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PREFACE

This work was undertaken at the suggestion of Dr. F. C. Todd who
acted as the author's advisor and project supervisor. -  The purpose of
the study was to investigate some of the phenomena associated with the
plasma resulting from the impact of a hypervelocity particle on an
aluminum target.

The specific problem undertaken was intended to yield an analytical
method for determining the properties of an exploding sphere of an
alumnium plasma. The calculated properties were to form a basis for
confirming laboratory experiments. The -analytical model was to be
applicable to a more detailed analysis.

The assistance and guidance of Dr. Todd have been invaluable in
the completion of this work. The author is grateful te Mr. B. A. Sodek
for the many discussions concerning the formulation and constructien of
the digital computer program. The author is also indebted to Dr. Jerry
MacIntire for his extensive aid in reviewing the material in the first
six -chapters of the thesis.

The work was .carried out under NASA Contract Number NASr-7 admin-

istered through the Research Foundation, Oklahoma State University.
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CHAPTER I
INTRODUCTION

When a small particle with g,hypersonic speed strikes a stationhary
plane metallic target, several interesting phenomena are observed
(Charters, 1960). Within the first microsecond of the impact, a very
brief, but intense, light flash is emitted. The impact rasultg in an al-
most perfectly hemispherical crater which is many times larger than the
projectile. In addition, the crater may have a small curled lip around
the periphery. During the crater formation, ultra-high speed photography
shows the emanation of a fine, high velocity spray from the crater region
which is in the form of a cylinder.

High speed particles occur, naturally, in the region above the atmo-
sphere of the earth. They are called micrometeorocids while in space.

The NASA project, which has supported the research for this thesis, began
as an analytical study of micrometeoroid impact with emphasis on
aluminum as a target material. Lake (1962) reported on & theoretical
solution to the impact problem which was based upon & model proposed by
Dr. F. C., Todd, project director. The essential features of this' model
consist of the formation of a plasma from the projectile and impacted
target material and the propagation of a.shock wave radially outvward

from the point of initial contact. Subsequently, Sodek (1965) devised a
theoretical determination of the essential properties of the impact of a

spherical micrometeoroid on a semi-infinite plane.
1



Lake and Sodek confirm, in detail, the broader assumptions of this
impact model. With aluminum as a target material and a micrometeoroid of
normal mass and velocity, peak material pressures in the order of tens of
megabars were predicted. Such pressures are sufficient to convert the
impacted material into a hot, dense plasma. Experimental evidence of
such a plasma has been confirmed by Alexander (1962). Project work
is now directed toward the evaluation of the properties of such a plasma.

The subjéct of paramount interest and of this study is the relation
of the thermodynamic properties of the plasma with the energy and size of
the impacting micrometeoroid. In theory, the properties of the plasma
spray may be studied through a detailed, experimental examination of the
spectra of the émitted light. This examination must include Intensity-
time measurements on the spectra. The interpretation of the experimental
resultes is, however, very difficult. The emitted light is a very compli-
cated function of the tempersture, density, ionization and speed of the
plasma spray. Before the light can be related to the thermodynamic
properties of the plasma, the physical characteristics of the spray must
be understood. Furthermore, the interpretation of the plasma spray
properties in terms of the initial state parameters 1s more difficult.

In order to partially resolve this difficulty, a theoretical solution was
sought for the following problem which is a simplification of the actual

phenomena.
Statement of the Problem

Consider an isolated aluminum sphere which has the radius, R,. At

times t = O, let the energy density in the sphere be E,, a constant value



throughout the sphere, sufficient in magnitude to cause the aluminum to
be & hot plasma at solid denslty. Since solid density is assumed, the
value of the energy density, Ey, may also be expressed in terms of the
initial energy content per atom of aluminum in the solid state. In
addition, a radial electric fleld is imposed between the sphere and an
external, concentric, spherical electrode. Thermodynamic equilibrium
is assumed to exist initially and during the subsequent expansion of the
sphere of plasma. The immediate objectives of the problem is to obtain
values, throughout the plasma during its expansion, for the pressure,
temperature, density, flow velocity and ionization of the plasma as =&
function of several values for E,.

The problem was designed to determine the characteristics of the
continuous spectra that is emitted as the plasma sphere expanded into a
vacuum. In order to determine these characteristics; it was necessary
(1) to construct an improved equation of state for aluminum, and (2) to
use the improved equation of state to analytically determine the pressure
temperature, density, flow velocity and ionization of the plasma as a
function of time and of spatial coordinates with Ej as a parameter. From
the analytically determined, spatial distributions, the basic properties
of the emitted light may be predicted. In thls manner, it is possible
to correlate the characteristics of the emitted spectra with the original
energy input.

To summarize, the solution to the proposed problem that is presented
in this thesis may be divided into three parts: (1) development of an
improved equation of state for a rapidly expanding sphere of plasma, (2)

the use of this equation of state to predict the values of the listed



variables throughout the plasma as a function of Eo when a sphere of
plasma expands into a vacuum, and (3) the presentation of the equatioms
to calculate the spectral energy distribution of the continuum radiation
from the sphere of plasmsa as it rapldly expands. In this list of the
parts of the thesis, the first two have been investigated with a digital
computer and numerical solutions are given for a range of values of E..
The equations and the techniques are given for the third part of the

thesis, but the digital computer calculations are not yet complete.
Treatment of the Problem

A solution to the proposed problem is sought in terms of quantities
that may be observed in experiments, or checked against prior analytical
studies. The analytical problem introduces several unknown constants,
several approximations and some equations of limited pressure-temperature
range. In order to investigate these uncertainties and the validity of
the assumption of local thermodynsmic equilibrium, the equation of state
for the analytical solution must be checked. For low densities and high
temperatures, the check on the analytical predictions is provided by the
assumption that the equation of state for the plasma approaches to the
perfect gas law. An experimental check on the analytical solution iIs
necessary, and practically essentlal, for high densities and relatively
low temperatures. For this range, a convenient laboratory experiment.
is the application of the "exploding wire" techniques to short wires. If
a part of the "exploding wire" expands into an evacuated portion of a
hollow sphere, this portion msy be employed to simulate very closely to

an "exploding spherse" of plasms. This experiment may be employed as a



calibration point provided the snergy input o the exploding wire is
accurately known. For higher temperatures and pressures, a second experi-
mental approxisation is the "hemispherical plasma” which forms when the
glant pulse of light from a laser is incident on a slab of aluminum.
Both of these experiments are being assembled.

From the similarity between the expleding wirs and the anzalyticsl
problem as stated, one concludes that wany of the expansion’ snd spectral
characteristics wiil be the same. Among these simlilar characteristics

are the following:

J

a) Exploding wires appear to expilode as hollow cyiinders

b) Shortly after the expansion begins, the wire appears to be
covered with a darkened shell which guickly disappears

¢) The emitted 1ight indicates a temperature substantially lower
than that corresponding to the esnergy content.

The above characteristics indicate that:

l) The new equation of state must account for sll important energy

components;

2) The most important energy transfer and loss mechanisms must be

included in a conservation of energy equation.

The problem has been formulated incorporating the above featnres. In
Chapters II arnd IXI the theory of 2 modified semi-classical equation of
state is developed. The numerical method used to compute the eguation of
state is veviewed in Chapier IV. The flow problem 1s formulated in
Chapter V and the numerdical method is outlined iu Chapter VI. Eguabions
to caleulate the emitited continuous spectra are determined in Chapter IX.
Results and interpretaticns of the results of the study comprise the

remainder of the text.



CHAPTER II

CONFIGURATION INTEGRAL

1. Introduction

For calculation of the expansion of a plasma, an equation of state is
required that is valid over the entire pressure range for which the
calculation is to be valid. Deviation from the perfect gas law is large
at high pressures and the deviation decreases to negligible values as the
pressure decreases. The historic problem for obtaining the equation of
state is the evaluation of the interaction forces between the particles
in the plasma. These forces have been stated in mathematical terms and
their determination requires the evaluation of the interaction partition
function, or configuration integral. The partition function consists of
the product of several terms in which each term is simply related to
the Helmholtz free energy for each component in the plasma. Through the
evaluation of this function, one may obtain the thermal and ionic
properties of non-ideal gases. The approximation by the perfect gas law
with no interaction forces is not applicable for a high density plasma.
In the discussion in this thesis, the configuration integral is evaluated
for two body interactions. In another thesis, that is in preparation,
the interaction forces are calculated for three body interactions, which

are then added to the two body interactions.



This chapter is devoted to the solution of the coonfiguration
integral and to ite effect upon thermodynemic and ionlzation properties.
Its evaluation, using cluster Integral theory, forms the basis for the
develiopmernt of a consistant classical equation of state for & real plasma.
The term, consistant, Indicates that the methods and approximations in
evaluating the thermel propertiss are the same zs those used in the
ionizetion part of the problem. The term, "real"”, implies that the
theory 1s developed for a plasme that is composed of electrons, ions and
neuiral atoms of finlte sizes which interact with relative position-
dependent potentials. The theory is rigorous 4o the extent of the rigor
of the cluster expansion method and is valid within the 1limits of claz-
glcal sp&tisticsa Badially symmetric forces are assumed to exist around
the atoga, iqg& and electrons.

The'ﬁﬁ%éfﬁf;f plasma equations of state will be developed in a
stralight -forward statistical manner. Starting with the partition
function for the system, i% wlll be shown that solutions both of the
ionlzation propertiss and of the thermcdynamic properties depend upon

rivution

P
=

the evaluation of the swxcess Helmholiz free emnergy: the.cont’
to the free energy from the interaction potentlals. Some of the main -
sporoximation methods to evaluate this intersction sve outlined. Finally
it will we shown that the same method for evaluating the interaction free
energy may be usad to produce & comsistent theory.

In Section 2, the configuration integral shall be introduced and it
will be shown thet thermodynamic terms arising from its evaluation may
be coneidered as addltive corrections. In Section 3, the form of the

Helmholtz frese snergy corrsction resulting from differsnt approximations
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will be given. Beveral methods of evaluabing ilonizstion properties
of a plasma are considersd in Section 4. A consistent theory will be
presented in Section 5.

The development of the complete eguation of state is in Chapter
ITI. 7The numerical method used to tabulate the equation of state is

in Chapter IV¥V. A comparison of the equation of staie rasulting from the

various approximations is givem in Chapter VII,

2. Formulation--The Conflguration Integral

A generalized form of the partition functiorn is expressable a5 the
product of separate components. It follows that the resulting thermo-
dynamic properties of the system components are additive. Consider a

partition functlion, expressible ag a product:

- . 2.1)
ZT"ZAZBZc"‘ Zy s (

where the 21“5 are partition functions for separable subsystems of the
entire system. The Helmholtz free energy 1s related to the partition

function by
T |
AT =z - l‘( F iyL ZT 4 (2@2)

in which k is the Boltzmann constant and T is the temperature. Combining

2.1 and 2.2, one determines that

As = AA*“AB‘*‘AC*”‘*“ANJ (2.3)
whare
/_"“L = — kT In Zj_ . (2.4)



By the usual thermodynamic relations, it follows that the remaining
thermodynamic properiies are also ssparable and addlitive. The principal

relations arse summarized belows

S,L o “(j{?\\fﬂ‘ = Enteo pfoy C&mpcvxem’{’ 3 {(2,5)
) .y
Po= - —3\7)7_) i Pressure Com F@V\@V\‘}‘ (2.6)

A; _ .
/UA.' = (3“/%7:)1‘—; V; Néj < C@szavxeml C/nermca'l ?m‘w*ial}

;- TH(E[A]) - Compred Dot Erergys e

in vhich V is the volume, and Ni ig the density of the ith spacies.

The interaction partition function, configuration intégral, can he
represented by one of the ZI‘S of Equation 1. In the formation of the
clasgical canonical ensenble, the volume in phase space that is occupiled

by the system is c2lled the partition function, Z:

NTIEL %/Olﬁ dr @6{7[ Hips)/k 'J . (2.9)
J

In 2.9, H(p,r) is the N-particle (identical particle) Hamiltonian

'NM

H(p,v) = >_iw + U (N), (2.10)

in which Py is momentum of the ith particle and U{N) 1is the interaction
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potential energy of the system*. U(N) is expressed as the sum of all

2~body potentials of the form

U(/‘v) = Z m“(\f;é) ; m‘(";é;): /Uu{}“yi_{p%}) . (2.11)

pqxr‘s

The integration of 2.9 is over the 3N position and the 3N momentum

coordirnates. Thus

N 3
dp = T! dP (2.12)
!

and

N
3
;T dr . (2.13)

The integral is lmmediately separable into two parts:

:N,‘ J3N [ —é.&ﬁ/kfjdfj exp éj }é/kT]O]P ,  (2.)
L

If all of the potentials are identically zero, the last intsgral on
the right of 2.1b yields a factor, VN, which results from N, independent
vector coordinates which are integrsted over the volume. This yields the

ideal, or transitional partition function, Z‘I‘R:

¥Strictly speaking, U(N) is not the system's potential energy but
the potential of average force. (See Appendix II).
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v 2 /ild
Z_,= exp|- 4 / . (2.15)
TR N I/ Zm P
A
For indistinguishable particles, this integral hecomes
N
V

NTENE ) {2.16)

Zrg” NI

where A\ is the mean thermal de Broglie wavelength:

h

P R (2.37)

(2 wmKkT)

Thus, 2.1% may be written as
£ = ZTR ZIN (2.18)

where ZIN is called the configuration integral, or interdction partition

function, and is defined by

-

| o
Z = = @XP[\—Z (\)Ié/k_r] CjY‘ . (2.19)
IN \/ L.

Y
The configuration integral is simply the expectation value of the

interaction potential. Its evaluation Jleads directly to the excess

Helmholtz free energy, AIN using

A= kT W Zgy (2.20)

Knowledge of AIN’ or the evaluation of 2 N’ is needed for specifi-

I

cation of thermocdynawmic and ionization properties.
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3. BEffect of Interaction on the Thermodynamic Proverties

To determine the effect of the interaction potentials on the thermo-
dynamic properties, one has the choice of evaluating 1ln ZIN’ or of

calculating F_ _ directly. In the following parts of this section, various

IN
methods are outlined for this evaluation.

a. Debye-Huchel Approximation

The classic solution of interest is the Debye and Huckel's theory
for calculating the electrostatic contribution to the thermodynamic
properties of ionie solutions (P. Debye, et al 1923). Roseland, in 192k,
suggested the application of this theory to lonized gases. A very brief
sketch of the theory 1s glven here; and more detailed treatments may be
found in standard stﬁtistical mechanics texts (R. H. Fowler, 1936; R.
Fowler and E. A. Guggenheim, 1956; R. A. Robinson and R. H. Stokes, 1955).

Following Fowler and Guggenheim (1956), the excess Helmholtz free

energy is related to the average electrostatic microfield,?%i by
7T _ JA
62,& = 2N 3 (2,21)
o

where ¢ is the electronic charge, €, is the charge on the species, @, and

<A
the Aqy can be placed in the Pfaffian form: GIAI“J'~ZZ. 2 1”\

"er

This leads to the relation,

( Z 5/ e . (2.22)

The average field is obtained by linearizing the Poisson-Boltzmann

equation,
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VZZ,Z(r):“*\’/T Z %eXPIiE/S %T(r)/kT]“ )

ot D
]
to obtain
z. 7 R3Sy
Vir) = X y(”)J (2.24)
= [ _
where
2 2
X = L}TTZ C, € /kTD. | (2.25)
Ci is the particle number density of the ith species in the gas and D is

the dielectric constant. The solution of 2.24 is,

— U
%L = —é— (2.26)
-,

where A!is determined by matching potentlials at the surface of the atom,
which is presumed to be a sphere 5f radius "a". This potential is the
Debye, or Yukawa potential. Its range is designated the Debye length,
and ig the recripieal of){; i.e. xﬁ=1/>g Completing the integration of
2.22 by using 2.26 and neglecting the productfd, leads to the Debye

Limiting lLaw for the lnteraction free energy per unit volume:

on_ kT 2
- et s H;QGA /3D (2.27)

IN

The pressure and internal energy density corrections for the limiting

law are obtained from Equations 2.6, 2.8 and 2.27). These give

DH

= - Z C. C_—.Z. (2.28)
IN 6D <

A
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and

..-DH
F
IN

(2.29)

52 <

o™

ns !\/

The negative sign in Equations 2.27 thru 2.29 reflects the ordering,
or the collective polarization effect, which results from the inter-
action of the electrostatic microfields.

This theory would be valid for high density if X were not dependent
upon the density. For the statistical argument to appl a large nurber
of particles must be within the potential range, XD» This dependernce
of XD upon Cj makes the theory a low density approximstion.

The second limitation of the theory arises from the linsarization of
2.23. For higher order terms to be negligible, the average electrostatic
energy must be smaller than the thermal energy. = 1f Aij is the distance

at which the thermal and electrostatic static energies are squal, then

&N

\C f\/ /4T C)/S, (2.30)

In the regions of validity for the theory, the resuliing corresctions
are usually very small when compared to the ideal gas thsory and can
usually be neglected without serious error.

Various extensions and validity criteria of the theory are reviewed
by Duclos and Cambel (1962).

b, Mayer-Ursell Cluster Expansions

The technique for obtaining the properties of an Iupsrlfect
prop 1Y

gas was solved, in principal, by Mayer and Mayer (1940) in the sense that



15

any, selected virial coefficient could be expressed explicitly as a
multiple integral provided that the interactions were position dependent
with respect to each other. The use of coulomb potentials created di-
vergences in the integrals and prevented thelr application to ionized
media. J. E. Mayer (1950) devised = meﬁhod for using coulomb potentials
in the theory. He obtained the Debye correction as the first term of an
expansion,

The theory provides a mathematically rigorous method for evaluating
the configuration integral
| =N
Ziw =V Jep ) ’“{j/kTJ dr (2.19)

i{j

by expanding the exponential in terms of the cluster function,
3('.3‘ = exp (—nf:j/u‘> -1 (2.31)

This procedure converts Equation 2.19 to a series of integrals (of which
the first few are reasonably easy to evaluate).

No attempt is made to cutline Mayer's mefhod in this report. An
outline of the cluster theory which is based upon the development by
H. L. Friedman (1962) is given in Appendix II. For details, refersnces
in that appendix should be consulted. By necessity, some of the termi-
nology introduced in Appendix IT will be used in this chapter.

In formulating his theory of ionic solutions, Mayer (1950) evalustes
the second order cluster integrals, when u = 2, for the primafive, short -
range potential (rigid spheres) combined with the Yukawa potential.

This potential is expressed as

‘XYi'
w (gy) = wlay) + (& €; /Dr )e ' (2.32)
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where Uﬁ rij) is the short range potential specified by

(ﬂ3) = 2 ‘(;J < QL'J’ )
(2.33)

t .
u-(ﬁs) =0 ﬂj > aﬁ',

aij
graph contribution was the Debye correction, Mayer collected the remaining

" is the distance of closest approach. After showing that the ring

two body interactions as a sum of integrals. J. C. Poirier (1952) has
tabulated the integrals in terms of convenient parameters. The results
have been summarized by Duclos and Cambel (1962). The interaction free

energy per unit volume from the Mayer solution is given by

L R R

g
In 2.34

C. = nunber density of k*® jonic species

dimensionless charge of k'h fonic species

S

by(¢) = integral evaluated by Poirler for various values of <$

%ﬁ(¢) = integral evaluated by Poirier for various values of(ﬁ

w
1]

Boltzmann constant
T = temperature

X. = Debye perameter

= 2
o 5 8 5 DKT/ ¢
¢ij = agy/hy
€ = electron charge

Ap = 1/X = Debye length
Y = parameter indicating additional Coulomb bond chains between the

two particles.
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For plasmas, the usuwal procedure is to fix the distance of closest
approach as that distance for which thermal and electrostatic energies
of the ith and jth particles are equal, Equation 2.30. Duclos and Cambel

(1961) suggest that a better approximation may be given by

'AD 2 iz
Ok_") = Cd [" > + ( é\*-_lg + AAJ >\D> ] ; (2.35)

where Ca is arbitrary and
A = | e/ DkT.
i %"}J (2.30)
A reasongble validity criteria for Mayer's solution is given by

-1/3 )

This simply states that the distance of closest approach must be smaller
than the average distance between particles.

Thus, within the separation limits in Egquation 2.36, the imperfect-
gas, free-energy correction is specified by Equations 2.30, 2,34 and 2.35
Combining these with 2.5 thru 2.8 allows one to determine the corrections
to the other thermodynsmic properties of the plasms.

c. Bxact Formulism

In 1957, Meeron (1957) showed that Mayer's sum of integrals for the
2nd order term could be converted to a single integral of a closed form.
Further improvements in the formalism are included in the discussion in
Appendix II. Using the set notatior shown in fAppendix ¥, the iIntersction
free energy per unlt volume is

3 M u ;
FN:—kT[%+£ ¢ Bg(’i)] (2.37)

I
W
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where C is the concentration set, }{ is the Debye parameter and the Bu(’\“)

[\
are cluster integrals, The symbolg indicates the sum over all subsets

of the composlitlion set, starting with u = 2 and

U W, Uy Us-
e

where Ci 18 concentration of the i'® component and vy is the element of
the concentration subset u (the number of ith species in the subset u).
The integrand for any order cluster integral can be expressed in the

formalism of ¢P-bonds (Equations A2.62 thru A2.65 in Appendix II). The

integrals for the second order terms take the following form:

|
Bab(x):[v(n &L)J [|+l<aJ@xp(%L) -1 = G- %i/a C]{a,bg , (2.38)
v

where
-t
b, = exp[— Uab /kT] -1 (2.39)
and ‘

quz-[emeYokT) 4 3 orp o)A

In the preceeding equations:

cs,l, = kronocker delta

u:b = 1is an arbitrary short range potential
€ = electron charge
D = dielectric constant

% = dimensionless charge parameter

distance between two bodies

H
"

X = Debye parameter,
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In terms of the cluster integral, Equation 2.38, the free energy per unit

volume becomes (through the 2nd order terms only)
%b
l‘T ?.T\' Zv(u Lf “‘kL -1- %L %5/2 { E4 (2.41)

The above expression 1s rigorous within the limits of classical
statistics (Friedman, 1962). In 2.37, accuracy is limited only by the
validity of the short range potentials (u;b) and the number of terms
considered (maximum value of u in the summation). This latter point is
one of the uncertalinties of the theory. While convergence of the series
is accepted, the speed of convergence is not known. When the theory is
used for ionic solutions, the gengral procedure 1is to use sufficient terms
to give agreement with experimental data. Unfortunately, there are no
experimental data yet available for very high density plasmas, thus other
means must be devised to check the numericai results, This will be dis-

cuséed in the next section.

d. Exact Primitive Potential Formalism and Extensions t6 Arbitrary Short

Range Potentlals

In view of the preceeding disgussion, the most reasonable course of
actlon appears to be the following:
l. Develop the theory for an arbitrary, short-range potential in a
form that is suitable for manipulation of the potentials;
2, Evaluate the free energy through the second order terms;
3. Fit to reasonable approximations, by variation of the potential

parameters.
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The Thomas-Fermi model for an eguation of state is chosen as a
reasonable, high-densgity, high-temperature approximation. An ideal gas
is chosen as the best approximatiorn for low densities. The problem
of fitting the calculated results at these two extremes, immediately
presents two requirements:

1. The short range potentials must be expressable in terms of con-

venient parameters;

2. The integrals (2.41) must be cast into a form that allows con-

venient manipulation of these parameters.
In the remainder of this section it will be shown how the primitive po-
tential solution may be used to satisfy the above regquirements.

The exact solution for the primitive potential is obtained from 2.38
By transforming to relative coordinates and integrating over the center
of mass coordinate, a factor of V is found, which cancels the V in
2.38. Converting to spherical coordinates and integrating over the

angular part, the relation yilelds

Y r a 2
B;A (X :(T;i) {[H-lgde?b - Qakgr dr (2.42)

[4]

where r is the relative distance betwesen particles and qg; 1s de-

fined by 2.40. Q

b is defineﬁ Toy

C%B?E |+ QQB +_Cgi//2 “

(2.43)

The primitive potentisl specifies
Ugp = =2 3 ¥ G

ot
Wb = C 5 Y

(2.4k)
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D

which, of course, is a rigid sphefe. Substitution of 2.43 and 2.44 into

2,42 leads immediately to

o0 a4
- Wb rrde - 2
B ()= (|+5 ) fe Qupedr | . (2.45)
f2b 2
Breakithe second integral into two integrals, and the integral becomes
. - b
b 2 2
L( ®)= 4L (e.z“ -Q‘L)v‘ dr - ri de | . (2.46)
a (1+5,4)
Gh ‘
For the primitive potential, the interaction free energy is given by
%3 < @QL |
asb '
where
oo "
Gb b
= 4T e _ Q) e 2
b

The distance of closest approach, rgp, may be defined by 2.30 or 2.35.
The preceeding results wlll now be used to solve the arbitrary po-
tential problem. It is assumed that the short range potentials can be

written in the form

.'.
Uy (g ) = wly (s 5 00) (2.48)

where u, and r, are two parameters which describe the potential. Define

a sequence of sectionally uniform step functlons
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f;E(u&o) U)\) SN Oér<<v‘z—éz!) 5

ta o (G-4r)e re (G+47); (2.49)

v-s»

ny (6-)er< (r+ 4

=0, (hel)erc oo

where
(Y\k'éz'.r) = <Yi‘<—\+ ).

Further let the sequence hbe represented by

giL(WJvavmﬁ}-

This may be defined such that for a set of selected ri's,
S— (W, G, )= W (U, %10 ), (2.50)
b Ve e, 0,%0,%L «50

This function is defined so the sequence equals the original potential

function in the limit

MT(MO)Y;)) C,) r%_ﬁnw {_ ( 0) D) L) A(\f (2.51)
DC—= O

Substitution of this sequence for u (e b) in 2.38, using 2.38, leads to

> ) ‘1"’%
Bal:( )= (H‘SOL) Z = )]iL(M"’ °’(‘;)/’Z\——] %rzaw—f%“ﬂzchﬁ] . (2.52)
k—', r,.(_A_Z\:- Y‘K—AEY: .l

For simplification of notation, define the following

J(L‘ : eaxp[—a‘ 0, k)/{éT] (2.53)
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Using this notation,

B, 0= <.+sap }I dr—fQWAr ‘ (2:54)

\ AI
Wtz

To convert 2.54 to the desired form, first add and subtract i C?fﬁj

- e
& . g G+
2 3 k2
om{z{ §<e% iriberd ) _fm el (2:5)
%3 't %

e o
Bl = <IrSDk {({(e%-@\(ﬂr- Qvldr)
ar Qfow

Q_ér
= oo (\ +&r

- g(e%—c})rdr- Qr‘dv) qua fwﬁr (2.56)
TRy

INs
1—7_

The notation of 2.56 can be simplified by noting that the bracketted

integral, i.e.,

i % G5
_ o
< g( )edr —jQV‘o\V = 0 @ab P (2.57)
G- 3

are the primitive potential solutions. Using this notation, 2.56 is

simplified to F‘%¥ v-pér

g ¢
‘ B "i?A{ G ar 4 j 4
Bp=) ’Ck[@ib b J"nlﬁimw g )0 e B0

k /]
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By examining the first and last terms of the sum in 2.58, further

simplification can be reslized. For k =1, f =0, r| +i>g = r, 4%5

LT - - _
and r; - =% = 0. The last term k nfl, fa =L Ty 4%§::saamd
T4l -4%5 =Ty + QE, Separating the first and last terms of the sum

ields ' n-ar
N g ] (oo
B = o) Q”‘“E ’i(ab ab e )
o k=2 o
%
Ry
2
S 21 Qrz@\r AT (eq’u—Q)V&"‘ . (2.59)
1+&) I+S ’

The last term is obtained by regrouping the integrals in thelr original

form (2.55). All of the integrals,

(o)
or | - AL ,
cancel since T + 5 = rk+l > Thus 2.59 reduces to
STty
8 :zéi / [‘ab «b ;] T b ‘ (2.60)

The interaction free energy for arbitrary potentials 1ls, therefore
3
Ei -.k IZTT

A vy R )
(2.61)
—i—CCbz:;(a\ e.\» ]-\_@ab j

Qatb
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where
f = 6XPL“ %i(‘*o;(;,,r\,\)/k"r]j ‘(.k*'\ :\”kfm\‘. (2.62)
k.ab
In this way the evaluation of a very complicsted sum of integrals,
2.41, is converted to a double sum of less involved integrals.
Given a sultable tsble of values for the szg matching the model to
experimental data is possible. As Ar i1s made smaller, the more exact
becomes the evaluation.
Outside of a sultable evaluatilon of the szabg the only undetermined
quantities are the Ci“s° This ?roblem will be discussed in the next

section.

b, Tonization Properties

The specifications for the ordinary thermodynamic properties of a
plasma are dependent upon the concentration of the various species which
compose the plasma. The equation of state must specify ionization
consistent with the thermodynsmic properties. The usual procedurs for

plasmas from ideal gases 1s to use Saha's equation, 2.71. For plasma:

o

with interacting particles, changés mist be made In this procedure to
account for the obgerved reduction of the ionization potential. It is
desirable that the approximations used in determining the ionization
modifications are consistent with those for the thermodynamic properties.
In this section, Saha's equation will be derived and its application
discussed. The interaction partition function modifies this equation.
These modifications and some of the approximations that are employed to
calculate the "effective ionization potential” will be reviewed in the

remainder of this section.



a., Saha Equation - Ideal Plasmas

26

Saha's equation may be derivable from the partition functions for

. each species. Ecker and Kroll (1962) givé the partition fumetion of the

ath species as

g [amae] =2 )

where
%,(T) = trenslational partition function;
%a(E) = electronic excitation function;
EX ‘Z‘a(T) —Za(E);

Na = number of the at

N jonic species.

(2.63)

The electronic partition is designated by Ze' The partition function

for the system is defined as

Z.= 2. Tz .

The relation

(2.6k)

(2.65)

may be evaluated using Stirling's approximation for Nlo This leads to

A:_LT[gNaGh 2 /M, +1) +CZQA/& (/ni_%&;«/d‘ + 2)] (2.66)

since Ne =2{ a Ny. For equilibrium

JA . A
C) Nﬁ 6}\jll»n"l

(2.67)

Completing the specified partial derivatives, and, after simplification,

it is found that
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Nohe 2. 2 (2.68)
/Va +1 %1--/}7'

By noting that Za(T)xZa+1(T) and that Z ”“V(Q m km)3 2/h3, the zhove
equation is reduced to

Gart Ce - L i’fl’f@ér % Zﬂ*'( =) 9 (2.69)
Ca b 2, (E) o

where m, is the mass of the electron, h is Planck's constaut and all of
the other symbols sre as previously defined.

The electronic excitation partition functions are defined by

Z, (E) = 4_ jp 6XP( /f"w) (2.70)
J

in which gij is the jth level degeneracy and Eij is the energy of the jth

level of the 3t species. The energy levels are measured from the same

reference point, thus the Eij of the a + lth species have a common factor

th

if the ground level of the a specles is the reference point. The

th

common factor is the ionization energy of the a species. Separation

of this commor factor produces Saha's Equation:

3
Gan Ce _ (EL¥71@'-(§'T>A_§1«_C_E) e /T (2.7)
. 5 2 (£)

If the plasma is composed of an element with G’ electrons, esach
possible species of ionization must be considered. To determine the con-~

centration of the various specles, one must solve the system of equations

-2-71' /(/) ZAM(C) e_"'”* r i G

C y 2,0, (2.72)
Zz (¢) g

<% ]

= _C;&, Z
C@
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Except for the simplest cases, the only practical method for solving
this system is by lterative, numerical techniques. This is discussed in
Chepter III.

. Effective Tonization Potentials

The system of equation in 2.72 is only valid for an ideal plasma.
If there is an interaction potential between the plasma particles, the
system must be modified. In practice;, this is usually accomplished by
replacing I, with an effective lonization potential that agrees with
the experimental observations. This requirement to empleoy an effective
lonization potential follows from the insight that is gained from the
DebyewHﬁckel theory. The microfields of a plasma interact to produce a
collective polarization of the plasma. Wher an atom is ionized by ab-

gorption of the energy, I the free electron can go to a lower energy

a}
state in the continuuvm. This lower energy state arises from the partisl
ordering of the plasma. The energy regained may be considered

as a reduction of the ionization potential,AL. The sffective ionization

potential, I *, is defined by

5. T -1, . (2.73)

a
There are many methods devised to approximate the effective lonization
potential, Most of the methods are based, to some degree on the Debye-
Huckel theory; and consequently, have limited ranges of validity.
The simplest approximation is to assume that no bound electron can
exigt in a state which has a radius greater than the Debye radius.
Using Balmer-like functions, one is able to determwine a meximum Hound

quantum number and an effective ionilzation potential. In a somewhat nore
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sophisticated manner, D. Kelly (1959) used a modified Debye potential
with & screening factor as a variable parameter In conjunction with
hydrogen state functions. He solved Schroedinger’'s egquation. This

procedure resulted in the maximum quantum number, g;%*, which is given by

3j =  go4 %D%—L /ao (2.74)

where AD is the Debye radius,a_i is the dimensionless core charge of the
10 gpecies and a, 1s the lst Bohr radius. C. A. Rouse (1962) used
Kelly's equation for gi* and a Balmer-type exXpression to calculate

effective ionization potentials:
AT, = T./( 1) (2.75)
TA A 34

A slightly different procedure was reported by Bruce, et al, (196h4)..
For hydrogen, a direct solution for I* wms obtained from Schroedinger's
equation with the Debye (Yukawa) poteﬁtial. The effective ionization
potential was calculated for various values of the Debye radius, by
utilizing Hilthen and Laurikainen's (1936) eigenvaliue problem study.
The variation of I* with Ap is shown in Figure 2.1. In high density
regions, much higher ionizations were calculated than were predicted by
any of the preceeding methods. Devistions from the predictions of the
next method to be outlined were ingufficilent to warrant further effort in
this direction.

¢, Method of Ecker and Kroll

The precesding methods beccme somewhat questionable beyond the
validity limits of the Debye-Huckel theory. It may be shown (Ecker,

1962) that the upper limit of particle density for a valid application
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of the Debye-Huckel theory is given by

i 3
3 - kT
o GO e19
’ihmx

where C... is called the critical density and €3 max is the maximum -ionic
core charge in the plasma. In 1962, Ecker and Kr6ll (ibid.) reported a
method for calculating AT that is valid beyond the above limit and to the
semlclassical limit

3
o [kt
e ¢L7_ (2.77)

Ecker and Kroll introduce an interaction partition function and find the
extent to which this modifies the Saha equation. Assuming the Coulomb
interactions are responsible for this interaction, they develop equations
for AL in density regions both above and below the critical density,

In arriving at their resﬁlt, they introduce an interaction partition
function, ZIN’ in Equation 2.64. The new, total.partition function, Z&,
is defined by

Zo = ZTZ (2.78)

IN 7

where ZT is defined by 2.64. The Helmholtz free energy becomes

A=-kTlnz +Agy. (2.79)

Using Stirling approximation, this is evaluated as

AL 1] TN [ et Aye
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substituting

-
N, = ;chx N, (2.81)

and completing the partial differentiation, the following relation is

found
% o
<. C z2amkT[™5 (0) i 7 (2.82)
ﬁz\:_f_ = £ —F ——z—j—é ) exf{_(r@ Az&)//ﬂj ;
where o
AT = - ‘%ﬁt»\) *_é_/_“\_l‘r\) _““‘,B_MAIN . | (2.83)

@ > N Nad—\ o N& J Ne

In order to evaluate AI, Ecker and Krdll note that the excess chemical
potential, defined by

N _ %ﬁ@zu>

Mo T O N, TN 2

may be evaluated (following Fowler and Guggenheim) by the relation

(2.84)

IN

1
Ma = e, Y (r&. ) dh y (2.85)

where A is the variable of integration; this parameter. is a diménsionless
charge parameter (Fowler, et al, 1956). The authors evaluate the average
electrostatic micropotential, 4{, for each of the regions' of. interest.
For number densities below the critical density, the Debye theory is
used. For densities greater than Ccr’ a closest neighbor approximation
is used. Their result is stated as follows:

C 4 Cee

a1, = (1/20) (6 € v ) (2.862)

(2
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C=>C

ar, = (C/2pv) (4. -62+E7); (2.86b)
where

/;
C =22 [% ?@c,?_f,sz/k‘r] z'cc:f 5 (2.87)
| y
Yy = [ /‘WC] ’ (2.88)
C = CE+ZCa. (2.89)
[«

and

€; = charge of the i'h species (esu),

M= Debye parameter,

(=}
i

= Dielectric constant,

€

Charge of electron (esu),
5%23 Density of/sth species at critical density.
The purpose of the constant, @, is to match the two approximations at the
eritical density; r, is the radius of the average volume for a particle;
and C is the total number density of the particles.

In application, one must solve the system of 2.72 in which the loni-

zation potentials, I

qs @re replaced with I *, 2.73, using 2.86 fornly.

The method is readily applicable to all species, including mixtures.

The most unsatisfactory feature of the method is that the approximations
are not entirely consigtent with those for the thermal properties. Of
greater importance, however,llla is dependent only upon the Coulomb
potential interaction: none of the other possible interaction potentials
enter into the calculation. A.method that appears more consistent is

introduced in the next section.
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5. Consistent Theory

For most regions of iInterest, a non-ideal equation of state for a
plasma may be easily formulated which does not have entirely consistent
approximations for the thermodynamic and the ioniec properties. Such an
equation of state may be constructed from Mayer's approximation for the
thermal properties and Ecker and KrBll's approximation for the ionic
properties. The primary objection to thls procedure (in addition to lack
of consistency) is the neglect of the more complex interactions of the
particles. A more consistent and complete model may be constructed from
the ionization properties in a manner which is consistent with cluster
integral theory. This procedure is described in the next few paragraphs.

According to Ecker and Krdll, the réduction in ionization potential

may be expressed by the relation

) ™ Mo e (2.83)

in which the/qa's are the excess chemical potentials. After -conversion
to per unit volume units, /AT is expressible in closed form for arbitrary

potentials through the chemical potentials:

_A 'Jz 2“55)/ L Q ’ 5  (2.90)

where the first term yields a purely Debye correction: compare 2.27 and
2.86a.

In this manner, the same approximations are used in solving for the
thermodynamic and ionization parts of the equation of state problem.

Solutions should be valid throughout the classical region., The accuracy
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of the equation of state, in its validity region, should be dependent
only upon the accuracy of the short range potential and the number of
terms which are included in the cluster expansion. The disadvantage
with the model is the number of terms that are required for the calcu-
lations. With large, high-speed computors this difficulty is not of

great importance.

6. Summary

lThe primary problem which ariges in obtalning an equation of state
for real plasmas is the evalustion of the Helmholtz free energy for their
interaction forces. This quantity enters into both the thermodynamic
and the lonization properties of the plasma. Approximastions for
determining FIN and the related Al have been outlined. Methods involving
reasonably consistent approximstions have been shown and these range from
the ideal gas theory to complicated interaction potentials. These models
are summarized below:

l. Tdeal Gag Theory: FIN is approximated as zero. Ionization
properties are determined by the system of eguation 2.72. The
approximation is valid for low density and high teumperatature.

2. Debye Approximation: Valid in slightly higher density and lower
temperature regions. FIN is given by 2.27 and the Ia in 2.72
is replaced by Ia*o LI is given by 2.86a, or by scme other
Debye approximations.

3. Rigid Sphere Model: Reasonably valid tc the semiclassical limit.
FIN given by either Mayer's approximation, 2.34, or by the more
exact approximation, 2.47. Without total incomsistency, AT, is -

given by Ecker and Kréll's method, 2.86.



4, Arbitrary Potential Model: Valid to the semiclassical limit.
FIN given by 2.61. [5Ia determined from 2.83 by the use of'2@90.
With the acquirement of more experimental data for high density
plasmas the Arbitrary Potential Model should be the most useful. Until
more experimental deta is available, extensive work with the model is
not warranted. Only the development of the model and the demonstration

of its feasibility is undertaken in this thesis.



CHAPTER III

ALUMINUM PLASMA EQUATION OF STATE

11, IIntréduction

For compatability with thgfl@wproblem, the best choice for the
independent variables of the equation of state are internal energy,
density and‘mass density. This cannot be accomplished with clqsed ana -
lytic expfessions. In_fact; it is impossible to express the equation
of state in closed form for any cho;ce of independent variables; thus,

& tabular form'is ngceSSary. The equations fgr‘the thermodynamic and the
ionization properties of the plasma will be presented in this chapter

in the following form:
I Internal Energy

E=E(T)Ce)c—1,"“)cl4) (3.1)

II Jonization Properties

CA.:‘C'J.(T//O))I L:ZJA"-)I"I' (3o2)
14 b . R
G Z (i-1)C; : (3.3)

iii Other Thermodynamic Properties

X:X/. (-/_;Cd,c),‘\ugcl“) (3~)4)

37
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The numerical method of calculation will be presented in Chapter IV. In
this chapter, only expressions defining the internal energy and the
pressure are given, In Section 4, complete specifying equations are
reviewed.

a. Phenomenological Considerations

As the energy content of a real gas is increased, the total energy
increase does not appear in kinetic energy of the components of the gas.
Other modes of storing energy exist. As the energy content of the gas
increases, ionization increases. The kinetic energy of the:particles
is reduced by the energy required to lonize the atom, which may be a
considerable part of the total energy. Additional energy is required to
excite bound electrons to higher states. OSince positive ions, by the
nature of the coulomb interactions, will generally be surrounded by
negative charges, the energy density in the plasma increases when an
ion-electron pair is produced by ionization. In addition, the electrons
are subject to Ferml statistics when the density is very high. As the
density of the plasma decreases, this deviation of the electrons from
classical particles becomes less important. At low denéities and high
temperatures, another quantum phenomens becomes important; il.e. the
radiation energy content of the plasma. Finally, the plasma oscillation
energy must be considered. Since the plasma experiences considerable
motion during expansion, it is assumed that oscillations exist throughout
the expansion,

From the preceeding, the total internal energy density is presumed

to be composed of seven components:

T Eoutloxe ™ Epyt Foee® Vapy + Fose 4 (3.5)
! @



39

where
ETOT = Total energy density
EIO = Ideal gas translation or kinetic energy density
EION = Ionlzatlon energy density

EEXC = Electron excitation energy density
E = Particle interaction energy density

EDEG = Degeneracy energy density correction (Fermi correction)

o]
"

Radiation energy density

EOSCL = Plasma oscillation energy density

Each of the above energy components are defined below. All symbols are
defined in Chapter IV. For reference see Appendix IV,

b. Ideal Energy -Epp

The term which accounts for the classical kinetic energy of the
particles is directly derivable from the partition function, 2.1%. This

is the ideal gas translational energy term:

E 4 = C, l<T (306)

In

Nl

where C is the total partlcle number density.

c. Ionization Energy -Eigy

The ionization energy is the total emergy that is required to ionize

each species:

E :Z < (ZIJ 2 G I (T (3.7)

10w
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wvhere I, is the uncorrected ionization potential. The effect of the re-
d

duction in ionlzation potential,aﬁlj, is accounted for in the interaction

energy.

d. Electron Excitation Energy - Egyq

The total energy involved in exciting electrons to energy levels

above the ground state can be glven by

th

where Pij 1s the probability of the ith speecies belng excited to the j

energy level, E,, is the energy between the levels 1 and J. The second

13
sum 1s over all bound states. The highest bound energy level, jyov, is
the highest remaining energy level in the atom. It is lower than the
highest bound level in an isolated atom by the amount of the reduced
ionization potential,g;li; In terms of the electronic partition function

Z; (E), en equivalent statement is

Bexe ) Cof KT7 a2 () (3.9)
X¢o L (o et
: VEY, L8 ! /

Both of the preceeding expresslons become, assuming Boltzman

statistics,
F" &k E-EL ;ETP
EX(_ Lz(r) )z & {} /D J/ .5 3 (3.10)
Ext 7

where 813 is the degeneracy state. The electronic partition function is

defined as follows:
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J’max
%(E)=Z 9 a/og-E[J. /u‘? , (3.11)
J=! |

e. Interactlion Energy -~ EIN

The interaction energy ls obtained from the excess Helmholiz inter-

action free energy, FIN’ using the Gibbs-Helmholtz relation

E =_T2*( 2 (F 3.12
= T < QT<IN/T) >\/C/ ( )

J

where FIN is obtained by one of the methods given in the preceeding,

f. Degeneracy Correction - Eppg

Electrons satisfy Boltzman statistics only in the high temperature,
lower density regions. In high density regions, corrections must be made
to account for the fact that electrons are Fermi particles. Basic con-
siderations for electron gases were made and equations given by Stoner

(1939). Define W as the Ferml energy

L/ s
= <° < C(3.13)
Zme 4“36

where g, is the statistical weight for free electrons (equal to 2). The

degeneracy correction, in the high temperature limit)

kT >w

is given by

Epee = 2 G "*TZ Cy (WAT) &) (3.24)
S |
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where the Cy are coefficients evaluated by Stoner. Using the first

three terms, 3.1l4, becomes

) S s
Foee™ 5 G LT [ seaid (=L (8 ) w8, Gas)

17

In the low temperature limit,
kT < W

the following expression that was developed by Stoner (ibid) is valid:

12 b v W

—\? y 4
. = -3 3 (kT T T (3’16)
Emaé ;CakT+§%W[| l-g_]]<v§/>-‘--—— k& Y )
The regions of validity of the two series do not quite meet. The first
equation, 3.15, may be used for

kTS o5
W > 2

and the last eguation, 3.16, is valid for

kT 2
L0

For accurate energies in the intermedlate region, the tables of Fermi-
integrals that were compiled by McDougall and Stoner (1939), should be
used .

The above expression omits all correlation effects. To be correct,
a quantum correlation energy for the electrons must be included. Several
expresslions for this energy correction are avallable in the literature,

but, unfortunately, all of the eguations that were investigated gave a
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negative value for the total degeneracy energy. In addition, theAvarious
expressions differed to a considerable extent. For this reason, quantum
correlation energies were not included. Instead, the correlation energy
in EIN was retained. This introduces some error; however, one feels that
the uncertainty would be the same, if not greater, provided guantum
correlation expressions were employed.

g. Radiation Energy Density - Egap

The Stefan-Boltzman law is assumed for the radiation term in the

equilibrium equation of state:
Fenyy = = | (3.17)

where ¢ is the velocity of light and T is the Stefan-Boltzman constant.

h. Plasma Oscillation Energy - Enger,

Dittmer (1926) first proposed the possibility of strong internal
oscillations in an lonized gas as a possible explanation of the anamalous
electron energies observed in arcs. Tonks and Langmuir (1929) showed
that the electrons in an uniform, zero temperature plasma oscillated with

a frequency,cDF, given by

~

, Ly
LJP - (q'WAQé.é//?y%)

/,.
5 (3.18)

where m is the electron mass andlﬂp is called the plasma frequency.
Subsequently, Landeau (1946), Bohn and Gross (1949) showed that

a damped frequency spectrum existed. Gabor (1952), using Bohm and Gross'
dispersion relation, calculated an average energy associated with the
oscillations. Drummond (1961) used a somewhat different method to obtain

oscillation energy!



bl

34 . Yy
o .igz 3 2
Fpoe = —— £ /(kT) .
osC = U Cf? (3.19)
Neither Drummond's equation, nof Gabor's expression, which differ by a
numerical factor, is applicable in the high density region,

As a first approximation for the high density region, it is assumed
that electrons are excited to oscillation states for which the probability

of the excited state 1s proportiomal to the energy of the state,

,Jﬁwp LT

ProLaLa“4v X é (3.20)

Considering a zero energy ground state and orly one excited state, the

oscillation energy is approximated by

——’kw AT
3, - stec
| g T/

(3.21)

which is

/ hw k R
Ee * Cet%/( [+ P/ ") (3.22)

This expression leads to the same electron density dependence, Ce3/2,
but a different temperature dependence when compared to 3.19. In
addition, Equation 3.22 is presumed valid in the gquantum region. The
Drummond equation is valid in the classical region. In the intermediate

region, a linear combination of the two expressions is assumed:

Eosc = Y] Eq ("‘ Y) Eacsc . (3.23)

ose T

The quantity ¥ is made dependent upon the ratio of the electron density to

the same-clagsical limiting electron density,
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3/;
e, .. (zmm kT/h* )7, (3.2%)

L

By introducing a variable, R, which i1s defined by the following relation
¢ kT/ k)%
R= Ce/(2mmg kT/H) 3 (3.25)

Y may be defined by

Y =1 forR Z1;
Y =R for .02<R<1;
Y =0 forR £ .02.

2. Plasma Pressure

The plasma pressure is considered to be the sum of four terms:
where

Ppop = Total Pressure,

Pperr = ldeal Gas Pressure,

Py = Interaction Pressure Correction,
"PRAD = Radiation Pressure, snd

Pprg = Degeneracy Pressure.

BEach of the sbove terms 1s defined below.

a. Ideal Gas Pressure - PfERF

This term is simply

PPE,QF = LT('CC + ¢2 C(.‘ )? (3.27)
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the kinetic energy of the gas particles.

b. Interaction Pressure Correction - PIN

Pressure is related to the Helmholtz free energy of the system by

the relation

(3.28)
and ‘since the free energy coinponents are addative,
P = _,< d Ary) e (3.29)
CING NIV T SOOI,

where V is volume and AIN is the interaction free energy of the system.
Considering that the cluster integrals are defined in terms of the
1imit as Vse0, it is more convenient to express 3.29 in terms of the free

enefgy per unit volume, Fry, and the number densities. In analytical

J(E, /o)
== (“*‘“,7:‘* T % (3.30)

form,

in which Xi are the mole fractions, Xi=Ci/C¢ In terms of the cluster

expansion,
= - kTG, (3.31)

Wwhere

= U
)
%
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B a 3. 30 becomes

o O / /,'":"/" /‘
B o=k d& AR (3.33)

i

PN 1

Through two body terms, u = 2, the preceeding equation is

N iy —
A4 L GG B.(%)) -
- kT L{s} () &(A)K" _)_ Y ( )j/ (3.34)

\U

¢=1 =
where Bij is defined by
- ) Aj" G A > =-> :3

B; 00+ [V(5) j & ENE R % )2 45 47 (3.35)

v
in which

+
2 AT
/%'J' =e U -, (3.36)
*D&\

4s == (Asge ) fame (337

and

\ - (4 e/eT) (.30

o
for which.gﬁ is the core charge parameter, uij, short range potential,

{§ij is the Kronocker delta and 015 indicates electron density. If i, J or

both i and j are neutral particles, 3.35 reverts to the non-coulomb

integral:

— . / ),(7 - Se A
Béj :[\/(/ \/_(‘BU)J (e' R -])QQ": J\*J . (3,39)
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In terms of mole fractions, 3.34 simplifies to

g [ S0R) e . 3
(PIAI = kI [’7—” (') o\(/c) ,LZ/J; . )

N
(3.40)
+C Z Z 5, % LBy
G40 dm)

The first term of 3.40 is evaluated as follows:

Q(X;/b) 3 _Le)_)_fl.; ‘
—_—_————J('/c) = X+ () | . (3.41)

or by the chaln rule

J(‘X/G) ){L +_|_<ﬁ'; S '
) €% ol | (3.142)

Since

S o I [arele2x 3 ]' *(‘Hrz‘Z ) JC
So Sl T £

one obtains

N -Eﬁvs, | | .
o ()" 2 (3.43)

The second term in 3.40 is elementary. The third term: is converted; by
the chein rule, to

S B, 9 By dx
ST 3% A1)

(1)0g

S B |
£ IX (3.44)
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because the Bij's depend upon the concentration through 4 (the neutral
atom interaction have no such dependence). Using 3.43 and 3.h4k4,

3‘: cmZxxd wzémo/ ;

P, =-kT

IN

’;h
(IJ ¢ o 24, (3.45)
or more simply,
, — 3 S s )
l 2 ‘R

2 :Cw+ Lﬁi -LTC)1) ZX‘I)& Q{f’zJ ‘ (3.46)

N - 2417 *jzﬂ /. , oot

é‘:, J‘(,

It is interesting to note that, in the first approximation (the 1st
two terms of 3.46), the pressure correction is given by the Helmholtz
free energy minus the Debye-Huckel~limiting-law pressure term: . "If %the”

Mayer rigld-sphere approximation 1s used, the pressure correction term

from Duclos and Cambel (1962) is:

B ay - gzc i3 Z ZZC 951 (e a4 J"(‘Z’%E‘ )

[/J—I-)//

where symbols have the same meaning as given in Chapter II--see 2.3k.

¢c. Radiation Pressure - PRAD

This term is simply

_ag T 1
?RAD =29 T (3-48)

3c

d. Degeneracy Pressure - Pppg

The pressure of an ideal, Fermi-Dirac gas is related to its energy

in the same manner that the pressure and energy are related for an ideal

gas (Stoner, 1939)
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- Z E A
P2 E. (3.49)

Thus, in both the high and low temperature limit

= Z .
EE(, Z Foey - (3.50)

3. Summary - Equations of State - Current Models

The complexity of the equation of state is now apparent. No simple
closed expression can be used to give any of the thermodynamics of ioni-
zation properties excepﬁ in the ideal gas approximation and then only for
a hydrogen plasme. In general, equatlons must be specified for each of
the following:

A. IJTonization Properties

a. Effective Ionization Potentlal
1. Chemical Potentials
B. Internal Energy
a. Energy Components
1. Excess Helmholtz Free Energy and Related Equations
C. Pressure
a. Pressure Components
1. Interaction Pressure Terms

There are four different equations of state for which the above
systems of equations will be specified. The systems differ, basically,
in the approximations to calculate the interaction, Helmholtz free energy.
The net result of these different approximations is very pronounced since

the effective lonlization potential is dependent upon FIN'
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The four equations of state are:

1.

Jdeal gas approximation,
Debye~Ruckel approximetion,
Mayer-Ecker and Kroll rigid sphere model,

Arbitrary potential model.

The arbitrary potential model is treated in Sections 5 and 6. Equations

speclfying the other models are specified below.

a. Jdeal Gas Model

The Interaction 1s completely neglected; thus, the ionization is

obtained from the uncorrected Saha system of equations

Cd;-fl - Z(Z”%/cr)a/z Z,(,,-.//E') 6—1‘:4’— . L... /v 43 - (3 51)
<L G #7 Z (£ 2o .
s
Ce © Z((.'-I) C/ 3 (3.52)
‘=2 |

¢
z <=2 Ay (3.53)
‘.‘:

where/o is the mass density and m, is the mass of the aluminum ion. In

1

the last equation, the mass of the electrons 1s neglected.

The internal energy denslty 1s specified by

where

Tor = Brp * Bon t By v Bppg v Eap +Egp (3.5%)

(3.6)

(3.7



in which

for

and

for

where

and

E

DEG

i

Z,(E)= Z 9u; & ('ELJ‘/'?T);
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‘EL‘)/hTZZ J (3.10)

(3.11)

LT[I 33%10 (H) %7xm3(~>+47x/a (W)J (3.15)

J=u
2c
2
RT >.5,
%Cek'l\-f-.(é\l\l[n S"ﬂ:
kT <.2
2 Z
3 3
£ (25
2m, L“Tge
- 40T
Ekhb' I

_ I_TZ_‘“(VKVI)%] (3.126)

(3.13)

(3.17)



=
Bese = ¥ Bpge + (1-Y) B,

Tosc )

where

E. = w, /(I + e*ﬁw;’/lﬂ‘)J

0s¢c

c

Easc':. .]182 ézcsyz/<477'(k7->y‘) J

Wy = (4 lTézCe /me)'/"

and
Y =1 for R21
Y =R for .02¢Rsl
Y = 0 for R&O2
for which
R=Ce /( kT/ne
= 27T Mg K h .
The total pressure 1s gilven by
P =P + P + P
TOT PER DEG RAD
where
- 2
P‘PEE T3 E:\‘.D 5
PDEG— - 3 EDE@ 3
and
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(3.23)

(3.22)

(3.19)

(3.18)

(3.25)

(3.55)

(3.56)

(3.50)

(3.48)
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For the ideal gas formalism, the jMAX in 3.10 and 3.11 is entirely
arbitrary. In theory, the partition function diverges to an infinity of
states as the Eij-alio In practice, the sum is cut whén.the individigl
terms become negligible. The Inclusion of the degeneracy correction is
somewhat academic; in the model's validity region EDEG and ?DEG are
negligible. This comment could also be applied to the Debye Model.

b. Debye-Huckel Approximation

The Debye-Hlickel theory requires corrections to the basic equations
in the preceeding section. Modifications are necessary fo the ionization
equations and additions are needed to the energy and pressure expressions.

The Saha system of Equations, 3.51, are modified by replacing the

ionization potentials, Ii’ by the effective ionization potentials, Ii*’

where
T, T
T Ii -—AJ_L (3.57)
and
i )i 2 _ Z &Zj '
&L= 2, [em el (3.58)

To the energy equation, an expression for EIN must be added:

. - kT X3
EIA) - .E..T;- . (3«59)

The pressure equations are modified by the additional term

- - kT)‘} (3.60)
PI"' 24T

No great increase in complexity is created in this approximation, however

the region of validity is only slightly increased.
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c. Mayer-Ecker and Kroll Rigid Sphere Model

The modifications for the Mayer-Ecker and Kroll model are more

complicated, but the validity reglon 1s considerably extended.

Tonization
equations are modified with an effective ionlzation potential
*-
L = I; -AL . (3.57)
In this equation,AIi is specified by the following:
for C%£ CCR’
- A 2 2 2
T —r— - &, rE ° .
AT, za[et'w € ]j (3.58)
and for
C:CCR’
.= e 2 3.61
AT (CQ/‘aDQ)[%»/'éZ +é.]7 B
where
. ’ 2 o,
C=22| 2¢ & /IzTJ - /3 (3.62)
ps TR e )
Y3 (3.63)
ro. = (3’ /4 ]TC) 9
and

| 3
Ccre."(ff)[ e.fT ] ‘ (3.64)

The energy correction is obtained from the excess Helmholtz free

energy by the relation



56

EIN . —-TZ( J (;:I_?;_/T))v)g , (3.12)
where
B b L s s, v
%% T
for which
O(‘j: i kT £ (3.66)
By 4 % (3.67)
2y - C&/jk% +(:>_DZ - Ay )\D)’é] (3.68)
and
/)9.. : /51%’ /KT . (3.69)

Ca is an arbitrary constant used to adjust the value of FIN' The pressure

correction 1is. given by

D AL Ly [TVI e

Z;Z‘L'J.)J
where the symhbls are defined by 3.66 thru 3.69.

It 1s noted that the first term in both the pressuré correction and
the energy correction corresponds to the Debye corrections. Since the

critical density, defines the validity limit of the Debye theory,

CCR’
the Debye correction is included in the first approximation for the entire
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equation of state. The unsatisfactory features of this modsl are the
uncertainty in the distance of closest approach, aij and the failure to
conslder reasonable, short range potentials. Thils can csause some

uncertainty in the high density region.

5. Arbitrary Potential Model - Short Range Potential Specification

The final form of the equations for the arbitrary potential model
+
are dependent upon the short range potentials, Uijw Levine and Wrigley
(1957) found that Ugj does not decrease more slowly than r %, In

general, the short range potential may be expressed as a series,

2/{7[-:_ /4\"_4+Br‘£_+_6r_é./— Py D (3070)

* should be determined for

where there the values of the constants in u
each different pair interaction. This generalized form would be very
difficult to calculate and would introduce an impossible number of para-
meters. In the next subsection, it will be shown that the short range
potentials may be simplified in order to express the equation of state in
terms of three parameters: two potentlal depths and one potential range.

In the final subsection, the specifying equations will be given.

a. Interaction Potentials

The short range potentials are taken to be of the form

uz,: uo, [( %-)M -z(%)”] S (3.72)

where uo,, is the depth of the potential well and r, is its range.

1)

To reduce the number of parameters, the repulsive components, except for
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electron-electron interactions, are &ll assumed to be <{§y2: M =12,
For neutral-neutral species interactions it is assumed thet N = 6. For
all others, except electron-electron interactions, N = 4 is assumed.

This latter assumption is based upon an induced dipole interaction. The
electron-electron interaction is assumed to be & rigid sphere potential.
To further simplify the number of parameters, the same L is assumed for
8ll short range potentials except electron-ion interactions. To account
for the increased penetratability of the electrons, Toe? the range of the

electron interactions is assumed to be related to ryt

= 2 7, (3.72)

Further simplification 1s obtained by assuming that all species, other
than electrons, have the same polarizebility. This allows the well . -
depths' for:alilipair- intetractions) except:neutral+neutral and electron-i.
electron interactions, to be given in terms of the same parameter; there-

fore, the well depths are defined in the following manner:

1. '~ UNNO = well depth for neutral-neutral interactions; i.co - o -
indepehdent parameter.
2. UNIOj = well depth for neutral-ion interactions where i is the

ion species. Ii’;i is the core charge of the ion, then

UNIOL = UIO 'gl 5, Uro- /ha/'@/b@nﬁle:«f /'Daramelle)’“. (3.73)

3. UIIOij well depth for ion-ion interasctions where i and j

identify ion speclies. The well depth is defined

urf_oL,J = uIo '(j‘z ) - (3.74)
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electron-neutral interaction well depth. It is defined
UENO = UIO. (3.75)
electron-ion interaction well depth - similarly defined
UEIO; = UIO °(3ia)° (3.76)

The electron-electron interaction is assumed to be a
sphere interaction for which the distance of closest
approach is determined by the thermal energy in classic

ranges and by the Fermi energy in high density regions.

The respective short-range potentials are

PERNE?

1. Neutral-neutral — M:’\N: MNNOL(;—L’) —Z(%Y’] ; (3.77)

2. Neutral-ion -—> M:T'L SULo- 3, (-( %)ll_ Z(%fj ; (3.78)
= J

3. Neutral-electron — uig = UIOI} i%g)‘?-_ 2 0%?)4} 9 (3.79)

N
4, TIon-ion M+I£J'i.j - qu_(gl ,_5))[( [_;)’iz([\g)Jj (3.80)

J

5. Blectron-ion —> MTEI.}_ - U'IO‘}g[(-%)lz—Z(%y] . (3.81)

J

6. Electron-electron — UEE =0 (£ dA

The distance of closest approach, a

L
Upe =@ ) T2 4%

ce is obtainedé by equating electron-

static energy to thermal energy in classical regions,

2
a,, - a/kT X (3.82)



60

In quantum reglions, Ferml energy is equated to electrostatic energy:

2
&
g = /"‘/ b (3.83)
where
> %4
- h (é&) , (3.8%)
RPMe \4Tge

By using the preceeding approximstions, the entire short range po-
tential system is governed by three parameters: UNO, UIO and rye A
fourth parameter can enter by varying the closest approach distance for
electron-electron interactions. This is a managesble number and will
allow some insight into the physical nature of the plasma. The potentials

assumed are believed to be physically reasonable.

6. Specifying Equations - Arbitrary Potential Model

With the above short range potentiel functions, the individual Bij

are grouped in the following manner
od

I+
2 2 -'M+ /ﬁ L
c T _C_l T [e—u;”’/k-r__‘l]r?'clr+ CIZCJ 41 [z NI tl_]fdr
- - 2_ . pt
) Jrz

IN
[o¥2)
"%EAT ile
scc 4T |[e 1] rdr
5 (3.85)
., M 14 h3( - %% 6) +%{] H+ ey
*‘% +’Z€'CJ 2*:9[‘4 % t+ i
l"ZJ:l I X,
14 n ar Al ﬂ@+é{
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where
i_ —_ .
—ul /R
Ji',;' ) <e i ) (3-60)
) j r—rk p)
and
1_
(e u“ﬂ/g) (3.67)
' =X *
kz)e/ ke D
"
G oy ad R
4 2 (3w88)
<§> 4 1T ( % 2 2
L = ew—@-)rdr-'f ey
4 o Y K %
b~ 2 7]
for which
@, = l+g.+q /2, (5.89)
¢j by .
and

gy (TN g g S L e

The basic ionization equations for the ideal gas model are modified,

as before, by employing a reduced icnization potential
S AT ' ,
_L(‘ = IL. - P4 (3‘.‘)7)
where
ALy =24, A (3.91)

and

PR— b//Cl.:/\/_. "’J{é&z 7
| Py T T —Z/Z(/f%.)g%.(x)

/5
J By 0U
ZW%[ZC % a)ié Y
JZéJ

(3.92)
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in which the B are the terms glven in the expansion of F T8ince il

Jk m’
the interactions involving neutral atoms are not functions of X, the last
term is summed from j = 2 through J = 15 where Cj5 = Co» For fon and
electron interactlions, the >{ dependence enters in the Pija Thus, the
last term of 3.92 may be written in terms of the derivatives of Pij'

The energy expressions may be corrected by the addition of EIN where

E - -T (MF”/T))VC , (3.93)

IN

The pressure correction term is

k 3 KLY

B =k ™ l T C.C. QIBL" @

lm o - jz_xzzu (;;iJ (3.9%)
/‘:Z,J':(.

The arbitrary potential model is valid to the semlclassical limit.
The model does not contain the disadvantages of the rigid sphere model;
1) the effect of short range potentials is considered, 2) the validity
criteria 1s not limited by a closest approach parameter and 3) ionization
is consistent with thermodynamic calculations. The inclusion of the
degeneracy correctlon term probably extends the validity region slightly
beyond the semiclassical limit.

Of the four models for the eguation of state, only the last two are
of interest in this thesis. Calculatlions have been made for the Mayer-
Ecker and Kroll Model and for the Arbitrary Potential Model. The -analysis:
method for these calculations is described in the next chapter. Analysison

of the predictions by the various models is given in Chapter VII.



CHAPTER IV
NUMERICAL METHODS: EQUATION OF STATE

Digital computer programs for the IBM 7094 Mod 2 facility were
designed to compute the tabular equation of state. Two related programs
were constructed. One calculated pressures, energies, etec. for various
temperatures and densities. This program is called the "Isotherm Pro-
gram". The other more complex program, called the "Constant Energj“
Program, calculated the properties of the plasma as functions of energy
density and mass density. Temperature is used in the Constant Energy
Program as an independent parameter to converge the calculated energy
density on the given value. The essential scheme of calculation is
given in Section 1. A more complete, yet simplified, flow diagram is
given in Section 4.

In Section 2, the modifications of the basic equations for the
Mayer-Ecker-Kroll Rigid Sphere model, which are needed to facilitate
calculationz, are given. Difficulties and estimated errors are also
given in Section 2. Alterations of the basic progrem in order to convert
to the arbitrary potential model are given in Sec¢tion 3.

Comparisons of the equations of state from the different models and

their region of validity are given in Chapter VII.

63
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1. Basic Scheme of Calculation

The density of ionization of the plasma must be calculated first.
Withi lonization determined, the other properties of the plasma easily
follow. The basic calculation scheme for the Isotherm Program is given .
in Figure 4-l. The temperature and the mass density are independent
varlables. The temperature mey be held constant and the density varied -

in order to obtaia an isotherm.

Calculate

Jonization

Calculate
Energy Components

l

Calculate
Pressure Components

Step Temperature
and Density

Recycle

Figure 4.1. Basic Flow Diagram for the Isotherm Program

If constant energy density surfaces are calculated (energy density
mass density are independent variables), the basic cycle outlined above
must be modified so that convergence on a given energy density is gotten
with the temperature used as the parameter. Figure 4-2 shows the basic

flowdiagram. This is the basic cycle for the Constant Energy program.
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Calculate
Tonization
1]
Calculate
Energy Components

Test f:;\;;;;;\*\

Modify
Temperature

Error

good

N
Calculate
Pressure Components

I
Step Energy
and Density

= Recycle ™

Figure 4.2. Basic Flow Diagram for the Constant Energy Program

The only essential difference between the two programs is the routine to
converge on the energy and the modifications in stepping the program.

The same basic programs may be employed to calculate the eguations
of state for any model. Only two models, however, were calculated with
any degree of completeness. They are:

1. Mayer-Ecker and Krdll Rigid Sphere Model

2. Arbitrary Potentisl Model
When the basic computer programs are changed from one model to the other,
modifications are required in only three areas:

1. Xonization calculation

2, Excess free energy calculation

3. Interaction pressure correction



The interaction energy code is not changed, since it is obtained by

numerically differentiating the excess Helmholtz free energy.

2. Mayer-Ecker and Kroll Model

a. JTonization

The method for calculating the lonization 1s based on a suggestion
by Rouse (1961). The method is derived from the fact that the number
density of any species may be expressed in terms of the number density
of neutral particles, the Saha ratio , SKi, and the electron density.

The Seha ratios are defined by the following equations

_ 21T T % 2. (E "I;/QT
Sk, = A[2engkl ] Z(E)) , (1)

Thus
= @‘SH::S&q C K /75W
<., > == - 4-/6—6 =C, J_=/E___ ] (4.2)

e

Using Equation 4.2, the total density of heavy particles is

A 2 77 SK
C = C. (14_ _d____,._.) o 5 (4.3)
7] S
A= l é
and the calculated electron density is
/3 13
* ' SK' , .
C =C »jf oS, . (k)
e 2 ; T 1 TH
d=1 &

The calculated electron density is indicated by C_*. In Equation 4.3 and

Equation 4.l, C_ refers to the trial electron density. Equations 4.3 and
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4.b ssrve as definitions for SH and Sp. When SH and SE are determined,

C, 1ls calculated by combining the relation,

C, = /%na, , | (.5)

with Equation 4.3 to obtain

C, = Co /5 (4.6)

and C_* is determined from Equation h.h,

1

The trial and calculated electron density are averaged and the cycle

is repeated. The chief computation difficulty with this method is the

calculation of thegSIi in the high density limit where C >CCR' For this
case

(CQ/ZD")( -€ v e ) (4.7)
for which

C ZZ[Z kT_{ R . (1.8)

Obviously, difficulty is encountered in Equation 4.8 with the dis-
tribution of particles at the critical density, gﬂéef Before thezﬁli may
be calculated, which are needed for Sy and SE’ the distribution of specias
at the critical denslity must be determined. This may be accomplished

since thezﬁIi can be calculated by the Debye approximation:

AT, =(%/20) [, -& +=], (4.9)

where X is defined in the earlier discussion of the Debye equation in

Chapter III. The same format that was given through Equation 4.6 is used
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for this calculation. Since CCR is the total particle density, it was
necessary to step the heavy particle demsity at the critical density,

CH , until the total particle density agreed with the required critical
CR

density. The basic method consisted of:

1. Choosing a value for CH H
CR

2. Calculating a Ce- by iterative convergence;
CR '

3. Compare the calculated C,_ to the specified value;

CR

4, Step the C to converge on the specified critical density;

HCR

5. Repeat the cyclé until convergence was obtained.

i
determined. Unfortunately, the situation is complicated by the fact that

When the % é's are calculated, the 4I, are evaluated and the ionization
(@

CCR is based upon the highest degree of ionization present in the plasma:

3
_ /.3 kT .
Cce-'(qn/[ PE . (4.10)
A max

As expected, ei changes as the calculation progresses. Consequently,
max

new ggcz's must be calculated. The entire process becomes quite laborious
and convergence borders on being intolerably slow. The basic flow chart
for the ionization calculation is shown in Figure 4-3.

In order to assure convergence, a weighted average of Ce and_Ce* must
be used. The welghts used hﬁve to be modified as the number of iterétive
cycles increase to assure that the calculations do not oscillate about
the true value. In order to assure correct 9452’ a new critical density

calculation is desirable for every fifth iteration.
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b. Partition Functions and Excitation Energy

For the summétion over electron excitation levels which appear in
the electronic partition functions and the excitation energy egquations,
experimentally determined energy levels and degeneracles are used. For
energies higher than those which have been determined experimentally,
hydrogen-like term values may be used. The hydrogen-like term is varied
by the degeneracy of the next higher ground state in order to account
for the increase in degeneracy over hydrogem lsvels (Griem, 1964). The
upper limit on the summation is determined by the condition

E;J «xI (b.11)
where Eij is the experimentally determined energy of the jth level, or
the equivalent energy of the hydrogen-iike term. Since the upper limit
of the summation is based upon AI; and noting that Zi(E) must be included
in the Saha ratilos, SKi’ new electronic partition functions were comgputed
approximately every fifth iteration during the ionization calculation.

c. Interaction Energy

The interaction energy was pumerically evaluated by the following

approximations:

TR (Teer) R (ream)
~IN 2AT T +AaT T — AT

. (4.12)

In order to assure reasonable accuracy, the derlvative was recalculated
with successively smaller AT until successive caleculations were within

5% of each other.
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d. Excess Free Energy

Poirier's tabulated values for é)(f) and\gugﬁ) were used to compute
the excess free energy. Simple two polnt interpolatlon was used to
determine the value of the individual integrals for different values of
the argument,\¢u The one major uncertainty im the Fpy calculation was
the value of aij’ the closest approach parameter. Duclos and Cambel

(1962) suggested that the following relation be used:

A : / W
a6 Lo (L +Ay) 423
GGl Lo (e 2a) )

where

4 ,&'é' /DkT

{%j Pea 7y { ° (b.1k)
This relaticn 1s employed to make the distance of closest approasch some-
what temperature dependent. In order to merge to the Thomas-Fermil model,
the best value of C, was found to be 1.95. Comparisons of different a's
for a hydrogen plasma were reported by Bruce and Todd (1964) and are

reviewed Iin the next chapter.

3. Arbitrary Potential Model

It was previously indicated (Section 1) that only limited modifi-
cations are needed to convert the basic computer program to the new model.
The basic differsnce in the models is the free energy calculation. In
order to calculate FIN’ it was necessary to complle tables of cluster

integrals. Tables were assembled for integrals of the following type:

I-= j[e)(lb{- d( ;;12 'E’\: )i - I_} x5 dx 5 (4.15)
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where N = 6 and N = 4. These are approximations to the Leonard-Jones

potential. To simplify the calculations, the exponentlal term was pre-

sumed to be O for x£2‘l/a. The remainder of the integral was evaluated

-1/2 and x = 3. The integrals were evaluated

by Simpson's rule between x=2
for different arguments of u from u = 0.01 to u = 20, Simple inter-
polation was used to obtaln the value of a given integral in terms of
its table argument: u = uij/KT. (uij is the corresponding well depth).
Two tables were complled, one for N = 4 and the other for N = 6.

Tebles for the integrals Pj;‘i were also calculated. The following

substitutions were used to econvert the lntegrals to dimensionless form.

L"”'A: _XS‘; % /4 T (4.16)
K =X ay (4.17)
and
Yig = Ve : (4.18)
Then
oD i
2 —'—""“( ,+5;1T'3‘>xz Eal e - Qa x ¥ - Q X AX 3 ()4.19)
L 3 |
where
K. X
3
9 [:ej_E__ s (4.20)
vy X . :
and

Qﬁ-j = |+ %f«j *‘(?13' /2) . (h.al)
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Defining
= /

I(K)L) - ;éﬂ <6$“ Q)x%{x _,j@ xlan 3 (4 .22)

L

H

then

By F A ,
T 4 T ). (4.23)
G}fﬁ 2y J,(T,{,,j,,b.{j) A
(/4—@%))&
Tables of the integral, I(K, L), were calculated by Simpson's rule for

variocus arguments of K and L. Approximately 3,000 values were needed to

cover the estimated ranges of K and L.

SI¢y

For the calculation of the chemical potentials, j» & table of .,l&

1

was calculated. No difficulty is encountered since K is a function of ).

The original tables for I(K, L) wers used to build a set of tables DI(K,L)

where
;T S T(K,L)
DI (K, L) - Sz (4.2)
Thersefore

6'@/";): o T(KL)- 35:&%43, o 9IK, L)

or .
. A4 i /)a\is
G 2\, ANy
Shs i - B o1, e
o (1 +~&3’)X1‘— ’

With these tables the new equation of state is reduced in complexity.
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a. JIonization Modification

All of the complications caused by the computation and the

%ee
difficulties in convergence are removed with this model. In place of
the Ecker and Kroll equations for AI;, the various chemical potentials,
/i, are calculated on every iteration of the ionization cycle by
referring to the tables noted in the preceeding section. One only sums
over the integral values that are extracted from the various tables.
TheziIi's are then computed using the values of/Mi. The time for each

cycle is certainly increased, but the repeated iterations for the/ﬁ%
(TN

calculations are removed. -

b. Excess Free Energy Modification

The excess Helmholtz free energy, FIN’ specified by Equation 3.85,
is readily calculated using the table of integrals I(K, L). The problem
is reduced to summing over all integral contributions. Linear inter-
polation was used to determine the cluster integral values for the

arguments K and L.

¢c. Pressure Modificatiop

No difficulty was encountered in writing a program to evaluate
Equation 3.9%. A subroutine was used to evaluate the excess Helmholtz
free energy, FIN’ and a new code was used to calculate the values of/mi
which are all that is required to modify the program for the Rigid Sphere

Model. As before, only linear interpolation was used for all of the

tables.
k., Summary

Although a program to compute constant energy density surface was

constructed, it was found more practical to calculate isotherms and then
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use the isotherm data to determipe the constant energy surface. The
IBM 7094 computer time wes consequentlyrreduced by a factor of approxi-
mately 70%. A separate program was compiled to convert the isotherm
data to constant energy data. Standard, three point interpolation was
used to convert the data.

The isotherm data was calculated, stored internally and printed
at the end of all computation in tabular form. The flow diagram for
the final program is given in somewhat simplified form in Figure 4.h.

Evaluation of the numerical results is given in Chapter VII,



CEAPIER V

PLASMA FLOW - FUNDAMENTAL DESCRIPTION

1. Tntroduction

In plasma dynemlics problems called magnetegasdynamics, the quantities
of interest arse the macroscopic propervies: temperature, pressure, flow-
velocity, charge distribution, etc. The determination of thsse quantities
requires that a theoretical method be decided upon and then a model be
chosen that is compatible with the method.

Basically, thers are two methcds that may be considered for finding
these quantitiés. One 18 the microscopic approach of kinetic theory aund
the other is the macroscopic approach of fluid dynamic continuum theory.
Of the two, the latter is the most practical method (Shih-I-Pai, 1962).

In this approach, the conservetion laws of msss, momentum, energy and
charge, etc, are postulated. To these are added Maxwell's equations and
the required thermodyanamic relatlions to obtain g definitive mathematical
model that describes the plasma flow. The resulting equations are far
more managesable than the kineltie heirerchy of non-linear, partial
differentio-integral equatibns.

Generally speaking, two methods are available for the description of
the continuum equation:

a. The Bulerian method, which describes the phencmena at a given

point in space

T



78

b. The Lagrangian method, which deseribes the phenomena which occur
to & gilven, elementary mass of fluld.

The Eulerian reference system 1ls the ordinary, fixed laboratory frame of
reference in which intultion can operate mors freely. This 15 an important
advantage in manipulating the numerical methods which, of necessity, nusi
be used for the complex system of equations; Consequently, the Eulerlan
method is‘chosen even though the Lagrangian reference frame produces to
some extent, simpler equationsg for a omeadimensioﬁal problem.

In order to specify the required set of equations for the flow, a
suitable model must be chosen for the plasma. The model choice is based
upon the minimum numbesr of'microscopic quantlities which ars of intersst.
To illustrate, consider the followlng two cases:

a. A fifteen componemt aluminum plasma model could yield tempers-
ture, partial pressurs, density and flow velocity for each compo-
nent speéiés9 plus the electrie field.' This model could requirs
a system of up to 61 coupled equations,

b, The one component plasma model could be specified with five
equations; however, no information would be obitained on the
behavior cf the individusl species.

The pre&ictions of & one component nodel are highly suspect because of the
disregard of the vastly different propertiss of the component speclss.

Kunth (1959) has indicated that a success?t

=

1L grouplng of the plasma compo-
nents iz attalned only when the properties of the groups are nearly the
gsame such a8 the masses, th@‘transporﬁ properties, etc. Based on this
consideration, the two component model is the simplest plasma model which

should be considersed. The plasma will be considered as composed of
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electrons and heavy particles. The latter group is called the ionic compo-
nent; each particle is assumed to have the average ilonization charge. The
electrons are called the electronic component.

In the remainder of this chapter, the equations specifying the plasma
flow properties are given. The relations define the gross quantities of
the plasma. Diffusion veloclties are employed to differentiate between

motion of the two components.

2. Baslc Equations Defining Gross Flow Properties

Derivations of the basic conservation equations are presented in
practically all fluild dynamics texts, such as that of Landau and Lifshitz
(1959), and in several of the plasma dynamics texts (Samaras, 1962). The
form of the equations immediately below are those fiom Richtmyer (1957).

a. Conservation of Mass-Continuity Equation

—

g«?_ UiV = - V-u (5.1a)
ga s | |

b. Conservation of Momentum-EqQuation of Motion
&, o (%-V)L ==-Vp (5.1p)
A at ~-

c. Conservation of Energy-Energy BEquation

—

Vs i—é"“ + /2 “'Vé‘ﬂ: - P Vi (50:10)_
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In the preceding equations,

mass density

AR

-flow density

P = total -gas pressure
éi1= internal -energy
t = time
v-2&5
= E
" A dX0
— < =
§= unit vector
x; = space coordinate

By defining the total energy per .unit mass as

b v d (Ed),

/

the conservation of energy equation may be written as

z//’é‘té) " 7;&%{'2) =-§7.;a£2), (5.3)

-
The preceding equations involve five dependent variables:/p,a&é;h
F) and é;., One additional relation is needed for the description of:
the gross microscopic properties of the expansion.  This relation is

an equation of state in the form

P: PQOJéM) P (5.4)
In like manner, the temperature may be specified through the equation

of state
’I—=T(/o, é;m) (5.5)

Usual practice in plasma dynamics of assuming the‘ideal\gas theory has
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been found to be inadequate; the theory is not valid for the initial
conditions of the problem when the density is high and the temperature is
low. A more adequate equation of state has been developed and is given

in Chapters IX, III, IV and VIT,

3. Modifications of Basic Flow Eguations

The preceeding equations define the flow properties of a inviscid
fluid. The basic motion and energy equations are modified for a plasma by
adding terms of the electric body forces, viscosity forces, conduction
and radiation transfer. Corrections for each equation are considered
separately.

a, Equation of Motion
The equation of motion contains the termVp. Pressure in this case

should be

P=Fs +Pe (5.6)

where Fy 1s the kinetic gas pressure and PR is the radiation pressure.
Radiation pressure is assumed to be composed of two parts; 1) thermal
radiation arrising at the given point in space and, 2) radiation -

from other regions. Thus

Fe ™ Pevt Per oD

The local radiation, Py, is gpproximated by blackbody radiation and is
included in the equation of state pressure, 5.4, With this inclusion, the

pressure gradient term becomes

(5.8)

\719 = Vf’ +VP&T
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In addition to the pressure gradient term, body force terms must be
specified. The most important body forces (excluding gravitational)

are the electrlic and viscous forces. The electrlc body force is simply

i:%tj (5.9)

where q is the electric charge per unlt volume and E is the electric field

vector.

The usual correction for the viscous force is given by Samaras (1962)

as

2
=u Vu + M4 (V7'24 . 5.10
Fo=u A (vu) (5.10)
With these modifications the momentum equation msy be rewritten as

p 2R o (2 V)R =-Vp ~Vpe t (Vs Zo3hgE 5 1y
St
b. Conservation of Energy
The correction attributable to radiation conduction is somewvhat
similar in nature to a heat conduction term. If QR is the radiation flux,

then the corrective term 1s of the form QR. The radiation flux can be

approximated (Shih-I-Pai, 1962) by

éra = DR VER 3 ' (5.12)

where Ep is the radiation energy per unit volume and DR is known as the

diffusion coefficient for radiation. It may be written as

D %Zej (5.13)

where C is the velocity of light and
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L/ Ke /

(5.14)

KR is the Roseland mean &bsorption coefficient and is defined by

4B D 4, &@B(T)
. Jz@(f AT) AT ]/[ = jj )

where Qy(T) is the Planck function, k, is the monochromatic absorption

3

X j—
=

coefficient and is fregquency. A more complete discussion of the .-
radiation phenoméné is included -ini Chapter IX.

Somewhat similarly, the heat conduction corrective term is added. De-
fining 6& as the heat conduction flux, the corrective term is Vlag.t As =

a first approximation

@‘# = o1, | (5.16)

H is the coefficient of heat conductivity. This term is defined by
Equation 5.36 farther along in this thesis.
The energy source term, from the electric fields, is ﬁ-(7ﬁ§ and the

viscosity term is approximated by Z?'E;. With these corrections the energy

equation is written as
%%é:r)+v'§0ig7_) :-V(Fi) +V’§+u—‘F/U+E’<Z)A?/j (5'17)
where

QG = @ * Gy (5.18)
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4, Conservation of Charge

The charge distribution is determined from the equation for the con-
servation of charge. Excluding external sources, the total charge of the
plasma must be conserved during the plasma state. This conservation prin-
ciple requires that the rate of charge increase within an arbitrary volume

V, must equal the rate of inward flow across the boundary of the volume,

39 fv=- | vods
5;{?_ SZ (5.19)

In Equation 5.19, is the charge velocity, q is charge per unit volume, t
is time and is the vector differential surface element with outward

normel. Application of the divergence theorem leads to

ﬁ + Vo ( f) = O (5.20)
<ﬁ"f g

If charge sources are present, Equation 5.20 takes the form
i e o}
4 4+ v.(gzv): 9 (5.21)
ot

where Gh_is the charge source per unit volume.

5. Further Relations Regquired

a., Diffusion Equation

Thus far, the equations adequately describe the gross propeprties of
the plasma but no information is provided concerning the composition
of the flowing matter. In order to delineate mass migration of the com~
ponents, the diffusion of the icnic.and electronic components relative -

-
to the gross mass flow velocity (average mass flow velocity), %, will be
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considered. The diffusion equation that follows is based upon a treatment
by F. A, Williams (1958) end adapted to the two component plasma model by
Ables (1963). In developing the equation, pressure gradients and electric
body forces are included but thermal gradients and non-isotropic terms are

omitted. If

Xj = the mole fraction of the jth component
- D3je * the electron diffusion coefficient
W} = the diffusion velocity of the jth component
‘ Yj = the mass fraction of the jth conmponent

then the diffusion equation becomes

VX =Rl (W-wp)+ (%) Le 2 y y(ﬁ_/:j) (5.22)

“e F preh

In Equation 5.22 the subseripts "i" and "e" stand for ionic and electronic
components, respectively, p is pressure,/o is maess density and Fe and Fi
represent the electric body forces on the two components (Equation 5.9).
b. Diffusion Constant

Transport coefficients for a plasma were evaluateduby:R.uL.. . Liboff. -
(1959). The values reported by Liboff for the shielded coulomb potential,

to the first order, are

3 kT
. =z ['JZ;QJ ‘ (5.23)
l

4e /6 mQ_Q" n b/

and to the second order

D z

e

[?ie]é_ (5.24)
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where

5— - ]:Z.D.lz‘ SQ:J B | ‘
" [zag- sOT-4[0 405 0 (5.25)

2
The _Qm are given as

ﬂ‘l: Ny, AZ[L@ (1/x)-09%1] /2

(5.26)
_(‘)_'z.-./u;Az'[_eM (1/x) +0039] 72 (5.27)
__()_'3=M';Az[,¢m(l/x)+|.05‘fj 5 (5.28)
N Azfz@w(t/ﬂ- 1461 ] (5.29)
and

N5 A [ L (/%) -04e ] (5.30)

where
, = <I;l%: " -
A = ZeXkT (5.32)
X = AN/zXg (5.33)

2 1 Y
X2 [MEE (cerzgc)] 5.3

and 2. 1s the dimensionless charge parameter for the ionic species i whose
3

concentration is given by Gi. Z is the average ionlzsation.
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¢+ Coefficient of Viscosity and Coefflcient of Thermal Conductivity
Liboff's (1959) approximations for the coefficient of viscosity and -

thermal conductlivity were used:

/M

]

SKkT/8Q% (5.35)

and

1]

A= 274l , (5.36)

In the preceeding equation, C; is the specific heat at constant volume of
the plasms and may be derived from the equatioh of state.
d. Charge Velocity

The charge velocity,ﬁ;, used in the charge conversation equationi is -
not the gross flow velocilty, U. Ables (1963) has shown that the charge
velocity can be related to U through the electronidiffusionh weloecity, Ve

the average ionization, é\* , and the total charge q by the relation
- SN - 2% ,
g - (B +We)g.- W, p e (5.37)
where mg is the mass of aluminum ions.

6. Electric Field Eguations

The equations for the electrostatic fields are simply
E--Yd (5.38)

and

Vg: _41\'% 5 (5.39)
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—
where E is the electric field vector and ¢ris the eleétric’ potential,

T. Initial and Boundary Conditions

The flow field boundary conditions are

o

i -

. ' (5.L0)
Vow =0

no veloeity flow through the center of the exploding sphere is allowed.,

The initisl conditions are

P = P

Ep = Eun, 0tce ,t=0 (5.41)
K =0

v O

and
z O

© V>‘(o |J t‘—'@ . (5.42)

P =
8,:0
The sbove initial conditions specify a hot, stationary plasma sphere of
radius T, in a veaecuum,

The electric field equations are subject to the boundary conditions

=0 , =&
L (5.43)
Ci) = d)o ; C = ?E
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where RE and ¢% are the radius and potential of the outer electrode. cS
is chosen to be small enough so that it will not effect the accuracy of the
solution but large enough to avoild the singularity difficulties at the

origin.
8. Summary

The preceeding equations, boundary conditions and initial condiltions
define the macroscoplc flow properties of the exploding plasma. This com-
plex system of equations does not lend itself to an analytic solution;
therefore, numerical methods are required. Since the emphasis forithis
thesis“is concerned the development of the method. and:. the.dolution: .-
technique, many of the approximations in the preéeeding formulations were -
not refined to obtain a higher order of accuracy. Fortunately, approxi-
mations in the corrective terms have not been found to be of importénce.’

The modifications required to convert the equations:to;different ... -

form and the general numericsl method are outlined in the next chapter.



CHAPTER VI
NUMERICAL METHOD - FLOW PROBLEM

Before the solution of the partial differentisl equation system
may be started, a sultable coordinate system for the problem is:required.
For this problem, the initial and boundary conditions have spherical
symmetry and furthermore there exists no inherent property of the problem
which would serve to differentiate between any two radial directions from
the center of the initial sphere. From these considerations, one can sée-
that a basic spherical symmetry exists with no angular dependence. All
equations.may be written in spherical coordinates and the angularly de-

pendent terms deleted, leaving only a radial dependence.

1. The BEguations in Spherical Coordinates

The fundamental equations given in Chapter V may be expressed in
spherical coordinates with radial dependence only, by using the following

vector relations:

vV oe-= 3¢ (6.1)
. L s (v -

V‘ G e dV.(\(\ ) ) (6.2)

(2.9)6 « £V (&) +(Tx&)& - (6.3)

The last of the above expressions for spherical symmetry (lamular flow)

becomes
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— 2
(¢ V)6 =LV G (6.5)

With these substitutions, the fundamental equations become

‘J \L () 3

/0 —‘/—C’) + ‘AL fj*;ﬂ (Y‘ //J u.») = O ; (655)
d L3 GuA) = .

e (e*qn)=o . (6.6)

pﬁﬁ*-p »-Z—j—“r(uz): iy %{L+'“m+%5 (6.7)

.%&ig_ / Jéi_é; ~E__29 dé?r) 2 A %nf 5 (6.8)

oF r"- Jdr P2
M d (s J _ Jurd)y ,
i @.ér.(rar)*/ﬁg(r'l = (6.9)

JT oo |

@ = M;‘p + D Pl (6.10)

3 . o - )P L / _5).

o % (woowe) (Y ox )y S22 0N (RS0 e
Jda =- €, | (6.12)
I9r

and

9 ~4Tg . (6.13)
Jr*

Examination of the conservation equations, 6.5 thru 6.8, shows that all
but E4n. 6.7 are in conservative form. If Equation 6.5 is multiplied by u
and then added to Equation 6.7, the latter is converted to conservative

form;
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;;geu.h_#g W) dp Ok L F vq . (6.24)

The boundary and the initial conditions are, of course, identical with
those in Chapter II. These equations, the equation of state and all
necessary boundary conditions form a complete mathematical model for the

problem.

2. The Method of Finite Differences

A problem, identical in nature but with a2 simpler mathematical -
model was solved by‘Ables (1963). The method for solving this problem is
very similar to thé one that was employed by Ables and it is giveh below.

The solution to this mathemetical model may be obtained through the
use of numerical methods with the aid of a large scale digital computer.
The seiected methéd of solution was the well known method of finite dif-
ferences (Richtmyer 1957) (Milne, 1953) (Scarborough, 1950). A brief
description of the method will be given here.

The r, t plane is subdivided by a uniform rectangular mesh with the
edges parallel to the r and t axes. The cell dimensions are Ar and At in
the r and t directions, respectively. The coordinates of the mode of a

general mesh are designated by (rps tm) where

=G +nAC, (6.15)
i—m =t + mat, (6.16)

and r_, t, are constants. The value of any function f(r,t), at the node

(rp» tm), is designated by gln,m) ¢ X5 Xp, Xj are successive modal . -
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values of either coordinate and f(l), f(a), f(3) are the related wvalues

of f(r,t), the following approximations may be written:

_ L 63{”+4¥f-§3), (6.17)
2A%

L f D), (6.18)

dez 2, AX

‘ Y (6.19)
L (f 43

These are often known as back difference, central difference, and forward
difference derivative formulas, respectively. Discussions of the accuracy
of these formulas may be found in the cited references. By using these
formulas, the approximate value of the partial derivative is known. These
formulas provide approximste values at the neighboring mesh points about
any nodal point for which the value of f(r,t) is known.

In terms of these mesh points, an initial condition on a variable is
specified by giving the values of the variable at the nodes related to -
the intersections of the t = 0 and ry = ry + nlr, n =0, 1, 2 . . . mesh
lines., On the other hand, a boundary condition at r = r,, a8 an example,
could be specified by giving the values of the variable in question on the
intersections of the line r = r, and t nAt, n=0,1,2 . . . . When a

functional relationshlp exists which specifies the partial derivative of

f(rn,to) in terms of the values of other variables at t = t_; then, by use

o’
of the differential, difference formulas, one computes:approximste wvalue -
for £(ry, t, + At). The values f(r,, t,) and £(ry, to + At), n =0, 1, 2
« « « are commonly called the o0ld and the new radial profiles of the

function f(r,t).
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After new profiles have been computed for all of the variables in a
problem, the same procedure mey be repeated again and again. In each repe-
tition, the new profile of the previous computation are the old profiles’
of the present computation. In this manner, the solution may be advanced
step-wise in the time direction from the initial condition profiles; pro-
vided that an expression for the time derivative of each variable is known
implicitly or explicitly, in terms of the nodal values of the variables on
the old profiles.

For this problem,; the necessary relationships are available for
density, charge density,_material flow velocity, and energy density ia the
forms of Equations 6.5, 6.6, 6.14 and 6.8, respectively. Profiles
may be computed for the time (t + At) directly from the time, t, profiles.
Through the equation of state, the pressure and temperature is obtained.
Only the electric field, the diffuslion velocity and various:coefficilents
are left to be determined at time (t + At).

The electric field problem is easily solved by using Gauss' integral
for the electric field and the known radial symmetry., 'If Gauss'
integral i1s applied to & spherically symmetric charge distribution, one
may write-as a. consequence

M

E.l = | 4mgede, (6.20)

s

Q

where E has units of statvolts/cm. Since a(rp,t =46t), n=0,1,2 ..,
is known by virtue of Equation 6.6, one may employ a step-wise numerical
integration technique such as Simpson's method to evaluate the integral in

Equation 6.20 and to find E.(r,,t = At), n =0, 1, 2 . . . . For the
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diffusion velocity, one may employ Equation 6.11. The various transport
coefficients are easily deterﬁined wlthout difficulty. This completes one
cycle of computation, the continuous reiteration of which will steadily
advance the solution of all of the problem variables in the time direction
from the initial condition profiles.

Any attempt to employ the outlined method will bring up s&inumber
of difficulties. The first problem is the exact form of the differencing
that is required. Generally speaking, there is no assurance that a given
differencing system may be used successfully. For flow problems,
central differencing schemes are unstableu(Richtmyer,\l957).h,Thea/,\;a
differencing scheme found successful in the problem combinés central dif- -
ferencing for all pressure terms and a simplified back differencing
for all of the other terms.

A second problem concerns the precise form used for.:thé-equation:
of state. The most desirable form would be closed expressions for :’
each of the state variables in terms of the density and energy; but; no
such closed forms are known from theory. The best equation of state data
available, Chapter VII, is given only in tabular form. All attempts: to -
fit various analytical forms %o the tabulated data were unsuccessful. For
this reason, the closed algebraic form was abandoned in favor of a purely
numerical method. This method employs the tabulated data with sultable
interpolation and extrapolation methods to extend the values into inter-
stitial and boundary regions which are not specifically enumerated in the
avajlable tables. The standard logrithmic interpolation and extrapolation
scheme was employed which Ables (1963) developed for this thesis.J

A choice must be made of the values for Ar and At. The cholce for Ar

is dictated by the physical dimensions of the initiel boundaries of the
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problem and:by the degree of fineness which 1s desired in the solution.: -
The fineness 15 determined, to a great extent, by the size of the digital
computer, both as to storage capacity and as to speed of computation. The
choice of a value for At is a much more annoying problem. A relatively
large At is desired in order for the solution to be obtained as rapidly as
possible; however, a small At is desirable from the standpoint of accuracy.
In addition to these considerations, it was found that the convergence . . -
of this type of numerical solution is dependent on the relative size of Ar
and At (Richtmyer, 1957; Scarborough, 1950). The precise relationship be-
tween Ar and At for convergence is known only for certain simple systems.
An exact analysls of the system of equations under consideration is not
possible in the present state of the art. Courant; et al, (1948) have,
given a simple convergence and stebility criteria for compressible fluid
flow problems which appears to have validity in many areas which are not
covered by the assumptions to obtain this relationship. This, known:

as the Courant Condition, states that Ar/ At may not be larger than fhe
maximum velocity of propagation, Vﬁax’ of a disturbance in the fluid. In

the present application, V may be taken as the sum of the flow v..l. .

of the velocity of sound in the plasma. If

f:::Cme , €21

then the solution is said to have been developed at C x Courant.

Since the memory of a computer is limited, only a finiteqnumber of
mesh points may be considered. As a consegquence, there will exist & limit
to the radial distance which may be separated into meshes and kept .in:the

computer at any given time. As the plasma expands, this maximum radius . ::
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eventually is ovefrun. At this point in the solution, it is necessary to
increase the length of the meshes, Ar, so as to increase the radiua

while the number of mesh points remain constant. Of course, 1t is also
necessary to lncrease At by the same proportion to keep the Courant value,
C, constant throughout the solution. To minimize the number of such ad-
justments, Ar and At should be doubled each time it becomes necessary. The’

process will, hereafter; be called a machine condensation.

3. The Machine Code

A machine code embodying the above concepts was developed in FORTRAN
(FORmulae TRANslator) computer language by the author. Able's program was
employed as a basis. FORTRAN is a high order computer language which,in’ -
slight modifications, is acceptable to & wide assortment of large scale
digital computers. The relative ease with which sclentific programs may
be encoded in the FORTRAN language leads to a drastic reduction in labor. .
for encoding a large sclentlific program. On the other hand, the %time :
to debug a program may be extended on account of the guite .involved. trans-
lation process which separates the program-as-~believed-to-be-encoded. from -
program-as-run.

tfhe final version of the FORTRAN program was prepared espe¢ially for
use on an IBM 7094 digital computer. It was & few more than .1200°FORTRAN -
statements in length which were divided into a main program and 13 sub-
routines. This was translated into approximately 14000 machine language
instructions for the TO9%4 computer. A simplified flow chart for the pro-
gram is shown in Figure 6.1. Results of the expansion program are in

Chapter VIII.
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CHAPTER VII
SOLUTION AND REDUCTION OF DATA - EQUATION OF STATE

Two preliminary studies of the Mayer-Ecker and Kroll model were made.
The computer programs for these studies were run on the IBM 1410 computer
facility at Oklahoma State University. A summery of the reported results
is given in Section 1. Upon completion of the preliminary étudies, &
computer code for the complete equation of state according fo the Mayer-
Ecker and Kroll model was written. Initial debugging was sccomplished
with the IBM 7090 which was avallable at Continental 0il Company, Ponca
City, Oklahoma. Finally, the code was brought to Goddard Space Flight
Center, Greenbelt, Maryland. The final check-out and production run
utilized the IBM TO94, Mod II, at NASA. Results of the production run are
given in Section 2.

A code for the arbltrary potential model équation of: state was' -
tested at the Goddard Space Flight facility during July of 1965. Results

of this test are reviewed in Section 3.

1. Preliminary Studies:

The initial study of the equation of state was concerned with methods
for calculating the reduction in ionization potential and the regions of
validity (Bruce and Todd, 1965) of these methods. The Debye theory was
compared to Ecker and Kroll's method. For a singly ionized gas, limiting

values of the temperature dependent electron densities by each .theory were

99
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determined and are shown in Figure T.l. It is apparent that the Ecker and

Kroll approximation is, in theory, valid further in: the low. temperature: =

high density region. Comparisons of the ionization produced in aluminuim
plasma are shown in Figures 7.2 and 7.3. Substantially higher degrees of
ionizetion are indicated by the Ecker and Kroll approximation. The com-
parison values used in this study were obtained from data reported by C.
Ronse (1961 and 1962b).

The second study was directed at evaluation of the closest approach
parameter in Mayer's theory (Bruce and Todd, 1964). Hydrogen was chosen
the plasma for study. At this time, it was deemed desirable to make a
further check on the Ecker and Kroll method. For this last comparison,
binding energies for the hydrogen atom were calculated from. Schirocedinger’s:
equation by using the Yukawa potential as the potential function. The re-
sults were rednced so that the effective ionization potential could be ex-
pressed as a function of the Debye length as is shown in Figure h.l.

In order to determine the effect of the closest approach parameter.

pressure isotherms were calculated. The total pressure was determined by

- P P
E‘OT N IPERF t %EB+ Tan * Pee 3 (7.1)
where
[URED T
(E%A = by Poes 5 (7.2)
for which
o kT3
DER 24 1T 2 (703)

and PIN was given by equation 5.47. PbEG was obtained by multiplying
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equation 5.15 by 2/3, i.e., equation 5.50. The typical variation with
density of each pressure component is shown in Figure T.4. Specifically
this figure shows the sev isotherm components for an aij” ten times larger
than that indicated by equation 4.35 for which the ionization calculation
was by the Yukawa method. The effect of variation of the &).1'j parameter

on this isotherm is shown in Figure T7.5. The same variation of aij on

the 5en isotherm by the Ecker snd Kroll approximetion is given in Figure
7.6. Two ev and Sev isotherms are compared on the basis of the ionization
in Figures 7.7 end 7.8. In these figures, the graphs in the upper right
hand corner compare the calculated ionizations., Ideal gas ionizations
were also calculated by the unmodified Sehae equation. The:idealipressure . :
contained no modificatlions, 4.e. designated, PﬁER'

The very close comparison of the Yukawa and Ecker and Krdéll methods
gave increased confidence in the Ecker and Kroll approximation. The
studles demonstrated both the accuracy and practicality of the Mayer-Ecker
and Kroll model and served as valusble guides against which to check the

results of the more complete equatlon of state.

2. Tabular Equation of State

The fullscale isotherm program was written, debugged and brought to
Goddard Space Flight Center. Before final production runs could be com-
pleted, a suitable value for the closest approach parameter;wagéneededs P IN
The value for the constant Ca’ in equation 4.35, was cbtained: by merging: ..
the tabular equation of state into the Thomas-Ferwmi model at a relative
denslty of P/Po = +1. For this purpose, the total energy did not include

oscillation energy. The best value for Ca was found to be 1.95.
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Subsequent produetion runs showed that the extreme high density-low
temperature region of the tabular output was outside the validity range of. .
the method. The results in this region are, therefore, suspectsu: An. ..
extrapolation program was written to modify the data in this regioh. : 7
This gave only limited improvement. Finally it was necessary to hand
extrapolate the energy and pressure isotherms to obtain input data for the

flow prograum.

3. Reduction of Output Data

Numerical output is arranged in the following form:
A. Figures 7.9 and 7.10 show the final energy-density and pressure-
density isotherms that were employed as input for the flow part.
B. Table I through Table VIII are the results of the extrapolation
program.
l. Table I - Extrapolated Energy Isotherm
2. Table II - Extrapolated Pressure Isotherm
3. Table III - Extrapolated Energy Per Atom
4, Table IV - Extrapolated Average Ionization
5. Table V - Temperature-Constant Energy Per Atom
6. Table VI - Energy Per Cubic Centimeter for Constant Energy:
Per Atom. This served as a check on the extra-
polation program.
T« Table VII - Pressure for Constant Energy Per Atom
8. Table VIII- Energy Per Particle-Constant Energy Per Atom.
C. Table XI through XXIII are unmodified tabulation of the various

parameters calculated by the equation of state program.
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TABLE I

ENERGY ISOTHERMS - EXTRAPOLATION

Density ¢

Ratio - - -

Tempera-. ' : : : o N
Ture 1.0 1.CE-1 ~ 2.0E-2 1.0E-3 1.0E-b- 1,0E-5 1.0E-6 "

" 0.,1000E 01 0.7351E 2k 0.1542E 23 = 0.2346E 22 = 0.3009E 21 - 0.3329E 20 0.l581E 19  0.5413E 18
0.2000E 01 0.9586E 24 0.112LE 24 0.1082E 23 0.9026E 21 - 0.1076E 21  0.1L4T1E 20 0.1945E 19
0.5000E 01 0.8328E 2 0.3645E 24 0.3106E 23. 0.3665E 22 0.kLLOE 21 0.48T0E 20 _0.4972E 19
0.1000E 02 ~ 0.58TLE 25 - 0.6752E 2k 0.622GE 23  0.6848E 22 0.8143E 21  0.117%E 21 0.1579E 20
0.2000E 02 0.1621E 26 0.1651E 25 0.1898E 2k 0.2652E 23 0.35TTE 22 0.4866E 21 0.64TLE 20
0.5000E 02 0.5234E 26 0.6865E 25 0.9424E 24 0.1275E 2k 0.1589E 23 0.1901E 22 0.3185E 21

TABLE II

PRESSURE ISOTHERMS - EXTRAPOLATION .
Density
Ratio - - »
Tempera- T ’ o ‘ ’ . o
ture 1.0 1.0B-1 2.0E-2 1.0E-3 1.0E-k 1.0E-5 1.0E-6
0.1000E 01 0.5682E 12 0.135%E 11 0.1140E 10  0.152TE 09 0.1455E 08 = 0.1690E O7 0.1861E 06
0.2000E 01 0.3628E 12 = 0.1026E 12 0.5751E 10 0.400TE 09 0.4143E 08  O.LTTOE 07 0.5522E 06
0.5000E 01 0.2111E 13 0.3260E 12 0.17h2E 11  0.168CE 10 0.1800E 09 0.18TLE 08 0.1905E 07
0.1000E 02 0.6997E 13 0.5583E 12 0.3%49E 11 0.3852E 10 0.3965E 09 - 0.4408E 08 0.4950E 07
0.2000E 02 0.1427E 14 0.1106E 13 0.9927E 11 = -0.1106E 11 0.1230E 10 0.1407TE 09 0.1722E 08
0.5000E 02 0.3994E 14 0.3995E 13 0.4389E 12~ 0.4921E 11~ . 0.5424E 10  0.6331E 09 - 0.1288E 09
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TABLE III

- ENERGY PER ATOM - EXTRAPOLATION

Density

_Ratio -~ -

Tempera- ' » .

ture 1.0 1.0E-1 2.0E-2 1.0E-3 , 1.0th 1.0E-5 1.0E-6
0.1000E 01 0.2451E 02 0.1269E 02 0.5946E 01 0.4999E 01 0.5528E 01 '0.76163 01 . 0.8991E 01
0.2000E 01 0.3104E 02 0.2E48E 02 0.1796E 02 0.1500E 02  0.1T89E 02 = 0.2443E 02 0.3231E 02
0.5000E 01 0.4608E .02 0.6055E 02 0.5160E 02 0.6088E 02 = 0.T37T6E 02 0.8091E 02 0.8259E 02
0.1000E 02 © 0.975TE 02 9.1122E 03 0.1035E 03 0.1138E 03  0.1353E 03 0.1959E 03 0.262LE 03
0.2000E 02. 0.2692E 03 0.2742E 03 0.3154E 03 0.44O5E 03 0.5941E 03 0.8082E 03 0.1075E OL
0.5000E 02 0.8695E 03 0.1140E Ok 0.1565E Ok . 0.2118E ok 0.2640E Ob 0.315TE Ok 0.5290E 04

TABLE IV
AVERAGE 'IONIZATION - EXTRAPOLATION

Density

Ratio - -

Tempera- ' ' » o

ture 1.0 _ 1.0E-1 2.0E-2 1.0E-3 1.0E-h 1.0E-5 1.0E-6_
0.1000E 01 0.3306E O1L  0.1503E 01 =~ 0.6681E 00  0.4188E-00 PATISE 00 0.753%E 00 0.9396E 00
0.2000E 01 - 0.3890E 01 0.2193E 01 0.1115E 01 0.9026E 00 0.1105E 01 0.1471E 01 0.1875E 01
0.5000E 01 0.3606E 01 0.2678E 01 0.1852E 01 0.2153E 01 0.2611E 01 0.2874E 01 . 0.2952E 01
0.1000E 02 0.3011E 01 0.2062E 01 0.2530E 01 0.2811E 01 0.3080E 01 0.356TE 01 0.4029E 01
0.2000E 02 0.3722E 01 0.3516E 01 0.3652E 01 0.4495E 01 0.5276E 01 0.61TLE 01 "0.6992E 01

0.5301E 01 0.6073E 01 0.7359E 01 0.8789E 01 0.993%E 01 0.1062E 02 " 0.1091E 02

- 0.5000E 02
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TABIE V

TEMPERATURE - CONSTANT ENERGY PER ATOM

Density . , _ )
Ratio - - 1.0 1.0B-1 2.0E-2 1.0E-3 " 1.0E-4 1.0E-5 1.0E-6
Energy Per - : : ’ T ‘
Atom :
0.1000E 01 0.1409E 01 0.3462E-00 0.5916E 00 0.5901E 00 0.6254E 00 0.6033E 00 0.6T19E 00
0.100CE 02 0.767TE 00 0.8344E 00 0.1295E 01 0.1681E 01 0.1591E 01 0.1222E 01 0.5995E 00
0.5000E 02 0.T20LE 01 0.3960E 01 0.4846E 01 0.3951E 01 0.3004E 01 0.3620E 01 0.LOTTE 01
0.1000E 03 .0.1014E 02 0.S245E 01 0.9836E 01 0.957€E 01 0.9227E 01 0.8423E 01 0.7975E 01
0.5000E 03 0.3171E 02 0.2998E 02 0.2622E 02 0.208TE 02 0.175TE 02 0.1486E 02 0.1287E 02
TABLE VI

ENERGY PER CUBIC CENTIMETER - CONSTANT’ENEBGY/ATOM
Density , :
Ratio - - 1.0 1.CE-1 2.0E-2 1.CE-3 1.0E-k4 1.0E-5 1.0E-6
Energy Per : : i
Aton ' ‘
0.1000E 01 0.3996E 25 0.5140E 23 0.1195E 22 0.6025E 20 0.6042E 19 0.6008E 18 0.6018E 17
0.1000E 02 0.1257TE 25 0.813L4E 21 0.6023E 22 0.6017E 21 0.6016E 20 0.6025E 19 . = 0.6022E 18
0.5000E 02 0.3010E 25  0.3011E 24 .  0.3010E 23 0.3010E 22 0.3010E 21 0.3010E 20 - 0.3010E. 19
0.1000E 03 . 0.6020E 25 0.6019E 24 0.6020E 23 0.6020E 22 0.6018E 21 0.6019E 20. 0.6016E 19
0.5000E 03 - 0.3010E 26 0.3011E 25 0.3010E 24 0.3009E 23 " 0.3010E 22

0.3010E 21

0.3010E .20
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TABLE VII

PRESSURE - CONSTANT ENERGY /ATCM

Density

0.5000E 03

Ratio - - 1.0 1.0E-1 2.0E-2 1.0E-3 1.0E-L4 1.0E-5 . 1.0E-6
Energy Per
Atom ‘
0.1000E 01 0.2100E 13 0.4BL8E 11 0.7TT3E 09 0.5438E 08 o.h7913 o7 0.5180E 06 0.7038E 05
0.1000E 02 0.27T35E 12 0.1351E 10 0.3047E 10 0.264TE 09 0.2242E 08 0.1168E 07 0.6982E 05
0.5000E 02 - 0.L4982E 13 0.2779%E 12 0.16T4E 11 0.1227E 10 0.9453E 08 0.1185E 08 0.1351E 07
0.1000E 03 0.7100E 13 0.5172E 12 0.3851E 11  0.3549E 10 0.3325E 09 0.2911E 08 0.2558E 0T
- 0.5000E 03 0.2413E 1k 0.1863E 13 0.1502E 12 0.1242E 11 0.1071E 10 0.9368E 08 0.8665E 07
TABLE VIII
ENERGY PER PARTICLE - CONSTANT ENERGY /ATOM
Density .
‘Ratio - - 1.0 1.0E-1 2.0E-2 1.0E-3 1.0B-k4 1.0E-5 1.CE-6
Energy Per
Atom
‘0.1000E 01  0.2105E 02 0.4298E 01 0.2567E 01 0.1727E 01 0.1970E 01 0.2080E 01 0.2294E 01
0.1000E 02 . 0.1291E 02 0.5814E 01 0.6171E 01  0.6623E 01 0.6806E 01  0.TO72E Ol 0.6910E 01
0.5000E 02 0.1510E 02 0.1300E 02 0.1775E 02 - 0.1713E 02 0.1543E 02 0.148TE 02 0.1515E 02
0.1000E 03 0.24T9E 02  0.2586E 02 0.2868E 02 0.2772E 02 - 0.2839E 02 0.3182E 02 0.3559E 02
0.8930E 02 0.9361E 02 0.920%9E 02 0.8391E 02 0.78T4E 02 0.7610E 02

0.T59LE 02

GTL



TABLE IX

TOTAL ENERGY LESS OSCILLATION ENERGY VERS TEMPERATURE AND ALUMINUM MASS:DENSITY:RATIO

1.00E-01

18

20

v RO 1.00E 00 1.00E-02 1.00E-03 1.00E-0k4 1.00E-05 1.00E-06
Tempera- : :
ture
0.10000E 01 -0.29473E 25 -0.19693E 25 0.14445E 23  0.2962LE 21 o.33io6E 20 o.h5696E'19 0.54080E
0.20000E 01 -0.9915TE 24 -0.5L562E 22 0.10168E 23 0.88766E 21  0.10701E 21 0.14676E 20 0.19441E 19
0.50000E 01 -0.28055E 26 ~ 0.27987E 24 0.29679E 23 0.36103E 22 0.44173E 21  0.4B62LE 20 0.49691E 19

- 0.10000E 02 0.30086E 25 0.5E68LE 2k ‘0.60082E 23 0.67663E 22 0.81132E 21 0.11781E 21 0.15793E
0.20000E 02 . 0.122T0E 26 - 0.15366E 25 0.1860LE 24  0.26355E 23 0.35701E 22 0.4B630E 21  0.64T32E 20
0.50000E 02 0.456LGE 26 0.66055E 25 0.93153E 24 0.12703E 2k 0.15874E 23 0.19001E 22 0.31848E 21

" TABLE X
PLASMA OSCILLATION ENERGY = cg hw, VERS TEMPERATURE ANDALUMINUM MASS ‘DENSITY. RATIO
RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-Ok 1.00E-05 1.00E-06

Tempera- ' .

- fure
0.10000E 01 0.39283E 24  0.11876E 2k 0.26575E 22 0.43912E 19 0.17758E 18  0.11346E 17 0.50006E 15
0.20000E 01 0.548%4E 24  0.70156E 23 0.8236LE 21 0.15830E 20 0.63988E 18 0.30933E 17 - 0.14075E 16
0.50000E 01 0.44512E 25 0.8L598E 23 0.13640E 22  0.54929E 20 0.23110E 19 0.84516E 17 0.27805E 16
0.10000E 02 ~0.25144E 25 0.88LOLE 23 0.22200E 22 0.81795E 20 0.29618E 19 0.11677E 18 0.4L4318E 16
0.20000E 02 0.38842E 25 0.10506E 24 0.38590E 22 0.16553E 21 0.66526E 19 0.26615E 18 0.10133E 17
0.50000E 02 0.64599E 25 = 0.251T6E 2k 0.10856E 23  0.LL496TE 21 0.17145E 20 0.60023E 18 0.19753E 17
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TABLE XI

PLASMA CSCILLATION ENERGY VERS TEMPERATURE AND  ALUMINUM MASS DENSITY' RATIO

RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-Ok 1.00E-05 ~ 1.00E-06
Tempera- ' : : , - v S ;
ture ’ _
0.10000E 01 0.1245L4E 21 0.38034E 21 0.296BTE 21 'O499877E 17 0.37730E 16 0.2h099E 15 0.10615E 14 |
0.20000E 01 0.57226E 22 O.6h3l9E 22 - 0.2867TE 20 0.22346E 18 0.95TTTE 16 0.46486E 15 0.21163E 14
0.50000E 01 -0.l10710E 2 0.12506E 23 0.13134E 20 0.5207TE 18 0.21989E 17 0.80303E 15 0.26h29E 14
0.10000E 02 0.48954E 24 O.68573E 22 0.14833E 20 0.5491TE 18 O,l992hE 17 0.T78510E 15 - 0.29799E 14
0.20000E 02 0.98100E 24 0.4455¢E 22 0.18184E 20 0.78528E 18 0.31583E 17 0.12641E 16 0.48182E 14
0.50000E 02 0.82358E 24 0.7T7991E 21 0.32901E 20 0.13580E 19 - 0.516hlE 17 0.18043E 16 0.59388E 14

TABLE XII

TOTAL PRESSURE VERS TEMPERATURE"AND: ALUMINUM MASS DENSITY. RATIO
. RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 _ 1.00E-Ok 1.00E-05 l.OOE-06

Tempera- : ’
ture -
0.10000E 01 -0,11017E 13 -0.14725E 13 = 0.6631TE 10 0.152T4E 09  0.14552E 08 0.1690LE 07  0.18605E 06
0.20000E 01 0.64TO0E 12 0.12877E 12 0.57511E 10 0.LO0T2E 09 O.hlh3lE 08 0.4TT702E 07 0.55215E 06
0.5000CE 01 -0.77337E 13 - O.326OME 12 0.1T418E 11 0.16795E 10 0.18000E 09 0.18741E 08 0.1905LE 07 -
-0.1000CE 02 0.69973E 13 0.55828E 12 0.39486E 11 0.38517E 10 0.39651E 09 O.th79E 08 0.&9502E o7
-0.20000E 02 0.14270E 1k 0.1106LE 13 0.9926TE 11 0.11062E 11 0.12299E 10 0.14065E 09 0.17223E 08
0.50000E 02 ~ 0.3993¢E 14  0.3995LE 13 0.43893E 12  0.49209E 11 0.54236E 10 0.63314E 09 0.12883E 09
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TABLE XIII

IDEAL GAS PRESSURE VERS TEMERATUREANDALKMINUM MASS DENSITY. RATIO

" 1.00E-Ok

[oNeoNeNeNoNo)

RO - 1.00E 00 1.0CE-01 1.00E-02 1.00E-03 1.00E-05 *1.00E-06

Tempera- ' ' .
ture

.10000E 01 0.17101E 12 0.5214¢E 11 0.37254E 10  0.13686E 09 0.1419%E 08 ° 0.16915E 07  0.18T11E 06

.20000E 01 0.38586E 12 = 0.6E229E 11 0.LOTETE 10 0.36T10E 09  0.40598E 08 0.47632E 07 0.55438E 06

.50000E 01 0.26871E 13 0.1E68EE 12 0.13755E 11 - 0.15214E 10 0.1TL1SE 09 0.18692E 08 0.19043E 07

.10000E 02 = 0.38TOLE 13 0.38188E 12 0.34059E 11  0.36724E 10 0.39336E 09 0.44011E 08 0.48466E OT

.20000E 02 0.91124E 13 0.87051E 12 0.89753E 11 0.10592E 11 0.12114E 10 0.13847E 09 0.15406E 08

.50000E 02 0.3036%E 14  0.3k121E 13 0.40288E 12 0.4T7176E 11 0.52714E 10 0.55994E 09  0.57384E 08

TABLE XIV
PLASMA FREQUENCY VERS TEMPERATURE AND | ALUMINUM MASS :DENSITY RATIO
RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-0Ok 1.00E-05 1.00E-06

Tempera-
ture
0.10000E O1  0.19370E 16 0.1L621E 16 0.37286E 15 0.45083E 14 0.15127E 14 O0.6046TE 13 0.21355E 13
0.20000E 01  0.22039E 16 0.11101E 16 0.23257E 15 0.66185E 14 - 0.23162E 14 0.8448¢E 13 0.30168E 13
0.50000E 01 O.47112E 16 0.11818E 16 0.29979E 15 0.10223E 15 0.35597E 14 0.11810E 14 . 0.37848E 13
0.10000E 02 0.38227E 16 0.11990E 16 0.35042E 15 0.11679E 15 0.38664E 14  0.13157E 1k 0.L4217E 13
0.20000E 02 0.42L499E 16 0.13062E 16 0.42098E 15 0.14769E 15 0.50603E 14 0.1T7310E 14 0.58253E 13
0.50000E 02 0.50721E 16 0.17167E 16 0.59761E 15 0.20653E 15 0.22705E 1k 0.72763E 13

0.69451E 14
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TABLE XV

AVERAGE IONIZATION VERS TEMPERATURE "AND “ALUMINUM MASS :DENSITY.RATIO

'~ 1.00E-Ok4

1.00E-06

RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-05

Tempera-

ture ‘

0.10000E O1 0.77312E 00 0.4LOMOR O1 = 0.28646E O1  O0.418T9E-00  0.4T150E-00 0.75339E 00 = 0.9396LE 00
0.20000E 01  0.10008E 01 J.25394E Ol  0.11145E 01 0.90260E 00  0.11054E 01 0.14709E 01  0.187T54E 01
0.50000E 01  0.45T34E 01 - 0.287T7E O1 ~ 0.18519E O1 0.21533E 01  0.26111E 01 0.28741E 01  0.29516E 01
0.10000E 02 0.30111E 01 0.29621E 01  0.25302E O1 - 0.28108E 01  0.30804E 01 0.35670E. 0L  0.40286E 01
0.20000E 02 0.37216E 01 0.35156E 01  0.3651TE 01 O.LL94BE 01  0.52763E 01 0.61738E 01  0.69923E O1
0.50000E 02 _ 0.53009E 01 0.60725E 01  0.T3590E 01 0.87892E 01 = 0.99388E 01 0.10622E 02 ~_ 0.10910E 02

TABLE XVI
ELECTRON DENSITY VERS TEMPERATURE AND ALUMINUM MASS DENSITY RATIO
RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-Ok 1.00E-05 1.00E-06

Temperea- ' ' '
ture .
'0.10000E 01 0.46542E 23 0.26518E 23 0.17245E 22 0.25211E 20 0.2838LE 19 0.4535LE 18 0.5656TE 17
0.20000E 01 0.60251E 23 0.15287E 23  0.6T093E 21  0.5L337E 20 . 0.665LEE 19 0.88547E 18  0.1129%0E 18
0.50000E 01 0.27532E 24 ~ 0.17324E 23  0.11148E 22 0.12963E 21  0.15719E 20 0.17302E 19  0.17T6SE 18
0.10000E 02 0.18127E 24 0.17832E 23  0.15232E 22 0.16921E 21  0.1854LE 20 0.21473E 19  0.24252E 18
0.20000E 02 0.2240LE 24 0.21164E 23  0.21983E 22 0.27059E 21  0.31764E 20 0.3T166E 19  0.42093E 18
0.50000E 02 0.31911E 2% 0.36557E 23 0.44301E 22 0.52911E 21 0.59832E 20 0.639L45E 19 0.65675E 18
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TABLE XVII

DEEYE RADIUS VERS TEMPERATURE‘AND:ALUMINUM MASS:DENSITY: RATIO

1.00E 00

[oNoNoNeoNeoNe]

RO 1.00E-01 1.00E-02 1.00E~03 1.00E-O4 1.00E-05 1.00E-06
Tempera- ' o '
ture ‘ ‘

.10000E 01 0.15918E-08 0.1T120E-08 0;90602E-08 0.10465E-06 0.31192E-06 0.T8021E-06 0.2208%E-05
.20000E 01 0.23488E-08 = 0.4395L4E-08 0.270TOE-0T7 = 0.98019E-0T7 0.27005E-06 0.68639E-06 0.18216E-05
.50000E 01 0.1202LE-08 - 0.63870E-08 0.28426E-07 - 0.800L6E-0T 0.21736E-06 0.63803E-06  0.19828E-05
.10000E 02 0.26504E-08 0.88363E-08 0.31498E-07 0.91852E-07 0.26815E-06 0.T456LE-06 0.21225E-05
.20000E 02 0.316LOE-08 0.10653E-07 0.32308E-07 0.85623E-0T7 - 0.23315E-06 0.63813E-06 0.18131E-05
.50000E 02 0.36625E-08 0.10271E-07 .0.27226E-07 0.73092E-0T 0.20631E-06 0.61435E-06 0.18935E-05
TABLE XVITI
TRANSLATION ENERGY VERS TEMPERATURE AND ALUMINUM MASS DENSITY: RATIO

RO 1.00E 00 1.00E-01 ‘1.00E-02 1.00Eéo3 -1.00E-O4 1.00E-05 1.00E-06
Tempera.-
ture
0.10000E 01 0.16013E 24  0.4EB828E 23 0.34882E 22 0.1281k4E 21 0.13290E 20 0.15838E 19 0.17520E 18
0.20000E 01 0.36129E 24 0.63885E 23 0.38171E 22 0.34372E 21 0.38013E 20 O.44599E 19 0.51908E 18
0.50000E 01 0.25160E 25 0.17498E 2% 0.12879E 23 0.14245E 22 0.16310E 21 0.17502E 20 0.17830E 19
0.10000E 02 0.36240E 25 - 0.35757E 2% - 0.31890E 23 0.34386E 22 0.36831E 21 0.41209E 20 - 0.k5380E 19
0.20000E 02 0.85322E 25 0.81508E 2k 0.84039E 23 0.99180E 22 0.11342E 22 0.12965E 21 0.14425E 20
0 02 0 0.31948E 25 0.37723E 24  0.4L172E 23 0.49358E 22 0.52428E 21 0.53731E 20

+D0000E

.28L35E 26
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TABLE XIX

IONIZATION ENERGY VERS TEMPERATURE AND :ALUMINUM MASS DENSITY: RATIO

1.00E-Ok

l oOOE '05

RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-06
Tempera-
- ture
0.10000E 01 0.18929E 25 0.2L062E 25 0.29769E 23 0.15089E 21  0.16987E 20 0.271LTE 19 0.33898E 18
0.20000E 01 0.84314E 24  0.2507TE 2k 0.50925E 22 0.36546E 21  0.51T36E 20 0.90078E 19  0.13629E 19
0.50000E 01 0.22858E 26 0.29975E 2k 0.140LLE 23  0.1823CE 22 0.25503E 21  0.29930E 20 0.31191E 19
0.10000E 02 0.52407E 25 0.3181GE 24 0.2LLO%E 23 0.30208E 22 = 0.41954E 21  0.T4O59E 20 0.108T0E 20
0.20000E 02 0.91T38E 25 0.TO650E 24 0.84362E 23 0.15226E 23 0.23200E 22 .0.342LLE 21  0.45911E 20
0.50000E 02 — 0.24056E 26 0.33613E 25 0.52547E 24 . 0.79350E 23 0.10519E 23 - 0.12235E 22 - 0.12999E 21
TABLE XX
EXCITATION ENERGY VERS TEMPERATURE"AND:ALUMINUM MASSI’DENSITY.RATIO
RO 1.00E 00 1.00E-01° 1.00E-02 1.00E-03 1.00E-0k4 1.00E-05 - 1.00E-06
Tempera- ' '
ture
0.10000E O1 -~ 0.T71840E 19 0.T3013E 1k 0. 0.11432E 20 0.26300E 19 = 0.28518E 18 0.28T43E 17
0.20000E 01 0.10135E 09 O.6TLI6E 02 0.12675E 22 0.16148E 21  0.16980E 20 0.12393E 19  0.67102E 17
0.50000E 01 ~ 0.24790E 19 0.28953E 1k 0.23783E 22 0.30649E 21 0.2142LE 20 0.12594E 19 0.65796E 17
0.10000E 02 0.266T8E 22 0.24650E 22  0.25845E 22 0.23388E 21  0.23587E 20 0.25506E 19  0.19196E 18
0.20000E 02 0.57341E 23 0.63933E 23 - 0.15752E 23  0.10779E 22  0.10784E 21  0.10939E 20 0.10055E 19
0.50000E 02 0.944OFE 24 0.29520E 2k 0.32960E 23 0.31638E 22  0.26606E 21 - 0.18271E 20 _ 0.10183E 19

et



DEGENERACY ENERGY

TABLE XXI

VERS TEMPERATURE ANDiALUMINUM MASS . DENSITY. RATIO

v RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-0k4 1.00E-05 1.00E-06
Tempera-
ture
0.10000E 01 0.7781TE 23 0.2639SE 23 0.12008E 21 0.2581CE 17 0.32718E 15 0.83536E 13 0.12995E 12
0.20000E 01 0.9T701E 23 0.65936E 22 0.12916E 20 0.847T78E 17 0.12717E 16 0.22515E 14 0.36601E 12
0.50000E 01 0.12789E 25 0.5L4228E 22 0.22565E 20 0.30518E 18 0.4U48BT3E 16 0.54368E 14 0.57343E 12
0.10000E 02 0.41414E 24  0.4O759E 22 0.29791E 20  0.3676%E 18 0.L4161IE 16 0.59216E 1k 0.75534E 12
0.20000E 02 0.45205E 24  0.L406L43E 22 0.43881E 20 0.66487E 18 0.9161GE 16  0.12544E 15 0.16090E 13
0.50000E 02 0.58310E 24  0.T6T26E 22 0.11271E 21  0.1607%E 19 0.20560E 17  0.23484E 15 0.24772E 13
TABLE XXII
MAYER CORRECTION ENERGY VERS TEMPERATURE[AND:ALUMINUM MASSIDENSITY RATIO
RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-0k 1.00E-05 1.00E-06
Tempera- .
ture
0.10000E 01 -0.50768E 25 -0.4L507E 25 -0.18932E 23 0.57558E 1 0.16895E 18 -0.14057E 1 -0.21336E 16
0.20000E 01 -0.22927E 25 -0.32670E 24  -0.22505E 20 0.16911E 20 0.28377E 18 -0.31555E 17  -0.53877TE 16
0.50000E 01 -0.54708E 26 -0.20029E 2k 0.35469E 21  0.55980E 20 0.21566E 19 -0.80808E 17 -0.1226LE 17
0.10000E 02 -0.62729E 25 ' -0.954LLOE 23 0.11690E 22 0.72453E 20 -0.33843E 18 -0.22355E 18  -0.21107E 17
0.20000E 02 ~0.59450E 25 ~-0.53027E 23 0.18428E 22  0.1290GE 21 0.451738 19 -0.15311E 18 -0.3620CE 17
0 02 -0.83702E 25 -0.25359E 24  -0.43TO5E 22  0.20962E 21 0.19547TE 20 0.28877E 18 -0.84025E 17

- 50000E

AAN



TABLE XXIII

RADIATION ENERGY VERS TEMPERATURE "AND “ALUMINUM MASS DENSITY RATIO

RO 1.00E 00 1.00E-01 1.00E-02 1.00E-03 1.00E-0k 1.00E-05 1.00E-06
Tempera- ;
 ture
0.10000E 01 = 0.21413E 14 0.21413E 14 0.21413E 14 0.21413E 14 0.21413E 1% 0.21413E 14 0.21413E 14
. 0.20000E 01 0.34261E 15 0.34261E 15 0.34261E 15 0.34261E 15 0.34261E 15 0.34261E 15 0.34261E 15
0.50000E 01 0.13383E 17 - 0.13383E 17 0.13383E 17 0.13383E 17 0.13383E 17 = 0.13383E 17 0.13383E 17
0.10000E 02 0.21413E 18 0.21413E 18 0.21413E 18 0.21413E 18 0.21413E 18 0.21L413E 18 0.21413E 18
0.20000E 02 0.34261E 19 0.34261E 19 0.34261E 19 0.34261E 19 0.34261E 19 0.34261E 19 0.34261E 19
0.50000E 02 0.13383E 21 0.13383E 21 0.13383E 21  0.13383E 21 0.13383E 21 _ 0.13383E 21 0.13383E 21

XAN



124

3. Arbitrary Potential Model

Computer code for the IBM 7094 was written and tested &t the Goddard
facility. It was demonstrated that the arbltrary model 1is feasable.
provided sufficlent time is availesble to determine the best choice of po-
tential parameters. Unfortunately, sufficient time was unavailable at the
time that the program was tested. It ls felt that the preliminary tests

show that the model may be successfully calculated.



CHAPTER VIII

SOLUTION AND REDUCTION OF DATA - FLOW PROBLEM

1. Machine Computations

As a preliminary to the calculations‘in thls thesis, a simplified‘
version of the problem was solved. This version employed a one fluid
model of the plasma and a much simplified equation of state. OSuccessful
runs of this problem served to establish a stable differencing scheme and
demonstrated the feasibility of the proposed method of solution.

The full scale program was debugged by using the IBM TO9% computer at
the Continental 0il Company, Ponca City, Oklshoma. When the validity of
the program was sstablished, the code was carried to Goddard Space Flight

Center, Greenbelt, Maryland for subsequent check out and production runs.

2. Initial Conditions

The problem was run for four sets of initial»conditions.‘_Thése con-
ditions differed only in the initial energy density of the sample. These
energy densities were chosen to glve Initial temperatures of approximately
3.5 ev, 10 ev, 20 ev and 45 ev. Figure 8.1 corrolates the original energy
input values to origilnal energy per atom. All runs started from the same
initial‘boundary, a sphere of aluminum with a radius of 4.25 x 1073 em and
a density of 2.7 gn/cmB. The Courant value for all runs was 0.1, In .

all cases the external electric field was set to start at 1 cm radius.
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The initial Ar for all runs was taken as 1.4l x lO“'3 cr which spread
the initisl sphere over the first 25 cells of the mesh; A total of 201
radial mesh spaces were maintained throughout the solution by means of
periodic machine condensations. All runs-were terminated at 2500 cycles
and the output was taken every 100 cycles, except when a condensation
occurred. Outputs were also taken immediately before each condensation.
EBach output yields radial profiles of the density, pressure, charge,
temperature, flow velocity, election diffusion velocity, internal energy
density, total energy density, average ionization and electric field

strength.

3. Reduction of Output Data

The numerical ocutput produced in these four rums is of such & large
extent that only a small portion of it can be given here. In order to
give as much of the truly meaningful dates as space permits; a graphical
representation was chosen. Profiles generated after 300, 500, 1000, 2000
and 2500 cycles are presented here. This allows one to follow the time
development of the plasma expansion. The profiles of the principal
variables are plotted against radial distance. In all cases the indi-
cations on the radisl distances are for 10 mesh numbers. The mesh number

are related to the radial distance through Ar by the formula

Y\:‘("O-PV]AV‘ ) (801)

Lk, Organization of Results

The graphical results are grouped according to initial conditions;

each being further subdivided according to the time elapsed. For easy
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reference, a list of the graphs is given below. In each time group the
first figure shows the density and pressure profile; the second shows the
temperature and ionization profile and the thlrd shows the distribution of
excess charges.
I. B, = 6.437 x 107 ergs
A, Time = 2.744 n sec
1. Figure 8.2
2. Figure 8.3
3. Figure 8.k
B. Time = 5.028 n sec
1. Figure 8.5
2, Figure 8.6
3. Figure 8.7
C. Time = 10.T4 n sec
1. Figure 8.8
2. PFigure 8.9
3. Figure 8.10
D. Time = 28.6 n sec
1. Figure 8.11
2., PFigure 8.12
3. Figure 8.13
E. Time = bh.47 n sec
1. Figure 8.14
2. PFigure 8.15
3. Figure 8.16

F. Figure 8.17 - Flow Velocity for All Profile Times
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II. EO = 3.000 x 106 exrg
A, Time = 1.192 n sec
l. Figure 8,18
2, Figure 8.19
3. Figure 8.20
B. Time = 2,25 n sec
1. Figure 8.21
2. Figure 8.22
3. PFigurs 8.23
C. Time = 4,895 n sec
1. Figure 8.24
2. Figure 8.25
3. Pigure 8.26
D. Time = 13.08 n sec
1. PFigure 8.27
2. Figure 8.28
3. Figure 8.29
E. Time % 20.26 n sec
1. Figure 8.30
2., Figure 8,31
3. Figure 8.32

F. Figure 8.33 Flow Velocity for All Profile Times

III. E, = 8.16 x lO6 erg
A, Time = .7091 n sec

1. PFigure 8.34



2, Figure 8.35
3. Figure 8.36
B. Time =
1. Figure 8.37
2. Figure 8.38
3. Figure 8.39
C. Time = 2.954 n sec
1. PFigure 8.40
2. Figure 8.h41
3. Figure 8.42
D. Time = 7.884 n sec
1. Pigure 8.43
2. TFigure 8.4k
3. Figure 8.45
E. Time = 12,14 n sec
1. Pigure 8.46
2, Figure 8.47
3. PFigure 8.48

F. Figure 8.49 Flow Velocity for All Profile Times

IV. E = 2.3 x 107 erg
A. Time = .343 n sec
1. Figure 8.50
2. Figure 8.51
3. Figure 8.52

B. Time = ,7252 n sec

130
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1. Figure 8.53
2. Figurs 8.54
3. Figure 8.55
C. Time = 1,68 n sec
1. Figure 8.56
2. Figure 8.57
3. Figure 8.58
D. Time = 4.527 n sec
1. Figure 8.59
2. TFigure 8.60
3. Figure 8.61
E. Time = 6.873 n sec
1. Figure 8.62
2., Pigure 8.63
3. Figure 8.64

F. Figure 8.65 Flow Velocity for All Profile Times

5. Validity of the Numerical Solution

Two echecks on the mumerical solution are possible:

l.

The maximum terminal veloclty may not exceed that which intermal
energy allows;
The density maximum and leading edge of the expanding plasma must

expand with approximately the terminal velocity.

Figure 8.66 shows the meximum allowed terminal velocity which is given by

the formula

Y.
VVYMLX. = (‘ZEo/ﬁ> =. (8.2)
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ELECTRONIC CHARGES (102 per/cm3)
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FLOW VELOSITY (10° cm/sec)
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The cross marks on Figure 8.66 are the generated terminal velocities.

Examination of this figure shows that no error exists in this respect.
Table XXIV shows that the density maximum propagates almost 2%

fast. Table XXV shows that the leading edge of the plasma is belng propa~

gated about 12.5% fast. From these calculations one can comclude that the

density maximums should be more peaked and slightly steeper om the leading

edge. Generally speaking, the resulis are well wlthin allowable limits.

6. Difficulties Buncountered During Production Rung

The most trylog difficulty was encountered when diffissicnal affects
were included in the provlem. In this case the solution ils oscillatory
with the oscillations building untll the solution became unstable.

No value of the Courant conditlon sesmed to alleviate this instability.
Close inspection revealed that this instability resulted from excessively

large diffusion veloclitles., This difficulty was overcome by intrcducing

75

an artificial denslty dependent damping coefficient. The coefficient was
such that the thecoretical diffusion coefficient was reduced by a density
factor whenever the density was greater than 2.7 x 10°6 gm/cm3u This more

closely followed the observed phencmenon of amblpolar diffusion.
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TABLE XXIV
PROPAGATION OF DENSITY MAXTMUM

1000 to 2500 cycles

Temp, to K5 Ty Ry, At Ve AR, Ry Error
5.416ev . 107ha107T 12333070 LAhThxi0 Tl LSk7hxloTh  L3hxao"l zezewiol iBoxio™t Lsheexio 1.0096
10.08ev  Lh895x107E .2026x3077  .5h18x1071 .1536x107T  Leé6xaol  LBO8Ex10°1  L5327x107Y 1.0172
20.00sv  .295hx107 i (123523071 .5305%16 7+ ,,;‘8(x10=? LJaéxlof 5029x107%  .5191x1071 1.0220
Lk ki %ev 1682107 “ngaké\ -1 6873x107%  .502kx107t L05193x1077  .7361x207  .3823x10°%  .99sexio-l 1.0207
TABLE XXV
PROPAGATION OF LEADING EDGE
300 to 2500 cycles

Temp, ts [£98 tr Re Ot Vg AR Rfc Error
3.516ev  .27hbx 10’2 A022¢107%  WkkTx107T  L6937x107Y ka73xa07T Liz3maol  Lsukixio™l 6163x1071 1.1256
10.08ev  .1162x107°  .993hx107%  ,2026x1077  .6825x107F .1907x1077  .266x107 .5073x10° .6066x1071 1.1251
20.00ev  LTO9Lx207Y .9793x10°%  ,121hx107T  .6769x107 l . 114x1077  .4386x107 .5000%10°1 .5979x10°1 1.1321
bk Lgev .3k3x10°9  .8049x1072  .6873x1070  .6431x1071 .0653x10°7 .7361x107 .4807x107% .5702x1071 1.1278
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CHAPTER IX

SFECTRA

1. Imtroducticn

One of the cbjectives of this research is the formulstion of a
method for calculating the spectra emitted during the expansion of the
plasma sphere. In this chapter the basic equations, which define the
emitted coﬁtinuous spactra, are developed and shown to be functions of
the density amnd temperature profiles. The continuncus spectra is con-
siderad to e the best indicator of the gross plasma properities in
considefation of the extreme denslities that occur. In addition, based
upon astrophysicel models, over 90% of the emitted radiation should be
continuous.

The fundamental assumphtions that are required for this solution
are:

l. Local thermodynamic equilibrium exists,

2. mnc magnetic fields exist in the plasma (thus no synchrotron

radiation is generated), and

3. plasma oscillation emission 1s negligible.

In Section 2, thé basic classical transfer equatiomn iz developed.
The form of the solution of the equation of transfer is in Section 3.
Some simplifications are reviewed in Section 4. The evaluastion of the

monochromatic absorption coefficient; k,, i1s discussed in Section 5.

199
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The numerical methods and results of the evaluation are given in the re-

mainder of the chepter.

2. Eguation of Transfer

Consider an elementary cylinder of thickness, ds, and surface area
dS, upon which radisticn in the frequency range from ) to y+dy strikes
normal to 4S5, as shown in Figure 9.1. If the energy that is incident on
the surface per second is Ei and is entirely within the solid angle, d-;

then, -

Figure 9.1. Geometry of Absorption.

E.o= I, dw dt dy ds, (9.1

A
Equation 9.1 also serves as a definition of the specific monochromatic
intensity, ;y. The energy emerging at the second surface of the cylinder

E_, will be

_=(1,+d1,) o wdvds At (9.2)



Neglecting scattering (the scattering coefficient is negligible

compared to the absorption coefficient), the energy absorbed within the
cylinder is given by

AL b == Ei k..!'/) ds (9.3)

ct

and the energy emitted within the cylinder in the same frequency range is

L\Ee = é:’i[ni_ &(5&05 oﬂu)ﬁ“zﬁﬁi (9.4)

where k.)is the monochromatic absorption coefficient, j, is the mono-
chromatic coefficient of emission and/J is the density of the material.

It is evident that

EC = EL +- A Eé ta A E&L) ‘ (965)

Using Equations 9.1, 9.3 and 9.2 in 9.5 and simplifying, one obtains an

equation of transfer:

Ch—:,/cis - —1;} Igj/) r P, (9.6)

4
This equation relates the intensity of the radiation to the properties of
the medium through which it passes, The local thermodynamic equilibrium
agsumption allows the use of Kirchoff's law,

Jr 4T B_,_,(T>5 (9:7)
k

where B"(T) is the Planck function:

; -1
5,00 2 e (A -] L e

Thus, Equation 9.6 may be written
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(9.9)

The notation I&l(égr) indicates that in general the specific monochromatic
intensity is & function of the direction of propagation and the position

in the gas.

3. Geometry amd Form of the Sclution

Assuming that &, , - and T are known functions of the position,
Equation 9.9 can be solved. For a specified direction of radistion, the

eguation of transfer is of the form

Yy Poyy r@in) - O 9.10
A)\’ 1 P(A)J } Q& ) 4 (9 )

which has a geperal solutlion of the form

y (x) = ”Dy exp (.j]:'(r)gf r) r O(}p (‘f}D(\’)&r\//@[«)e,'(P(HMY'JW]e (9.11)

where D,, ig a constant to be dstermined. Converting to the form of
messuring distances :lnward?oppoaite to the dlrectlon of radiation, 9.11
converts to the foml
, \ ( A )
I, (x)= D, exp(+ g Ak &
Q

oo R , (9.12)
+ b&f)(-u( (DE,A r) J/o )i,, BJ(T')é/\)a(af ky/oe\’l) dv .
% x X,

Dy, is noted to be zero since _otherwise Iy(w) would have to be infinite
of the same order as exp ( jfrkd,,dr‘), The emergent radiation, in the

specified direction, that reaches the surface, X becomes
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I},(xo) f e 4, ()CXP(]/{/JX) dv (9.13)

The solution may now bf» specialized for determining the emergent light
(in a given dirsction) from the spherical plasms model of radius, R.
Consider a plasms sphere of radius, R, with the line of sight, AR,

in Figure 9.2. To calculate the intensity of emitted light along this

I
i .
] \ 2 2
P ~-yR=¢
A HWR=¢ ! \B

Figure 9.2. QGeometry of Radiation Problem

line, AB, the integral must be completed along the line BA., The total
radiation in the direction B is then the svaluation of the integral as r
varies from C to R. The integration limits are from - to +. Egquation

9.13 (for the emitted monochromatic specific intensity) becomes
X

A,, > Ak
T (r) fﬁ s B(T) @t k. (9.14)




The flux in the directlion B is simply the integral over the total disc
R +ieacr

/ ( J }'w “'/,l (»
f

5\ - i: il vS (,Q v ) 'L‘b f) :{LI ) O, ey L{ X

s}
< PR
. \/ RESETRE

To evaluate this integral, the varisbles, »~ and T, must be known

. (9.15)

functions of the radius. It wlll be shown later that Ku=4;9a, T). If
the directional flux is kmown for a particular sphere of radius, R, it is
possible, knowlng how v varies with depth, to determine a reascnable

estimate of the temperature profile.

4, Simplified Uniform Plasma Sphere

For simpliclty, consglder that the plasma sphere has uniform density
and temperaturs. (This is not nearly as bad an approximstion as it first
appears.) |

For the uniform sphere, Equation 9.15 is readily evaluated since k ,

//sand T are known constants.

. { - S £k,
F- w2 &'\'” 5;.\' ) (j’ - & :
.
since S ) i
_ /@w’i J _#/)[i/zz:; w5‘/
& ARE e . T &
Ay o {9.17)
Completing the second integral ylelds
L2 R
— -2k, »R (/ (ﬁzb/ )
— 2 = o
F = —%’ R BJ,‘CT>[ + 1;‘““-'2”“ - 2( 2 e (9.18)
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If the product, g%ﬁRy is defined in terms of optical depth of the spher§J

Z:,/ - é.r‘,»""/) K'/’ (9.19)
Equation 9.18 becomes
2 ' -2,
£ = g K< B,(ﬂ i *“5,,_.“?, — (9.20)
) )

The general relation in Equation 9.16 and the above limited relstion in
Equation .20, show that the contimvous radistion may be evaluated except

for the numberizal valus of élu

5. Absorption Coefficient, AL

There are, in gsneral, Tive processes responsible for continuous
absorption (L. H. Aller, 1953):

1. Photolonization from discrete atomic levels to the combtinuum,

2, Free-Free transitions,

3. Electron SQatteringp.

Y. Photodissociation of negative ions, and

5. Molacular dissocistion.

For the plasmas under consideration, each of the last three processes
is @ither not applicable, or is negligible. Only photoiomization and

free=-free transitions are considered.

a. Photolonization

Start with en atomic system in an initial state; i, with the energy,
Eie Consider the process by which the system absorbs a photon anrd makes
g transition to another state, £, in which the electron is free. The set

of all states in which one electron is free and the residual system is in
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a state of gtable energy 18 called a continuum of the system. Light of
fraquency, ) , can cause transitioms to those continuum states whose
energles are equal te, or lass than h. 4 Eio

The eross section for the absorpilon of a light quantum of frequency

1, acecompanied by such & transition, is given by Ditchburn and Opi (1962)

as
( <
x - f s
7 e, o A
o gavd AT, e
J L .

where the ;& are wavelunetions of the twy-fold degenerate initial state,
%/ are continuum eigenfunctions belonging to the eigenvalue; hy+ E

& ig the chargs and yi is the position vector of the/uth particle in
the system. The summations are over all par%i@legg/ug over all
initial stetes and over all f Tinal states. Solution of 9.21 is for-
midable. The most freguently used approximation is the centrsl field
gpproximaticn. This procedure is not very reliable sccording to R. V,
Ditcrburn and U. 5pik (1962}, who state: “general formula based upon
approximate wave functions do not always give even the correct order of

magnitude" In view of the difficulty of the problem, the wusual practice

is to use the hydrogen cross-sections

. AR, T i
oY h) = g (3rTre’ k2 )/( o’ )j (9.22)

with Z replaced by an effective Z p¢ (Schwartzehild, 1961). In squation
9.22, oy, n) is the cross section for photcionization from the n th o jevel
by a photon of frequency, )/, provided hl.l+'Ei is a continuum eigenvalus,

e 1s electronic charge, R,is the Rydverg constant, % 1s the core charge,
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h is Planck's constent and n 1s the principle quantum number. The
effective Z value for a given lavel is related to the n value and the

term value, Téjfor the level through

.
2, n\_}@.—.—w P (9.23)

where R,1s the Rydberg constant and Tn is in wave numbers. The total
photoionization cross sectiom, o,, may be obtained from the expression

V‘m ax

,h, Yo{ (v,71) C . (9.24)

”o

where C is the total number density and C is the number of atoms, or
ions, in each level, n. The mass photclonization coefficient, k¥, 1s
L4

related to «, through

14
o, C = P

If seversl different species are present

-#
5

2 (9.25)

/0 / // /;(“ :Z(}&i‘_ L/{ = | (9.26)

,

or, using 9.24,

o P
- < '
o Ax :Z A 1) S &0
/{‘2/ f/,:ﬁo

where the summation 1s over all allowed energy levels, n, of each species
then over the ¢’ species. The lower limit on the sum over n is determined

by the condition

> l I@({} - ]En ) 2 (9.28)
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where Ieff is the effective lomization potential and E, is the energy
of level, n. The upper limit, L 13 determined from the condition

that the highest discrete level be
o PN :
[ t_ Y(\ - f T f ! ( L4 : (9c29)

The state must be & bound state.
The value thus obtained for gj;must e corrected for stimulated
3 ° v o @ o 5 = . f = “hV/kT
mission. This correction is made by multiplyinmg by a factor (l-e Y,

The derivation of this term eppears in an appendix to this thesis. The

finel, monochromatic photolonization coefflcisnt is spproximated by

Do

-kg/'r
(2 ZO( &) )(!'6 : )// ‘ (9.30)

,(/nn

To be more precise, each a?(b~ n) should be evaluated in a slightly
different mamner. The term valnes for aluminum energy levels are known
experimentally; n valuses for each of these levels are alsc known. The
degeneracy of the hydregen function, o s should be replaced in Equation
9.22. The crogs section from sach experimentally determined lev&l,,[y

with gusntom number n becomes

. 4 , E2A 3 3 2
O(//_V {f g <’</>d?:'“ @ e{l[)/(3 l)ﬂ n qg) (9.31)

where 5! is the degeneracy of the level and Eefﬁz is the effective %
for that gl degenerate level. The cross section o), n) is then cbtained

by summing over all { levels having the same n

4((94” )
SEOENy s = V(Z""/ﬁz) SRS



For furthsr

detalls of the hydrogen photolonization coefficient,
reference 18 made %0 the appendix.

€. Fres-Fres Absoysticn

E. R. Mustel's (1956) apyroximaticn for the ¥
coafficlient

free-free absorption
was Weed
(2 )c G2 dﬁ%r )
k - (9.33)
J(F /‘ /2.. J
whers
o A
2T E / - 2¢
ComFi 1 (ot ; (9:3)
(9.35)
/+- 172 % </
f? </ﬁ3(2f),) 7
and Ce 15 the elec

s the Boltzman's constant and ¢ is the
speed of Llight sni Z%

The mass asbsorpliion
coafiiciant,

th components

where k¥ is defimed by 2,30

\‘IF

(9.36)
d Ees by .33,

¥

7. Numericsl Method and Results of Caleculation

itten to calculate ti

Prior to obtaining the solution of the flow problem, fortran was
ne

emitted continuvous specira.

The programs are
designed to evaluate the radiatior in the range from 50 A to 8000 A

o]
was accomplished by calcnlatiang the emitted radiztion intersity at 50A
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and at 100 R intervals over the entire range of wavelengths. The total
integrated emitted radiation is obtained by using Simpson's rule over the
entire frequency interval. Increments in the integral evaluations were
50 & and 100 A.

The method, as outlined, required that monochromatic absorption
coefficients be determined for each wavelength over the entire density
and temperature range. Using the table of experimentally determined
energy levels (including the level degeneracies, n values and term values)
and the tabular equation of state, monochromatic sbsorption coefficients
were calculated. The number of atoms, or ions, in each energy level,
Cin, was assumed to be glven by a Boltzman distribution

_ =E KT
C. = C-c' 3{,, c (9.37)

A e e i s

e Z‘(e{

where gin is the degeneracy of the level, Cy is the total number density
of that species, Zg_l is the electronic partition (corresponding to a
particular Ieff) and Ein is the energy of the particular level. For each
given/.) and T, the k), were evaluated by the method outlined in the
previous section. All output values from the computer program for the
equation of state were used in building the k, table.

Fortran code was written to evaluate Equation 9.15 by Simpson's

values.

rule, using the generated profiles of/\ and T and the table of k)

The program was tested by the use of the profiles generated by Ables
(1963) -
When the spectra routines were incorporated into the main flow pro-

gram, the machine core storage was exceeded. The choice, at this point
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was either to reduce the gy,table to average k values or to write a
separate program to use the flow profiles as input. Insufficient machine
time was available to run separate programs. The use of average
absorption coefficients proved entirely unsatisfactory since density and
temperature effects were lost. When the uncertainties in the absorption
coefficient and the character of the flow solution were evaluated, it
was decided to suspend the spectra calculation for a simpler method.
Examination of the density and temperature profiles make it apparent
that the simplified spectra solution equation, Equation 9.18, is a
reasonable approximation for the emitted radiation from the core since the
inner core is of almost uniform density and temperature. The absorption

of the outer layers about the central core is governed by

éE:._%U/,) (9.38)

A X

or the observed spectra along any line is given by

%

—f K, pdx
2 4 "B (9.39)
Wi L8 VR

where Ior is the emitted intensity of the core at the distance r from the
center of the disc, Figure 9.2, and the internal O to X, is the thickness
of the cold density front along the observation line, i.e. along line AB

in Figure 9.2. This approximation appears to be as reliable for an indi-

cation of the spectra as the more rigorous evaluation.

8. Summary
The uncertainty in the thermodynamic properties of the outer density

shell make a rigorous spectra calculation unjustified at this time.
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Until these properties are determined with greater accuracy, the
approximation suggested in the preceeding section appears best. A
discussion of the qualitative results is given in the next chapter.

Suggestions for improvement in the method also appear .  in Chapter X.



CHAPTER X
SUMMARY , CONCLUSIONS AND RECOMMENDATIONS

This thesis presents, in considerable detail, advances and improve-
ments in the theory and application of plasmas that may be grouped under
three headings: (1) An improved equation of state is obtained for
aluminum over a wide range of densities, pressures and temperatures.
Numerical values for the Equation are tabulated. (2) Under the assumption
of thermodynamic equilibrium, density and temperature profiles were ob-
tained in order to follow the spherical expansion of a highly compressed
plasma into a vacuum. (3) A technique and equations for calculating the
continuum emission spectrum during the expansion of the plasma have been
assembled and derived. Experience on an I. B. M. TO9% has indicated
approximations which are necessary in order to make the numerical
calculations without the lapping of programs on the I. B. M. TO%k.
Qualitative evaluation of the calculations are awaiting completion of
programmed experiments by other members of the group who are working on
this program.

Comparison of the results of the computations with the reported
phenomena for exploding wires gives a reasonably good gqualitative agree-
ment. W. Muller (1957) obtained photographs which show that exploding
wires expand as hollow-cylinders. G. L. Clark et al (1962) confirmed
that in the case of a long dwell time, the vapor cloud expands in the

form of a hollow cylinder. The density profiles in this thesis are in

213
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agreement with this experimental evidence. Further confirmation of the
validity of the mocdel is obtalned from strip photographs of exploding
wires. Photographs by Francis Webb et al (1962) confirm that the highest
intensity flashes occur with restrike phenomena. The model of this thesis
corresponds to an exploding wire without restrike. Webb reports that
streak photographs show that the emitted light decreases with time to a
very low intensity. The extreme limb darkening that is observed on these
Photographs indicates that a hot interior is formed which is surrounded
by a cold outer shell. This is, of course, the precise character of the

calculated results.

Recommendations for Future Improvements

While qualitative comparisons are good, there are some uncertainties
in the results. In particular, there are two major errors that may be
very important. These raise significant questions which concern the be-
havior of the cold plasma at high density in the shell that forms around
the hot core. First,without doubt, the equation of state is invalid for
the densilties and temperatures that occur in the shell. Second,an energy
transfer mechanism has been omitted in the exploding plasma calculation.
This mechanism is the energy transfer that is associated with plasma
oscillations. These deflciencles suggest only two of the several ways in
which the model may be improved. Future improvements should at least
include consideration of improvements in the following areas:

A. Equation of State

1. Add three-body interactions to the cluster integrals.

2, Include quantum corrections for high density plasmas
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3. Improve the plasma oscillation energy component
B, Flow Solution
1. Ad4d plasma oscillation energy transfer mechanism
2. TImprove the transport coefficients
C. Spectra
l. Improve the approximation of the photoionization cross-
sectlions.,
These suggestions wlll improve the accuracy of the calculstion and
are expected to result in better correlation between the analytical re-
sults and the proposed laboratory experiments. Likewlse, the spectra

calculation would be performed with greater accuracy and relisbility. .

Conclusion

A reasonable method has been suggested for calculating the gross
properties of an exploding plesma sphere. While the model shows good
gualitative agreement, the data herein should be considered no better
than a crude approximation of the solutlion of the real problem. This
thesis does, however, present a considerably more accurate solution over
a8 wider range of pressures and temperatures than has been attempted by

anyone else in the published literature.
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Let N specify the set of all particles of the system (at present
we are considering a one component system), Let m specify any subset
of the particles of the system; i.e., any collection of part of the
system from 1 particle to N particles. To specify m as a subset of N

one writes

meN (A1.1)

In a similar manner iNi represents the set of all coordinates of
the N particles and if {mz is a subset of the coordinate set, then
one writes

g"“j < si,\/g g (A1.2)
{mz is the set of coordinates far m of the N particles. Note that
for each particle, there are three coordinates. If m = 3 then

TSR LIPS INCRIN IS PP

and the coordinates for these three particles are contained in the
setiNg.

Multicomponent Notation - Composition Set:

N is called the composition set. It is an ordered set of numerals,
each numeral representing the number of particles of a particular
species in the total system. For example, a system containing & species

has a coordinate set, N, with ¢ elements, i.e.,
N = Ny, Dpy Mggecevccescceensy O (Al.3)

where n, = number of particles of species 1 in the system, n, = number

of particles of the 2 species in the system, etc. N (not N) is the

total number of particles in the system:

N = ny + n, + n, e L T (Al.4)
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A subset of the composition set is represented by m and is indicated
by

m=<=N , (Al1.5)
This means that the elements of m are made up of parts of N. As an
example, if m is a subset of the O component system which is repre-

sented by N, written m €N then the elements of m,
W=y, My, Mgseeveeenecneene,lo, (Al.6)

are related to the elements of N by

nﬁ_é Ny My & Mpserenccoenne,ME N, (A1.7)

Similar to equation Al.4,

m = my + m, + m, + tiirieene.tm 5 (A1.8)

where m (not m) is the total number of particles in the subset.

Coordinate Set;: gl\l_—;

In a manner similar to the above, the coordinate set {Ej’of a
multicomponent system is the ordered collection of all coordinates of
all particles in the system. The elements of the set are the 3N

coordinates of the particles in the system, 1i.e.

[N/g - {X,,,)/ll )*'.Zlg"'u%u}/;g) Y ')Z(X,n',){n/ ’3;&,;5""52)%6/\/%; &r"b'_{ >(Al'9)

where the notation x; stands for the x component of the jth particle
3
of the ith species.

More briefly this set is written as

{NZ ; 5/'5"52/3/'"‘32(”@55’25)'""' 3505 5 (AL.10)

where m stands for the 3 coordinates of the mth particle of the sth
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species,

Coordinate Subset: 3E5§

?g%)represents a subset of the coordinate set and is indicated by

?@59%&/5 . (Al.11)
The elements of Z_nljare made up of elements of ()/L\I_? If the relation

fmfc g
exists between the coordinates setsz_mg an%{ﬁg then m < N specifies

the relation between their corresponding composition sets. It should

be noted that the above subsets may consist of the entire system.
Other Set Notation

It is apparent that the preceding notation is a more efficient
way of representing complicated systems which would be laborous to
write out in detail. There are several other set symbols that are

used to conserve labor and space.

Concentration Set C:

If Cs = ns/V, the number density of the sth species, then the

concentration set is defined by

<

1

h/l/ s m/\/) v n"'/\/ 5 (Al.13a)
or

(A1.13b)

11

C=C5Cay Gy,

The elements of the concentration set are the number densities of the
various species. (Note in all of the above sets, zero is an allowed
element.) It is obvious that the total concentration C, (not C) is

given by
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C:C,"ch"‘““" *‘qua (A1.14)

Chemical Potential Set/@:

The elements of are the chemical potentials of each of the

species, i.e.

/_u—t(/é/,)//z).,~-)/(,f(r" (A1.15)

Other Definitions:

and

Notation:

Z £(n)

E f(n)

lg} :(h])OLUn(QJ);(Product of factionals of elements

of n);

¢, % ¢ 9 ¢ (Product of elements of c, each raised
2 T ’,
to power of corresponding elements of

composition set);

X
ey

‘ﬁ/_g(:)/),/uﬁrﬂz/%q@\u -r-nd_ (4

1=
+

i=>
X

ni n'}. n(]' m) %
’_é 'J'C CZ ““COJ C/ t"Cg.. .

f(n) = function which is dependent upon the composition set,

i.e., upon the n particles of which n., are of species

1

one, n, of species two, etc. In other words, the

2

function may not only depend upon the total number of

particles but also upon their distribution by species.

[

sum of £ (n), as defined above, over all of the

composition for which n = 0. (n = total number of

particles in n).

1]

as above, except n = 1,



2{ f(n)

as above except n = 2, Note in these, the sum is
generally over all possible subsets for each n; i.e.,
if there are 4 different species and n = 2, then there

are 10 different terms.

f(g m}) = function dependent upon the 3m different coordi-
nates of the m particles. The function may also be
depeﬁdent upon the species involved.

f(m) = sum over all possible subsets m of the set n as m
msn

goes from O to n.

same as above, except concerns coordinate subsets.

Fh
~
S
=]
S
~
i}

Binomial Expression (%):

The binomial expression (%0 is defined by

: ) - “T ~————~3—0“S'
., (b o bl (as-b)! - (A1.16)
Examples

fa(({nn?)aq §m3 = f“”fﬂ'w?s”‘i"v }{,@1)}&‘”6@ (A1.17)

In Al1,17 the integrand is dependent upon 3n coordinates and must
be integrated for 3n different coordinates (unless otherwise noted,

the integral is over the entire space).

Partitions
Consider the coordinate set{gg as being composed of three dis-

joint sets:

?Dj: 5-452*555 * {g_{ . (A1.18)
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The inverse, splitting gEEE into the three disjoint sets, is a partition
of the setggg .

For present purposes, one may consider a partition of the set?ﬁgg
as any splitting Qf(?gg into disjoint sets. One may define the
"partitian set'" as the set of numerals, zero or one, which designates
the absence or presence of a particular subset in the partition. As

an example, the partition set for Al.18 would be

Pz |§étj , liﬁbi ) {fgi)oﬁi’f}"”%mf . (A1.19)

Each partition set defines a particular partition. In Appendix II

a partition set for a coordinate set is written
H:

and one of its elements would be noted by F%KE

A partition set for the composition set differs somewhat from the
above, It is possible that the three coordinate subsets in Al.18 might
represent identical composition subsets., With this possibility in mind,

it is apparent that the elements of the partition set (of the composi-

Bfn

will be the number of times the particular composition subset appears

tion set n), written

in the partition.

In general

n :20' . (A1.20)

A

the total composition is the sum of the subset compositions. The ele-

ments of the partition set,

B=hhy, (A1.21)



indicates the number of times that the composition subset n, appears
in the partition: i.e., Fﬁ may be any positive integer including

A
zero. As a result

Z Nip, =1, (AL.22)

&
neEn

where the product mp is defined by

y_y_‘)Fm: M+t (Al1.23)

with p, terms on right.
If
T ) (Al.24)

then

— -—

- 1.2
M Fay = RMiy By Bata, e (AL.25)
which is the same as Al.23.

As a matter of notation

"

Z e
Rl

sum of a ‘for all partitions of-?n ¢
2 P c"j

and

sum of a_ for all partitions of n.
] =

226
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Cluster theory is a statistical method for obtaining the thermo-
dynamic properties of a system through consideration of the interaction
potentials of atoms or molecules composing the system. The process is
one of calculating the "configuration integral". From an expansion of
the configuration integram, the excess free energy of the system may be

obtained directly. By "excess free energy,"

one means the excess of
free energy over that of a perfect gas system. From the excess free
energy, the corrections to other equilibrium properties are calculable.

It should be noted that the cluster theory is not exclusively
devoted to the calculation of thermodynamic properties. The theory
may be used for almost any type of system for which a configuration
integral is to be calculated in attempting a solution to the many-body
problem. In some cases it has replaced the second quantization method.

In the following section the theory will be applied to a very
simple system to illustrate the method. In conclusion, a review is
presented of the difficulties that are encountered with the theory and
with their solution.

No attempt will be made to completely develop the theory. The
most complete development of the theory is found in "Ionic Solutions
Theory" by Harold L. Freidman (1962). 1In fact, this appendix is an
incomplete summary of the first 165 pages of this text. The original
theory as applied to non-ionic solutions may be found in Mayer and
Mayer's text (1940). Mayer's original method for extension to ionic
solutions (1950) and Poirier's evaluation (1952) of the cluster
integrals are reviewed in Chapter II of the thesis. Very readable
discussions of the theory are found in "Statistical Mechanics' by
Huang (1963) and "The Many Electron Problems" by Brout and Caruthers

(1963).
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In the following text, only the general scheme of the development
is outlined. 1In particular, all of the difficult combinational analysis
is omitted. Analysis and evaluation of all combinational factors is

given in the preceding references.

1. Simple System:

First, a simple one component will be considered. The configura-

tion integral of such a system (N identical particles) is defined by

2NV, T)= \/WU@‘P[‘ W?NE)/N_] 09{/\/5) (A2.1)

where the total potential energy of the system, U({N;), is a function
of the center of mass corrdinates of the N particles of the system,E‘Ni.
The total potential may be expressed as the sum of the pair interactions

between particles:

UGws) :Z u(%) . (A2.2)
FLUJ’V\

A2.1, using A2.2, is expanded in terms of the cluster function,

5. = ﬂ/ﬂ[“ %Cﬁé)//&Tj -1, (A2.3)

to give
N _( N 2P Fov 2 S A bbbt 4
Vi 2N vT) j&i § 'OWZ i %?Zb(a i Zs{’f‘ i Mﬂf} (A2.4)

Thus, the original configuration integral is replaced by an infinite
sum of integrals. The leading terms of the expansion are easy to

evaluate. The first integral is simply

f%ﬁ/} -y )
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the second is

V2 hguge A 4 [ disyy

Some of the integrals are reducible to other forms. - As an example, the

third term of equation 4 reduces as follows (neglecting combinational

<l W] U&?&W
] ] - | S5idu) /0.

This is essentially the second term squared, divided by the volume.

factors):

1]

44,4048

i

To calculate the equilibrium properties, the volume (with a

constant concentration of particles) is allowed to become infinite.

It is obvious that any term containing a factor V should be neglected
(when compared to the other terms of the expansion without the factor).
It developes that all integrals for non-ALDC graphs are negligible.
When at least two bonds are connected to each vertex in the graph, the
graph is not negligible. All other graphs have a factor of at least vt
in the integrels. To illustrate the graph technique, the f-bond is
represented by a line between two vertices on a skeleton of N vertices:

Figure Al,a. The triple f_ f

13541 is represented by Figure Al,b. A more

complicated combination of bonds is shown in Figure Al,c; it is fi'fjk
fklfilfik' Figure Al,c is an ALDC graph (at least doubly connected).

Thé exception to the rule is the fz-bond (fij)’ Figure Al,a, which is
also considered ALDC since its integral does not contain a factor V.

Note that Figure Al,c is ALDC on a subset of 4 vertices; not N vertices).

Z(N,V,T) can be expressed in terms of the irreducible cluster

integrals (integrals over the ALDC graphs):
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La - £, Lb - £,,f, Lie = £4,8 5
£i1fix

Figure A,1. 1Illustrations of several types of fbond graphs on a skele-
ton of N (16) vertices. There are 16 x 15/2 different ways the f_,
bond could be drawn on the skeleton (la). Graphs la and lc are
ALDC graphs on subsets of 2 vertices and 4 vertices respectively.

Z2WV,T) :Z(VC,/) \;M; Am)rrﬁ’“” 5 (A2.5)

2%

where the binomial coefficient, (%), 1s the number of ways one obtains

the same graphs, Am e is the combinational factor indicating the number
H

of distinguishable graphs obtained by numbering the verticiles and Im‘t
’
is the specific integral over the graph on m vertices with topology 7.

The term (11}11)V_m is evaluated to C'/m in the limit N=e, Defining
Z:Amfzw for a specific m as /ﬁm the expansion may be quickly simplified.
*e ¥ *

For all non-negligible terms of the cluster expansion, the con-

figuration integral may be written as

Z(N,;V,T):uP[Z“C‘h/A,)]: | +Z‘Icn/§n +[‘Z2:”/3n]2/z Frl g (A2.5)

in which /é%represents a specified integral on a subset of n vertices

]
and ¢ is the concentration: ¢ = N/V. The first threei/i)s are:



(A2.6)

e |
ot "’d'l’“@h"%/ﬁé ]jtfu fedidis i3
l ; .

T wfjdmgﬂf’%dﬂiﬂ

>
=

From the relation
Z(w, V,T)=exp [—ArN/kT] 3 (A2.7)

in which Ain is the excess free energy of the system, one obtains

1}
“F, - }JZ "B, (A2.8)

in which Fin is the excess free energy per unit volume and Bn is

defined by the limit

E§ - ﬁlwgﬂ ﬂf/</ ) (42.9)

n" V-

The sum in A2.8 is defined aséf :

i _
& ;Z B, (A2.10)

Examination of the preceding equations shows that the important
quantity to calculate is Bn. The remainder of this section will be

concerned with this calculation.

2, General Difficulties with the Theory:

Three of the major difficulties that arise in the use of cluster

integrals should be examined. They may be summarized as follows:

232
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1) Adequacy of the pair potentials to describe the system;
2) Complexities introduced by multicomponent systems;
3) Divergences encountered with coulomb potentials. Each of these

difficulties will be considered in the following section.

3. Generalized Potentials - Potentials of Average Force

In this section, the functional dependence of the total potential
energy of the systems will be examined. 1In Section 1 of this Appendix,
it was assumed that the potential energy could be expressed as the sum
of all pair interactions:

U({Nf) :Z u(ﬁ?ﬂ') . | (A2.11)

]')04\./\/)

In some cases this assumption may not be quite correct.

Consider a closed system of interacting particles, of composition
set N, in the equilibrium state. (The set notation is outlined in
Appendix A I.) The potential energy of the system may not only be a
function of the 3N centers of mass coordinates but may also be a function
of the 3Ni internal coordinates of the particles. The probability of

such a system is proportional to

e U1 585) /7

where the total internal energy, U, is a function of both the center
of mass coordinate set, EEEE , and the internal coordinate set,ijﬁiz.
The probability of a configuration specified only the the coordinate

set may be defined as

. (A2,12)

exp[:.. U(Z(/\/QAT] N jﬁ"/"[_j/j;/}j:f?xf)/mj Af/_\/; 5
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This equation also serves as a definition of U( 52{g), the direct
potential. It is clear from equation A2.12 that the direct potential
is not simply the potential energy of the system. |

The physical meaning of U({:ﬁz ) may be seen by obtaining its
negative gradient with respect to the spatial coordinate of a specific

particle. The total force on the mth particle is given by

-

Fm = wv\qU({NSJ}Z{NJ)g

(A2.13)
Noting that
v, - U@/ L .(X/,,[-U({Ng)m] Vo U(END) s 2.1

differentiation of A2.12 leads to

ey T [ £ U(fwf b )/hT] Hfuig
F S (A2.15)
> 5 Ju/)[U({A/ QN /LTJ N*f ’

= th
where(j%> is the force on the m  particle, averaged over internal

coordinates. Therefore, the potential U(3 §3 ) represents the poten-
tial of the average force. It is called alternately the 'direct
potential," or the "potential of average force."

Kahn and Uhlenbeck (1938) introduced a general expansion of the

direct potential :

£agNy
- ) (14,48 7 g e
po-re ¢ z%f

(A2.16)

In A2.16, the uh(ini)are called the component potentials. The higher

order component potentials, n > 2, arise from averaging over internal
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coordinates in the definition of UN(gxgg). The component potentials

can be defined by taking the inverse of A2.16:

woltng) = D) Uy (ENF)
ALY

:ULL({gj)—Z U;l_,_n(fn-'f_"l)rz o

FF=E ] jra=1 wis§ndim=2
where UN(f:Qz ) are the direct potentials. fwj=ia;

(A2.17)

For n = 2

U

o (8): D (F38)

(A2.18)

and for n = 3

w 'L(g_,'l'j}i:'g:uék(fii(‘),\ao— i (,49)- vjpy ) - up(i43), (42,19
The n=3 component is the difference between the direct potential for
the 3 bodies, and the sum of the three pair potentials. The n=4
component potential would be the resultant of the sum of the four-body
direct potential and all of the pair potentials minus all of the three
body component potentials.

In terms of the component potentials, the cluster function is

defined as
fM(fKWEJ = /Xf’[- Uy, ( "1@/“] -1, (A2.20)

where {EE is a coordinate subject of the coordinate set(?ﬁj’; m is the
corresponding composition subset.

Details of the higher order component potentials and of their
respective cluster functions will be outlined in the following sections.
It should be noted that the 1Lm(fﬂ§),tn>2, are very short range and

have an effect only at very high particle densities. In the remainder
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of this chapter, the fm(fgi) cluster function will be termed the £ -

bond.
MULTICOMPONENT SYSTEMS

Multicomponent systems require many more terms than simple, one
component systems. This is best illustrated by considering the expan-

sion of the system's potential in terms of the cluster function

,éx/;[- U(fNj)/kT]= I *fgw 3(43-*' o (A2.21)

When the summation over all pairs is made, all possible combinations

of particle assignments for i and j occur. Since the fa—bond repre-
sents a pair potential, potentials involving different species for i

and j can differ. 1In other words, if there are 5 different species

in the system, the integral Jﬂ;mﬂé d {fJS D) will be replaced by

15 different integrals which reflect the different possible combinations
of pairs. Apparently there is no simple anaylic expression that will
replace the labor of writing out each separate integral; however, the
set notation simplifies the form of equations. The set notation is out-
lined in Appendix A I. Use will be made of the composition set, N, and

coordinate set, fﬁg .

Z(N, \/)T>Ef2)(,/o [UN@ND/H] CQEA/E R (A2.22)

in which the set notation indicates that the different species must be

considered. The expansion of the potential becomes

Uy (§00) = 5 syt -

(A2.23)
FmiefNs
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A word of explanation is necessary. um(fnii) is the component poten-
tial for wm particles and is a function of their coordinates. 1In
addition, the set notation m indicates that the potential is also a

i

function of the composition of the m particles. The symbol : <02
miesd

means that the summation is over all possible coordinate subsets for
m>2. If m=2, there is one term in the sum for each possible pair of

particles. Species of particles must be considered.

The corresponding cluster function is defined by
o ~ ] ‘oz -y 4 b i
fwi) = ewp| U, (/1T ]- 1
)Cm( f| ] (A2.24)

The generalized symbol fm(glgi) will be termed the f -bond for m

particles of compositon m.

The expansion in terms of the cluster functions becomes

(A2.25)

It is apparent that a substantial problem exists in determining
and collecting terms of the expansion. One way to insure that all
terms are considered is to use graphical techniques. By this method,
each term of the expansion is represented by a graph on an unlabeled
skeleton of vertices, as in Figure A.l. The difference between the
procedure outlined in Figure A.l and that which must now be used is
the additional terms that are required by the different species in-

volved.
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General Procedure - Graphical Techniques:

Each cluster term which is generated by Equation A2.17 may be rep-
resented by a unique graph on a skeleton of N vertices. For the pur-
poses of clarity, the_fij bond is represented by a line between two

-bond is represented by a

vertices on the graph. Figure A.2a; the fijk

hatched area between three vertices, Figure A.2b; the fij -bond is rep-

kl
resented by a tetrahedron connecting the vertices i, j, k and 1. Because

of drafting difficulties, the fij l—bond will not be illustrated.

k

Figure A.3 shows the graphs associated with the m=2, m=3 and some
of the m=4 terms. It should be noted that the species occupying the
vertices are not specified. There will be one such graph for each
different possible combination of species occupying the vertices.

Any graphkon a skeleton of -k vertices for whidh all k vertices
are not connected together by bonds may be considered as the sums of
other graphs on smaller subsets. See Figure A.4 for an illustrationmn.
Those graphs, in which all the vertices are connected together by bonds,
are called "at least singly connected" (ALSC); i.e., one can go from
any vertex to any other of the skeleton along bonds, as in Figure
A.4b or A.4f.

To express the configuration integral in terms of graphs,. define
52(223) as the sum of alllclusfer terms that correspond to ALSC graphs
on a skeleton of n, labeled vertices of composition n. There is one
term of sn_for every possible, distinguishable ‘ALSC graph on the

skeleton n. As an example, for n=3 and n =.La, lb, lc‘(one particle of

each species a, b, and c) S3

would inelude all graphs shown in Figure.
A.3 for m=3 with vertices designated by n. There is one collection of-

graphs for each distinct composition. The expansion of the potential
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W

A2,a. fz-bond A2,b.  j-bond

Figure A,2, TIllustration of graph notation of f2 and

f3 bonds.
Subset Graphs Expansion Term Comments
m=2 ] (D) £, ALDC
m=3 [ (3) £i5fn Not ALDC
I D) £.50 84 ALDC
?ﬁ‘ (1) fijk Not ALDC
(3) fijkfij Not ALDC
(3) fijkfijfjk ALDC
(1) fijkfijfjkfik ALDC
m=4 (3) fijfkl Not ALDC
(1) fijfjkfklfil ALDC
(6) fijfjkfklfilfjl ALDC
(12) fijkfkl Not ALDC
(24) fijkfjkfklfil ALDC

Figure A,3. Some of the graphs associated with terms of the expansion
in equation A2,25. All terms for m=2 and m=3 are shown. Only a few
of the m=4 terms are shown. The numbers in parenthesis are the
number of different graphs produced by numbering the vertices.



240

/ ) / \\ - Aﬁj(‘

/ \ / N |
d 7 ! ) < / N !
) 1:_/_/."_' / {,,4 ) \k_-”\d\L

Figure A,4. Some examples of graphs on a skeleton of 6 vertices that
are not singly connected. The dotted lines partition the skeleton
into reducible clusters: 1i.e., graphs that are at least singly
connected (ALSC). Graphs b and f are ALSC on the skeleton. Nobe b
is not -ALDC but f is ALDC.

may, consequently, be put in terms of s considering all possible-
composition subsets. Another way of saying this is that all possible

partitions of the coordinate subset must be considered (See Appendix

A.1). Consider the expression

&PE Uy(fN,Z)/kTJ =P:_)Zir\)§ [Sb(%?)]% 5 (A2.26)

where the element p{k§ is 0 or 1 depending upon whether or not the
graph on gigz is a cluster of the partition p. Equation A2.26 has
the following explanation.  The coordinates for the N particles are
all labeled. A partition of the coordinates is made-and all of the
cluster terms which corresponds to that partition are multiplied to-
gether. A second partition is made and.all the cluster terms sk(ggj)
contained in that partition are multiplied together. The terms of the
second partition are added to the first. Additional partitions add
additional -terms, each of which is a product of Sk‘sz) terms.. All

possible partitions of N are made.



The reducible cluster integral is defined as

bki[vlkljvfsk(gé)?)d{kg '/ bis 1. (A2.27)

Integration of equation A2.26, over.the product of-sk({gg) simply leads

to the corresponding product of integrals because each factor sk(ggz)
involves a disjoint subset of Zﬁfg . It-is further noted that every
partition %] éig} which corresponds to. the same partition, %] N, gives
the same result upon.integration. This i1s the number of ways of sep-
arating N distinguishable objects, of composition N, into separate
collections, each of distinct composition, with no restriction either
on the order of the collections or of the objects in the collectioms.
Thus, the partitioen of th$ coordinate set can be changed to a partition

of the composition set., There will be

il se) T [kl ]
(¥/e1) T LK)

identical partitions_g]{ﬁ} for each partition EJ_&. (J. Riordan, 1958)

As a consequence, integration of A.2.26 yields

P
VNZ(N, \/}7—) = /\/,:ZJZN ?:N ):\/ é’g] VP(_J (A2.28

in terms of the partition of the composition set. It is -simply the
sum of the integral products corresponding toe all possible, distinct
ALSC graphs on{ﬁg.

As illustrated in the first section, some of the integrals reduce
to terms with a factor of V in the denominator. All graphs that are
not. ALDC afe so reducible and may be neglected. Figure A.3 indicates

which graphs are ALDC for the m=3.
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Since only ALDC graphs produce a result in the calculations, define
\SKGE§)= sum of all cluster terms that correspond
to ALDC graphs on a skeleton k vertices of (A2.29)

composition k.

Define the "irreducible cluster integral" as

B, a[vu]"jsg;@;) d§K3 . (42.30)

Equation A2.28, defining Z(N, V, T), can be expressed in terms of
Bk' By partitioning the f-bonds, an ALSC graph is decomposed into

ALDC graph. Thus one may think of the AULDC graph subsets as forming a

covering of the ALSC graph set. 1In this manner Sn(i33> is related to

S (BK3) oy
sorrf GO

where é; may be considered the sum of all distinguishable partitions of
¢Jin
the f-boids on the setgigi that produce ALDC graphs, and the elements
te is 0, or 1, depending upon the presence of the particular graph in
the partitiom.
No attempt will be made to carry the derivationfurther. To do
s0 ﬁould require considerable space to derive and explain combinational
factors that are more adequately explained in standard reference texts.
For the complete development of the theory, reference should be made
to "Ionic Solution Theory" by H. L. Friedman (1962), or Mayer and Mayer's
original text, "'Statistical Mechanics" (1940). Somewhat simpler
derivation of the art found in "Lectures on the Many-Electron Problem"

by R. Brout and P. Carruthers (1963), and "Statistical Mechanics" by

Kerson Huang (1963).
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Integration of both sides of equation A2.31 leads to a relation

between bk and Bk which contains a combinational factor called the tree

coefficient. Evaluation of this coefficient is the intricate part of
the derivation of the theory. The result is that G may be expressed
rigerously in the limit of infinite volume, as

N
6 - Z gﬂ Bn . (A2.32)

n =
which is related to the thermodynamic variables by equation AZ2,8.
The procedure for determining the thermodynamic properties of a
multicomponent system by cluster integrals is summarized below:
1. Make a drawing of all possible ALDC graﬁhs on an unlabeled
skeleton. Start with m=2, Continue the process for m=3,
m=4, etc.
2. Determine all possible compositions of the vertices for each
m.
3. TFor each different composition, all ALDC graphs for a given k
correspond to Sk(fkj)¢
4. Determine all sk(égj) for k=2,
5. Determine and collect all Sk(ggi) integrals for k=3.
6. Continue in this manner, collecting terms and evaluating the
various Bn'sa
7. TUse the Bn to determine equilibrium properties. The degree of
accuracy of the calculated properties depends upon the number
of terms used and upon the ability of the model to adequately

describe the system; i.e., the accuracy of the component

potentials.



P

COULOMB POTENTIALS - SIMPLE SYSTEMS

For this section, all particles are considered identical except
for + or - charges of equal magnitude. Only Coulomb potentials are

considered in the model. If the integral

2B,= wa jf di‘:Ji/\/ (A2.33)

is evaluated for the Coulomb potentlal, one obtains

-EITP
27 2 ;2-»00]£ < 'quﬁr dr (A2.34)

which by series expansion becomes

ZB, Z[‘X]%J[“”"J rOQV/"" (A2.35)

nz|

where )\ = QTTEZ//ETZ Observation of A2.35 indicates that the
integral diverges for N« 4 as R-»w, To overcome this difficulty, a
different method of collecting terms 1s necessary. Every fij—bond is
expanded by series expansion into powers of 1/r bonds. This is equiva-
lent to expanding every ALDC graph into an infinite sum of graphs. To
obtain convergence, the first term of every expanded Bn’ n>2, is added
to the second term of the 32 expansion. For purposes of clarity, the
1/r bond is called a g-bond and the sum of the recollected terms
(integrals) is called GE%, CE%; is the collection of all terms con-

sisting of simple cycles of>g—bonds (the most divergent terms).
"Fer] (-1 -
.- Z 72 ) Jals” Gy In ) AT B (a2.36)

where

/

= T e A2.37
ﬁ 1'3, 4 Qa" ( )
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The integral A2.36 is over the infinite volume for 3 (N-1)
Cartesian coordinates. By use of the convolution theorum, and Fourier
transforms (see "Ionic Solution Theory" Section 12, Chapter III) Ggéis

evaluated as

v 3
@; = x’//av (A2.38)

where

XZ= NC. (A2.39)

Coulomb Potentials ~ for Multicomponent Systems:

For more general systems, start with

_ N om
& =2 ¢~ Bg} . (A2.40)
m

One must now rearrange terms of the cluster expansion to obtain mod-
ified, irreducible cluster integrals that do not diverge as V-% when
Coulomb potentials are present. The ring graphs must be collected and
summed separately to obtain convergence. The remainder of the terms
are then collected and summed. Prior to this summation, the form of
the pair component potential should be examined.

In the general case, both long and short range potentials are
present. The Coulomb potential 1s certainly long range and is given
by

w, (§4,43) = -242(3)\5(“1;) 5 (A2.41)
where Zi is a dimensionless charge parameter and (¢ is the electronic
charge)

N o= ame/PET (A2.42)
-1

q(%j)= 9ij * [4T Gé] . (A2.43)

D is the dielectric constant (assumed to be 1 in CGS units). The short



range potential is usually indicated by a%?in the literature. The

. * . . . .
most general expression for ¥, is given by a power series expansion

¢

starting with r_4 (as determined by Lavine and Wrigley (1957).

uj;'(ﬁj): /’/r}; N B/qf N C/rigé+ D (A2.,44)

An expansion of this type certainly would include the Leonard-Jones

potential,
i 2
uz.J(QJ) /3/4/*70' - Ata'/ﬁd'éj ' (A2.45)

or any of its modifications. Potentials, including exponential
functions which modify the Leonard-Jones potential, are equally well
described by A2.44 since the exponential itself is expandable as a
power series.

For the present discussion, no specifications are made on 4%.
All equations will be left in a form adaptable to any short range
potential.

To cluster function for the pair potentials is defined by

-,Y.
= exp [- Uig /T - 22 Nyl-1 (A2.46)

by defining

o

oxp [} ST [ -1 (A2.47)
and expanding the Coulomb potential
¢
- ‘2 s, R (_i"-?./\g'il)
&ﬁ[ 24%\743]—2 __-G;-A—i———ﬁ‘ 9 (A2.48)

F=20

one obtains for the cluster function

zng, 0 s a2 g S
% :fz"zi"kle"a;[og (_z—é’_'iL_J @21 T ]"

i el (A2.49)
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The graph of this expansion of the fz—bonds is shown in Figure A.5.
In order to prevent divergence of the integrals, one regroups the terms
of the cluster function expansion,
w/,[&v,;(mf)/w]: I LiedyGm3)]
= Fmpcsng '
so that a sum over simple cycles of g-bonds may be made first.

Equafion A2,50 is the same as equation A2.25 except that each fij
bond is to be expanded into an infinite number of bonds. The graphs
resulting from A2.49 are called expanded graphs.

In order to regroup the terms of the expanded graphs, two defini-
tions seem advisable:

a) g-bonds nnde = vertex in an expanded graph at a junction of

exactly 2 g~bonds.

b) g-bond chain = a sequence of g-bonds connected by g-bond nodes.

The rearrangement is accomplished by noting that equation A2.48
is summed over all possible composition sets. In the expanded graphs,
some of the m particles will form g-bond nodes. Let n be the subset of

m that is composed of g-bond nodes and g-bonds for n=2. Then
m=nN+4 (A2.51)

where u is the part of m not forming g~bond nodes. Define éi = sum

over all terms corresponding to 2 vertices connected by 1 g-bond.

=

<

bonds, 1.e., over the subset n.

= gum over all terms corresponding to gimple cycles of g=-

Equation A2.48 becomes

i A
= =C§£ + @c+2‘ c BgL . (A2.52)
P
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Evaluation of A2.52 results in C';; QZESQS = O and 66_, a$ defined

in equation A2.38. Thus

2
& =25 c® (A2.53)

The first term x3/12 is the Debye-Huckel correction term.

ey f2 ’bcrﬂd /—\ g "'bOnd L ] k”’bond
==
{% f 3 -bond
¢
GRAPH EXPANDED GRAPH

f"—-° — ovm——e 4 PN - @+v'+o/-\0 -+ O—f-oooo

Pl

C =z g P - 3. P
L = ko o+ kl.,[zfﬂ__iwﬁ [Ztazj/\w]
2 J J|P P P!

O — =~ 0 — =-e. o =% O

// / 1 7 | 7 ., s / ! - £ @ 9 .
Wl = Tl * 7////> * %) " .//////,,Q *

Figure A.5. Expansion of the fz-bond defined by equation A2.49

. . U
s B,
7. Summary of development of terms of “ :

All terms entering Z 95 BLL correspond to ALDC graphs,
L

equation A2,30. 1In evaluating the individual BM , care must be taken

to include all terms produced by the expansion of the f.~bond. Exten-

2
sions of the basic graph on u must be made by g-bonds so that all graphs
on m will be included. To do this, a careful procedure must be followed.

It is convenient to define

Protograph = a specification of the number and interconnection
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of k, fu and g-bonds on a skeleton WU. (One
also considers the empty skeleton w as a
protograph.)
Elements of Protograph = number of topologically different
graphs obtained by numbering the & vertices.
Let each protograph be represented by the symbol Z. and its elements by
Z; . To collect all terms of the sum, the following procedure is
followed.

1. Write down the finite number of protographs, Z' , on the
skeleton u for each u = 2.

2, Determine the elements of each protograph % .

3. Assign species to each vertex - i.e., compositon 4.

4. Add all possible numbers of g-bond chains between pairs of
vertices of the protographs. If there are u vertices, there
are u(u-1)/2 pairs.

Define &/ = set of g-bond chains on a particular protograph. The elements
of )/ specify the number and connection of g-bond chains: ./ = number
of g-bond chains between the jth‘pair,

The set of éﬁ)"’)%/ specifies the quantity that Mayer defined

&

as a Prototype. It should be noted in the above that 2/ does not
specify the length nor the composition of g-~bond chains, only their
number and end points; i.e., terminal pairs. There 1s a restriction

on the minimum number of g-bond chains. This results from the require=
ment that all graphs be ALDC. In general, the smallest J 1s not

4i = 0, which only occurs when the protograph is already ALDC. The

composition and langth of g=-bond chains is specified by the matrix
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| l
n, n, l“"’lg*
(N) nz“\..\~no\,
<V25>: , (A2.54)
1 NN "““/
H,UHZH s

The rows specify the composition of each of the g-bond chains. The

ol '
symbol, ns , indicates the number of species, s, in the X -th chain.

)

The specification of U, Zi)g)<:ns and the order of species in

each chain designates a particular expanded graph which is a particular.

term of Bm’ m=n + u. All expanded graphs which differ -only in the

order of species in the g-bond chains are the same after integration
mmrdgmz.

Summary of terms

‘T = protograph (type of bonds and number of vertices - no
g-bonds).
Zz = elements of protograph (permutation caused by numbering

vertices).
J = specification of composition of all g-bond chains.
)

<;hs>= specification of number of g-bond chains between -each

pair of vertices in protograph.

If one specified

a) ;}JY:L.V — define a particular prototype;

)<
b el @(5 . ) . .
‘) }_{)"22/1_/) <h_$ > define a particular class of graphs;

C) u ?II

=)L

/ 3—_{) <Wé=;)) 4 ‘order of species in ;h;ins \_2_ define
expanded graphs which is a particular term of Bm, gé&)may

be defined in terms of the collection of graphs:
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V B, ()= ZZZ c” K(u )I( 5,24 “0)) (A2.55)
AR e’
where K( U U, “ V< 6;)) = combinational factor j

I(Q)T'L) )_})( V\(ZO))‘ = integral, fc{ffﬁgf of a specified class of .
graphs.

The sum over 2; is essentially two sums:

Z %%

which means sum over all distinguishable protographs, then over all

elements of each. Bu is replaced by Bu()i) because its value is

dependent upon the composition of the added g-bond chains.
Fortunately considerable simplification can be made in the cal-

culation of Bu(Di). Equation A2.55 reduces to a much simpler form.

After simplification, one obtains

SRPNY
V ! 8,60 _;5_ F?;,(y)[Jl,l (%)/%]z,/] df u?

(A2.56)
Vv
in which
FYQ)= product of k and f ~bonds corresponding
7 u p
to the element of the protographv?7'3 (A2.57)
and
- = _ Z r,V
7= b = A 67(’ ) (A2.58)
and

A
g(’j l/)'-'- e /LHTP (X defined as= 2C ) . (A2.59)

Further simplification can be made by noting that



R , V
(1 ng = E 37 %j V/ (A2.60)
J . &

and evaluating Bu(>$) for u2 2. For u = 2 there are only two pro-

<

tographs; one with a k~bond and one without. There is only one element

of each protograph.

-
BaL(X):[\/ (@@ﬂﬁ{j«i/w + E[,% jzi}/y/]o{’fa,éj. (A2.61)
7

The range of 4 in each of the two sums is different. To obtain an
ALDC graph, sum over L= 3 . (Note that V= 1 and J= 2 were already
summed over in & and(gg.) In the second sum, the ALDC condition is

A

met with.ﬁEO. Therefore

YRRy N VS P

or

L
B (0= [V W] fcb;‘; dfa k.

(A2,63)

il
Equation A2,62 defines ¢QL . It should be noted that (a,bﬂ is 1 1f
a¥# b, and 2 if a = b.
A similar simplification can be made for uz 3. It is simpler to

define the results of the simplification in terms of ¢)—bonds:

@L{' - /&1,]@741: = a(,b[— wh fr - 22 e cy‘mgg)‘]; (A2.64)

bun= @, -1 (A2.65)
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| }
By - huioga

and
¢, - @, =% /2 - (42.67)
Define
Bg(x) = [u! v]'f S, (%,843) dfuy, (A2.68)
v
where

fiu6€2¥)= sum of terms corresponding, one-~to-one, to all of the
distinguishable graphs on the skeleton u that may be
formed by q—bonds,@éUbonds, fj—bonds..;..and a fd—bond
subject to the following: -

1. Every graph is AKDC on u,

2. There arz no g-bonds nodes,

3. On a gilven palr of vertices there may be one g-bond or ome
qgh—bond but not both. On any m vertices, there may be at
most one fm-bond.

A systematic way to specify the graphs that enter into the definition
of the terms of SM(%,ggf) is the following (u2).

1. Form all distinguisheble configurations of f3, f4....fu—
bonds on a skeleton of u unlabeled vertices beginning with
the empty skeleton itself.

2, In each graph produced by (1), every pair of vertices that 1s
at least doubly connected by edges of fm—bonds must now be
connected by a ¢—bond.

3. Every pair of vertices which remains without a direct connection
may be either left this way, connected by a gq-bond, or con-

Ul
nected by a gb ~bond.



Every ALDC graph on u unlabeled vertices by the above procedure
is called a "Kappagraph." The group of elements of a kappagraph is
the collection of distinguishable graphs that are formed by numbering
the vertices. The terms of 5%5(5{)€}43) are obtained by assigning
species of the composition set, u, to the numbéred vertices of the
elements of the kappagraphs on u.

With this method for obtaining sng(x‘{yj) the integral

Bg\(ﬁ) = [24-' VJ_IJS_U_L (%, $u) A5 u? (A2.69)

may be evaluated and, consequently,
_31
- Eg¥_<>i> (A2.70)
1T A

is evaluated.

a5k
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The absorption coefficient for hydrogen-like-atoms can be computed

rather accurately. If the atom in ar excited level n, absorbs a

quantum of energy,ylﬂ s
”UJ/ >I7Z€ - E,,,‘/ (A3.1)

(where;ze is the ionization potential and En is the excitationenergy
of the level n), the photoejected electron will have momentum given by

Einstein's equation,

z »_ hR
z MV +.7{£;huj (A3.2)

(where m, is the mass of the electron, v its velocity and h is Planck's
constant) since the energy of the level n is hR/n2 (referring to the

ionized atom as zero). R 1s Rydberg's constant:

)
P - ZIME Me (A3.3)

n

where & 1s the charge of the electron.

The Bohr equation for the frequency, /), absorbed takes the form

)/:Ez"(—y’;z “(“é’;)z)j (A3.4)

where Z is the atomic number and n" is a complex number. Menzel and

Pekeris (1935) suggested for the continum,

ek , (A3.5)

where k is a real but not necessarily integral quantum number and

i= \f—l. With this consideration A3.4 takes the following form,

Vo= RZI('W*‘ TIJ’-> s (A3.6)

and k is defined by means of the relations,

WRZ/ K = men?/z
(A3.7a)
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and its derivative

_(’zhEiz/ks)&M: iy = hdy . (A3.7Db)

Now one attempts to obtain the expression for the absorption coeffic-

ient per atom for the continuum. By virtue of

P
o Ay = TE
f » A= 7(7 (A3.8)

where ¢, is the absorption coefficient per atom, c is the velocity of

v

light and f is the oscillator strength (f-number), qb may be expressed

- Jf
A
o, = g——i o (A3.9)

Since the absorption coefficient is continuous over the series
limit, the f-number may be defined for unit frequency interval. On
the red side of the series limit, there will be A n lines of mean
oscillator strength, f, for unit frequency interval. Just to the
opposite side of the limit, the f-number per unit frequency interval

will be fAk. Thus

d§- 54k | (A3.10)

and

&, = 5& 9" )[Jk (A3.11)

Substituting dk/dy as defined by A3.7b in A3.11 and dropping the

negative sign, the following relation is found

3
_me [k,
Xy = me ) Zp2" (A3.12)

The f-number for a given transition in hydrogen may be calculated

from
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¢ l [
\][ ;= —g—— - —T’—,—Z——T‘-{-B }73‘(”_—53 ?Ij (A3.l3)
' “ols g, )t (8]
where g' is the Gaunt correction term, which according to Menzel and

Pekeris is given by

B[z ew
g'= [-.1125 ,-g-)—z) 3[%(5—;)“/] 3

g, is the statistical weight of the level, n' (given by 2(n')2) and

n and n' are the quantum numbers of the levels. TFor the case where

n' = k the oscillator strength fnk is given by
.32 | i Ly 3) ‘ (A3.14)
k33 2t [(5F-(£F]P | 1K I :

which, when substituted into A3.12 along with A3.,6 and the definition

. . . , h
of R, gives the absorption coefficient per atom in the nt level:

32 T RzY
o( y = = ——— | ——— -
H( ) 3\/; Chs Vlb )J3 ﬁ (A3.15)

At the series limit the absorption coefficient is 1.38 x lO-'l7 cgs

units per atom in the second level.

The total absorption coefficient per gram of hydrogen 1s computed
for a particular temperature by summing over all levels that can
produce absorption at the particular wavelength. For 4000 X transi-
tions from the third and higher levels are considered; the first level
need not be considered until the wavelength is shorter than 912 A.

The temperature enters the computation of the mass absorption coeffic=
ient through the dependence of the distribution of the atoms in their
various excitation levels upon temperature. It is assumed that this

distribution is given by Boltzmann's law (under the condition of tem-

perature equilibrium):



259

n -
- ghn &‘Ern/kl (A3.16)
J
. et gr1
where n_ and n_, are the number of r times ionized atoms in the

levels n and 1 (where 1 is the ground state), g o and g, are the
statistical weights (2J + 1) of each level, Epn_is the excitation
energy between the two levels, k is Boltzmann's constant and T is the
temperature. Figure A.6 shows the dependence of the mass absorption
coefficient of hydrogen on temperature and frequency. Notice that
between the successive series limits the coefficient falls off as Vi
rises anew at each series limit and falls off again as J increases.

Where n is the number of atoms, dh is the thickness, o, is the

absorption coefficient per atom, then

dl;=——l;t>§,no%, (A3.17)

Using A3.15 and A3.16, the absorbing effect of atoms at frequency s

th
due to the n ~ absorption band is:

Figure A.6. Atomic Hydrogen's Absorption Coefficient
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g -5
{n) .- 321 2 9' ey Grn /KT, (A3.18)
A1, ">~ 3, @) lpydh= -I, 25 Tty € ’

The total absorption 1s the summation over n.

dr, = Z c/q/" s (A3.19)

where the sum begins at the first band, which corresponds to no,,to
the violet of 2~ . The total number of atoms in one cm3, n_ s must be

summed over all quantum numbers n =1 ton = =,

-E
- nr‘l o rn/é7 n Z(r-
Ny Z Nen * Zﬂ = (A3.20)
h=1i 5(‘]

where &} is the partition function for r times ionized atoms which is

defined by
>0
“"E;"n /57
Zfr(r) =Z Ion € /A . (A3.21)
n=/

Introducing Saha's ionization equation,

Mo P, = Uy, 2(217%)%@7)% e-yfr RT (A3.22)
Ny '€ U, 113 9

where k is Boltzmann's constant, m is the mass of the electron, Pe
is the partial electron pressure and where n, is the number of elec-"

trons per cm39
Po = kT, (A3.23)

one obtains

3 X o

/Q )A_ . (A3.24)

Ner o Tea
2(2rmVe(k

rla U (T)

R

If A3.24 is put into A3.19 the total absorption is given by

¢ (55
(“ nr'+1 Z%Té KZ Jl - "‘(Ern P‘)
45, Zd] NmCT) 3z ¢ (emm)¥e L kT)‘/‘Z 4 kT . (A3.25)
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For hydrogen-like-atoms

E =hR2*(1-L) =X - hBZ/m>  @s.20)

is valid. Also U1 is equal to unity since only the nucleus is left
and consequently the partition function reduces to one term: the

statistical weight of the nucleus. WNoting that 8. is 2 n2 for hydrogen

type atoms, dI , becomes

-_% o E 2
= Ca 227- Zh’ezl : hzz
dIJJ‘ —llnrﬂ Fe PE / kT ne e mkT ﬂ“‘/ (43.27)
h=hn,
where
-‘74 C’ {
=2 e J = 2,677 % 102/'. (A3.28)

° V3 ch (2mm k)%

Unfortunately this expression is incomplete since neither the
stimulated emissioh (negative absorption) nor free-free transitions
have been considered. To get the correct coefficient, Both must be
included. To do this, one equates the stimulated emission coefficient
to, the absorption coefficient through the process of detailed balanc-
ing and then corrects the results for free~free transmissions,

If there are n, atoms per cm3 in quantum state, k, and the

number in a lower state "i" is n,, then the number of transitions per

i’
en® per second which produce h yik is

My = 0y (Al + Uy B (A3.29)
where Aki and Bki are Einstein's transmission probability coefficients

and LEVETH is the energy density of the desired frequency, given by

H‘U*'J = _CL/IL"%? dw. (A3.30)

uu‘B

ki corresponds to the stimulated transmissions which take place
tk



under the action of the radiation field of demsity u, PR

R . . 3
The number of converse transmissions, i--k, in one cm™ per second

is

absorbing hz)ik

n_y =" UA%BJ , (A3.31)

It is assumed, of course that the radiation density is relatively
constant in the neighborhood of lJik' Between the three transmission

coefficients, the following relations hold

=9 b (43.32)

and
A - 5n /?( “) 87/14/)5 : (A3.33)
e T — /% ...... hew) 7B,
C < cﬁk
The latter may be used to express 3.29 as
- b s ) ] (A3.34)
nk-—)v k‘( é?n h(, ] Z

To modify the previously acquired atomic absorption coefficients,
transmission coefficients for the recombination process must be intro-~
duced. Let 0%09 be the atomic absorption coefficient corresponding
to photoionizations from the nth level for r times ionized atoms.

The number of ionizations per cm3 per second will be given by

n L dv = nmcxn(y) &‘)jla?a) (A3.35)

which is just the total energy absorbed divided by the energy absorbed
per transmission (hy¥). The electron will be in some final state, k,

after the transmission which corresponds to an electron of velocity v

fixed by equation A3.2.

The converse of the photoionization process may be thought of
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as a collision between an ion and an electron. Hence an effective
"cross-section" for recombination, denoted by (Ykn is introduced. The

. . 3
number of recombinations per cm™ per second are

-t

!
VLk__’n = nr_r\(“ k”, UCQW()

2 9 (A3.36)

where dne is the number of electrons per cm3 having velocities in the

range v to v + dv, n is the number of completely ionized atoms and .

r+1
dv and d v are related by A3.2:

o d - (\L)/m)&)l. | | (A3.37)

It is noted that n, may be expressed in terms of the Maxwellian velocity

distribution since thermodynamic equilibrium is assumed:

¥ - s

m T
dn, =047 (z75) e 25T pid, (A3.38)

where n, is the number of electrons per cm3, m is the mass of the
electron and k is Boltzmann's constant.,

Expression A3.36, expressing spontaneous recombinations, must be
modified to account for the process of stimulated recombination-
equation A3.34 ~ if the medium is in a field of radiation of density

u Modifying A3.34 by A3,36 obtain

PR

3
“k.mooﬂ-'“m,@;nnf(“;‘;,—g;;%) 69% (A3.39)

The coefficient G&n in A3.39 is related to an(iﬂ) in A3.35. By the
principle of detailed balancing, which states that for thermodynamic
equilibrium a process can take place exactly as often as its converse

occurs, A3.39 and A3.35 may be equated (using equation A3.30)



cdy - ~ *u
Qo & ) YUy = ay, w(l fo )

) n Er ho? (A3.40)

Substituting for U,

Yom = (A3.41)
since thermodynamic equilibrium is assumed,  and for dne, defined by

A3.38, and noting A3.37, equation A3.40 becomes

hy- MA_TZL —V—'”-):}{/uz)q
N o{(u)( ”) heh, G & &7 (»?W‘k“f' T * (A3.42)

r +i kn

Using the fact that the numerator of the exponential term is;Z; and

the relation (obtained from A3.16 and A3.20)

o - E\ \/’l" - E n el
Negz N, 40 e NANCY z o/ (A3.45)
nooTE o = ﬂ - J '
g 14,(7)

equation A3.42 may be written as

Aok

o R

7 e 7
u’(‘ﬂ) VJ‘"(rH ko ,gm;ﬂ (_*r[T 2 (A3.44)

N 23
&
U, A (T) ‘]M

Finally, using the relationship between n. and n..q as defined by

A3.22 and using A3.23, the correspondance between® ( M) and CTkn

is determined:

5 = % :%i_fi_.m ol(v)

Thn U 0) et (A3.45)

which is further simplified becaﬁse u = 1 for hydrogen-like=~atoms.

r+l
To obtain the absorption coefficient kd) the equation of

transfer must be considered:

o AT Juds - T (),
Cas@ﬁe /uaﬁc) .zy(@@/acﬂujw (]y(?‘.y/)afugﬂf_,j) (A3.46)
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where KL indicates an absorption coefficient taking account of only
ordinary absorption. To see the dependence of j}/ on & , express

A3.30 for a pencil beam,

7 = o) dw
(”(ijw I_,,./<{ 2/ % (A3.47)

and note that j,, includes the stimulated emission. In other words j u
will be a function of the radiation density which is in turn a function
of & . Using A3.31, rewitten for a pencil beam (using A3.46 and

A3.33),

-3 :
, ! C L ()
n'/’\-»!c)&w = Ay, (WF z hy) = )d]a)/., (43.48)

and equation A3.39 one may write

Jo@pdude -, S W L L ) ki s, (4349

k 47 gﬁhﬁ
since h w is emitted in every recombination and only d /47 of the
total radiation is in the beam d /. Using A3.22, A3.47 and the

definition, y(r - E;n :)(;n’ the right side of A3.49 is changed to

Mo, Yoo, g oAy «’(JW)”‘//H)V ’ /’ 4. T(B))/; Inda.
Gon B et G Pyt N

Further seubstitution with equations A3.38, A3.23 and A3.45, followed

by use of
M(\J"&Q/\)’: ;')OQ.U ﬁ”é/ '/'Vr"r) i WJ/U‘Z = /UJ
yilelds

04»},(5) dﬂépw n. 6 &Toz() Z/W +1;’(?)/5/"'J5/U~ (A3.50)

Replacing ah}n?/cz in A3.50 with its equivalent from Planck's law gives:



e /. ~h
& (9%”/)//@0: - of/u)/ (1-& AV’:‘I"’) /3#(7) ;e T, (@) f dwdr (83-51)

The form of the absorption coefficient is now shown by introduc-

ing equation A3.51 into the equation of transfer, A3.46 where the

quantity kbc/o is replaced by [&¥(D) ,an;z:

Con © 2{%}(&): /’&rnd(ﬂ)fy(e)(l—ehh%r)—- Py (V) B, (7) (/_e"/’“/n)j

-hu/y (A3.52)
= V),l_no{(.u)(l-e /T) [Iu/g) - B#,(r)] .
By letting
. “hyf
A iaT) (o) . (A3.53)
- ( ,
the equation of transfer becomes
o, _" B ‘- .
C@a 8 CVIL(O): ml“"l lip ZL(@) ,BJ)CT)‘]:? (A3.54)
dn
and introducing the absorption coefficient per unit mass,
¥ L%
P

where my, is the mass of one hydrogen atom, one obtains the equation

of transfer in its original form:

LG ok |1 B, (7]

It is clear that when using the equation of transfer, A3.56, the
absorption coefficient, which takes into account the stimulated
emission only, must be modified by A3.53. It should be noted that
A3.53 presupposes thermodynamic equilibrium. Also that the same
expression may be obtained by comnsidering only discrete transitions

between different quantum orbits of the electron (E. R. Mustel', 1956).
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Finally, the absorption coefficient for one (r + 1) times
ionized atoms is given by (using A3.53 and A3.27)

v
t C 22P€ Zh{e‘zz - g 1‘1_/87?1 "\4/
= 2 e R R it _ e T
lﬁﬂ T% 3\ kT PE & Rtk (J € ) , (A3.57)
L
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