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PREFACE 

This work was undertaken at the suggestion of Dr. F. C. Todd who 

acted as the author's advisor and project supervisor. The purpose of 

the study was to investigate some of the phenomena associated.with the 

plasma resulting from the impact of a hypervelocity particle on an 

aluminum target. 

The specific problem undertaken was intended to yield an analytical 

method for determining the properties of an exploding sphere of an 

alumnium plasma. The calculated properties were to form a basis for 

confirming laboratory experiments. The analyticc:l-1 model was to be 

applicable to a more detailed analysis, 

The assistance and guidance of Dr. Todd have been invaluable in 

the completion of this work, The author is grateful to Mr. B. A. Sodek 

for the many discussions concerning the formulation and construction of 

the digital computer program. The author is also indebted to Dr. Jerry 

Maclntire for his extensive aid in reviewing the material in the first 

six chapters of the thesis. 

The work was.carried out under NASA Contract Number NASr-7 admin

istered through the Research Foundation, Oklahoma State University. 
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CHAm.R I 

INTRODUCTION 

When a. sipa.11 particle with a hypersonic speed s:tirikes1 a :: stationarr 
< 

plane metallic target, several interesting phenomena are observed 

(Charters, 1960). Within the first microsecond of the impact, a very 

brief, but intense, light flash is emitted. The impact results in an al-

:qiost perfectly hemispherical crater which is many times larger than t ~e 

projectile. In addition, the crater may have a sma.ll curled lip around 

the periphery. During the crater formation, ultra-high speed ·photography 

shows the emanation of a fine, high velocity _ spray from the crater region 

which is in the form of a cylinder. 

High speed particles occur, naturally, in the region above the atmo-

sphere of -the earth. They are called micrometeoroids while in Si!)ace. 

The NASA project, which has. supported the research for this thesis, bega.Il 

as an analytical study of micrometeoroid impact yd.th. em:phasHf ,on , 

aluminum as a target material. Lake (1962) reported on a theoretical 

·solution to the 1.Jiipact problem which was based upon a model proposed by 

Dr. F. C. Todd, project· director. The essential features of this; model · 

consist of the format i on of a plasma from the prbjectile· ana :impact ed . 

target material and the propagation .of a : shock ;wa.ve ·' r adi al ly ·outw.;rd: ''. 

from the point of initial contact. Subsequently, Sodek (1965) devised a 

theoretical determination of the essential properties of the impact of a 

spherical micrometeoroi d on a semi-infinite plane . 

1 
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Lake and Sodek confirm, in detail, the broader assumptions of this 

impact model. With aluminum as a target material and a micrometeoroid of 

normal mass and velocity, peak material pressures in the order of tens of 

megabars were predicted. Such pressures are sufficient to convert the 

impacted material into a hot, dense plasma. Experimental evidence of 

such a plasma has been confirmed by Alexander (1962). Project work 

is now directed toward the evaluation of the properties of such a plasma. 

The subject of paramount interest and of this study is the relation 

of the thermodynamic properties of the plasma with the energy and size of 

the impacting micrometeoroid. In theory, the properties of the pU.asma 

spray may be studied through a detailed, experimental examination of the 

spectra of the emitted light. This examination must include intensity

time measurements on the spectra. The interpretation of the experimental 

results is, however, very diff icult. The emitted light is a very compli

cated function of the temperature, density, ionization and speed of the 

plasma spray. Before the light can be related t ·o the thermodynamic 

properties of the plasma, the physical characteristics of the spray must 

be understood. Furthermore, the interpretation of the plasma spray 

properties in terms of the initial state parameters is more difficult. 

In order t ·o partially resolve this difficulty , a theoretical solution was 

sought for the following problem which is a simplification of the actual 

phenomena. 

Statement of the Problem 

Consider an isolated aluminum sphere which has the radius, R0 • At 

times t = o, let the energy density in the sphere be E0 , a constant value 
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throughout the sphere, sufficient in magnitude to cause the aluminum to 

be a hot plasma at solid density. Since solid density is assumed, the 

value of the ener gy density, E0 , may also be expressed in terms of the 

initial energy content per atom of aluminum in the solid state . In 

addition, a radial electric field is imposed between the sphere and an 

external , concentric, spherical electrode. Thermodynamic equilibrium · 

is assumed to exist initia lly and during the subsequent expansion of the 

sphere of plasma. The immediate objectives of the problem is to obtain 

values, throughout the plasma during i ts expansion, for the pressure, 

temperature, density, flow velocity and ionization of the plasma as a 

function of several values for E0 • 

The problem was designed to determine the characteristics of the 

continuous spectra that is emitted as the plasma sphere expanded into a 

vacuum. In order to determine these cha~acteristics ; it was ·necessary 

(1) to construct an improved equation of state for aluminum, and (2) to 

use the improved equat i on of state to analytically determine the pressure 

temperature, density, flow velocity and ionization of the plasma as a 

function of time and of spatial coordinates with E0 as a parameter. From 

the analytically determined, spatial distributions, the basic properties 

of the emitted light may be predicted. In this manner, i t is possible 

to correlate the characteristics of the emitted spectra with the original 

energy input. 

To summarize , the solution to the proposed problem that is presented 

in this thesis may be divided into three parts: (1) development of an 

improved equation of state for a rapi dly expanding sphere of plasma, (2) 

the use of this equation of state to predict the values of the listed 
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variables thro11ghout the plasma as a function of E0 when a sphere of 

plasma expands into a vacuum, and (3) the presentation of the equations 

to calculate the spectra l energy distribution of the continuum radiation 

from the sphere of plasma as it rapidly expands. In this list of the 

parts of the thesis, the first two have been investigated with a digital 

computer and numerical solutions are given for a range of values of E0 • 

The equations and the techniques are given for the thi rd part of the 

thesis, but the digital computer calculations are not yet complete. 

Treatment of the Problem 

A solution to the pr oposed problem is sought in terms of quantities 

that may be observed in experiments, or checked agai nst prior analytical 

studies . The anal ytical problem introduces several unknown constants, 

several approximat ions and some equations of limited pressure-temperature 

range. In order to investigate these uncertainties and the validity· of 

the assumption of local thermodynamic equilibrium, the equation of state 

for the analytical solut!on must be checked. For low densities and high 

temperatures, the check on t he analytical predictions is provi ded by the 

assumption that the equation of stat e for the plasma approaches to the 

perfect gas law. An experimental check on the analytical solution is 

necessary, and practically essent ial, for hi gh densities and relat ively 

low temperatureso For this range, a convenient _aboratory experiment , 

is the application of the "exploding wire" techniques to short wires. If 

a part of the "exploding wire" expands into an evacuated portion of a 

hollow sphere, this portion may be employed to simulate very closely to 

an "exploding sphere" of plasma. This experiment may be employed as a 
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calibration po:lnt prov:ta.ed the energy input to the exploding wire iB 

accurately kno1.r,r1:. For higher temperatures a.nd pressures, a second experi

mental approx:l:mation i.s the "hemis:phe1:'ical plasma" which forms when the 

giant pi)]lse of :Light from a laser is incident on a slab of aluminum. 

Both of theSJe experimer.rtg ara being assembled. 

F'rom the similarity "!::;et-ween the exploding i:,r:ire and the analytical 

problem as stated, one concludes that n1.a.ny of the expansion e,nd s:pect:ra.J.. 

characteristics '·.rill be the sameo Among these sirrd.lar ch~1racteristks 

are the following~ 

a) Exploding wire:i> appear to e:-rplcid-E:, a:;:J hollow cyl:ind,nrs 

b) Shortly after the expansion begins, the -w:i.re a,:ppears to be 

covered with a darkened shell which quickly disappears 

c) The e:m:\ttted light iudic::atEc1B a temperature substantially lower 

than that corr~sponding to the emergy content. 

The a1bove charai::ter:i.stics indicate that: 

l) The new equation of state :must :acco,mt for all important energy 

2) The most important energy transfer and loss mechanisms must be 

included in a conservatio:n. o:f' energy eqU:ation., 

The prot1lem hall\ been formtflated incorporating the .above features, In 

Chapters II and III the thf3/Cry of a :modifi,ed semi-classical equation o:f 

state is develo:ped. Th<e numerical method used to c;:0111pute the equat1.:Jn of 

state i~ reviewed in Chapter rv. The flow problem ifrl form:alated in 

Chapter V and the numerical method is outlined :tn Chapter VI. Equations 

to calculate the em:ttted cont:Lo:uous ~pectra are de-termined in Chapter IX. 

Results and interpretation!3 of the re!.'lUlts of the study comprise the 

remainder of the text. 



CHAPI'ER II 

CONFIGURATION INTEGRAL 

1. Introduction 

For calculation of the expansion of a plasma, an equation of sta~e is 

required that is valid over the entire pressure range for which the 

calculation is to be valid. Deviation from the perfect gas law is large 

at high pressures and the deviation decreases to negligible values as the 

pressure decreases. The historic problem for obtaining the equation of 

state is the evaluation of the interaction forces between the particles 

in the plasma. These forces have been stated in mathematical terms and 

their determination requires the evaluation of the interaction partition 

function, or configuration integral. The partition function consists of 

the product of several terms in which each term is simply related to 

the Helmholtz free energy for each component in the plasma. Through the 

evaluation of this function, one may obtain the thermal and ionic 

properties of non-ideal gases. The approximation by the perfect gas law 

with no interaction forces is not applicable for a high density plasma. 

In the discussion in this thesis, the configuration integral is evaluated 

for two body interactions. In another thesis, that is in preparation, 

the interaction forces are calculated for three body interactions, which 

are then added to the two body interactions. 

6 
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This chapter ia devoted to the solution of the co:ofiguration 

integral and to, itli'l effe,~t ·upon thermodynamic a.nd ionization properties. 

Its evaluiatioJn.» lllsing C!l'Ulster integral theory, forms the basis f'or the 

developmexit of a consistant classical equation of state for a real plasma~ 

The term» con!'.3iitant, indi<c::ates that the methods a'ld approximations in 

eval·uating the thermal propert:les are the same as those used in the 

ionization part of the problem. The term, "real", implies that the 

theory b developed for a plasma that is composed of electrons, ions and 

neutral atom~ of finite sizes which interact with relative po~ition-

depiendent J;JOt,imtial!il. The theo:r-y is rigorous to the extent of ·the rigor 

of the cluster expansion method and is valid within the limits of clas-· 

sical statbtics. Radially symmetric forces are assumed to exist a.round 

the atom~ J tonsi e.c"Q,d electrons o 

The '.t"f,0fg' ~f pla:;;ima equations of state will be developed in a 

straight-forward .;,tatigtical manner. Starting with the partition 

function for the sylE!·temn} it 1.r:tll 'be shown that solutions both of the 

ionizatiori properti,fHil and of the thelt'modynamic properties depend upon 

the eval:uation of the excess Helmholtz free emergy: the, contribnt:tot1 

to the free energy from the interaction potentials. Some of the :main 

approximation methods to evaluate th:!.s interaction E,re outlined. F:I.nally 

it will bre i,;hcrwn ·that the :smne method for evaluating the interaction free 

energy may b<l! uged to p:rod'll!ce a consistE\nt theory. 

In Section 2;, the (!o:nfiguration integral ghall be introduced and it 

will be shown th~t the~modynamic terms arising from its evaluation may 

Helmhol.t~ frl6ie ::;m~rgy corre-c:tioin restilting f:rom d.Hferent approximations· 
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will be giveno Severt;.l :methods c•f evaluating ioni;1.s.tion :r;mopert:1.es 

of a. 'plasma are consid.ereiril in Section 4. A consistent theory will be 

presented in Section 5. 

The development of the complete equation of state is in Chapter 

III. The numerical method used to tabulate the equation of state is 

in Chapter IV. A comparison of the equation of state resulting from the 

various approximations is given in Chapter VII. 

2. Formulation--The Configuration Intes_ral 

A generalized :form of ·the partition function is expreseable as the 

product of separate components. It follows that the resulting thermo-

dynamic properties of the iystem components are additive. Consider a 

partition function 9 expreli!sd.ble as a. :product: 

where the ZI's are partition functions for ieparable subsystems of the 

entire system. The Helmholtz free energy is rela.t,aa. to the partition 

function lly 

in which k i!'ll the Bolt~ma..rm con~ta.nt and T is the temperature. Combining 

(2.3) 

where 

A· = -kT 
-l, 

IV! l· " ). (2.4) 
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By the Ul'lUal thermod.ynamic relations, it follows that the rem.ain:tng 

thermodynamic properties a.re also :sepa.ra?cile and add:ttive. The principal 

S. = - ( ~-~ l -IT) -
A_ <:,) I 1/1J· 

) ,<_ 

in which V is thre voltrne, and N. is the dens:J.ty of the ith s,pe'.'.::ies. 
1. 

(2.5) 

(2.6) 

(2~7) 

(2 .8) 

The interaction partition function: conf:T.guret:i.on :i.ntegral, can "be 

represent,ed by one of the Zr I s of Equation 1. In the formation of tbe 

classical canonical eni:H;;m1rJle, the volume in phase space that is occupied 

by the system is c~,lled the partition fl.llnretion, Z: 

(. } 
I Jr a r-

J 
In 2.9, H(:p,r) 1111 the N-pa.:rticl.e (identical :particle) Halniltor:ian. 

+- U (N) , 

in which pi is momentum of the 1th particle and U(N) iii. the interaction 
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potential energy of the system*. U(N) is expressed as the sum of all 

2-body potentials of the form 

Ll ( N) == L r.r ( r:) ; 
pa.,rs 

The integration of 2~9 is over the 3N position and the 3N momentum 

coordinates. Thus 

and 

N 
dr= Tf d3r . 

j=- I 

The integral is immediately separable into two parts: 

(2.11) 

(2.12) 

(2.14) 

If all of' the potentials are identiie;ally zero, the last integral on 

the right of 2.14 yields a factor, vN J which rie1sn.1lts from N, independent 

vector coordina:tes which are integrated over the volw:ne. TM.s yields the 

ideal, or transitional ~artition function, ZTR: 

*Strictly speaking, U(N) is not the system' a potential energy but 
the potential of average force. (See Appendix II). 
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(2.15) 

where >.. is the mea,n thermal de Broglie -wavelength: 

( z lT m kT)'/z (2.1'7) 

(2.18) 

where ZIN is called the configuration integralJ or inte:c@,ction :i;;~a1rt:tt:'ton 

function, and is defined by 

i: = _\ f0 x p )_ \ rvj· / k T 7 d r . 
rN vt-J l L. a J 

.,,i,;JJ 

(2.19) 

The configt:rr·ation integral b simply the expectation value of the 

interaction potential. Its evaluation leads directly to the exceirn 

Helmholtz free energy, AIN using 

A = - k 1 11-t Z.1 N · 
IN 

Knowledge of AIN' or the evaluation of ZINj is needed for spec:".fi· 

cation of thermodynamic and ionization properties~ 



12 

3. Effect of Interaction on the Thermodynamic Properties 

To determine the effect of the interaction potentials on the thermo-

dynamic properties, one has the choice of evaluating 1n ZIN' or of 

calculating FIN directly. In the following parts of this section, various 

methods are outlined for this evaluation. 

a. Debye-Huchel Awroximation 

The classic solution of interest is the Debye and Huckel's theory 

for calculating the electrostatic contribution to the thermodynamic 

properties of ionic solutions (P. Debye, et al 1923). Roseland, in 1924, 

suggested the application of this theory to ionized gases. A very brief 

sketch of the theory is given here; and more detailed treatments may be 

found in standard statistical mechanics texts (R.H. Fowler~ 1936; R. 

Fowler and E. A. Guggenheim, 1956; R. A. Robinson and R.H. Stokes, 1955). 

Following Fowler and Guggenheim (1956), the excess Helmholtz free 

energy is related to the average electrostatic microfield, *- by 

(2.21) 

where e is the electronic charge, ea is the charge on the species, a, and 

IA I ( \[\ ) . - v, 'I>,) c 'I N - -. ~~ . c:.\ c:: ., , ~ \ . "'A -- r...,1 ,,,,, 
,, -l t.)6~,) ...... 

'-", ' 

the .A.IN can be placed in the Pfaffian form: 

This leads to the relation, 

(2.22) 

The average field is obtained by linearizing the Poisson-Boltzmann 

equation, 
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v2 ?J;. (r) '° -; : z_ G,s e,;p F ~ f rJ/k j ( 4 .23) 

td 

to obtain 

(2.24) 

where 

(2.25) 

Ci is the particle number density of the 1th species in the gas and Dis 

the dielectric constant. The solution of 2.24 is, 

A' -.xr 
-e 
(' 

(2.26) 

I 
where A is determined by matching potentials at the surface of the atom, 

which is presumed to be a sphere of radius "a". This potential is the 

Debye, or Yukawa potential. Its range is designated the Debye length, 

and is the recripical of){; i.e. A~=1/><:, Completing the integration of 

2.22 by using 2.26 and neglecting the productJ1d., leads to the Debye 

Limiting Law for the interaction free energy per unit volume: 

(2.27) 

The pressure and internal energy density corrections for the limiting 

law are obtained from Equations 2.6, 2.8 and 2.27). These give 

DH z 
p =--2i.\c.E:. 
IN 'D L .<.. ..(. 

(2.28) 
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and 

- )f L""".· c . c. z * ZD A, ,t. 

(2,29) 

A 

The negative sign in Equations 2o27 thru 2.29 reflects the orderi:r,g, 

or the collective polarization effect, which results from the :tuter-

action of the electrostatic microfieldso 

This theory would be valid for high density if ){ w,e,re not deptm.dent 

upon the density" For the statistical argument to apply, a J.arg,e number 

of particles must be within the potential range, "n. 1rtlis de:pendence 

of A0 upon Ci makes the theory a low density approximation" 

The second limitation of the theory arises from the linea:rization of 

2o23o For higher order terms to be negligible, the average electrostatic 

energy must be smaller than the thermal energy. If. Aij h the distance 

at which the thermal and electrostatic static energies are equal, then 

IA·.\= L~:.~~). 
1 ;Lj D k T 

(2.30) 

In the regions of validity for tbe theory~ the resulting corr~Jctions 

are usually vecy small when compared to the ideal gas theory and can 

usually be neglected wi·thout serious error. 

Various extensions and validity criteria of the theory ar;e reviewed 

by Duclos and Cambel (1962)0 

b. Mayer-Ursell Cluster Expansions 

The technique for obtaining the properties of an im:pe;:fect 

gas was solved, in principal, by Mayer and Mayer (1940) in the sense that 
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any, selected virial coefficient could be expressed explicitly as a 

multiple integral provided that the interactions were position dependent 

with respect to each other. The use of coulomb potentials created di-

vergences in the integrals and prevented their application to ionized 

media. J. Eo Mayer (1950) devised a method for using coulomb potentials 

in the theory. He obtained the Debye correction as the first term of an 

expansion. 

The theory provides a mathematically rigorous method for evaluating 

the configuration integral 

Z\., = I" Je;:rr-<~ t>!Jj/kT] de (2.19) 

by expanding the exponential in terms of the cluster function, 

(2.31) 

This procedure converts Equation 2.19 to a series of integrals (of which 

the first few are reasonably easy to evaluate). 

No attempt is made to outline Mayer's method in this rie:port. An. 

outline of the cluster theory which is based upon the development by 

H. Lo Friedman (1962) is given in Appendix IL For details.9 references 

in that appendix ehoula. be consulted. By necessity" some of the termi-

nology introduced in Appendix II will be used in this chaptero 

In formulating his theory of ionic solutions» Mayer (1950) evaluates 

the second order cluster integrals:, when u ~ 2, for the primative, short-

range potential (rigid spheres) combined with the Yukawa potential. 

This potential is expressed as 

(2.32) 
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t where U. (rij) is the short range potential specified by 

t 
' l.,l ( r;,j) = ~ . '(',. O·· 

' '"J - ~ ' 
u.t (<'ij) = 0 ) 

r; . > a;j A.j 
(2.33) 

"a " is the distance of closest approach. After showing that the ring ij 

graph contribution -was the Debye correction, Mayer collected the·remaining 

two body interactions as a sum of integrals. J. c. Poirier (1952) has 

tabulated the integrals in terms of convenient parameters. The results 

have been summarized by Duclos and Cambel (1962). The interaction free 

energy per unit volume from the Mayer solution is given by 

In 2.34 

C : number density of kth ionic species 
k 

Jk. = dimensionless charge of kth ionic species 

bM(4) = integral evaluated by Poirier for various values of q> 

gp(<p) = integral evaluated by Poirier for various values of¢ 

k = :Boltzmann constant 

T = temperature 

X = Del;lye para.meter 

a1j = a1 j DkT/e2 

cpij = atj /'>..o 

e = electron charge 

Ao = 1/ ><.. = De bye length 

JJ = para.meter indicating additional Coulomb bond cha.ins between the 

two part :f,.cles. 
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For plasmas, the usual procedure is to fix the distance of closest 

approach as that distance for which thermal and electrostatic energies 

of the 1th and jth particles are equal, Equation 2.30. Duclos and Cambel 

(1961) suggest that a better approximation may be given by 

a .. :::: ca [- Ao + ( ~! + A. >--0),1:z] 
~j z 4 ~j ' (2.,.35) 

where Ca is arbitrary and 

(2.30) 

A reasonable. validity criteria for Mayer's solution is given by 

(2.36) 

This simply states that the distance of closest approach must be smaller 

than the average distance between particles. 

Thus, within the separation limits in Equation 2.36, the imperfect-

gas, free-energy correction is specified by Equations 2.30, 2.34 and 2.35. 

Combining these with 2.5 thru 2.8 allows one to determine the corrections 

to the other thermodynam:tc :properties of the :plasma. 

c. Exact Formulism 

In 1957P Meeron (1957) showed that Mayer 1 s sum of integrals for the 

2nd order term could be converted to a single integral of a closed for,m" 

Further improvements in the formalism are included in the discussion in 

Appendix Ilo Using the set notation shoml in ,lp:pend:lx I; the interaction 

free energy per unit volume is 

[ I 11 c_ Y- ]J,,_ (xJj r = -kT x3 + v.. 
IN Ii!.. 'fT 

~ 

(2.37) 
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where g_ is the concentration set, Jt is the Debye parameter and the Bu(>~) 
\\ 

are cluster integrals. The symbol i indicates the sum over all subsets 

of the composition set, starting with u = 2 and 

~~ CV.' c. l..(i.. I ••• c Uvr 
: I Z · tr 

where Ci is concentrat'1on of the 1th component and ui 1s the element of 

the concentration subset~ (the number of 1th species in the subset~). 

The integrand for SJJ.Y order cluster integral can be expressed in the 

formalism of 4-bonds (E~uations A2.62 thru A2.65 in Appendix II). The 

integrals for the second order terms take the f ollow:t.ng form.: 

where 

and 

In the preceeding equations: 

~b = kronocker delta 

u+ = is an arbitrary short range potential 
ab 

e = electron charge 

D = dielectric constant 

i = dime11Sionless charge parameter 

r = distance between two bodies 

){ = Debye parameter • 

(2.39) 

(2.40) 
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In terms of the cluster integral, Equation 2.38, the free energy per unit 

volume becomes ( through the 2nd order terms only) 

ll' 

F.~= -kT(i +J;./\~0.!l [[[1·~~e~b-1 -,µ -<(.Jz} dfa,b?]. c2 .4i) 

The above expression is rigorous within the limits of classical 

statistics (Friedman, 1962). In 2.37, accuracy is limited only by the 

+ validity of the short range potentials (uab) and the number of terms 

considered (maximum value of~ in the summation) .. This latter point is 

one of the uncertainties of the theory.. While convergence of the series 

is accepted, the speed of convergence is not known. When the theory is 

used for ionic solutions, the general procedure is to use sufficient terms 

to give agreement with experimental data .. Unfortunately, there are no 

experimental data yet available for very high density plasmas, thus other 

means must be devised to check the numerical results. This will be dis-

cussed in the next section. 

d. Exact Primitive Potential Formalism and Extensions to Arbitrary Short 

Range Potentials 

In view of the preceeding discussion, the most reasonable course of 

action appears to be the following: 

l. Develop the theory• for an arbitrary, short-range potential in a 

form that is suitable for manipulation of the potentials; 

2. Evaluate the free energy through the second order terms; 

3. Fit to reasonable approximations, by variation of the potential 

parameters. 
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The Thomas-Fermi model for an equation of state is chosen as a 

reasonable, high-density, high-temperature approximation. An ideal gas 

is chosen as the best approximation for low densities. The problem 

of fitting the calculated results at these two extremes, immediately 

presents two requirements: 

1. The short range potentials must be expressable in terms of con-

venient para.meters; 

2. The integrals (2.41) must be cast into a form that allows con-

venient manipulation of these parameters. 

In the remainder of this section it will be shown how the primitive po-

tential solution may be used to satisfy the above requirements. 

The exact solution for the primitive potential is obtained from 2.3a 

By transforming to relative coordinates and integrating over the center 

of mass coordinate, a factor of Vis found, which cancels the Vin 

2.38. Converting to spherical coordinates and integrating over the 

angular pa.rt, the relation yields 

"'° 
~b (X) =(I;.;:,) fr [1 + k.i.]ej,b - Q.1 J ,->dy 

0 

where r is the relative distance between particles and qa.b is de-

fined by 2~409 ~b is defined by 

2 
qab = I + ~o.b + Cf,o.b / 2 • 

The primitive potential specifies 

utb = ~ ; (' fr -<;,..b 

.T 
LA.o.b = 0 ) 

(2.42) 

(2.43) 

(2.44) 
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which, of course, is a rigid sphere. Substitution of 2.43 and 2.44 into 

2.42 leads immediately to 

B (><) ~ 4 rr ) r·f: 'I.I. r'd ..- - [; 6r2. dr] 
o.b ( I t c:Sa.b a. • 

t;.b C) 

(2.45) 

Break:tthe second integral into two integrals, and the integral becomes 

,:,d '<"a.J, 

B b c~) = 1.1L [ J ( etiii - O~!) rz d ~ - f ~~ rz. d r] . 
a (I +$11-b) 

Q O 

(2.46) 

For the primitive potential, the interaction free energy is given by 

[ .x 3 
~ =-kT -IN 12. ,,.- (2.47) 

where 

(2.46) 

The distance of closest approach, rab, may be defined by 2.30 or 2.35. 

The preceeding results will now be used to solve the arbitrary po-

tential problem. It is assumed that the short range potentials can be 

written in the form 

where u0 and r 0 a.re two para.meters which describe the potential. Define 

a sequence of sectionally uniform step functions 
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O~'r<('{'.-4!'). z z ,) 

:: t z. (-r. - b.J')t.. r < (r. + g) • : ' z z - z. z ) (2.49) 
• 

.; t (-r - 4f)'- r < ('<' + /::},'(')' n., n z - n. ~ ; 
~ o , ( rn 1-4{)~ r < c,b , 

where 

( ~ - ~) :::. ('C + ~ '(') k 2- ~-I 2 ~ 

Further let the sequence b!=! represented by 

This may be defined such that for a set of selected r 11 s, 

(2.50) 

This function is defined so the sequence equals the original potential 

function in the limit 

u..\ U.o) v;,) XJ.) = ~"" l ~ b ( V-., r;;, (;) J .6 f; f (2.51) 
b,'('~0 

For simplification of notation, define the following 
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Using this notation, 

(2.54) 

' ,6'(" 
'ft t- ~ 

To convert 2.54 to the desired form, first add and subtract , ~s qf':i.ck.: 
'1<-A{ 

The notation of 2.56 can be simplified by noting that the bracketted 

integral, i.e., 

(2.57) 

are the primitive potential solutions. Using this notation, 2.56 is 

(2.58) 



By examining the first and la~t terms of the sum in 2.58, further 

simplification can be realized. For k = l, fk = o, r 1 +6~ = r 2 _ h~ 

and r 1 - ~:: o. The last term k = n+l, fn+l = l, rn+l +A~=~ and 

rn+l - ~~ = rn + .1~. Separating the first and last terms of the sum 

yields D - -~ Jr.-~ ff fr ~~-f_ (¥'<'~+-~] ~ l.frr J!~~r 
"'b - ()t-q,1,1. Q~ r + /;, kl' ~b db I•',), o 

00 
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f e'L q) .,•J."' , (2.59) 

<n+i .· 

The last term is obtained by regrouping the integrals in their orig~l 

form (2.55). All of the integralsJ 

5:-/£1r 

0 

cancel since rk + '°~ = rk+l - ~· Thus 2 .• 59 reduces to 

"<: ... ~ 
O n z 

+ \Jab • (2.60) 

The interaction free energy for arbitrary potentials is, therefore 

(2.61) 
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where 

(2.62) 

In this way the evaluation of a very complicated sum of integrals, 

2.41, is converted to a double sum of less involved integrals. 

Given a suitable table of values for the ~bi ms.tching the model to 

experimental data is possible. As t::.r is made smaller., the more exact 

becomes the evaluation. 

Outside of a suitable evaluation of the ft,<::ab' the only undetermined 

quantities are the c1 1 s. This problem will be discussed in the next 

section. 

4. Ionization Properties 

The specifications for the ordinary thermodynamic properties of a 

plasma are dependent upon the concentration of the various species which 

compose the plasma. The equation of state must specify ionization 

consistent with the thermodynamic properties. The usual procedure for 

plasmas from ideal gases is to use Saha's equation, 2.71. For plasmas 

with interacting particles, changes mt1st be made in this procedure to 

account for the observed reduction of the ionization potential. It is 

desirable that the approximations used in determining the ionization 

modifications are consistent with those for the thermodynamic properties. 

In this section, Saha's equation will be derived and its application 

discussed. The interaction partition function modifies this equation~ 

These modifications and some of the approximations that are employed to 

calculate the "effective ionization potential'' will be reviewed in the 

remainder of this section. 
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a. Saha Equation - Ideal Plasmas 

Saha's equation may be derivable from the partition functions for 

each species. Ecker and Kroll (1962) g1.ve the partition function of the 

a th species as 

l = c~ (T) r. (E)'IN°' 1N I ~ ~ ~ ~ /1'~. 

where 

-Za(T) = translational partition function; 

.ga(E) = electronic excitation function; 

-Z. = -5a(T) .Za(E); aT 

Na= number of the ath ionic species. 

(2.63) 

The electronic partition is designated by ~e· The partition function 

for the system is defined as 

The relation 

A = - k-1 I\') :z: (2.65) 

, 
may be evaluated using Stirling I s approximation for N !• This leads to 

since Ne = 5_· a Na. For equilibrium 
a 

(2.66) 

Completing the specified partial derivatives, and, after simplification, 

it is found that 
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(2.68) 

~t/)7~ 

By noting that Za(T)~Za+l(T) and that Ze=2V(2 mekT)3/2/h3, the above 

equation is reduced to 

where me is the mass of the electron, his Planck's constant and all of 

the other symbols are as previously defined. 

The electronic excitation partition functions are defined by 

~. (E) -~ 5· q . 8Xf (- E).j I kT) 
.,(,, ~ tfl--j [:J 

(2.70) 
j 

in which gij is the jth level degeneracy and Eij is the energy of the jth 

level of the 1th species. The energy levels are measured from the same 

reference point, thus the Eij of the a+ 1th species have a common factor 

if the ground level of the ath species is the reference point. The 

common factor is the ionization energy of the ath species. Separation 

of this common factor produces Saha's Equation: 

C,,fl Ce c:: z (!'- rr m;fJ_T):Y2.. z-~+JE.) e -To-/k. T 

Cd!. 11. ~A C EJ 

If the plasma is composed of an element with <r'electrons, each 

possible species of ionization must be considered. To determine the eon-

centration of the various species, one must solve the system of equations 

(2 .. 72) 
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Except for the simplest cases, the only practical method for solving 

this system is by iterative, numerical techniques. This is discussed in 

Chapter IIL 

b. Effective Ionization Potentials 

The system of equation in 2.72 is only valid for an ideal plasma. 

If there is an interaction potential between the plasma particles, the 

system must be modified. In practice, this is usually accomplished by 

replacing Ia with an effective ionization potential that agrees with 

the experimental observations. This requirement to employ an effective 

ionization potential follows from the insight that is gained from the 

Debye-liuck.el theory. The microfields of a plasma: interact to produce a 

collective polarization of the plasma. When an atom is ionized by ab-

sorption of the energy, I$, the free electron can go to a lower energy 

state in the continuum. This lower energy state arises from the partial 

ordering of the plasma. The energy regained may be considered 

as a reduction of the ionization potential,Li.I. The effective ionization 

* potential, Ia, is defined by 

.. (2.73) 

There are many methods devised to approximate the effective ionization 

potential. Most of the methods are based, to some.degree on the Debye-

Huckel theory; and consequently, have limited ranges of validity .. 

The simplest approximation is to assume that no bound electron can 

exist in a state which has a radius greater than the Debye radius. 

Using Balmer-like functions, one is able to determine a·:ma.x1mum bottnd 

quantum number and an effective ionization potential. In a somewhat more 
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sophisticated mannerp D. Kelly (1959) used a modified Debye potential 

with a screening factor as a variable parameter in conjunction with 

hydrogen state functions. He solved Schroedinger's equation. This 

procedure resulted in the maximum quantum number, g1*, which is given by 

where >..0 is the Debye radiusj} i is the dimensionless core charge of the 

1th species and a 0 b the 1st Bohr radius. C. A. Rouse (1962) used 

Kelly's equation for gi* and a Balmer-type expression to calculate 

effective ionization potentials: 

~ T ' -=- l ' I ( GI it + 1 )2 
-,c _A, J4 (2.75) 

A slightly different procedure was reported by Bruce, et al, (1964). 

For hydrogen, a direct solution for I* was obtained from Schroedinger's 

equation with the Debye (Yukawa) potential. The effective ionization 

potential was calculated for various values of the Debye radiusy by 

utilizing Hulthen and Laurikai:nen' s (1936) eigE!nvalue :problem study. 

The variation of I* with AD is shown in Figure 2414 In high density 

regions, much higher ionizations were calculated than were predicted by 

any of the preceeding methods. Deviations from the predictions of the 

next method to be outlined were immfficient to warrant further effort in 

this directiono 

c. Method of Ecker and Kroll 

The preceeding methods become somewhat questionable beyond the 

validity limits of the Debye-Huckel theory. It may be shovm (Ecker, 

1962) that the upper limit of particle d.<3nsity for a valid application 



>' 
~ 
~ 

~ 

I 
s 
~ 
1-1 

~ 
1-1 

/.O 

rz:I 
~ ... o.J. 
~ 
rz:I 

~ 

13.:F'15-ev 

,o-~ 
DEBYE RADIUS (cm) /0-

Figure 2.1. Effective Ionization Potential for Hydrogen as a Function of the Debye Length. 

i 

i 

I 
I 
j 

l 

I 
I 

w 
0 



31 

of the Debye-Huckel theory is given by 

(2 .. 76) 

where Ccr is called the critical density and eimax is the m.a.ximum.·ionic 

core charge 1n the plasma. In 1962, Ecker and ~roll (ibid.) reported a 

method for calculating ~I that is valid _beyond the above limit and to the 

semiclassical limit 

(2.77) 

Ecker and Kroll introduce an interaction partition function and find the 

extent to which this modifies the Saha equation. Assuming the Coulomb 

interactions are responsible for this interaction, they develop equations 

for ~I in density regions both above and below the critical density. 

In arriving at their result, they introduce an interaction partition 

function, ZIN, in Equation 2 .. 64. The new, total partition function, ZT' 
is defined by 

where~ is defined by 2.64. The Helmholtz free energy becomes 

A = - k T In -c.T --1- A :r: ~ • (2.79) 

Using Stirling approximation, this is evaluated as 

(2.80) 
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substituting 

(2.81) 

and completing the partial differentiation, the following relation is 

found 

where 

.6..I -= - J AvJ 
a.... -

J Na-_+1 

In order to evaluate DJ., Ecker and Kroll note that the excess chemical 

potential, defined by 

IN_(JAr.tJ\ 
)A(;., - JN~ ~V1 NJ,, 9 

(2.84) 

may be evaluated (following Fowler and Guggenheim) by the relation 

1 

JJ-1: = f c,,_ lj:_ (\c,.) J>, , 
Cl 

where A is the variable of integration; this parameter, is· a dimensionless 

charge parameter (Fowler, et al, 1956). The authors evaluate the average 

electrostatic micropotential, ~"", for each of the regions' of. interest. 

For number densities below the critical density, the Debye theory is 

used. For densities greater than Ccr' a closest neighbor approximation 

is used. Their result is stated as follows: 

c !:: ca. 

~I~== (Yt /z D) ( c().~I - e: +- E 2. ) ; (2 .86a.) 



where 

and 

[ 
2 Yl. ~ e = z.z f ~~ ~/kT] c~3 j 

r;;= [3 /4rrc.Jl/3 

C = C-e + L. Ga. 
0.. 

e1 = charge of the 1th species (esu), 

X = Debye para.meter, 

D = Dielectric constant, 

E = Charge of electron (esu), 

7&ae.: Density of~th species at critical density. 
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{~.86b) 

(2 .. 87) 

(2.88) 

(2 .. 89) 

The purpose of the constant, t,, is to match the two approximations at the 

critical density; r 0 is the radius of the average volume for a particle; 

and C is the total number density of the particles. 

In application, one must solve the system of 2.72 in which the ioni

zation potentials, Ia, are replaced with Ia*, 2.73, using 2.86 for~Ia• 

The method is readily applicable to all species, including m1.xtures. 

The most unsatisfactory feature of the method is that the approximations 

are not entirely consistent with those for the thermal properties. Of 

greater importance, however,~Ia. is dependent only upon the Coulomb 

potential interaction: none of the· other possible interaction potentials 

enter into the calculation. A metllod that appears more consistent is 

introduced in the next section. 
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5. Consistent Theory 

For most regions of interest, a non-ideal equation of state for a 

plasma may be easily formulated which does not have entirely consistent 

approximations for the thermodynamic and the ionic properties. Such an 

eqijation of state may be constructed from Mayer's approximation for the 

thermal properties and Ecker and Kroll' s approximation for the ionic 

properties. The primary objection to this procedure ( in addition to lack 

of consistency) is the neglect of the more complex interactions of the 

particles. A more consistent and complete model may be constructed fro~ 

the ionization properties in a manner which is consistent with cluster 

integral theory. This procedure is described in the next few paragraphs .. 

According to Ecker a.nd Kroll, the reduction in ionization potential 

may be exp~essed by the relation 

in which the ;U,a,' s are the excess chemical potentials. After ·conversion 

to per unit volume units,~I is expressible in closed form for arbitrary 

potentials through the chemical potentials: 

where the first term yields a purely. Debye correction: compare 2.27 and 

2.86a. 

In this manner, the same approximations are used in solving for the 

thermodynamic a.nd ionization parts of the equation of state problem. 

Solutions should be valid throughout the classical region. The accuracy 



of the equation of state, in its validity region, should be dependent 

only upon the accuracy of the short range potential and the number of 

terms which are included in the cluster ~xpansiono The disadvantage 

with the model is the number of terms that are required for the calcu-

lations. With large, high-speed computors this difficulty is not of 

great importance. 

60 Summary 
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The pr:1.ma.ry problem which arises in obtaining an equation of state 

for real plasmas is the evaluation of the Helmholtz free energy for their 

interaction forces. This quantity enters into both the thermodynamic 

and the ionization properties of the plasma. Approximations for 

determining FIN and the related t'.lI have been outlined. Methods involving 

reasonably consistent approximations have been shown and these range from 

the ideal gas theory to complicated interaction potentials. These models 

are summarized below: 

1. Ideal Gas Theory: FIN is approximated as zero. Ionization 

properties are determined by the system of equation 2.72. The 

approximation is valid f'or low density and high temperatature. · 

2. Debye Approximation: Valid in slightly higher density and lower 

temperature regions. FIN is given by 2o27 and the Ia in 2o72 

is replaced by Ia*· ~ Ia is given by 2.86a, or by some other 

Debye approximations. 

3. Rigid Sphere Model: Reasonably valid to the semiclassical limit. 

FIN given by either Mayer's approximation, 2.34, or by the more 

exact approximation, 2.47. Without total inconsistency, Jia is 

given by Ecker and Kroll's method, 2.86. 
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4. Arbitrary Potential Model: Valid to the semiclassical limit. 

FIN given by 2.61. ~Ia determined from 2.83 by the use of_2.9(). 

With the acquirement of more experimental data for high density 

plasmas the Arbitrary Potential Model should be the most useful. Until 

more experimental data is available, extensive work with the model is 

not warranted. OnJ.y the development of the model and the demonstration 

of its feasibility is undertaken in this thesis. 



CHAPrER III 

ALUMINUM PLASMA EQUATION OF STATE 

11. Jintr6duction 

For compatability with the f.low problem, the best choice for the 

independent variables of the equation of state are internal energy, 

density and mass density. This cannot be accomplished with closed ana-

lytic expressions. In fa.ct, it is impossible to express the equation 

of state in closed form for any choice of independent variables; thus, 

a. tabular form is necessary. The equations for the thermodynamic and the 

ionization properties of the plasma will be presented in this chapter 

in the following form: 

I Internal Energy 

II Ionization Properties 

III Other TbermodynamJc Properties 
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(3.1) 

(3 .2) 

(3$3) 

(3.4) 
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The numerical method of calculation will be presented in Chapter IV. In 

this chapter, only expressions defining the internal energy and the 

pressure are given. In Section 4, complete specifying equations are 

reviewed. 

a. Phenomenological Considerations 

As the energy content of a real gas is increased, the total energy 

increase does not appear in kinetic energy of the components of the gas* 

Other modes of storing energy exist. As the energy content of the gas 

increases, ionization increases. The kinetic energy of the,particles 

is reduced by the energy required to ionize the atom, which may be a 

considerable part of the total energy. Additional energy is required to 

excite bound electrons to higher states. Since positive ions, by the 

nature of the coulomb interactions, will generally be surrounded by 

negative charges, the energy density in the plasma increases when an 

ion-electron pair is produced by ionization. In addition, the electrons 

are subject to Fermi statistics when the density is very high. As the 

density of the plasma decreases, this deviation of the electrons from 

classical particles becomes less important. At low densities and high 

temperatures, another quantum phenomena becomes important; i.e. the 

radiation energy content of the plasma. Finally, the plasma oscillation 

energy must be considered. Since the plasma experiences considerable 

motion during expansion, it is assumed that oscillations exist throughout 

the expansion. 

From the preceeding, the total internal energy density is presumed 

to be composed of seven components: 

(3.5) 



where 

E.rOT = Total energy density 

E10 = Ideal gas translation or kinetic energy density 

EION = Ionization energy density 

~C = Electron excitation energy density 

EIN = Particle interaction energy density 

~EG = Degeneracy energy density correction (Fermi correction) 

~=Radiation energy density 

EOSCL = Plasma oscillation energy density 
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Each of the above energy components are defined below. All symbols are 

defined in Chapter r:v. For reference see Appendix IV. 

b. Ideal Energy -EID 

The term 111hich accounts for the classical kinetic energy of the 

particles is directly derivable from the partition function, 2.14. This 

is the ideal gas translational energy term: 

E ;.1§. C.l.:.T ro 2. (3.6) 

where C is the total particle number density. 

c. Ionization Energy -EroN 

The ionization energy is the total energy that is required to ionize 

each species: 

(3.7) 
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where I is the uncorrected ionization potential. The effect of the re
j 

duet ion in ionization potential, L'.Ij, is accounted for in the interaction 

energy. 

d. Electron Excitation Energy - Enc 
The total energy involved in exciting electrons to energy levels 

above the ground state can be given by 

(3.8) 

where Pij is the probability of the 1th species being excited to the jth 

energy level, Eij is the energy between the levels 1 and J. The second 

sum is over all bound states. The highest bound energy level, jmax, is 

the highest remaining energy level in the atom. It is lower than the 

highest bound level in an isolated atom by the a.mount of the reduaed 

ionization potential,Aii ~ In terms of the electronic partition function 

~i (E), am equivalent statement is 

,~J-2:/(E) ·,) 
(·::··-" ;· 

Both of the preceeding expressions become, assuming Boltzman 

statistics, 

(3.10) 

where gij is the degeneracy state. The electronic part':ttion function is 

d.efined as follows: 
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J W\C..)\, 

Z,;_(E)=l j,iexf[E;j/trj_ (3 .11) 

j"'-l 

e. Interaction Energy - Em 

The interaction energy is obtained from the excess Helmholtz inter-

action free energy, FIN, using the Gibbs-Helmholtz relation 

(3.12) 

where FIN is obtained by one of the methods given in the preceeding. · 

f. Degeneracy Correction - EDEG 

Electrons satisfy Boltzman statistics only in the high temperature, 

lower density regions. In high density regions, corrections must be made 

to account for the fact that electrons are Fermi particles. Basic con-

siderations for electron gases were made and equations given by Stoner 

(1939). Define \I as the Fermi energy 

(3 .. 13) 

where ge is the statistical weight for free electrons (equal to 2). The 

degeneracy correction, in the high temperature limit) 

kT>w> 
is given by 



where the CY are coefficients evaluated by Stoner. Using the first 

three terms, 3,14, becomes 

In the low temperature limit, 

kT~W 

the follow-lng expression that was developed by Stoner {ibid) is valid: 
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(3.16) 

The regions of validity of the two series do not quite meet. 

equation, 3.15, may be used for 

k I > o.~-) 
\/\./ 

and the last equation, 3,16, is valid for 

The first 

For accurate energies in the intermediate region, the tables of Fermi 

integrals that were compiled by McDougall and Stoner (1939), should be 

used. 

The above expression omits all correlation effects. To be correct, 

a quantum correlation energy for the electrons must be included. Several 

expressions for this energy correction are available in the literature, 

but, unfortunately, all of the equations that were investigated gave a 
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negative value for the total degeneracy energy. In addition, the various 

expressions differed to a considerable extent. For this reason, quantum 

correlation energies were not included, Instead, the correlation energy 

in EIN was retained. This introduces some error; however, one feels that 

the uncertainty would be the same, if not greater, provided quantum 

correlation expressions were employed. 

g. :Radiation Energy Density - ERAD 

The Stefan-Boltzman law is assumed for the radiation term in the 

equilibrium equation of state: 

lier -1 Ll
r ... (3.17) 

where c is the velocity of light and<:" is the Stefan-Boltzman constant. 

h. Plasma Oscillation Energy - EoscL 

Dittmer (1926) first proposed the possibility of strong internal 

oscillations in an ionized gas as a possible explanation of the anamalous 

electron energies observed in arcs. Tonks and Langmuir (1929) showed 

that the electrons in an uniform, zero temperature plasma oscillated with 

a frequency' tur' given by 

. - ?.-/ ' 'h .. 
Wp -::. ( 4 IT C6 c / 1v1e) ) (3.18) 

where me is the electron mass and WP is called the plasma frequency. 

Subsequently, Landeau (1946), Bohn and Gross (1949) showed that 

a damped frequency spectrum existed. Gabor (1952), using Bohm and Gross' 

dispersion relation, calculated an average energy associated with the 

oscillations. Drummond (1961) used a somewhat different method to obtain 

oscillation energy~ 
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Neither Drummond's equation, nor Gabor's expression, which differ by a 

numerical factor, is applicable in the high density region. 

As a first approximation for the high density region, it is assumed 

that electrons are excited to oscillation states for which the probability 

·Of the excited state is proportional to the energy of the state, 

(3 .. 20) 

Considering a zero energy ground state and only one excited state, the 

oscillation energy is approximated by 

,: c,., ii w,, e *""°'?In 
I t- e ii w1/k.T ~ 

(3.21) 

which is 

l='t :; Ce tw,b/c I+ e ~wp/k.T) 
O.SC r 

(3.22) 

This expression leads to the same electron density dependence, Ce3/:2, 

but a different temperature dependence when compared to 3.19. In 

addition, Equation 3.22 is presumed valid in the quantum region. The 

Drummond equation is valid in the classical region. In the intermediate 

region, a linear combination of the two expressions is assumed: 

(3.23) 

The quantity Y is made dependent upon the ratio of the electron density to 

the same-classical limiting electron density, 
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(3.24) 

By introducing a variable, R, which is defined by the following relation 

(3.25) 

Y may be defined by 

Y = l for R :: l; 

Y = R for .02<R<l; 

Y = 0 for R ~ • 02. 

a. Plasma Pressure 

The plasma pressure is considered to be the sum of four terms: 

(3.26) 

where 

~OT= Total Pressure, 

PFERF = Ideal Gas Pressure, 

P:rN = Interaction Pressure Correction, 

PaAD = Radiation Pressure, and 

PnEG = Degeneracy Pressure. 

Each of the above terms is defined below. 

a. Ideal Ga.s Pressure - PPERF 

This term is simply 

~Ei< ~ :: k 1 ( Cc:. + t Ci. ) , (3.27) 
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the kinetic energy of the gas particles. 

b. Interaction Pressure Correction - PIN 

Pressure is related to the Helmholtz free energy of the system by 

the relation 

( .J A ) --- . 
,qY·r .. ),. 

(3.28) 

i:tnd. sinc~'th~ fr~e energycoinponerits are addatiye, 

p ·· .. '."=- -<( ~ ~!N\ . 
>'J:N ·. · .. · .. d:V-·: .··.·)T) 
. . . ·. ·.:.· :· .- ..... 

(3 .29) 

where V is volume and Am is the interaction free energy of the system. 

Considering that the cluster integrals are defined in terms of the 

limit as V~, it is more convenient to express 3.29 in terms of the free 

energy pe.r unit volume, Fm, and the number densities. In analytical 

form, 

(3.30) 

in which Xi are the mole fractions, Xi =ci/c. In terms of the cluster 

expansion, 

· (3 .31) 

where 

(3.32) 
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(3.33) 

Through two body terms, u = 2, the preceeding equation is 

;) 1 1 l-- __ l_ J (~ !J + ~ ( L ~~- ~~ ( CJ· B. ( xJ)j~ ,. 
Ir. \J :: t:.. 1211 d('/c .. ) d (Yi) \ c_ f- ? 'J ) 

(, {..=/ J"' 
(3.34) 

where Bij is defined by 

130 (,;)" [v(1, ~Jf fr,, ~)e3•j -1 Jf,J -J;./lz}li JJ J (3.35) 

in which 

(3 .36) 

(3.37) 

and 

(3.38) 

-~-
for which fi is the core charge parameter, uij' short range potential, 

5ij is the Kronecker delta and c15 indicates electron density. If i, j or 

both i and j are neutral particles, 3.35 reverts to the non-coulomb 

integral: 

(3-39) 
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In terms of mole fractions, 3.34 simplifies to 

1.) - I T [-I d(i~/c,) dG (l ff X· X· B .. ) 
II"1 - < /2rT d('/c,) 1- J(}'c,) J:J J~ .-' J 'J 

,~- N,-

-f(_ lI >f.i x.; J ~"J ,_, . . d (Ve,) 
,- J=> 

(3.40) 

The first term of 3 .40 is evaluated as follows: 

(3 .41) 

or by the chain rule 

f3.42) 

one obtains 

~3 - - , <.. (3 .43) 

The second term in 3.40 is elementary. The th~rd te~; is converted, by 

the chain rule, to 

(3.44) 



because the Bij's depend upon the concentration through ~(the neutral 

atom interaction have no such dependence). Using 3.43 and 3~44, 
t, ti _ I ·-
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--;) -::: - 1-T [·;4~ r- c 2.l. z- X,)(' 3 .. ,· c 2X!_t~l~\ .. X· J ~JI, 
f~ l f-. . ( _) { I ·-·- { J - ) .l...... .21.j TT v -~ I 

( :::./ .JI::, (_ ,•.. ;. J ' ,' 0 J'1, 
(3.45) 

J- < 

or more simply, 

, 5,·· I!:, 

~. + k T)). > - k' G -z .>-t )- l X, X. r) 9tj .. 
·- N 2 ~ It z L , t J c:J.l{ 

c:-- I ) ~- l 

(3.46) 

It is interesting to note that, in the first approximation ( the 1st 

two terms of 3.46), the pressure correction is given by the Helmholtz 

free energy minus the Debye-Huckel-limiting-law pressure term;, · If the:r · 

Mayer rigid-sphere approximation is used, the pressure correction term 

from Duclos and Cambel (1962) is: 

' .·' JI.. . ~ 

7? :_·· '>!.1< :,- _LT L"··· T r(·S 1. f <-,/a.)_.-:v I ~<<!J~)-:;l¢,)7<3.41> 
l,,J 2ll--rr Z1-Ci '4.':°. _L L #{ J 'd iJ:; 

l (}I-{, I Jo../ J,/.::/ 

where symbols have the same meaning as given in Chapter II--see 2.34. 

c. Radiation Pressure - PRAD 

This term is simply 

(3 .48) 

d. Degeneracy Pressure - PDEG 

The pressure of an ideal, Fermi-Dirac gas is related to its energy 

in the same manner that the pressure and energy are related for an ideal 

gas (Stoner, 1939) 
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? - z. E, - ::, 
(3 .49) 

Thus, in both the high and low temperature limit 

(3 .50) 

3. Summary - Equations of State - Current Models 

The complexity of the equation of state is now apparent. No simple 

closed expression can be used to give any of the thermodynamics of ioni-

zation properties except in the ideal gas approximation and then· only for 

a hydrogen plasma. In general, equations must be specified for each of 

the follo-wing: 

A. Ionization Properties 

a. Effective Ionization Potential 

1. Chemical Potentials 

B. Internal Energy 

a. Energy Components 

l. Excess Helmholtz Free Energy and Related Equations 

C. Pressure 

a. Pressure Components 

l. Interaction Pressure Terms 

There are four different equations of state for which the above 

systems of equations will be specified. The systems differ, basically, 

in the approximations to calculate the interaction, Helmholtz free energy. 

The net result of these different approximations is very pronounced since 

the effective ionization potential is dependent upon FIN. 
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The four equations of state are: 
0 

l. Ideal gas approximation, 

2. Debye-Buckel approximation, 

3. Mayer-Ecker and Kroll rigid sphere model, 

4. Arbitrary potential model. 

The arbitrary potential model is treated in Sections 5 and 6. Equations 

specifying the other models are specified below. 

a. Ideal Gas Model 

The interaction is completely neglected; thus, the ionization is 

obtained from the uncorrected Saha system of equations 

Ck+ I = z(zrrl'rwk. T)¥.z. i! (G) -I;;Ar 
A.>rl e . c.. 

;.(.. ~ h3 z"' (£) ; 

14 

Ce = .,L ( i-1) CI j 
.J. ~;.. 

lt./-z C1. :: // l'YfiR ..1 
t=I 

l'-1,,,, 1 1 • 
-.; .J ~, (3.51) 

(3.52) 

(3.53) 

where/° is the mass density and mal is the mass of the aluminum ion. 

the last equation, the mass of the electrons is neglected. 

In 

The internal energy density is specified by 

(3 .. 54) 

· where 

(3.6) 

(3.7) 
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(3.10) 

in which 
I 

.Jw,o..x 

ti (E) ~ I <:Jij ~, (- Eij/l?T); (3 ~11) 
J=-2. 

E[>E<, = i ,;p[,. 32 x ,o'(~f':.1. i,1.,0'( :is+ 4.1,,;;"(g_fj (3.15) 

for 

kT >.5'", 

and 

(3 .16) 

for 

where 

(3.13) 

E 4crT fl 

RAC.: c.. ) (3.17) 

and 
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(3 .23) 

where 

E 9 .: (. ii w /(I+ e1rwp/"T) asc ~ P ) (3.22) 

EC. 2 ~'/ ( )Y. - tJs.c. =- , I g 2 ~ ~ ( tl rr k T i.) j (3.19) 

w f> -=- ( 'i rr £ 7. Ce / ~e ) 'I~ (3.18) 

and 

Y = 1 for R ·!l 

Y = 0 for R(.02 

for which 

I< ::: Ce /( Z rr l'Yle k i / h' ) :S/a. 
0 (3.25) 

The total pressure is given by 

P :p +P +P 
TOT PER DEG RAD (3 .. 55) 

where 

(3.56) 

(3.50) 

and 

p :: 'iz: 7· '+ 
I\.A D o C • (3.,48) 
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For the ideal gas formalism, the jMAX in 3 .10 and 3 .ll is entirely 

arbitrary. In theory, the partition function diverges to an infinity of 

states as the Eij ~Ii. In practice, the sum is cut wJ:ien.,t.he indiwlis.'~'<'),l 

terms become negligible. The inclusion of the degeneracy correction is 

somewhat academic; in the model's validity region ~EG and PDEG are 

negligible~ This comment could also be applied to the Debye Modelo 

b. Debye-Huckel Awroximation 

The Debye-Huckel theory requires corrections to the basic equations 

in the preceeding section. Modifications are necessary to the ionization 

equations and additions are needed to the energy and pressure expressions 

The Saha system of Equations, 3.51, are modified by replacing the 

ionization potentials, Ii' by the effective ionization potentials, I1*, 

where 

and 

t. -€... re [ 2. 2 2.1 
Lr/ l I 

To the energy equation, an expression for EIN must be added: 

- - kTx..3 

:ii rr 

The pressure equations are modified by the additional term 

(3.57) 

(3.58) 

(3 .59) 

(3.,60) 

No great increase in complexity is created in this approximation, ho'Wever 

the region of validity is only slightly increased. 
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c. Mayer-Ecker and Kroll Rigid Sphere Model 

The modifications for the Mayer-Ecker and Kroll model are more 

complicated, but the validity region is considerably extended. Ionization 

equations are modified with an effective ionization potential 

In this equation,~11 is specified by the following: 

and for 

where 

and 

A,L- -: .)-{ ['= 2 - 6 ,2_ r£l,. 7 II 
Ll l ZD i+I t. j J 

C = z.z[ Z ~ 6,s2 /k,] 11 .. c i/3 
/S c:,e ~ .., 

~ = ( o /4 rr e )113 , 

(3.57) 

(3.58) 

(3 .61) 

(3.62) 

(3.63) 

(3.64) 

The energy correction is obtained from the excess Helmholtz free 

energy by the relation 



where 

for which 

and 

o< .. :; a.. k T ~ 2. J 'J v I~ 

cf>y = aij x., ., 

' 

aij = i;_f A»fe. ., ( i,- +- A9· >.0 ) 1 
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(3.12) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

Ay = /it I fl·/ k T • (3.69) 

Ca is an arbitrary constant used to adjust the value of FIN. The pressure 

correction is given by 

(3.47) 

where the symbols are defined by 3.66 thru 3.69. 

It is noted that the first term in both the pressure correction and 

the energy correction corresponds to the Debye corrections. Since the 

cri~ical density, CCR' defines the validity limit of the Debye theory, 

the Debye correction is included in the first approximation for the entire 
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equation of stateo The unsatisfactory features of this model are the 

uncertainty in the distance of closest approach, a1j and the failure to 

consider reasonable, short range potentialso This can cause some 

uncertainty in the high density region. 

5. Arbitrary Potential Model - Short Range Potential Specification 

The final form of the equations for the arbitrary potential model 

+ 
are dependent upon the short range potentials, Uij. Levine and Wrigley 

(1957) found that Ulj does not decrease more slowly than r-4. In 

general, the short range potential may be expressed as a series, 

f- A -<I- "];, -r - ' lA=- r +vr +Gr r"'':; (3.70) 

where there the values of the constants in u+ should be determined for 

each different pair interaction. This generalized form would be very 

difficult to calculate and would introduce an impossible number of para-

meters. In the next subsection, it will be shown that the short range 

potentials may be simplified in order to express the equation of state in 

terms of three parameters: two potential depths and one potential range. 

In the final subsection, the specifying equations will be given. 

a. Interaction Potentials 

The short range potentials are taken to be of the form 

(3. 71) 

where uoij is the depth of the potential well and r 0 is its range. 

To reduce the number of parameters, the repulsive components, except for 
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electron-electron interactions, are all assumed to be ( ";)'z.: M = 12. 

For neutral-neutral species interactions it is assumed that N = 6. For 

ali others, except electron-electron interactions, N = 4 is assumed. 

This latter assumption is based upon an induced dipole interaction. The 

electron-electron interaction is assumed to be a rigid sphere potential. 

To further simplify the number of para.meters, the same r 0 is assumed for 

all short range potentials except electron-ion interactions. To account 

for the increased penetratability of the electrons, r , the range of the oe 

electron interactions is assumed to be related to r 0 : 

-'/3 
'<' ='f'Z , oe o 

(3.72) 

Further simplification is obtained by assuming that all species, other 

than electrons, have the same polarizability. This allows the well 

a epthif' for , ail; pair , interact ions~,, ::ex9ept,; n~utral<i-ne:ut.ral. and e1ectron:,-; , 

electron interactions, to be given in terms of the same parameter; there-

fore, the well depths are defined in the following manner: 

1. · ·· UNNO = well depth for neutral-neutral interactions; :i_·JC,,., · 

$ndepe:hdent para.meter. 

2. UNIOi ::; well depth for neutral-ion interactions where i is, the 

3. 

ion species. If /i is the core charge of the ion, then 

UIIO = well depth for ion-ion interactions where i and j 
ij 

identify ion species. The well depth is defined 

urro .. = uro ·(l. r~·). 
Lj ,l'l #"J 

(3.73) 
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4. UENO= electron-neutral interaction well depth. It is defined 

UENO= uro. 

5. UEio{· = electron-ion interaction well depth similarly defined 

UEIO i = UIO • (f'i :·_) . 
6. UEE = The electron-electron interaction is assumed to be a 

sphere interaction for which the distance of closest 

approach is determined by the thermal energy in classic 

ranges and by the Fermi energy in high density regions. 

The respective short-range potentials are 

1. + L-· ,.,.. )' 2.. c (; )1:.J Neutral-neutral -~ u. , :;:: ).ANNO ( ;:. - Z .;.. ' 
NN 

2. Neutral-ion ___.,,, 

4. Ion-ion ..:> u +IT . . :; u.ro. c i +~I) r c ~)1
: 2 ( ~ t 7 : 

- ) l j ~l ijJ L' -r _J ./ 

5. Electron-ion ~ l./ I = /).IQ• 2., li(·~)'2-2. c~)'!-] ~ 
· Eijl 7"L' '<" '(" 1 

6. Electron-electron ~ U ~ E .::. c.o ./ r !:: a.EE-

,,t- -:: o 
IA fE: ; r > °"e E. 

(3.78) 

(3. 79) 

(3.80) 

(3.81) 

The distance of closest approach, aee is obtained by equating electron

static energy to thermal energy in classical regions, 

(3 .. 82) 
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In quantum regions, Fermi energy is equated to electrostatic energy: 

(3.83) 

where 

h (3c )% , • I - e V'\/---, 
~me lflT~ · 

(3.84} 

By using the preceeding approximations, the entire short range po-

tential system is governed by three parameters: UNO, UIO and r 0 • A 

fourth para.meter can enter by varying the closest approach distance for 

electron-electron interactions. This is a manageable number and will 

allow some insight into the physice.1 nature of the plasma. The potentials 

assumed are believed to be pnysic~lly reasonable. 

6. Specifying Equations - Arbitrary Potential Model 
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where 

(3 .. 86) 

and 

(3.88) 

for which 

and 

The basic ionization equations for the ideal gas model are modified, 

as before, by employing a reduced ionization potential 

(3.57) 

where 

bL· ::: --b +- ,1.,1. - Pl_ 
l / t.+/ / t. / e (3.91) 

and 
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in which the Bjk are the terms given in the expansion of FIN, :J$1nee :.··!·~--~:;·;" 

the interactions involving neutral atoms are not functions of.X., the last 

term is summed from j = 2 through j = 15 where c15 = Ce· For ion and 

electron interactions, the X dependence enters in the P1j o Thus, the 

last term of 3.92 may be written in terms of the derivatives of P1 • 
. j 

The energy expressions may be corrected by the addition of EIN where 

E ::: -T2..( d (FI,J!T)) 
.J:N d T v c_. 

The pressure correction term is 

p = !="_ 1- k Tx3 

IN .J.,V .2 4 iT 

J J. 

IS" IS° 

k I X ) \ (; C. cl~'../ q 

2 LL J JJ1. 
.,,).·~~ j=i 

(3.93) 

The arbitrary potential model is valid to the semiclassical limit. 

The model does not contain the disadvantages of the rigid sphere model: 

l) the effect of short range potentials is considered, 2) the validity 

criteria is not limited by a closest approach parameter and 3) ionization 

is consistent with thermodynamic calculations. The inclusion of the 

degeneracy correction term probably extends the validity region slightly 

beyond the semiclassical limit. 

Of the four models for the equation of state, only the last two are 

of interest in this thesis. Calculations have been made for the Mayer-

Ecker a.nd Kroll Model a.nd for the Arbitrary Potential Model. The .. ana-l;y::a:f.:s! 

method for these calculations is described in the next chapter. Anal.ysisuit 

of the predictions by the various models is given in Chapter VII. 



CHAP!'ER 'IV 

NUMERICAL METHODS: EQUATION OF STATE 

Digital computer programs for the IBM 7094 Mod 2 facility were 

designed to compute the tabular equation of state. Two related programs 

were constructed. One calculated pressures, energies, etc. for various 

temperatures and densities. This program is called the "Isotherm Pro

gram'·'. The other more complex program, called the "Constant Energy" 

Program, calculated the properties of the plasma as functions of energy 

density and mass density. Temperature is used in the Constant Energy 

Program as an independe~t para.meter to converge the calculated energy 

density on the given value. The essential scheme of calculation is 

given in Section l. A more complete, yet simplified, flow diagram is 

given in Sect ion 4 • 

In Section 2, the modifications of the basic equations for the 

Mayer-Ecker-Kroll Rigid Sphere model, which are needed to facilitate 

calculations, are given. Difficulties and estimated errors are also 

given in Section 2. Alterations of the basic program in order to convert 

to the arbitrary potential model are given in Section 3. 

Comparisons of the equations of state from the different models and 

their region of validity are given in Chapter VII. 
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1. Basic Scheme of Calculation 

rhe density of ionization of the plasma. must be calculated first. 

With; ,1on1za.tion determined, the other properties of the plasma. easily 

follow. The basic calculation scheme for the Isotherm Program is given, 

in Figure 4-l. · The temperature and the mass density are independent 

variables. The temperature may be held constant and the density varied 

in order to obtain a.n isotherm. 

a cu ate 

Ionization 

Calculate 
Energy Components 

Calculate 
Pressure Com onents 

Step Temperature 
and Densit 

Recycle 

Figure 4.1. Basic Flow Diagram for the Isotherm Program 

If constant energy density surfaces a.re calculated (energy density 

mass density are independent variables), the basic cycle outlined above 

must be modified so that convergence on a given energy density is gotten ·· 

with the temperature used as the para.meter. Figure 4-2 shows the basic 

flowdiagram. This is the basic cycle for the Constant Energy program. 



Calculate 
Ionization 

Calculate 
Energy Components 

good 

Calculate 
Pressure Components 

Step Energy 
and Density 

Recycle J 
Figure 4.2. Basic Flow Diagram for the Constant Energy Program 
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The only essential difference between the two programs is the routine to 

converge on the energy and the modifications in stepping the program. 

The same basic programs may be employed to calculate the equations 

of state for any model. Only two models, however, were calculated with 

any degree of completeness. They are: 

l. Mayer-Ecker and Kroll Rigid Sphere Model 

2. Arbitrary Potential Model 

When the basic computer programs are changed from one·model to the other, 

modifications are required in only three areas: 

1. Ionization calculation 

2. Excess free energy calculation 

3. Interaction pressure correction 
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The interaction energy code is not changed, since it is obtained by 

numerically differentiating the excess Helmholtz free energy. 

2. Mayer-Ecker a.nd Kroll Model 

a. Ionization 

The method. for calculating the ionization is based on a suggestion 

by Rouse (1961). The method is derived from the fact that the number 

density of a.ny specie·s may be expressed in terms of the number density 

of neutral particles,. the Saha. ratio , SKi' a.nd the electron density. 

The Saha ratios are defined by the following equations 

(4.1) 

Thus 

C· = ~, (4 .2) 

Using Equation 4.2, the total density of heavy particles is 

. 
I l/-

c11 I._ 1 = 
...i,. "- I 

.(.. 

7T S~·) :j= I ,J - c 
-'- - :L 
~ 

and the calculated electron density is 

(4.4) 

The calculated eJ.ectron density is indicated by C6*. In Equation 4 .3 and 
-

Equation 4.4,c9 refers to the trial electron density. Equations 4.3 and 



67 

4.4 s~rve as definitions for 8H and 8E· When SH and 8E are determined, 

c1 is calculated by combining the relation, 

CH = ~a.I' 

with Equation 4.3 to obtain 

and C * is determined from Equation 4.4. e 

(4 .5) 

(4 .6) 

The trial and calculated electron density are averaged and the cycle 

is repeated. The chief computation difficulty with this method is the 

ca.J.cula.tion of the b.Ii in the high density limit where C >CCR. For this 

case 

Af. 
A, (4 .7) 

for which 

(4 .8) 

Obviously, difficulty is encountered in Equation 4 .8 with the dis-

tribution of particles at the critical density, C Ii • Before the ,6I. may 
I c.ie_ J. 

be calculated, which are needed for SH and 8E, the distribution of species 

at the critical density must be determined. This may be accomplished 

since theL:1!1 can be calculated by the Debye approximation: 

(4 .9) 

where.Xis defined in the earlier discussion of the Debye equation in 

Chapter III. The same format that was given through Equation 4.6 is used 



for this calculation. Since CCR is the total particle density, it was 

necessary to step the heavy particle density at the critical density, 
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CH , until the total particle density agreed with the required critical 
CR 

density. 

l. 

2. 

The basic method consisted of: 

Choosing a value for C ; 
HCR 

Calculating a C by iterative convergence; 
eCR 

Compare the calculated c0R to the specified value; 

4. Step the CH to converge on the specified critical density; 
CR 

5. Repeat the cycle until convergence was obtained. 

When the CA "'s are calculated, the LlI1 are evaluated and the ionization 
t""Cf? . 

determined. Unfortunately, the situation is complicated by the fact that 

CCR is based upon the highest degree of ionization present in the plasma.: 

kT 73 
cce = (-1:n) [-6 ~.z---i.] ' 

· .A,,Jruu 

As expected, € 1 changes as the calculation progresses. Consequently, 
max 

new CA 's must be calculated. The entire process becomes quite laborious 
rtR. 

and convergence borders on being intolerably slow. The basic flow chart 

for the ionization calculation is shown in Figure 4-3. 

In order to assure convergence, a weighted average of Ce and Ce* must 

be used. The weights used have to be modified as the number of iterative 

cycles increase to assure that the calculations do not oscillate about 

the true value. In order to assure correct CA , a new critical density rce 
calculation is desirable for every fifth iteration. 
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b. Partition Functions and Excitation Energy 

For the summation over electron excitation levels which appear in 

the electronic partition functions and the excitation energy equations, 

experimentally determined energy levels and degeneracies are used. For 

energies higher than those which have been determined experimentally, 

hydrogen-like term values may be usede The hydrogen-like term is varS.ed 

by the degeneracy of the next higher ground state in order to account 

for the increase in degeneracy over hydrogen levels (Griem, 1964). The 

upper limit on the summation is determined by the condition 

f. -* . <:... J_, 
.Aj A 

(4 .11) 

where Eij is the experimentally determined energy of the jth level, or 

the equivalent energy of the hydrogen-like term. Since the upper limit 

of the summation is based upon ~Ii and noting that z1 (E) must be included 

in the Saha ratios, SK1, new electronic partition functions were comp~ted 

approximately every fifth iteration during the ionization calculationo 

Co Interaction Energy 

The interaction energy was numerically evaluated by the following 

approxima.t ions: 

(4 .12) 

In order to assure reasonable accuracy, the derivative was recalculated 

with successively smaller.L).T until successive calculations were within 

5~ of each othero 
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Figure 4.3. Simplified Flow Chart for Calculating Ionization by the 
Ecker and Kroll Method 
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d. Excess Free Energy 

Poirier' s tabulated values for ~) C/) and .5)) ({') were used to compute 

the excess free energy. Simple two point interpolation was used to 

determine the value of the individual :i.ntegrals :f:'or different values o:f 

I 

the argument, <p• The one major uncertainty in the FIN calculation was 

the value of a:i.j, the closest approach :para.meter@ Duclos and Cambel 

(1962) suggested that the following relation be used: 

_, 

Ci ' ·- c / ·· _!... A.J' "'( 
-f- I. , , A)~""} -_-'cl ' (4 .13) 

'-'· .,, ?..::){ J-;'. ' ) 

where 

(4 .14) 

This relation is employed to make the distance of closest approach some-

what temperature dependent. In order ·t;o merge to the Thomas-Fer.mi model, 

the best value of Ca -was found to be 1.95. Comparisons of different 

for a hydrogen plasma were reported by Bruce and Todd (1964) and are 

reviewed in the next chapter. 

3. Arbitrarv Po·tential Model 

It was previously indicated (Section l) that only limited modifi-

cations are needed to convert the basic computer program to the new model. 

The basic difference in the models is the free energy calculation. In 

order to calculate FIN' it was necessary to compile tables of cluster 

integrals. Tables were assembled for integrals of the following type: 

T "J [ exp{- 21-C;, -fa J ( 4 .15) 

f::.Q 
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where N : 6 and N = 4. These are approximations to the Leonard-Jones 

potential. To simplify the calculations, the exponential term was pre

sumed to be O for xi2-l/2.. The remainder of the integral was evaluated 

by Simpson's rule between x=2-1/ 2 and x = 3. The integrals were evaluated 

for different arguments of u from u = 0.01 to u = 20. Simple inter-

polation was used to obtain the value of a given integral in terms of 

its table argument: u = uij/kT. (uij is the corresponding well depth). 

Two tables were compiled, one for N = 4 and the other for N = 6. 
aij 

Tables for the integrals P were also calculated. The following 
ij 

substitutions were used to convert the integrals to dimensionless form. 

(4 .16) 

(4 .17) 

and 

(4 .18) 

Then 

- Q~)x'it~ -Jc;,l•J.J J ( 4 .19) 

0 

where 

(4 .20) 

(4 .21) 

.. 'i· 
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Defining 
= I 

r(I{,1-) ~ (l fei-- q)x\dx - Jq dJ 5 
I O 

then 

(4.23) 

rule for 

various arguments of Kand L. Approximately 3,000 values were needed to 

cover the estimated ranges of Kand L. 
~en , 

For the calculation of the chemical potentials, J,A1 , a table of -"'..£! 
/ ~.){. 

was calculated. No difficulty is encountered since K is a function of){. 

The original tables for I(K, L) were used to build a. set of tables DI(K,L). 

where 

( ) ~ I( k 1 l) 
DI R,L ·= d IZ 

Therefore 

(4.25) 

or 

(4.26) 

With these tables the new equation of state is reduced in complexity c 



a.. Ionization Modification 

All of the complications caused by the C~ computation and the 
,_.ce, 

difficulties in convergence are removed with this model. In place of 

74 

the Ecker and Kroll equations forA.Ii, the various chemical potentials, 

fi, are calculated on every iteration of the ionization cycle by 

referring to the tables noted in the prece~ding section. One only sums 

over the integral values that are extracted from the various tables. 

The~-.Ii 's a.re then computed using the values of/.J.i. The time for each 

cycle is certainly increased, but the repeated iterations for the ~ 
/-'C,t:., 

calculations are removed. 

b. Excess Free Energy Modification 

The excess Helmholtz free energy, Fnp specified by Equation 3.85, 
" 

ts readily calculated using the table of integrals I(K, L). The problem 

is reduced to summing over all integral contributions. Linear inter-

polation was· used to determine the cluster integral values for the 

arguments Kand L. 

c. Pressure Modification 

No difficulty was encountered in writing a program to evaluate 

Equation 3.94. A subroutine was used to evaluate the excess Helmholtz 

free energy, FIN, and a new code was used to calculate the values ot)A1 

which are all that is required to modify the program for the Rigid Sphere 

Model. As before, only linear interpolation was used for all of the 

tables. 

4. Summary 

Although a program to compute constant energy density surface was 

constructed, it was found more practical to calculate isotherms and then 
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use the isotherm data to d·etermine the constant energy surface. The 

IBM 7094 computer time was consequently reduced by a factor of approxi

mately 70'/o. A separate program was compiled to convert the isotherm 

data to constant ene;rgy data. Standard, three point interpolation was 

used to convert the data • 

. The isotherm data was calculated, stored internally and printed 

at the end of all computation in tabular form. The flow diagram for 

the final program is givE!n in somewhat simplified form in Figure 4.4. 

Evaluation of the numerical results is given in Chapter VII. 



CF.API'ER V 

PLASMA FLOW - FUNDAJvJENTAL DESCRIPrION 

1. Introduction 

In plasma dyne.mies problems called :m.ag:netegasdynamics J the qu:antities 

of interest are the macroscopic properties: temperature, pressure, flow

velocity, charge distribution, etc o The determination of these quantities 

requires that a theoretical method be decided upon and then a model be 

chosen that is compatible with the method., 

BasicalJ.--.,,, there a.re two methods that may be considered for finding 

these quantities. One is the microscopic approach of kinetic theory and 

the other is the macroscopic approach of fluid dynan1ic continuum theory. 

Of the two, the latter is the most practical method (Shih-I-Pai, 1962). 

In this approach, the conservation la·ws of mass, momentum, energy and 

charge, etc? are postulated. To these are added Maxwell's equations and 

the required thermodynamic relations to obtain a definitive mathematical 

model that describes the plasma flow. The resulting equations are far 

more manageable than the kinetic heirarchy of non-linear, partial 

different lo-integral equat5.ons. 

Generally speaking, two methods are available for the description of 

the continuum equation: 

a. The Eulerian method, which describes the phenomena at a given 

:point in space 
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b. The. Lagrangian method, which describes the phenomena. which occur 

to a givenp elementary mass of fluid. 

The Eulerian reference.system is the ordinary, fixed laboratory frame of 

reference in whkh intuition c:an operate more freely. ThH is an i:mport~nt 

advantage 1n manipulating the numerical methods which, of necessity, must 

be used for the complex system of equations. Consequently, tl;le Eulerian 

method is chosen even though the Lagrangian reference frame produces to 

some extent, simpler equations for a one-di:men~iona.l problem. 

In order to ii:lpecify the required set of equations for the flow, a 

suitable model must be chosen.for the plasma. The model choice is based 

upon the minimum number of microscopic quantities which are of interest. 

To illustrate, consider the following two cases: 

a. A fifteen component aluminum plasma model could yield tempera

ture, partial pressure, density and flow velocity for each compo

nent species, plus the electric field. This model could require 

a system of up to 61 coupled equations. 

b. The one component plasma model could be specified with five 

equations; howeverj no information would be obtained on the 

behavior of the individual specieG. 

The predictions of a one component model are highly s1 .. rnpect because of the 

disregard of the va~tly different properties of the component species. 

Kunth (1959) has indicated th.at a 1uccessful grouping of the plasma compo= 

nents is attained only when the properties of the group; are nearly the 

same such as the masses)/ the transport properties, etc. Based on this 

consideratiqn, the two component model is the simplest plasma model which 

should be considered. The plasma. will be considered as composed of 
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electrons and heavy particles. The latter group is called the ionic compo-

nent; each particle is assumed to have the average ionization charge. The 

electrons are called the electronic component. 

In the remainder of this cli..a.pter, the equations specifying· the :plasma 

flow properties are given. The relations define the gross quantities of 

the plasma. Diffusion velocities are employed to differentiate between 

motion of the two components. 

2. Basic Equations Defining Gross Flow Properties 

Derivations of the basic conservation equations are presented in 

practically all fluid dynamics texts, such as that of Landau and Lifshitz 

(1959), and in several of' the plasma dynamics texts (Samaras, 1962). The 

form of the equations immediately below are those from Richtmyer (1957) •. · 

a. Conservation of Mass-Continuity Equation 

(5 .la) 

b. Conservation of Momentum-Equation of Motion 

(5.lb) 

c. Conservation of Energy-Energy Equation 

(5.lc) 



In the preceding equations, 

;°=mass density 
...... 
/,A., ·flow density 

P total gas pressure 

~= internal energy 

t = time 

'>" ...... J 
\J=~ ~·J;; . 
...:... ~ 

e. = unit vector 
,t, 

x = space coordinate 
i 

By defining the total energy per unit mass as 

the conservation of energy equation may be written as 
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(5. 2) 

(5.3) 

The preceding equations involve five dependent variables: /'i ~ d"',e.n 

{=:> and fT. One additional relation is needed for the description of 

the gross microscopic properties of the expansion.· This relation is 

an equation of state in the form 

(5.4) 

In like manner, the temperature may be specified through the equation 

of state 

(5.5) 

Usual practice in plasma dynamics of assuming the .ideal gas theory has 
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been found to be inadequate; the theory is not valid for the initial 

conditions of the problem when the density is high and the temperature is 

low. A more adequate equation of state has been developed and is given 

in Chapters II, III, IV and VII. 

3o Modifications of Basic Flow Equations 

The preceeding equations define the flow properties of a inviscid 

fluid. The basic motion and energy equations are modified for a plasma by 

adding terms of the electric body forces, viscosity forces, conduction 

and radiation transfer. Corrections for each equation are considered 

separately. 

a. Equation of Motion 

The equation of motion contains the term v'p. Pressure in this case 

should be 

p = PG- -t- P1c. (5 .6) 

where PG is the kinetic gas pressure and P:R is the radiation pressure. 

Radiation pressure is assumed to be composed of two parts; 1) thermal 

radiation arrising at the given point in space and, 2) radiation 

from other regions. Thus 

The local radiation, PRL, is approximated by blackbody radiation and is 

included in the equation of state pressure, 5.4. With this inclusion, the 

pressure gradient term becomes 

\lp ~ Vp + Vpk..T 
(5.8) 
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In addition to the pressure gradient term, body force terms must be 

specified. The most important body forces (excluding gravitational} 

are the electric and viscous forces. The electric body force is simply 

~ -
~ = t; E J (5.9) 

where q is the electric charge per unit volume and Eis the electric field 

vector. 

The usual correction for the viscous force is given by Samaras (1962) 

as 

(5.lO) 

With these modifications the momentum equation may be rewritten as 

b. Conservation of Energy 

The correction attributable to radiation conduction is somewhat 

similar in nature to a heat conduction term. If QR is the radiation flux, 

then the corrective term is of the form QR. The radiation flux can be 

approximated (Shih-I-Pai, 1962) by 

(5 .12) 

where ~ is the radiation energy per u:nit vol1me and D_a is known as the 

diffusion coefficient for radiation. It may be written as 

where C is the velocity of light and 
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(5 .14) 

Ka is the Roseland mean absorption coefficient and is defined by 

(5 .15) 

where ~(T) is the Planck function, k_...,,. is the monochromatic absorption 

coefficient and is frequency. A more complete discussion of the _ 

:pa.diation phenomena is :included ·in Chapter IX. 

Somewhat similarly, the heat conduction corrective term is added. De-
~ n~ 

fining QH as the heat conduction flux, the corrective term is v • QH. -;. As,· 

a first approximation 

...::.. 
QU- -::. M \JT , (5.16) 

~ is tpe coefficient of heat conductivity. This term is defined by 

Equation 5.36 farther along in this thesis. 

The energy source term, from the electric fields, is E•(}~) and the 
~ 

viscosity term is approximated by U· ~· With these corrections the energy 

equation is -written as 

(5.17) 

where 

(5.18) 
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4. Conservation of Charge 

The charge distribution is determined from the equation for the con-

servation of charge. Excluding external sources, the total charge of the 

plasma must be conserved during the plasma stateo This conservation prin-

ciple requires that the rate of charge increase within an arbitrary volume_ 

V, must equal the rate of inward flow across the boundary of the volume, 

(5 .19) 

In Equation 5.19, is the charge velocity, q is charge per unit volume, t 

is time and is the vector differential surface element with outward 

normal. Application of the divergence theorem leads to 

~ + V f (1_ '~~:) ---~- 0 
d t I) 

(5.20) 

If charge sources are present, Equation 5.20 takes the form 

(5.21) 

where cr'q is the charge source per unit volume. 

5. Further Relations Required 

ao Diffusion Equation 

Thus far, the equations adequately describe the gross prope;pt:tes of 

the plasma but no information is provided concerning the coinpos.ition 

of the flowing matter. In order to delineate mass migration of the com-

ponents, the diffusion ·of, .. the ionic and ,electronic components ·relative 
-lo. 

to the gross mass flow velocity {average mass flow velocity), 1l, will be 
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considered. The diffusion equation that follows is based upon a treatment 

by F. A. Willia.ms (1958) and adapted to the two component plasma model by 

Ables (1963). In developing the equation, pressure gradients and electric 

body forces are included but thermal gradients and non-isotropic terms are 

omittedo If 

Xj = the mole fraction of the jth component 

Die= the electron diffusion coefficient 
....::,. 

Wj = the diffusion velocity of the jth component 

Yj = the mass fraction of the jth component 

then the diffusion equation becomes 

(5.22) 

ln Equation 5.22 the subscripts "i" and "e" stand for ionic and electronic 

components, respectively, p is pressure,/ is mass density and Fe and Fi 

represent the electric body forces on the two components (Equation 5.9). 

bq Diffusion Constant 

Transport coefficients for a plasma :were eva.luateduby,,R;:);r:..: Liboff .. 

(1959). The values reported by Liboff for the shielded coulomb potential, 

to the first order, are 

11e 
3 i<..T 

[ 'P..·eJ = ... 
' 

I , rn" 1'l. ~ 
-

h... ) 
(5.23) 

and to the second order 

1\e 
:: 

[Die] 
I -o 

(5.24) 



where 

The ~ are given as 

and 

where 

_n.1
1 = ~ ~/ [ k (1/x,)- 0. C/Gi] / Z) 

fl ~ :. /){; t/ L ~ ( 1 / x ) -t o. 0 3 9] / Z ; 

_Jl ~ = ~ 6_2 
[ h ( I / x) +- I. D o'lJ ; 

.Jl_ 2 ::. flr L::::i_2 [k(~/)(J - /.4bl] j 
I o 

fu. = ( tt k T \ Y2. 
o ~ vYie ) 

6 =- l;,e:,Yk-1 

X = .b. / z.. Ap 

A = r" rr £:z (c. t- S" •.· z. C· )U '/2. 
O L k r e ~ ·~ A. "' (/;. 
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(5.25) 

(5.26) 

(5.27) 

(5 .29) 

(5.30) 

(5 .32) 

(5.33) 

(5.34) 

and }i is the dimensionless charge parameter for the ionic species i whose 

concentration is given by C1. Z is the average ionization. 
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c. Coefficient of Viscosity and Coefficient of Thermal Conductivity 

Liboff's (1959) approximations for the coefficient of viscosity and· 

thermal conductivity were used: 

(5-35) 

and 

(5.36) 

In the preceeding equation, Cv is the specific heat at constant volume of 

the plasma and ma.y be derived from the equation of state. 

d. Charge Velocity 
~ 

The charge velocity,nr, used in the ,charge .conv;ersati:an,·~quati.ionL:Ls 

not the gross flow velocity, u. Ables (1963) has sho'Wil that the charge 

veloc~ty can be related to u through the electron-i_dif:fUiiiio:ll Ne1ocity, We, 

the average ionization,~*, and the total charge q by the relation 

(5.37) 

where mi is the mass of aluminum ions. 

6. Electric Field Equations 

The equations for the electrostatic fields are simply 

(5.38) 

and 

(5 .39) 
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__::::,,. 

where E is the electric field vector and fi is the electric potential. 

7. Initial and Boundary Conditions 

The flow field boundary conditions are 

(5.40) 

no velocity flow through the center of the exploding sphere is allowed. 

and 

The initial conditions are 

10 ,._ Pa 

e). :::. &rn 
Y'l O ..... 

I.A. = 0 

!\.)-=- 0 

p ::. 0 

) (5 .41) 

• (5.42} 

The above initial conditions specify a hot, stationary plasma sphere of 

radius r in a vacuum. 
0 

The electric field equations are subject to the boundary conditions 

"""'=o · <=-S 't' J 

cp :: cl) a ; < -= Ke. 
(5 .4 3) 
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where R_g and <fo are the radius and potential of the outer electrode. b 
is chosen to be small enough so that it will not effect the accuracy of the 

solution but large enough to avoid the singularity difficulties at the 

origin. 

8. Summary 

The preceeding equations, boundary conditions and initial conditions 

define the macroscopic flow properties of the exploding plasma. This com

plex system of equations does not lend itself to an analytic solution; 

therefore, numerical methods are required. Since the ~mphas±s :·if';or,:;_this 

thesis is concerned the development of the :m.ethod.dii.ii1thtb.e.c,sol.utiotL :,·<, 

technique, many of the approximations in the preceeding formul.at,:tons-,were. 

:not refined to obtain a higher order of accuracy. Fortunately, a.ppro:x;i,

mations in the corrective terms have not been found to be of importanl'e. · 

The modifications required to convert the eque:tions:to::idiff,e(t'~nt ,·,.:, ,: 

form and the general numerical method are outlined in the next chapter. 



CHAPrER VI 

NUMERICAL METHOD - FLOW PROBLEM 

Before the solution of the partial differential equation system 

may be started, a suitable coordinate system for the problem is::required. 

For this problem, the initial and boundary conditions have spherical 

symmetry and furthermore there exists no inherent property of the problem 

which would serve to differentiate between any two radial directions from 

the center of the initial sphere. From these considerations, one ·.can· see 

that a basic spherical symmetry exists with no angular dependence. All 

equations may be written in spherical coordinates and the angularly de-

pendent terms deleted, leaving only a radial dependence. 

l. The !guations in Spherical Coordinates 

The fundamental equations given in Chapter V may be expressed in 

spherical coordinates with radial dependence only, by uaing the following 

vector relations: 

v G -:.. ~ ,) (6.1) d'(" 
~ 

J_ ~ ( '(' "2.(;_) v ~ r;, ::.. 
(6.2) '(' 'Z. d r ) 

(G·'7)G ~ ·,;:/ ctt + (? x "&) · °G ,,,_ 
:. (6.3) 

The last of the above expressions for spherical symmetry (lamular flow) 

becomes 
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(6.4) 

With these substitutions, the fundamental equations become 

~ t-
,.L J 

( y" >..) U,) 0 . 
~ Jt 7£. -·- -· 

r Jr J 
(6.5) 

~ + .L t. (""''t.1u) -= 0 • 
.J t r· d (' ) (6.6) 

(6. 7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

and 

(6.13) 

Examination of the conservation equations, 6.5 thru 6.8, shows that all 

but Eqn. 6.7 are in conservative form. If Equation 6.5 is multiplied by u 

and then added to Equation 6.7, the latter is converted to conservative 

form; 
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(6.14} 

The boundary and the initial conditions are, of course, identical with 

those in Chapter II. These equations, the equation of state and all 

necessary boundary conditions form a complete mathematical model for the 

problem. 

2. The Method of Finite Differences 

A problem, identical in nature but with a s,impler ma..themat:Lcal 

model was solved by Ables (1963}. The method for solving this problem is 

very similar to the one that was employed by Ables and it is rgtv:e:n,be10vl'i. 

The solution to this mathematical model may be obtained through the 

use of numerical methods with the aid of a large scale digital computer~ 

The selected method of solution was the well known method of finite dif-

ferences (Richtmyer 1957} (Milne, 1953} (Scarborough, 1950}. A brief 

description of the method will be given here. 

The r, t plane is subdivided by a uniform rectangular mesh with the 

edges parallel to the rand taxes. The cell dimensions are 6r and 6t in 

the rand t directions, respectively. The coordinates of the mode of a 

general mesh are designated by (rn, tm} where 

(6.15} 

t ~t+rvu.it- .. 
yYl O ~ 

(6.16} 

and r 0 , t 0 are constants. The value of any function f(r,t}, at the node 

(rn, tm}, is designated by f(n,m} If Xi,~,~ are successive'modal 



values of either coordinate and f(l), f(2), f(3) are the (["elated values 

of f(r,t), the following approximations may be written: 
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(6,.17) 

(6.18) 

(6.19) 

These are often known as back difference, central difference, and forward 

difference derivative formulas, respectively. Discussions of the accuracy 

of these formulas may be found in the cited references. By using these 

formulas, the approximate value of the partial derivative is kno'Wil. These 

formulas provide approximate values at the neighboring mesh points about 

any nodal point for which the value of f(r,t) is known. 

In terms of these mesh points, an initial condition on a variable is 

specified by giving the values of the variable at the nodes rel$.ted to· 

the intersections of the t = O and rn = r 0 + n6r, n = o, 1, 2 ••• mesh 

lines. On the other hand, a boundary condition at r = r 0 , as an example, 

could be specified by giving the values of the variable in question on the 

intersections of the liner= r 0 and t = n~t, n = o, 1, 2 •• o • When a 

functional relationship exists which specifies the partial derivative of 

f(rn,t 0 ) in terms of the values of other variables at t = t 0 ; then, by use 

of the differential, difference formulas, one computes., a.pproximat.e ;value · 

for f(rn, t 0 + 6t). The values f(rn, t 0 ) and f(rn' t 0 + 6t), n = o, l, 2 

• • • are commonly called the old and the new radial profiles of the 

ft;mction f(r,t). 
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After new profiles have been computed for all of the variables in a 

problem, the same procedure may be repeated a.gain and a.gain. In: each repe-

tition, the new profile of the previous computation are the old profiles· 

of the present computation. In this manner, the solution may be advanced 

step-wise in the time direction from the initial condition profiles; pro-

vided that an expression for the time derivative of each variable is known 

implicitly or explicitly, in terms of the nodal values of the variables on 

the old profiles. 

For this problem, the necessary relationships a.re available for 

density, charge density, material flow velocity, and energy density in the 

forms of Equations 6.5, 6.6, 6.14 and 6.8, respectively. Profi'J.e-.s 

may be computed for the t :f.me (t + tit) directly from the time, t, profiles. 

Through the equation of state, the pressure and temperature is obtained. 

Only the electric field, the diffusion velocit.y and various·: co.efficients 

are left to be determined at time (t + 6t). 

The electric field problem is. easily solved by using Ga'l,tss' • integral 

for the electric field and the kno'Wll radial symmetry. ·· If Gaussl 

integral is applied to a spherically symmetric charge distribution, one 

may :write as a. consequence 

(6.20) 

where Er has units-of statvolts/cm. Since q(rn,t = tit), n = O, l, 2 •• ,. 

is known by virtue of Equation 6 .6, one may employ a step-wise numerical 

integration technique such as Simpson's method to evaluate the integral in 

Equation 6 .• 20 and to find Er(rn,t = flt), n = 0 1 1, 2 • • .. • For the 
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diffusion velocity, one may employ Equation 6.11. The various transport 

coefficients are easily determined without difficulty. This completes one 

cycle of computation, the continuous reiteration of which will steadily 

advance the solution of all of the problem variables in the time direction 

from the initial condition profiles. 

Any attempt to employ the outlined method will bring up a:: :QUmber, 

of difficulties. The first problem is the exact form of the differencing 

that is requiredo Generally speaking, there is no assurance that a given 

differencing system may be used successfully. For flow problems, 

central differencing schemes are '.Unstable .,(Richtmyer,, 1957.)." T;he _,_ , , . 

differencing scheme found successful in the: problem combi:nes ,cent·ra.l au;,. 

ferencing for all pressure terms and a simplified back differ.encing 

for all of the other terms. 

A second problem concerns the precise form used for,the::equa.tion, 

of state. The most desirable form would be closed e.xpressions for· 

each of the state variables in terms of the density and energy; but, no 

such closed forms are known from theory. The best equation of state data 

available, Chapter VII, is given only in tabular form. All attempts to 

fit various analytical forms to the tabulated data were unsuccessful. For 

this reason, the closed algebraic form -was abandoned in favor of a purely 

numerical method. This method employs the tabulated data with suitable 

interpolation and extrapolation methods to extend the values into ·inter ... 

stitial and boundary regions which are not specifically enumerated in the 

available tables. The standard logrithmic interpolation and extrapolation 

scheme was employed which Ables (1963) developed for this thesis. 

A choice must be made of the values for 6r and !).t. The choice for 6r 

is dictated by the physical dimensions of the initial boundaries of the 
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problem and by the degree of fineness which is desired in the solution: •. • 

The fineness is determined, to a great extent, by the size of the digital 

computer, both as to storage capacity and as to speed of computation. The 

choice of a value for At is a much more annoying problem. A relatively 

large At is desired in order for the solution to be obtained as rapidly as 

possible; however, a small At is desirable from the standpoint of accuracy. 

In addition to these considerations, it was fo.und that the,. conve.r.g~nce ,'-. ·--

of this type of numerical solution is dependent on the relative size of Ar 

and At (Richtmyer, 1957; Scarborough, 1950). The precise relationship be-

tween Ar and At for convergence is know.n only for certain simple systems. 

An exact analysis of the system of equations under consideration is not 

possible in the present state of the art. Courant·:;: .et."al,;, {;1..94_8) \ hl;LvE( 

given a silll.ple convergence and stability criteria for compressible fluid 

flow problems which appears to have validity in many areas which are not 

covered by tbe assumptions to obtain this relationship. This,.._· known: 

as the Courant Condition, states that Ar/ At may not be larger than the 

maximum velocity of propagation, Vmax, of a disturbance in the fluid. In 

the present application, Vmax may be taken as the sum of the flow ·.,1. 1. , · :; •- · 

of the velocity of se.und in the plasma. If 

then the solution is said to have been developed at C x Courant. 

Since the memory of a computer is limited, only a finite number of 

mesh points may be considered. As a consequence, there will exist a limit 

to the radial distance which may be separated into meshes and kept ,in: -the 

computer at any given time. As the plasma expands, this maximum radius ... ,::' 
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eventually ·is overrun. At this point in the solution, it is necessary to 

increase the length of the meshes, b.r, so as to increase the ,rs.di.us 

while the number of mesh points remain constant. Of course, it is also 

necessary to increase b.t by the same proportion to keep the Courant value, 

c, constant throughout the solution. To minimize the number of such ad

justments, b.r and b.t should be doubled each time it becomes necessary. The' 

process will, hereafter, be called a machine condensation. 

3. The Machine Code 

A machine code em.bodying the above concepts was developed in fORTRAN 

(FORmula TRANslator) computer language by the author. Able's program was 

employed as a basis. FORTRAN is a high order computer language which, 1n:. 

slight modifications, is acceptable to a wide assortment of large scale 

digital computers. The relative ease with which scientific programs may 

be encoded in the FORTRAN language leads to a drastic reduction in ·labor 

for encoding a large scientific program. On the other hand, the time 

to debug a program may be extended on account of the .quite '.invblved. trans

lation process which separates the program-as-believed-to-be-encoded .f.rom 

program-as-run. 

· The final version of the FORTRAN program was prepared especially for. 

use on an IBM 7094 digital computer. lt was a few more tha:tf 12oo;)FORTBAN 

statements in length which were divided into a main program and 13 sub

routines. This was translated into approximately 14000 macbine language 

instructions for the 7094 computer. A simplified flow ·chart for the pro

gram is shown in Figure 6.1. Results of the expansion program are in 

Chapter VIII. 
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CHA.PrER VII 

SOLUTION AND REDUCTION OF DATA - EQUATION OF STATE 

Two preliminary studies of the Mayer-Ecker and Kroll model were made. 

The computer programs for these studies were run on the IBM 1410 computer 

facility at Oklahoma State University. A summary of the reported results 

is given in Section l. Upon completion of the preliminary studies, a 

computer code for the complete equation of state according to the Mayer

Ecker and Kroll model was written. Initial debugging was accomplished 

with the IBM 7090 which was available at Continental Oil Company, Ponca 

City, Oklahoma. Finally, the code was brought to Goddard Space Flight 

Center, Greenbelt, Maryland. The final check-out and production run 

utilized the IBM 7094, Mod II, at NASA. Results of the production run are 

given in Section 2. 

A code for the arbitrary potential model equation :<Qt'i state was 

tested at the Goddard Space Flight facility during July of 1965. Results 

of this test are reviewed in Section 3. 

l. Preliminary Studies: 

The initial study of the equation of state was concerned with methods 

for calculating the reduction in ionization potential and the regions of 

validity (Bruce and Todd, 1965) of these methods. The Debye theory was 

compared to Ecker and Kroll's method. For a singly ionized gas, limiting 

values of the temperature dependent electron densities by ·ea.ch ,theory were 
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determined and are shown in Figure 7~1. It is apparent that the Ecker and 

Kroll approximation is, in theory, valid further ,in.thej,low: temperature· 

high density region. Comparisons of the ionization produced in aluminum . · 

plasma are shown in Figures 7.2 and 7.3. Substantially higher degrees of 

ionization are indicated by the Ecker and Kroll approximation. The com-

parison values used in this study were obtained from data reported by c. 

Ronse (1961 and 1962b). 

The second study was directed at evaluation of the closest approach 

para.meter in Mayer's theory (Bruce and Todd, 1964). Hydrogen was chosen 

the plasma for study. At this time, it was deemed desirable to make a 

further check on the Ecker and Kroll method. For this last comparison, 

binding energies for the hydrogen atom were calculated from Schfr,o~dinger' s·. 

equation by using the Yukawa potential as the potential function. The re-

sults were reduced so that the effective ionization potential could be ex-

pressed as a function of the Debye length as is shown in Figure 4.l. 

In order to determine the effect of the closest appro1;1.ch parameter, 

pressure isotherms were calculated. The total pressure was determined by 

(7 .1) 

where 

(7 .2) 

for which 

(7.3) 

and Pm was given by equation 5 .47. PDEG was obtained by multiplying 
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equation 5.15 by 2/3, i.e .. , equation 5 .. 50. The typical variation with 

density of each pressure component is shown in Figure 7s4. Specifically 

this figure shows the 5ev isotherm components for an aij' ten times larger 

than that indicated by equation 4.35 for which the ioniz~tion calculation 

was by the Yukawa method. The effect of variation of the a1 j parameter 

on this isotherm is shown in Figure 7.5. The same variation of a1j on 

the 5en isotherm by the Ecker and Kroll approximation is given in Figure 

7.6. Two ev and 5ev isotherms are compared on the basis of the ionization 

in Figures 7.7 and 7.8. In these figures, the graphs in the upper right 

hand corner compare the calculated ionizations. Ideal gas ionizations 

were also calculated by the unmodified Saha equation. The, .. ides.1Lp:r,e .. ssure ; . · 

contained no modifications, i.e. designated, PPER. 

The very close comparison of the Yukawa and Ecker and Kroll methods 

gave increased confidence in the Ecker and Kroll approximation. The 

studies demonstrated both the accuracy and practicality of the Mayer-Ecker 

and Kroll model and served as valuable guides against which to check the 

results of the more complete equation of state. 

2. Tabular Equation of State 

The fullscale isotherm program was written, debugged and brought to 

Goddard Space Flight Center. Before final production runs could be com-

pleted, a suitable value for the closest approach parameter wa$ J;).eeded1; , , u 

The value for the constant Ca, in equation 4 .35, was obta:l:hedLblV merging: 

the tabular equation of state into the Thomas-Fermi model at a relative 

density of P/Po = .1. For this purpose, the total energy did not include 

oscillation energy. The best value for Ca was found to be 1.95. 
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Subsequent production runs showed that the extreme high density ... low 

temperature region of the tabular output was outside the validity rru+ge, .of\ J. 

the method. The results in this region are, therefore, i'.Ut.iiPe.ct:rn: An 

extrapolation program was written to modify the data in this region. 

This gave only limited improvement. Finally it was necessary. to .hand 

extrapolate the energy and pressure isotherms to obtain input data for the 

flow program. 

3. Reduction of Output Data 

Numerical output is arranged in the following form: 

A. Figures 7.9 and 7.10 show the final energy-density and pressure

density isotherms that were employed as input for the flow part,"' , 

B. Table I through Table VIII are the results of the extrapolation 

program. 

l. Table I - Extrapolated Energy Isotherm 

2. Table II - Extrapolated Pressure Isotherm 

3. Table III - Extrapolated Energy Per Atom 

4. Table IV - Extrapolated Average Ionization 

5. Table V - Temperature-Constant Energy Per Atom 

6. Table VI - Energy Per Cubic Centimeter for ConstantEnergy; 

Per Atom. This served as a check on the extra

polation program. 

7. Table VII - Pressure for Constant Energy Per Atom 

8. Table VIII- Energy Per Particle-Constant Energy Per Atom. 

c. Table XI through XXIII are unmodified tabulation of the various 

para.meters calculated by the equation of state program. 
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TABLE I 
. . 

·. ENERGY ISOI'HERMS - EXTRAPOLATION 

Density 
Ratio - - · 
Tempera-
Ture 1.0 1.0E-1 . · ·2.0E-2 . l.OE-J l.OE-4 

. . 
. l.OE-5 1 .. 0E-6 .. 

O.lOOOE 01 o .• 7:351E 24 0.1542E 23 o.2346E 22 0.3009E 21 , o.3329E 20 · o .4 581.E -19 0.5413E 18 
0.2000E 01 o.9586E 24 O.ll24E 24 · 0~1082E 23 o.9026E 21 o.1076E 21 0.1471E 20_ 0.1945E 19 
0.5000E 01 o.8328E 24 Q.3645E 24 o.31o6E 23- o.3665E 22 o.444oE 21 0~4870E 20 _ . o.~972E 19 

· O.lOOOE 02 0.5874E 25 o.6752E 24 o.-6229E 23_ o.6848E 22 o.8143E 21 0.1179E 21 O.l579E 20 
Q.2000E 02 o.1621E 26 0.1651E 25 o.189BE 24 . 0.2652E23 0.3577E 22 o.4866E 21 0.6474E 20 
0.5000E 02 _0.5234E 26 o.6865E 25 0.9424E 24 0.1275E 24 o:1589E 23 o.1901E 22 0.3185E 21 · 

TABLE II 

PRESSURE ISOTHERMS :..._ ~TION 

Density 
Ratio - -
Tempera..; ,, 

' ture 1.() 1.0E-1 2.0E-2 l.OE-J l.OE-4 . 1.6E-5 l.OE-6 

O.lOOOE 01 0.5682E 12 o.1359E 11 o.ii4oE 10 .. 0.1527E 09 O.i!J55E 08 o.1690E 07 o.i861E 06 
0.2000E 01 o.3628E 12 0.1026E 12 0.5751E 10 o.4007E 09 o.4143E 08 0.4770E 07 0.5522E 06 
0~5000E 01 0.2lllE13 o.3260E 12 -0.1742&11 0.1680E 10 0.1800E 09 0.1874E 08 o.1905E 01 
O.lOOOE 02 o.6997E 13 o.5583E -~ 0.3949E 11 o.3852E 10 0.3965E 09 o.44o8E 08 0.4950E 07 
0.2000E 02 0.1427E 14 o.1106E 13 o.9927E 11 o.1106E 11 0.1230E 10 · 0.1407E 09 o.1722E 08 
0.5000E 02 o.3994E 14 0.3995E 13 o.~3_13~_ !_2 _ _:, o.4921.E 11 · · 0.5424:E 10 o.6331E 09 · 0.1288E 09 

..... 
~ 



Density 
Ratio - -
Tempera-
ture 1.0 

O.lOOOE 01 0.2451E 02 
0.2000E 01 0.3104E 02 
o.5000E 01 o.460BE.02 
0. lOOOE 02 · 0. 9757E 02 
0.2000E 02 
0.5000E 02 

Density 
Ratio. - -
Tempera
ture 

o.1000E·o1 
0.2000E 01 
0.5000E 01 
O.lOOOE 02 
0.2000E 02 
0.5000E 02 

o.2692E 03 
0.8695E 03 

1.0. 

o.3306E 01 
0.3890E 01 
o.3606E 01. · 
o.3011E 01. 
o.3722E 01 
0.5301.E 01 

LOE-1. · 

0.1269E 02 
0.2848E 02 
o.6o55E 02 
0.1122E 03 
o.2742E 03 
O.ll40E o4 

l.OE-1 

0.1503E 01 
o.2193E 01 
o.267BE oi 
o.2962E 01 
0.3516E 01 
0.6073E 01 

TABLE III 

· ENERGY PER ATOM - EXTRAPOLATION 

2.0E-2 l.OE-3 . l.OE-4. 

o.5946E 01 o.4999E01 0.5528E 01 
o.1796E 02 O.l500E 02 .. o.1789E 02 
0.5160E 02 · o.6o8BE 02 o.7376E 02 

. O.l035E 03 o.113BE 03 0.1353E 03 
0.3154E 03 o.44o5E 03 0.5941E 03 
0.1565E o4 o.211BE o4 o.2640E o4 

TABLE 'IV 

AVERAGE . IONIZATION - EXTRAPOLATJ:ON 

2.0E-2 l.OE-3 _____ l.OE-4 

o.6681E oo o~4i8BE-oo p.4715E 00 
O.lll5E 01 o.9026E oo O.ll05E 01 

· 0.1852E 01 0.2153E 01 o.2611E 01 
0.2530E 01 0.2811E01 o.3080E 01. 
0.3652E 01 o.4495E 01 o.5276E 01 
o.7359E 01 o.8789E 01 o.9939E 01 

l.OE;.5 l.OE-6 

o.7610E 01 .· o.8991E 01. 
o.2443E 02 o.3231E 02 
o.8o91E 02 o.8259E 02 
o.1959E 03 0.2624E 03 
o.8o82E 03 · o.1075E o4 
0.3157E 04 o.5290E o4 

l.OE-5 l.OE-6. 

o.7534E 00 o.9396E oo 
o.1471E 01 ·.o.1875E 01 
0.2874E 01 0.2952E 01 .. 
0.3567E 01 o.4029E 01 
0.6174:E 01 · o.6992E 01 
o.1062E 02 · 0.1091E 02 

f-1 
. f-1 

\.A) 



TABLE V 

. TEMPERATURE - CONSTANT ENERGY PER· ATOM 

Density 
Ratio - - 1.0 1.0E-1 2.0E-2 1.0E-3 l.OE-4 l.OE-5 1.0E-6 
Energy Per 
Atom 

O.lOOOE 01 o.14o9E 01 0.3462E-OO o.5916E 00 0.5901E 00 0.6254E 00 0.6033E 00 0.6719E 00 
O.lOOOE 02 o.7677E oo 0.8344E 00 0.1295E 01 o.1681E 01 0.1591E 01 0.1222E 01. 0.5995E 00 
0.5000E 02 0.7204E 01 o.3960E 01 o.4846E 01 0.3951E 01 o.3oo4E 01 0.3620E 01 o.4077E 01 
O.lOOOE 03 0.1014E 02 0.9245E 01 0.9836E 01 0.9578E 01 o.9227E 01 o.8423E 01 0.7975E 01 
0.5000E 03 o.3171E 02 o.2998E 02 0.2622E 02 0.2087E 02 0.1757E 02 0.1486E 02 0.1287E 02 

TABLE VI 

ENERGY PER CUBIC CENTD1ETER - CONSTANT ·ENERGY/ ATOM 

Density 
Ratio - - 1.0 1.CE-1 2.0E-2 1.0E-3 l..OE-4 l..OE-5 l.OE-6 
Energy Per 
Atom 

O.lOOOE 01 o.3996E 25 0.5140E 23 0.1195E 22 o.6025E 20 o.6o42E 19 0.6008E 18 0.60l8E 17 
O.lOOOE 02 o.1257E.25 0.8134E 21 o.6023E 22 o.6017E 21 0.60l6E 20 0.6025E 19 o.6022E 18 
0.5000E 02 0.3010E 25 0.3011E 24 0.3010E 23 0.3010E 22 0.3010E 21 0.3010E 20 · 0.3010E. 19 
O.lOOOE 03 o.6020E 25 O.{Ol9E 24 0.6020E 23 0.6020E 22 o.6018E 21 · o.60l9E 20 0.60l6E 19 
0.5000E 03 0.3010E 26 0.3011.E 25 0.3010E 24 0.3009E 23 0.3010E 22 0.3010E 21 0.301QE.20 

..... 
~ 



TABLE VII 

PRESSURE - CONST.ANT ENERGY /ATOM 

Density 
· Ratio - - 1.0 l.OE-l 2.0E-2 l.OE-3 l.OE~4 l.OE-5 · . l.OE-6 
Energy Per 
Atom 

O.lOOOE 01 0.2lOOE 13 o.4848E 11 o.7773E 09 0.5438E 08 o.4791E 07 0.5180E 06 o.7038E 05 
O.lOOOE 02 o.2735E 12 O.l35lE 10 o.3047E 10 o.2647E 09 o.2242E 08 o.1J.68E 07 o.6982E 05 
0.5000E 02 o.4982E 13 o.2779E 12 O.l674E ll O.l227E 10 0.9453E 08 O.ll85E 08 O.l351E 07 
O.lOOOE 03 0,7100E 13 0.5l72E l2 0.385JE ll o.3549E 10 0.3325E 09 o.291JE 08 o.2558E OT 

· 0.5000E 03 0.2413E 14 o.l863E 13 O.l502E 12 O.l242E 11 O.l07JE 10 o.9368E 08. 0.8665E 07 

TABLE VIII 

ENERGY PER PARTICLE - CONST.ANT ENERGY /ATOM 

Density 
a 

.Ratio - - l.O l.OE.:l 2.0E-2 l.OE-3 l.OE-4 l.OE-5 l.OE-6 
Energy Per 
Atom 

O.lOOOE 01 0.2105E 02 o.4298E 01 0.256?E 01 o.1727E 01 O.l970E 01 0.2b80E 01 o.2294E 01 
O.lOOOE 02 O.l29lE 02 0.5814E 01 o.6171E 01 0.6623E 01 0.6806E 01 o.7072E 01 0.69l0E 01 
0.50C°OE 02 O.l5lOE 02 O.lJOOE 02 O.l775E 02 O.l713E 02 O.l543E 02 O.l487E 02 O.l515E 02 
O.lOOOE 03 0.2479E 02 o.2586E 02 o.2868E 02 0,2772E 02 o.2839E 02 o.3182E 02 0,3559E 02, 
0.5000E 03 0,8930E 02 o.936JE 02 o.9209E 02 o.839JE 02 0.7874E 02 o.7610E 02 0.7594E 02 

i:: 
Vl 



TABLE IX 

TOTAL ENERGY LESS OSCn..LATION ENERGY VERB TF!MPERATURE·.AND:ALUMINUM MASS:;DENSITY.:.RATiO 

RO l.OOE 00 l.OOE-01 l.OOE-02 l.OOE-03 l.OOE-o4 l.OOE-05 l.OOE-06 
Tempera-
ture 

O.lOOOOE 01 ~O. 294 73E 25 -0 .19693E 25 0.14445E 23 0. 29624E · 21 o.33106E 20 . o .4 5696:E 19 0.54080E 18 
0.20000E 01 -0.99157E 24 -0. 54 562E 22 0.10168E 23 0.88766E 21· 0.10701E 21 o.14676E 20 o.19441E 19 
0.50000E 01 -0.28055E 26 o.27987E 24 0.29679E 23 o.36103E 22 o.44173E 21 0 .48624E 20 · o.49691E 19 
O.lOOOOE 02 0.30086E 25 0.56684E 24 o.60082E 23 o.67663E 22 o.81132E 21 0.11781E 21 .0 .15793E 20 
0.20000E 02 · 0 .12270E 26 . 0.15366E 25 0.18604E 24 0.26355E 23 . o.35701E 22 . o.48630E 21 o.64732E 20 
0.50000E 02 o.45649E 26 . O .66055E 25 o.93153E 24 o.12703E 24 0.15874E 23 O.l900lE 22 o.31848E 21 

TABLE X 

PLASMA OSCn..IATION ENERGY = Ce h'Wo VERS TEMPERATURE ANn::ALUMINUM MAss::nENSITY-;RATIO 

RO l.OOE 00 l.OOE-01 l.OOE-02 l.OOE-03 l.OOE-04 l.OOE-05 l.OOE-06 
Tempera-

. ture 

O.lOOOOE 01 o.39283E 24 O.ll876E 24 0.26575E 22 o.43912E 19 o.17758E 18 o.11346E 17 0.50006E 15 
0.20000E 01 0.54894E 24 0.70l56E 23 0.82364E 21 · 0 .15830E 20 0.63988E 18 0.30933E 17 ·. 0.14075E 16· 
0.50000E 01 o.44512E 25 0.84598E 23 0.13640E 22 0.54929E 20 0.23110E 19 o.84516E 17 0.27805E 16 
O.lOOOOE 02 0.25144E 25 o.884o4E 23 0.22200E 22 0.81795E 20 o.29618E 19 0.11677E 18 o.44318E 16 
0.20000E 02 o.38842E 25 O.l0506E 24 0.38590E 22 0.16553E 21 0.66526E 19 0.26615E 18 0.10133E 17 
0.50000E 02 o.64599E 25 0.25176E 24 O.l0856E 23 . 0 ~44967E 21 0.17145E 20 o.60023E 18 0.19753E 17 

I-' 

~ 



TABLE XI 

PLASMA CSCilJ...A.TION ENERGY VERS TEMPERATURE.'AND ALUMINUM MASS PENSI'IT RATIO 

RO l.OOE 00 l.OOE-01 l.OOE-02 l.OOE-03 l.OOE-04 1.00E-05 l.OOE-06 
Tempera-
ture 

O.lOOOOE 01 0.12454E 21 o.38034E 21 o.29687E 21 o.99877E 17 0.37730E 16 0.24099E 15 O.l0615E 14 
0.20000E 01 0.57226E 22 o.64319E 22 0.28677E 20 0.22346E 18 o.95777E 16 0.46486E 15 0.21163E 14 
0.50000E 01 0.10710E 24 0.12506E 23 o.13134E20 0.52077E 18 0.21989E 17 o.80303E 15 0.26429E 14 
O.lOOOOE 02 0.48954E 24 0.68573E 22 0.14833E 20 0.54917E 18 0.19924E 17 0.78510E 15 · 0.29799E 14 ·· 
0.20000E 02 0.98100E 24 o.44559E 22 0.18184E 20 0.78528E 18 0.31583E 17 o.12641E 16 o.48182E 14 
0.50000E 02 0.82358E 24 o.77991E 21 o.32901E 20 0.13580E 19 o.51641E 17 0.18043E 16 o.59388E 14 

TABLE XII 

TO'I'AL PRESSURE VERS TEMPERATURE' AND::ALlJMINUM MAss::DENSITY. RATIO 

RO l.OOE 00 LOOE-01 l.OOE-02 l.OOE-03 . l.OOE-04 l.OOE-05 1.00E-06 
Tempera-
ture ----- ----- - -- -- - --

O.lOOOOE 01 .,.o.11017E 13 -0 .14 725E 13 o.66317E 10 0.15274E 09 0.14552E 08 0.16904E 07 0.18605E 06 
0.20000E 01 0.64700E 12 0.12877E 12 0.57511E 10 o.40072E 09 o.41431E 08 o.47702E 01 0.55215E 06 
0.50000E 01 -0.77337E 13 0.32604E 12 0.17418E 11 0.16795E 10 0.18000E 09 0.18741E 08 0.19054E 07 
O.lOOOOE 02 0.69973E 13 0.55828E 12 o.39486E 11 0.38517E 10 0.39651E 09 o.44079E 08 o.49502E 07 
0.20000E 02 0.14270E 14 0.11064E 13 o.99267E 11 o.11062E 11 0.12299E 10 0.14065E 09 0.17223E 08 
0.50000E 02 . 0.39939E 14 o.39954E 13 0.43893E 12 0.49209E 11 0.54236E 10 0.63314E 09 0.12883E 09 

I-' 
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TABLE XIII 

IDEAL GAS PRESSURE VERS TEMPERATURE -AND:CALUMINUM MASS:J>ENSI!Y. RATIO 

RO l.OOE 00 l.OOE-01 l.OOE-02 l.OOE-03 l.OOE-04 l.OOE-05 l.OOE-06 
Tempera-

- ture 

O.lOOOOE 01 0.17101.E 12 0.52149E 11 · 0. 37254E 10 o.13686E ·09 0.14194E 08 0.16915E 07 0.18711.E 06 
0.20000E 01 0.38586E 12 0.68229E 11 o.4o767E 10 0.36710E 09 0.40598E 08 o.47632E 07 0.55438E 06 
0.50000E 01 0.26871.E 13 o.18688E 12 0.13755E 11 0.15214E 10 0.17419E 09 o.18692E 08 o.19043E 07 
O.lOOOOE 02 o.38704E 13 o.38188E 12 0.34059E 11 0.36724E 10 0.39336E 09 o.44011.E 08 0.48466E 07 
0.20000E 02 0.91124E 13 0.87051.E 12 o.89753E 11 O.l0592E 11 0.12114E 10 o.13847E 09 ·o.15406E 08· 
0. 5000QE~2 - 0. 30369E 14 0.34121.E 13 o.40288E 12 0.47176E 11 0.52714E 10 -0. 55994E 09 0.57384E 08 

TABLE XIV 

PLASMA FREQUENCY VERS TEMPEPATURE AND :ALUMINUM MASS :;_DENSITY_ RATIO 

RO l.OOE 00 l.OOE-01 l.OOE-02 l.OOE-03 l.OOE-04 l.OOE-05 l.OOE-06 
Tempera-
ture 

O.lOOOOE 01 0.19370E 16 0.14621.E 16 o.37286E 15 0.45083E 14 0.15127E 14 o .6o467E 13 . 0.21355E 13 
0.20000E 01 0.22039E 16 0 .11101.E _ 16 o.23257E 15 0.66185E 14 o.23162E 14 0.84489E 13 0.30168E 13 
0.50000E 01 o.47112E 16 0.11818E 16 0.29979E 15 0.10223E 15 0.35597E 14 O.ll810E 14 0.37848E 13 
O,lOOOOE 02 o.38227E 16 O.ll990E 16 0,35042E 15 0.11679E 15 0,38664E 14 0.13157E 14 o.44217E 13 
0.20000E 02 0.42499E 16 o.13062E 16 0,42098E 15 0.14769E 15 0.50603E 14 0.17310E 14 0.58253E 13 
0 • 50000E 02 ___ 0,50721.E 16 o.17167E 16 0.59761.E 15 0.20653E 15 0.69451.E 14 0.22705E 14 O. 72763E 13 

I-' 
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RO 
Tempera

. ture 

l.OOE 00 · 

TABLE XV 

AVERAGE IONIZATION VERB II'EMFERA.TURE ·AND :':ALUMINUM. MASS ::DENSITY. RATIO 

l.OOE-01 l.OOE-02 .l.OOE-03 l.OOE-o4 l.OOE-05 l.OOE-06 

. O.lOOOOE 01 o.77312E 00 o.44049E 01 0.28646E 01 o.41879E-OO - o.47150E-OO o.75339E oo 
o.14709E 01 
0.28741E 01 
0.35670E.Ol 
o~6i738E 01 
o.10622E 02 

o.93964E 00 
O.l8754E 01 
0.29516E 01 
o.40286E 01 
o.69923E 01 
0 .l02_lOE 02 ' 

0.20000E Ol 0.10008E 01 0.25394E 01 O.lll45E 01 · 0~90260E 00 · . 0.11054E 01 
· . 0.50000E Ol o.45734E 01 · 0.28777E 01 0.18519E 01 0.21533E 01 o.26111E 01 · 

O.lOOOOE 02 O.JOlllE 01 0.29621E 01 0.25302E 01 ·· 0.28108E 01 0.30804:E 01 
0.20000E 02 ·. o.37216E 01 0.35156E 01 0.36517E 01 o.44948E 01 0.52763E 01 
o.5ooooE 02 o.53009E 01 o.60725E 01. o.73599E 01 o.87892E 01 o.99388E 01 

RO 
Tempera
ture 

O.lOOOOE 01 
0.200QOE 01 
0.50000E 01 
O.lOOOOE 02 
0.20000E 02 
0.2_0000E 02 

TABLE XVI 

ELECTRON DENSITY VERB TEMPERATURE -AND :ALUMINUM MASS: :DENSITY RATIO 

l.OOE 00 l.OOE-01 l.OOE-02 l.OOE-03 1.oOE..:.04 l.OOE-05 . l.OOE-06 

o.46542E 23 0.26518E 23 o.17245E 22 0.25211E 20 0.28384E 19 o.45354E 18 0.56567E 17 
o.6o251E 23 o.15287E 23 o.67093E 21 o.54337E 20 o.66548E 19 o.88547E 18 o.11290E 18 
o.27532E 24 o.17324E 23 o.11148E 22 o.12963E 21 o.15719E 20 o.17302E 19. o.17769E 18 
o.18127E 24 o.17832E 23 o.15232E 22 o.16921E 21 o.18544E 20 o.21473E 19 o.24252E 18 
o •. 224o4E 24 o.21164E 23 o.21983E 22 o.27059E 21 o.31764E 20 · o.37166E 19 _ o.42093E 18 
0.31911.E 24 o.36557E 23 o.44301.E 22 o.52911.E21 o.59832E 20 o.63945E 19. · o.65675E 18 

..... 
to 



RO 
Tempera
ture 

l.OOE 00 

TABLE XVII 

DEBYE RADIUS VERB TEMff:RATURE..AND:::ALlJMINDM MASSIDENSITY, .. RATIO 

l.OOE-01 l.OOE-02 - l.OOE-03 l..OOE-o4 l..OOE-05 l..OOE-06 

O.lOOOOE 01 0.15918E-08 o.17120E-08 o.90602E-08 o.1o465E-o6 o.31l.92E-o6 o.78o21E-o6 0.22089E-05 
0.20000E 01 o.23488E-08 o.43954E-08 0.27070E-07 o.98019E-07 0.2'7005E-06 o.68639E-06 O.l.8216E-05 

. o.5ooooE 01 o.12024E-o8 o.63870E-08 o.28426E-07 o.8oo46E-07 o.21.736E-o6 o.63803E-06 o.19828E-05 
O.lOOOOE 02 0.26504E-08 o.88363E-08 o.31498E-07 o.91852E-07 o.26815E-06 0.74561JE-06 0.21225E-05 
o.20000E 02 o.3164oE-o8 o.10653E-07 o.32308E-07 o.85623E-07 o.23315E-06 o.6381.3E-o6 o.18131E-05 
o_.50000E 02 o.36625E-o8 · o.10271E-07 o.27226E-07 o.73092E-07 o.20631E-06 o.6l.435E-o6 o.18935E-o5 

RO 
Tempera
ture 

O.lOOOOE 01 
0.20000E 01 
0.50000E 01 
O.lOOOOE 02 
Q.20000E 02 
0 • .5_0000E 02 

TABLE XVIII -

'l'RANSIATION ENERGY VERS TEMPERATURE -- AND:·:ALmmroM MASS:DENSITY- RATIO 

l.OOE 00 1.00E-01 l.OOE-02 l.OOE-03 l..OOE-o4 l..OOE-05 l..OOE-06 

o.16013E 24 o.48828E 23 o.34882E 22 o.12814E 21 o.1.3290E 20 o.1.5838E 19 o.17520E 18 
o.36129E 24 o.63885E 23 o.38171E 22 o.34372E 2i o.38o13E 20 o~44599E 19 o.51908E 18 
0.25160E 25 o.17498E 24 0.12879E 23 0.14245E 22 0.16310E 21 O.l.7502E 20 o.17830E 19 
o.3624oE- 25 - o.35757E 24 - o.31890E 23 o.34386E 22 o.36831E 21 o.41209E 20 - o.45380E 19 
c.85322E 25 o.815o8E 24 o.84039E 23 o.99180E 22 o.11.342E 22 o.l.2965E 21 o.14425E 20 
o.28435E 26 o.31948E 25 o.37723E 24 o.44172E 23 o.49358E 22 o.52428E 21 o.53731E 20 

~ 
0 



RO 
Tempera

. ture 

l.OOE 00 

TABLE XIX 

IONIZATION ENERGY VERS TEMPERATURE AND/ALUMINUM MASS.~ENSITt: .RATIO 

1.00E-01 l.OOE-02 l.OOE-03 l.OOE-o4 l.OOE-05 l.OOE-06 

O.lOOOOE 01 0.18929E 25 o.24062E 25 o.29769E 23 0.15089E 21 o.16987E 20 o.27147E 19 o.33898E 18 
o.20000E 01 o.84314E 24 o.25077E 24 o.50925E 22 o.36546E 21 o.51736E 20 o.90078E 19 o.13629E 19 
o.5ooooE 01 o.22858E 26 o.29975E 24 o.14o44E 23 o.18230E 22 o.25503E 21 o.29930E 20 o.3119JE 19 
O.lOOOOE 02 o.52407E 25 o.31819E 24 o.24409E 23 o.30208E 22 o.41954E 21 o.74059E 20 o.10870E 20 
o.20000E 02 · o.91738E 25 o.7065oE 24 o.84362E 23 o.15226E 23 o.23200E 22 o.34244E 21 o.4591JE 20 
o.50000E 02 o.24o56E 26 o.33613E 25 o.52547E 24 o.79350E 23 o.10519E 23 o.12235E 22 · o.12999E 21 

. . 

RO 
Tempera
ture 

1.00E 00 

TABLE XX 

EXCITATION ENERGY VERS TEMPERATURE'' AND:::ALUMINUM MAss:,:DENSiff -RATIO 

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05 · l.OOE-06 

O.lOOOOE 01 · o.71840E 19 o.73013E 14 o. o.11432E 20 o.26300E 19 0.28518E 18 0.28743E 17 
0.20000E 01 0.10135E 09 o.67416E 02 0.12675E 22 o.16148E 21 o.16980E 20 0.12393E 19 o.67102E 17 · 
0.50000E 01 0.24790E 19 o.28953E 14 o.23783E 22 o.30649E 21 0.21424E 20 0.12594E 19 o.65796E 17 
O.lOOOOE 02 0.26678E 22 0.24650E 22 0.25845:E 22 o.23388E 21 0.23587E 20 0.25506E 19 o.19196E 18 
o.20000E 02 o.5734JE 23 o.63933E 23 o.15752E 23 o.10779E 22 o.10784E 21 o.10939E 20 o.10055E 19 
o.50000E 02 o~944o6E 24 o.29520E 24 0.32960:E 23 · o.31638E 22 o.26606E 21 o.l827lE 20 o.10183E 19 

~ .... 



RO 
Tempera
ture 

1.00E 00 

TABLE XXI 

DEGENERACY ENERGY VERS TEMPERATURE AND_:ALllMINUM MASS:,DENSITY.,RATIO 

l.OOE-01 l.OOE-02 l.OOE-03 l.OOE-04 1.00E-05 l.OOE-06 

O.lOOOOE 01 o.77817E 23 0.26399E 23 0.12008E 21 0.25810E 17 o.32718E 15 o.83536E 13 0.12995E 12 
o.20000E 01 o.97701E 23 o.65936E 22 o.12916E 20 o.84778E 17 o.12717E 16 o.22515E 14 o.36601E 12 
0.50000E 01 0.12789E 25 0.54228E 22 0.22565E 20 o.30518E 18 o.44873E 16 0.54368E 14 o.57343E 12 
O.lOOOOE 02 o.41414E 24 o.40759E 22 o.29791E 20 0.36769E 18 o.44161E 16 o.59216E 14 o.75534E 12 
o.20000E 02 o.45205E 24 o.4o643E 22 o.43881E 20 o.66487E 18 o.91619E 16 o.12544E 15 o.16090E 13 
0.50000E 02 o.58310E 24 0.76726E 22 0.11271E 21 0.16079E 19 0.20560E 17 o.23484E 15 0.24772E 13 

TABLE XXII 

MAY:h.'R CORRECTION El\1ERGY VERS TEMPERATURE' AND :ALUMINUM MAss: DENSITY RATIO 

RO 1.00E 00 1.00E-01 l.OOE-02 l.OOE-03 1.00E-04 l.OOE-05 l.OOE-06 
Tempera-
ture 

O.lOOOOE 01 -o.50768E 25 -0 .44 507E 25 -0 .18932E 23 0.57558E 19 0.19895E 18 -0.14057E 17 -0.21336E 16 
0.20000E 01 -0.22927E 25 -0. 32670E 24 -0.22505E 20 0.16911E 20 0.28377E 18 -0.31555E 17 -0.53877E 16 
0.50000E 01 -0 • 54 708E 26 -0 .20029E 24 0.35469E 21 0.55980E 20 0.21566E 19 -o .8o8o8E 17 -0 .12264E 17 
O.lOOOOE 02 -0.62729E 25 -0. 9544 9E 23 0.11690E 22 O. 72453E 20 -o.33843E 18 -0.22355E 18 -0 • 21107E 17 
0.20000E 02 -0.59450E 25 -0.53027E 23 0.18428E 22 0.12909E 21 0.45173E 19 -0.1531IB 18 -0 • 36200E 17 
0.50000E 02 -o.83702E 25 -0 .25359E 24 -0.43705E 22 o.20962E 21 0.19547E 20 0.28877E 18 -0.84025E 17 

f-1 
!\.) 
!\.) 



RO 
Tempera
ture 

O.lOOOOE 01 
0.20000E 01 
0.50000E 01 
O.lOOOOE 02 
0.20000E 02 
0.2.0000E 02 

TABLE XXIII 

RADIATION ENERGY VERS TEMPERATURE 'AND:ALUMINUM MASS:::DENSITY. .RATIO 

l.OOE 00 l.OOE-01 l.OOE-02 l.OOE-03 l.OOE-04 1.00E-05 l.OOE-06 

o.21413E 14 o.21413E 14 o.21413E 14 o.21413E 14 o.21413E 14 o.21413E 14 o.21413E 14 
o.34261E 15 o.34261E 15 o.34261E 15 o.34261E 15 o.34261E 15 o.34261E 15 o.34261E 15 
o.13383E 17 o.13383E 17 o.13383E 17 o.13383E 17 o.13383E 17 o.13383E 17 o.13383E 17 
o.21413E 18 o.21413E 18 o.21413E 18 o.21413E 18 0.21413E 18 0.21413E 18 0.21413E 18 
o.34261E 19 o.34261E 19 o.34261E 19 o.34261E 19 o.34261E 19 o.34261E 19 o.34261E 19 

. o.13383E 21 0.13383E 21 o.13383E 21 o.13383E 21 o.13383E 21 o.13383E 21 o.13383E 21 

~ 
\.,.) 
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3. Arbitrary Potential Model 

Computer code for the IBM 7094 was written and test,~q :«t the Goddard 

facility. It was demonstrated that the arbitrary model is feasa.ble .• 

provided sufficient time is available to determine the best choice of po

tential parameters. Unfortunately, sufficient time was unavailable_: at. the 

time that the program was tested. It is felt that the preliminary tests 

show that the model may be successfully calculated. 



CHAPrER VIII 

SOLUTION AND REDUCTION OF DATA - FLOW PROBLEM 

L Machine Computations 

As a. preliminary to the calculations in this thesis, a. simplified 

version of the problem was solvedo This version employed a one fluid 

model of the plasma and a much simplified equation of state. Successful 

runs of this problem served to establish a stable differencing scheme and 

demonstrated the feasibility of the proposed method of solutiono 

The full scale progra.m was debugged by using the IBM 7094 computer at 

the Continental Oil Company., Ponca. City, Oklahoma.. When the valid:1.ty of 

the program was established 9 the code was carried to Goddard Space Flight 

Center, Greenbelt J Maryland for subsequent check out and production runs o 

2. Initial ConcU.tions 

The problem was run for four sets of initial conditionso These con

ditions differed only in the initial energy density of the sample. These 

energy densities were chosen to give initial temperatures of approximately 

3.5 ev, 10 ev, 20 ev and 45 ev. Figure Sol correlates the original energy 

input values to original energy per atom. All runs started from the same 

initial boundary, a sphere of aluminum with a radius of 4o25 x 10-3 cm and 

a density of 2o 7 gn/cm3 o The Courant value for all runs -was 0.1. I.Tl 

all cases the external electric field was set to start at l cm ra.diuso 
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The initial 6r for all runs was taken as 1.41 x 10-3 cm which spread 

the initial sphere over the first 25 cells. of the mesh. A total of 201 

re.dial mesh spaces were maintained throughout the solution by means of 

periodic machine condensations. All runs were terminated at 2500 cycles 

and the output was taken every 100 cycles, except when a condensation 

occurred. Outputs were also taken immediately before each condensation. 

Each output yields re.dial profiles of the density, pressure, charge, 

temperature, flow velocity, election diffusion velocity, internal energy 

density, total energy density, average ionization and electric field 

strength. 

3. Reduction of Output Data 

The numerical output produced in these four runs is of such a large 

extent that only a small portion of it can be given here. In order to 

give as much of the truly meaningful data as space permits, a graphical 

representation was chosen. Profiles generated after 300, 500, 1000, 2000 

and 2500 cycles are presented here. This allows one to follow the time 

development of the plasma expansion. The profiles of the principal 

variables are plotted against radial distance.. In all cases the in.di-

cations on the radial distances are for 10 mesh numbers. The mesh number 

are related to the radial distance through 6r by the formula 

(8.1) 

4. Organization of Results 

The graphical results are grouped according to initial conditions; 

ea.ch being further subdivided according to the time elapsed.. For easy 
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reference, a list of the graphs is given below. In each time group the 

first figure shows the density and pressure profile; the second shows the 

temperature and ionization profile and the third shows the distribution of 

excess charges. 

I. E0 = 6.437 x 105 ergs 

A. Time= 2.744 n sec 

1. Figure 8 .2 

2. Figure 8.3 

3. Figure 8.4 

B. Time= 5.028 n sec 

l. Figure 8. 5 

2. Figure 8 .. 6 

3. Figure 8.7 

C. Time= 10.74 n sec 

1. Figure 8 .8 

2. Figure 8.9 

3. Figure 8 .. 10 

D. Time = 28.6 n sec 

1. Figure 8.11 

2. Figure 8.12 

3. Figure 8.13 

E. Time = 44.47 n sec 

1. Figure 8.14 

2. Figure 8.15 

3. Figure 8.16 

F. Figure 8.17 - Flow Velocity for All Profile Times 



II. E : 3.000 x 106 erg 
0 

A. Time= 1.192 n sec 

l. Figure 8.18 

2. Figure 8.19 

3. Figure 8.20 

B. Time= 2.25 n sec 

L Figure 8. 21 

2. Figure 8.22 

3. Figure 8.23 

c. Time= 4.895 n sec 

lo Figure 8.24 

2. Figure 8.25 

3. Figure 8.26 

D. Time= 13.08 n sec 

L Figure 8 .27 

2. Figure 8.28 

3. Figure 8.29 

E. Time= 20.26 n sec 

1. Figure 8.30 

2. Figure 8.31 

3. Figure 8 .32 

F. Figure 8.33 Flow Velocity for All Profile Tim.es 

III. E0 = 8.16 x 106 erg 

A. Time= .7091 n sec 

l. Figure 8.34 
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2. Figure 8.35 

3. Figure 8.36 

B. Time :: 

1. Figure 8. 37 

2. Figure 8.38 

3. Figure 8.39 

C. Time= 2.954 n sec 

1. Figure 8 .40 

2. Figure 8.41 

3. Figure 8.42 

D. Time = 7 .884 n sec 

1. Figure 8.43 

2.. Figure 8.44 

3. Figure 8.45 

E. Time= 12.14 n sec 

1. Figure 8 .46 

2. Figure 8.47 

3. Figure 8 .. 48 

F .. Figure 8.49 Flow Velocity for All Profile Times 

IV. E0 = 2.3 x 107 erg 

A. Time:: .343 n sec 

l. Figure 8.50 

2. Figure 8.51 

3. Figure 8.52 

B. Time= .7252 n sec 
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1. Figure 8.53 

2. Figure 8.54 

3. Figure 8.55 

c. Time ::: 1.68 n sec 

1. Figure 8.56 

2. Figure 8.57 

3. Figure 8.58 

D. Time :: 4 .527 n sec 

1. Figure 8.59 

2. Figure 8.60 

3. Figure 8.61 

E. Time= 6.873 n sec 

1. Figure 8. 62 

2. Figure 8.63 

3. Figure 8.64 

F. Figure 8.65 Flow Velocity for All Profile Times 

5. Validity of the Numerical Solution 

Two checks on the numerical solution are possible: 

l. The maxim.um terminal velocity may not exceed that which internal 

energy allows; 

2. The density maxim.um and leading edge of the expanding plasma. must 

expand with approximately the terminal velocity. 

Figure 8.66 shows the maxim.um allowed terminal velocity which is given by 

the formula 

(8.2) 
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The cross marks on Figure 8.66 are the generated terminal velbcities. 

Examination of this figure shows that no error exists in this respect. 

Table XXIV shows that the density maximum propagates almost 2'/o 
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fast. Table XXV shows that the lea.ding edge of the plasma is being propa·m 

gated abmxt 12.5% fast. From these calculations one can conclude that the 

density maximums should be more peaked and slightly steeper on the lead:1'.ng 

edge. Generally speaking, the results are well within allowable limits. 

6. Difficulties Encountered D'll:ring Production Runs 

The mmrt t:ry:b'llg d:i..fficulty was e:nco\l.;lntered when diffissio:nal effects 

were included in the problem. In this case the solution is oscilla.to:i:·y 

with the oacillatio:ns lflllilding until the solution became unstable. 

No value of the Coura.iut condition seemed to alleviate this instability. 

Close inspection revealed that this in.stability resulted from excessively 

large ditfuaion velocities. This difficulty was overcome by introducing 

an artificial de:ns:ity dependent damping coefficient. The coefficient wa.s 

such that the theoretical difftision coeffJtcient was reduced by a density 

factor whenever the density wa.s greater than 2.7 x 10-6 gm/cm3. This more 

closely followed the observed phenomenon of am.bipolar diffusion. 
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TABLE XXIV 

PROPAGATION OF DENSITY MAXIMUM 
. . ' 

1000 to 250Q_cxcles 

Temp0 t 0 R0 tt Rt 6t Vf b.Rc Rf Error 

3.416ev .1074x10=7 .1233x10=l .4474x10=7 .5474x1o=l .34x10-7 .1232x107 .4189x1o=l .5422x10-l 1.0096 
10.08ev .4895x10=~ .1241:lt:lo=l .2026x10=7 .5418x1o=l .1536xio=7 .266x107 .4086x1o=l ~5327x10-l 1.0171 
20.ooev .2954x10=8 .1162x1o=l .1214x10=7 .5305x1o=l .09186x10=7 .4386x107 .4029x10-l .5191x10-l l.0220 
44 .49ev .168x10- .1099x1o=l .6873x10=8 .5024x1o=l .05193x10=7 • 7361x107 .3823x1o=l .9922x10=1 1.0207 

Tempo 

3.416ev 
10.oSev 
20.00ev 
44 .49ev 

to 

.2744x10=8 

.1192x10=8 

.7091x10=9 
.343x10=9 

Ro 

.10:2:2x10 -1 
0 9934x10-2 
.9793x10=2 
.8949x10=2 

TABLE llV 

PROPAGATION OF LEADING EDGE 

tf 

.4447x10=7 

.2026x10=7 

.1214x10=7 

.6873x10=8 

300 to 2500 c~cles 

Rf 6t 

.6937x10-l 

.6825x1o=l 

.6769x1o=l 

.6431x10-1 

.4173xlo-7 
0 1907:xlo-7 
•• 114x10-7 
.o653x10-7 

Vt 

.1232x107 
.266x107 

.4386x107 

.7361x107 

b.Rc 

.5141x1o=l 

.5073x1o=l 

.5ooox1o=l 

.4807xlo-l 

Rte Error 

.6163x10-l l.1256 

.6066x10-l 1.1251 

.5979x10-l 1.1321 

.5702x10-l 1.1278 

I-' 

'& 



CHAPTER IX 

SPECTRA 

1. Introduction 

One of the objectives of this research is the formula:t:ton of' a 

method for calculating the spectra emitted during the expansion of the 

plasma sphere. In this chapter the basic equations .i which define the 

emitted continuous 1arpectrai are developed and shown to be functions of' 

the density &"rld tempers.ture :profiles. The continuous srpectra is con-

sidered to be the best :itndicator of the gross plasma propcerties in 

consideration of the extreme densities that occuro In additionJ based 

upon astrophysice.l models, over 90% of the emitted radiation should. be 

continuous • 

The fundamental a.ssuimptions that are required for this :solution 

are: 

l. Local thermodynan15-c equilibrium existsJ 

2. no magnetic fields exist in the plasma ( thus no synchrotron 

radiation is generated), and 

3, plasma oscillation emission is negligible. 

In Section 2j the basic classical transfer equation is developed. 

The form of the solution of the equation of transfer is :tn S<:1ction 3" 

Some simplifications are reviewed in Section 4. The evaluation of the 

monochromatic absorption coefficient, k 11, is discussed in Section 5. _, 
199 
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The numerical methods and results of the evaluation are given in the re-

me.inder of the chapter. 

2. Eguat ion of Transfer 

Consider an elementary cylinder of thickness, ds, and surface area 

dS, upon which racUation in. the frequency range from J' to )) + dJJ strikes 

normal to dS, a.ii! sho-wn in Figure 9.1. If the energy that is incident on 

the surface per second is E1 and is entirely within the solid angle, d 0 ~ 

then, 

Figure 9.1. Geometry of Absorption. 

(9.1) 

Equation 9ol also serves as a definition of the specific monochromatic 

intensity, I..JJ. The energy emerging at the second surface of the cylinder 

E6 , will be 

(9.2) 
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Neglecting scattering (the scattering coefficient is negligible 

compared to the absorption coefficient), the ~nergy absorbed within the 

cylinder is given by 

L:::. t:- b -=- - f::. k, n J s 
(.\ { .J.. / 

(9.3) 

and the energy emitted within the cylinder in the same frequency range is 

(9~4) 

where k.:.Jis the monochromatic absorption coefficient, j» is the mono

chromatic coefficient of emission and~ is the density of the material. 

It is evident that 

(9.5) 

Using Equations 9.1, 9c3 and 9.2 in 9.5 a.nd simplifying, one obtains an 

equation of transfer: 

. 
d1;;/Js = - I_» k.v/ + ¥ ' (9.6) 

This equation relates the intensity of the radiation to the properties of 

the medium through which it passes. The local thermodynamic equilibrium 

assumption allows the use of Kirchoff's law, 

Ji; = 'i rr B ( T) ~ 
k.11 '.J) ,/ 

(9.7) 

where B"'-'(T) is the Planck function: 

,- -1 

l3-" (T) ~- ~ 3 l e><p ( h1k T) -1] • 

Thus, Equation 9.6 may be written 
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d ~l G)1-) -·· 
---·-·-

d ii 
(9.9) 

The notation \ (E~r) :i.n.dicates that in general the specific monochromatic 

intensity is a f'Uiuc:tJton of the direction of propagation and the position 

in the gas. 

3. G,eometry and Form of the Solution 

AssumiJD,g that k,., »/<--and T a.r@ known functions of the position) 

Equation 9.9 can be solved. For a specified direction of radiation~ the 

equa.tio:n of traneifer is of the fo:rm. 

dy_ + Pc.x) J 
d )( 

1-Q('l) - 0 ;:> 

which has a gemS1ral solut:i.on of the for.m 

where D v is a constant to be determined. Converting to the form of 

converts to the form 

I;,· ( x) = 1).J., Q() ( + {' f' i~1. ,Ji ) 
. Xo 

"'° ~ , r 
rup(~J f~Jr) J ( ~1 B»(T)b)'(- J~/Jr-1) ct·. 

O x ~ 

(9.10) 

(9.12) 

Dy is noted to be zero since otherwise I;,,;(=) would have to be infinite 

of the same order aB exp ( )f t:;)r). The emergent radiation, in the 
Xa 

specified directionj that reaches the surface, x, becomes 
0 
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·:Y· 
. \ 

1:.. (x,) j /' /,,, B,,(7) e..><f> ~ f k,, / Jx) Jy 
;( ~ 

(,,) 

(9.13) 

The solution m!.y now be specd.alized for dete·rm:l.ning the emergent light 

(in a. given d.:frection) from tha spherical plasma model of rad:l:us, R. 

Consider a plasma. sphere of radiua, R, with the line of sight, AB, 

in Figure 9o2o To calculate the intensity of emittee. light along this 

A ~J Rz.-~'l. B I 
I 

i 

/ R. 

Figure 9.2. Geometry of Radiation Problem 

line, A]aj the integr~l must be compl~ted along the line BA. The total 

radiation in the direction Bis then the evaluation of the integral as r 

varies from Oto R. The integration limits are from - to+. Equation 

9.13 (for the emitted monochromatic specific intensity) becomes 
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The flux in the direction Bis simply the integral over the total disc 

( 

F - ,~ 11 j <J v · 
.JJ 

i-3 
(9.15) 

(i 

To evaluate this integralJ> the variables 3 /> and T, must be known 
I 

functions of the radius. I't will 1be shown later that k.J-'= ~(;i, T). If 

the directional flux is known for a particular sphere of ra.diura, .RJ it is 

possibley knov.r:i.ng how/J va1•ies wlth depth.? to determine a reasonable-

estimate of the tempera.titre profile. 

4. Simplifiied Uniform Plasma S;Ehere 

For simplicity 3 consider that the plasma sphere has uniform density 

and temperature. (This is not nearly as bad an approximation as it first 

appears.) 

For the u:rdform sphrera 1 E,quation 9.15 is readily evaluated since k..,,, 7 

r -- 7 k. . ,:'.> \) o ,._ - 1 "LJ B.l,,(r) L 1 - e ~, 'p1 "' 
(9.16) 

since 

I 
(9.17) 

Completing the second integral yields 
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If the product, kP/R, is defined in terms of optical depth of the sphere..J 

2""' =I ;OK 
.)) )..' .,. / 

Equation 9ol8 becomes 

- z !;; t-e_ 
,. ~ .. ,,, 
(,./...J 

(_~ .. - e z z:,) 7 , 
21:~ J 

(9.19) 

(9.20) 

The general relation in Equat;io:n 9ol.6 and the above limited relation in 

Equation 9.20 1 show th~t the continuous radiation may be evaluated except 

for the ntimberical value of t . 

5. Absorp·tion Coefficient 2 /~ 

There are, in g6neral» five processes responsible for continuous 

absorption (L. H. Aller, 1953): 

l. Photoioni~ation from discrete atomic levels to the continuum, 

2. Free=Free transitions, 

3. Electron scattering~ 

4. Photodissociation of- negative ions, and 

5. Molec~lar di~sociation. 

For the pls:6:ma under coiu1ideration, each of the last three processes 

is either not a:pplic:eihle » or is negligible. Only photoionizat ion and 

free-free transitions are considered. 

a. Photoionization 

Start with an. atomic system in an ~nitial state, i, with the energy, 

E1 • Consider the process by which the system absorbs a photon and makes 

a transition to another state~ f~ in which the electron is free. The set 

of all states in which one electron is free and the residual system is in 
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a state of ~table energy is called a continuum of the system. Light of 

frequency, J..· !I can catd~e transitions to those continuum states whose 

energies are equal to !I or les1::1 'than h ,' + E1 • 

The cro,rn aee'tion for the absorption of a light quantum of frequency 

•• 
J,J, accompanied by such a traJCl~s:ttion, is gtven by Ditchburn and Opik (1962) 

as 

i ,, -s:-; 
.'"<'' Ii .. ~I • ) • o< ( )_.:) :C ·-·-----· - I 

' -' >c w. L ~-
_.1., ,· ( 

,. .) 

(9.21) 

-./ 
where the f\ are -wa.vefunctions of the w1-fold degenerate initial state, 

2/~ are continuum eigenfunctions belonging to the eigenvalue, h v + E1 • 

~ 

~· is the charge mid 5,-l is the position vector of thejlth particle in 

the systEllm.. The. El'Uxnmation:a are over all particles,~, over all lJ.j, 

initial states and over all f final states. Solution of 9.21 is for-

midable. The most freq'!llently uised approximation is the central field 

approximation. Thia procedure is not very reliable according to R. V. 

Ditchburn a.r..iJ! U. Opik (1962) ~ who state: "gener,al formula based upon 

approximate wave functions do not al't,JS,ys give even the correct order of 

magnitude'u. In view of the diff:lc'Ulty of the problem, the usual practice 

is to use th~ hydrogen cross-section: 

(9.22) 

with Z replaced by an effective Zeff (Sch-wartzchild, 1961), In equation 

9.22, a(~, n) is the cross section for photoionization from the nth level 

by a photon of frequency, V, provided hl.J + E1 is a continuum. eigenvalue, 

e is electronic charge, Re is the Rydberg constant, Z is the core charge, 



his Planck's constant and n is the principle quantum number. The 

effective Z value for a given level is r.elated to the n value and the 

term value, Tr;, J tor the level through 
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r·=r-
t:.eff :: Yl J-:-~ J (9.23) 

where ~ is the Rydberg constant and T is in wave numbers. The total 
n 

photoionization cross section, a1 , may be obtained from the expression 

where C is the total number density and C;1 is the number of a.toms, or 

ions, in ea.ch level, n. The mass photoionization coefficient,~; is 

related to Oty through 

);(
~ c =/° ii ~ 

If severai,l differ,ent speci1es are present 

"' j 

,, 

(9.25) 

(9.26) 

(9.27) 

where the summation is over all allowed energy levels, n, of each species 

then over the a-' species c The lower limit on the sum over n is determined 

by the condition 

(9.28) 



where Ieff is the effective ionization potential and En is the energy 

of level, n. The upper limitj l\na.x, is determined from the condition 

that the highest discrete level be 

I r· \ ~: / :.r , ,_ I - n ··- '. , 

The state mu:~t be a bmui.td state. 
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The val'llle thus obtained for k; must be corrected for stimulated 

emission. Thi~ correction 15 m&3ie by multiplying by a factor (l=e-hv/kT)o 

The derivation of this t~rm appears in an appendix to this thesis. The 

final» monochromatic photoioniza.tiou coefficient is approximated by 

(9.30) 

different m&J'..ner. The tem valiles for aluminum energy levels are kno-wn 

experimentally; n valUJel!:l for each of these levels are also known. The 
,:1) 

degeneracy of the hydrogen ftmctionp 2n.:: 9 should be replaced in Eq'lllatio:n 

9.22. The cro~s section from each experimentally determined level, /, 

(9.31) 

where gl is the degeneracy of the level and ~efft is the effective~ 

for that gJ. degenerate level. The cross section o(;.1, n) is then obtained 

by summing over all~ levels having the same n 

(9.32) 
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For further details of the }zydrogen photoionization coefficient, 

reference is made ·~;,:. the :a.ppar1dix. 

E. R. Mt:istel' is (1956) ap;1roximatio:r.,, for t,he :t.'ree-free absorption 

(9.33) 

(9.35) 

and Ce :ts the electrm-1 af.ll'.l.lic!ity 3 k ie the Boltzman' s constant and c _is the 

speed of light and Z* i~ the average cor~ chli'J.rge. The mass absorption 

where k* is defined by 9.30 and kff by 9.33. 

7. Numerical Method a."1.d Results of Calculation 

P.rior to obtaining the solution of the flow problem, fortran was 

written to calculate the emitted continuous spectra. The programs are 
0 0 

designed to evalt:ate the radiation L, the range from 50 A to 8000 A 
0 

-was accomplished by calculating the emitted radiation intensity at 50A 



210 

0 
and at 100 A intervals over the entire range of wavelengths. The total 

integrated emitted radiation is obtained by using Simpson's rule over the 

entire frequency interval. Increments in the integral evaluations were 

50 Rand 100 X. 
The method, as outlined, required that monochromatic absorption 

coefficients be determined for each wavelength over the entire density 

and temperature range ~ Using the table of experimentally determined 

energy levels (including the level degeneracies, n values and term values) 

and the tabular equation of state, monochromatic absorption coefficients 

were calculated . The number of atoms, or ions, in each energy level, 

Ci, was assumed to be given by a Boltzman distribution 
n 

c . -
-;An 

(9 .37) 

where gi is the degeneracy of the level, Ci is the total number density 
n 

of that species, gil is the electronic partition (corresponding to a 

part icular Ieff) and Ei is the energy of the particular level . For each 
n 

given/ and T, the k J.I were evaluated by the method outlined i n the 

previous section . All output values from the computer program for the 

equation of state were used in building the k J/ table . 

Fortran code was written to evaluate Equation 9 .15 by Simpson's 

rule, using the generated profiles of;"' and T and the table of~ values. 

The program was tested by the use of the profiles generated by Ables 

(1963) . 

Wlien the spectra routines were incorporated into the main flow pro-

gram, the machine core storage was exceeded . The choice, at this point 
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was either to reduce the k,t./ table to average k values or to write a 

separate program to use the flow profiles as input. Insufficient machine 

time was available to run separate programs. The use of average 

absorption coefficients proved entirely unsatisfactory since density and 

temperature effects were lost. When the uncertainties in the absorption 

coefficient and the character of the flow solution were evaluated, it 

was decided to suspend the spectra calculation for a simpler method , 

Examination of the density and temperature profiles make it apparent 

that the simplified spectra solution equation, Equation 9.18, is a 

reasonable approximation for the emitted radiation from the core since the 

inner core is of almost uniform density and temperature. The absorption 

of the outer layers about the central core is governed by 

cl r. 
dx 

or the observed spectra along any line is given by 

' 

(9.38) 

(9.39) 

where I 0 is the emitted intensity of the core at the distance r from the 
r 

center of the disc, Figure 9.2, and the internal Oto X0 is the thickness 

of the cold density front along the observation line, i .e. along line AB 

in Figure 9.2. This approximation appears to be as reliable for an indi-

cation of the spectra as the more rigorous evaluation. 

8. Summary 

The uncertainty in the thermodynamic properties of the outer density 

shell make a rigorous spectra calculation unjustified at this time. 



Until these properties are determined with greater accuracy, the 

approximation suggested in the preceeding section appears best. A 

discussion of the qualitative results is given in the next chapter. 

Suggestions for improvement in the method also appear, in Chapter X. 
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CHAPI'ER X 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

This thesis presents, in considerable detail, advances and improve

ments in the theory and application of plasmas that may be grouped under 

three headings. (1) An improved equation of state is obtained for 

aluminum over a wide range of densities, pressures and temperatures. 

Numerical values for the Equation are tabulated. (2) Under the assumption 

of thermodynamic equilibrium, densit y and temperature profiles were ob

tained in order to follow the spherical expansion of a highly compressed 

plasma into a vacuum. (3) A technique and equations for calculating the 

continuum emission spectrum during the expansion of the plasma have been 

assembled and derived. Experience on an I . B. M. 7094 has indicated 

approximations which are necessary in order to make the numerical 

calculations without the lapping of programs on the I. B. M. 7094. 

Qualitative evaluation of the calculations are awaiting completion of 

programmed experiments by other members of the group who are working on 

this program. 

Comparison of the results of the computations with the reported 

phenomena for exploding wire s gives a reasonably good qualitative agree

ment. W. Muller (1957) obtained photographs which show that exploding 

wires expand as hollow-cylinders. G. L. Clark et al (1962) confi rmed 

that in the case of a long dwell time, the vapor cloud expands in the 

form of a hollow cylinder. The density profiles in this thesis are in 
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agreement with this experimental evidence. Further confirmation of the 

validity of the model is obtained from strip photographs of exploding 

wires. Photographs by Francis Webb et al (1962) confirm that the highest 

intensity flashes occur with restrike phenomena. The model of this thesis 

corresponds to an exploding wire without restrike. Webb reports that 

streak photographs show that the emitted light decreases with time to a 

very low intensit y. The extreme limb darkening that is observed on these 

photographs i ndicates that a hot interior is formed which is surrounded 

by a cold outer shell. This is, of course , the precise character of the 

calculated results . 

Recommendat ions for Future Improvements 

While qualitative comparisons are good, there are some uncertainties 

in the results. In particular, there are two major errors that may be 

very important. These raise significant questions which concern the be

havior of the cold pla sma at high density in the shell that forms around 

the hot core. First ,without doubt, the equation of state i s invalid for 

the densities and temperatures that occur in the shell. Se..c.:0nd,.,an °energy 

transfer mechanism has been omitted in the exploding plasma calculation. 

This mechanism is the energy transfer that is associated with plasma 

oscillations. These deficiencies suggest only two of the several -ways in 

which the model may be improved . Future improvements shouid at least 

include consideration of improvements in the following areas: 

A. Equation of State 

l. Add three-body interactions to the cluster integrals. 

2 . Include quant um corrections for high density plasmas 



3o Im.prove the plasma oscillation energy component 

B. Flow Solution 

l. Add plasma oscillation energy transfer mechanism 

2. 1.m.prove the transport coefficients 

C. Spectra 
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l. Improve the approximation of the photoionization cross

sections. 

These suggestions will improve the accuracy of the calculation and 

are expected to result in better correlation between the analytical re

sults and the proposed laboratory experiments. Likewise, the spectra 

caiculation would be performed with greater accuracy and :~liability·. 

Conclusion 

A reasonable method has been suggested for calculating the gross 

properties of an exploding plasma sphere. While the model shows good 

qualitative agreement, the data herein should be considered no better 

than a crude approxima.tion of the solution of the real problem. This 

thesis does, however, present a considerably more accurate solution over 

a wider range of pressures and temperatures than has been attempted by 

anyone else in the published literature. 
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Let N specify the set of all particles of the system (at present 

we are considering a one component system). Let m specify any subset 

of the particles of the system; i.e. , any collection of part of the 

system from 1 particle to N particles. To specify mas a subset of N 

one writes 

m ~ f'1 , (Al.I) 

In a similar manner lN~ represents the set of all coordinates of 

the N particles and if f m} is a subset of the coordinate set, then 

one writes 

(Al. 2) 

{m1 is the set of coordinates form of the N particles. Note that 

for each particle, there are three coordinates. If m = 3 then 

and the coordinates for these three particles are contained in the 

Multicomponent Notation - Composition Set: 
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N is called the composition set. It is an ordered set of numerals, 

each numeral representing the number of particles of a particular 

species in the total system. For example, a system containing O"' species 

has a coordinate set, N, with ct' elements, i.e., 

N = n1 , n2 , n3 , •••••••••••••• , n<r. (Al. 3) 

where n1 = number of particles of species 1 in the system, n2 = number 

of particles of the 2 species in the system, etc. N (not N) is the 

total number of particles in the system: 

N = n1 + n2 + n3 + ........•. + n • (Al.4) 



A subset of the composition set is represented by m and is indicated 

by 

m :::- N , (Al.5) 

This means that the elements of.!!!. are made up of parts of N. As an 

example, if.!!!. is a subset of the Ci component system which is repre-

sented by N, written.!!!. ~Ii then the elements of.!!!., 

m = m1 , m2 , m3 , •••••••••••••• , ma- , (Al. 6) 

are related to the elements of N by 

(Al. 7) 

Similar to equation Al.4, 

m = m1 + m2 + m3 + .......... + m? (Al. 8) 

where m (not.!!!_) is the total number of particles in the subset. 

Coordinate Set: r N ~ 

In a manner similar to the above, the coordinate set f NJ of a 

multicomponent system is the ordered collection of all coordinates of 

all particles in the system. The elements of the set are the 3N 

coordinates of the particles in the system, i.e. 

where the notation xi stands for the x component of the jth particle 
j 

f h ,th . o t e 1 species. 

More briefly this set is written as 

(Al.10) 

th th where m stands for the 3 coordinates of them particle of the s 
s 
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species. 

Coordinate Subset: {.m 3 
fm~ represents a subset of the coordinate set and is indicated by 

The elements of [ mJare made up of elements off N f. If the relation 

1 r!l] c f!Yf 
exists between the coordinates setsf mJ andfl!~ then_!!!. ~l! specifies 

the relation between their corresponding composition sets. It should 

be noted that the above subsets may consist of the entire system. 

Other Set Notation 

It is apparent that the preceding notation is a more efficient 

way of representing complicated systems which would be laborous to 

write out in detail. There are several other set symbols that are 

used to conserve labor and space. 

Concentration Set£: 

th If C = n /V, the number density of the s species, then the s s 

concentration set is defined by 

(Al.13a) 

or 

(Al.13b) 

The elements of the concentration set are the number densities of the 

various species. (Note in all of the above sets, zero is an allowed 

element:.) It is obvious that the total concentration C, (not £) is 

given by 
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c - C +C +-···• 
' :2-

(Al.14) 

Chemical Potential Set~: 

The elements of are the chemical potentials of each of the 

species, i.e. 

):!. ':/' / ) ,.,.M2. ) ' I ' ' J /A() ; (Al.15) 

Other Definitions: 

n I= (n,J)(n)),. (Yb,/):(Product of factionals of elements -· 
of n); 

(Product of elements of c, each raised 

to power of corresponding elements of 

composition set); 

and 

Notation: 

f(g_) = function which is dependent upon the composition set, 

i.e., upon then particles of which n1 are of species 

one, n2 of species two, etc. In other words, the 

function may not only depend upon the total number of 

particles but also upon their distribution by species. 

~ f(n) = sum off (n), as defined above, over all of the 

composition for which n ~ O. (n = total number of 

particles in .!0 , 
I 2 f (.!l) = as above, except n ~ 1. 
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11 

L_ f(n) as above except n ~ 2. Note in these, the sum is 

generally over all possible subsets for each n; i.e., 

if there are 4 different species and n = 2, then there 

are 10 different terms. 

f(fmJ) function dependent upon the 3m different coordi-

nates of them particles. The function may also be 

dependent upon the species involved. 

2 f(.!!!) sum over all possible subsets m of the set n as m 

rn !: n - - goes from Oto n. 

same as above, except concerns coordinate subsets. 

Binomial Expression a 
(b): 

The binomial expression ( 1!:.) 
b is defined by 

(J er' 
°'~) (~) -II (~:) -II ::. = bs} (a.s- bs) I (Al.16) 

.$= I S=-1 

Examples 

(Al.17) 

In Al.17 the integrand is dependent upon 3n coordinates and must 

be integrated for 3n different coordinates (unless otherwise noted, 

the integral is over the entire space). 

Partitions 

Consider the coordinate set f .!!. 3 as being composed of three dis

joint sets: 

(Al.18) 
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The inverse, splitting f.B.; into the three disjoint sets, is a partition 

of the set f _£) . 
For present purposes, one may consider a partition of the set f .£3 

as any splitting of ! .B. ~ into disjoint sets. One may define the 

"partitian set" as the set of numerals, zero or one, which designates 

the absence or presence of a particular subset in the partition. As 

an example, the partition set for Al.18 would be 

(Al.19) 

Each partition set defines a particular partition. In Appendix II 

a partition set for a coordinate set is written 

and one of its elements would be noted by f1kJ 

A partition set for the composition set differs somewhat from the 

above. It is possible that the three coordinate subsets in Al.18 might 

represent identical composition subsets. With this possibility in mind, 

it is apparent that the elements of the partition set (of the composi-

tion set n), written 

will be the number of times the particular composition subset appears 

in the partition. 

In general 

n=-2.CJ. _ -<- .,c " (Al. 20) 

the total composition is the sum of the subset compositions. The ele-

ments of the partition set, 

(Al. 21) 



indicates the number of times that the composition subset n. appears 
-i 

in the partition: i.e., p, may be any positive integer including 
n· -;.. 

zero. As a result 

(Al.22) 

where the product!!!. pm is defined by 

rr1 Pt11 - t'Yl t- ¥2:J -1- m t , , . J (Al. 23) 

with pm terms on right. 

If 

YYI ~ m, ) rvi.;i, ) , , . > vY\r- J (Al. 24) 

then 

w pf!]. ::: Bi MI ) p'il rY)&l. ) ~ Y\1?,) ' I I I 

(Al. 25) 

which is the same as Al.23. 

As a matter of notation 

2 g_ P- = sum of a for all partitions off n J 
F-][t} 5 --:e. (. -

and 

l_ Q; P- = sum of a for all partitions of n. 

P-J 0 
-:E. 
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Cluster theory is a statistical method for obtaining the thermo

dynamic properties of a system through consideration of the interaction 

potentials of atoms or molecules composing the system. The process is 

one of calculating the "configuration integral". From an expansion of 

the configuration integram, the excess free energy of the system may be 

obtained directly. By "excess free energy,''. one means the excess of 

free energy over that of a perfect gas system. From the excess free 

energy, the corrections to other equilibrium properties are calculable. 

It should be noted that the cluster theory is not exclusively 

devoted to the calculation of thermodynamic properties. The theory 

may be used for almost any type of system for which a configuration 

integral is to be calculated in attempting a solution to the many-body 

problem. In some cases it has replaced the second quantization method. 

In the following section the theory will be applied to a very 

simple system to illustrate the method. In conclusion, a review is 

presented of the difficulties that are encountered with the theory and 

with their solution. 

No attempt will be made to completely develop the theory. The 

most complete development of the theory is found in "Ionic Solutions 

Theory" by Harold L. Freidman (1962). In fact, this appendix is an 

incomplete summary of the first 165 pages of this text. The original 

theory as applied to non-ionic solutions may be found in Mayer and 

Mayer's text (1940). Mayer's original method for extension to ionic 

solutions (1950) and Poirier's evaluation (1952) of the cluster 

integrals are reviewed in Chapter II of the thesis. Very readable 

discussions of the theory are found in "Statistical Mechanics" by 

Huang (1963) and "The Many Electron Problems" by Brout and Caruthers 

(1963). 
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In the following text, only the general scheme of the development 

is outlined. In particular, all of the difficult combinational analysis 

is omitted. Analysis and evaluation of all combinational factors is 

given in the preceding references. 

1. Simple System: 

First, a simple one component will be considered. The configura-

tion integral of such a system (N identical particles) is defined by 

(A2.1) 

where the total potential energy of the system, u([Nj), is a function 

of the center of mass corrdinates of the N particles of the system, r NJ. 

The total potential may be expressed as the sum of the pair interactions 

between particles: 

u <f )J s) = L u c 'i.i) · (A2. 2) 

F'~ 
A2.1, using A2.2, is expanded in terms of the cluster function, 

(A2. 3) 

to give 

Thus, the original configuration integral is replaced by an infinite 

sum of integrals. The leading terms of the expansion are easy to 

evaluate. The first integral is simply 

) 



230 

the second is 

J 2-_ {j Jf N1 = A/(JJ-t) 
q7a.,.,.,,. z 

Some of the integrals are reducible to other forms. As an example, the 

third term of equation 4 reduces as follows (neglecting combinational 

factors): 

J :t(ii d[,, 3.k s" f J {Ji[f Jij J[;J J l H~ <l[kij 

-Jc11H[Jf,i df•1r. [ J ti dl~a~J Iv. 
This is essentially the second term squared, divided by the volume. 

To calculate the equilibrium properties, the volume (with a 

constant concentration of particles) is allowed to become infinite. 

It is obvious that any term containing a factor V should be neglected 

(when compared to the other terms of the expansion without the factor). 

It developes that all integrals for non-ALDC graphs are negligible. 

When at least two bonds are connected to each vertex in the graph, the 

graph is not negligible. All other graphs have a factor of at least v-1 

in the i11tegra.ls. To illustrate the graph technique, the f-bond is 

represented by a line between two vertices on a skeleton of N vertices: 

Figure Al,a. The triple fijf_ik is represented by Figure Al,b. A more 

complicated combination of bonds is shown in Figure Al,c; it is fijfjk 

fklfi_lfik• Figure· Al,c is an ALDC graph (at least doubly connected). 

The exception to the rule is the fl~bond (fij), Figure Al,a, which is 

also considered ALDC since its integral does not contain a factor V. 

Note that Figure Al,c is ALDC on a subset of 4 vertices; not N vertices). 

Z (N, V, T) c·an be expressed in terms of the irreducible cluster 

integrals (integrals over the ALDC graphs): 



-~ 
~- . 

1,a - f .. 
l.J 

l,b - f .. f.k 
l.J J 
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Figure A.l. Illustrations of several types of fbond graphs on a skele
ton of N (16) vertices. There are 16 x 15/2 different ways the fij 
bond could be drawn on the skeleton (la). Graphs la and le are 
ALDC graphs on subsets of 2 vertices and 4 vertices respectively. 

-z:(JJ/J) r) ,: \ ( :!i) \r'Ml_ A>YI Z;- rn-,'I: , <Az.s) 
~ ~ ! .I 

where the binomial coefficient, (~), is the number of ways one obtains 

the same graphs, A is the combinational factor indicating the number 
m,'t' 

of distinguishable graphs obtained bynumbering the verticies and I .,.,_. m,,., 

is the specific integral over the graph on m vertices with topology~. 

N -m m The term (m) V is evaluated to G /m in the limit N ~"". Defining 

~A;,,.,il:,,t for a specific m as ;t, the expansion may be quickly simplified. 

For all non-negligible terms of the cluster expansion, the con-

figuration integral may be written as 

in which ,;dnrepresents a specified integral on a subset of n vertices 

and c is the concentration: c = N/V. The first three ?n's are: 



12. == _!_ jf A c; . < 
f-1 z. - 2 ! .(~ ~ ( ,\. ) j .) ~ 

e. = j;Ji1~'· ij rf{i,j)5 
(A2.6) 

~1 = 1,ftiik£LJf1,iJ)?-1-ie.ff.t 1 t t 0~J ., de 
• Q O J 'ff ,ti tj~~ ~'J ll.( dt).,i UJ 

+ ;,j£J ~l {1&~1 JhJ, (tj • 

From the relation 

(AZ. 7) 

in which A, is the excess free energy of the system, one obtains 
in 

in which F. is the excess free energy per unit volume and B is 
1.n n 

defined by the limit 

(A2. 9) 

The sum in A2.8 is defined as(s: 

(AZ .10) 

Examination of the preceding equations shows that the important 

quantity to calculate is B • The remainder of this section will be 
n 

concerned with this calculation. 

2. General Difficulties with the Theory: 

Three of the major difficulties that arise in the use of cluster 

integrals should be examined. They may be summarized as follows: 
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1) Adequacy of the pair potentials to describe the system; 

2) Complexities introduced by multicomponent systems; 

3) Divergences encountered with coulomb potentials. Each of these 

difficulties will be considered in the following section. 

3. Generalized Potentials - Potentials of Average Force 

In this section, the functional dependence of the total potential 

energy of the systems will be examined. In Section 1 of this Appendix, 

it was assumed that the potential energy could be expressed as the sum 

of all pair interactions: 

IT(zNf) = L u{rJo·) • 
F,.,,,.. 

(A2 .11) 

In some cases this assumption may not be quite correct. 

Consider a closed system of interacting particles, of composition 

set N, in the equilibrium state. (The set notation is outlined in 

Appendix A L) The potential energy of the system may not only be a 

function of the 3N centers of mass coordinates but may also be a function 

of the 3N. internal coordinates of the particles. The probability of 
1 

such a system is proportional to 

where the total internal energy, U, is a function of both the center 

of mass coordinate set, [ B.) , and the internal coordinate set, { l4.1 · 
The probability of a configuration specified only the the coordinate 

set may be defined as 

• (A2 .12) 



This equation also serves as a definition of U( ) N ~ ) , the direct 

potential. It is clear from equation A2.12 that the direct potential 

is not simply the potential energy of the system. 

The physical meaning of U( [NJ ) may be seen by obtaining its 

negative gradient with respect to the spatial coordinate of a specific 

particle. th The total force on them particle is given by 

(A2.13) 

Noting that 

(A2.14) 

differentiation of A2.12 leads to 

where~(/ is the force on the mth particle, averaged over internal 

coordinates, Therefore, the potential U( j B. J) represents the poten

tial of the average force. It is called alternately the "direct 

potential," or the "potential of average force." 

Kahn and Uhlenbeck (1938) introduced a general expansion of the 

direct potential: 
ii 

U0(ftJO~ I ?.~QOD?) 
{ (IJ~[t!J 

= [ u,;/f.i,j}3) t-[ u~JJJ{J,j, H)-+ ... 
F/).M.J 7iv/' 

(A2 .16) 

In A2.16, the u0(f~S) are called the component potentials. The higher 

order component potentials, n / 2, arise from averaging over internal 



coordinates in the definition of UN( f N)). The component potentials 

can be defined by taking the inverse of A2.16: 

d.,g({v.}) ~z. (-1/ TltJ ([IJ}) 
1t1J=fos 

(A2.17) 

are 

For n = 2 

u;i ({i,j o : P:i ( f ;_d n ) 
(A2.18) 

and for n = 3 

(A2.19) 

The n=3 component is the difference between the direct potential for 

the 3 bodies, and the sum of the three pair potentials. The n=4 
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component potential would be the resultant of the sum of the four-body 

direct potential and all of the pair potentials minus all of the three 

body component potentials. 

In terms of the component potentials, the cluster function is 

defined as 

(A2.20) 

where [ .!!!.} is a coordinate subject of the coordinate set J B.) ; m is the 

corresponding composition subset. 

Details of the higher order component potentials and of their 

respective cluster functions will be outlined in the following sections. 

It should be noted that the 'U. m (f .!!!.P, m >Z., are very short range and 

have an effect only at very high particle densities. In the remainder 



of this chapter, the f~Cfm~) cluster function will be termed the fm

bond. 

MULTICOMPONENT SYSTEMS 

Multicomponent systems require many more terms than simple, one 
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component systems. This is best illustrated by considering the expan-

sion of the system's potential in terms of the cluster function 

.. (AZ. 21) 

When the summation over all pairs is made, all possible combinations 

of particle assignments for i and j occur. Since the f 2 -bond repre-

sents a pair potential, potentials involving different species for i 

and j can differ. In other words, if there are 5 different species 

in the system, the integral j ~la J. f N j , will be replaced by 

15 different integrals which reflect the different possible combinations 

of pairs. Apparently there is no simple anaylic expression that will 

replace the labor of writing out each separate integral; however, the 

set notation simplifies the form of equations. The set notation is out-

lined in Appendix A I. Use will be made of the composition set, N, and 

coordinate set, f B, ~ • 

(AZ.22) 

in which the set notation indicates that the different species must be 

considered. The expansion of the potential becomes 

11 

ut! (tf:;!~) = I u.~(f(!?J). 
/f.!155:f~J 

(AZ. 23) 
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A word of explanation is necessary. um_( f r'YI S ) is the component poten

tial form particles and is a function of their coordinates. In 

addition, the set notation m indicates .that the 

function of the composition of them particles. 

potential is also a 
,1 

The symbol ) ~~N 2 fr;fs..2 - S 

means that the summation is over all possible coordinate subsets for 

m~2. If m=2, there is one term in the sum for each possible pair of 

particles. Species of particles must be considered. 

The corresponding cluster function is defined by 

(A2.24) 

The generalized symbol fm ( f !!!.1) will be termed the fm- bond for m 

particles of compositon !!!.· 

The expansion in terms of the cluster functions becomes 

(A2.25) 

It is apparent that a substantial problem exists in determining 

and collecting terms of the expansion. One way to insure that all 

terms are considered is to use graphical techniques. By this method, 

each term of the expansion is represented by a graph on an unlabeled 

skeleton of vertices, as in Figure A. l. The difference between the 

procedure outlined in Figure A.land that which must now be used is 

the additional terms that are required by the different species in-

valved. 
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Gener~! Procedure - Graphical Techniques: 

Each cluster term which is generated by Equation A2.17 may be rep-

resented by a unique graph on a skeleton of N vertices. For the pur~ 

poses of clarity, the fij bond is represented by a line between two 

vertices on the graph. Figure A.2a; the f .. k-bond is represented by a 
l.J 

hatched area between three vertices, Figure A.2b; the fijkl-bond is rep-

resented by a tetrahedron connecting the vertices i, j, k and 1. Because 

of drafting difficulties, .the f .. k1-bond will not be illustrated. 
l.J . 

Figure A.3 shows the"graphs associated with the m=2, m=3 and.some 

of the m=4 terms. It should·be_noted that the species occupying the 

vertices are not specified. There will be one such graph for each 

different possible combination of species occupying the vertices. 

Any graph on a skeleton of k vertices for which all k vertices 

are not connected together by bonds may be considered as the sums of 

other graphs cm smaller subsets. See Figure A. 4 for an illustration. 

Those graphs, in which all the vertices are-connected together by bonds, 

are called "at least singly connected" (ALSC); i.e., one can go fr0m. 

any vertex to any other of the .skeleton ,along bonds; as in Figure 

A. 4b or A. 4f. 

To express the.configuration integral in terms of graphs,. define 

sn(~n]) as the sum-of all cluster terms that correspond to ALSC graphs 

on a_skeleton of n, labeled vertices of composition!!:.· There is one 

term of s for every possible, distinguishable ALSC graph on the n- . 

skeleton!!:.· As an example, fe>r n=3 and!!:.= ].a' lb' le (one particle of 

each species a, b, and c) s 3 .weuld include all graphs shown.in Figure 

A.3 for m=3 with vertices designated by n. There is one collection of· 

graphs for each distinct composition. The expansion of the .potential, 



Subset 

m=2 

m=3 

m=4 

.. -:: ,, . .. 
A2,b. 

Figure A,2. Illustration of graph notation of f 2 and· 
f 3 bonds. 
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f. 'k 1J 
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(l) fijkfijfjkfik 

(3) fijfkl 

(l) f 1/ jkfkl f il 

(6) fijfjkfklfilfjl 

(12) fijkfkl 

<24) fijkfjkfklfil 
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ALDC 

Not ALDC 

ALDC 

Not ALDC 

Not ALDC 

ALDC 

ALDC 

Not ALDC 

ALDC 

ALDC 

Not ALDC 

ALDC 
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Figure A,3. Some of the graphs associated with terms of the expansion 
in equation A2.25. All terms for m=2 and m=3 are shown. Only a few 
of the m=4 terms are shown. The numbers in parenthesis are the 
number of different graphs produced by numbering the vertices. 
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/ 1 ) ' 

/ \ I \ ,- ~· 
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,,., - -

d) 

..--. - .)• ) I 
.,. I \ 

(~1, 111 
(~!~! L_J 

Figure A,4. Some examples of graphs on a.skeleton _of 6 vertices that 
are not singly connected. The dotted lines partition the skeleton 
into reducible clusters: i.e., graphs that are at least singly 
conn~cted (ALSC). · Graphs band fare ALSC on the skeleton. Nobe b 
is not ALDC but f is ALDC. 

may, consequently, be put in terms of sn' considering all possible 

composition subs.ets. Another way of saying this is that all possible 

partitions of the coordinate subset must be considered (See Appendix 

A.1). Consider the.expression 

(A2.26) 

where the element is O or 1 depending upon whether or not.the 

graph is a clust~r of the partition p. Equation A2.26 has 

the following explanation.· The coordinates for the N particles are 

all labeled. A partition of the coordinates _is made and all of the 

cluster terms which corresponds to that partition are multiplied to-: 

gether. A second partition is made and all the cluster terms sk(fk$) 

contained in that partition are multiplied together. The terms of the 

second partition are added to the first. Additional partitions add 

addit;,ional ·terms, each of which is a product of sk(f kJ) terms. All 

possible partitions of N are made. 
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The reducible cluster integral is defined as 

~ = [v1,,1J fJ[i,t)d[hf ; b1 = 1 
v 

, (A2.27) 

Integration of ·equation A2.26, .over.the product of sk(fr3) simply leads 

to the cor~esponding product of integrals because each factor sk({!.5) 

involves a disjoint subset of [NI. It is further noted that every 

partition~ ~NJ which corresponds to.the same partition,~.!!, gives 

the same result upon .. integration. This is the number of ways of sep-

arating N distinguishable objects, of composition N, into separate 

collections, each of distinct composition, with no restriction either 

on the order of the colle~tions or of the.objects in the collections. 

Thus, the partition of th! coordinate set can be changed to a partition 

of the composition set. There will be 

. (N!/e.t) t~ [ti]~ 
identical partitions .E.][.!!j fo;-ea~h partition .E. J .!!· (J. Riordan, 1958) 

As a consequence, integration of A.2.26 yields 

,/ii("i, v, r) =NJ}_ f 11 [v 1:,J Fi: /P,
1 

/ <A2.2s_ 
e.J t! - - - I f s. 

in terms of the partition of the composition set. It .is ·simply the 

sum of the.integral products corresponding to all possible, distinct. 

ALSC grc3:p~1s on [ Nj-

As illustrated in the first section, some of the integrals reduce 

to terms with a.factor of Vin the denominator. All graphs that are 

not ALDC are so reducible and may be neglected. Figure A.3 indicates 

which graphs are ALDC for the m=3. 
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Since only ALDC graphs produce a result in the calculations, define 

5/lb1) = sum of all cluster terms that correspond 

to ALDC graphs on a skeleton k vertices of (A2.29) 

composition k. 

Define the "irreducible cluster integral" as 

~ =[v~itf sp~3) df~~. (A2.30) 

v 

Equation A2.28, defining Z(N, V, T), can be expressed in terms of 

Bk. By partitioning the £-bonds, an ALSC graph is decomposed into 

ALDC graph. Thus one may think of the ALDC graph subsets as forming a 

covering of the ALSC graph set. In this manner s.!!.(fn~) is related to 

s! Ok)) by 

s (tn3)= )- TI [S,(f~OJ~ 
tl - L f~~s h1S !5 

(A2.31) 

tJfriJ 
where~ may be considered.the sum of all distinguishable partitions of 

t][Oj 

the £-bonds on the set{.!!.~ that produce ALDC graphs, and the elements 

tk is O, or 1, depending upon the presence of the particular graph in 

the partition. 

No attempt will be made to carry the derivationfurther. To do 

so would require considerable space to derive and explain combinational 

factors that are more adequately explained in' standard reference texts. 

For the complete development of the theory, reference should be made 

to "Ionic Solution Theory" by H. L. Friedman (1962), or Mayer and Mayer's 

original text, "Statistical Mechanics" (1940). Somewhat simpler 

derivation of the art found in "Lectures on the Many-Electron Problem" 

by R. Brout and P. Carruthers (1963), and "Statistical Mechanics" by 

Kerson Huang (1963). 



Integration of both sides of equation A2.31 leads to a relation 

between bk and Bk which contains a combinational factor called the tree 

coefficient. Evaluation of this coefficient is the intricate part of 

the derivation of the theory. The result is that (s may be expressed 

rigerously in the limit of infinite volume, as 

' 
(A2. 32) 

which is related to the thermodynamic variables by equation A2.8. 

The procedure for determining the thermodynamic properties of a 

multicomponent system by cluster integrals is sunnnarized below: 

1. Make a drawing of all possible ALDC graphs on an unlabeled 

skeleton. Start with m=2. Continue the process for m=3, 

m=4, etc. 

2. Determine all possible compositions of the vertices for each 

m. 

3. For each different composition, all ALDC graphs for a given.!_ 

correspond to Sk ( ! lsJ) . 
4. Determine all s1(f,t3) for k=2,, 

5. Determine and collect all Sk(fkS) integrals for k=3. 

6. Continue in this manner, collecting terms and evaluating the 

various B 's, 
n 

7. Use the B to determine equilibrium properties. The degree of 
n 

accuracy of the calculated properties depends upon the number 

of terms used and upon the ability of the model to adequately 

describe the system; i.e., the accuracy of the component 

potentials. 
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COULOMB POTENTIALS - SIMPLE SYSTEMS 

For this section, all particles are considered identical except 

for+ or - charges of equal magnitude. Only Coulomb potentials are 

considered in the model. If the integral 

z 13 = ~. Ji .. d f.~.,JJ/v 
2 V~c::,o AJ · 

v 
(A2.33) 

is evaluated for the Coulomb potential, one obtains 
. R 

~ Jr -€7k.Tr ] 2 Ba = ic ...,.~ Le - 1 t.i tt '<' ,_ d r- , (A2. 34) 

0 

which by series expansion becomes 

(A2.35) 

where Observation of A2.35 indicates that the 

integral diverges for n<. 4 as R-.~. To overcome this difficulty, a 

different method of collecting terms is necessary. Every fij-bond is 

expanded by series expansion into powers of 1/r bonds. This i~ equiva-

lent to expanding every ALDC graph into an infinite sum of graphs. To 

obtain convergence, the first term of every expanded B , n > 2, is added 
n 

to the second term of the B2 expansion. For purposes of clarity, the 

1/r bond is called a g-bond and the sum of the recollected terms 

(integrals) is called ~, ~c.. is the collection of all terms con

sisting of simple cycles of g-bonds (the most divergent terms). 

(A2.36) 

where 

a, I 

J.A-J 
I 

.:: - • (A2.37) 



The integral A2.36 is over the infinite volume for 3 (N-1) 

Cartesian coordinates. By use of the convolution theorum, and Fourier 

transforms (see "Ionic Solution Theory" Section 12, Chapter III) @re is 

evaluated as 

(A2.38) 

where 

(AZ. 39) 

Coulomb Potentials - for Multicomponent Systems: 

For more general systems, start with 

(A2 .40) 

One must now rearrange terms of the cluster expansion to obtain mod-

ified, irreducible cluster integrals that do not diverge as v~~when 

Coulomb potentials are present. The ring graphs must be collected and 

summed separately to obtain convergence. The remainder of the terms 

are then collected and summed. Prior to this summation, the form of 

the pair component potential should be examined. 

In the general case, both long and short range potentials are 

present. The Coulomb potential is certainly long range and is given 

by 

2-<. ([i; H) ,: - ~" -2, A~ ( v; 1.) , 
c:::. () 

(A2.41) 

where Z. is a dimensionless charge parameter and (Eis the electronic 
l 

charge) 

(A2.42) 

Dis the dielectric constant (assumed to be 1 in CGS units). The short 



range potential is usually indicated by 21/: in the literature. The 
'J 

most general expression for ~;1 is given by a power series expansion 

starting with r-4 (as determined by Lavine and Wrigley (1957). 

(A2.44) 

An expansion of this type certainly would include the Leonard-Jones 

potential, 

u (r,' ) = 
l.';/ ~ 

(A2.45) 

or any of its modifications. Potentials, including exponential 

functions which modify the Leonard-Jones potential, are equally well 

described by A2.44 since the exponential itself is expandable as a 

power series. 

"" For the present discussion, no specifications are made on 1)..1,,d. 

All equations will be left in a form adaptable to any short range 

potential. 

To cluster function for the pair potentials is defined by 

(AZ. 46) 

by defining 

(A2.47) 

and expanding the Coulomb potential 

(A2. 48) 

one obtains for the cluster function 

(A2.49) 
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The graph of this expansion of the f 2-bonds is shown in Figure A.5. 

In order to prevent divergence of the integrals, one regroups the terms 

of the cluster function expansion, 

(A2. 50) 

so that a sum over simple cycles of g-bonds may be made first. 

Equation A2.50 is the same as equation A2.25 except that each fij 

bond is to be expanded into an infinite number of bonds. The graphs 

resulting from A2.49 are called expanded graphs. 

In order to regroup the terms of the expanded graphs, two defini-

tions seem advisable: 

a) g-bonds node= vertex in an expanded graph at a junction of 

exactly 2 g-bonds. 

b) g-bond chain Ea sequence of g-bonds connected by g-bond nodes. 

The rearrangement is accomplished by noting that equation A2.48 

is summed over all possible composition sets •. In the expanded graphs, 

some of them particles will form g-bond nodes. Let n be the subset of 

m that is composed of g-bond nodes and g-bonds for n=2. Then 

rYl: tJ + ~ (A2.51) 

where£ is the part of m not forming g-bond nodes. Define~= sum 

over all terms corresponding to 2 vertices connected by 1 g-bond. 

C§s~ = sum over all terms corresponding to simple cycles of g

bonds, i.e., over the subset.!!:.• 

Equation A2.48 becomes 

(A2.52) 



Evaluation of A2. 52 results in ~ ~ LxsCs = 0 

in equation A2.38. Thus 

and §C.. as defined 

(A2.53) 

3 The first term x /12 is the Debye-Huckel correction term,. 

- g-bond ·---.... k-bo:nd 

GRAPH EXPANDED GRAPH 

- ~ ----- + ~ + ~+··+·~ + <::>+···· 

tJ + ~~)+ ~D+~+ · · · · · 
Figure A.5. Expansion of the f 2-bond defined by equation A2..49 

7. 
c::;-- t;y B 

Summary of development of terms of ~ ~ 

All terms entering L Gg Bl.(. correspond to ALDC graphs, 
~ -

248 

~quation A2. 30. In evaluating the individual B ~ , care must be taken 

to include all terms produced by the expansion of the f 2-bond. Exten

sions of the basic graph on u must be made by g-bonds so that all graphs 

on m will be included. To do this, a careful procedure must be followedo 

It is convenient to define 

Protograph = a specification of the number and interconnection 



of k, f and g-bonds on a skeleton 1J.... (One 
u 

also considers the empty skeleton u.. as a 

protograph.) 

Elements of Protograph = number of topologically different 

graphs obtained by numbering the u. vertices. 

Let each protograph be represented by the symbol~. and its elements by 

t'.L• To collect all terms of the sum, the following procedure is 

followed. 

1. Write down the finite number of protographs, Z", on the 

skeleton u for each u -:::: 2. 

2. Determine the elements of each protograph ~ • 

3. Assign species to each vertex - i.e. , composi ton U • 

4. Add all possible numbers of g-bond chains between pairs of 

vertices of the protographs. If there are u vertices, there 

are u(u-1)/2 pairs. 

Define J,! = set of g-bond chains on a particular protograph. The elements 

of),) specify the number and connection of g-bond chains: 1j = number 

of g-bond chains between the jth pair. 

The set of U ?:'- 1) specifies the quantity that Mayer defined 
-J ".A-)-· 

as a Prototype, It should be noted in the above that J) does not 

specify the length nor the composition of g-bond chains, only their 

number and end points; i.e., terminal pairs. There is a restriction 

on the minimum number of g-bond chains. This results from the require-

ment that all graphs be ALDC. In general, the smallest;) is not 

.fl..= .Q., which only occurs when the protograph is already ALDC. The 

composition and length of g-bond chains is specified by the matrix 



n' I I 

Y12. ' I I Yl O"' 
I l'L "Z. < nt)> n.'2. rr - I 

(A2.54) - , 

v n v n, z. 
l"!J/ rr 

The rows specify the composition of each of the g-bond chains. The 
o( 

symbol, ns, indicates the number of species, s, in the~ -th chain. 

The specification of :!:::!, 1 ~J~)<n~)and the order of species in 
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each chain designates a particular expanded graph which is a particular. 

term of Bm' .!!!. = .!!:. + £· All expanded graphs which differ ·only in the 

order of species in the g-bond chains are the same after integra~ion 

over d f m ~. 

Summary of terms 

"l:' = protograph (type of bonds and number of vertices - no 

g-bonds). 

2.L = elements of protograph (permutation caused by numbering 

vertices). 

)) = specification of composition of all g-bond chains. 

< n-<:sol}\ -- . 
I specification of number of g-bond chains between each 

pair of vertices in protograph. 

If one specified 

a) Y-;Y,;_, V -'> define a particular prototype; 
;-

b) 

c) 

U ~· V < h.(O!. )> define a. particul. ar class of graphs; 
-) "'1-J ~ 

i.t 'f;', v < ~) "> -, ~,-, VV5/' 
order of species in chains y define 

expanded graphs which is a particular term of Bm. ~(>t)may 

be defined in terms of the collection of.graphs: 



(A2.55) 

I( M/t'L; !:!;< n~,>) = integral, jd{(]+YJ of a specified class of 

graphs. 

The sum over l;i is essentially two sums: 

which means sum over all distinguishable protographs, then over all 

elements of each. B is replaced by B (>i:) because its value is 
u u 

dependent upon the composition of the added g-bond chains. 

Fortunately considerable simplification can be made in the cal-

culation of B (:>i). Equation A2.55 reduces to a much simpler form. 
u 

After simplification, one obtains 

v 1'1 15/>tJ = f {;-j S; (y>[y ('I) i/Jp] df Y] 
j (A2.56) 

v 

in which 

~{y) = product of k and f -bonds corresponding 
~ u 

to the element of the protograph (A2. 57) 

and 

(A2.58) 

and 

(){ defined as=- ~ C ) .- (A2. 59) 

Further simplification can be made by noting that 
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(A2.60) 

and evaluating B ( ~) for u -:::. 2o For u = 2 there are only two pro
u 
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tographs; one with a k-bond and one without. There is only one element 

of each protograph. 

~b (,;)c. [ v (a,b) aflf ffe'J,/;,j + ls,J,f ~/v j] df a,bJ. 
v 

(A2.61) 

The range of.)) in each of the two sums is different. To obtain an 

ALDC graph, sum over j)::: 3 • (Note that))= 1 and ))= 2 were already 

summed over in ~ and~.) In the second sum, the ALDC condition is 

met with JJ:::o. Therefore 

(A2.62) 

or 

(A2.63) 

.)., 111 
Equation A2.62 defines 'P&1.b. It should be noted that (a,b~ is 1 if 

a~ b, and 2 if a= b. 

A similar simplification can be made for u ~ 3. It is simpler to 

define the results of the simplification in terms of¢ -bonds: 

tr~[, +- 'u] e fol; :: e(f [- i4 !kr -0 2-_i!b e-~ ~v 471 r;_b)]; 

¢;h = <Po.b - 1 

(A2. 64) 

(A2.65) 



~I/ cpab - i - CZa,b ab = , 
) 

(A2.66) 

and 

ct>, tJ/ ¢,'I :i. 

ab 
~ 

ab - 9».b/Z .. (A2.67) 

Define 

(A2.68) 

where 

.SM(1J~)= sum of terms corresponding, one-to-one, to all of the 

distinguishable graphs on the skeleton_£ that may be 

;/.,'I formed by q-bonds,'f" bonds, f 3-bonds ••••• and a fu-bond 

subject to the following: 

1. Every graph is AKDC on,£, 

2. There ar~ no q-bonds nodes, 

3. On a given pair of vertices there may be one q-bond or one 

~ 1- bond but not both. On any m vertices, there may be at 

most one f -bond. 
m 

A systematic way to specify the graphs that enter into the definition 

of the terms of Sg (.>t.1f Yf) is the following ( u > 2) • 

1. Form all distingu:ll;ha'ble configurations of f 3, f 4 , ••• fu -

bonds on a skeleton of u unlabeled vertices beginning with 

the empty skeleton itself. 
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2, In each graph produced by (1), every pair of vertices that is 

at least doubly connected by edges off -bonds must now be 
m 

connected by a ¢-bond. 

3. Every pair of vertices which remains without a direct connection 

may be either left this way, connected by a q-bond, or con

nected by a cj/-bond. 



Every ALDC graph on u unlabeled vertices by the above procedure 

is called a "Kappagraph." The group of elements of a kappagraph is 

the collection of distinguishable graphs that are formed by numbering 

the vertices o The terms of S~ ( X; t ~5) are obtained by assigning 

species of the composition set,_!!, to the numbered vertices of the 

elements of the kappagraphs on u. 

With this method for obtaining S ~ (>i, f!::!J) the integral 

(A2. 69) 

may be evaluated and, consequently, 

x3 
::. - (A2.70) 

is evaluated. 
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APPENDIX III 

THE CONTINUOUS ABSORPTION COEFFICIENTS FOR HYDROGEN 

255 
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The absorption coefficient for hydrogen-like-atoms can be computed 

rather accurately. If the atom in an excited level n, absorbs a 

quantum of energy, h.)) , 

(A3 .1) 

(where~e is the ionization potential and En is the excitationenergy 

of the level n), the photoejected electron will have momentum given by 

Einstein's equation, 

(A3. 2) 

(where m is the mass of the electron, v its velocity and his Planck's 
e 

constant) since the energy of the level n is hR/n2 (referring to the 

ionized atom as zero). R is Rydberg's constant: 

(A3.3) 

where Bis the charge of the electron. 

The Bohr equation for the frequency,)), absorbed takes the form 

where Z is the atomic number and n" is a complex number. Menzel and 

Pekeris (1935) suggested for the continum> 

(A3.5) 

where k is a real but not necessarily integral quantum number and 

i = ~- With this consideration A3.4 takes the following form, 

(A3. 6) 

and k is defined by means of the relations, 

(A3. 7a) 
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and its derivative 

(A3.7b) 

Now one attempts to obtain the expression for the absorption coeffic-

ient per atom for the continuum. By virtue of 

(A3.8) 

where~ is the absorption coefficient per atom, c is the velocity of 

light and f is the oscillator strength (£-number),~ may be expressed 

as 

(A3.9) 

Since the absorption coefficient is continuous over the series 

limit, the £-number may be defined for unit frequency interval. On 

the red side of the series limit, there will be ~ n lines of mean 

oscillator strength, f, for unit frequency interval. Just to the 

opposite side of the limit, the £-number per unit frequency interval 

will be f !::. k. Thus 

(A3.10) 

and 

(A3 .11) 

Substituting dk/d,l) as defined by A3.7b in A3.ll and dropping the 

negative sign, the following relation is found 

(A3.12) 

The £-number for a given transition in hydrogen may be calculated 

from 



(A3.13) 

where g' is the Gaunt correction term, which according to Menzel and 

Pekeris is given by 

~·"' I- .1?2~ (~.)13[{.(;_,zJ-a :, 
gn' is the statistical weight of the level, n' (given by 2(n') 2) and 

n and n' are the quantum numbers of the levels. For the case where 

n' = k the oscillator strength fnk is given by 

i _ 32 I I I 1-) ' 
nk -~rr fa zn2 L ( i)4- (t )7J 3 ~ k) 5 ; (A3.14) 

which, when substituted into A3.12 along with A3.6 and the definition 

of R, gives the absorption coefficient atom in the th level: per n 

(A3.15) 

-17 
At the series limit the absorption coefficient is 1.38 x 10 cgs 

units per atom in the second level. 
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The total absorption coefficient per gram of hydrogen is computed 

for a particular temperature by summing over all levels that can 

produce absorption at the particular wavelength. For 4000 A transi-

tions from the third and higher levels are considered; the first level 

need not be considered until the wavelength is shorter than 912 A. 
The temperature enters the computation of the mass absorption coeffic~ 

ient through the dependence of the distribution of the atoms in their 

various excitation levels upon temperature. It is assumed that this 

distribution is given by Boltzmann's law (under the condition of tern-

perature equilibrium): 



J 
(A3.16) 

where nrn and nrl are the number of r times ionized atoms in the 

levels n and 1 (where 1 is the _ground state), g rn and grl are the 

statistical weights (2J + 1) of each level, Er~is the excitation 

energy between the two levels, k is Boltzmann's constant and Tis the 

temperature. Figure A.6 shows the dependence of the mass absorption 

coefficient of hydrogen on temperature and frequency. Notice that 

between the successive series limits the coefficient falls off as v~ 

rises anew at each series limit and falls off again as JI increases. 

Where n is the number of atoms, dh is the thickness,~ is the 

absorption coefficient per atom, then 

(A3 .17) 

Using A3.15 and A3.16, the absorbing effect of atoms at frequency 

due to the nth absorption band is: 

Figure A.6. Atomic Hydrogen's Absorption Coefficient· 
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The total absorption is the summation over n. 

C.,.;? 

dr. = \ d r{n) 
:J.> L -;., :J (A3.19) 

n=n0 

where the sum begins at the first band, which corresponds to n0 , to 

3 the violet of }.I. The total number of atoms in one cm, n , must be rn 

summed over all quantum numbers n = 1 ton= 00. 

co <:).:, 

"" - ) V'I :: f"'lr"', ) ct e-Er-n/H - Y)r, Zlr 
, •r -L ''r h L vrn - ' 

n-, , ~rt n•.i §r, (A3.20) 

where 21. is the partition function for r times ionized atoms which is 
r 

defined by 

V.,,..{rj ~ f ~f'l'I e-Ern/k7, (A3. 21) 

n=I 

Introducing Saba's ionization equation, 

(A3. 22) 

where k is Boltzmann's constant, mis the mass of the electron, p 
e 

is the partial electron pressure and where n is the number of elec-' 
e 

3 trons per cm 9 

one obtains 

n.('4-- I :: 
'Llr+1 (i) 

.. 

If A3.24 is put into A3.19 the .total absorption is given by 
) 

" 

(A3.23) 

(A3.24) 

(A3.25) 
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For hydrogen-like-atoms 

(A3.26) 

is valid. Also ur+l is equal to unity since only the nucleus is left 

and consequently the partition function reduces to one term: the 
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statistical weight of the nucleus, Noting that g is 2 n2 for hydrogen rn 

type atoms, dI J) becomes 

(A3.27) 

where 

';/.I? 
2.. .(,/7 x Io , (A3.28) 

Unfortunately this expression is incomplete since neither the 

stimulated emission (negative absorption) nor free-free transitions 

have been considered. To get the correct coefficient, both must be 

included. To do this, one equates the stimulat~d emission coefficient 

to, the absorption coefficient through the process of detailed balanc-

ing and then corrects the results for free-free transmissions. 

3 If there are nk atoms per cm in quantum state, k, and the 

number in a lower state "i" is n1 , then the number of transitions per 

3 
cm per second which produce h J)ik is 

(A3.29) 

where Aki and Bki are Einstein's transmission probability coefficients 

and u,., ik is the energy density of the desired frequency, given by 

(A3.30) 

~ - Bk. corresponds to the stimulated transmissions which take place 
tie. 1 
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under the action of the radiation field of density ~)..lik' 

Th b f . . . k ' 3 d e num er o converse transmissions, 1--, in one cm per secon 

absorbing h v ik is 

(A3.31) 

It is assumed, of course that the radiation density is relatively 

constant in the neighborhood of ..))ik' Between the three transmission 

coefficients, the following relations hold 

(A3.32) 

and 

(A3.33) 

The latter may be used to express 3.29 as 

(A3.34) 

To modify the previously acquired atomic absorption coefficients, 

transmission coefficients for the recombination process must be intro

duced. Let c<y/v) be the atomic absorption coefficient corresponding 

th 
to photoionizations from then level for r times ionized atoms. 

The number of ionizations per cm3 per second will be given by 

(A3.35) 

which is just the total energy absorbed divided by the energy absorbed 

per transmission (hv). The electron will be in some final state, k, 

after the transmission which corresponds to an electron of velocity v 

fixed by equation A3.2. 

The converse of the photoionization process may be thought of 
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as a collision between an ion and an electron. Hence an effective 

"cross-section" for recombination, denoted by CS' kn is introduced. The 

number of recombinations per cm3 per second are 

I 

Yt b-_.,. n. - IA (j n n 
r \-'t·\' kn ilJ ex e ' (A3.36) 

h d ' h b f 1 3 h ' 1 i i ' h were n is t e num er o e, ectrons per cm aving ve oc t es int e 
e 

range v to v + dv, nr+l is the number of completely ionized ato~s and 

dv and d v are related by A3., 2: 

(A3.37) 

It is noted that n may be expressed in terms of the Maxwellian velocity 
e 

distribution since thermodynamic equilibrium is assumed: 

(A3.38) 

3 where n is the number of electrons per cm, mis the mass of the 
e 

electron and k is Boltzmann's constant. 

Expression A3,36, expressing spontaneous recombinations, must be 

modified to account for the process of stimulated recombination-

equation A3.34 - if the medium is in a field of radiation of density 

u .),,/ , Modifying A3, 34 by A3. 36 obtain 

(A3.39) 

The coefficient Cl kn in A3. 39 is related to o< n( J)) in A3, 35. By the 

principle of detailed balancing, which states that for thermodynamic 

equilibrium a process can take place exactly as often as its converse 

occurs, A3.39 and A3.35 may be equated (using equation A3.30) 



(A3.40) 

Substituting for M~, 

(A3.41) 

since thermodynamic equilibrium is assumed, and for dn, defined by 
e 

A3.38, and noting A3.37, equation A3,40 becomes 

(A3.42) 

Using the fact that the numerator of the exponential term is fr and 

the relation (obtained from A3ol6 and A3.20) 

... Ern /1, F , I. e i r., ___ __ 0..:::._ - -rn;kT 
__ cir n e 
'l-4rU) rj J 

rl = n ~n) 
1rn f', ---· 

11' (' I 
(A3.45) 

equation A3.42 may be written as 

(A3.44) 

Finally, using the relationship between nr and nr+l as defined by 

A3.22 and using A3,23, the correspondance betweeno((.lJ) and cr·kn 

is determfned: 

(A3.45) 

which is further simplified because ur+l = 1 for hydrogen-like-atoms. 

To obtain the absorption coefficient k~~ the equation of 

transfer must be considered: 

(A3.46) 
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where k~ indicates an absorption coefficient taking account of only 

ordinary absorption. To see the dependence of j J/ on e , express 

A3o30 for a pencil beam, 

(A3o47) 

265 

and note that Jv includes the stimulated emission. In other words j J,) 

will be a function of the radiation density which is in turn a function 

of e;.. Using A3.31, rewitten for a pencil beam (using A3.46 and 

A3. 33) , 

(A3.48) 

and equation A3.39 one may write 

since h;) is emitted in every recombination and only d w/4T7 of the 

total radiation is in the beam d t,) • Using A3,22, A3.47 and the 

definition, "/ - f = -,/ , the right si.de of A3. 49 is changed to f... r ·rn 1-rn 

!2w. ~r.t),e{Xrr;i'r. 2(2.rrfrlfli-(!:.I)-0. a~' ~r/_1 -t ''f (e) lhJ)J1Jw, 
~rn ~ - ·1,"' "kn' ( ~17 t,t Jr) 

Furthe:r substitution with equations A3. 38, A3. 2.3 and A3, 45, followed 

by use of 

yields 

(A3.50) 

Replacing ahh)Jc2 in A3.50 with its equivalent from Planck's law gives: 



The form of the absorption coefficient is now shown by introduc-

ing equation A3,51 into the equation of transfer, A3.46 where the 

quantity kv / is replaced by {ex (v) r? rn }; 

Ci:Y-l. 9 3f1<eJ.:: nrno<(JJ)I;;(e)(t-e-'1ud.rJ_ nrn°'(~JBJ)fr)(,-e-h~7)J 

(A3.52) 

By letting 

(A3.53) 

the equation of transfer becomes 

(A3.54) 

and introducing the absorption coefficient per unit mass, 

(A3.55) 

where mH is the mass of one hydrogen atom, one obtains the equation 

of transfer in its original form: 

(A3.56) 

It is clear that when using the equation of transfer, A3,56, the 

absorption coefficient, which takes into account the stimulated 

emission only, must be modified by A3.53. It should be noted that 

A3.53 presupposes thermodynamic equilibrium. Also that the same 

expression may be obtained by considering only discrete transitions 
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between different quantum orbits of the electron (E. R. Mustel', 1956). 
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Finally, the absorption coefficient for one (r + 1) times 

ionized atoms is given by (using A3.53 and A3.27) 

(;;: n'·P I - e '/k ,. (A3.57) /.t f z'J ( -h;.1~ T) 
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