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PREFACE 

This dissertation is based on the supposition that procurement and 

inventory systems can be classified in a hierarchial order with the 

multi-item, multi-source system as its, apex. It is shown that decision 

models can be developed to !epresent each system in the hierarchy. 

These models are manipulated mathematically to determine optimal 

procurement and inventory poiicy. 

The primary objective of this dissertation is to present a hierarchy 

of p rocurement and inventory systems. resulting in a generalization 

which embraces the multi-item, multi-source concept and yields optimal 

policy decisions. The secondary objective is to refine and extend pro

cure,ment and inventory theory at the lower levels in the hierarchy. 

Chapters II through IV are devoted to the secondary objective. Chapter 

V is devoted to the primary objective. Chapter VI illustrates the appli

cation of the algorithm constructed for solution of multi-item, multi

source problems to the solution. of problems lower in the hierarchy. 

The algorithm of Chapter V has been programmed for a digital comput 

er. The computerized solution method appears in the Appendix . 

Briefly, the decision situation under consideration in the multi

item, multi-source context may be described as follows. When the 

stock on hand and on order for each item falls to a predetermined 

level, action is initiated to procure a replenishment quantity from one 
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of several sources. The objective is to determine the procurement 

level, the procurement quantity, and the procurement source for 

each item in,the light of the relevant costs, and the properties of 

demand, lead time, replenishment rate, and restrictions on the 

system so that the sum of all costs associated with the procurement 

and inventory process is minimized. Optimal procu-rement and in

ventory policy for the probabilistic process is that policy resulting 

in the maximization of the probability of minimizing the sum of all 

costs. 

The procurement and inventory systems presented in this dis-

$ ertation are based on certain assumptions. These assumptions are: 

( 1) All systems are for the case of a single stocking point. 

The procurement and inventory process exists at only 

one echelon in the complex of supply situations. 

(2) All unsatisfied de:i:nailds;are :satisfied out of the next ship

ment. This is usually referred to as completely captive 

demand. 

(3) For the development of the probabilistic systems. found 

herein, the distributions of demand and lead time are iden

tically and independently distributed in each time period. 

Thus, the parameters exhibit steady-state, invariant 

characteristics. 

( 4) Procurement and inventory processes may be determinis -

tic or probabilistic. In the probabilistic process it is not 

possible to hold both the procurement quantity and the 

number of periods per cycle fixed as is the case with the 
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deterministic process. The most common. probabilistic 

analysis of procurement and inventory systems is that 

in which the procurement quantity is fixed and the procure

ment interval is allowed to, vary. This is the case treated 

in the investigation of pro babitistic systems. 

My interest in procurement and inventory theory began in 1962. 

as a student of Dr. M. A. Griffin at the pniversity of Alabama. Inter

est in the area continued to grow through my association with Dr. W. 

J .. Fabrycky. This dissertation was only possible through his as sis -

tance as a glance at the Bibliography indicates. 

The research resulting in this. dis.sertation was. supported: by a 

grant from the National Science Foundation (NSF GP-3000) to Dr. W. 

J. F:::tbrycky. Indebtedness is acknowledged to the Foundation for the 

year of financial support it provided. 

A debt of gratitude is acknowledged to the staff of the Oklahoma 

State University Computer· Center who availed themselves often. Spe -

cial indebtedness is acknowledged to Mrs. Roger Eaton whose pro-

gran:nning knowledge was often required durirrg the year that devel

opment and testing of the computerized algorithm was in progress. 
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Folks, Dr.R. W. Gibson, and Dr. D. A. Pierce. Each of these indi

viduals assisted me at crucial points in the conduct of this research. 
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CHAPTER I 

INTRODUCTION 

Progress in systems engineering and operations research is 

often a result of the discovery and modeling of basic relationships 

common to two or more separately understood systems. The end 

result of successful research of this nature is a unified concept which 

provides a higher ordered generalization about the structure of the 

expanded system. The research results presented in this disserta

tion exhibit such a higher ordered generalization for the multi-item, 

multi-source procurement and inventory system. The value of such 

a generalization results from the.fact that all real world procurement 

and inventory systems involve both multi-item and multi-source char

acteristics. Such systems are an essential facet of all.production 

and distribution operations and involve an investment representing a 

sizeable portion of the gross national product. 

The Hierarchy of Procurement and Inventory Systems 

The purpose of this treatise is the presentation of a unified hier

archy of procurement and inventory systems together with decision 

models for variations of each system. The hierarchy of procurement 

and inventory systems developed ~n this dissertation is presented in 

the following paragraphs~ 
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A single-item, single-source (SISS) system is represented schemat

ically in Figure 1. This system involves one item which may be pro

cured.from a specified source. The first decision model formulated 

for the single-item, single-source system was presented in 1915 by 

F. W. Harris [ 1]. Since then, this system has been investigated ex

tensively .. Whitin [ 2] gives an excellent account of the theory and ap

plication of single-item, single -source models up to about 1957. Many 

authors have offered further developments and refinements [ 3], [ 4], 

[ 5 ] , [ 6 ] , and [ 7] . 

Source 

Item 

Figure 1. The SISS System in Its Hierarchial Position 

Figure 2 is a schematic representation of a single -item, multi

source (SIMS) system. This system involves one item which may be 

procured from one of two or more sources .. The single ,-item, multi

source concept was developed byFabrycky [8], [9], and [ 10]. 



Application of the concept to the manufacture or purchase decision was 

presented by Fabrycky and Ghare [ 11]. 

Source 

Item 

Figure 2. The SIMS System in Its Hierarchial Position 

3 

A multi-item, single-source (MISS) system is represented sche

matically in Figure 3. This system involves many items which may be 

procured from a specified source. Decision models for the multi

item, single-source system normally involve aggregate warehouse 

constraints and/ or restrictions on set-up time or capital [ 3], [ 4], [ 5] 9 

[6], and [7]. 

The multi-item, multi-source (MIMS) system is illustrated in 

Figure 4. This system involves · many items, each of which may be 

procured from one of two or more sources. The multi-item, multi

source concept was developed by Fabrycky and Banks [ 12]. A primary 

purpose of this dissertation is the presentation of a unified hierarchy 



of procurement and inventory systems with the multi.-item, multi

source system at its apex. To facilitate identification, the acro

nyms SISS, SIMS, MISS, and MIMS Will be adopted in the discussion 

that follows. 

Source 

Item 

Figure 3. The MISS System in Its Hierarchial Position. 

·Source 

Item 

Figure 4. The MIMS. System in Its Hierarchial Position 
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The Decision Environment 

The decision environment is composed of the alternative sources 

for the replenishment of stock, the system and cost parameters, and 

the restrictions under which procurement and inventory systems must 

operate., Each of these components will be discussed in this section 

as they exist relative to the MIMS system. 

, Alternative Sources 

A MIMS procurement and inventory system exists as a re suit of 

a demand for each item in the system.· In satisfying the demand, a 

procurement manager finds it necessary to replenish his stock for 

each item periodically. One of the basic suppositions of the· MIMS 

concept is that stock replenishment can be made by procurement from 

one of two or more sources. 

An important facet of the procurement and inventory problem is 

the choice of a source from which each item should be procured so 

that a minimum total system cost will result. Specifically, the 

source choice may be one of several vendors, or one or more of 

several manufacturing or remanufacturing facilities, or an intrafirm 

transfer possibility. The system and cost parameters which serve 

· as diffe,rentiators between these source alternatives .are described in 

the following paragraphs together with those parameters which are 

source independent. 

System Parameters 

Demand, D, is the primary stimulus on the procurement and 
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inventory system and the justification for its existence. It is an item 

dependent parameter with the dimension of units per period. The pro-

curement and inventory system may exist to meet demand at a retail 

level, at a. wholesale level, or at any given level in a distribution 

process. Demand may arise from any of these levels or the next step 

in a manufacturing process, the spare parts requirement of an opera-

tional weapons system, etc. The characteristics of demand, while 

independent of the source chosen to replenish inventories, will depend 

upon the nature of the dem.and environment. 

The simplest demand pattern may be classified as deterministic. 

In this !;,pecial case, t~e future demand for an item may be predicted 

with certainty. Demand considered in this restricted sense is only an 

6 

approximation of reality. In the general case, demand may be des crib-

ed as a random variable, D, 
x 

which takes on values in accordance 

with a specific probability distribution. 

Procurement lead time, T, is the elapsed time in periods from 

theinitiationof: procurement action to the receipt of replenishment 

stock. It is a parameter that depends upon the item as well as the 

source since the characteristics of the item as .well as the character-

istics of the source .determine the specific lead time value. 

As in the case of demand, lead time that may be predicted with 

certainty will be classified as deterministic. This is the simplest lead 

time pattern and is only an approximation of reality.· In its general 

context, lead time will be a random .variable, T , which 'takes on values 
x 

in accordance with a specific probability distribution. 

The replenishment rate, R, reflects item and source dependency. 
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It has the dimension of units per period and describes the rate at 

which replenishment stock accumulates for each item and each source. 

R eptenishment stock is usually received in one shipment if purchas -

ing or intrafirm transfer action was initiated. Under this source choice, 

the stock on hand increases by an amount equal to the procurement 

quantity in an instant of time. Thus, the replenishment rate for pur-

chasing is infinite •. If the item is manufactured or remanufactured 

the replenishment rate will be finite due to the fact that a manufactured 

item accumulates as it is made. 

Cost Parameters 

Jte m cost, C,' 
1 

reflects item and source dependency and has the 

dimension of dollars per unit. Each vendor re sides in an environment 

unique to his position and may be expected to price the item according-

ly. For manufacturing or remanufacturing, item cost involves a sum-

mation of the costs of direct labor, direct material,, and factory burden. 

Procurement cost, C, 
p 

is the summation of cost elements aris-

ing from the series of acts beginning with the initiation of procurement 

action and ending with the receipt of replenishment stock. The pro-

curement cost reflects both item and source dependency and has the 

dimension of dol.lar s per procurement.. For the purchase alternative 

procurement cost involves the expenses of paper work preparation, 

communication, receiving, and vendor payment. Certain of these 

costs are dependent upon the vendor chosen. Procurement cost for 

manufacturing or remanufacturing will be composed of the cost ele-

ments of production planning, set-up and tear -down, scheduling, and 



other costs resulting from the set of acts required in the initiation. of 

manufacturing action. 

8 

Holding cost, Ch, reflects costs that are a function of the num~ 

ber of units on hand and the time duration involved. It is an item 

dependent parameter with the dimension of dollars per unit per period. 

Holding cost is made up of out~of-pocket costs such as insurance, 

taxes, obsolescence, warehouse rental, light, heat, and maintenance. 

In addition, capital invested in inventories is unavailable for invest

ment elsewhere. The rate of interest foregone represents a cost of 

carrying inventories. Some of these costs may depend upon the maxi

mum inventory level. Others may depend upon the average level. 

Still others, like the co st of capital invested will depend upon the value 

of th'3 inventory during a given interval of time. 

Shortage cost, Gs, is the penalty incurred for being unable to 

meet a demand when it occurs. This cost parameter will not depend 

upon the source of replenishment stock, but will depend upon the item. 

Its dimension is dollars per unit short per period. The specific dollar 

penalty for a shortage depends upon the nature of demand and the time 

duration of the shortage. For example, if the demand is that of cus -

tome rs upon a retail establishment, the shortage cost will be due to 

the loss of good will and profit. In this case, short.age cost will be 

small relative to the cost of the item. If the demand arises from the 

next step in a manufacturing process, the cost of a shortage may be 

high relative to the cost of the item. Being unable to meet the require -

ment for the item may result in lost production for the duration of the 

shortage. 



Restrictions 

Normally, warehouse space is a scarce resource. It may be 

expressed in cubic units designated W .. Each item consumes acer

tain amount of space which must not exceed the amount available. 

Procurement and inventory policy will be derived for cases 

in which W is infinite and for cases in which· W is finite. Optimi

zation methods for the ca.ses in which a warehouse restriction 

exists differ from the cases in which no restriction is pres~n,t. Opti

mal policy in the face of a warehouse restriction leads to a total 

system cost that is greater than or equal to the total system cost 

when no warehouse restriction is present. 

9 

Each source has. the cap~bility of as signing only a certain maxi

mum number of capacity units per period to the procurement manager. 

This will be designated H .. Each unit of prod~ct procured from each 

source requires a certai.n portion of the 'capacity of that source. This 

requirement will be designated h. The total capacity consumed by 

all items procured from a given source must not exceed the total ca

pacity available at that source. It will be shown that total system cost 

in the face of source capacity restrictions is greater than or equal to 

the total system cost when no source capacity restriction exists. Thus, 

source capacity and warehouse restrictions have the same effect on 

total system cost. 

Contributions of This Investigation 

An examination of the status of procurement and inventory theory 

prior to this investigation indicated that: 
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L Models for systems subject to a warehouse space restriction 

are available for only a simple case of the MISS system. 

2. The MIMS system was not formulated and no models are 

available for situations with multi-item, multi-source 

characteristics. 

3. Procurement and inventory systems have not been classi

fied into a recognizable hierarchy, although many basic 

inventory models are c1,vailable for specific situations. 

The primary objective of this dissertation is to present a hierarchy 

of procurement and inventory systems, resulting in a generalization 

. which embraces the MIMS system. It will be shown that a uniform set 

of deterministic and probabilistic models .can be developed to represent 

each system. These models will be manipulated to determine optimal 

procurement and inventory policy for the specific system under study. 

A secondary objective will be to define and extend procurement and 

inventory theory at the lower levels in the hierarchy. 

A major contribution in support of the hierarchy of systems is the 

set of models for handling warehouse space and source capacity restric

tions. Lagrangian multipliers are utilized for treating the determinis ~ 

tic SISS,. SIMS, and MISS systems. The Lagrangian multiplier technique 

cannot be easily applied to the constrained deterministic MIMS system 

and to the probabilistic· SISS,. SIMS, MISS, and MIMS systems. This 

led to the adoption of dynamic programming as an optimization tech

nique for these cases [ 14]. 

· Finally, this treatise serves to unify and extend research at the 

Oklahoma State University in procurement and inventory theory [ 8], 
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[ 9], [ 10), [ 11]. [ 12], and [ 13). In the chapters which follow, 

selected usage will be made of key paragraphs, illustrations, and 

examples without specific credit in all cases. Thus, the contribution 

of each of these to the objectives 0f this dissertation is hereby acknow

ledged. 



CHAPTER II 

THE SISS SYSTEM 

A SISS procurement and inventory system is illustrated in Figure 5. 

It exists as a result of the demand stimulus, D. In satisfying this 

demand the procurement manager finds it necessary to replenish the 

stock of the item periodically. The basic supposition of the SISS con

cept is that replenishment can be made from a single -source only. 

Specifically, proc-u.rement may involve purchasing, or intrafirm trans -

fer, or manufacturing, or remanufacturing. If the purchase alterna

tive is involved, only one vendor is under consideration. Pro,curement 

and inventory policy for the SISS syste:rn will be that policy stating 

, when to procure and how much to procure with the source being fixed 

by a prior decision. It will be the purpose of this chapter to formulate 

the basic concepts necessary to an understanding of the higher -ordered 

systems. 

The Deterministic SISSSystem 

The inventory process resulting from procurement action will be 

either deterministic or probabilistic depending upon the nature of de

mand and procureme,nt lead time. If both demand and lead time are 

deterministic, the resulting inventory process, will be deterministic. 

The exhibited geometry of such a process will depend upon the 

12 
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procurement leve 1, L, the procurement quantity, Q, the demand 

rate, D, the procurement lead time, T, and the rate of replenish-

ment, R, as exhibited in Figure 6. In reality, the slopes D and 

R-D would be step functions, However, straight line approximations 

will be used in the geometrical interpretation of inventory processes 

to facilitate their mathematical. description. 

Item ·8> 
Figure 5. The SISS System 

Two basic time elements are involved in Figure 6. They rpay be 

defined as follows: 

( 1) Period - the element of elapsed time between review of the 

stock position. This is usually a day but it may be any other 

time unit. 



{2} Cycle - N, the number of periods occurring between sue-

ces sive procurement action. 

Q!r"" 
I "" 
I " 
I 
I 

........ ,_.,.,..._, .. -....... 

I 
L- --1 

I 

Figure 6. The Geometry of a Determi_nistic Inventory Process 

The total system cost for the process. will depend upon the exhibited 

geometry, the item cost, the proc uremeht cost, the holding cost, 

and the shortage cost. The development of deterministic models in 
.t:. r;tJe P. a o 

this treatise is based on the assumption that D >R a.nd.Q> min (1, D). \_ - ... 

'I , 
Algebraic Relationships 

From Figure 6 it is evident that the number of periods per inven-

tory eye le is: 

N = Q 
n ( 2. 1) 

14 
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Also, the following. relationships are evident: 

(n 1 + n 2)(R · - D) = (n 3 + n4 )D (2. 2) 

Q 
R ( 2. 3) 

and 

* I + DT - L 
n3 + n4 = D ( 2. 4) 

From Equations (2. 2), (2. 3), and (2. 4), 

,:, D 
I = Q( 1 - R ) + L - D T . ( 2. 5) 

The total number of unit periods of stock on hand during the inven-

tory cycle · I, is: 

* Substituting Equation (2. 5) for I gives: 

I = 
. D . 2 

[Q(l-R)+L-DT] l l 
2 (if=D +. 15 ). 

. ( 2. 6) 

( 2. 7) 

The total number of unit periods of shortage during the cycle · S, is: 

,:: 
s s = T (nl + n4) 

*2 ,.A 
s s s 

= 2(R-D) + 2D. 

* But, since s = DT - L: 

·2 
1 s = (DT - L). (-1 + i5 ) . ( 2. 8) 2 . R~D 
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Total System Cost 

The total system cost per period will be a summation of the item 

cost per period, the procurement cost per period, the holding cost 

per period, and the shortage cost per period; that is: 

TC = IC + PC + HC t SC. ( 2. 9) 

The item cost per period will be the product of the item cost per 

unit and the demand rate in units per period; that is: 

IC = C.D. 
1 

( 2. 10) 

T:qe procurement cost per period will be the procurement cost 

per procurement divided by the number of periods per inventory cycle; 

that is: 

c 
PC = _£_ 

N 

CD 
PC = _P_ ( 2. 11) Q 

Holding cost per period will be the product of the holding cost per 

unit per period and the average number of units on hand during the 

period; that is: 

HC 

HC 

Note that: 

D( 1 _!) 
Q R~D+ D = 

Therefore, 

1 
D 

Q( 1 - - ) 
R 

( 2. 12) 
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c 
H C = h D [ Q(l - ~) + L - D T] 2 . ( 2. 13) 

20( 1 - R) 

Shortage cost per period will be the product of the shortage cost 

per unit short per period and the average number of units short during 

the period; that is: 

c s 
s 

SC = N° 

Substituting Equation ( 2. 12) gives: 

SC= 
C (DT - L) 2 

s 

The total system cost per period will be a summation of the four 

cost components given by Equations (2. 10), (2. 11), (2. 13), and (2. 14); 

that is: 

TC 
CD C 

= C 1.D +-1?...._Q · + h [Q(l - Q) + L - DT] 2 
2Q( 1 - D) R 

+ 
C {DT - L) 2 

s 
D 

20( 1 - R ) 

R 

Optimal Policy for Deterministic SISS System 

( 2. 15) 

The minimum cost procurement level and procurement quantity 

may be found by setting the partial derivatives equal to zero and solv-

ing the resulting equations. Modifying Equation (2. 15) gives: 



TC 
CD 

= CiD +7 + 
C Q( 1 - D) 

h R - C (DT - L) 
2 h 

C (DT - L) 2 Ch(DT - L) 2 

+ D + 
2Q( 1 - R) 

s 
D 

2Q( 1 - R) 

18 

( 2. 16) 

Taking the partial derivative of Equation (2. 16) with respect to Q, 

then with respect to DT - L, and setting both equal to zero gives: 

D 
. C D Ch( 1 - R) o TC ___ P_. + acr- 0 2 2 

. 2 
C (DT - L) 

s = o. 

Ch(DT-L) 2 

2Q2(1- D) 
R 

C (DT - L) 

( 2. 1 7) 

8TC Ch(DT - L) 
= - c + + 

h Q( l _ D) 

s ---n-- = o. 
Q( 1 - R) a (DT - L) 

R 

Equation (2. 18) rnay be expressed as: 

DT - L 
Q 

= 

Substituting Equation (2. 19) into Equation (2. 17) gives: 

C D C ( 1 - !?) 
h R i2 + 2 

CD 
_P_ = 
Q2 

Q = 

. D 
C C (1 - -) h s R 

2(Ch + .Cs) 

.C 3(1-~) 
h R 

2(Ch +Cs) 2 

(2. 18) 

(2. 19) 

= 0 



2C D 
p 

-c-· 
s 

Substituting Equation (2. 20) into Equation (2. 19) gives: 

L = 

L = 

DT -
C ( 1 -

h 
c 

s 

DT r;-nJ 2CPD 
- \/ l - R cs . C 

( l + cs ) 
h 

+ 

( 2. 20) 

2C D 
p 
c 

s 

( 2. 21) 
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Equation (2. 20) and Equation (2. 21) may now be substituted back 

into Equation (2. 16) to give an expression for the minimum total system 

cost. After several steps: 

TC c CiD +M, 2C ChC D p s ( 2. 22) 

Equations( 2. 20), ( 2. 21) and ( 2. 22) can be reduced to the simple 

economic-lot-size equations by assuming shortage cost and replenish-

ment rate equal to infinity and lead time equal to zero. In this case, 

Equation ( 2. 20) reduces to: 

Equation (2. 21) reduces to: 

L = 0. 

And, Equation ( 2. 22) reduces to: 



An Example Deterministic SJSS Policy 

As an example of the deterministic SISS system suppose that a 

procurement manager will purchase an item having the following 

parameters: 

D ............ 6. 00 

R • • . • . • • . • • • . oo 

T .•.....••... 7.00 

c .......... $34, 75 
1 

C ......... $23.16 
p 

ch .......... , $0; 30 

C .........• $0.30. 
s 

The minimum cost procurement quantity may be found from Equation 

(2.20)as: 

Q=f?i 2($23. 16)(6) + 2($23. 16)(6) 
$0.30 $0.30 

Q = 43. 0571. 

The minimum cost procurement level may be found from Equation 

(2. 21) as: 

L = 6(7)-j l - ! 2($23. 16)(6) 
· $0. 30 

. $0. 30( 1+$0. 30) 

L = 20. 4843. 

20 

The minimum total system cost may be found from Equation (2. 22) as: 

TC = $34.75 (6) + J1 - ~ 

TC = $214. 9546. 

2($23. 16)($0. 30)($0. 30)(6) 

$0. 30 + $0. 30 

Values of Q and L will remain in their computed f0rm because 

theoretical minimums are desired. In real world applications both Q 
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and L would be adjusted. so that each is an integer and so that the joint 

adjustment results in a minimum cost. 

Optimal Policy for Deterministic SISS System With Warehouse Restric
tion 

The single-item in the SISS system consumes a certain amount of 

warehouse space, J W. There exists a certain amount of total ware-

house capacity, 

* item, I , 

W. The maximum accumulation of inventory for the 

* will consume I w cubic units of scarce warehouse space. 

* Therefore, the restriction I w < W must not be violated. This 

section will present a Lagrangian multiplier technique for finding the 

optimal procurement and invent9ry policy' in. the fate of this ,restric- .. 

tion. 

* Define X. . such that X. < 0 for every W - I w = 0, and X. = 0 

* for every W - I w > 0. Then 

* X.(W - I w) = O. 

Equation (2. 23) may be added to Equation (2. 15) giving::f 

TC 

D 2 
C [ Q( 1 - - ) + L - DT] 

+ h R 
D 

2Q( 1 - -) 
R 

C (DT - L) 2 * 
+ s D + X.(W - I w) .. 

2Q( 1 - R) 

Substituting Equation (2. 5) into Equation (2. 24) gives: 

TC 

D 2 
Ch [ Q( 1 - R) + L - DT] 

D 
2Q( 1 - -) 

R 

+ x.{W-[Q(l-~)+L-DT] w}, 

+ 

( 2. 23) 

( ?-· 24) 

C (DT - L) 2 
s 

D 
2Q(l - -) R 

( 2. 25) 



The third term of Equation (2. 25) can be written as: 

And, the last term can be written as: 

Ch(DT - L) 2 

D . 
2Q( 1 - -) 

R 

D 
-X.Q(l - R)w + X.(DT - L)w + x.W. 

22 

{ 2. 26) 

( 2. 27) 

Equation (2. 26) and Equation (2. 27) can now be supstituted into 

Equation (2. 25) giving: 

D 
CD c [Q(l - -)] 

TC C.D + _E_ + 
h R 

Ch(DT - L) = -
1 Q 2 

Ch(DT - L) 2 C (DT - L) 2 
D s 

+ + - X.Q( 1 - - )w . D D R 
2Q( 1 - - ) 2Q( 1 - -) 

R R 

+ X.(DT-L)w+'A.W. (2. 28) 

Taking the partial derivative of Equation (2. 28) with respect to Q, 

then with. respect to DT - L, and setting each equal to zero gives: 

o TC_ 
a'Q - -

o TC 
o (DT - L) 

Ch(DT - L) 2 

202( 1 - .!?) 
R 

D 
- X.(1--)w = 0. 

R 
( 2. 29) 

Ch(DT - L) C {DT - L) 
= - c + + s + AW = o. 

h Q( 1 - ~) Q( l - ~) ( 2. 30) 

Equation (2. 30) may be expressed as: 



(DT - L) = 
Q 

D (C -A.w)(l--) h R 
ch+ cs 

Squaring Equation ( 2. 31), it becomes: 

(DT - L/ _ 
2 D 2 

( ch - A..~) ( 1 - R ) 
. 2 -
Q (Ch+ Cs)2 

Substituting Equation (2. 32) into Equation (2. 29) gives: 

CD 
- p + 
7 

C ( 1 - ~) h R 
2 

2 D 
C(C -A.w) (1--) 

s h R 

2(Ch + Cs)2 

CD 
p = 

c! 

D 2 2 
( 1 - R) ( ch cs - A. w - 2 cs A. w) 

2(Ch + Cs) 

2C D ( ch. + C . ) p s 

Equation ( 2. 31) may be written as: 

L = DT -
Q(Ch - A.W)( 1 - ~) 

Substituting. Equation ( 2. 33) into Equation ( 2. 34) gives: 

ZC D 
p 

23 

( 2. 31) 

( 2. 32) 

( 2. 33) 

( 2. 34) 

2 2 • 
(Ch· c -A. w -2c A.w)(ch+c ) s . s . s 

( 2. 35( 

Minimum total system cost is obtained by substituting the results 



of Equations (2. 33) and (2.35) into. Equation. (2. 15) utilizing the 

given parameters and varying val.ues of >,... This is done until the 

largest value of A is found such that I,:~ < W where I is 

determined from Equation (2. 5). 

An Example Deterministic SISS Policy With Warehouse Restriction 

As an example of the concept just developed suppose that the 

SISS system of the previous section is contrained by a total ware -

house space of 100 cubic units: W = 100, and that the item in the 

system requires 24 cubic units of space per unit. Utilizing Equa-

tions (2. 33) and (2. 35) for varying values of A gives the results of 

Ta bl.e L 

TABLE I 

WAREHOUSE SPACE CONSUMED FOR VARYING VALUES 
OF A, D.ETERMINISTIC 'SISS SYSTEM 

/\. L: Q "r: I w 

-0.00000 20. 4843 43.0571 516.3762 
-0.00900 15.3037 31. 0608 104. 3029 
-0.00910 15.2103 31. 0252 101. 2067 
-0.00913 15. 1821 31. 0147 100.2798 
"'O. 00914 15. 1727 31.0113 99,9712 
... o. 00915 15. 1633 31. 0078 99. 6624 
:-0.01000 14.3370 30.7550 73.7691 

* The large st value of A for which I w is within the warehouse 

space restriction of 100 cubic units is A = -0. 00914, The optimal 

24 



procurement and inventory policy associated with this value of }.. is 

a procurement level of 15. 1727 and a procurement quantity of 

31.0113. Utilizing Equation (2. 15) the minimum total system cost 

is found to be $ 216. 5481. The penalty in total system co st arising 

25 

due to the warehouse constraint is $216. 548Lless $214. 9546or $1. 5935 

per period. 

The Probabilistic SISS System 

If demand and/ or lead time is probabilistic, the resulting inven

tory process will be probabilistic. The exhibited geometry of such 

a process will depend upon the procurement level, the procure:i:nent 

quantity, the form and parameters of the demand distribution, the 

form and parameters of the lead time distribution, and the rate of 

replenishment. The expected geometry of a particular probabilistic 

system having an infinite replenishment ra.te is exhibited in Figure 7. 

The m supscripts denote expected values. The !;lXpected total system 

cost will depend upon the expected geometry, the expected item cost, 

the expected procurement cost, the expected holding cost, and the 

expected shortage cost. 

Monte Carlo Analysis of Inventory Flow 

The probabilisti? inventory process may be most easily described 

by performing a Monte Carlo analy§is of inventory flow over time. 

This does 1:ot mean that the simulated flow exactly parallels the real 

world process that it patterns. The simulation never deviates from 

the rules, while in the real world such compliance will not occur. 
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Nevertheless, the results provide a useful standard against which 

mathematical mode ls for the probabilistic inventory process can be 

checked. This section will present an example upon which the 

derivations of subsequent sections wiU be based. It will be limited 

to a system with an infinite replenishment rate. Finite replenish-

ment rates for probabilistic processes will be discussed in the next 

section. 

slope D 
Q 

' L- -·~· a.--+---,-

m 
Q 

N 
m 

D T 
mm 

Figure 7. The Expected Geometry of a Probabilistic Inventory Process 
Having an Infinite.Replenishment Rate 

Demand and lead time distributions. The probabilistic inventory 

process usually involves both a demand distribution and a procure-

ment lead time distribution. It is required that the form and para-

meters of these distributions be specified. The cumulative distributions 

may then be developed and used as a source of demand and lead time 

data needed in the analysis. 

For the example under consideration, assume that demand has a 
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Poisson distribution with a mean of 0. 6 units per period. Lead time 

will be assumed to have an empirical distribution with a mean of 4. 3 

periods. Figure 8 is an illustration of these distributions giving specif-

ic values for the random variables, together with their associated 

probabilities. Note that D and T are used to designate demand 
x x 

and lead time random variables, respectively, and that D and T 
m m 

are mean or expected values of the distributions. 

D = 
O' m 
N 
<:') 

0 

O' 
O' 
0 . 
0 

0 1 2 

0.6 

0 
N <:') 

0 0 . 0 
0 

0 

3 4 D x 

0 
0 
N . 
0 

3 

0 
0 
'<t< . 
0 

4 

T = 4. 3 
m 

0 
0 
<:') 

0 

5 

0 
0 ..... . 
0 

>---

b 

Figure 8. Demand and Lead Time Distributions for Monte Carlo 
Analysis 

By summing the probabilities from left to right, and plotting the 

results , cumulative distributions may be developed. Figure 9 illus-

trates the cumulativ e d istributions that result from the d emand and lead 

time distributions of Figure 8. These are us e d with random rectangular 
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variates to generate demand and lead time data for the simulated inven-

tory flow pro.cess. 
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. Figure 9. Cumulative Demand and Lead Time Distributions for 
· Monte Carlo· Analysis 

The Monte Carlo Analysis'" The inventory·flow process operates 

. in accordaJJ,ce with certain policies established by the decision maker. 

These must be obeyed by the Monte Carlo analysis .. For this example, 

assume that the procurement leve 1 "is three units and that the procure -

ment quantity is 12 units. It will be shown later that these policies 

lead to a minimum total system cost for the example unde.r conside.ra-

tion. 

The simulation process of this example begins with the stock on 

hand equal to the procurement level. At the beginning of each period, 
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the stock. on hand is checked against the procurement level. Ii the 

procurement level has been reached or exceeded an order is placed 

for an amount equal to the procurement quantity. A value is then 

drawn at random from the lead time distribution and retained. 

Jf. the procurement level has not been reached, a value is drawn 

at random from the demand distribation. This value is subtracted 

from the stock on hand, resulting in a new stock level at the end 

of the period. · Since one period has passed, l is subtracted from 

all outstanding le.ad time values .. I£ a lead time value is ·reduced 

to zero, an amount equal to the procurement quantity is added to 

the stock on hand. The statistics for the period are calculated and 

the next period is considered. l£ a lead time value is not reduced 

to zero,· period statistics are calculated and the next period is con-

sidered. 

Output statistics for computer simulation. As the Monte Carlo 

analysis continues, and cycle summary data are developed, a com-

posite picture of the probabilistic inventory process begins to develop. 

Table II is an abridged cycle -by-c;yde summary of the simulated 

inventory flow performed on a. digital computer for 4, 000 cycles. Col-

umn 1 gives the cycle number .. Cplumn 2 gives the number of periods 
. . . 

in the cycle, designated .. Nx- since it is a random variable. Column 3 

gives the running average, Nm~ 6£ the individual values in column 2. 

Column 4 gives the total nu*3ber of 'unit periods of stock on hand for 

the cycle. This is designated I , since it is also a random variable. 
x 

Its running average,. I , . is.given in column 5. Colu,mn 6 gives Hie 
m 
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TABLE II 

OUTPUT STA TIS TICS FOR COMPUTER SIMULATION 

Cycle N N I I s s x m x m x :tn 

= 

1 20.000 20.000 126.000 126. 000 o. 000' 0.000 
2 27.000 23.500 189.000 157.500 o.oqo 0.000 
3 22.000 23.000 173.000 16 2. 666 0.000 0.000 
4 11. 000 20.000 50.500 134.625 0.000 o,. ooo 
5 15.000 19.000 58.000 119.300 2. 000: 0.400 
6 13. 000 18.000 97.500 115. 666 0.000 0. 333 
7 .21.000 18.428 162.500 122.357 O.OOQ o. 285 
8 23.: 000 19. 000. 170.000 128 .. 312 0.000 0.250 
9 18.000 18.888 94.500 124.555 5.000 0.777 

10 27.000 19.700 220.000 134. 100 0.000 0.700 
11 16. 000 19. 36 3 85.000 129. 6 36 0.000 0. 636 
12 15.000 19.000 61.500 123.958 4.500 0.958 
13 22.000 19.230 176.000 127.961 0.000 0.884 
14 18. 000 19. 142 111. 000 126. 750 0.000 0.821 
15 18.000 19.066 112. 000 125.766 0.000 0.766 
16 6.000 18.250 5.500 118. 250 15.500 l. 687 
17 14.000 18.000 73.000 115.588 0. :500 1. 617 
18 2.4. 000 18.333 153. 500 117.694 0.000 1. 527 
19 · 20. 000 18.421 110.000 . 117. 289 0.500 1. 473 
20 19. 000 18.450 133,500 118. 100 0.000 1. 400 

----- ....... ._...,_,.,.._..,.. __ Cycles 21 Throu$h 3980 Omitted-----'."'---------

3981 19. 000 19~ 864 132. 000 131. 867 0.000 0.898 
3982 15. 000 19. 863 85.000 131. 855 5.000 0.899 
3983 21.000 19. 86 3 15 2. 000 131.860 O.QOO 0.899 
3984 13. 000. 19. 86 1 61. 000 131. 843 0.000 0.899 
3985 19.000 19. 86 1 ,125. 000 131.841 0.000 0,899 
3986 21. 000 19. 86 2 181.500 131.853 0.000 0,898 
3987 13.000 19.860 68~oob 131.837 1. 500 0.899 
3988 18.000 19.859 119.000 131. 834 0.000 0.898 
3989 25.000 19. 86 1 141.000 131. 836 1. 000 0.898 
3990 20.000 19. 86 l 114.000 131.832 0.500 0.898 
3991 28.000 19. 86 3 234,500 131, 858 o .• ooo 0.898 
3992 27.000 19;·864 177.500 131. 869 1. qoo 0.898 
3993 13.000 19. 86 3 6 2, 000 131. 852 0. !J 00 0~898 
3994 20.000 19. 86 3 122:000 131. 849 0.000 0,898 
3995 11. 000 19. 86 1 64.000 131.832 0.000 0.897 
3996 18.000 19. 860 112.000· 131.827 0.000 0.897 
3997 18. 000 19.860 143.000 131.830 0.000 0.897 

· 3998 · 2:,3. 000 19. 860 116. 500 131. 826 3.500 0.898 
3999 29, 000 19. 86 3 220.500 131. 848 0.000 0.897 
4000 16. 000 19. 86 2 75.000 131. 834 1. 500 0.89S 
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total number of unit periods of shortage for the cycle. This is a ran-

dom variable and is designated S ~ 
x 

in column 7. 

Its running mean, S , is given 
m 

The values for N , I , and S: g:i.ven at cycle 4, 000 repre -
m m m 

sent estimates of the expected values for N , 1, and S , respec-
x x x 

tively. The relative stability of the mean values may be noted by 

comparing the terminal cycles, with the initial cycles in Table II. Con

tinuing the simulation beyond 4, 000 cycles would contribute further to 

their stability. 

Expressions for Expected Values., 

The simulation process of the previous section provides expected 

values for three important random variables associated with the prob-

abilistic inventory system. These values are needed in the develop-

m~nt of decision mode ls for the system. However, use of the simulation 
''._ 

method to derive expected values for even a limited number of procure-

ment level and procurement quantity combinations is obviously unsatis -

factory. Therefore, the purpose of this section wiU be to derive 

expressions that approximate N and I . A direct development 
m m 

for S will be considered in the sections which foUow. 
m 

The expected inventory geometry. The expected inventory flow of 

a process subject to random elements would appear as in,Figure 7. 

The geometry of the inventory process shown in Figure 7 is no differ-

ent than for the deterministic system shown in Figure 6 with ins tan-

taneous replenishment. However, the orientation of Figure 7 is 

different from that of Figure 6. Provision is made for safety stock 
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to absorb fluctuations in stockJevel from cycle-to-cycle. The need for 

this. extra stock.may be attributed to the presence of random elements. 

The expected number .of periods per cycle. Reference to Figure 7 

indicates_ that the expected number of periods per cycle may be express-

ed as: 

Q-D T 
N T + m m 

= 
m m D m 

N = 
Q 

( 2. 36) 
m I) 

m. 

The validity of this expression as a measure of the expected num-

ber of periods per cycle may be checked by reference to the simulated 

process. Substituting the values for Q and D used in the simula-
m 

tion results.in: 

Nm = 0
1_26 ·· = 20. 000. 

Since· the value found by simulation was 19. 862, it may be concluded 

that .Equation(2. 36) gives a good means.for approxim~ting the expected 

number of periods per cycle for the. probabilistic inventory process. 

Intuitive reasoning indicates that this expression yields an exact value; 

the discrepancy being due to the lack of complete convergence at 4, 000 

cycles. 

The expected total number of unit periods .of stock. Figure 7 

indicates that the expected total number of unit periods of stock on 

hand during the cycle is the sum of -two COljllponents. This may be 

approximated as: 

= Nm ( Qz ) + N (L -D T ) m· mm 

. ~· 



I 
m 

= D Q [ ~ + (L - D T ) ] . 
m m m 

( 2. 3 7) 

The validity of Equation ( 2. 37) as an approximation for the total 

number of unit periods of stock on hand for the cycle may be checked 

by substituting the values of Q, L, D , and T used in the simula-
m m 

tion. This results 1n: 

I 
m 

= 
12 
0.6 

~2 + 3 - 0.6 (4.3)] = 128.40. 
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The value found by simulation was 13 L 834 unit periods. The simulated 

result may be compared with the value found from Equation ( 2. 37). 

Upon comparison, it may be concluded that Equation (2. 37) yields 

only an approximation for the total number of unit periods of stock on 

hand for the cycle. This conclusion is supported by intuitive considera-

tions and by the fact that a discrepancy of more than three unit periods 

is not likely to be entirely due to the lack of convergence at 4, 000 cycles. 

The use of expected values to derive an expression for expected area 

. yields a bias result. 

The Distribution of Lead Time Demand 

Expressions for the expected number of periods per inventory 

cycle, and for the expected number of unit periods of stock on hand 

for the cycle, were developed in the previous section. The derivation 

of an expression for the expected number of unit periods of shortage 

for the cycle will deviate from the procedure used there. It requires 

the development of the distribution of lead time demand as an impor -

tant intermediate step. The paragraphs which follow will present to 

an exact numerical method for developing this distribution. 



Lead time demand. Lead time demand is demand summed over 

the lead time. When both demand and lead time are random vari-

ables, lead time demand may be expressed mathematically as 

T 
x 
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Z = ~.D x x 
( 2. 38) 

This expression indicates that lead time demand is the sum of all 

demand over the lead time. With the distribution of D and T 
x x 

given, it is possible to develop the distribution of Z by Monte Carlo 
x . 

analysis. However, this method requires considerable computational 

effort to give a good approximation of the actual distribution. For 

complete generality it will be necessary to have an exact method.for 

developing the lead time demand distribution . 

. Figure 10 illustrates conditional distributions of lead time demand 

for several specific values of lead time. When viewed as a single 

distribution, .Figure 10 may be called a joint distribution of demand 

and lead time if the total probability is adjusted to unity. The proba-

bility associated with any specific value of lead time demand may then 

be found by summing for that value across all lead time values. 

The previous qualitative description may be quantified by adopt-

ing the following notation: 

Z T = lead time demand random variable given that lead time is 
·x 

T periods. 

f( ~x 1. T') = conditional lead time demand distribution given that lead 

time is T periods. 

The probability of Z > Z for a specific lead time (conditional prob
x -

abiH.ty) ·.is: 



00 

P(Z > ZIT) = 
x-

~ 'f(Z IT) 
Z IT=Z x 

x 

Multiplying by f(T ) and summing over all values of T gives: 
x 

00 00 

P(Z > Z) = 
x-

~ [.f ( T ) :t £ ( z I T) ] . 
T=O x z IT =Z x 

x 

( 2. 39) 

The probability associated with each integral value of Zx may be 

found from Equation ( 2. 39). This procedure will be illustrated with 

an example based on the distributions of Figure 8. 

Probability -Lead Time Demand 

0 1 2 Lead Time 

Figure 10. Joint Distributions of Demand and Lead Time 

The numerical procedure presented in the example is applicable 

in those cases where demand has a Pois son, normal, or chi ... s_quare 

35 
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distribution. In selecting the conditional distributions, it is only neces-

sary to increase the parameters of the basic demand distribution by 

multiplying by the specific conditional lead time value. If demand 

obeys some other distribution.form, this method for selecting the 

conditional distributions does not hold. The distribution of lead time 

need not conform to any specific form. Any theoretical or empirical 

distribution may be used. 

Numerical development of lead time demand. The computational 

procedure required in the development of the distribution of lead time 

demand may best be explained by reference to Table III. The first 

section is analogous to Figure 10 in that it gives the conditional distri-

bution of lead time demand associated with ea.ch lead time value .. For 

the case under consideration, conditional distributions are required 

for lead time values of 3, 4, 5, and 6. These conditional distributions 

are selected in accordance with the following rules: 

( 1) If lead time is 1 period, the basic demand distribution 

( 2) 

is the lead time demand distribution. The probabilities 

of each value of D . would be associated with the respec
x 

tive values of Z under T = 1, .if T = l were called 
x x x 

for. 

Enter Z · probabilities under T = 2, T = 3, ... , 
x x x 

associated with a demand distribution of the same form 

as the basic demand distribution, but with parameters 

. increased by multiples of 2, 3, ... , etc. In Table III, 

this calls for Poisson probabilities for distributi.ons with 

mean values of 1. 8, 2. 4, 3. 0, and 3. 6. 
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TABLE III 

NUMERICAL DEVELOPMENT OF LEAD TIME DEMAND DISTRIBUTION 

-

f(Z IT=3) f{Z lT=4} f(Z IT=5) f(Z !T::c6) ADJUSTMENTS 
x x x x 

O. 165 3 0.0907 0.0498 0.0273 0.03306 o. 03628 

o. 2975 0.2177 o. 1494 0,0984 0.05950 0.08708 

o. 2678 0. 2613 0.2240 o. 177 l 0.05356 o. 10452 

o. 1607 o. 2090 0.2240 0.2125 0.03214 0.08360 

o. 0723 o. 1254 o. 1680 o. 1912. 0.01446 0.05016 

o. 0260 0.0602 o. 1008 o. 1377 0.00520 0.02408 

0.0078 o. 02.4 l 0.0504 o. 0826 0.00156 0.00964 

0.0020 0.0083 o. 0216 0.0425 0.00040 0.00332 

0.0005 0.0025 0.0081 0.0191 0.00010 0.00100 

0,0001 0.0007 0.0027 0.0076 0.00002 0.00028 

0.0002 0.0008 o. 00 28 0.00008 

0.0002 0,0009 

0.0001 0.0003 
' 

0.0001 

''.A.rbitraril.y reduced from O. 00006 so that L P( Z ) = l. 00000 
x 

0.01494 

0.04482 

0.06720 

o. 06720 

0.05040 

0.03024 

0.01512 

0 ;00648 

0.00243 

0.00081 

0.00024 

0.00006 

0.00003 

--

0.00273 

0.00984 

0.01771 

0.02125 

0.01912 

o.01377 

o. 00826 

o. 00425 

0.00191 

0.00076 

o. 00028 

0.00009 

0.00003 

0.00001 

... ,,,_.,.~~ 

P(Z ) 
x 

0.08701 

0.20124 

o. 24299 

0.20419 

o. 13414 

0.07329 

0.03458 

0.01445 

0.00544 

0.00187 

0.00060 

0.00015 
.,, -,-

0.00004 

0,00001 

I.,;) 
-J 
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The second section of Table III involves adjustment of the total 

probability so it will sum to unity. The procedure is described by 

·· Equation ( 2. 39) and is accomplished by multiplying each ·value of each 

conditional distribution by the probability of T x taking its associated 

value. The result is a joint probability density function from which 

the .lead time demand distribution may be developed. 

The probability of lead time demand assuming the specific values 

specified as Z in Table III may be found by summing across all 
x 

values of T in the second section. The results are entered under 
x 

P.(Z ) in the last column and make up a demand marginal distribution. x . 

This demand marginal is the required lead time demand distribution 

for the demand and lead time distribution of Figure 8. It is histo,a; 

grammed in, Figure 11. 

0123456 78910111213 
z 

x 

,: Figure 11. Distribution of Lead Time Demand 
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Expressions for Shortage Condition 

Lead time demand is independent of the procurement level. A lead 

time demand distribution simply exhibits the number of demands th,it 

may occur during the lead time. The shortage conditions at the end 

of the inventory cycle depends jointly upon the distribution of lead time 

demand and the procurement level choice. In this. section approxima-

tions for the probability of an empty warehouse, the probability of one 

or more shortages, the expected number of shortages, and the expected 

number of unit periods of shortage will be developed. Completion of 

this phase will provide the third expected value needed in the deriva-

tion of effectiveness functions for the probabilistic inventory process. 

?he probability of an empty warehouse. An empty warehouse will 

result if lead time demand is equal to or greater than the procurement 

level. If the lead time demand distribution is continuous, the probabil-

i ty of an empty warehouse at the end of the inventory cycle :tnay be 

expressed as,: 

00 

P [empty warehouse]· "' f f(Z )dZ . 
L x x 

For the discrete lead time demand distribution of Figure 14, whose maxi~ 

mum is Z '!< the probability of an empty warehouse is: 

z 
P [empty warehouse]"'~ f(Zx). 

L 

The second column of Table IV gives the probability of an empty ware-

house as a. function of the procurement level. 

The probability of an empty warehouse, as an expression for 

shortage condition, fails to give a measure of the magnitude of the 
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.. shortage condition {if any) or the time duration involved. As such, it 

is very difficult to establish a value for shortage cost .. In £~.ct, an 

empty warehouse is desirable if during this period no demand occurs. 

TABLE IV 
... 

SHORTAGE PROBABILITIES AS A FUNCTION OF L 

L p [ empty warehouse.] p [_1 or more short] 

0 1. 00000 0.91299 

1 0. 91299 0. 71175 

2 0. 71175 0.46876 

3 0.46876 0.26457 

4 0. 26457 o. 13043 

5 o. 13043 0.05714 

6 0.05714 0.02256 

7 0.02256 o. 00811 

8 0. 00811 o. 00267 

9 o. 0026 7 0.00080 

10 0,00080 0.00020 

·11 0.00020 0.00005 

12 0.00005 0.00001 

13 0.00001 0.00000 

.The probability of one or more sh,ortages. One or more shortages 

wil1 result if lead time demand is greater than the procurement level. 

If the lead time demand distribution is continuous, the probability of 

one or more shortages at the end of the inventory cycle may be 
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expressed as: 

00 

P [ l or more short] = J f(Z ) d Z . 
L+l x x 

For the discrete lead time demand distribution of Figure 11, the proba-

bility of one or ·more shortages is: 

* z 
P [ l or more short] = E f(Z ). 

L+l x 

The thir-d. column of Table IV gives the probability of one or more short-

ages as a function of the procurment level. 

The probability of one or more shortages establishes with certainty 

the fact that a shortage condition exists. However, like the probability 

of an empty warehouse, it -does not give a measure of the magnitude of 

the shortage condition or its time duration. It is, therefore, · difficult 

to establish a ·value of shortage when using this measure. 

The expected number of shortages. If the lead time demand distri-

bution is continuous, the expected number of shortages per inventory 

cycle may be expre~sed as: 

00 

E [number 0f shortages] = J (Z -L)f(Z \dZ . 
L+l x . x x 

For the discrete lead tirne demand distribution of Figure J 1, the ex-

pe,cte-d number of shortages is: 

* z 
E [number of shortages] = E (Z -L)f(Z ). (2. 40) 

L+l x x 

The_ application of Equation ( 2. 40) is illustrated in Figure 12 and 

requires the development of one shortage distribution for each pro-

curement level choice. When L = O, the lead time demand distribu-

tion is the shortage distribution. This is verified by reasoning as 



L=O 

0 1 . 2 3 4 5 6 7 8 9 10 11 12 13 
·S 

x 

o. 08701 ( 0) = o. 00000 
0. 20124 ( 1) = 0. 20124 
o. 24299 ( 2) = o. 48598 
o. 20419 ( 3) = o. 61257 
o. 13414 ( 4)_ = o. 53656 
o. 07329 { 5i = o. 36645 
o. 03458 ( 6). = o. 20748 
o. 01445 ( 7) = o. 10115 
0 . 0 0 5 44 ( -8} = 0 . 0 4 3 5 2 
o. 00187 ( 9) = o. 01683 
o. 00060 (10) = o. 00600 
0.00015 (11) = 0,00165 
o. 00004 (_12) = 0. 00048 
0.00001 (13)_ = 0.00013 

E[ S ] = 2. 58004 
x 

0 

.L=l 

• • • 

0 1 2 3 4 5 6 7 8 9 10 11 12 
.S 

x 

o.08701 ( 0) =. o. 00000 
0.20124( 0) = 0.00000 
o. 24299 ( 1) = o. 24299 
o. 20419 ( 2) = o. 40838 
o. 13414 ( 3) = o. 40242 
o. 07329 ( 4) = o. 29316 
o. 03458 ( 5) = o. 17290 
o.01445 ( 6) = o. 08670 
0 . 0 0 5 44 ( 7) = 0 . 0 3 8 0 8 
0. 0 0 18 7 ( 8) = 0. 0 149 6 
o. 00060 ( 9) = 0. 00540 

· o. 000 15 ( 10) = o. 00150 
o. 00004 ( 1.1) = o. 00044 
0.00001 ( 12) = o.00012 

E[S ] = 1. 66705 
x 

. L=l2 

0 0_000000 00 0001 
.s 

x 

0.0&781{ 0) = B.00000 
· o. 20124 ( 0) = o. 00000 

o. _24299 ( 0) = o. 00000 
o. 20419 (. 0) = 0. 00000 
o. 13414 ( 0) · = o. 00000 
0.07329(.0) = 0.00000 
o. 03458 (- 0). = - o. 00000 
o.01445 ( 0) = o. 00000 
o. 00544 ( 0) = o. 00000-
o.00187 ( 0) = o. 00000 
o. 0006 0 ( 0) = o. 00000 
o.00015 ( 0) = o. 00000 
o. 00004 ( 0) = o. 00000 
0.00001 ( 1) = 0.00001 

E[S) = o. 00001 

Figure 12. Development of Shortage Distributions 

oj:,. 
N 
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follows. If no demands occur during the lead time, no shortages will 

result; if one demand occurs, one shortage will result; if two demands 

oc·cur, two shortages will result, etc. The probability of each of these 

events is given by the lead time demand distribution. Therefore, the 

expected num-ber of shortages for L = ·O is the mean of the shortage 

··di-stribution for that L choice. This is shown as the first phase of 

Figure 12. 

The second phase of Figure 12 gives the shortage distribution for 

the case where L = 1. It is developed by reasoning as follows. 1£ 

no demands occur during the lead time, no shortages will result; if 

one demand occurs, no shortages will result; if two demands occur, one 

shortage will result; if three demands occur, two shortages will result, 

·etc. Again, the probability of each of these events is given by the lead 

time demand distribution. The mean for the resulting shortage distri-

bution is calculated in Figure 12 .. 

The process outlined above is continued for all values of L up to 

>:c 
L = Z .. For L = 12 it is evident that no shortages will occur for 

· all values of lead time demand except 13. If lead time demand is 13, 

one shortage will occur. This is shown in the last phase of Figure 12. 

The expected value for the resulting shortage distribution is calculated 

as before and is found to be 0.00001. H L = 13, it is evident that no 

~hortages will occur for any allowable value of lead time demand up to 

* and inc L uding Z . Therefore, the expected number of shortages for 
I 

this last case will be zero. The second co.lumn of Table V gives the 

expected number of shortages per inventory cycle as a function of the 

. procurement level. 
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TABLE V 

'SHORTAGE EXPECTATION AS A FUNCTION OF L 

L E [shortages] s .m 

0 2,58004 5.5472 
. ' 

1 1. 66705 2. 3158 

2 0~95530 0.7605 

3 0.48654 o. 1973 

4 o. 22197 o. 0411 

5 0.09154 0.0070 

6 0.03440 0.0010 

7 o. O 1184 0.0001 

8 0.00373 0.0000 

9 0.00106 0.0000 

10 o. 00026 0.0000 

11 0~00006 0.0000 

12 0.00001 0.0000 

13 0.00000 0.0000 

A measure 0f the magnitude of the shortage condition is provided 

by an expression for the expected number of shortages. Although the 

titne duration involved is not specified, it is possible to establish a 

fairly good value of shortage cost when, using this expression. 

The expected number of unit periods of shortage. By utilizing 

the values for the expected number of shortages per inventory cycle, it 

is possible to derive an approximate expression for the expected num-

·ber of unit periods of shortage, This is the value previously developed 

by simulation. It is an area which may be approximated as: 



s m = (2.41) 

The third column of Table V gives specific values for Sm as a 

function of L .. Since these values are based on the same inputs as 
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. were used in the simulation, a comparison can be made. The simulated 

value for · S , given in Table II, is O. 898 unit periods. Sihce the pro -
m 

curement level was set at 3 units, this is to be compared to 0. 1973 

given in Table V. The discrepancy may be explained by the fact that 

using expected values to find an area is bias, as was the case with the 

expected total number of unit periods of stock. In addition, procure-

ment action is initiated after the stock level falls below the procure-

level for some cycles. The effect of this situation is to force a more 

severe shortage condition than the assumption that procurement action 

is initiatetl exactly on the procurement level. 

The expected number of unit periods of shortage per cycle gives a 

measure of the magnitude and time duration of the shortage condition. 

As a result, the assignment 0f a value for shortage cost is not as dif-

ficult as for the previous expressions for shortage condition. Although 

the-derived value for · S does not agree ·with the simulated value, its . m 

deviation tends to cancel that of I , since total system cost models 
; m 

utilizing these expected values trade off costs based on their magni-

tudes, 

Minimum Cost Policies. for Numerical Lead Time Demand 

By utilizing the previously derived approximations for N , I , 
m m 

and S , it is possible to develop a model that may be used to. find 
m 
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minimum cost inventory policies. In this section an expected value 

model will be presented that trades off expected item cost, expected 

procurement cost, expected holding cost, and expected shortage cost. 

It will provide a means for finding the minimum cost procurement 

level and procurement quantity simultaneously. 

Expected total system cost as a function of L and Q. When the 

procurement quantity is not restricted to a specific value, the expected 

total system cost per period will be the sum of the expected item cost 

per period, the expected procurement cost per period, the expected hold-

ing cost per period, and the expected shortage cost per period; that is: 

TC = IC + PC + HC + SC 
m m m m m 

The expected item cost per period will be the product of the item 

cost per unit and the expected demand rate in units per period; that is: 

IC = C.D 
m 1 m 

The expected procurement cost per period is the procurement cost 

per procurement divided by the expected number of periods per inven-

tory cycle; that is: 
c 

PC = _E_ 
m N 

m 
Substituting Equation (2. 36) for· N 

m 

PC = 
m 

CD 
p m 
Q 

gives: 

The expected holding cost per period wilL be the holding cost per 

unit per period multiplied by the expected nu:i:nber of units in stock 

for the period; that is: 

.HC = 
m 

Ch Im 

N 
m 

Substituting Equation (2. 36) for N and Equation (2. 37) for I 
m m 

gives: 



The expected shortage cost per period will be the shortage cost 

per unit short per period multiplied by the expected number of unit 

periods of shortage for the p.eriod; that is: 

SC . = 
m 

c. s 
s m 
N .· m 

Substituting Equation (2. 36) for. Nm gives: 

SC . = m 

c n _ s 
s .m m 

Q 

The expected total system cost per period will be a summation of 

the four cost components developed above, and may be expressed as: 

CD CD S 
TC . CD + p m + C [ Q + (L-D T )]+ s m m 

m- im Q h2 mm Q 
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( 2. 42) 

An example probabilistic SISS policy for numerical lead time 

demand. Minimization of Equation ( 2. 42) by partial differentiation 

is not possible. Like: Equation (2~ 41), it contains. Sm which is only 

numerically related to · L. As an example of the determination of t4e 

minimum cost procurement level and procurement quantity, consider 

the following situation. Demand and lead time are distributed as 

shown in,Figure 8. Item cost per unit is $15. 00. Procurement cost 

per procurement is $10. 00. Holding cost per unit per period is $0. 09 

and shortage cost per unit short per period is $3'. 50. Therefore, the 

expected total system cost as a function of the procurement level and 

procurement quantity is: 

The expected total system cost as a function of L and Q is given 



in Table VI. Each value is computed from the above expression with 

reference to Table V for values of S . As before, each entry is 
m 
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. actually an expected value from a total system cost distribution. Choos -

ing the· L and Q giving a minimum expected cost is equivalent to max-

imizing the probability of minimizing the sum of item cost per period, 

procurement cost per period, holding cost per period, and shortage 

co st per period. 

TABLE VI 

EXPECTED TOTAL SYSTEM COST AS A 
FUNCTION OF L AND Q 

~ 
10 11 12 13 14 

0 10. 983 10.867 10.779 10. 7 11 10.659 

1 10. 494 10.340 10.303 10.279 10. 264 

2 10. 158 10. 133 10. 121 10. 118 10. 121 

3 1 O. 129 10. 116 10. 113 10. 117 10. 127 

·4 10. 187 . lQ.176 10. 175 10. 182 10. 193 

5 10. 269 10.259 10.259 10. 266 10.278 

6 10. 358 10.348 10.348 10.355 10.367 

The minimum expected cost procurement level and procurement 

quantity is found by inspection to be 3 and 12, respectively. These 

are the values that were used in the Monte Carlo analysis. They give 

an expected total system cost of $10. 113 when used with the expressions 

for expected values. Any error in these values will be reflected in the 

expected total system cost. Using the expected values found by Monte 



Carlo analysis to compute the expected total system cost gives a value 

of $10. 258. 

A Simplified Probabilistic SISS System 

The total system cost functions derived in the previous section 

could not be minimized by direct mathematical means. This was 

because the term S . was not a mathematical function of L. This 
m 

section will adopt two simplifications so that a method of finding 

minimum cost inventory policy:, mathemati.cally fo.r the probabilistic 
i 
I 

system may be demonstrated. Specifically, this will require that 
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shortage cost, C ', be based on the expected number of shortages, and 
s 

that the lead time demand dfatribution, Z , be a simple function. In 
. x 

this case it is necessary to maintain "safety stock" to absorb lea.d time 

demand fluctuations in excess of the expected lead time demand. The 

geometry of the inventory process would appear as in. Figure 13 if ran.-

dom elem.ents were not present. The development of simplified proba-, 

bilistic ipo,deLs in this dissertation is based on the assumption that 

D T < L,. D >R, and Q> min (1, D ). 
m m- . m · - m 

Algebraic Relationships 

From Figure 13 it is evident that the expected number of periods 

per inventory cycle is: 

N 
m 

Q 
~ 

m 

Also, the foUowing relationships are evident: 

n 1(R -D ) = n 2(D ) m . m 

( z. 43) 

( 2. 44) 



n - Q 
1 - 1f 

* I· +D. T -L 
m mm 

1:12 = D 
m 
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( 2. 45) 

( 2. 46) 

From Equations (2. 44), (2. 45), and (2. 46), 

L 

* I 
m 

D 
= Q( 1 - Rm ) + L - D T . 

mm 

I 
I 
I 
I 

Ql'-
1 ', 

I ' 
slope R -D 

m 
slope D 

m 
I 

' 

--1 i -
'L-D T 

_I 
I 

mm 

_ (2. 47) 

I 
I 
I 
I 

D T I 
..... ., _ ___::m::;:_f m I 

Figure 13. The Expected Geometry of a. Simplified Probabilistic In.
ventory Process 

The expected total number of unit periods of stock 0n hand during 

the inventory cycle, I , is: 
m 

* * * * I -L+ D T I - L+ D T I -L+ D T I -L+ D T 
I = ( m m m)( m _ m m) + ( m m m){ m m m) 
m 2 R-D 2 D 

m m 

+ N (L-D T ) 
m mm 



I = 
m 

* 2 (I ··- L+D T ) 
m mm 

2 
(..2_ 1 
. D + R D )+N (L-D T ) . 

m - m m m m 

>',< 

Substituting Equation ( 2. 4 7) for I gives: 
m 

I = 
m 

D 2 
[ Q( 1 - _m ) J 1 

R (D 
m 

l 
+ R-D )+N (L-D T ). - m m m 

m 
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( 2. 48) 

If it is assumed that lead time demand, Z , is distributed uniform
x 

ly in the range A to A', f(Z ) = 1/(A' - A), the expected number of 
x 

shortages per inventory cycle, E(S ) , 
x 

is: 

E(S ) . x 
A' - f (Z -L)f(Z ,:!Z 
Ltl x x x 

/' 
Z dZ 

A' L 
E{S) 

x x dZ ·= J 
L+l 

A'-A 
L+l 

A 1-A x 

l 2 A' L t:l E(S ) - · 2(A '-A) 2 x Ltl A 1-A z x x 

E(S ) - l A 12 - (L+l) 2 - ~ (A'-L-1) 
x 2(A 1-A) A 1-A 

A 12 - 2L(A ') + L 2 - l 
2(A 1-A) E(S ) = 

x (2.49) 

The expected number of shortages is simplified if A = O. Then, 

A 12 - 2L(A ') + L 2 - l 
E(S) = 2A, (2. 50) 

The lead time demand random variable is the product of the demand 

random variable and the lead time random variable; that is: 

Z = D T . 
x x x 

The expected lead time demand is: 

E(Z ) = E(D T ). 
x x x 



Assuming independence, the expected lead time becomes: 

E( Z ) = E(D ) E(T ) • 
x x x 

Taking the expected value of both sides gives: 

Z = D T m mm 

When f( Z ) is distributed uniformly from O to A 1, 
x 

Thus: 

z m 
A' = -2-

D T 
mm 

A' 
= 2 
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T m 
A' 

= 2D ( 2. 5 1) 
. m 

A' = 2D T 
mm 

( 2. 5 2) 

By specifying any two of the values in. Equations ( 2. 51) and ( 2. 5 2) the 

third value is established. 

Expected Total System Cost 

The expected total system cost per period will be a summation of 

the expected item cost per period, the expected procurement cost per 

period, the expected holding cost per period, and the expected short-

age cost per period; that is: 

TC = IC + PC + HC + SC m m m m m ( 2. 5 3) 

The expected item cost per period will be the product of the item 

· cost per unit and the expected demand rate in units per period; that is: 

IC = C. D 
m 1 m 

( 2. 54) 
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The expected procurement cost per period will be the procurement 

cost per procurement divided by the number of periods per inventory 

eye le; that is: 

c 
PC = ___E.. 

m N 
m 

CD 
PC = p m 

m Q 
( 2. 55) 

The expected holding cost per period will be the product of the 

tolding cost per unit and the expected number of units on hand during 

the period; that is: 

Note that: 

Therefore, 

HC = 
m 

HC = 
m 

+ _1 ) = 
D 

m 

1 
D 

m 
Q(l - -) . R 

HC m 
- R [

Q( 1 - Dm) 

- ch 2 tL-D TJ. mm 

( 2. 56) 

( 2. 5 7) 

The expected shortage cost per period will be the product of the 

shortage cost per unit short per period, 

of shortages per period; that is: 

SC m = 
c I E(S ) 

s x 
N 

m 

C 1 , and the expected number 
s 



SC= 
C 'D (A 12 - 2LA 1 + 'L 2 - 1) s m 

2QA 
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( 2. 58) 

The expected total system cost per period will be a summation of 

the four cost components given by Equations (2. 54), (2.55), (2. 57), 

and ( 2. 58); that is: 

or, 

TC 
m 

= C.D 
1 m 

+ 

TC = C.D + 
1 m 

C.D 
+ p m + C 

Q h 

2QA• 

C I D [(A' - L) 2 - 1] 

D 
.. m) 

- Jr 
2 + L - D T J mm 

(2. 59) 

D 
m -,r) 

+L-D T J mm 2 

s m + 2QA' · (2.60) 

AlL terms in Equation ( 2. 60) must be positive. For certain values 

of the parameters the last te.rm can be negative. To insure that this 

· term be positive it is required that (A 1 - L) 2 be positive, or, 

(A 1 - L) 2 - 1 :::._ 0. 

Taking the positive root gives: 

(A I - L) > 1. 

. Solving for L gives: 

-L > 1 - A 1 

L < A' - 1. 

Utilizing Equation (2. 52) gives: 



L < 2D T -1. 
mm 

Therefore, an upper bound on L is established in addition to the 

previously stated lower bound. 

Optimal Policy for Simplified Probabilistic SISS System 
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The minimum cost procurement level and procurement quantity 

may be found by setting the partial derivatives. equal to zero and 

solving the resulting equations. Modifying Equation (2. 59) gives: 

CD 
TC = C. D + p m + Ch 

m 1 m Q 
[
Q(l-Dm) . J 
__ ,...R_._ + L - D T 

2 m m 

(2.61) 

Taking the partial derivative of Equation ( 2. 61) with respect to 

Q, then with respect to, L, and setting both equal to zero gives: 

cl TC 
Ta- -

a TC= C 
oL . h 

CD Ch. Dm 
pm+ -(1--·-) 
0 2 2 R 

C 1 D 
s m + 
Q 

LC'D s m 
QA' 

Equation (2. 63) may be expressed as: 

LC 1 D s m 
= 

C'D s m 
QA' Q 

C QA' 
L = A' - _h __ 

C'D s m 

- c h 

C 1.D 1 2 . 
s m[A -L+ ~] = O 

2 2 . 2A 1 

Q (2.62) 

= o. ( 2. 6 3) 

( 2. 6 4) 

Substituting Equation (2. 64) into Equation (2. 62) gives: 



CD 
p m + 
,l 

C'D 
s m 
Q2 

C . D 
h m 

-· (1--) 
2 R 

+ 

ChQA' 2 ]. 
C'D -l · 

· s m -------..,,....,..-,-----'-2A' 

(A' -

The last term may be expressed as: 

And Equation (2. 65) becomes: 

IA· [T + 

= 0. 

C QA' 
h 
C'D s m 
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( 2. 6 5) 

+ ch (1- Dm)-·[c/02A,2-c~zD,,;2J··. = o. 

2 R 2A'C'D Q2 
. s m 

Which will reduce to: 

Q = 
c• 

s [~~:=~~~~-A'CJ 
Substituting Equation (2.66) into Equation (2.64) give.s: 

A'C [ •.. ZA'C -c• 

-A'CJ 
L A' -

. h . 1n s = 
C' 

s C 1 D (1- ~) 
s m R · 

An Example Simplified Probabilistic SJSS Policy 

( 2. 66) 

( 2. 6 7) 

As an example of the simplified probabilistic SISS system suppose 

that a procurement manager will purchase an item having the following 

parameters: 
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D ··········-•11····2.00 m 
~- ••••••••••••••••••• CX) 

T ............... · 4. 00 
m 

A 1 ••••••••••••••••• 8.00 

c~ ............... . $6. 30 
1 

C ................ , $6. ·25 
p 

cp. ................ $0. 10 

C' ................ $4. 00 . 
s 

The minimum cost procurement quantity may be found from Equation 

(2.66) as: 

Q = ·2 4 [ 2(8)($6. 25)-$4. 00 J 
8($0. lO) $4. 00(2)( l - ! , .. ,8($0. 10) 

Q = 17.5021. 

The minimum cost procurement level may be found from Equation 

(2.67) as: 

L = 8 -
8($0. 10) [ 2(8)($6. 25) - $4. 00 ] 

$4• 00 $4. 00( 2)( 1- Z -8($0. 10) 
00 

L = 12.4995. 

The minimum total system cost may be found by substituting the 

results of Equations (2. 66) and (2. 67) into Equation (2. 60) as: 

(17. 5021)(1-~) 
Tc :: $6 30( 2) +· $ 6 - 25 ( 2) $0 10 [ 00 

m · 17.5021 + · · ·2 

+ 12.4995 - 2(4)] + $4J00('2): [ ~ -12 4995+(12.4995)2:..1] 
l 7. 5 0 21 2 • . 2( 8) 

TC = . $14. 7998. m 



CHAPTER III 

THE SIMS,SYSTEM 

A. SIMS procurement and inventory system is illustrated in Figure 

14. It exists as a result of the demand stimulus, D. In satisfying 

this demand the procurement manager finds it necessary to replenish 

the stock.of the item periodically. The basic supposition of the SIMS 

. concept allows stock replenishment to be made by procurement from 

one of several possible sources. Therefore, an important facet of the 

procurement and inventory problem involves a choice of the source 

that will result in a. minimum total system cost. Procurement and 

inventory policy for the SIMS system will be that policy stating when 

to procure, how much to procure, and from what source to procure. 

It will be the purpose of this chapter to indicate the unified nature of 

procurement and inventory ope rations through a consideration of source 

dependent parameters. 

The Deterministic SIMS System 

An:Example Det~rministic SIMS Policy 

As discussed in Chapter I, procurement lead time, rate of replen

ishment, item cost, and procurement cost are all source dependent. All 

other parameters. remain constant for a.SIMS system. This permits the 

use of Equations ( 2. 20), ( 2, 21), and ( 2. 22) for the solution of 
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deterministic SIMS problems without restrictions. The procedure 

is to evaluate each source, selecting that source which can supply 

the demand at the minimum total system cost. 

H 
(!) 

4-; 

00 
~ (!) 

rd H 
i.., Q) :j 

..-t ~ E--i H 
.µ 
u 

6 
:j rd Q) Q) .µ 

00 00 u ':j 
rd rd H rd ~ 

..C1 • • • ..C1 
...... 

':j 4-; rd 
u u rd 6 H H H ~ 
:j :j .µ rd Q) 

P-i P-i ~ ~·· p::; H 

Item ~~~I I I IG> 
Fig11re 14 .. The SIMS System 

As an example of the deterministic unrestricted SIMS system 

suppose that a procurement manager is experiencing a demand of 4 

units per period for a certain item that may be either manufactured, 

or purchased from one of three vendors. Holding cost per period is 

$0. 24 and shortage cost per unit short per period is $0. 17. Specific 

values for source dependent parameters are given in Table 7. 

The procurement source resulting in a minimum total. system 

cost can be found from Equation ( 2. 22), For the manufacturing 

alternative it is; 
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TC = $19. 85(4) + j1 _ 142. J2($17. 32)($0. 24)($0. 17)(4) 
$ 0. 24 + $ 0. 1 7 _ _ _ 

TC =. $82. 4318. 

TABLE VII 

SOURCE DEPENDENT PARAMETERS, DETERMINISTIC 
SIMS SYSTEM 

--
Parameter - Manufacture · Purchase 1 Purchase 2 Purchas e 3 

-
R 12.00 (X) (X) (X) 

T 6.00 3.00 4.00 12.00 

c. $19.85 $17. 94 $18.33 $18.08 
1 

c $17.32 ·.·_ $18. 70 $17. 50 $14.65 
p 

For the alternative designated Purchase 1,. it is: 

TC = $ 1 7. 9 4 ( 4) + \/ 1-·- ! 
TC = $75.6175. 

2($18. 70)($0. 24)($0. 17)(4) 
$0. 24 + $0. 17 

For the alternative designated Purchase 2, it is: 

TC = . $18. 33 (4) + ~ /2($17. 50)($0. 24)($0. 17)(4) \/J. - oo V $0. 24 + $0. 17 

· TC = $77. 0517. 

- For the alternative designated Purchase 3, it is: 

TC = $18. 08 (4) + R 2($14. 65)($0. 24)($0. 17)( 4) 
- $0.24 t $0.17 



TC = $75. 7344. 

On the basis of this analysis, the alternative designated Purchase 1 

would be chosen as the minimum cost procurement source. 

The minimum cost procurement quantity for this source may be 

found from Equation (2. 20) as: 

2($18. 70)(4) 
$0.24 

+ 2($18.70)(4) 
$0. 17 

Q = 38. 7806. 

And, the minimum cost procurement level for this source may be 

found from Equation ( 2. 21) as: 

L = 4( 3) - J1 -! 2($18. 70)(4} 

$0.17(1 +$ 0~ 17 ) .. $0. 24 

L = ·10.6917. 

An Example Deterministic SIMS Policy With.Warehouse Restriction 
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As discussed in Chapter I, procurement lead time, rate of replen-

ishment, item cost, and procurement cost are all source dependent. 

All other parameters remain constant for a SIMS system. This permits 

the use of Equations (2. 33), (2. 35), and (2.15) with varying values of 

>-. for the solution of SIMS problems. The procedure is to evaluate 

each source, selecting the source which can supply demand at minimum 

total system cost subject to the restriction qn sca-rce warehouse space. 

Suppose that the SIMS system of the previous example is constrain-

ed by a. total warehouse space of 100 cubic units; W = lOp, and that 

each item in the system requires 24 cubic units. Utilizing Equations 
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(2. 33), (2. 35), and (2. 15) for varying values of A, Tables VIIIr IX, X 

and XI c:a.n be deveJoped as. follows.~ 

TABLE VIII 

WAREHOUSE'SPACE CONSUMED ANDASSOCIATED TOTAL 
QOSTS KOR VARY;ING VALUES OF. "-, DETERMINIST+:C 

SIMS SYSTEM -·MANUFACTURING ALTERNATIVE 
• , . , . j • ' ' . 

... ~ ......... ~._,. .... ,, . 

A L Q * TC r·w 

.. 0. 00000 .. 6.1654 . .45 •. 7011 . 151..5942 . .$82.4318 

-0.00300 5.7878 40.5813 106. 1057 $82. 4960 

-0.00340 5.6933 .40.0948 101. 0784 $82.5121 

-0.00340 5 .. 67 33 40.0017 100.0943 $82.5155 

-0.00349 5.6708 39.9901 99.9718 $82.5159 

-0.00350 5.6683 39.9786 99.8493 $82.5163 

-0.00400 5. 536 2 39. 4278 9 3. 8577 $82.5388 

TABLE IX 

WAREHOUSE SPACE CONSUMED AND ASSOCIATED TOTAL 
COSTS FOR VARYING VALUES OF A, DETERMINISTIC 

SIMS SYSTEM, PURCHASE 1 

,,, ... 
A L Q 1 w TC 

0.00000 -10.6917 38.7806 192.8806 $75.6175 

-0.00500 -11. 87 24 32.6387 105. 0393 $75.8183 

-0.00530 -11.9971 32.4202 100. 9215 $75. 8395 

-0.00536 -12.0226 32.3779 100. 1077 · $75. 8438 

-0.00537 -12. 0269 32. 3709 99.9725 $75.8445 

-0.00538 -12.0312 32. 3639 99.8372 $75.8453 

-0.00600 - 12. 306 2 31.9537 91.6166 $75.8920 



TABLE X 

WAREHOUSE SPACE CONSUMED AND ASSOCIATED TOTAL 
COSTS FOR VAR YING VALUES OF X., DETERMINISTIC 

SIMS SYSTEM, PURCHASE 2 

,,, -·· 
X. L Q Iw TC 

0.00000 -5.9515 37.5156 186. 589 2 ·$77.0517 

-0.00500 -7. 0937 31.5741 101.6132 $77. 2459 

-0.00510 -7. 1334 31. 5024 100.2764 · $77. 2526 

-0.00512 -7. 1414 31. 4882 100. 0101 $77.2540 

-0.00513 -7. 1454 31. 4811 99.8772 $77.2547 

-0.00514 -7.1495 31.4741 99.7442 $77.2554 

-0.00600 -7.5134 30. 9115 88. 6 283 $77. 3172 

TABLE XI 

WAREHOUSE SPACE CONSUMED AND ASSOCIATED TOTAL 
COSTS FOR VARYING VALUES OF. X, DETERMINISTIC 

SIMS SYSTEM, PURCHASE 3 

..,, ,,. 
X. L Q Iw TC 

0.00000 27.9152 34.3251 170. 7 207 $75.7344 

-0.00400 27.2067 29.6134 105.6999 $75.8548 

-0.00440 27.0781 29. 3081 100.4942 $75.8767 

-0.00443 27.0681 29. 2860 100. 1102 .$75.8784 

-0.00444 27.0648 29. 27f37 99.9824 $75.8789 

-0.00445 27.0614 29.2714 99.8546 .. $75.8795 

-0.00500 26.8702 28.8889 92.9715 $75.9120 

The optimal policy for this restricted system is associated with 

the source alternative designated Purchase 1. This source was 
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selected by examining.the total system cost for all sources associated 

* with the largest value of X. for which I w is within the warehouse 

space restriction of 100 cubic. units. For this source, -0. 00537 is the 

* largest value of .. X. for which I w is: within the warehouse space re,., 

striction. The optimal procurement and inventory policy associated· 

with Purchase 1 and X. = -0. 00537 is a procurement level of -12. 0269 

and a procurement quantity of 32. 3709 resulting in a minimum total 

system cost of $75 .. 8445. The penalty in total system cost arising due 

to the war_ehouse constraint is $75. 8445 less. $75. 6175 or $0. 2270 per 

period. 

Optimal P.o_licy.for 'a. Simplified Probabilistic SIMS System 

As discussed in Chapter I, procurement lead time, rate of replen-

ishment, item cost, and procurement cost are all source dependent. 

AU other parameters remain_ constant for a.SIMS system. This per-

mits the use of Equations (2. 66), (2. 67), and (2. 60)for the solution of 

simplified propabilistic SIMS problems without restrictions. The I'ro-

cedure is to evaluate each source, selecting that source which can 

supply the demand at the minimum total system cost, where the mini-

mum cost for each source is computed as in Chapter II. 

As an example of the simplified probabilistic unrestricted SIMS 

system suppose that a procurement manager is experiencing a _demand 

of I. 80 units per period for a certain item that may be manufactured 

or purchased. Holding cost per period is: $0. 12 and shortage cost per 

unit s-hort is.$ 3. 80 .. Sp.ecific v~lue s for source dependent parameters 

. are as indicated in Table XII. 



TABLE XII 

SOURCE DEPENDENT PARAMETERS, SIMPLIFIED 
. PROBABILISTIC SIMS SYSTEM 

Parameter . 

. R. 

T 
m 

c. 
1 

.c 
p 

-Manufacture 

,8. 00 · 

. 3, 00 

$4. 34 

$5.50 

· Purchase 

· 2. 00 

$4.25 

$5.75 
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Table XIII is a display of the alternative policies and their associ-

ated minimum costs obtained by utilizing Equations ( 2. 66), ( 2. 6 7), 

and (2. 60). On the basis of this analysis, the manufacturing alterna-

tive would be selected. as the minimum cost procurement source. 

TABLE XIII 

ALTERNATIVE POLICIES AND ASSOCIATED MINIMUM COSTS, 
. SIMPL.IFIED PROBABILISTIC SIMS SYSTEM 

Alternative 

Purchase 

• Manufacture 

L 

7.6706 

5. 4661 

Q 

16. 5161 

13. 7265 

TC .. 
m 

$9.6204 

·$9.5208 



CHAPTER IV 

THE MISS SYSTEM 

A MISS procurement and inventory system is illustrated in 

Figure 15. It exists as a result of the demand stimuli, D .. 
1 

In 

satisfying these demenads the procurement manager finds it neces-

sary to replenish the stocks of each item periodically. The basic 

supposition of the MISS concept is that replenishment can be made 

for the aggregate of items in the system by procurement from a 

single-source only. Procurement may be obtained through purchiise, 

intrafirm transfer, manufacture, or remanufacture, but only one of 

these is to be considered. If the purchase alternative is being examined, 

only one vendor is under consideration. Procurement and inventory 

policy for the MISS system will be that policy stating when to procure 

each item and how much of each item to procure with the source being 

fixed by prior decision. It will be the purpose of this chapter to indi-

cate the nature of procurement and inventory ope rations through con-

side ration of item dependent parameters. 

The Deterministic MISS System 

An Example Deterministic MISS Policy 

As discussed in Chapter I, all parameters are item dependent. 

However, Equations (2. 20), (2. 21), and (2. 22) can be used to solve 
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deterministic MISS problems without restrictions. The procedure is 

as follows: Determine the optimal policy for each item. Realizing · 

67 

that the global optimum is the aggregat~ of the local optima, the opti-

mal policies just determined formulate the policy of the deterministic 

MISS system without restrictions. The minimum total system cost is 

the sum of the individual minimum total costs. 

Item 1 

Item' 2 

~ 
I • 
I 

Item m 

Figure 15. The MISS System 
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As an example of the deterministic unrestricted MISS system 

suppose that a procurement manager is determining the optimal 

policy for a system with the parameters given in Table XIV. Since 

R is infinite, a purchase or intrafirm transfer alternative is involved. 

TABLE XIV 

SYSTEM PARAMETERS, DETERMINISTl,C MISS SYSTEM 

....... 

Item D R T c. c ch .c 
1 -p s 

l 6.00 00 2.00 $30.88 $18. 30 $0.30 $0. 30 

2 4.00 00 4.00 .$18. 33 ,·$17.50 $0.24 .. $0. 17 

3 1. 00 00 1. 00 $12.00 $15.50 $0. 12 . $0. 25 

Utilizing Equations (2 . .20), (2. 21), and (2. 22) Table XV is devel

oped as follows: 

TABLE XV 

OPTIMAL POLICY AND ASSOCIATED MINIMUM COSTS, 
DETERMINISTIC MISS SYSTEM 

Item L Q TC 

l -7.1253 38.2737 $191. 0176 

·2 -5. 95.15 37.5156 $ 77.0517 

.3 -5.3413 19.5543 $ 13. 5853 
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The optimal policy for the system is the aggregate of the local 

optimal policies. The minimum total sys tern cost is the sum of the 

local minimum total costs or $281. 6546. 

Optimal Policy for Deterministic MISS System With Warehouse Restric
tion 

Each item in the MISS system consumes a certain amount of total 

warehouse capacity,. w. The maximum accumulation of inventory for 

* * ' the item, I., will consume I. w. cubic units of scarce warehouse 
1 1 1 

* capacity. Therefore, the restriction ZL w. < w must not be violated. 
i 1 1 - I 

The subscript i will be used in this section to differentiate the items 

in the ,system. This section will present a Lagrangian m.ultiplier 

technique for finding the optimal procu~ement and inventory policy and 

the minimum total sytem cost in the face of a warehouse capacity 

restriction. 

Equation ( 2. 15) may be modified to include item dependence such 

that the total system cost is given by: 

TC 

C D. 
p. 1 

= :EC. D. + Z 1 

1. 1. 1 Q. 

+z 
i 

1 1 

2 C . (D. T. '-L.) 
S, 1 1 1 

1 

D. 
2Q.(l--·-1 ) 

1 R. 
1 

+ z 
i 

Di 2 
Ch [ Q.( 1- R- )+L.'- D. T .] 

, 1 . 1 1 1 
1 1 

. Di 
2Q.(l- -w-) 

1 .[\ . 
1 

* 

( 4. 1) 

Define \. such that \. < 0 ·for every W - z I. w.=O and \.=0 
i 1 1 

for every W - z I.,:<w. > O. 
. 1 1 
1 

* 

Then: 

\.(W - ZI. w.) = O. 
, 1 1 
1 

Proceeding exactly as in Chapter F gives, after several steps: 

( 4. 2) 



TC= ~G.D.+~ 
1 1 1 i 

C D. 
p. 1 

_.,,..1 ..... -+ ~ 
Qi i 

- ~ Ch (D. T. - L.) + ~ 
i i 1 1 1 i 

2 
C (D. T. - L.) 

S. 1 1 1 
1 

+ ~ ----~n=-.~ 
2Q. ( 1 - -2:.) 

1 R. 
1 

D. 
Ch_[Qi(l - R~ )] 

1 1 

2 

2 
Ch(D.T.-L.) 

. 1 1 1 
1 

D. 
1 2Q.( 1 - -) 

1 R. 
1 

+ >..E (D.T. - L.)w. + X. W. 
. 1 1 1 1 
1 
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(4. 3) 

Taking the partial derivative of Equation (4. 3) with respect to Q., 
1 

then with respect to D.T. - L., and setting both equal to zero gives: 
1 1 1 

a TC 
a a. 

1 

= 
C D. 

P· 1 
1 

. 2 
Q. 

1 

+ 

D. 
C (1- ...2.) 

h. R. 
1 1 

2 

2 C (D.T. - L.) 
S. 1 1 1 D. 

2 
Ch (D.T. - L.) 

. 1 1 1 
1 

. D. 

2Q.2( 1 - -2) 
1 R. 

1 

1 

2 D. 
- >.. ( 1 - ...2.) w. = 0 R. 1 

2Q. ( l - - 1 ) 
1 R. 

1 

1 

(4. 4) 

Ch (D. T . - L.) 
. 1 1 . 1 
1 

C (D.T. - L.) 
S. 1 1 1 a TC 

a (D.T. - L.) 
1 1 1 

= -Ch.+ D. 
1 Q.( 1- _1) 

1 R. 

+ >.. w. = 0 
1 

1 

+ 1 

D. 
Q.( 1 - _1) 

1 R. 
1 

Proceeding exactly as in Chapter II gives, after several steps: 

1 
2cp.ni (ch_+c s.) 

1 1 1 
Q = D. 

1 1 - R. 
C C - >.. 2w. 2 - 2C A.W. h. S. 1 S. 1 

1 1 1 
1 

( 4. 5) 

( 4. 6) 



L. = D. T. -(Ch -X.w.) 
1 1 1 . 1 

l M 
2C D. 

P· i 
1 
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( 4. 7) 

The procedure is to vary X. in Equations ( 4. 6) and ( 4. 7) until the 
...... ,.,< 

largest value of X. is found such that EI~·-w .. < W,, where I. is.given 
i 1 1. 1. 

by: 

,Jc 

I. = 
1 

D. 
Q. (1 - -R1 ) + L. - D. T .• 

1 . 1 1 1 
1 

( 4. 8) 

Minimum total system cost is obtained by substituting the established 

values of Q. and L., found by the procedure mentioned above, into 
1 1 

Equation (4. 1). 

An Example Deterministi:c MISS Policy With Warehouse Restriction 

Suppose that the MISS system of the previous example is constrain-

ed by a total warehouse space of 100 cubic units; W = 100. Suppose 

further that Item l requires 24 cubic units, Item 2 requires 12 cubic 

units, and Item 3 requires 6 cubic units. Utilizing Equations (4. 6) and 

(4. 7) for varying values of X., and also Equation (4. 8), Table XVI:can 

be developed. From Table XVI it can ;be .s:eei::J. tha:tthe lar;gest value ·of 

X. for which the warehouse restriction is met occurs at -0.01134. 

The optimal procurement and inventory policy for this restricted 

MISS system is f:!Ummarized in Table XVII. alcmg .with.the.associated mini-

mum total cost for each item. The minimum total system cost is the 

summation of the individual minimum total costs, or $284. 6313. The 

penalty in total system cost arising due to the warehouse constraint is 

$284. 6313 less $281. 1796 or $2. 9767 per period. 



TABLE XVI 

WAREHOUSE SPACE CONSUMED FOR VARYING VALUES OF >.., DETERMINISTIC MISS SYSTEM , 

-~ -·- -·- ,:; '•' -.- -·· A. Ll Ql Ilw 1 L Q2 I2w2 L3 Q3. 13w3 ~I.w. 
2 1 - 1 

~...,_,._,..., .,-_,·,;;,-~-.~ 

0.00000 - 7.1253 38.2737 459.0104 - 5.9515 37.5156 186. 5892 -5. 3413 19. 5543 79.2663 725. 8659 

-0.01000 -12. 5897. 27.3384 65. 5 7 38 - 9.6568 29. 2319 42. 7619 -5.9373 14. 2614 43. 936 2 152. 2719 

-o. o noo -13.5165 27. 1615 39.0902 -10. 3061 29. 0049 32.2468 -6.0300 13.9859 41. 7267 113. 0637 

-0.01130 -13.8086 27. 126 2 31.2317 -10.5101 28.9497 29. 1363 -6.0585 13.9079 41. 0883 101.4563 

-0. 01133 -13.8381 27.1231 30.4475 .. 10.5307 28.9445 28. 8263 -6. 0613 13.9003 41. 0251 100. 2989 

-0.01134 -13.8480 27. 1220 30. 1860 -10.5376 28. 9428 28~ 7229 -6. 06 23 13. 8977 41. 0041 99.9130 

-0.01135 -13.8579 27.1210 29. 9 249 -10.5445 28. 9411 28. 6196 -6.0633 13. 8951 40.9829 99 .• 5 274 

-...] 

N 



TABLE XVII· 

.OPTIMAL POLICY 'AND ASSOCIATED MINIMUM COSTS, 
DETERMINISTIC MISS SYSTEM WITH 

WAREHOUSE RESTRICTION 

Item L Q TC 

1 -13. 8480 27.1220 ., $193. 0344 

2 -10.5376 28.9428 $ 77.8314 

3 - 6.0623 13.8977 $ 13.7655 

Optimal Policy for a Simplified Probabilistic MISS System 

As discussed in ·Chapter I, all parameters are item dependent. 
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However, Equations {2.fr6), {2.67) and {2.60) can be used to determine 

the optimal policy for a simplified probabilistic MIMS system without 

restrictions. The procedure is as follows: Determine the optimal 

. policy for each item •. Realizing that the global 0ptimum is the aggre..,. 

gate of the local optima, the optimal policies just determined formulate 

the policy of the si:rnplified probabilistic MISS system without restric,-

tions. The minimum total system cost is the sum ,of the individual 

minimum total costs. 

As an example of the simplified probabilistic unrestricted MISS 

system suppose that a procurement manager is determining the opti-

mal policy for a system with the parameters indicated in Table XVIII. 

Since · R is finite, a manufacture or remanufacture alternative is 

· involved. 



TABLE XVIII 

SYSTEM PARAMETERS, SIMPLIFIED PROBABILISTIC 
MISS SYSTEM 

Item D .R T C. c ch m m 1 p 

1 2,00 10.00 2.00 $7.00 $6.00 $0. 10 

2 1. 80 8.00 3.00 $4. 34 $5.50 $0. 12 
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c 
s 

$4; 00 

$3. 80 

Utilizing Equations (2. 66), (2. 67), and (2. 60) Table XIX is obtained 

as follows: 

· TABLE XIX 

OPTIMAL POLICY AND ASSOCIATED MINIMUM COSTS, SIMPLIFIED 
PROBABILISTIC MISS SYSTEM 

Item 

1 

2 

L 

6. 18 7 3 

7.6706 

Q 

18. 1265 

16. 5161 

TC 

$15.6688 

$ 9.6204 

The optimal policy for the system is the aggregate of the local 

optimal policies. The minimum total system cost is the sum of the 

local minimum costs or $25. 2892. 



CHAPTER V 

THE MIMS SYSTEM 

A MIMS procurement and inventory system is illustrated in Figure 

16. It exists as a result of the demand stimuli, D .• 
1 

In satisfying 

these demands the procurement manager finds it necessary to replenish 

the stock of each item periodically. The basic supposition of the MIMS 

concept allows stock replenishment for each item to be made by pro-

curement from one of several possible sources. The MIMS procure-

ment and inventory system represents the highest ordered system in the 

hierarchy. Procurement and inventory policy for the MIMS system will 

be that policy stating when to procure each item, how much of each 

item to procure, and from what source to procure each item. It will 

be the purpose of this chapter to indicate the unified nature of procure -

ment and inventory operations through a consideration of item and 

source dependent parameters. 

The Deterministic MIMS System 

An Example Deterministic MIMS Policy 

As discussed in Chapter I, all parameters are either item depen-

dent or both item and source dependent. However, Equations (2. 20), 

(2. 21), and (2. 22) can be used to solve deterministic MIMS problems 

without restrictions. The procedure is as follows: For every item in 

75 
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the inventory, evaluate each source, selecting that source which can 

supply the demand at the minimum total cost. Realizing that the global 

optimum is the aggregate of the local optima, the optimal policies just 

determined formulate the policy of the deterministic MIMS system 

without restrictions. The minimum total system cost is the sum of 

the individual minimum total costs. 

H 
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'H 
Cl) 

$::1 ill 
Ci! H 
H ill ::l 

...... $::1 E-t H 
....., 
u 

ill a ::l Ci! ill ....., 
~ Cl) Cl) u 

Ci! Ci! H Ci! $::1 ...... ..c: 0 • 0 ..c: 'H ~ Ci! 
u u Ci! a H H H $::1 

::l ::l ....., Ci! ill 

D.! D.! $::1 ~ rz H 

Item 1 

C» -----

Item 2 6> 
e 

• 
• 

-----··· 

Item m 5 ~ 
Figure 16. The MIMS System 
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As an example of the deterministic unrestricted MIMS system con-

sider the determination of the minimum cost procurement and inventory 

policy for a system involving 1hree items and five sources. Sources 1 

and 2 are manufacturing or remanufacturing alternatives while sources 

3, 4, and 5 are either vendors or intrafirm transfer possibilitie.s. The 

item dependent parameters of demand, holding cost, and shortage cost 

are given in Table XX. Parameters that depend upon the item .as well 

as the source are given in Table XXI. The blank cells denote that the 

item is not available from the source indicated. 

T.f\BLE XX 

ITEM DEPENDENT PARAMETERS, DETERMINISTIC 
MIMS SYSTEM 

Item Demand Holding Cost Shortag,e, Cost, 

1 6 $0.30 $0. 30 

2 4 . $0. 24 $0. 17 

3 1 $0. 12 $0. 25 

Applying Equation (2. 22) to each item and each source yields the 

minimum costs given in Table XXIJ;. Inspection of these values indi-

cate s that Item 1 sho.uld be procured fron1 Source 4, at a. TC of 

$191.0176, Item 2should be procuredfro:m Source 3 at a. '!'G of 

$75. 6175, and Item 3 should be procured from Source 5 at a TC of 

$13. 5445. These source choices result in a. total -system cost of 

$280. 1796 per period. 



Item 

1 
2 
3 

1 
2 
3 

1 
2 
3 

TABLE XXI 

ITEM AND SOURCE DEPENDENT PARAMETERS, 
DETERMINISTIC MIMS SYSTEM 

Source 1 [ Source 2 I • Source 3 [iiurce 4 . Source 5 

Lead Time 

4 -~--T 7 2 10 
6 3 4 12 

15 1 12 

Replenishment Rate 

78 

8 ··--r-·-r---:--1~=-n(X) ··--·---
12 , - I oo oo oo 
4 I 40 i - oo oo 

$20. 40 
$17.32 
$16. 50 

Procurement Cost 

$ 16. 50 

----··-·1-·-·· . $23.16 $18.30 
$18. 70 $17.50 

- $15.50 

TABLE XXII 

MINIMUM COST POINTS, DETERMINISTIC 
MIMS SYSTEM 

$19.55 
· $14. 65 
$17.50 

----------------===::.:::;== 
Item Source 1 Source 2 Source 3 Source 4 Source 5 

---------------
1 $192.0298 $ 214. 9546 $191. O 176 $206. 2103 
2 $ 82.4318 $ 75.6175 $ 77. 0517 $ 75.7344 
3 $ 13. 7165 $13. 9429 $ 13.5853 $ 13.5445 
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Application of Equation ( 2. 21) to each item and each source re -

sults in the procurement levels given in Table XXIII. Thus, the mini-

mum cost procurement level for Item 1 is -7. 1253. The minimum 

-cost procurement leve 1 for Item 2 is -10. 6917 and the minimum cost 
. . 

procurement level for Item 3 is 5. 2619. 

Item 

1 
2 
3 

TABLE XXIII 

MINIMUM COST PROCUREMENT LEVELS, 
DETERMINISTIC MIMS SYSTEM 

Sou:rce 1 Source 2 .. Source 3 Source 4 

13. 9005 - 20.4843 -7. 1253 
6. 1654 - -10.6917 -5.9515 
9. 3336 -3.3719 - -5.3413 

. 
Source 5 

40.2322 
27.9152 

5. 2619 

Applying Equation ( 2. 20) to each item and each source results in 

the procurement quantities. given in Table XXIV. The minimum cost 

procurement quantity for Item 1 is 38. 2737. The minimum cost pro-

curement quantity for Item 2 is 38. 7806 and the minimum cost procure-

ment quantity for Item 3 is 20. 7776. 

The optimal procurement and inventory policy for this unrestricted 

. MIMS system is summarized in Table XXV. 

Optimal Policy for Deterministic MIMS System With Restrictions 

The i~th item in the deterministic MIMS system consumes acer-

tain amount of scarce warehouse space, w ... There exists a finite 
1 

amount of total warehouse capacity, W. The maximum accumulation 



>:C 
of inventory for the i-th item, I., 

1 

,::;: 
will consume l.w. cubic unHs of 

l 1 

scarce warehouse space. Therefore, the restriction 'i: I,'.cw. < W 
1 1 -

80 

must not be violated. In the sections that follow, the necessary theory 

will be developed and a dynamic programming algorithm will be pre -

sented for finding optimal procurement and inventory policy in the 

face of this restriction. The source capacity constraint described in 

the first chapter will be conside.red after development and presentation 

of the algorithm. 

-----·""' ---·--· 

Item 

1 
2 
3 

TABLE XXIV 

MINIMUM COST PROCUREMENT QUANTITIES, 
DETERMINISTIC MIMS SYSTEM 

Source .1 Source 2 Source 3 Source 4 

80.7960 - 43.0571 38.2737 
45.7011 - 38.7806 37.5156 
23.2952 20. 1507 - 19.5543 

TABLE XXV 

Source 5 

39.5593 
34.3251 
20.7776 

OPTIMAL POLICIES, DETERMINISTIC MIMS SYSTEM 

Item 

1 
2 
3 

L 

- 7. 125 3 
-10.6917 

5. 2619 

Q 

38. 2737 
38.7806 
20.7776 

Source 

4 
3 
5 

Optimal policy as a function of I,:c. The objective of the dynamic 

programming algorithm is to find the optimal procurement and 
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inventory policy which minimizes the function: 

,~::: 
over the region I'.w. < O, 

1 1 ,--
* K * I.= O, 1, 2, .•. , ~ I.w;< W. * Since I. 
1 . 1 1 1-

. 1= 
1 

consumes scarce warehouse space, it is the resource which will be 

allocated in the dynamic programming algorithm. This necessitates 
,:c 

the expression of TC points for each value of I.w .. These TC values 
1 1 

. form cost functions for the algorithm. 

from the cost functions is explained in the next subsection. 

Tedious subscription will be avoided in the theoretical development 

which follows. This is possible since each cell (one item from one 

source) is considered on an individual basis. 

Equation (2. 5) may be solved for DT - L giving: 

D ,:, 
D T - L = Q( 1 - R ) - I . ( 5. 1) 

Substituting Equation (2. 5) and Equation (5. 1) into Equation (2. 15) 

gives: 

TC 
C D Chr':' 2 Cs[ Q( 1- ~)-I,:<] 2 

= CiD + -zf f -~--D-- + ----~---=De--~ 
2Q( 1 - R) 2Q( 1 - R ) 

The last term of Equation (5. 2) may be written cl;S: 

D 
C Q( 1 - - ) 

s · R ,,::; 

2 
- C I + 

s 

Equation (5. 2) then becomes: 

TC 
CD 

= CiD + -%- + 

.,,2 
c ('' 

s· +------D-
2Q( 1 - R ) 

*2 
C I 

s 
D 

ZQ( 1 - - ) 
R 

C Q( 1 - _!?) 
s R 

2 
- C I 

s 

( 5. 2) 

,:::: 

( 5. 3) 
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Taking the partial derivative of TC with respect to Q in Eqµation 

(5. 3) and setting the result equal to zero gives: 

..,,2 
c ('' 

8 TC CD 
,acr- - ~2 -

_ _,,,__s_=- = 0. 

2Q2{ 1 - ~) 

Solving Equation (5. 4) for Q gives: 

QI= 1 
D 

1 - R 

Solving Equation {2. 5) for 

* L = I + DT 

or, 
,;, 

LI = I + DT 

..,,2 
- G ('' 

s 

L gives: 

D 
Q{ 1 - -) 

R 

Ql(l-D) - R 

= D 
C { 1 - - ) 

s R 

Substituting Equation {5. 5) into Equation (5. 6) gives: 

J D .,,2 
,:, 2C D ( 1 - R ) + I,,. ( Ch + C ) 

L 1 = I + DT - P · s c 
s 

(5. 4) 

(5. 5) 

( 5. 6) 

:( 5 .• 7) 

Equation (5. 5) and Equation (5. 7) give the minimum cost Q and the 

minimum cost L as a function of I and other parameters. The 

minimum cost may be expressed as a function of r';, and other 



parameters by substituting the results of Equations (5. 5) and (5. 7) 

into Equation (5. 2) and modifying the last term on the basis of 

Equation (5. 1) giving: 
,:,2 

C (DT-L 1) 2 
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CD 
TC I = CiD + b· + 

ch I 
D + 

2Q'(l--) 

s . 

2Q'(l-D) 
( 5. 8) 

R . R 

The minimum cost value is designated TC 1 ' in Equation (5. 8) to dis -

tinguish it from the minimum cost value of Equation (2. 22). Likewise, 

the minimum cost procurement level, L 1, in Equations (5. 6), (5. 7), 

and (5. 8) and the minimum cost procuremei1t quantity, Q', in Equations 

(5: 5), (5. 6), and (5. 8) are distinguished from the minimum 'cost pro

curement level in Equ.ation ( 2. 21) and the minimum cost procurement 

quantity in Equation ( 2. 20) by primes. 

When applying the optimizing equations, Q 1 is always calculated 

first. If Q' < 1 or Q' < D then let Q' = 1 or Q 1 = D, respectively. 

Then,, Equation (5, 6) is used to calculate L'. 

An example deterministic MIMS policy with warehouse restriction. 

Suppose that the MIMS system .of the previous example is constrained 

by a total warehouse space of 100 cubic units; W = 100. Also suppose 

that Item 1 requires 24 cubic units, Item 2 requires 12 cubic units, 

and Item 3 requires 6 cubic units. 

Application of Equations (5.5 ), (5. 6) .. or (5. 7), and (5., 8) to the 

parameters of the previous example yields the TC!., L! .,., .. and Q.1., 

,lJ lJ •·•·· . lJ 
values of Table XXXVI. Cost values for items that cannot be procured 

from certain sources are given as very large values, M. The sub

scription in Table XXVI is explained as follows: TC!. is the minimum 
lJ 

total cost for purchasing the i-th item from the j-th source as a func-

* tion of I.w .. L'. and Q!. formulate the optimal P.olicy.values associat-
1 l lJ lJ . 

ed with TC! .• 
lJ 



1iv 1 

0 
24 
48 
72 
96 

I2v2 

c; 
12 
24 
36 
48 
6o 
72 
84 
96 

I_;v3 

0 
6 

12 
18 
24 
30 
36 
42 
48 
.54 
6o 
66 
72 
78 
84 
90 
96 

TABLE XXVI 

COST FUNCTIONS, DETERMINISTIC MIMS SYSTEM WITH WAREHOUSE RESTRICTION 

,r.· .. ·---··- ·"'·"'- ,•,, ,-., -- .. ~ ,. .. 
'l'Cl 1ii ~ ·~ Lk --~ 1'Cl LI 

~· !'C!i_4 ~ ~4 Tei, · li, '4s . 11 13 13 4 

193.28118 9.7171 .57.1314 M M M 217.6283 11 • .5723 }O.ltlt.59 193.}942 -1.5.0lt'l} 27.o6}6 208.6661 32.oltltl 27.9126 
193.00.58 10.61t7} .57 .41o8 M M M 217.3}81 12 • .5394 }0.4788 193.10.52 -14.<>843 27.100.5 208.3774 33.oo83 28.0084 
192.?68<> 11.439? ,S.24<>8 M . M M 217.o6?6 13.4411 ,0 • .5772 192.8}84 -13.1948 27.2111 208.109.5 33.9014 28.11.54 
192 • .5698 12.1003 .59 • .5986 M M M 216.8166 14.2??9 }0.7404 192,.5934 -12,378o 27.394.5 201.862? 34.7240 28.2929 
192.4086 12.6371 61,4491 M M M 216,5847 1.5.0.509 }O. 96?6 192.369? -11.6}2.5 2?.6491 207.6367 3.5.477.5 28 • .539.5 

!Cl 3.I ~ l'CI 3.l QI 'l'CJ Lt QI !'C! 1i~ Q14 Tel L~.5 Q' 21 21 22 22 22 23 23 a, 2.4 2.5 2.5 

83.3627 0.6896 34.965.5 M M M '76.8020 -17.6.588 29.670? 78.1975 4.2.6914 28.7029 76.7827 21.7486 26.2619 
83.2015 1.6319 }.5.o4}0 M M M ?6.6}89 -16.6994 29.7113 78. 034': 4.1. 7334 28. 7449 ?6.6205 22.1027 26.3078 
83.0571 2.4836 }5.2745 M M M ?6.4895 -1.5.8210 29.8329 7?.886o -10.8590 28.87o6 ?6.4?}8 23.5655 26.4450 
82,9311 3 •. 2286 }5.65?0 M M M ?6.}5}8 -15,022.5 }0.0345 77-7514 -10.o672 29.0788 ?6,3424 24.3383 26.6722 
82.8210 3.8761 36.1857 M M M 76.2314 -14,}024 30,3145 ??,6305 -9.3562 29.3679 ?6,2259 25.0236 26.9811 
82.7268 4.4303 36.851+4 M M M 76.1219 -13.6584 30.6707 ??.5230 -8. 7236 29, 7355 ?6,1238 25.6242 27,3866 
82.6476 4.8963 37.6555 M M M ?6,0249 -13.0SBl 31.1005 ??,4283 -B.1665 30.1786 76.0355 26.1439 21.8671 
82.582.5 5.2794 }8 • .58o8 M M M 75,9400 -12 • .5883 31.6009 7?,34.59 -7.6818 }0.6941 75.9602 26 • .5867 28.4246 
82.5}o4 5.5855 39.6217 M M M 75.8665 -12.15.58 32.1687 77.2751 -7.26.58 31.2783 75.8972 26.9571 29.0.545 

'l'C11 ~ -~l l'CI 
32 

LI 
32 Q12 2e13 LI, 

33 -~3 i'C~ L14 Q}4 i'C15 Lj5 ~5 

14,7874 5.0.50i 13 .2664 1.5.1472 -8.1888 11.4757 M M M 14.7837 -10.1349 11.1360 14.8178 O. lbO'+ 11. 8327 
14.5559 5.9760 13,3652 14.9136 -7.2.547 11 • .5433 M M M 14.5503 -9.2012 11.2023 14.5834 1.1o60 11.8951 
14.3607 6. 7569 13.6573 14.7125 -6.4503 11.7439 M M M 14.3494 -8.39?6 11.3988 14.3797 1.92o8 12.08o3 
14.1995 7.4018 l4.l3o8 14 • .5422 -5.?690 .12.0707 M M M 14.1794 -7,7178 11,7190 14.20.54 2.6183 12.3829 
14.o690 · 7,9239 14.?681 14,4003 -5.2012 12,5140 M M M 14.0379 -7.1518 12.1530 14.0583 3.2o68 12. ?944 
13.9654 6.3381 15 • .5491 14.2838 -4.7353 13.o619 M M M 13~9220 ..6.6880 12.6893 13.9359 3.6964 13,3o49 
13.8850 8.6598 16.4535 14.1898 -4.3592 13,7018 M M M 13.8285 -6.3141 13.3155 13,8355 4.0979 13,9034 
13.8241 8,9034 17.4620 14,1152 -4.o609 14.4214 M M M 13,7.545 -6.0181 14.0195 13.7.543 4.4224 14,5790 
13.7795 9.0816 18.5577 14.0573 -3,8293 15.2095 M M M 13.6971 -5.7887 14.7902 13.6900 4.6798 15.3216 
13.7486 9.2054 19.7261 14,0136 -3.6547 16.0.561 M M M 13.6540 -5.6162 15.6178 l}.6400 4.8796 16,1219 
13.7290 9.2837 20.9549 13.9821 -3,5284 16.9522 M M M 13.6230 -5.4920 16.4936 13.6025 5.0298 16. 9718 
13.7189 9,3242 22,2343 l3,96o8 -3.4433 17,8905 M M JI 13.6022 -5.4<>88 17.4105 13,5756 5.1375 17.861+1 
13.7167 9.3330 23,5558 13.9483 -j'.1931 18.8648 M M M 13.5901 · -5.}6o4 18,3623 13.5577 5.2o88 18.7929 
.13.7211 9.3152 24.9129 13.9432 ~·Yl29 · 19.8696 M M M 13,5854 -5.3418 19,3437 13.5'47? 5.2489 19,7;30 
13.7312 9.2748 26.3001 13.9445 ~.s"81: 20.90o6 M M M 13,5871 -5.3486 20.35o6 13,5445 5.2619 20.71+01 
13,7461 !'-2154 27, 7127 13,9513 ~~!+Q53 21.9.542 M M M 13.5943 -5,3772 21.3793 13 • .5470 5.2517 2l,75o4 
13.?651 9.:1395 29.1472 13.9628 -3-~14 23,0271 M II M l3.6o61 -5.4246 22.4269 13.5.546 5-~ 22.7809 

.. . , 00 
ij::,. 



The first step in finding the optimal policy for the constrained 

MIMS system is to develop condensed cost functions from Table XXVI. 

(In most instances of dynamic programming these are called return 

functions, but in this dissertation they will be conveniently called con-

densed cost functions.) These are shown in Table XXVII and are 

developed by searching across the TC!. entries for a specific value 
lJ 

of I,'.'w. for a given i and seeking the minimum entry. The minimum 
1 1 

value of TC!. together with the source for which this minimum occurs 
lJ 

is entered in the appropriate section of Table XXVII. Symbolically, 

this process may be stated as: 

* g.(I.w.) = 
1 1 1 

min [ TC!. ] . 
. lJ 
J O<I':'w.<W 

- 1 1-

Each section of Table XXVII refers to an item with the source from 

which the minimum value of TC .1 • came indicated by j. 
lJ 

Finding the optimal procurement and inventory policy for this 

restricted MIMS system is now reduced to a one-dimensional alloca-

tion process of dynamic programming. The sq lution proceeds stage -

wise with the aid of recurrence relations and a functional. equation 

technique. The cost expected from the first stage (item) if all avail-

able warehouse space is allocated to it is determined from 
,,, 

f 1 (W) = gl(r''~wi). This gives: 

f 1 ( 0) = g 1 (0) = 193. 2848 

f 2 ( 24) = g l ( 24) = 193. 0058 

fl ( 48) = g1 ( 48) = 192.7680 

fl (7 2) = g /7 2) = 192.5698 

f 1 (96) = g 1 (96) = 192. 3697. 
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.,, ... 
I.w. 

1 1 

0 
6 

12 
18 
24 
30 
36 
42 
48 
54 
60 
66 
72 
78 
84 
90 
96 

TABLE XXVII 

CONDENSED COST FUNCTIONS, DETERMINISTIC MIMS 
SYSTEM WITH WAREHOUSE RESTIUCTION 

,,, 

g2(I;w 2) 
,,, 

gl(I;wl) j j g 3(I;w 3) 

193. 2848 1 76. 7827 5 14.7837 
14. 5503 

76. 6205 5 14.3494 
14. 1794 

193.0058 1 76.4738 5 14.0379 
13.9220 

76. 3424 5 13.8285 
13.7543 

192.7680 1 76. 2259 5 13.6900 
13.6400 

76.1219 3 13. 6025 
13.5756 

192. 5698 1 76. 0249 3 13.5577 
13.5477 

75.9400 3 13.5445 
13.5470 

192. 3697 4 75.8665 3 · 13. 5546 

j 

4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

The computations for £1(W) are. now complete and the results are 

entered in the first stage of the solution table; Table XXVIII . 

. From the results of f 1 (W), f 2(W) may be computed using the 

recurrence relation: 

(5. 9) 

When W = 0, 

The only value of r;w 2 that satisfies the above restriction is zero. 

Therefore, 

f 2(0) = g 2(0) + ft(O) = 76. 782? + 193. 2848 = 270. 0675. 
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TABLE XXVUI 

SOLUTION TABLE, DETERMINISTIC MIMS SYSTEM WITH 
WAREHOUSE RESTRICTION 

-·- -·- '!:::: 

87 

-·- r;w 2(W) w f 1 (W) 11 w 1 (W) £2(W) f 3(W) r3w 3(W) 
I 

--

0 19 3. 2848 0 270.0675 0 284. 8512 0 
6 284.6178 6 

12 269. 9053 12 284.4169 12 
18 '~ 284. 2469 18 
24 193.0058 24 269.7586 24 284. 1054 24 
30 283.9895 30 
36 269. 6263 12 283. 8960 36 
42 -·- 283. 8218 42 

192. 7680 269. 4796 -·- 36 48 48 24 283.7338 
/ 

54 283. 6596 42 
60 269. 3482 36 283. 5871 36 
66 283.5129 42 
72 192. 5698 72 269.2317 48 283. 4486 48 
78 283. 3806 42 
84 269.1104 36 283. 3081 36 
90 283. 2339 I 42,:, 
96 192. 3697 96 268. 99 39 48 28 3. 1696 I 48 

When W = 1'2, 

¥in [ g2(r2,:'w 2) + £ 1(12 - I 2,:'w 2) J. 
·o<I' <12 . - zwz_-

,::::: 

For values of I 2w 2 ranging from O to 12 this gives one feasible 

combination; that is: 

When W = 24, 

For values of r;w 2 ranging from O to · 24 this gives: 
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lg z(O) + f l ( 24) = 7 6. 7 8 2 7 + 19 3. 0 0 5 8 :c, 26 9. 7 8 8 51 

~ 2(24) +£ 1(0) = 76. 4738+ 193. 2848 = 269. 758J . 

When W = 36, 

For values of r;w 2 ranging from O to 36 this gives: 

[

g2{12) +f 1(24) = 76. 6205 + 193. 0058 = 269 .. 62631 

f 2 (36) = Min 

g2(36) +f 1(0) = 76. 3424+ 193. 2848 =269. 6272 . 

This process is continued until f 2(96) is evaluated. The minimum 

value of f 2(W) is identified for each val.ue of W and entered in the 

second stage of Table XXVIII together with its associated value of 
,,, r;w 2 . 

The third stage is considered next. Using the results of f 2(W), 

£3(W) may be computed using Equation (5. 9). When, W = 0, 

The only value of r;<w 3 that satisfies the above restriction is zero. 

Therefore, 

£3(0) = g3(0) + £2(0) - 14. 7837 + 270. 0675 = 284. 8512. 

When W = 6, 

,,, 

~in [ g 3(13':'w 3) + £2(6 - r3':'w3)]. 
O<I"'w <6 

- 3 3-

For values of r; w 3 ranging from O to 6 this gives one feasible 

combination; that is: 
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When W = 12, 

]:<"or values of ('w3 rangingfrom Oto 12. this gives: 

r
g3(0) +£ 12) = 14. 7837 + 269. 7053 = 284. 6890-

f3( 12) = Min 

__ g3( 12) + f 2(0) = 14. 3494+ 270. 0675 = 283. 4169-' 

When W ::: 18, 

¥in [ g 3(r3':'w 3) + f 2( 18 
O< I"'w < 18 

- 3 3-

For values of r;'w 3 ranging from O to 18 this gives: 

lg3(6) +f/12) = 14. 5503+269. 9053 = 284. 4.556]

£3( 18) ::: Min 

g3( 18) + f 2(0) = 14. 1794+270. 0675 = 284. 2469 . 

Again, this process is continued until. f 3(96) is evaluated. The mini

mum value of f 3 (W) is identified for each value of W and entered in 

the third stage of Table XXVIII together with its associated value of 

Slight differences occur in the results of Table XXVIII and the 

Appendix offered at the conclusion of this dissertation. These slight 

discrepancies, the maximum of which is $0. 0001 per stage in any of 

the dynamic programming solutions in this investigation, is caused by 

the truncation of the digits four places to the right of the decimal when 

displayed by the computer. The hand solutions utilize the condensed 

cost functions displayed by the computer, truncated as above, resulting 



90 

in the slight discrepancies. 

Table .XXVIII may now be used to find the optimal procurement and 

inventory policy for this constrained MIMS system. The minimum 

total system cost is found to be $283. 1696 per period and appears as 

the last entry in the third stage of Table XXVIII. Table XXVIlI also 

indicates that 24 cubic units of warehouse space are to be allocated to 

Item 1, 24 cubic units to Item 2, and 48 cubic units to; Item 3. These 

allocations of scarce space to items are indicated by asterisks and are 

determined by working backwards in Table XXVIII. The penalty in 

total system cost arising due to the warehouse constraint is $283. 1696 

less $280. 1796 or $2. 9900 per period. 

Reference to Table XXVII with the vector of space allocations indi

cates that Item 1 should be procured from Source 1, Item 2 from 

Source 5, and Item 3 from Source 5. Finally, reference to Table XXVI 

for the source established indicates that the procurement level and 

procurement quantity for Item 1 should be 10. 6473 and 57. 4108 re

spectively. The procurement level and procurement quantity for Item 

2 should be 23. 5655 and 26. 4450 respectively, and for Item 3 the pro

curement level and procurement quantity should be 4. 6798 and 15. 3216 

r E:l spective ly. 

The optimal procurement and inventory policy for this restricted 

MIMS system is summarized in Table XXIX. Comparison of Table 

XX.IX and Table XXV demonstrates that the policy established for the 

unrestricted system in no way predicts the policy for the same system 

with a warehouse restriction. 



TABLEXXIX 

OPTIMAL POLICY, DETERMINISTIGMIMS SYSTEM 
WITH WAREHOUSE RESTRICTION 

Item LI Q' Source 

1 10. 6473 57. 4108 l 
.2 23.5655 26.4450 5 

3 4.6798 15. 3216 5 

An example deterministic MIMS policy with both warehouse and 

source capacity restrictions. The i"'th item requires h .. hours of 
lJ 

scarce production time from the j .. th source. There exists a certain 

amount.of total production time available at each source, H.. There-
. J 
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fore, the sum of the product of production time per unit and the number 

of units procured from a given source must not exceed H. for a given 
J 

j. Stated symbolically this restriction becomes 

~ h ... D. 6 .. ,( .. ) < H. 
i , lJ l J, J 1 J 

for every j. 

(1) 

( 2) 

The symbol 6 .. ,(i) is. defined as: 
J, J 

6. . '(.) = 0 . if the i-th item is not procured from 
J' J l 

the j .. th source 

6 · .. '(.) 'J' J l 
= l , if the i-th item is procured from the 

· j ~th source. 

Suppose that the restricted MIMS system under discussion is sub-

ject to the h .. and H. values given in Table XXX. •. Source 3 is a 
lJ J 

vendor who has chosen not to. disclose a manufac;turing time or a capac -

ity, Rather, Source 3 states that it can. meet any demand schedule 



presented for Items 1 and 2. 

Item 

1 
2 
3 

H. 
J 

TABLE'XXX 

SOURCE CAPACITYRESTRICTIONS, DETERMINISTIC 
MIMS SYSTEM 

Source 1 •· Source 2 · Source 3 Source 4 Source 

3.43 - 0 3.50 · 3. 82 
1. 70 - 0 1. 65 1. 53 
1. 08 1. 12 - 1. 04 .1. 10 

22.00 5.40 - 3. 60 7. 10 

5 

The minimum cost allocation summarized in Table XXIX refers 

to the policy associated with f 3(96). This policy results in the array 

:of 6. ; '(.) displayed in Table XXXL Utilizing the information dis -
. J, J l 

played in Tables XX, XXX, and XXXl the total time required from 

each sou,rce is as follows: 

Source 1 :: (3. 43)(,!)({;>)+( l. 70)(0)(4)+( 1. 08)(0)(1)=20. 58 

Sources 2, 3, and 4t O 

Sources : (3 •. 82)(0)(6)+(1. 53)( 1)(4)+( l. 10)(:1)( 1)=7. 22. 

Source 5 violates the source capacity constraint since 7. 22 > · 7. 10. 

It may be concluded:that f 3(96) of Table XXVIII does not yield a 

. feasible policy. 

An approach to determining a feasible policy is to try the next 

minimum policy until a policy is exhibited that does. not violate the 

source capacity constraint .. The next minii;purri policy is. f 3(90). 

92 
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• However, by tracing through the backward solution and then Table 

XXVII to identify the sources, it may be concluded that the a.rray of 

o. . '('),is identical to that of Table XXXI. Thus, Source 5 again violates 
J, J 1 

. the source capacity constraint. Applying the procedure outlined above, 

the next ·minimum policy is f 3(84), which would result in the array of 

o. .1( ') offered in Table XXXII. Utilizing the information displayed in 
-J' J 1 

. Tables· XX, XXX, and XXXII the total time required· for each source is 

as follows: 

: Source 1 (3. 43)(.1)(6)+( 1. 7Q){0)(4h(1. 0$)(0)(1) =20. 58 

: Sources 2 and 3 : 0 

·. Source 4 

.- Source 5 

{3.50)(0)(6)+(1. 65)(0)(4)+(1. 0'1:,)(1)(1) =l. 04 

(3. 84)(0)(9 )+{ 1. 53)( 1)( 4)+( 1. 10)(0)( 1) = 6. 12 

The capacity of each source is sufficient to. meet demand .. Hence,. f:3(84) 

yields a feasible policy. 

Item 

1 
2 
3 

TABLEXXXI 

.. ARRAY OF o. ''(')- FOR f 3(96) 
.J' J 1 

Source 1 ·- Source 2 Source 3- c Source 4 

1 0 0 0 
0 -o 0 0 
0 0 0 0 

,source 

0 
1 
1 

The procedure outlined above offers an approximate means of 

5 

· finding feasible procurement and. inventory policy in the light of source 

capacity constraints •. The total system cost for this feasible solution 
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may be found to be .$283. 3081 which gives a penalty of $283. 3081 Less 

• $283. 1696 or $0. 1385 over the system with only a warehouse con-

straint. :Actually, this is an upper bound on the penalty incurred. The 

maxim·um per cent error is: 

. $283.3081 -$283.1696 x 100 = 0.0489. 
$283. 3081 

To find a feasible solution that yields an optimal policy in the Light of 

source capacity constraints would require a more complex application 

of dynam~c programming. 

TABLE XXXII 

ARRAY OF \,j'(i) FOR f 3(84) 

Item Source 1 Source 2 Source 3 Source 4 Source 5 

1 1 0 0 0 0 
2 0 0 0 0 1 
3 0 0 0 1 0 

A Simplified Probabilistic MIMS System 

An Example Simplified Probabilistic MIMS Policy 

As discussed in Chapter I, all parameters are either item depen-

dent or both item and source dependent. However, Equations, (2. 66), 

(2. 67), and (2. 60) can be used to solve simplified probabilistic prob-

· Lems without restrictions. The procedure is as follows: For every 

item in the inventory, evaluate each source, selecting that source which 
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can supply the demand at the minimum total cost. Realizing that the 

global optimum is the aggregate of the local optima, the optimal poli-

cies just determined formulate the policy of the simplified probabilis-

tic MIMS system without restrictions. The minimum total system 

cost is the sum of the individual minimum costs. 

As an example of the simplified probabilistic unrestricted MIMS 

system consider the determination of the minimum cost procurement 

and inventory policy for a system involving two items and three sources. 

Source l is a manufacturing or remanufactu,ring alternative while 

Sources 2 and 3 are either vendors or intrafirm transfer alternatives. 

The item dependent parameters of demand, holding cost, and shortage 

cost are given in Table XXXIII. Parameters that depend upon the item 

as well as the source are given in Table XXXIV. The blank cells 

denote that the item is not available from the source indicated. 

TABLE XXXIII 

ITEM DEPENDENT PARAMETERS, SIMPLIFIED 
PROBABILISTIC MIMS SYSTEM 

Item Demand Holding 'Cost Shortage Cost 
-----+----·----+------·----1-------------"-

l 
2 

2. 0 
l. 8 

$0. 10 
$0. 12 

$4. 00 
. $ 3. 80 



TABLE XXXIV 
, 

ITEM AND SOURCE DEPENDENT PARAMETERS,. SIMPLIFIED 
PROBABILISTIC. MIMS SYSTEM 

Item Source 1 I : Source 2 Source 3 

· Lead Time 

1 ·2 4 
·. 2 3 2 

Replenishm.ent Rate 

1 I 10 
; 

I 
00 

2 8 . 00 

. Item Cost 

1 • $7. 00 - · · $6. 30 
2 •· $4.. 34 : $4. 25 

· Procurement Cost 

1 I :$6.00 -$6.25· 
2 :$5.50 : $5. 75 

·Applying.Equation (2. 66) to each item and each source gives the 

procurement quantities of Table XXXV. 

TABLE XXXV 

MINIMUM COST PROCUREMENT QUANTITIES, SIMPLilfIED 
PROBABILISTIC ,MIMS SYSTEM 

Item 

1 
2 

Source 1 

18.'1265 
16. 516 1 

; Source 2 .·· Source 3 

17.5021 
13. 7265 

96 
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Application of Equation· ( 2. 67) to each item and each source results in 

the procurement levels given in, Table XXXVL 

TABLE .. xxxvI 

MINIMUM COST PROCUREMENT LEVELS, SIMPLIF:IED 
PROBABILISTIC MIMS SYSTEM 

Item 

1 
2 

Source 1 

6. 1873 
7.6706 

: Source 2 · .,·· Source 3 

12. 4995 
5. 4661 

Substituting the results of Equations. ( 2. 66) and ( 2. 67) into Equation 

, (2. 60) for each item and each source yields the minimum costs given 

. in Table XXXVII. The optimal procurement and inventory policy for 

this unrestricted MIMS system are summar.ized in Table XXXVIII. 

TABLE XXXVII 

MINIMUM COST POINTS, SIMPLIFIED 'PROBABILISTIC 
MIMS SYSTEM 

Item 

1 
•. 2 

: Source 1 : Source 2 

i. $15. 6688 
$ 9.6204 ... $9.5208 

. Source 3 

-$14.7998 



TABLE XXXVIII 

OPTIMAL POLICY, SIMPL.IFIED PROBABILISTIC 
MIMS SYSTEM 

Item 

l 
2 

L 

12.4995 
5. 466 l 

Q 

17.5021 
13. 7265 

Source 

3 
2 
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Optimal Policy for Simplified Probabilistic MIMS System With Ware -
house Restriction 

The i-th item in the simplified probabilistic MIMS system con-

sumes a certain amount of warehouse space, w .. 
1 

There exists a 

finite amount of total ware house capacity, W. The maximum accumu

lation of inventory for the i-th item, I,:, , will consume I,:, w. cubic 
m. m. 1 

1 1 .,, 

units of scarce warehouse space. Therefore the restriction :E ('' w. , . m. 1 
1 1 

must not be violated. In the sections that follow the necessary theory 

will be developed and a dynamic programming algorithm will be pre-

sented for finding optimal procurement and inventory policy in the face 

of this restriction. 

Optimal policy as a function of Im The objective of the dynamic 

programming algorithm is to find the optimal procurement and inven-

tory policy which minimizes the function: 

* * * ... , I WK) = g l(I w l)+g2(I , w2) + 
mK ml m2 

'~ ~(; 

R (I w 1, I w 2, 
ml m2 .. 

* + gK(ImK wK) 

* ,::;:: K ,::;:: 
over the region I w. > 0, I =0, 1, 2, ... , :E I · w.< W. Since 

mi 1 - mi i= l mi 1-
>',< 

I consumes 
m. 

1 

scarce warehouse space, it is the resource which will 
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be allocated in the dynamic programming algorithm .. Th.is necessitates 

* the expression of TC points for each value of I .w.. These TC m m. 1 
1 

values form cost functions for the algorithm. Development of the 

>',c 
g.(I w.) from the cost functions is explained in the next subsection. 

1 m. 1 
1 

Tedious subscription will be avoided in the theoretical develop-

ment which follows. This is possible 1:,ince each cell (one ite,n from 

one source) is considered on an individual basis. 

Equation ( 2. 47) may be solved for L giving: 

* .D 
L =. I -Q(l-~)fD T. 

m R mm 
(5. 10) 

Substituting Equation (5. 10) into Eqqation (2. 60) gives: 

C D m . L * Q( 1 - DRm ) J 
TC - C D + p + C I - · m-im Q h m 2 

* D . 2 1 
- I +Q( 1- ~) - D T ] -1 l 

m R m m ~ (5 , ll) 
, C'D . {[A' 

+ s m 
2QA' 

Let: 

v1 :::; C.D 
1 m 

v2 = c D 
p m 

v3 = ch 

v4 
Dm 

= (1 - -) 
R 

C'D 
v5 

s m = 2A' 

v6 = D T 
m m 

x = Q 

y = L 

* u = I m 

Then, 



= vr + 

100 

v5 
- x· 
( 5. 12) 

Taking the partial derivative of TC with respect to X in Equa-
rn 

tion (5. 12) and setting the result equa:.l to zero gives.: 

a TC 
m 

ax 
(A 1 -U+V 4X-V 6) 2 

x2 

Equation (5. 13) subsequently reduces to: 

-2v2'"'.v3v4x2+4V4 2v5x 2 -2V5(A 1-U -V6) 2 - 2V42 v5x 2 + 2V5 

2X 

2 2 2 
. _ X [ - V 3 V 4 + 2V 4 -V 5 ] = 2V 2 + 2V 5 [ (A ' - U - Vb) - l] 

2V 2 + 2V5[(A' - U-V:6) 2 - l] 

-v 3v 4+:2v4 2v 5 
-x2 =· 

x = 

Returning to the original symbolism: 

Q' = 

C'D 
2C D _ + s rn [ (A 1 - I* - D T ) 2 -1] e rn A• - m rn rn 

Substituting Equation (2. 51) into. Equation (5. 14) gives: 

(5. 13) 

= o. 

(5. 14) 



101 

. c.•n A• * 2 
2C D . + s m [ (--- - I ) - 1] 

o• = p m A 1 2 · m 
C 1D ·D b 

-C (1--2:!.) h . R 

(5. 15) 
s m ·( 1 .· . In ) 2 
A1 -,r 

And,. substituting Equation (2. 51) into, Equation (5. 10) gives: 

* D A' 
L' = I - Q' ( 1 - -2!:) + -2· . m . R 

(5. 16) 

Equation (5. 15) and Equation (5. 16) give the minimum cost Q and 

'* the minimum cost L as a function of J and other parameters. . m 

. * The expected minimum cost may be expressed as .a !unction of I . m 

and other parameters by substituting the results of Equations (5. 15) 

and (5. 16) into Equation ( 2. 60) as follows: 

CD 
. TC' = C.D _ + PQ~ · + · m 1 m ~ D J Q'(l-·m) -

· C R .· + L 1 - D T 
h 2 m m 

C~Dm[(A 1 - L 1) 2 - l] 

+ . 2Q'(A ') '• (5. 17) 

The minimum cost value is designated TC I in Equation (5. 17) to 

. distinguish it from the minimum cost value without restrictions, Like-

-wise, the minimum cost procurement level, L ',. in Equation (5. 16) 

and the minimum cost procurement quantity, Q 1, in Equation (5. 15) 

are distinguished from the minimum cost procurement level in Equa-

tion ( 2. 67) and the minimum cost procurement quantity in Equation 

. (2. 66) by asterisks. 

: When applying the optimizing equations Q' is always calculated 

-first.. If Q' < l or Q'<b. , then let Q' = 'l or Q' = D., m m 

respectively. If L' < . D T , then let L' = D T . mm· , mm 
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An example simplified probabilistic MIMS policy with warehouse 

restriction. Suppose that the MIMS system of the previous example is 

constrained by a total warehouse .space of 100 cubic units;• W ::; 100. 

Also suppose that Item l requires 9 cubic un,its and that ltem 2 requires 

7 cubic units. 

Application of Equations (5. 15), (5.)6), :and (5. 17) to the para-

meters of the -previous example yields the TC 1 _- , L!., and _ m.. lJ 
lJ 

of Table XXXIX .. Note that ·TC' is given as a function of - m .. 
lJ 

Q!., values 
lJ 
* I w. up m. 1 

1 

to the maximum space available in the warehouse. _ Cost values for 

items that cannot be procured from certain sources are given as very 

· large values, - M. The subscription of Table XXX:IX is explained as 

follows: TC I is. the minimum total cost for purchasing the i-th item 
m .. 
~ * from the j-th source as a_ function. of I -- w.. L!. and Q!. formulate 

mi 1 lJ -lJ 

th,e optimal policy associated with -TC' .. 
m .. 

lJ 
The· first step in finding the optimal policy for the constrained 

probabilistic· MIMS system is to develop condensed cost functions from 

Table XXXIX .. These are shown in Table XL and are developed by 

' * searching across the TC!. entries for a specific value of I _ w. for 
lJ m. 1 

1 

· a given i and seeking the minimum entry. - The minimum value of 

-- TC' together with the source for which this minimum occurs is m.. . 
lJ 

entered ~n the appropriate section of Table XL. Symb01'i.cally, this 

process. ~ay be stated as: 

* ·g.(I - w.) = 
1 m. 1 

1 

Min [ 
j 

TC!. 
m .. 

] . 
* lJ 

O<I w.<W 
- m .. 1-

1 

Each i:;ection of Table XL r 0efers to an ite;m with the source from which 

the minimum value of TC' ·_ came indicated by j. 
mij 



* I . 
mlwl 

18 
27 
36 
45 
54 
63 
72 
81 
90 
99 

..,, .... 
I •. 
m2w.2 

14 
21 
28 
35 
42 
49 
56 
63 
70 
77 
84 
91 
98 

TCI I 

TABLEXXXIX 

·cost F·UNCTIONS, SIMPLIFIED PROBABILISTIC MIMS SYSTEM 
· WITH WAREHOUSE RESTRICTION 

D\ 1 0\1 TC 1 ·LI 0112 TC' · 'LI .. -· tz . mlL ml2 ml3 . . 13 

21. 9000 4.0000 2.5000 M M M 26. 8221 8. 0000 · 
19. 3499 4.0000 3.7500 M M M 22. 1647 . 8.00q'O .· 
18. 1000 4.0000 5.0000 ·M M M 19, 8610 .8.0000 
17. 3700 4.0000 6.2500 ,M M M 18.4988 8.0000 
16. 8884 4.4450 6. 9436 ,M M M 17.6073 8.0000 
16~ 5332 4. 9525 7.5592 .. M M M 16. 9849 8.0000 

· 16. 2733 5.3238 ·8:3452 M M M 16. 5297 . 8~ 1735 
16. 0845 5.5934 9. 2582 .M M M 16. 1616 · 9. 0941 
15. 9480 5.7885 10. 2643 M M M 15. 8552 9.8603 
15.8498 5.9288 11. 3389 ·M M M 15. 6054 10.4850 

,1..1>· 'I'C1 TC 1 ·. L121 0121 TC 1 .L122 Q/22 
m21 m22 > m23 . ,23 ·.· 

-· 
15. 2237 5.4000 2.5806 15.7840 3.6000 2.0003 :M· M "· 

12.8531 5.4000 3.8709 13. 1727 · 3. 6000 3.0005 M M 
11.69.78 5.4000 5. 1612 11. 8970 3.6000 4.0007 ·. 'M ·M 
11. 0286 5.4000 6.4516 11. 1556 .. 3. 6000 5.0009 ··M M 
IO. 6025 5.4000 7.7419 10. 6649 4.0874 5.5135 <M .M· .. ·· 
10.3109 5.8087 8.5048 10.3101 4.5149 6.0861 .M ·M. 
10.0917 6. 3997 9.0325 IO. 0561 4.8209 6.7802 .· M M 
9, 9298 6. 8362 9.7596 9.8754 5.0387 7. 5626 ,M M 
9.8135 7. 1499 . 10. 6452 9,7475 5. 19 29 8.4085 M M 

·9.7324 7.3687 11. 6532 9.6579 5.3008 9.3008 ·M ·.M .. 
9.6781 7.5150 12.7547 9.5967 5.3745 10. 2272 .M M 
9.6443 7. 606 1 13. 9275 9.5569 5. 4226 11. 1793 M M 
9. 626 3 7.6548 15. 1550 9.5333 5.4510 12. 1511 M M 

·.QI 
· 13 

2.0004 
3.0006 
4.0008 

.· 5.0010 
6.0012 
7.0014 
7.8279 
7.9074 
8. 1412 
8.5166 

Q,l 
·. 23 

·.M 
M 
M 

.M 
· .. M 
.M 

.• M 

.M 

M 
M 

•M 
M 

.M 

. 

-0 
~ 



TABLE XL 

CONDENSED COST FUNCTIONS, SIMPLIFIED PROBABILISTIC 
MIMS SYSTEM WITH WAREHOUSE RESTRICTION 

* * * I w. . gl(Imlwl) j g2(I w2) j m. 1 . m2 1 

14 15. 2237 1 
18 27 .. 9000 l 
21 12. 85 31 1 

. 27 19.3499 l 
· 28 11.6978 1 

35 11. 0286 l 
36 18. 1000 l 
42 10.6025 l 
45 17.3700 l 
49 10. 310 l 2 
54 16. 8884 l 
56 10. 0561 2 
63 16. 5332 1 9.8754 2 
70 9.7475 2 
72 16. 2733 l 
77 9.6579 2 
81 16. 0845 1 
84 9,5967 2 

,90 15. 8552 3 
91 9.5569 2 
98 9.5333 2 
99 15. 6054 3 

Finding the optimal procurement and inventory policy for this 

restricted MIMS system is now reduced to a one-dimensional alloca-

tion process of dynamic programming. The solution proceeds stage -

wise with the aid of recurrence relations and a functional equation 

technique. The cost expected from the first stage (item) if all avail-

able warehouse space is aUocated to it is determined from 

fi(W) = g 1(r: 1
w 1). This gives: 

104 
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f 1 ( 18) = g l ( 18) = 21. 9000 

fl ( 27) = g l ( 27) = 19. 3499 

· f 1 (36) = g l ( 36) = 18. 1000 

f1(45) = gl(45) = 17.3700 

fl (54) = g l (54) = 16. 8884 

fl (63) = gl(63) = 16. 5332 

fl ( 7 2) = g l ( 7 2) = 16. 2733 

. £1 (81) = g l ( 81) = 16. 0845 

f' l (90), - g l (90) = 15. 8552 

. f 1 (99) = g1 (99), = 15. 6054. 

The computations for f l(W) are now complete and the results are 

entered in the first stage of the soh.,ition table; Table XLI. 

From the results of f 1 (W), f 2(W) may be computed using the 

recurrence relation: 

* . * f (W)= Min [glI. wHf _ 1(W-I wK)] 
--i< O<I*. w. <W K mK K -X . mK . 

- mK K- . 

(5. 18) 

When W = 32, 

* * f 2(32) = ,_Min [ g 2(I w 2)+£ (32-I w 2)]. 
O< I~ w < 3 2 · m 2 1 m 2 

- Ir! 2-2 

* For values of I w 2 ranging from O to 32 this gives one feasible 
m2 

combination; that is: 

f 2(32) = g 2(14) +£ 1(18) = 1s.2231+ 21.9000 = 37.1237. 

When W = 39, 



TABLE XL! 

SOLUTION: TABLE, SIMPLIFIED 'PROBABILISTIC MIMS SYSTEM 
WITH WAREHOUSE RESTRICTION 

* * w f 1(W) I w 1(W) £ zCW) Im 2 w2(W) rn 1 

18 21. 9000 18 
27 19.3499 27 
32 37. 1237 14 
36 18. 1000 36 

. 39 34.7531 21 
41 34.5736 14 
45 17. 3700 45 
46 33.5978 28 
48 32.2030 21 
50 33.3237 14 
53 

* 
32. 9286 35 

54 16. 8884 54 
55 31. 0477 28 
57 30.9531 21 
59 32.5937 14 
60 32. 5025 42 
62 30. 3785 35 
63 16.5332 63 
64 29.7978 28 
66 30.2231 21 
67 32.2101 49 
68 32. 1121 14 
69 29. 9524 42 
71 29. 1286 35 
72 16. 2733 72 
73 29.0678 28 
74 31.9561 56 
75 29.7415 21 
76 29.6600 49 
77 31. 7569 14 
78 28. 7025 42 
80 28. 3986 35 
81 16.0845 81 31. 7754 63 
82 28. 5862 28 
83 29. 4061 56 
84 29.3863 21 
85 28.4101 49 
86 31. 4970 14 
87 27. 9725 42 
88 31.6475 70 
89 27.9170 35 
90 15.8552 90 29.2253 63 
91 28. 2310 28 

;_ ·. · .. .-,_; 

id6 
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TABLE XLI (Continued) 

>',c ,:c w f 1(W) I w 1(W) f 2(W) Im w2(W) 
ml 2 

92 28. 1561 56 
93 29. 1264 21 
94 27.6801 49 
95 31. 3082 14 
96 27.4909 42* 
97 29.0974 70 
98 27.5618 35 
99 15. 6054 99 27. 9754. 63 

,100 29. 9711 28 

>:C 
. For values of I w 2 ranging from O to 39 this gives one feasible 

ml 
combination; that is: 

f2(39) ::; g2(21) + f/18) ::; 12. 8531 + 21. 9000::; 34. 7531. 

When W ::; 41, 

* * Min [ g 2(I . w2 + f 1(41-Im
2

w 2)]. 
O<I,:, w <.41 m2 

- m 2 2-

>:C 

For values of I w 2 ranging from O to 41 this gives one feasible 
m2 

combination; that is: 

f 2(41) ::; g2(14) +f /27) ::; 15. 2237 + 19. 3499 ::; 34.5736. 

This process is continued until f 2( 100) · is evaluated. The minimum 

value of f 2(W) is identified for each value of W and entered in the 

>',c 
· second stage of Table XLI together with its associated value of I w 2 . . m2 

Table XLI may now be used to find the optimal procurement and 

inventory policy for this constrained probabilistic MIMS system. The 

minimum expected total system cost is found tobe$27, 4909 per period 
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and is noted with an asterisk in column 2. Table XL! also indicates 

that 54 cubic units of warehouse space are to be allocated to Item 1 

and 42 cubic units are to be allocated to Item 2. The penalty in expect-

ed total system cost arising due to the warehouse constraint is 

$27. 4909 less $24. 3206 or $3.1703 per period. 

Reference to Table XL! with the vector of space allocations indi-

cate s that Item 1 should be procured from Source 1 and that Item 2 

should be procured from Source 1. Finally, reference to Table XXXIX 

with the sources established indicates that the procurement level and 

procurement quantity for Item 1 should be 4. 4450 and 6. 9436 re spec-

tively. The procurement level and procurement quantity for Item 2 

should be 5. 4000 .and. 7;. 7419 r,ei;;pectively. 

The optimal procurement and inventory policy for this restricted 

MIMS system is summarized in Table XLH. 

TABLE XLII 

OPTIMAL POLICY, SIMPLIFIED PROBABILISTIC MIMS SYSTEM 
WITH WAREHOUSE RESTRICTION 

Item 

1 
2 

.Lr' 

4.4450 
5.4000 

Q' 

6.9436 
7.7419 

Source 

1 
1 



CHAl?T~RVI 

REDUCTIQN TO LOWER ·ORDERED SYSTEMS 

The deterministic and probabilistic MIMS systems presented in 

the previous chapter can be reduced to lower ordered systems. Optimal 

procurement and inventory policy for the lower ordered systems can 

be found by the computational schemes presented. Specifically, this 

chapter will indicate how the· previous algorithms can be used to 

determine procurement and inventory policy for a. MISS system,. a 

SIMS system, and a. SISS system. Both the constrained and the uncon-. 

strained versions of these systems will be presented. 

Reduction of the Deterministic MIMS System 

Reduction to the Deterministic MISS System 

Suppose that the three items of the deterministic MIMS System 

described in Chapter V can only be procured from Source 4 and that 

the parameters indicated for that source appJy. When the MISS system 

is not constrained, the minimum cost points found in Table XXII can be 

used· to find the total system cost. This total system cost is 

.. $191. 0176 + $77. 0517 · + $13. 5853 = $281.6546. The minimum cost 

procurement levels given in Table XXUI and the minimum cost procure

ment quantities given in Table XXIV are. applicable. These are sum:

marized in Table XLIII. 

109 
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TABLE XLIII 

OPTIMAL POLICY, REDUCTION TO DETERMINISTIC MISS SYSTEM 

Item 

l 
2 
3 

L 

-7.1253 
-5.9515 
-5.3413 

Q 

38.2737 
37.5156 
19.5543 

When the warehouse space is finite the solution may be found by 

dynamic programming. Assume, as before, that the warehouse space 

is 100 cubic units and that the cubic units of space required by Item 1, 

Item 2, and Item 3 are 24, 12, and 6 respectively. 

The condensed cost functions for this situation may be derived from 

Table XXVI by reference to Source 4. These are exhibited in Table 

XLIV. As before, each section refers to ah item with the source indi-

cated by j. 

The cost expected from the first stage if all available warehouse 

space is allocated to it is determined from £1(W)=g 1(I;w 1). This gives: 

fl ( 0) = g l (0) = 193. 3942 

fl ( 24) = g l ( 24) = 193. 1052 

fl(48)= g l ( 48) = 192.8384 

fl ( 7 2) = g l ( 7 2) = 192.5934 

fl(96)= gl(96) = 192. 3697. 

The computations for f 1(W) are now complete and the results are 

entered in the first stage of the solution table; Table XLV. 



TABLE XLN 

CONDENSED COST FUNCTIONS, REDUCTION TO DETERMINISTIC 
MISS SYSTEM WITH WAREHOUSE RESTRICTION 

J, -·- ,:c * '•' 

g 1 (Ii'w 1) I.w. j g2(I2w2) j g3(I3w3) j 
1 . 1 

0 193. 3942 4 78. 1975 4 14.7837 4 
6 14.5503 4 

12 78.0346 4 14.3494 4 
18 14. 1794 4 
24 193. 1052 4 77.8860 4 14.0379 4 
30 13. 9220 4 
36 77.7514 4 13. 8285 4 
42 13.7545 4 
48 192.8384 4 77. 6305 4 13. 6971 4 
54 13.6540 4 
60 77.5230 4 13.6230 4 
66 13.6022 4 
72 192. 5934 4 77.4283 4 13.5901 4 
78 13.5854 4 
84 77.3459 4 13.5871 4 
90 13.5943 4 
96 192. 3697 4 . 77. 2751 4 13.6061 4 

TABLE XLV 
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SOLUTION TABLE, REDUCTION TO DETERMINISTIC MISS SYSTEM 
WITH WAREHOUSE RESTRICTION 

w £ l(W) 
,,, .,, 

I 1w 1(W) f 2(W) 
,:~ 

I 2w 2(W) £ 3(W) 
,,, 

I;-w 3 (W) 

0 193.3942 0 271. 5917 0 . 286. 3754 0 
6 286 . 1420 6 

12 27 l. 4288 12 285. 9411 12 
18 

* 
285.7711 18 

24 193. 1052 24 · 271. 2802 24 285. 6 296 24 
30 285.5137 30 
36 . 271.1398 12 285.4202 36 
42 285. 346 2 42 
48 192. 8384 48 . 270. 9912 24 285.2573 36 
54 ,., 285. 1833 42 
60 270.8576 36' 285. 1087 36 
66 285.0347 42 
72 192. 5934 72 270.7244 24 284.968 3 36 
78 284. 8942 . 42 
84 270.5898 36 284.8197 36 
90 284.7457 42,:, 

. 96 192. 3697 96 270.4689 48 284. 6851 36 
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:.-From the results of f 1(W), f 2(W) may be computed using the re

currence relation given by Equation (5. 10). When W = O, 

* The only value of I 2w 2 that satisfies the above restriction is zero. 

Therefore, 

f 2(0) = g2(0) = 78. 1975 + 193. 3942 = 271. 5917. 

When W =. 12, 

* For values of I 2w 2 ranging from O to · 12-. this gives one feasible 

combination; that is: 

f2(12) = g2(12) + f 1(0) = 78. 0346+ 193. 3942 = 271.4288. 

When W = 24, 

* . For values of 12 w 2 ranging from O to 24 this gives: 

[
g2(0) + fl(24) = 78. 1975+193. 1052= 271. 302J 

f 2 ( 24) = Min . 

g2(24),+.~1(0) = 77.8860+193. 3942=271. 2802. 

This process is continued until f 2(96) is evaluated. The minimum 

value of f 2(W) is identified for each value of W and entered in the 

. * 
second stage of Table XLV together with its associated value of I 2w 2. 

The third sta'ge is considered next~ Using the results of f 2(W), . . 

f 3(W) may be computed using Equation (5. 10). When . W = 0, 
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The only value that satisfies the above restriction is zero. Therefore, 

f3(0) = g3(0) + f2(0) = 14. 7837 + 271. 5917 = 286. 3754. 

When W = 6, 

* For values of r3w 3 ranging from O to 6 this gives one feasible 

combination; that is: 

f3(6) = g3(6) + f2(0) = 14. 5503 + 271. 5917 = 286. 1420. 

When W = 12, 

~.: 

For values of r3w 3 ranging from O to 12 this gives: 

[

g3(0)+£2(12)=14. 7837+271. 4288=286. 2125] 

f 3(12) = Min . 

g3(12)+£2(0)=14. 3494+271. 5917=285.9411 

Again, this process is continued until f 3(96) is evaluated. The mini

mum value off 3(W) is identified for each value of W and entered 

in the third stage of Table XLV together with its associated value of 

r;w3. 
Table XLV may now be used to find the optimal procurement and 

inventory policy for this constrained MISS system. The minimum 

total system cost is found to be $284. 6851 per period and appears as 

the last entry in the third stage of Table XLV. Table XLV also indi-

cate s that 24 cubic units of warehouse space are to be allocated to 

Item 1, 36 cubic units to Item 2, and 36 cubic units to Item 3. These 
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allocations of scarce warehouse space to items are indicated by 

asterisks and are determined by working backwards in Table XLV. 

Reference to Table XXVI with the vector of space allocations indicates 

that the procurement level and procurement quantity for Item 1 should 

be -14. 0843 and 27. 1005 respectively. The procurement level and 

procurement quantity for Item 2 should be -10. 06 7 2 and 29. 0788 re -

spectively, and for Item 3 the procurement level and procurement 

quantity should be -6. 3141 and 13. 3155 respectively. 

The optimal procurement and inventory policy for this restricted 

MISS system is summarized in Table XLVI. The penalty in total sys -

stem cost arising due to the warehouse constraint is $284. 6851 less 

$ 28 L 6546 or $3. 0505 per period. Comparison of the optimal policy 

utilizing the dynamic programming algorithm discussed above and the 

optimal policy utilizing the Lagrangian multiplier technique resulting 

in Table XVII indicates strong agreement between the two methods. The 

total system cost associated with Table XVII is slightly lower than that 

associated with Table XLVI only because the latter is restricted to 
,::; 

integral values of I .. 
1 

TABLE XLVI 

OPTIMAL POLICY, REDUCTION TO DETERMINISTIC MISS SYSTEM 
WITH WAREHOUSE RESTRICTION 

Item 

1 
2 
3 

L 

-14.0843 
-10.0672 
- 6.3141 

Q 

27. 1005 
29.0788 
13.3155 
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Reduction to the Deterministic SIMS System 

Suppose that a single-item inventory system with several sources 

of replenishment stock exists. As an example, suppose that the item 

is Item 2 of the previous chapter. When this SIMS system is not con-

strained the minimum cost points found in Table XXII can be used to 

find the minimum total system cost. This total system cost is 

$ 75. 6175 since it is the minimum of the minimums. Thus, Source 3 

would be chosen as the minimum cost source. The minimum cost pro-

curement level for the item is - 10. 6917 and the minimum cost procure-

ment quantity is 38. 7806. These are found in Tables XXIII and XXIV 

respectively. 

When the warehouse space is finite, the solution may be found by 

dynamic programming. Assume, as before, that the warehouse space 

is 100 cubic units and that the item requires 12 cubic units of space. 

The first step in finding the optimal procurement and .inventory 

policy for this constrained SIMS sytem is to develop condensed cost 

functions from Table XXVI. These are shown in Table XLVII and are 
,,, 

developed by searching across a specific value of 1; w 2 and selecting 

the minimum value of TC I together with the source for which this 
2j 

minimum occurs. Symbolically, this process may be stated as: 

= 

This SIMS system is now solved as single stage dynamic program-

ming process. It is not necessary to set up a solution table. Inspec

tion of g 2(I;w 2) in Table XLVII establishes Source 3 as the minimum 

cost source of replenishment stock. The .total sytem cost is given in 



Table XLVII as $75. 8665. Reference to Table XXVI establishes 

the procurement level and procurement quantity at -12. 1558 and 

32. 1687 respectively. The penalty in total system cost due to the 

warehouse constraint is $75. 8665 less $75.6175 or $0. 2490 per 

period. Again, close agreement is indicated between the optimal 

policy and the associated total cost of the method discussed above 

and the Lagrangian multiplier technique resulting in Table IX. 

TABLE XLVII 

CONDENSED COST FUNCTIONS, REDUCTION TO DETERMINISTIC 
SIMS SYSTEM WITH WAREHOUSE RESTRICTION 

* 
,,_ 

l2w2 
'(I·,-. ) j g2.j!w2 

0 . 76.7827 5 
12 76. 6205 5 
24 76.4738 5 
36 76.3424 5 
48 76. 2259 5 
60 76.1219 3 
72 76. 0249 3 
84 75.9400 3 
96 75.8665 3 

Reduction to the Deterministic SISS System 

Suppose that a single -item inventory system with a single source 

of replenishment stock exists. As an example, suppose that the 

item is Item 1 of the previous chapter and that it may be procured 

only from Source 3. When this SISS system is not constrained the 

minimum cost point found in Table XXII is the total system cost of 

116 
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$ 214. 9546. The minimum cost procurement level and the minimum 

cost procurement quantity is 20. 4843 and 43. 0571 respectively. These 

are found in Table XXIII and Table XXIV. 

When the warehouse space is finite, the solution may be found as 

a trivial case of dynamic programming. Assume that the warehouse 

space 1s 100 cubic units and that the item requires 24 cubic units of 

space as was established previously. 

The first step in finding the optimal procurement and inventory 

policy for this constrained SISS system is to obtain condensed cost 

functions from Table XXVI. These are shown in Table XLVIII and are 

developed by transferring the values of TC 13 for all values of I;'w 1 . 

This SISS system is now solved as a single stage dynamic programming 

process. It is not necessary to set up a solution table. Inspection of 

TC 13 in Table XLVIII indicates that the minimum total system cost 

will be $216. 5847 giving a penalty for the constraint on warehouse space 

of $216. 5847 less $214. 9546 or $1. 6301. The minimum cost procure

ment level and procurement quantity are exhibited in Table XXVI as 

15. 0509 and 30. 9676 respectively. Once again, close agreement is 

indicated between the optimal policy and associated total syste:r:n cost 

of the method discussed above and the Lagrangian multiplier technique 

resulting in Table I. 

Reduction of the Simplified Probabilistic MIMS System 

Reduction to the Simplified Probabilistic MISS System 

Suppose that the two items of the simplifie d probabilistic MIMS 

system described in Chapter V can only be procured from Source 1 
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and that the parameters indicated for that source apply. When the 

· MISS system is not constrained, the minimum cost points found in 

Table XXXVII may be used to find the expected total sys~em cost.· 

This expected total system cost is $15. 6688 + $9. 6204 = $25. 2892; 

The minimum cost procurement levels given in Table XXXVI and the 

minimum cost procurement quantities given in Table XXXV are 

applicable. These are summarized in Table XLIX. 

TABLE.XLYJII 

CONDENSED COST FUNCTIONS, REDUCTION TO DETERMINISTIC 
SISS SYSTEM WITH WAREHOUSE RESTRICTION 

0 
24 
48 
72 
96 

217. 6 283 
217.3381 
217.0676 
216.8166 
216.5847 

TABLE XLIX 

OPTIMAL POLICY, REDUCTION TO SIMPLIFIED 
PROBABILISTIC MISS SYSTEM 

Item 

1 
2 

L 

Q, 1873 
'7.6706 

Q 

18. 1265 
16.5161 

When the warehouse space is finite, the solution may be found by 
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dynamic programming. Assume, as in the previous chapter, that the 

warehouse space is 100 cubic units and that the cubic units of space 

required by Item 1 is 9 cubic units and by Item 2 is 7 cubic units. 

The condensed cost functions for this situation may be developed 

from Table XXXIX by reference to Source 1. These are exhibited in 

Table L. As before, each section refers to an item with the source 

indicated by j. 

TABLE L 

CONDENSED COST FUNCTIONS, REDUCTION TO SIMPLIFIED PROBA
BILISTIC MISS SYSTEM WITH WAREHOUSE RESTRICTION 

,:'l ..,_ ,,, 

g1(r: wl) 
•r 

I. w. j gz(Im w2) j m. ,1 
1 1 '2 . 

14 15. 2237 1 
18 21.9000 1 
21 12.8531 1 
27 19. 3499 1 
28 11.6978 1 
35 11. 0286 1 
36 18. 1000 1 
42 10. 6025 1 
45 17.3700 1 
49 10. 3109 1 
54 16.8884 1 
56 10.0917 1 
63 16. 5332 1 9. 9 298 1 
70 9. 8135 1 
72 16. 2733 1 
77 9.7324 1 
81 16. 0845 1 
84 9.6781 1 
90 15.9480 1 
91 9. 6443 1 
98 9. 6 263 1 
99 15. 8498 1 
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The cost expected from the first stage if all available warehouse 

space is allocated to it is determined from f 1 (W)=g 1 (I: w 1). This gives: 
1 

f1(18) = g/18) = 21.9000 

fl(27) = gl(27) = 19.3499 

f1(36) = gl(36) = 18.1000 

f 1(45) = gl(45) = 17. 3700 

f 1(54) = gl(54) = 16. 8884 

f 1(63) = g1(63) = 16. 5332 

fl(72) = g/72) = 16. 2733 

fl ( 81) = g l ( 8 1) = 16. 0845 

fl (90) = g l (90) = 15. 9480 

f 1 (99) = g 1 (99) = 15. 8498. 

The computations for f 1 (W) are now complete and the results are 

entered in the first stage of the solution table; Table LI. 

From the results of f 1 (W), f 2(W) may be computed using the 

recurrence relation given by Equation (5. 18). When W = 32, 

For values of I w 2 ranging from O to 32 this gives one feasible 
m2 

combination; that is: 

f3(32) = g2(14) + fl(l8) = 15. 2237 + 21.9000 = 37. 1237. 

When W = 39, 



TABLE LI 

SOLUTION TABLE, REDUCTION TO SIMPLIFIED PROBABILISTIC 
MISS SYSTEM WITH WAREHOUSE RESTRICTION 

,:, ,:c 
w £1(W) I.. w1 (W) £2(W) I w 2(W) 

ml m2 

18 21.9000 18 
27 . 19. 3499 27 
32 37. 1237 14 
36 18. 1000 
39 34.7531 21 
41 34.5736 14 
45 ·17.3700 45 
46 33.5978 28 
48 32. 2030 21 
50 33.3237 14 
53 

>',< 32. 9 286 35 
54 16. 8884 54 
55 31. 0477 28 
57 30.9531 21 
59 32.5937 14 
60 32.5025 42 
62 30.3785 35 
63 16. 5332 63 
64 29. 7978 28 
66 30.2231 21 
67 · 32. 2109 49 
68 32. 1121 . 14 
69 29. 9524 42 
71 29. 1286 35 
72 16. 2733 72 

. 73 29.0678 28 
74 31.9917 · 56 
75 29.7415 21 
76 29.6608 49 
77 31. 7569 14 
78 28. 70 25 42 
80 28.3986 35 
81 16. 0845 81 31.8298 63 
82 28. 5862 28 
83 29. 4416 56 
84 29.3863 21 
85 28.4109 49 
86 31. 4970 14 
87 27. 9725 42 
88 31.7135 70 
89 27.9170 35 
90 15. 9480 90 29. 2797 63 
91 28. 2310 28 
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TABLE LI (Continued) 

w f l(W) r* w: (W) 
m 1 .. 1 f 2(W) * . I.• w 2(W) 

m2 . 

92 28. 1917 56 
93 29. 1264 21 
94 27.6809 49 
95 31. 3082 14 
96 27. 4909 42,." 

97 29. 1634 70 
98 27.5618 35 
99 15 • .8498 99 28. 0298 63 

100 27.9711 28 

,::: 
•. For values of I w 2 ranging from O to 39 this gives one feasible 

m2 

combination; that is: 

f2(39) = g2(21) + £1(18) = 12. 8531 + 21. 9000 = 34. 7531. 

When W = 41, 

* ,:c ¥in [g 2(I w 2) + f 1(41 - I w 2)]. 
O< I~ w < 41 m 2 m 2 

- .rn 2 2-

,::: 
For values of I w 2 ranging from O tp 41 this gives one feasible 

m2 

combination; that is: 

f2(41) = g2(14) + f 1(27) = 15. 2237 + 19. 3499 = 34. 5736. 

This process is continued until f 2( 100) is evaluated. The minimum 

value of f 2(W) is identified for each value of W and entered in the 

second stage of Table LI together with its associated value of I,:, w 2. 
. m2 

Table LI may now be used to find the optimal procurement and 

inventory policy for this constrained probabilistic MISS system. The 

122 

minimum expected total system co st is found to be $ 27. 4909 per period 



ih the second stage of Table LI. Table LI also indicates that 54 cubic 

units of warehouse space are to be allocated to Item 1 and 42 cubic 

units to Item 2. These allocations of scarce warehouse space are 

indicated by asterisks. Reference to Table XXXIX with these alloca-

tions indicates that the procurement level and procurement quantity 

for Item 1 should be 4. 4450 and 6. 9436 respectively. The procure-

m ent level and procurement quantity for Item 2 should be 5. 4000 and 

7. 7419 respectively. 

The optimal procurement and inventory policy for this restricted 

MISS system is summarized in Table LII. The penalty in expected 

total system cost aris i ng due to the warehouse constraint is $ 27. 4909 

less $25. 2892 or $2. 2017 per period. 

TABLE LIT 

OPTIMAL POLICY, REDUCTION TO SIMPLIFIED PROBABILISTIC 
MISS SYSTEM WITH WAREHOUSE RESTRICTION 

Item 

1 
2 

L' 

4.4450 
5.4000 

Q' 

6. 94]6 
7.7419 

Reduction to the Simplified Probabilistic SIMS System 
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Suppose that a single-item inventory system with several sources 

of replenishment stock exists. Specifically, suppose that the item is 

Item 2 of the previous chapter. When this probabilistic SIMS system 

is not constrained the minimum cost points found in Table XXXVII may 
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be used to find the expected total system cost. This expected total 

system cost is . $9. 5208 since it is the minimum of the minimums. 

Thus, Source 2 would be chosen as the minimum cost source. The 

minimum cost procurement level for the item is 5. 4661 and the mini-

mum cost procurement quantity is 13. 7265. These are found in Tables 

XXXVI and XXXV respectively. 

When the warehouse space is finite the solution may be found by 

dynamic programming. Assume, as before, that warehouse space is 

100 cubic units and that the item requires 7 cubic units of space. 

The first step in finding the optimal procurement and inventory 

policy for this constrained SIMS system is to develop condensed cost 

functions from Table XXXIX. These are shown in Table LIII and are 

* deve loped by searching across a specific value of I · w 2 and selecting 
m2 

the minimum value of TC 1 . 

m2j 
together with the source for which this 

minimum occurs. Symbolically, this process may be stated as: 

,,,Min [ TC 1 ' ] • 

O:_I~ w2:.. W m2j 
2 

This SIMS system is now solved as a single stage dynamic pro-

gram ming process. It is not necessary to set up a solution table. 

>!::: 
Inspection of g 2(Im 

2 
w 2) in Table LIII establishes Source 2 as the 

minimum cost source of replenishment stock. The expected total 

system cost is given in Table LIII as $9 . 5333. Reference to Table 

XXXIX establishes the procurement level and procurement quantity 

at 5. 4510 and 12. 1511 respectively. The penalty in expected total 

system cost due to the warehouse constraint is $9. 5333 less $9. 5208 
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or $0.0125 per period. 

TABLE LIII 

CONDENSED COST FUNCTIONS, REDUCTION TO SIMPLIFIED PROB
ABILISTIC SIMS SYSTEM WITH WAREHOUSE RESTRICTION 

.,, ,:, -·-I w g2(I w2) j 
m 2 2 m2 . 

14 15. 2237 1 
21 12.8531 1 
28 11. 6978 1 
35 11. 0286 1 
42 10. 6025 1 
49 10. 3101 2 
56 10. 056 1 2 
63 9.8754 2 
70 9.7475 2 
77 9.6579 2 
84 9.5967 2 
91 9.5569 2 
98 9.5333 2 

Reduction to the Simplified Probabilistic SISS System 

Suppose that a single -item inventory system with a single;...source 

of replenishment stock exists. Specifically, suppose that the item is 

Item 1 of the previous chapter and that it may be procured only from 

Source 3. When this probabilistic $!SS system is not constrained the 

minimum cost point found in Table XXXVII is the expected total system 

cost of $14. 7998. The minimum cost procurement level and the mini-

mum cost procurement quantity is 12. 4995 and 17. 5021 respectively. 

These are found in Table XXXVI and Table XXXV. 
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When the warehouse space is finite, the solution may be found as 

a trivial case of dynamic programming. Assume that the warehouse 

space is 100 cubic units and that the item requires 9 cubic units of 

space as was established previously. 

The first step in finding the optimal procurement and inventory 

policy for this constrained SISS system is to obtain condensed cost 

functions from Table :XXXIX. These are shown in Table LIV and are 

'* developed by transferring the values of TC 11 for all values of I w 1. 
. m 13 m) 

The SISS system is now solved as a single stage dynamic programming 

process. It is not necessary to set up a solution table. Inspection of 

TC 1· in Table LIV indicates that the minimum expected total system 
rnl3 · 

cost will be $15. 6054 giving an expected penalty for the constraint on . 

warehouse space of $15. 6054 less $14. 7998 or $0. 8056 per period. The 

minimum cost procurement level and procurement q ua.ri.t i ty are 

exhibited in Table XXXIX to be 10. 4850 and 8. 5166 respectively. 

TABLE LIV 

CONDENSED COST FUNCTIONS, REDUCTION TO SIMPLIFIED PROB
ABILISTIC SISS SYSTEM WITH WAREHOUSE RESTRICTION 

* TC 1 I w m 1 1 ml3 

18 26. 8221 
27 22. 1647 
36 19. 8610 
45 18 .. 4988 
54 17.6073 
63 16. 9849 
72 16. 5297 
81 16. 16 16 
90 15.8552 
99 15.6054 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

A unified concept of procurement and inventory theory was pre -

sented in this dissertation through the establisment of a hierarchy 

of procurement and inventory systems. Fundamentals of the SISS, 

SIMS, and MISS systems were presented as prerequisites to the devel

opment of the MIMS system. This concluding chapter will be composed 

of three sections. The first summarizes the material in this treatise 

by reviewing the content of each chapter. The second gives a critical 

analysis of the methods for deriving procurement and inventory policy 

as presented herein. Proposals for further study are listed in the 

last section. 

Summary 

Each system in the hierarchy was represented schematically in 

Chapter I. Literature was cited to indicate the state of development to 

date. The decision environment was described in the context of the 

MIMS system. Finally, the contributions of this treatise were outlined. 

The SISS system was developed in Chapter II. Models were formu

lated and applied to the unrestricted and restricted deterministic 

system and to the unrestricted probabilistic system. The material in 

this chapter provided a basis for the chapters which followed. 

127 



Chapters III and IV were devoted to the intermediate systems in 

the hierarchy; the SIMS and the MISS systems. Both the determin

istic and the probabilistic aspects of these systems were treated. 

As in Chapter II, Lagrangian multipliers were used to find the opti

mal procurement and inventory policy for the restricted deter minis -

tic systems. 

Chapter V presented the MIMS system in its deterministic and 

probabilistic form. Previously derived models were used to find 

the optimal procurement and inventory policy for the unrestricted 

system. The restricted system was optimized by the use of dynamic 

programming. Since the MIMS system is the most general in the 

hierarchy, this chapter concluded the hiera.rchial development. 
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Reduction of the MIMS system to the lower ordered MISS, SIMS, 

and SJSS systems was presented in Chapter VI. The results from the 

reduced systems utilizing dynamic programming agree with those 

from the same systems optimized with the aid of Lagrangian multi

pliers. 

All examples presented 1n Chapters V and VI were developed 

from the computer program in the Appendix. The program develops 

the condensed cost functions for the system under investigation. It 

then processes tre condensed cost functions by dynamic programming 

yielding a solution table for the problem. 

Conclusions 

The methods employed to optimize the procurement and inven

tory systems presented in this dissertation were general in their 



simultaneous approach to the determination of the minimum cost 

procurement and inventory policy. The analysis of determinstic 

systems was further generalized by holding the number of simplify-· 

ing assumptions to a minimum. 
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A closed mathematical solution was possible for the unrestricted 

probabilistic systems by assuming that lead time demand had a uni

form distribution. It is possible to find the optimal procurement and 

inventory policy mathematically for other distributions of lead time 

demand. However, the optimizing equations become quite cumbersome 

for most of the common distributions. 

The dynamic programming algorithm and the Lagrangian multi

plier technique yielded nearly identical results in the development of 

optimal policy for systems subject to a warehouse restriction. The 

independent agreement exhibited indicates the validity of each approach. 

The method for simultaneously dealing with a warehouse c;1.nd a 

source capacity restriction was crude. A more favorable method to 

determine the optimal policy for the doubly restricted system would 

be to treat the situation as a multidimensional allocation problem of 

dynamic programming. Although this is difficult, it may be possible 

to convert the multidimensional formulation through use of Lagrangian 

multipliers yielding a decomposition of complex processes into sim

pler parts. 

In its present form, the computerized dynamic programming 

algorithm requires an excess of computer time .. Solution of a re-, 

stricted MIMS problem, comparable to the first example in Chapter V, 

took approximately 12 minutes on the IBM 1410. This time increases 
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as the size of the problem, especially the ntlmber of items, increases. 

Much of the time was involved in compiling the program, a routine 

which could be eliminated by converting the source deck to an object 

deck and placing the contents of the object deck on magnetic tape. 

Unnecessary printouts could also be eliminated resulting in a more 

efficient program. Utilization of a l.arger computer would eliminate 

the necessity of phasing the program and placing the intermediate cal

culations on magnetic tape. There is a possible future for the compu

terized algorithm in the solution of real world problems if the above 

.changes are considered. 

A general criticism retarding the application of advanced pro

curement and inventory theory is that managerial techniques presently 

in use do not and cannot obtain the information necessary for the opti

mization of a complex system. Individuals in managerial positions 

state that the time and expense required for collecting and digesting 

the required information more than offsets the returns. However, 

with the use of modern electronic computers in the control of inven

tory, the collection of the input parameters and distributions ~hould 

become more prevalent. The availability of models, such as those 

presented in this treatise, will provide an incentive to collect input 

data. In any event, the explanation of basic procurement and inven

tory phenomena provided by these models should prove more useful in 

the routine management of procurement and inventory systems. 

Proposals. for Future Study 

This investigation resulted in the vertical generalization of 
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procurement and inventory systems. The proposals for future study 

listed below recommend horizontal refinements which will aid in 

the application of the models presented to real -·world procurement 

and inventory management problems. 

{1) Use a substitution parameter in the models developed for 

systems subject to a warehouse restriction. A substitu

tion parameter allows the utilization of epace allocated 

to one item to meet the space r:equirements of another 

item. 

{2) Study the sensitivity of using the MIMS system rather than 

some lower ordered system to ,demonstrate the value· of the 

concept. The study may indicate that savings gained 

from using MIMS are negligible or non-existent. 

(3) Include a backorder parameter to allow loss of all or part 

of the demand when a shortage condition occurs. 

( 4) Split the holding cost into two components. The first 

component would consider the fixed portion of holding cost 

and the second would consider the variable portion. 

(5) Derive an expression for shortage cost in the simplified 

probabilistic system which will result in an extension of 

the solution region of the model. 

(6) Derive models representing the probabilistic systems for 

other possible Lead time demand distributions. 

(7) Determine optimal policies for all systems subject to the 

simultaneous consideration of a warehouse and a source 

capacity restriction. 
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APPENDIX 

SOL UT ION OF PROCU!{EMENT AND INVENTORY PROBLEMS 
BY. IBM 1410 

This appendix will be presented in the following manner: An .intro

ductory section wiU describe the capability of the computer pro'.gram 

and give a program listing. A section describing the input data, con

cluded by an example will follow~ The last section will describe the 

output data and give solutions to the problems forwarded in Chapters 

V and VL 

Introduction 

The program discussed in this 'aJ?pEmdix will process both deter -

:rninistic and simplified probabilistic procurement and inventory prob-

lems. The maximum dimension-for any problem is 5 items, 5 sources, 

and 100 cubic units:of warehouse space. T:h~·pro·gra:m,is eas.ily expand

ed to accomodate larger problems if an increased core storage is 

available to the user. This expansion is. accomplished by changit}g 

the· limits' of the dimension statements and rewriting. some of the: format 

statements along with appropriate. modifications of the input data.· The 

program is self cqntained in that it not only generates the condensed 

cost functions, but solves the allocation problem it creates. .The cori-

densed cost functions are computed by utilizing the equations develop<.rd 

in Chapter V and the allocation problem is solved by the dynamic pro-

gramming algorithm also appearing in that chapter. The program is 
' 

in three phases. The beginning of each phase can be identified in the 

listing given below by the ·c in the left margin of the first statement. 

Written in FOR TRAN IV,. the program is as follows: 
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MON$$ JOB 252340022 JERRY BANKS 
MON$$ ASGN MGO,A2 
MON$$ ASGN MJB,A3 
MON$$ MODE GO,TEST 
MON$$ EXEQ FORTRAN,,,,,,,PHl 

C PHASE 1 
DIMENSION Dl5l ,R(5,5J,CPC5,5),CHl5),CSl5),T(5,S) ,Cl(5,5l, 

1PLOPT(5,51 ,PQOPT15,5),TCOPT15,5),W(5J 
1 FORMATl5F10.4) 
2 FORMAT(2I10) 
3 FORMAT(/) 
4 FORMAT(///) 
5 FORMAT{lOX, 20HDETERMINISTIC SYSTEM,I5,1X,7HITEMISl,I5,1X,9HSOURCE 

1(5)//) 
6 FORMATllOX, 20HPROBABILISTIC SYSTEM,I5,1X,7HITEMISl,I5,1X,9HSOURCE 

l(SJ//l 
7 FORMAT I//) 
11 FORMATl6H ITEM ,Il,5X,5Fl0.4) 
14 FORMATl10X,9HITEM COST/ 12X,50H SOURCE 1 SOURCE 2 SOURCE 3 SOU 

lRCE 4 SOURCE 51 
15 FORMAT(lOX,16HPROCUREMENT COST/ 12X,50H SOURCE 1 SOURCE 2 SOURC 

lE 3 SOURCE 4 SOURCE 51 
16 FORMATl10X,12HHOLDING COST) 
17 FORMATl10X,13HSHORTAGE COST) 
18 FORMATllOX,6HDEMANDJ 
19 FORMATllOX,21HRATE OF REPLENISHMENT/12X,50H SOURCE 1 SOURCE 2 S 

lOURCE 3 SOURCE 4 SOURCE 51 
20 FORMAT110X,9HLEAD TIME/ 12X,50H SOURCE 1 SOURCE 2 SOURCE 3 SOU 

lRCE 4 SOURCE 5) 
21 FORMATllOX,ZlHTOTAL WAREHOUSE SPACE/15X,Fl0.4//) 
22 FORMATllOX,38HSPACE REQUIREMENT FOR INDIVIDUAL ITEMS) 
26 FORMATIFl0.4) 
134 FORMATl10X,35HMINIMUM COST PROCUREMENT QUANTITIES/12X,50H SOURCE 

11 SOURCE 2 SOURCE 3 SOUR,E 4 SOURCE 51 ....... 
(..v 
u, 



135 FORMATllOX,31HMINIMUM COST PROCUREMENT LEVELS /12X,50H SOURCE 
11 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5) 

136 FORMATClOX,30HASSOCIATED MINIMUM TOTAL COSTS/12X,50H SOURCE 1 SO 
lURCE 2 SOURCE 3 SOURCE 4 SOURCE 5) 

137 FORMATl51H POLICY DEVELOPMENT FOR UNRESTRICTED SYSTEM FOLLOWS//) 
150 FORMAT<6H ITEM ,Il,5X,FlQ.4) 
153 FORMATllHl) 

READ(l,2)M,N 
RE AD ( 1 , 1 ) ( ( CI .( I , J ) , J = 1 , N l , I= 1 , M l 
READ( 1,1) ( (CP( I ,J) ,J=l,N) ,I=l,M) 
READ< 1,1) (CHI I) ,I=l,M) 
READ( 1,1) (CS( I) ,I=l,M) 
RE AD ( 1 , 1 ) ( D I I > , I= 1 , M) 
READ( 1,1) < CR< I,J) ,J=l,N) ,I=1,M) 
READ ( l , l ) ( ( T ( I , J ) , J = l , N l , I= l , M) 
READ(l,26) SPACE 
READ(l,l> IWCI>,I=l,M) 
READll,26) TYPE 
\rJRITE(3,153) 
IF(TYPE.EQ.O.O) GO TO 34 
WRITE13,6) M,N 
GO TO 37 

34 WRITE<3,5) M,N 
37 WRITE<3,14) 

DO 501 1=1,M 
501 WRITE<3,ll)I,CCIII,J),J=l,N) 

WRITE(3,3) 
WRITE(3,15) 
DO 502 I=l,M 

502 WRITE<3,ll)I,(CP<I,Jl,J=ltN) 
WRITE13,3) 
WRITE(3,16l 
DO 508 I=l,M 

508 WRITE(3,150) I,CH(I} ..... 
w 
O' 



509 

510 

503 

504 

511 

vJ R I T E < 3 , 3 .) 
WRITEC3,17) 
DO 509 I=l,M 
WRITEC3,15Q) I,CS(I) 
WRITE<3,3) 
WRITE(3,l8) 
DO 510 l=l,M 
WRITEC3,150) I,D1I) 
WRITE(3,3) 
WRITEC3,19) 
DO 503 I=l ,M 
WRITEC3,ll)I,(R(I,J),J=l,N) 
WRITEC3,3) 
WRITEC3,20) 
DO 504 I=l,M 
WRITE<3,ll>I,(TCI,J),J=l,N) 
WRITE(3,3) 
WRITE(3,21) SPACE 
WRITE(3,22t 
DO 5 11 I = 1 ., M 
WRITE(3,150) I,WCI) 
WRITE(3,4) 
IF<TYPE.NE.l.OJ GO TO 200 
WRITEC3,137) 
DO 141 I=l,M 
DO 141 J=l,N 
IF(D(Il.GE.R<I,J)} GO TO 139 
AF2=1.0-D1I)/R<I,J) 
APRIM=2.0*DCil*TtI,J) 
PQOPA=<2.0*APRIM*CP(I,J))-CS(l) 
PQOPB=<CS<I>*D<I)*AF2)-APRIM*CH<I> 
PQOPC=CSCI)/(APRIM*CH<I>> 
PQOPTCI,JJ=D(I)*SQRT((PQOPA/PQOPB}*PQOPC) 
IFCPQOPT<I,J).GE.D(I}) GO TO 164 -I.,.) 

-.J 



164 

163 

170 

165 

166 

PQOPT(I,J)=5555.5 
PLOPT(I,J)=5555.5 
TCOPT(I,J)=5555.5 
GO TO 141 
IF(PQOPTCI,J).GEeleO) GO TO 163 
PQOPT(I,J)=6666.6 
PLOPT(I,J)=6666.6 
TCOPT(I,J)=6666.6 
GO TO 141 
TD=T<I,J)*D(I) 
PLOPT ( I ,J)=APRIM*C 1.0-( (CH( I )*PQOPT( I ,J l )/(CS( I >*DC I)))) 
IF(PLOPTCI,J).GE·TD) GO TO 170 
PQOPTCI,J)=7777.7 
PLOPT(I,J)=7777.7 
TCOPT(I,J)=7777.7 
GO TO 141 
TD2=2.0*TD-l.O 
IF(PLOPTCI,Jl.LEeTD2) GOT0165 
PLOPT(I,J)=3333e3 
PQOPT(I,J)=3333.3 
TCOPT(l,J)=3333.3 
GO TO 141 
AF=l.0-D(Il/R(I,Jl 
GEOM=PQOPT<I,Jl*AF+PLOPT<I,J)-TD 
IFIGEOM.GE.O.O) GO TO 166 
PQOPT(l,J)= 4444•4 
PLOPTCI,Jl= 4444.4 
TCOPT(I,Jl= 4444.4 
GO TO 141 
CIAP=Cl(I,J)*D(l) 
CPAP=CCPCI,Jl*Dlll)/PQOPT(I,J) 
CHCA=(PQOPTCI,Jl*AF)/2.0 
CHCB=PLOPTII,J)-(D(I)*TII,Jl} 
CHCP=CHCI)*(CHCA+CHCBl ..... 

w 
ex, 



CSAQ=IIAPRIM-PLOPTII,Jl l**Z)-1.0 
CSAR=(CS(Il*D(Ill/12.0*PQOPTII,Jl*APRIM) 
CSAP=CSAR-1:·CSAQ 

147 TCOPT(I,J)=CIAP+CPAP+CHCP+CSAP 
GO TO 141 

139 PQOPT(I,J)=9999.9 
PLOPT(I,J)=9999.9 
TCOPT(I,J)=9999.9 

141 CONTINUE 
GO TO 145 

200 WRITE(3,137) 
DO 140 I=l,M 
DO 140 J=l,N 
IF(Dlll.GE.RII,J)l GO TO 138 
FACTR=SQRTll.O-D(I)/RII,J)) 
PQOPT I I , J) = ( 1 • 0 IF ACT RP~ SQRT I I ( 2 • O*C P ( I , J l *D ( I ) ) IC H ( I ) l + I ( 2. O*C P ( I , 

lJ)*DIIl )/CS( I) l J 
PLOPTCI,J)=DII)*TII,Jl-FACTR*SQRTl(2.0*GP(I,J)*DII)l/(CSII)*(l.O+ 

lCS (I) /CH (I) l l l 
TCOPTII,Jl=CI(I,J)*Dlll+FACTR*SQRT((2.0*CP(I,Jl*CH(I)*CSII)*D(I}l/ 

1 I CH ( I ) +CS I I) J ) 
IFIPQOPTCI,J).GEeDII)I GO TO 210 
PQOPT(I,J)=5555.5 
PLOPT(I,J)=5555.5 
TCOPT(I,J)=5555.5 
GO TO 140 

210 IF(PQOPT(I,J).GEolaO) GO TO 140 
PQOPTII,Jl=6666.6 
PLOPT<I,J)=6666.6 
TCOPT<I,J)=6666.6 
GO TO 140 

138 PQOPT(I,J)=9999.9 
PLOPT<I,J)=9999.9 
TCOPTII,J)=9999.9 ..... 

vJ 
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140 CONTINUE 
145 WRITE(3,134) 

DO 505 I=l ,M 
505 WRITEC3,ll) I,<PQOPT<I,J>,~=l,Nl 

WRITEC3,3) 
WRITEC3,135) 
DO 506 I=l,M 

506 WRITE(3,ll) I,(PLOPT<I,J),J=l,N) 
WRITE(3,3) 
WRITE(3,136) 
DO 507 I=l,M 

507 WRITE<3,11) I,<TCOPTCI,J)•J=l,N) 
WRITE(3,4) 
CALL NEXTPH 
END 

MON$$ EXEQ FORTRAN,,,,,,,PH2 
C PHASE 2 

DIMENSION D(5),RC5,~),CP(5,5),CH(5),CS(5),T(5,5),CI(5,5),SUBTC(lOl 
1),JS(l01),W(5),SUBPL(l01),SUBPQ(l01) 

l FORMAT(5fl0.4) 
2 FORMAT(2I10) 
3 FORMAT(///) 
4 FORMATC3I10) 
9 FORMATC4I10,Fl4.4,5X,16HSUB-STAGE POLICY//) 
11 FORMAT<6H ITEM ,Il,5X,5F10.4) 
25 FORMAT(I2,3I7,3Fl2.4/) 
26 FORMAT(Fl0.4) 
27 FORMAT(23X,3Fl2.4) 
28 FORMAT!2F14.4) 
151 FORMAT(5X,47HDEVELOPMENT OF CONDENSED COST FUNCTIONS FOLLOWS//) 
152 FORMAT(1X,24HNO OPTIMA~ POLICY EXISTS/) 

REWIND 4 
READC1,2)M,N 
READCl,l)C(CICI,J),J=l,Nl,I=l,M) ..... 

~ 
0 



33 

59 

READ( l,1) ( (CP( I,J) ,J=l,Nl ,I=l,Ml 
READ ( l, l) ( CH ( I l , I= 1, M) 
READ ( 1, l) ( CS ( I ) , I =l, Ml 
READ ( 1, 1) ( D ( I ) , I= 1 , M) 
READ( 1,1) ( (R(I,.J) ,J=l,N) ,I=l,M) 
READ( 1,1) ( (T( I ,J) ,J=l,Nl ,I=l,M) 
READ(l,26) SPACE 
READ<l,l) (W(l>, l=l,Ml 
READ(l,4) J10,J25,J27 
READ(l,26) TYPE 
IF(JlO.EQ.l) GO TO 33 
WRITE(3,151) 
KSP=SPACE 
DO 50 l=l,M 
MOST=SPACE/W CI) 
IWI=W(Il 
LEFT=KSP-CMOST*IWI l+l 
IMAX=CSPACE/W( Ill+l.O 
DO 51 K=l,IMAX 
KK=K-1 
UNITS=KK 
JS(K)=l 
DO 52 J=l,N 
IF(D(Il.LT.RCI,J)) GO TO 59 
TRY=9999.9 
PLA=9999.9 
PQQ=9999.9 
GO TO 57 
AF=l.O-ID( I)/R( I,J)) 
IF(TYPE.EQ.1.0) GO TO 39 
PQQA=l.0/AF 
PQQB=2·0*CP(I,J>*DCI)*AF 
PQQC=(UNITS**2)*(CH(Il+CS(I)) 
PQQD=(PQQB+PQQC)/CS(I) ...... 

,j:,. 
...... 



PQQ=PQQA*(SQRT(PQQD)) 
IF( PQQ.GE.D(I) l GO TO 40 
PQQ=D(I) 
IF(PQQ.LT.l.O) PQQ=l.O 

40 PLA=UNITS+(D(l)*TCI,J))-(PQQ*AF) 
CIA=CI<I,J)*D(I) 
CPA= ( CP C I , J) *D ( I ) l I PQQ 
CHC=(CH(I)*(UNITS**2l l/(2.0*PGQ*AF) 
CSA= (CS(Il*(PLA -D(I>*T(I,Jl)**2)/(2eO*PQQ*AFl 
GO TO 36 

39 A=2.0*T(I,Jl*D(I) 
CH ECK= ( ( ( CS ( I ) *D { I ) ) I A)* ( ( 1. 0-D ( I )IR ( I , J ) ) ** 2 > )- ( CH ( I ) * ( 1. 0-D ( I ) I 

lR(I,J))) 
IF(CHECK.LT.OeO) GO TO 38 
PQQF=2•0*CP(I,J)*D(I) 
PQQG={CS(Il*D(l))/A 
PQQH={((A/2.0)-UNITSl**2)-1.0 
PQQI=PQQF+(PQQG*PQQH) 
PQQJ=PQQG*(AF**2) 
PQQK=CH (I) *AF 
PQ.QL=PQQJ-PQQK 
PQQM=PQQI/PQQL. 
PQQ=SQRT{PQQM) 
IF(PQQ.GE.D(I}l GO TO 41 

38 PQQ=D(I} 
IF(PQQ.LT.1.0) PQQ=l.O 

41 PLA=UNITS+CA/2.0l-(PQQ*AF) 
TD=T( I,Jl*D( I) 
IF(PLAeGE.TDl GO TO 170 
PLA=TD 
PQQ=(UNITS+{A/2.0)-PLA)/AF 

170 TD2=2.0*TD-1.Q 
IF(PLAeLE.TD21 GO TO 175 
TRY=9999.9 

...... 
!J:s. 
N 



PQQ=9999.9 
PLA=9999.9 
GO TO 57 

175 CIA=CICI,J>*D<I> 
CPA=(CP<I,Jl*DCI))/PQQ 
CHC=( ((PQQ*AF)/2.0l+PLA-(A/2.0))*CH(I) 
CSA=( (CS( I >*DC I))/ (2.0*PQQ*A) )*( < {A-PLA)**2)-l.Q) 

36 TRY=CIA+CPA+GSA+CHC 

568 

57 

571 

45 

52 

IF(PQQ.GE.D(I)) GO TO 568 
TRY=9999.9 
PQQ:::9999.9 
PLA=9999.9 
IF(PQQ.GE.l.O) GO TO 57 
TRY=9999.9 
PQQ=9999.9 
PLA=9999.9 
IF(J27.EQ.O) GO TO 571 
WRITE(3,27)PQQ,PLA,TRY 
IF(J.NE.l) GO TO 45 
SUBTC(K)=TRY 
SUBPQ(K)=PQQ 
SUBPL(Kl=PLA 
GO TO 52 
IF(TRY·GEASUBTCCK)) GO TO 52 
SUBTC(K)=TRY 
SUBPQ(K)=PQQ 
SUBPL(K)=PLA 
JS(K)=J 
CONTINUE 
IF(J25eEQ.Ol GO TO 55 
KKIWI=KK*IWI 
IF(SUBTC(K).LT.9999.9) GO TO 573 
WRITE(3,152l 
GO TO 55 ..... 

ii:,.. 
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573 WRITE(3,25) I,JS(K),KK,KKIWI,SUBPQ(K),SUBPL<Kl,SUBTC<K) 
55 IW=O 

DO 70 NALW=l,IWI 
IF(KK.EQ.MOST) GO TO 72 
IW=(KK*IWil+NALW-1 
IXXI=KK*IWI 
IF(IW.NE.IXXI} GO TO 300 
GO TO 305 

300 SUBTC(K)=9999.9 
305 WRITE(4) I dW,JS(K) ,KK,SUBPQ(K) ,SUBPL(K) ,SUBTC(K) 

IF(JlO.EQ.Ol GO TO 70 
IFCSUBTC(K).GE.9999.9) GO TO 70 
WRITE(3,25) I,JS(K),KK,IWtSUBPQ(K)tSUBPL(K),SUBTC(K) 
GO TO 70 

72 DO 73 NADD=l,LEFT 
IW=(KK*IWI)+NADD-1 
IXXI=KK*IWI 
IF(IW.NE.IXXI) GO TO 400 
GO TO 405 

400 SUBTC(K)=9999.9 
405 WRITE(4l I,IW,JS<K),KK,SUBPQ(K),SUBPL(K),SUBTC<K) 

IF(JlO.EQ.Ol GO TO 73 
IF(SUBTC<Kl.GE.9999.9) GO TO 73 
WRITE(3,25} I,JS(K},KK,IW,SUBPQ(K)tSUBPL(K),SUBTC<K> 

73 CONTINU5 
GO TO 50 

70 CONTINUE 
51 CONTINUE 
50 CONTINUE 

END FILE 4 
REWIND 4 
CALL NEXTPH 
END 

MONS$ EXEQ FORTRAN,,,,,,,PH3 ..... 
.i:,. 
~ 



C PHASE 3 
DI MENS I ON F N < l O l ) , G NM l ( l O l ) ,F NM l< l O l > , ST C < 10 l ) , I P I < l O 1 ) 

11 FORMAT( /2X,52HSPACE UTILIZED TOTAL COST ALLOCATION STAG 
lE ,Ill 

23 FORMAT(///lOX,36HDYNAMIC PROGRAMMING SOLUTION FOLLOWS//) 
24 FORMAT(2X,53HSPACE UTILIZED TOTAL COST ALLOCATION STAGE l 

l) 

26 FORMAT(Fl0.4) 
29 FORMAT(Il0,F20.4,Il0) 

READ(l,26) SPACE 
WRITE<3,23l 
WRITE(3,24) 
KSPAS=SPACE+l.O 

75 DO 76 KKKX=l,KSPAS 
READ(4) I,IW,JSJ~KK,SBPQ,SBPL,SBTC 
STC(KKKX)=SBTC 
IF(I.NE.l) GO T0°78 
FNMl(KKKX)=STG(KKKX) 
IPI<KKKX>=IW 
IF<FNMl<KKKX).GE.9999.9) GO TO 76 
WRITE(3,29) lW,FNMl(KKKX),IPI(KKKX) 
GO TO 76 

78 GNMltKKKX)=STC(KKKX) 
76 CONTINUE 

IF(I.EQ.ll GO TO 75 
DO 95 KKKX=l,KSPAS 
IF(KKKX.NEell GO TO 77 
WRITE(3,ll) I 

77 A~PHA=9999e9 
GAMMA=OeO 
DO 90 IWF=l,KKKX 
IS=KKKX--IWF+1 
BETA=GNMl(IWF>+FNMl(IS) 
IF(BETA.LTeALPHAJ GO TO 79 .... 

*"' CJ! 



GO TO 90 
79 ALPHA=BETA 

GAMMA=I WF-1 
90 CONTINUE 

FN(KKKXl=ALPHA 
IPICKKKX>=GAMMA 
IF(FN(KKKXl.GE.9999.9) GO TO 95 
IWX=KKKX-1 
WRITE(3,29l IWX,FN<KKKXl tlPI (KKKX) 

95 CONTINUE 
DO 100 KKKX=l,KSPAS 
FNMlCKKKX>=FN(KKKXl 
FN(KKKX)=O.O 
IPI<KKKX)=O.O 

100 CONTINUE 
GO TO 75 
END 

MON$$ EXEQ LINKLOAD 
PHASEMATHPROB 
CALb PHl 
PHASE 
BASElPHl 
CALL PH2 
PHASE 
BASE1PH2 
CALL: PH3 

MON$$ EXEQ MATHPROB,MJB 

,_. 
~ 
O' 
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Input Data 

· Input is. via standard punch cards. It may be divided into 12 

. sections, each of which is explained below: 

· Section· 1: M and N .. The symbol M .refers to the number of items and 

Section 2: 

Section 3: 

N refers: to the number of sources. There may be from 1 

to 5 items and 1 to 5 sources. The value M is placed in 

column 10 and the value·· N is placed in column 20, both 

on the same data card and in fixed point notation ... 

CI(I, J). The symbol CI(!, .J) is· analogous to C. as ex-
1 

plained in Chapter I. The values are entered by item row 

wise for each source, 5 values per card in floating point 

notation. The fields. are 1-10, 11-20, 21-30, 31-40, and 

· 41-50. Each value may be entered anywhere in the field. 

There may be a maximum of 4 digits· after the decimal 

point for each value. Any item which cannot be obtained 

· from a particular source is given the dummy -value 8888. 8 

· as indicated in· Table A 1. 

CP(I, J). The symbol CP(I, J) is analogous to C , as ex-
. p 

plained in Chapter· I. The input of these values follows 

the form of Section 2 .. Any value which cannot be procured 

· from a particular source is given the· dummy value 0. 0 . 

. Section 4: CH(I). The symbol CH(!) is analogous to Ch as explained 

in, Chapter: I. . These values are entered qy· item row wise 

with up to 5 values on a single card in f~oating point notation. 

The number of entries on the card is identical to the value 

M. The fields are 1-10, 11-:.JO, 21-30, 31,-40, and 41-50. 
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. TABLE Al 

SUMMARY OF OUTPUT SIGNALS ANP_ THEIR CAUSES 

Output Section Problem Type . Signal 

1 Both 

2 · · Deterministic 

•Probabilistic 

3 Deterministic 

Probabilistic 

c. = 8888. 8 
1 

Q = 5555. 5 
L = 5555. 5 
TC = 5555. 5 

Q = 6666. 6 
L = 6666. 6 
TC = 6666. 6 

Q = 9999.9 
L = 9999. 9 
TC = 9999. 9 

Q - 3333. 3 
L = 3333. 3 
TC = 3333. 3 

m 
Q = 4444. 4 
L = 4444. 4 
TC = 4444. 4 

m 
Q = 5555. 5 
L = 5555. 5 
TC = 5555. 5 

m 
Q -
L = 
TC.= 

m 

6666.6 
6666.6 
6666.6 

Q = 7777. 7 
L = 7777. 7 
TC = 7777. 7 m 
Q = 9999, 9 
L = 9999. 9 
TC = 9999. 9 

m 
Q' = 9999. 9 · 
L' = 9999, 9. 
TC'= 9999 .. 9 

Q' = 9999. 9 
L' = 9999. 9 
TC'= 9999. 9 m 

Cause 

·Source does not prh
duce item 

Q<D 

Q < 1 

D>R 

L >(2D T -1) 
m mm 

* I < 0 
m 

Q<D 
m 

Q < 1 

L <D T 
.mm' 

D > R 
m-

D<R, or Q'<D & it is 
impossible to let Q'=D, 
or Q'<l & it .is impos
sible to let Q'= 1. 

L>(2D T -1), or 
mm 

D > R, or Q'<D & it m....-
is impossible to let 
Q'=D , or Q'<l & it is ,m 

impossible to let Q'=l. 
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· Each value may be entered; anywhere in the field. There 

may be a maximum .of 4 digits after the decimal point 

for each value. 

Section 5: CS(I). The symbol CS(I) is analogous to C · in the deter
s 

ministic case or; C 1;} in the probabilistic case, both of 
s· 

which are explained in Chapter I. . The input format for 

these values follows that of Section 4. 

Section 6: D(I). The symbol D(I) is analogous to D in the deter:i::nin.:. 

is tic case or D in the probabilistic case, both, of which 
m 

are explained in Chapter I. . The ·input for these values 

follows that of Section 4. 

Section 7: R (!, J)' •. The symbol R (!, J) is analogous to R as explained 

in Chapter·!.. The input for these values follows that 6£ 

Section 2. Any item which cannot be otained· from a partic-

ular source is given the dummy value of 0. 0 and any item 

which can be obtained at an infinite replenishment ,rate is 

given the dummy value 9999, 9, 

Section 8: T(I, J) .. The symbol T(I, ·J) · is analogous to. T in the 

deterministic case or T in the probabilistic case, both m . 

· of which are explained in, Chapter I. The input of these 

values follows that of Section 2 .. Any item which cannot be 

obtained from a. particular source is given the value 0. 0. 

Section 9: SPACE. '.fhe. symbol SPACE is analogous. to, W as ex-

plained in Chapter· I. This value is entered anywhere in 

columns 1-10. It should be entered as a. floating point 

value whose maximum is. less than or- equal to 100. 0, 



Although floating point notation is used, the entry should 

be an integer value. 
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Section 10: W(I). The symbol W(I) is analogous to w as expli:i,ined in 

Chapter I. The input of these values follows that of Sec

tion 2. Although floating point notation is used, these 

entries should be integer values. 

Section 11: J 10, J25, and J27. These symbols are utilized to govern 

the output of the development of the condensed cost func

tions. The values of the symbols. are zero or one in col

umns 10, 20, and 30. The use of the set 0, 1, 1 or the 

set 1, 0, 0 is acceptable. The result of using either set 

will be discussed later. 

Section 12: TYPE. The symbol TYPE refers to the type of problem 

being con side red. If the problem is deterministic, the 

value 0. 0 should be placed in the field 1-10. If the prob

lem is probabilistic, the value 1. 0 should be placed any

where in the field 1-10. 

The program is written in three phases. This necessitates cer

tain values being. read into memory more than once. The input data 

should be ordered, section after section, in the following manner: 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 9. The input data for the first example problem presented in 

Chapter V are displayed in Figure A 1 . as they appeared on the data 

cards. 
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3 5 
31.50 ·8888.8 34.75 30.88 33.38 
19 .• 85 8888.8 17.94 18.33 18.08 
12.30 12.35 8888.S 12.0 11.86 
20,40 .ooo 23.16 18.30 19.55 
17.32 .oo 18.70 11.so 14.65 
16.50 16.05 • 00 15.50 17.50 
.30 .24 .12 
.300 .17 .25 
6.0 4.0 1.0 
8.o o.o 9999.9 9999 .9 9999.9 
12.0 o.o 9999.9 9999 .9 9999.9 
4.0 40.0 .oo 9999.9 9999t9 
4.0 .oo 7.0 2.0 10.0 
6.0 .oo 3.0 4.0 12.0 
15.00 3.00 .oo J.. 0 12.0 
100.0 
24,0 12.0 6.0 
o.o 

3 fj 

31,50 8888.8 34.75 30.aa 33.38 
l9t85 8888.S 17.94 18•33 18.08 
12,30 12.35 aaa0.a 12.0 11.86 
20.40 .ooo 23.16 18,30 19.55 
17.32 .oo 1a.10 17.50 14.65 
16,50 16.05 .oo 15·50 17. 50 
.30 124 .12 
.300 t 17 .25 
6.0 4.0 1.0 
a.o o.o 9999.9 9999t9 9999.9 
12.0 o.o 9999.9 9999,9 9999.9 
4.o 40.0 .oo 9999,9 99991119 
4.o .oo 1.0 2.0 10.0 
6.0 .oo 3.0 4.0 12.0 
15.00 3.00 .oo 1.0 12.0 
100.0 
24,0 12.0 6.0 

0 1 l 
o.o 
100.0 

· Figure A 1. Input Data for Deterministic MIMS ~xample 
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Output 

Output is .via the standard print feature of the computer and may 

be divided into 4 sections as follows: 

Section 1: Input Data Printout. 

Section 2: Optimal Policy Without Constraint. These values are 

applicable to the situation in which there is ho constraint 

on ·warehou.se space. Th~s section is also useful in calcu:-

lating the penalty imposed by adhering to a warehouse 

constraint. The program has many checks to disallow any 

unfavorable situation. If an unfavorable situation arises 

and it cannot be corrected, a signal will be given. These 

signals and their· causes are given in Table A 1. 

Section 3: Condensed Cost Functions. As mentioned previously, the 

format of this section is governed by certain input data. 

The input O, 1, 1 (J 10, J 25, J 27) in columns 10, 20, and 30 

will result in a printout of each Q 1; L', and TC', for a par-
>',c 

ticular item and :I value fo·r alr sources. The condensed 

cost functions are then displayed along with associated 

pertinent data. The output will be presented in the follow-

ing order: Item Number, Source Selected, Maximum Units 

in Inventory, Space Required to Warehouse These Units, 

Optimal Procurement Quantity, Optimal Procurement Level, 

and Associated Total Cost. The program hai,; many checks 

to disallow any unfavorable situation. · If an unfavorable 

· situation arises, and it cannot be corrected, a signal 'Yill 

be given. These signals and their causes are gi~n in Tuble A 1. 
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Toe input 1, O, 0 (JlO, J25, J27) in columns 10, 20, and 30 

will result in a display of the condensed cost functions and 

associated pertinent data only .. · The output will be displayed 

as discussed above. Again, the signals shown in Table Al 

will be given iu the case of an unfavorable situation: 

Section 4: Dynamic Programming Solution. The dynamic program

ming solution is given in. stages. The user selects the 

minimizing value in the last stage and performs the back

ward solution: as in Chapters V and VI.. For purposes of 

illustration, the output data pertaining to the solution of the 

examples. in Chapters V and VI are presented below. 



ITEM l 
ITEM 2 
ITEM 3 

ITEM l 
ITEM 2 
ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 

ITEM l 
ITEM 2 
ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 
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DETERMINISTIC SYSTEM 3 ITEM(S) 5 SOURCE(Sl 

ITEM COST 
SOURCE l 

31.5000 
19.8500 
12.3000 

SOURCE 2 
8888.8000 
8888.8000 

12.3500 

PROCUREMENT GOST 
SOURCE 1 SOURCE 2 

20.4000 .0000 
17.3200 .0000 
16.5000 16.0500 

HOLDING COST 
.3000 
.2400 
.1200 

SHORTAGE COST 
.3000 
.1100 
.2500 

DEMAND 
6.0000 
4.0000 
1.0000 

RATE OF REPLENISHMENT 
SOURCE 1 SOURCE 2 

8.0000 
12.0000 
4.0000 

LEAD TIME 
SOURCE 1 

4.0000 
6.0000 

15.0000 

.0000 

.0000 
40.0000 

SOURCE 2 
.0000 
.0000 

3.0000 

TOTAL WAREHOUSE SPACE 
100.0000 

SOURCE 3 
34.7500 
17.9400 

8888.8000 

SOURCE 3 
23.1600 
18.7000 

.0000 

SOURCE 3 
9999.9000 
9999.9000 

.0000 

SOURCE 3 
1.0000 
3.0000 

.0000 

SOURCE 4 
30.8800 
18.3300 
12.0000 

SOURCE 4 
18.3000 
17.5000 
15·5000 

SOURCE 4 
9999.9000 
9999.9000 
9999.9000 

SOURCE 4 
2.0000 
4.0000 
1.0000 

SPACE REQUIREMENT FOR INDIVIDUAL ITEMS 
24.0000 
12.0000 
6.0000 

SOURCE 5 
33·3800 
1a.oaoo 
11.8600 

SOURCE 5 
19.5500 
14.6500 
17.5000 

SOURCE 5 
9999.9000 
9999.9000 
9999.9000 

SOURCE 5 
10.0000 
12.0000 
12.0000 
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POLICY DEVE60PMENT FOR UNRESTRICTED SYSTEM FOLLOWS 

ITEM l 
ITEM 2 
ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 

ITEM l 
ITEM 2 
ITEM 3 

MINIMUM COST PROCUREMENT QUANTITIES 
SOURCE 1 

80.7960 
45.7011 
23.2952 

SOURCE 2 SOURCE 3 SOURCE 4 
9999.9000 43.0571 38.2737 
9999.9000 38.7806 37.5156 

20.1507 9999,9000 19.5543 

MINIMUM COST 
SOURCE 1 

13.9005 
6.1654 
9.3336 

PROCUREMENT LEVELS 
SOURCE 2 SOURCE 3 

9999.9000 20,4843 
9999.9000 -10.6917 

-3.3719 9999,9000 

ASSOCIATED MINIMUM TOTAL COSTS 
SOURCE 1 SOURCE 2 SOURCE 3 
192.0298 9999.9000 214,9546 
82.4318 9999.9000 75,6175 
13.7165 13.9429 9999,9000 

SOURCE 4 
.. 7.1253 
-5.9515 
-5.3413 

SOURCE 4 
191.0176 

77.0517 
13.5853 

SOURCE 5 
39.5593 
34.3251 
20.7776 

SOURCE 5 
40.2322 
27.9152 

5·2619 

SOURCE 5 
206.2103 
75.7344 
13.5445 

DEVELOPMENT OF CONDENSED ,osT FUNCTIONS FOLLOWS 

57,1314 9.7171 193.2848 
9999.9000 9999.9000 9999.9000 

30.4459 11.5723 217.6283 
27.0636 ""15.0473 193,3942 
27.9726 32.0441 2013.0667 

l 1 0 0 57.1314 9.7171 193.2848 

57.4108 10.6473 193.0058 
9999.9000 9999.9000 9999,9000 

30.4788 12.5394 217.3381 
27.1005 -14.0843 193,1052 
28.0084 33.0083 208.3774 

1 l 1 24 57.4108 10.6473 193.0058 

58.2408 11.4397 192.7680 
9999,9000 9999.9000 9999.9000 

30.5772 13.4411 217.0676 
21.2111 ·13.1948 192,8384 
28.1154 33.9014 208.1095 

1 1 2 48 58.2408 11.4397 192. 7680 

59.5986 12.1003 192.5698 
9999.9000 9999.9000 9999.9000 

30.7404 14.2779 216.8166 
27.3945 -1i.3780 192.5934 
28.2929 34.7240 207.8627 

1 1 3 72 59,5986 12.1003 192.5698 

61.4491 12.6~77 192.4086 
9999.90GO 9999.9000 9999.9000 

30.9676 15.0509 2Hi.5.847 
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27.6491 -11.6325 192.3697 
28.5395 35.4775 207.fu367 

1 4 4 96 27.6491 -11.0325 192.3697 

34.9655 .6896 83.3627 
9999.9000 9999.9000 9999.9000 

29.6707 -17.6588 7o.802Q 
28.7029 .... 12 • 6914 76.1975 
26.2619 21.7486 76.7827 

2 5 0 0 26.2619 21.7486 Ua7827 

35.0430 1.6379 83.2015 
9999.9000 9999.9000 9999.9000 

29 .. 7113 =16.6994 76.6389 
28 0 7449 =11.7334 78.0346 
26.3078 22.7C)27 761.6205 

2 5 1 12 26.3078 22.70.27 76.6205 

35.2745 2.4836 83.0577 
' 9999.9000 9999.9000 9999.9000 

29.8329 -15.8210 76.4895 
28.8706 -10.8590 77.8860 
26.4450 23.5655 70.4738 

2 5 2 24 26.4450 23.5655 76.4738 

35.6570 3.2286 82.9311 
9999.9000 9999.9000 9999.9000 

30.0345 -15.0225 76.3538 
29.0788 -10.0672 77.7514 
26.6722 24.3383 76.3424 

2 5 3 36 26.6722 24.3383 76 .3424 

36.1857 J.8761 82.8210 
9999.9000 9999.9000 9999.9000 

30.3145 --14.3024 76.2314 
29.3679 -9.3562 77.6305 
26.9871 25.0236 76.2259 

2 5 4 48 26.9871 25.0236 76.2259 

36.8544 4.4303 82.7268 
9999.9000 9999.9000 9999.9000 

30.6707 -13.6584 76.1219 
29.7355 -8.7236 77.5230 
27.3866 25.6242 76.1238 

2 3 5 60 30.6707 -13.6584 76·1219 

37.6555 4.8963 82.6476 
9999.9000 9999.9000 9999.9000 

31.1005 --'13.0881 76.0249 
30.1786 -8.1665 77.4283 
27.8671 26.1439 76.0355 

2 3 6 72 31.1005 --13.0881 76.0249 

38.5808 5.2794 82.5825 
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9999.9000 9999.9000 9999.9000 
31.6009 -12.5883 75.940Q 
30.6941 -7.6818 77.3459 
28.4246 26.5867 75.9602 

2 3 7 84 31.6009 -12.5883 75.9400 

39.6217 5.5855 82.5304 
9999.9000 9999.9000 9999.9000 

32.1687 -12.1~58 75.8665 
31.2783 ... 7.2658 77.2751 
29 .. 0545 26.9571 75.8972 

2 3 8 96 32.1687 -12.1556 75.8665 

13.2664 5.0501 14.7874 
11.4757 -8.1888 15.1472 

9999.9000 9999.9000 9999.9000 
11.1360 -10.1349 14.7837 
11.8327 .1684 14.8178 

3 4 0 0 11.1360 -10.1J49 14.7837 

13.3652 5.9760 14.5559 
11.5433 .... 7.2547 14.9136 

9999.9000 9999.9000 9999.9000 
11.2023 -9.2012 14.5503 
11.8951 1.1060 14.5834 

3 4 1 6 11.2023 -9.2012 14.5503 

13.6573 6.7569 14.3607 
11.7439 -6.4503 14.71.25 

9999.9000 9999.9000 9999.9000 
11.3988 -8.3976 14.3494 
12.0803 1.9208 14.3797 

3 4 2 12 11.3988 -8.397€, 14.3494 

14.1308 7.4018 14.1995 
12.0707 -5.7690 14.5422 

9999.9000 9999.9000 9999.9000 
11.7190 -7.7178 14.1794 
12.3829 2.6183 14.2054 

3 4 3 18 11.7190 -7.7178 14.1794 

14.7681 7.9239 14.0690 
12.5140 -5.2012 14.4003 

9999.9000 9999.9000 9999.9000 
12.1530 -7.1518 14.0379 
12.7944 :3.2068 14.0583 

3 4 4 24 12.1530 -7.1518 14.0379 

15.5491 8.3~81 13.9654 
13.0619 -4.7353 14.2838 

9999.9000 9999.9000 9999,9000 
12.6893 -6.6880 1:3,9220 
13.3049 3.6964 13.9359 

3 4 5 30 12.6893 -6.6880 13.9220 
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16.4535 8.6598 13.8850 
13.7018 -4.3592 14.1898 

9999.9000 9999.9000 9999.9000 
13.3155 -6.3141 13.8285 
13.9034 4.0979 13.8355 

3 4 6 36 13.3155 -'6.3141 13.8285 

17.4620 8.9034 13.8241 
14.4214 -4.0609 14.1152 

9999.9000 9999.9000 9999.9000 
14.0195 -6.0181 13.7545 
14.579Q 4. 4224 13.7543 

3 5 7 42 14.5790 4.4224 13.7543 

18.5577 9.0816 13.7795 
15.2095 -3.8293 14.0573 

9999.9000 9999.9000 9999.9000 
14.7902 -5.7887 13.6971 
15.3216 4.6798 13.6900 

3 5 8 48 15.3216 4.6798 13.6900 

19.7261 9.205'4 13.7486 
16.0561 ... 3.6547 14.Ql36 

9999.9000 9999.9000 9999.900(;) 
15.6178 -5.6162 13.6'>54~ 
16.1219 4.8796 13,640(i) 

3 ·5 9 54 16.1219 4.8796 13.6400 

20.9549 9.2837 l:3e729Q 
16.9522 -3.5284 1:3.9821 

9999.9000 9999. 900.0 9999.9000 
16.4936 . -5.4920 13.623Q 
16.9718 5.0298 l'.h6025 

3 5 10 60 16.9718 5.0298 l'.3-6025 

22.2343 9.3242 13.7189 
17.8905 -3.4433 13.91S08 

9999.9000 9999.9000 9999.9000 
17.4105 -5.4088 13.6'022 
17.8641 5 • 137!:$ 13.5756 

3 5 11 66 17.8641 5.1375 13.5756 

23.5558 9,3330 13.7167 
18.8648 -3 .3931 13.9483 

9999.9000 9999.9000 9999.9000 
18.3623 -5.3604 13 .. 5901 
18.7929 5.2088 L3.5577 

3 5 12 72 18.7929 5.2088 13.5577 

24.9129 9.3152 Lh7211 
19.8696 -J.3729 lQ.9432 

9999.9000 9999.9000 9999.9000 
19.3437 -5.3418 1a.5854 
19.7530 5.2489 1:3.5477 
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3 5 13 78 19.7530 5.2489 13.5477 

26.3001 9.2748 13.7312 
20.9006 -3.3781 13.9445 

9999.9000 9999.9000 9999.9000 
20.3506 -5.3486 13.5871 
20.7401 5 • 2619 13.5445 

3 5 14 84 20.7401 5.2619 13.5445 

27 .. 7127 9.2154 13.7461 
21.9542 -3.4053 13.9513 

9999.9000 9999.9000 9999.900Q 
21.3793 -5.3772 13.5943 
21.7504 5.2517 1:3.5470 

3 5 15 90 21.7504 5 • 251 7 13.5470 

29.1472 9.1395 13.7051 
23.0271 ... 3.4514 13.9628 

9999.9000 9999.9000 9999.9000 
22.4269 -5.4246 13 • 6 061 
22.7809 5.221:3 13.5546 

3 5 16 96 22.7809 5.2213 13.5546 

DYNAMIC PROGRAMMING SOL.UT ION FOLLOWS 

SPACE UTILIZED TOTAL COST ALLOCATION STAGE l 
0 193.2848 0 

24 193.0058 24 
48 192.7680 48 
72 192.5698 72 
96 192.3697 96 

SPACE UTILIZED TOTAL COST ALLOCATION STAGE 2 
0 270.0675 0 

12 269.9053 12 
24 269.7587 24 
36· 269.6263 12 
48 269,4796 24 
60 269.3482 36 
72 269.2317 48 
84 269.1105 36 
96 268.9940 48 

SPACE UTILIZED TOT Ab COST ALLOCATION STAGE 3 
Q 284.8513 0 
6 284.6178 6 

12 284.4170 12 
18 284.2470 18 
24 284,1G55 24 
30 283 .. 9896 30 
36 283,8961 36 
42 283.8219 42 
48 2831117339 36 
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54 283,6597 42 
60 283.5872 36 
66 283,5131 42 
72 283114487 48 
78 283,3807 42 
84 283.3082 36 
90 283.2340 42 
96 283,1696 48 

DETERMINISTIC SYSTEM 3 ITEM(Sl 1 SOURCE(S) 

ITEM COST 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 30.86300 
ITEM 2 18.3300 
ITEM 3 12.0000 

PROCUREMENT COST 
SOURCE·l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 18.3000 
ITEM 2 17.5000 
ITEM 3 15.5000 

HOL.DING COST 
ITEM l ,3000 
ITEM 2 ,2400 
ITEM 3 .1200 

SHORTAGE ,osT 
ITEM l 113000 
ITEM 2 .1100 
ITEM 3 .2500 

DEMAND 
ITEM l 6.0000 
ITEM 2 4.0000 
ITEM 3 1.0000 

RATE OF REPLENISHMENT 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM 1 . 9999.9000 
ITEM 2 9999.9000 
ITEM 3 9999.9000 

L.EAD TIME 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 2.0000 
ITEM 2 4.0000 
ITEM 3 1.0000 



ITEM 1 
ITEM 2 
ITEM 3 

TOTAL WAREHOUSE SPACE 
100.0000 

SPACE REQUIREMENT FOR INDIVIDUAL ITEMS 
24.0000 
12.0000 
6.0000. 
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POLICY DEVELOPMENT FOR UNRiSTRICTED SYSTEM FOLLOWS 

ITEM 1 
ITEM 2 

· ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 

ITEM 1 
ITEM 2 
ITEM 3 

MINIMUM COST PROCUREMENT QUANTITIES 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

38.2737 
37.5156 
19.5543 

MINIMUM COST PROCUREMENT LEVELS 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

-'7.1253 
-5.9515 
""'5.3413 

ASSOCIATED MINIMUM TOTAL COSTS 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 
191.0176 

77.0~)17 
13.5853 

DEVEbOPMENT OF CONDENSED COST FUNCTIONS FOLLOWS 

27.0636 --15.047:i$ 193.3942 
1 l 0 0 27.0636 *15.0473 193,3942 

27.1005 -14.0843 19:.,.1052 
1 1 1 24 27.1005 .... 14.0843 193.1052 

21.2111 --13.1948 192.8384 
1 1 2 48 21.2111 -13.1948 192.8384 

27.3945 ""12.3780 192.5934 
1 1 3 72 27.3945 -12.3780 192.5934 

27.6491 -11.6325 192.3697 
1 1 4 96 27.6491 -11.6325 192;;3697 

28.7029 -12.6914 78.1975 
2 1 0 0 28.7029 ---12.6914 78,.1975 

28.7449 -11.7334 78t0346 
2 1 1 12 28.7449 --11.7334 78.0346 

28.8706 -10.8590 77.886Q 
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2 l 2 24 28.8706 -10.8590 77.8860 

29.0788 -10.0672 77.7514 
2 l 3 36 29.0788 ·10.0€:>72 77.7514 

29.3679 -9.3562 77.6305 
2 l 4 48 29.3679 --9.3562 77.63Q5 

29.7355 ""'8• 7236 77.523G 
2 l 5 60 29.7355 -8. 7236 77.5230 

30.1786 -8.1665 77.4283 
2 l 6 72 3(:J.1786 -8.1665 77.4283 

30.6941 --7.6818 77.3459 
2 l 7 84 30.6941 -7.6818 77.3459 

31.2783 '-7.2658 77.2751 
2 l 8 96 31.2783 -7.2658 77.2751 

11.1360 -10.1349 14.7837 
3 1 0 0 11.1360 -'10.1349 14.7837 

11.2023 -9.2012 14.5503 
l 1 6 11.2023 '""9.2012 14.5503 

11.3988 -8.3976 14.3494 
3 l 2 12 11. • 3988 -8 • 3976 14.3494 

11.7190 -7.7178 14·1794 
3 1 3 18 11.7190 --7.7178 14.1794 

12.1530 --7.1518 14.0379 
3 l 4 24 12.1530 -7.1518 14.0379 

12.6893 -6.6880 13.9220 
1 5 30 12.6893 '"'6.6880 13.9220 

13.3155 -6.3141 lJ.8285 
3 l 6 36 13.3155 -6.3141 13.8285 

14.0195 -6.0181 13.7545 
3 1 7 42 14.0195 -6.0181 13.7545 

14.7902 -5.7887 13.6971 
l 8 48 14.7902 -5.7887 13.6971 

15.6178 ""5.6162 13.654Q 
3 l 9 54 15.6178 ... 5.6162 13.65·4(i) 

16.4936 -5.4920 13.6230 
3 1 10 60 16.4936 ..... 5 • 492 0 13.6230 

17.4105 .... 5.4088 13.6022 
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3 1 11 66 17.4105 -5.4088 13.6022 

18.3623 -5.3604 1:3.5901 
3 1 12 72 18.3623 -5.3604 13e59Ql 

19.3437 -5.3418 13.5854 
3 1 13 78 19.3437 -5.3412 13.5854 

20.3506 .... 5.3486 13.5871 
3 1 14 84 20.3506 .... 5.3486 13.5871 

21.379:a ... 5.3772 13.5943 
3 l 15 90 21.3793 -5.3772 13.5943 

22.4269 ... 5.4246 13.6061 
3 l 16 96 22.4269 -5.4246 13.6061 

DYNAMIC PROGRAMMING SOLUTION FOLLOWS 

SPACE UTIL.IZED TOTAL COST ALLOCATION STAGE l 
0 193.3942 0 

24 193.1052 24 
48 192118384 48 
72 192.5934 72 
96 192.36>97 96 

SPACE UTiwIZED TOTAL COST ALLOCATION STAGE 2 
0 27115917 0 

12 271114288 12 
24 271112802 24 
36 271,1399 12 
48 2.70.9913 24 
60 270.8!:>67 36 
72 270.7244 24 
84 270,5898 36 
96 270.4690 48 

SPACE UTILIZED TOTAL COST ALLOCATION STAGE 3 
0 286.3754 0 
6 286,1420 6 

12 285.9411 12 
18 285.7712 18 
24 285.6297 24 
30 285.5137 30 
36 285.4202 36 
42 285.3462 42 
48 285.2574 36 
54 285.1834 42 
60 285. Hl87 36 
66 2851110347 42 
72 284.9685 36 



ITEM 1 

ITEM 1 

IlEM 1 

ITEM l 

ITEM l 

ITEM l 

ITEM l 

ITEM 1 

78 
84 
90 
96 

284.8944 
284.8198 
284.7458 
284.6852 

42 
36 
42 
36 
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DETERMINISTIC SYSTEM. 1 IT EM< S) 5 SOURCE(S) 

ITEM COST 
SOURCE l SOURCE 2 

19.8500 8888.8000 

PROCUREMENT COST 
SOURCE l SOURCE 2 

17.3200 .0000 

HOL.DING COST 
.2400 

SHORTAGE COST 
.1100 

DEMAND 
4.0000 

RATE OF REPLENISHMENT 

SOURCE 3 
17.9400 

SOURCE 3 
18.7000 

SOURCE 4 SOURCE 5 
18.3300 18.0800 

SOURCE 4 SOURCE 5 
11.5000 14.6500 

SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 
12.0000 .0000 9999.9000 9999.9000 9999.9000 

LEAD TIME 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

6.0000 .0000 3.0000 4.0000 12.0000 

TOTAL WAREHOUSE SPACE 
100.000G) 

SPACE REQUIREMENT FOR INDIVIDUAL ITEMS 
12.0000 

POLICY DEVELOPMENT FOR UNRESTRICTED SYSTEM.FOLLOWS 

ITEM l 

ITEM l 

ITEM l 

MINIMUM COST PROCUREMENT QUANTITIES 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

45.7011 9999.9000 38.7806 37.5156 34.3251 

MINIMUM COST PROCUREMENT LEVELS 
SOURCE l SOURCE 2 SOURCE 3 SOURGE 4 SOURCE 5 

6.1654 9999.900© ~10.6917 -5.9515 27.9152 

ASSOGIATED MINIMUM TOTAL ,osTS 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

82.4318 9999.9000 75,6175 77.0517 75.7344 
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DEVELOPMENT OF CONDENSED COST FUNCTIONS FOLLOWS 

34.9655 .6896 83.3627 
9999.9000 9999.9000 9999.9000 

29.6707 -17.6588 76.802G 
28.7029 -12.6914 78.1975 
26.2619 21.7486 76.7827 

1 5 0 0 26.2619 21.7486 76.7827 

35.0430 1.6379 83.2015 
9999.9000 9999.9000 9999.9000 

29.7113 '"'16.6994 76.6389 
28.7449 -11.7334 78.0346 
26.3078 22.7027 76.6205 

1 5 1 12 26.3078 22.1021 76.6205 

35.2745 2.4836 83.0577 
9999.9000 9999.9000 9999.9000 

29.8329 --15.8210 76.4895 
28.8706 --10.8590 77.8860 
26.4450 23.5655 ?b.4738 

1 5 2 24 26.4450 23.5655 76.4738 

35.6570 3.2286 82.9311 
9999.90QO 9999.9000 9999.900Q 

30.0345 -15.0225 76.3538 
29.0788 •10.0672 77.7514 
26.6722 24.3383 76.3424 

1 5 3 36 26.6722 24.3383 76e3424 

36.1857 3.8761 82.8210 
9999.9000 9999.9000 9999.9000 

30.3145 -14.3024 7fu.2314 
29.3679 -9.3562 77.6305 
26.9871 25.0236 76.2259 

1 5 4 48 26.9871 25.0236 76e2259 

36.8544 4.4303 82.7268 
9999.90GO 9999.9000 9999.9000 

30.6707 -13.6584 76.1219 
29.7355 -S.7236 77.5230 
27.3866 25.€:1242 76.1238 

1 3 5 60 30.6707 -13.6584 76.1219 

37.6555 4.8963 82.6476 
9999.9000 9999.9000 9999.9000 

31.1005 --13.0881 u.,.0249 
30.1786 --8 • 1665 77.4283 
27.8671 26.1439 7ti.0355 

1 3 6 72 31.1005 -'13.0881 76.0249 

38.5808 5.2794 82.5825 
9999.9000 9999.9000 9999.9000 

31.6009 -12.5883 75.9400 
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30.6941 -7.6818 77.3459 
28.4246 26.5867 75.96>Q2 

l 3 7 84 31.6009 -12. 588:3 75.9400 

39.6217 5.5855 82.5304 
9999.90GO 9999.9000 9999.9000 

32.1687 -12.1558 75.8665 
31.2783 ..... 7.2€>58 77.2751 
29.0545 26.9571 75.8972 

1 3 8 96 3dl.1687 ""li.1558 75.8665 

DYNAMIG PROGRAMMING SOLUTION FOLLOWS 

SPACE UTILIZED TOTAL COST 
76,7827 
76 .• 6205 
76.4738 , 
76,3424 
76,2259 
76,1219 
76,0249 
75,9400 
75,8665 

AL.LOCATION STAGE l 

ITEM 

ITEM 

ITEM 

ITEM 

ITEM 

ITEM 

ITEM 

l 

l 

l 

l 

l 

l 

l 

0 
12 
24 
36 
48 
60 
72 
84 
96 

DETERMINISTIC SYSTEM 

ITEM GOST 
SOURCE l SOURCE 

34,7500 

PROCUREMENT COST 
SOURCE l SOURCE 

23.1600 

HObDING COST 
.3000 

SHORTAGE COST 
.3000 

DEMAND 
6.0000 

RATE OF REPLENISHMENT 
SOURCE l SOURCE 

9999,9000 

biEAD TIME 
SOURCE l SOURCE 

1.0000 

2 

2 

2 

2 

0 
12 
24 
36 
48 
60 
12 
84 
96 

l ITEM<S> 

SOURCE 3 

SOURCE 3 

SOURCE 3 

SO URGE 3 

l SOURCE CS> 

SOURCE 4 SOURCE 

SOURCE 4 SOURCE 

SOURCE 4 SOURCE 

SOIJRCE 4 SOURCE 

5 

5 

5 

5 



ITEM 1 

TOTAL WAREHOUSE SPACE 
100.0000 

SPACE REQUIREMENT FOR INDIVIDUAL ITEMS 
24.0000 
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POLICY DEVELOPMENT FOR UNR~STRICTED SYSTEM FOLLOWS 

MINIMUM COST ~ROCUREMENT QUANTITIES 

ITEM l 

ITEM 1 

ITEM l 

SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 
43.0571 

MINIMUM COST PROCUREMENT LEVELS 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

20.4843 

ASSOCIATED MINIMUM TOTAL COSTS 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 
214.9546 

DEVELOPMENT OF CONDENSED COST FUNCTIONS FOLLOWS 

30.4459 11.5723 217.6283 
1 l 0 0 30.4459 ll.572J 217.6283 

30.4788 12.5394 217.3381 
1 1 l 24 30.4788 12.5394 217.3381 

30.5772 u~. 4411 217,0676 
1 1 2 48 30.577a 13.4411 217.0676 

30,7404 14.2779 216.8166 
1 1 3 72 30.7404 14.2779 216.8166 

30,9676 15,0509 2Hu5847 
1 1 4 96 30,9676 15.0509 216. 5847 

DYNAMIC PROGRAMMING SOLUTION FOLLOWS 

SPACE UTILIZED TOT Ab COST ALLOCATION STAGE l 
0 217.6263 0 

24 217.3381 24 
48 217,0676 48 
72 216.8166 72 
96 216.5847 96 
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PROBABILISTIC SYSTEM 2 ITEM(S) 3 SOURCE<S> 

ITEM COST 
SOURCE 1 SOURCE 2 SO URGE 3 SOURCE 4 SOURCE 5 

ITEM 1 1.0000 8888.8000 6.:aooo 
ITEM 2 4.3400 4.2500 8S88.8000 

PROCUREMENT GOST 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 6.0000 .0000 6.2500 
ITEM 2 5.5000 5.7500 .0000 

HOhDING COST 
ITEM l .1000 
ITEM 2 .1200 

SHORTAGE COST 
ITEM 1 4.0000 
ITEM 2 3.8000 

DEMAND 
ITEM 1 2.0000 
Ii EM 2 1.8000 

RATE OF REPLENISHMENT 
SOURCE 1 SOURCE 2 SOUR GE 3 SOURCE 4 SOURCE 5 

ITEM 1 10.0000 .0000 9999.9000 
I iEM 2 s.0000 9999.9000 .0000 

LEAD TIME 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM 1 2.0000 .0000 4.0000 
ITEM 2 3.0000 2.0000 .0000 

TOTAL WAREHOUSE SPA GE 
100.0000 

SPACE REQUIREMENT FOR INDIVIDUAL ITEMS 
ITEM 1 9.0000 
ITEM 2 1.0000 

POLICY DEVELOPfv1ENT FOR UNRESTRICTED SYSTEM FOLLOWS 

MINIMUM COST PROCUREMENT QUANTITIES 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 18.1265 9999.9000 17.5021 
ITEM 2 · 16.5161 13.7265 9999.9000 

MINIMUM COST PROCUREMENT LEVELS 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM 1 6.1873 9999.9000 12.4995 
ITEM 2 7.6706 5.4661 9999.9000 
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ASSOCIATED MINIMUM TOTAL COSTS 

ITEM 1 
ITEM 2 

SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 
15.6688 9999.9000 14.7998 
9.6204 9.5208 9999.9000 

DEVELOPMENT OF CONDENSED COST FUNCTIONS FOLLOWS 

NO OPTlMAb PO~ICY EXISTS 

NO OPTIMAb POblCY EXISTS 

l l 2 18 

l l 3 27 

1 l 4 36 

l l 5 45 

l l 6 54 

l 1 7 63 

1 1 8. 72 

9999.9000 
9999.9000 
9999.9000 

9999.9000 
9999.9000 
9999.9000 

2.5000 
9999.9000 

2.0004 
2.5000 

3.7500 
9999.9000 

3.0006 
3.7500 

5.0000 
9999.9000 

4.oooa 
5.0000 

6. 2500 
9999.9000 

5.0010 
Ei.2500 

6.9436 
9999.9000 

6•0012 
6.9436 

7.5592 
9999.9000 

7.0014 
7.5592 

8.3452 
9999.9000 

7.8279 
8.345i:i! 

9.2582 

9999.9000 
9999.9000 
9999.9000 

9999.9000 
9999.9000 
9999.9000 

4.0000 
9999.9000 

s.0000 
4.0000 

4.0000 
9999.9000 

a.0000 
4.0000 

4.0000 
9999.9000 

8.0000 
4.0000 

4.0000 
9999.9000 

s.0000 
4.0000 

4.4450 
9999.9000 

a.0000 
4.4450 

4. 952 5 
9999.9000 

8.0000 
4 • 952 5 

5.3238 
9999.9000 

8.1735 
5.3a3a 

5.5934 

9999.9000 
9999.9000 
9999.9000 

9999.9000 
9999.9000 
9999.9000 

21.9000 
9999.9000 

26.8221 
21.9000 

19.3499 
9999.9000 

22.1647 
19.3499 

18.1000 
9999.9000 

19.8610 
1a.1000 

17.3700 
9999.9000 

18.4988 
17.3700 

li.8884 
9999.9000 

17.6073 
16 .8884 

H1e5332 
9999.9000 

16.9849 
16.5332 

H,.2733 
9999.9000 

1~.5297 
16.2733 

16.0845 
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9999.9000 9999.9000 9999.9000 
7.9074 9.0941 H,-1616 

1 1 9 81 9.2582 5.5934 16.0845 

10.2643 5.7885 15.9480 
9999.9000 9999.9000 9999.9000 

8.1412 9.86QJ 15.8552 
1 3 10 90 8.1412 9.8603 15.8552 

11.3389 5.9288 15.8498 
9999.9000 9999.9000 9999.9000 

8.5166 10.4850 1s.,054 
l 3 11 99 8.5166 10.4850 15.6054 

9999.9000 9999.9000 9999.9000 
9999.9000 ·"9999 • 9000 9999.9000 
9999.9000 9999.9000 9999.9000 

NO OPTIMAL. PObICY EXISTS 

9999.9000 9999.9000 9999.9000 
9999.9000 9999.9000 9999.9000 
9999.9000 9999.9000 9999.9000 

NO OPTIMAb POLICY EXISTS 

2.5806 5 • 4000 15 .. 2237 
2.0003 3.6000 15.7840 

9999.9000 9999.9000 9999.9000 
2 1 2 14 2.5806 5.4GOO 15.2237 

3.8709 5.4000 12.8531 
3.0005 3.6000 13.1727 

9999.9000 9999.9000 9999.9000 
2 1 3 21 3.8709 5.4000 12.8531 

5.1612 5.4000 11.6978 
4. Q.007 3.6000 11.8970 

9999.9000 9999.9000 9999.9000 
2 1 4 28 5.1612 5.4GOO 11.6978 

6.4516 5.4000 11.0286 
5.0009 3.6000 11.1556 

9999.9000 9999.9000 9999.9000 
2 l 5 35 6.4516 5.4000 11.0286 

7.7419 5.4000 10.6025 
5.5135 4.0874 10.6649 

9999.9000 9999.9000 9999.9000 
2 l 6 42 7.7419 5.4000 10.6025 

8.5048 5 • 808 7 10.3109 
6.0861 4.5149 10.3101 

9999.9000 9999.9000 9999.9000 
2 2 7 49 6.0861 4.5149 10.3101 
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9.0325 6.3997 10.0917 
6.7802 4.8209 10.0561 

9999.9000 9999.9000 9999.9000 
2 2 8 56 6 • 780 2 4.8209 10.0561 

9.7596 6.8362 9.9298 
7.5626 5.0387 9.8754 

9999.9000 9999.9000 9999.9000 
2 2 9 63 7 • 5626 5.0387 9.8754 

10.6452 7 .1499 9.8135 
8.4085 5.1929 9.7475 

9999.9000 9999.9000 9999.9000 
2 2 10 70 8.4085 5 • 192 9 9.7475 

11.6532 7.3687 9.7324 
9.3008 5.3008 9.6579 

9999 • 900.0 9999.9000 9999.9000 
2 2 11 77 9.3008 5.3008 9.6579 

12.7547 7.5150 9.6781 
10.2272 5.3745 9.5967 

9999.9000 9999.9000 9999.9000 
2 2 12 84 10.2272 5.3745 9.5967 

13.9275 7.6G61 9.6>443 
11.1793 5 • 422 6 ,9 • 5569 

9999.9000 9999.9GOO 9999.9000 
2 2 13 91 11.1793 5 • 422 6> 9.5569 

15.1550 7.6548 9.6263 
12.1511 5.4510 9 .. 5333 

9999.9000 9999.9000 9999.9000 
2 2 14 98 12.1511 5.4510 9.5333 

DYNAMIC PROGRAMMING SOLUTION FOLLOWS 

SPACE UTILIZED TOTAL COST ALLOCATION STAGE l 
18 21,9000 18 
27 19.3499 27 
36 18.lGOO 36 
45 17,3700 45 
54 16.8884 54 
63 16·5332 63 
72 16.2733 72 
81 16.G845 81 
90 15.8552 90 
99 15.6054 99 

SPACE UTILIZED TOTAb COST ALLOCATION STAGE 2 
32 37.1237 14 
39 34.7531 21 



ITEM l 
ITEM 2 
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41 34.5737 14 
46 33,5978 28 
48 32,2Q31 21 
50 33.3237 14 
53 32.9286 35 
55 31,0478 28 
57 30,9531 21 
59 32,5937 14 
60 32.5025 42 
62 30.3786 35 
64 29.7978 28 
66 30,2231 21 
67. 32,2101. 49 
68 
69 
71 
73 
74 
75 
76 
77 
78 
so 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

32•1121 14 
29,9525 42 
2911286 35 
2910678 as 
3;1-9561 56 
29,7415 21 
29.6601 49 
31.7569 14 
28,7G25 42 
28,3986 35 
31-7754 63 
28,5863 28 
29,4GJ6l 56 
29,3863 21 
28.41(.)l 49 
31,497G 14 
27.9725 42 
31.6475 70 
27,9171 35 
29.2254 6.3 
28,2310 28 
28,1561 56 
29111264 21 
27.6801 49 
31,3083 14 
27,4910 42 
29,0975 70 
27,5618 35 
27,9754 o3 
27,9711 28 

PROBABlbISTIC SYSTEM 2 ITEM(S) l SOURCE(S) 

ITEM COST 
SOURCE l SOURCE 2 SOURCE 3 SOURGE 4 SOURCE 5 

1.0000 
4.3400 
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PROCUREMENT COST 
SOURCE 1 SOURCE 2 SOURCE· 3 SOURCE 4 SOURCE 5 

ITEM l 6.0000 
ITEM 2 5.5000 

HOLDING COST 
ITEM l .1000 
ITEM 2 .1200 

SHORTAGE COST 
ITEM 1 4.0000 
ITEM 2 3.8000 

DEMAND 
ITEM 1 2.0000 
ITEM 2 1.8000 

RATE OF REPLENISHMENT 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 10.0000 
ITEM 2 8.0000 

LEAD TIME 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 2.0000 
ITEM 2 3.0000 

TOTAL WAREHOUSE SPACE 
100.0000 

SPACE REQUIREMENT FOR INDIVIDUAL ITEMS 
ITEM l 9.0000 
ITEM 2 1.0000 

POLICY DEVELOPMENT FOi~ UNRESTRICTE:D SYSTEM FOLLOWS 

MINIMUM COST PROCUREMENT QUANTITIES 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 18.1265 
ITEM 2 16.5161 

MINIMUM COST PROCUREMENT LEVELS 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 6.1873 
ITEM 2 7.6706 

ASSOCIATED MINIMUM TOTAL COSTS 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 15.6688 
ITEM 2 9.6204 
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DEVELOPMENT OF CONDENSED COST FUNCTIONS ·,FOLLOWS 

9999.9000 9999 • 90,00 9999.9000 
NO OPTIMAlw POL:.l CY EXISTS 

9999.9000 9999.9000 9999.9000 
N.O OPTIMALa. P·ObICY liXISTS 

2.5000 4.0000 21.9000 
l l 2 18 2 .• 5000 4.0000 21 .• 900,0 

3.7500 4.0000 19. 3499 
l ]. 27 3.7500 4. QQ,00 19•3499 

5.0,000 4.0000 18.1000 
l l 4 3.6 5.0000 4.0000 1a.1000 

6 .• 2500 4.0QOO l 7 .. 370Q 
l l 5 45 6·2·500 4.0000 17.3700 

6e9436 4.4450 1:6. 8884 
l l 6 54 6.9436 4.4450 16.8884 

7e559a .. 4.9525 16.5332 
1 l 7 63 7.559i 4.952$ ..• · i:,. 5332 

a.3452 5~3.23:a 16.2733 
1 l 8 72 a.3452 5.3238 10.2733 

9.2582 p.59·34 u,.oa4s 
l l 9 81 9.2582 s..59·34. 16.0845. 

.10. 2·64a 5.7885 ].:5.9480 
1 l 10 90 10.2643 5 • 7885 15.9480 

11•3389, 5.9288 15.8498 
l l 11 99 11.3389 5119~88 15.8498·. 

9999.90GO:·· 9999.9000 9999.9000 
NO OPTIMAb P'O!i.JC:Y EXISTS 

9,999.9000 9999.9000 9999i.900Q 
NO OPTlMM111 POblGY EXISTS 

.2.58Q6. ··s.4000 JiSe2237 
2 .1 2 " 14 2.580:6 5.4000 15·2237 

. " 

3•8709. ·. 5e4GO.Q 1a.·as31 
2 l. 3· .21 3e8709•• 5~4000 12,6531 

s.1612 s·.4000 lluo,97.8 
2 1 4 28 .s • 1•6'.12. 5.400,f lle6978 
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6.4516 5.4000 11.0286 
2 l 5 35 6.4516 5.4000 11.0286 

7.7419 5.4000 10e6025 
2 1 6 42 7.7419 5.4000 10.6025 

8.5048 5.8087 10.3109 
2 1 7 49 8.5048 5.8087 10e3109 

9e0325 6.3997 10.0917 
2 l 8 56 9.0325 6. 3997 10.0917 

9.7596 6.8362 9.9298 
2 l 9 63 9.7596 6.8:362 9.9298 

10.6452 7.1499 9.8135 
2 l 10 70 10.6452 7.1499 9.8135 

11.6532 7.3687 9.7324 
2 1 11 77 11.6532 7.3687 9.7324 

12.7547 7.5150 9.6781 
2 1 12 84 12.7547 7.5150 9.61781 

13.9275 7.&061 9eo443 
2 1 13 91 13.9275 7.6061 9.6443 

15.1550 7.6548 9.G263 
2 1 14 98 15 .1550 7.6548 9.6263 

DYNAMIC PROGRAMMING SOLUTION FOLbOWS 

SPACE UTILIZED TOTAL GOST Ab.LOCATION STAGE l 
18 21.9000 18 
27 19.3499 27 
36 18,1000 36 
45 17.3700 45 
54 16.8884 54 
63 16.5332 63 
72 16.2733 72 
81 16 • 0845 in 
90 15.9480 90 
99 15.8498 99 

SPACE UTILIZED TOTAL COST AL.LOCATION STAGE 2 
32 37.1237 14 
39 34.7531 21 
41 34.5737 14 
46 33,5978 28 
48 32.2031 21 
50 33.3237 14 
53 32.9286 35 
55 31.0478 28 



57 
59 
60 
62 
64 
66 
67 
68 
69 
71 
73 
74 
75 
76 
77 
78 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

ITEM l 

ITEM l 

ITEM l 
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30.9531 21 
32.5937 14 
32e5025 42 
3Ge3786 35 
29.7978 28 
30.2231 21 
32.2109 49 
32.1121 14 
29,9525 42 
29.1286 35 
29.0678 28 
31.9917 56 
29.7415 21 
29.6609 49 
31.7569 14 
28.7025 42 
28.39.86 35 
3.J.18298 63 
28,5863 28 
29,4417 56 
29,3863 21 
28,4109 49 
31,4970 14 
27,9725 42 
31.17135 70 
27,9171 35 
29,2798 63 
28,2310 28 
28,1917 56 
29 .. 1264 21 
27.6809 49 
31·3083 14 
27,4910 42 
29.1635 70 
27.5618 35 
28,Q298 63 
27,9711 28 

PROBABILISTIC SYSTEM l ITEM(S) 3 SOURCECS) 

ITEM COST 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

4.3400 4,2500 8888,8000 

PROCUREMENT COST 
SOURCE l SOURCE 2 SOURCE 3 SOURGE 4 SOURCE 5 

5,5000 5.7500 .0000 

HOLDING COST 
.1200 



ITEM l 

ITEM l 

SHORTAGE COST 
3.8000 

DEMAND 
1.aooo 

RATE OF REPLENISHMENT 
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SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 
ITEM l s.0000 9999.9000 .0000 

LEAD TIME 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 

ITEM 1 

3.0000 2.0000 .0000 

TOTAL WAREHOUSE SPACE 
100.0000 

SPACE REQUIREMENT FOR INDlVlDUAL ITEMS 
7.0000 

POLICY DEVEbOPMENT FOR UNRESTRICTED SYSTEM FOL.LOWS 

MINIMUM COST PROCUREMENT QUANTITIES 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 

ITEM 1 16.5161 13.7265 9999.9000 

MINIMUM COST PROCUREMENT LEVELS 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 

ITEM 1 7.6706 5.4661 9999.9000 

ASSOCIATED MINIMUM TOTAL i;osTs 
SOURCE 1 SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 

ITEM 1 9.6204 9.5208 9999.9000 

DEVELOPMENT OF CONDENSED COST FUNCTIONS FOLLOWS 

NO OPTIMAb POLICY EXISTS 

NO OPTIMAb PO~ICY EXISTS 

1 l 2 14 

9999.9000 
9999.9000 
9999.9000 

9999.9000 
9999.9000 
9999.9000 

2.5806 
2.0003 

9999.9000 
2.5806 

3.8709 

9999.9QOO 
9999.9000 
9999.9000 

9999.9000 
9999.9000 
9999.9000 

5.4000 
3.6GOO 

9999.9000 
5.4000 

5.4000 

9999.9000 
9999.9000 
9999.9000 

9999.9000 
9999.9000 
9999.9000 

15.2237 
15.7840 

9999.9000 
15.2237 

La.8531 

5 

5 

5 



178 

3.0005 3.6000 13..1727 
9999.9000 9999a9000 9999.9000 

1 1 3 21 3.8709 5 .. 4000 12 .. 8531 

5.1612 5.4000 11.6978 
4.0007 3.6000 11.8970 

9999.9000 9999.9000 9999.9000 
1 1 4 28 5.1612 5.4000 11.6978 

6.,L~516 5.4000 11.0286 
5 .. 0009 3.6000 11.1556 

9999.9000 9999.9000 9999 .. 9000 
1 1 5 35 6.4516 5.4000 11.0286 

7.7419 5.4000 10 • 6 0 2,5 
5.5135 4.0874 10.6649 

9999.9000 9999.9000 9999.9000 
1 l 6 42 7.7419 5.4000 10.6025 

8 .. 5048 5.8087 10.3109 
6.0861 4.5149 10 .. 3101 

9999.9000 9999.9000 9999.9000 
1 2 7 49 6 .. G861 4.5149 10.3101 

9.0325 6.3997 10.0917 
6.7802 4.8209 10.0561 

9999.9000 9999.9000 9999.9000 
1 2 8 56 6.7802. 4.8209 10.0561 

9.7596 6.8362 9.9298 
7.5626 5.0387 9.875'+ 

9999.9000 9999.9000 9999.9000 
l 2 9 63 7.5626 5 .. 0387 9.8754 

10.6452 7ol!.+99 t).8135 
8.4085 5 .. 1929 9.,7475 

999909000 9999.9000 9999 .. 900() 
1 2 10 70 8tL~085 5 .. 192 9 9.,,7475 

11.6532 7. 368 7 9$)7321.+ 
9.3008 5,. 3008 9.6:579 

9999.9000 9999.9000 9999 .. 9000 
1 2 11 77 9 .. 3008 5., 3008 9«6579 

12.7547 7.5150 9.Q781 
10.2212 5.3745 9.5967 

9999.9000 9999.9000 9999.9000 
l 2 12 84 lG).2272 .5 .. 3745 9.5967 

13.9275 7.6061 9.6.4'+3 
11.1793 5 • 422 6 9.5569 

9999.9000 9999.9000 9999.9000 
1 2 13 91 11.1793 5 • 422 6 9.5569 



1 2 14 98 

15.1550 
12.1511 

9999.9000 
12.1s11 

7.6548 
5.4510 

9999.9000 
5.4510 

DYNAMIC PROGRAMMING SOLUTION FOLLOWS 
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9.6263 
9.5333 

9999.9000 
9.5333 

SPACE UTILIZED 
14 

TOTAL COST 
15.2237 
12.8531 
11.6978 
11.0286 
10.6025 
10.3101 
10 .. 0561 

ALLOCATION 
14 

STAGE l 

21 
28 
35 
42 
49 
56 
63 
70 
77 
84 
91 
98 

ITEM l 

ITEM l 

ITEM l 

ITEM 1 

ITEM l 

ITEM l 

ITEM 1 

PROBABILISTIC 

ITEM COST 
SOURCE l 

6.3000 

9.8754 
9.7475 
9.6579 
9.5967 
9.5569 
9 • 5333 

SYSTEM 

SOURCE 

PROCUREMENT COST 
SOURCE 1 SOURCE 

6.2500 

HOLDING COST 
.1000 

SHORTAGE COST 
4.0000 

DEMAND 
2.0000 

RATE OF REPLENISHMENT 
SOURCE 1 SOURCE 

9999.9000 

bEAD TIME 
SOURCE 1 SOURCE 

4.0000 

TOTAL WAREHOUSE SPACE 
100.0000 

21 
28 
35 
42 
49 
56 
63 
70 
77 
84 
91 
98 

1 ITEM(Sl 1 SOURCE(S) 

2 SOUR GE 3 SOURCE 4 SOURCE 

2 SOURCE 3 SOURCE 4 SOURCE 

2 SOURCE 3 SOURCE 4 SOURCE 

2 SOURCE 3 SOURCE 4 SOURCE 

5 

5 

5 

5 
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ITEM l 
SPACE REQUIREMENT FOR INDIVIDUAL ITEMS 

9.0000 

POLICY DEVELOPMENT FOR UNRESTRICTED SYSTEM FOLLOWS 

MINIMUM COST PROCUREMENT QUANTITIES 

ITEM l 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

17.5021 

MINIMUM COST PROCUREMENT LEVELS 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM l 12.4995 

ASSOCIATED MINIMUM TOTAL GOSTS 
SOURCE l SOURCE 2 SOURCE 3 SOURCE 4 SOURCE 5 

ITEM [ 14.7998 

DEVELOPMENT OF CONDENSED COST FUNCTIONS FOLLOWS 

9999.9000 9999.9000 9999.9000 
NO OPTIMAb PObIGY EXIST.S 

9999.9000 9999.9000 9999.9000 
NO OPTIMALi. POL.IGY EXISTS 

2.0004 0.0000 26.8221 
l 1 2 18 2.0004 s.0000 26.8221 

3e0006 a.0000 22.1647 
l l 3 27 3.0006 a.0000 22.1647 

4.0000 a.0000 19.8610 
1 1 4 36 4.oooa 8.0000 19.8610 

5.0010 9.0000 18.4988 
1 1 5 45 5.0010 8.0000 18.4988 

6.0012 0.0000 17.6073 
1 1 6 54 6e0012 0.0000 17.6073 

7.0014 0.0000 16.9849 
1 1 7 63 7.0014 0.0000 16>.9849 

7.8279 8.1735 li.5297 
1 1 8 72 7.827.9 8.1735 H,, 5297 

7e9074 9.0941 Hu lo16 
1 1 9 81 7.9074 9.0941 10.1616 

8.1412 9.8603 15.8552 
1 l 10 90 8.1412 9.8603 15,8552 



1 l 11 99 
8.5166 
8.5166 

10.4850 
10.4850 

DYNAMIC PROGRAMMING SOLUTION FOLLOWS 

SPACE UT I LI ZED 
18 
27 
36 
45 
54 
63 
72 
81 
90 
99 

TOTAL COST 
26.8221 
22.1647 
19.8610 
18.4988 
17.6073 
16.9849 
16.5297 
16.1616 
15.8552 
15.6G54 

ALLOCATION 
18 
27 
36 
45 
54 
63 
72 
Bl 
90 
99 
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15.6054 
15.6054 

STAGE 1 
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