence of history. The first official streamflow records in
either Oklahoma or Arkansas were begun by the United States
Weather Bureau on the White River at Newport, Arkansas in

1885.

Independency of Data

One of the first questions of interest about the ob-
served streamflows was the degree of correlation existing
between monthly fiows° Linear correlation between monthly
flows would affect the models and the manner of handling the
data with the general result of increasing the storage ca-

pacity requirements.
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Linear correlation coefficients were computed for all
of the monthly data and in general there is no significant
linear correlation between monthly flows. This is in con-
trast to reported correlation coefficients for monthly flows
of from 0.17 to 0.3 (12, 26). Whether or not these reported
correlation coefficients were subjected to statistical tests
for significance has not been stated. Linear correlation be-
tween annual flows was not investigated in this study. How-
ever, a study by the Corps of Engineers (27) of forty-two
streams throughout the country showed only two to have serial
correlation between annual flows. It was further determined
that the correlations existing in these two streams were due
to man made influences. The terms serial correlation coef-
ficient of lag-one, autocorrelation coefficient of lag-one,
and linear correlation coefficient of lag-one are used in
current literature to express the same concept. However,
they could have distinctly different meanings, and do have
different meanings when the lag is greater than one.

"EF" tests of significance were made on all linear
correlation coefficients derived from the data. The results
of these computations are given in Table 3. Thirty-six cor-
relation coefficients of 120 computed were significant at the
99 percent confidence level. Twenty-one of the thirty-six
significant values occurred during periods when base flow
predominates. Base flow would be expected to be correlgted.

The remaining fifteen correlation coefficients were generally
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TABLE 3
MONTHLY CORRELATION CALCULATIONS

L  — " " — — ]

Poteau River at Cauthron

Computed Significant
Correlation Calculated "Ft-Value
Month Coefficient "F"-Value Fo.01, 1, 27
Oct-Nov 0.163 0.7% 7.72
Nov-Dec 0.608 15,88
Dec-Jan 0.020 0.01
Jan-Feb 0.345 3.65
Feb-Mar 0.540 11.12
Mar-Apr 0.073 0.1k%
Apr-May 0.131 0.47
May-June 0.401 5.20
June-July 0.126 6. Lkt
July-Aug 0.786 43,64
Aug-Sept 0.399 5.12
Sept-0ct -0.150 0.35
Lee Creek at Van Buren
Computed Significant
Correlation Calculated "F"-Value
et npn
Month Coefficient Fr'-Value Fo.01, 1, 15
Oct-Nov 0.199 0.62 8.68
Nov-Dec 0.531 5.91
Dec-Jan 0.674 12.53
Jan-Feb 0.287 7.3%
Feb-Mar 0.070 0.07
Mar-Apr 0.300 1.48
Apr-May 0.583 7.75
May-June 0.669 12.1%
June-July 0.110 0.186
July-Aug 0.730- 17.16
Aug-Sept 0.722 16.38
Sept-Oct -0.250 1.00
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TABLE 3.--Continued

Fourche Maline Near Red 0Oak

Computed Significant
Correlation Calculated "F'"-Value
3 3 LA}
Month Coefficient Fi'-Value FO.O1, 1, 28
Oct-Nov 0.237 1.67 7 .64
Nov-Dec 0.702 27.27
Dec-Jan 0.046 0.05
Jan-Feb 0.368 4,38
Feb-Mar 0.4%02 5.40
Mar-Apr 0.316 3.10
Apr-May 0.073 0.15
May-June 0.295 2.68
June-July -0.072 0.15
July-Aug 0.413 5.76
Aug-Sept 0.331 3.4k
Sept-Oct 0.103 0.31

I1linois River at Tahlequah

Computed Significant
Correlation Calculated "F'"-Value
Nek] Hpn

Month Coefficient Fh"-Value Fo.01, 1, 29
Oct-Nov 0.621 18.25 7 .60
Nov-Dec 0.754% 38.25

Dec-Jan 0.173 0.89

Jan-Feb 0.250 1.94%

Feb-Mar 0.365 L, Ly

Mar-Apr 0.580 k.76

Apr-May 0.122 0.4k

May-June 0.4999 9.66

June-July 0.207 1.29

July-Aug 0.39% 5.3k

Aug-Sept 0.360 4.32

Sept-0Oct 0.03% 0.033
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TABLE 3.--Continued

—= = e
Barren Fork at Eldon
Computed Significant
Correlation Calculated "Ft_Value
Month Coefficient "F'.Value Fo.01. 1 17
. ] 9
Oct-Nov 0.836 39.57 8.40
Nov-Dec 0.717 18.01
Dec-Jan 0.336 2.17
Jan-Feb 0.508 5.93
Feb-Mar 0.328 2.05
Mar-Apr 0.121 0.25
Apr-May 0.528 6.57
May-June 0.619 10.55
June-dJuly 0.073 0.09
July-Aug 0.828 37.14%
Aug-Sept 0.591 9.14
Sept-0Oct -0.10% 0.19
Buffalo River Near Rush
Computed Significant
Correlation Calculated -"F'-Value
Month Coefficient "F".-Value Fb 01, 1, 37
. ] 9
Oct-Nov 0.374 6.02 7.38
Nov-Dec 0.543 15.52
Dec-Jan 0.139 0.731
Jan-Feb 0.415 7.73
Feb-Mar 0.091 0.306
Mar-Apr 0.614 22.50
Apr-May 0.281 3.16
May-June 0.481 7.83
June-July 0.374% 6.03
July-Aug 0.367 5.76
Aug-Sept 0.55 16.12
Sept-0ct -0.037 0.052



TABLE 3.--Continued

Little River Near Horatio

Computed Significant
Correlation Calculated "F'"-Value
3 s Hptt
Month Coefficient F'-Value FO.O1, 1, 3k
Oct-Nov -0.023 0.017 7.4
Nov-Dec 0.460 9.12
Dec-Jan 0.255 2.37
Jan-Feb 0.599 15.49
Feb-Mar 0.183 1.19
Mar-Apr 0.339 .43
Apr-May 0.175 1.08
May-June 0.443 8.33
June-July 0.198 1.38
July-Aug 0.296 3.28
Aug-Sept 0.811 65.35
Sept-Oct 0.118 9.482
Ouachita River Near Mt. Ida, Ark.
Computed Significant
Correlation Calculated "Fph.Value
PP nEn_ a
Month Coefficient Frn-Value FO.O1, 1, 2k
Oct-Nov 0.071 0.120 7.82
Nov-Dec 0.204% 1.046
Dec-Jan 0.261 1.760
Jan-Feb 0.376 3.945
Feb-Mar 0.523 9.017
Mar-Apr 0.166 0.677
Apr-May 0.038 0.036
May-June 0.344 3.333
June-July 0.059 0.084
July-Aug 0.310 2.548
Aug-Sept 0.874 77 .752
Sept-0ct 0.199 0.989
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TABLE 3.--Continued

Strawberry River Near Evening Shade

Computed Significant
Correlation Calculated "F'"-Value
5 A nEpn_
Month Coefficient F'-Value FO.O1, 1, 26
Oct-Nov 0.392 L, 71 7.72
Nov-Dec 0.68% 22.91
Dec-Jan 0.256 1.82
Jan-Feb 0.627 16.88
Feb-Mar 0.269 2.03
Mar-Apr 0.29% 2.94%
Apr-May 0.23% 1.51
' May-June 0.038 0.038
June-July 0.216 1.28
July-Aug 0.608 15.29
Aug-Sept 0.133 0.465
Sept-0ct 0.013 0.00%
Kings River Near Berryville
Computed Significant
Correlation Calculated "Ft'-Value
Nexl npn_
Month Coefficient F'-Value Fb.01, 1, 26
Oct-Nov 0.328 3.12 7.72
Nov-Dec 0.824 55.0%
Dec-Jan 0.070 0.128
Jan-Feb 0.511 9.19
Feb-Mar 0.292 2.43
Mar-Apr 0.560 11.92
Apr-May 0.300 2.58
May-June 0.337 3.33
June-July 0.223 1.37
July-Aug 0.52k4 9.87
Aug-Sept 0.703 25.43
Sept-Oct -0.142 0.539




36

less than 0.5. This gives a coefficient of determination of
0.25 or less, which means that 75 per cent or more of the
variation in the data is unexplained and only 25 per cent is
explained by the influence of one months flow upon another.
In the case of linear correlation coefficients of 0.2, the
coefficient of determination is 0.0%, and the coefficient of
alienation is 0.96. Therefore, the streamflow in this study
is uncorrelated.

Mean monthly flows and average annual mean daily
flows in the area of study follow a gamma or Pearson Type III

frequency distribution.



CHAPTER IV
APPLICATION OF THE ALGORITHMS

The algorithms discussed in Chapter IT were applied to
the data discussed in Chapter III. The order of application
was the Rippl method, the Hazen method, Moran's model, and
the sequent peak procedure, and the applications will be dis-
cussed in that order. Comparisons will be made for a draft

of 80 percent of mean annual flow.

The Rippl Method

In applying the Rippl method to streamflow data, the
first requirement is to determine the worst period of record.
That is, the period of record that will demand the largest
size reservoir to sustain a given draft. This worst period
might be a short period with very low flows or no flow in
some months, or it might be a period of long duration with
reduced flows. It has already been pointed out that in many
cases this method will not allow high percentage draft rates.

The worst period of record of approximately a year in
length, although not necessarily confined to a year, for most

of the streams studied occurred during some part of the water

37
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year 1963. That is, there were periods of reduced flow be-
tween June 1962 and October 196%. The consideration was to
find the combination of continuous months during this period
that gave the worst conditions. Then the cumulative flows or
mass curve was plotted and the maximum draft obtainable, if
less than 80 percent, was determined and plotted on the mass
curve. The maximum ordinate between draft and the mass curve

gives the required storage volume to sustain that said draft.

Hazen's Method

Hazen's method is very simple to apply once the com-
putations have been made to determine the mean, the standard
deviation, and the coefficient of variation of the annual mean
streamflow data. Then Figure 2 is entered with the coeffi-
cient of variation as abcissa. Progression is then made up-
ward to the percentage of mean annual flow to be developed.
The ratio of storage to mean annual flow is then read from the
ordinate. The storage volume obtained by this procedure was
determined by Hazen to be adequate 95 percent of the time.
Thus, one would expect that the storage would be inadequate

on an average of one year in twenty.

Moran's Model
The variables to be inserted in Moran's Model are the
reservoir size, K, the draft, M, and an approximation of the
probability distribution of the streamflow volumes. Since K

is the object of interest, an approximation of a reasonable
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size was made using Hazen's Method. The value so obtained
was then rounded off to a multiple of the mean annual stream-
flow. ©Specific examples of these values will be given later.
The most important variable to be determined was the proba-
bility distribution of the streamflow or the input to the
reservoir.

Moran (7) approximated the gamma distribution,

e~X/B 42 (4.1) by a discrete probability distri-

|
patl [Th+1)

bution where the probabilities were proportional to
(i + 1)¥BLl  and suggested that such could be fitted by equat-
ing moments. However, this often gives fractional results
which are not easily managed. Moran also gave a numerical
example (6) where the input followed a gamma distribution and
B and a chosen so that the distribution was a Chi-square with
three degrees of freedom. The values were taken from
Pearson's Table of the Incomplete Gamma function. This table
may be found in most handbooks of mathematical functions.
There are other ways to approximate the streamflow
distribution. One approach used by the writer was to take the
average mean and average variance from the streamflow param-
eters and construct an average gamma distribution. The mean
of a gamma distribution is given by B(a + 1) and the variance
is given by B2(a + 1) as a result of the first and second
moments about the mean of a distribution. Furthermore, if a

is an integer, it may be shown by successive integeration by
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parts that the cumulative distribution, F(x), is given by

2
Fx) =1 -[1+2+ L& + (’%)a] e-X/B (4.2)

B

ol
noj—

when X is greater than zero and F(x) = 0 when x is less than
or equal to zero. If a is not an integer the cumulative dis-
tribution, F(x), must be evaluated by numerical methods (28),
but in this case would be more easily determined from tables
of the incomplete gamma function. The parameter a is a shape
factor in this distribution and B is a scale factor. Thus,
changing the value of a will change the shape and changing
the value of B will only change the scale.

Since the average mean from the streamflow data was
approximately unity and the average variance was approxi-
mately 0.33 we have: B(a + 1) = 1.0 and B2(a + 1) = 0.33.
When we divide the last by the first we obtain a equal to 2
and B equal to 0.33. When these values, a = 2 and B = 0.33,
are inserted in equation (4.2), and x is varied in increments
of 0.1 or 0.2, points are obtained on an average cumulative
frequency distribution that approximates the cumulative gamma
distribution of the streamflow data. The algebraic differ-
ence between these points on the cumulative frequency distri-
bution comprises a frequency histogram that approximates the
gamma distribution. The usual procedure in applied engineer-
ing statistics is to construct a continuous probability
distribution from a histogram. The reverse procedure is used

here of constructing a frequency histogram from a continuous
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requency distribution. The points so obtained were used as
probabilities in equations (2.1).

A much simpler technique is to plot a fitted Pearson
Type III curve to the streamflow data and select points at
even increments of streamflow volume from the fitted curve
and use these values as the probabilities of streamflow in
equations (2.1). The fitted curve may be constructed quite
easily from a table of values of the area under the Pearson
Type III curve such as the one shown graphically in Figure 3.
Example curves are shown in Figure 4. It is not necessary to
plot the streamflow data on the fitted curve unless it is de-
sired to get a visual estimate of the goodness of fit of the
fitted curve. This technique was applied to the streams

under study using streamflow increments of 0.1 cfsm.

The Sequent Peak Procedure

Beginning with a streamflow record of length T at a
proposed reservoir site and the desired draft for the periods
comprising T, Feiring (20) gives the following eleven steps
for applying the sequent peak procedure.

1. Calculate Xj - Dy, inflow minus draft, for all

i=1,2, «.., 2T and calculate the net cumulative

inflow & (Xj - Dj) for t = 1, 2, ..., 2T.
i=1
2. Locate the first peak (local maximum), Py, in

the cumulative net inflow.
3. Locate the "sequent" peak, Pp, which is the next

peak of greater magnitude than the first.
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4. Between this pair of peaké find the lowest trough
(local minimum), Tq, and calculate Py - Ty.

5. Starting with Py, find the next sequent peak, P3,
that has magnitude greater than Po.

6. Find the lowest trough, Tp, between Pp and P3 and
calculate Py - To.

7. Starting with P3, find Py and T33 calculate
Py - TI3.

8. Repeat this procedure for all sequent peaks in
the series for 2T periods.

9. The required reservoir size is the maximum
(Py - T4) = Py - Tp.

10. The reservoir will be empty following the occur-
rence of the minimum trough, T,, between the pair
of sequent peaks Py and Py + 1 where m identifies
the peak and trough associated with the maximum
difference, P; - Tj.

11. The storage, Sy, at the end of the ith period and
the waste flow during this season may be calcu-
lated from the continuity relations:

S; = Min [8p, (Sj_1 + X;-Di)]

1
W; Max O, [(Xi'Di - (Sm'si+1)]

This procedure was applied to monthly streamflow data
from the streams under study. The draft rate was assumed to
be 80 percent of the mean calculated from the existing entire

record.



CHAPTER V
RESULTS, DISCUSSION AND CONCLUSIONS

Results
The Rippl Method
The results of analyses using the Rippl method are

given in the following table.

TABLE 4
RESERVOIR SIZE DETERMINED BY THE RIPPL METHOD

Fraction of annual Storage

Duration mean flow requirement
months Stream developed acre-ft
14 Poteau 0.27 11,900
2k Lee 0.443 41,000
12 Fourche Maline 0.32 7,500
26 I1linois 0.467 83,200
26 Barren Fork 0.27 10,700
26 Buffalo 0.435 131,500
12 Little River 0.565 336,000
13 Ouachita 0.47 47,500
2k Strawberry 0.63 20,500
o4 Kings 0.475 176,000

Column one gives the duration of low flow in months
and column three shows the percentage of mean annual flow
that could be developed and sustained during that period by

a reservoir of the volume given in column four. Evaporation

k5
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and other losses are included in draft. Therefore, when the
Rippl method is applied to these streams, only two could be
developed to more than fifty percent of the mean annual flow.
The larger part of the water resource is allowed to spill
and be lost to the user at the site of the reservoir. This

is the major deficiency of the Rippl method.

The Hazen Method
The results of the application of Hazen's method to

the streams under study are given in Table 5.

TABLE 5 '
RESERVOIR SIZE DETERMINED BY HAZEN'S METHOD
[ ————
Fraction of annual Storage

mean flow requirement
Stream developed acre-ft
Poteau 0.8 324,920
Lee 0.8 675,460
Fourche Maline 0.8 209,900
Illinois 0.8 1,224,040
Barren Fork 0.8 447,400
Buffalo 0.8 1,680,425
Little River 0.8 3,443,179
Ouvachita 0.8 648,278
Strawberry 0.8 304,450
Kings 0.8 761,068

Moran's Model

The output from Moran's model is a set of probabili-
ties. Py,yPyy, ..y Pr_ye Po is the probability of the
reservoir being dry, P4 is the probability of the reservoir

containing one tenth of the mean annual flow, P, is the
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probability of the reservoir containing two tenths of the
mean annual flow, etc. The probability of primary concern
is the probability of the reservoir going dry. It was ob-
served that there is an orderly relationship between Py and
reservoir size over the range of sizes considered. The
size, K, was varied from 1.0 to 2.2 cfsm per year for a
draft rate of 0.8 cfsm, and from 0.9 to 2.1 cfsm per year
for a draft rate of 0.7 cfsm for each stream. Thus, there
was a constant draft rate from each stream. Py, the proba-
bility of the reservoir being dry, versus the size, K, is
shown in Figure 5 for a draft of 0.8 cfsm and in Figure 6
for a draft of 0.7 cfsm. The equation for the relationship

between Pp and K is:

In Py = a - bK
In b = c¢(ln mean) + d (5.1)
ln a = f(1ln mean) + g.

The least-square regression values of c,d,f, and g are
3.49, 0.862,4.85, and 0.071 respectively for a draft of
0.8 cfsm and 2.83,1.3%,3.55, and 0.671 respectively for a
draft of 0.7 cfsm. The coefficients of determination, R2,
for both draft rates are 0.97 for ¢ and d, and 0.94 for
f and g.

When these constant draft rates are divided by the
mean annual flow rates of the streams, the results are the
percentages of mean annual flow taken from the stream.

These results are shown in Table 6.



Figure 5. -~ Pg versus K for a draft of 0.8 cfsm
1. Poteau 2. Lee 3. Fourche Maline 4. Illinois 5. Barren

Fork 6. Buffalo 7. Little River 8. Ouachita 9. Strawberry
10. Kings
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TABLE 6
STREAMFLOW PARAMETERS USED IN MORAN'S MODEL

Draft rate Per cent of
Stream cfsm mean flow

Poteau

Lee

Fourche Maline
Illinois
Barren Fork
Buffalo

Little River
Quachita
Strawberry
Kings

Poteau

Lee

Fourche Maline
Illinois
Barren Fork
Buffalo

Little River
Ouachita
Strawberry
Kings
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A regression of the percentages of mean annual flow
shown in Table 6 versus the slopes and intercepts of the

lines in Figures 5 and 6 yielded the following equations;

]

1n slope = 0.159 - 3.30 1n(percent draft)

1n intercept = ~0.868 = 4.34 In(percent draft).

The percent draft is expressed as a decimal in these equa-
tions. The coefficient of determination was 0.966 for the
first equation and 0.931 for the second equation. The per-

centage of draft in Table 6 varies from a low of 41.5 to a

high of 97.2. Therefore, there are three equations which
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give results comparable to Moran's model for drafts greater
than 37 percent of mean annual flow. These three equations
are;

in PO =n - sk

1ln s 0.159 - 3.30 1n(percent draft) (5.2)
Inn = -0.868 - 4.34 1n(percent draft).

The percent draft is expressed as a decimal in these equa-

tions.

These results are considered significant because it
is much easier to solve these three equations than it is to
solve the K-M simultaneous equations of Moran's model.

Table 7 gives the size of reservoir determined by these
equations for a draft of 80 percent of the mean annual flow

with a probability of being dry of 0.05. Example calcula-

tions are given in the Appendix.

TABLE 7
RESERVOIR SIZE DETERMINED BY EQUATIONS (5.2)

Reservoir size

Ouachita . . .
Strawberry . .
Kings. . . .

. 836,000
. 2l 5,500
. 668,000

Stream acre-ft

Poteal « v o v o & & o & 248,200
Tee . ¢« v ¢ o« . . . 495,000
Fourche Maline . . . . . 144,000
I1linois . . . . .. . 1,008,000
Barren Fork. . . . o o 306,000
Buffalo. . . . . . e 1,530,000
Little River . . . . . 4,450,000
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The Sequent Peak Procedure
The sequent peak procedure yielded the results in

Table 8.

TABLE 8
RESERVOIR SIZE DETERMINED BY THE SEQUENT PEAK PROCEDURE

Reservoir size Cycle length (months)
Stream acre-ft Total record (months)
Poteau 100, 500 69/348
Lee 174,500 69/204
Fourche Maline 84,200 104%/360
I1linois 436,000 56/357
Barren Fork 128,200 66/228
Buffalo 615,000 78/468
Little River 1,380,000 67/432
Ouachita 267,000 103/312
Strawberry 82,500 88/336
Kings 305,000 80/336

Column three in Table 8 gives the time in months from the
peak to the trough, Py to Ty, over the total number of

months in the record. Table 9 gives a summary of the results.

Discussion
The Rippl method will not allow high percentage draft
rates from a stream with a sizable variation in the stream
flow rate. This method should not be used on such streams
to determine the maximum amount, or "firm yield" that a
stream will provide.
Hazen's method will generally specify a reservoir

size that is too large because the storage volumes are



TABLE 9
SUMMARY OF RESULTS

Storage Requirements (acre-ft)

except t

given in Table 4

of going

Stream Rippl Method Hazen's Method Sequent Peak Equations (5.2)
Poteau 11,900 32%,920 100, 500 248,200
Lee 41,000 675, 460 174 500 495 000
Fourche Maline 7, 500 209,900 84 200 144 000
Illinois 83,200 1, 224 o4O 436 000 1 008 ,000
Barren Fork 10,700 4%7 HOO 128,200 306 000
Buffalo 131,500 1,680 425 615 000 » 530,000
Little River 336 000 J,443 179 1,380,000 450 000
Ouachita 47,500 648,278 267 000 836 000
Strawberry 20,500 I0% 450 82,500 245 500
Kings 176,000 761 068 305 000 668,000
Notes:

All storage requirements based upon a draft of 80 percent of mean flow

he Rippl Method.
dry, Pg, of 0.05.

The maximum allowable draft by the Rippl Method is
Hazen's Method and Equations (5.2) calculated for a probability
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assumed to be normally distributed. In addition, Hazen's
method is based upon the 95 per cent dry year with no pro-
visions for changing to a recurrence interval of other than
once in twenty years. However, Hazen's method is superior
to the Rippl method for developing water supplies to near
maximum potential.

Moran's model gives results that are larger than
either the Rippl method or the sequent peak procedure, but
generally less than Hazen's method. There are two streams
in this study, Ouachita and Litter rivers, where the Hazen
method yields a smaller size than Moran's model or the
equations approximating Moran's model. These streams have
relatively large annual flows with resulting coefficients
of variation that are relatively smaller. Since Hazen's
method 1is based upon the coefficient of variation, the
method specifies a smaller size than Moran's model.

The sequent peak procedure will allow high percent-
age developments of the mean annual flow of a stream. How-
ever, it suffers the inflexibility of the fixed recurrence
interval of the record of streamflow. Specifically, column
three of Table 8 shows the fixed ratio of the length of
time of'reducedvflows to the total record length. If these
values are converted to percentages, they are quite high.
If it may be implied that this would be the return interval
of the drought, the procedure determines a reservoir size

that is too small for adequate design purposes in this area
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of study. When applied to streams in the eastern part of
the United States, where the coefficient of variation is
small relative to the coefficient of variation found in the
record of flow of most western streams, the procedure would
be more satisfactory than it would be in the west or south-
west parp of the country. Therefore, the locality determines
to a large extent whether or not this procedure would be

useful.

Conclusions

Moran's model is superior to the other algorithms
here considered. The input to the reservoir is allowed to
conform to a gamma distribution which characterizes most
streamflow. The three equations, (5.2), are a good approxi-
mation to Moran's model. A suggested procedure for design
of a reservoir for water supply purposes is to use the
equations to determine the size required for the probability
of going dry and the percentage of mean annual flow de-
sired. A capacity equal to an additional time requirement,
say thirty days of draft, could be added to the size de-
termined by the equations if the concept of going dry is
disconcerting to the designer.

Future studies should include the general applica-
bility of the equations (5.2). Also, the theoretical rela-
tionship between the size of the reservoir and the

probability of the reservoir going dry when the input to the
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reservoir follows a Pearson Type III distribution should be
developed by those especiglly skilled in mathematics and
statistics. The preliminary work has been done by Phatarfod
(15) and Prabhu (16).

Moran's model or the equations (5.2) should be used
in determining required reservoir size in order to obtain
maximum utilization of our water resources. The concept of
withdrawals of 80 percent should not disturb potential users
downstream from a reservoir site if there is no out-of-basin
transfer of water. The potential downstream user will re-
ceive 20 percent of the original flow plus, in time, approx-
imately 70 percent of the amount withdrawn by the upstream

user.



APPENDIX

EXAMPLE CALCULATIONS FOR DESIGN SIZE
USING EQUATIONS (5.2)

Information needed for the Buffalo River near Rush, Arkansas:
Drainage area = 1091 square miles
Annual mean flow = 1.153 cfsm
Percent draft = 80 percent
Probability of being dry = 0.05

In Pop =n - sK
Ins = 0.159 - 3.30 1n (percent draft)

Inn = =0.868 -~ 4.34 1n (percent draft)

Calculations:
In s = 0.159 - 3.30(-0.223) = 0.895
s = 2.4k
Inn = -0.868 - 4.34(-0.223) = 0.100
n = 1,105 |

T

in Py = 1n(0.05) = =3.00 = 1.106 - 2,44K
K

1

1.68

1.68(1091)(1.9835)(365)(1.153)
1,530,000 acre-ft.

Storage (acre-ft)
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