
CONTACT CHATTER CHARACTERISTICS OF A LINEAR 

VISCOUS DAMPED CONTACT SYSTEM 

By 

ALVIN FLEMING BAKER ,, 
Bachelor of Science 

Oklahoma State University 
Stillwater, Oklahoma 

1962 

Master of Science 
Oklahoma ~tate University 

. Stillwater, Oklahoma 
1963 

Submitted _to the Faculty of the Gradua:te School of 
the Oklahoma Sta.te University 

in partial fulfillment of .the requirements 
for the degree of 

DOCTOR OF PHILOSOPHY 
May,. 1966 



CONTACT CHATTER CHATAGTERISTICS OF A LINEAR 

VISCOUS DAMPED CONTACT SYSTEM 

Thesis Approved: 

521442 
ii 

.· '(i~G~1c:t·0.VWA 
$TATlE tlN!\JEPi~JTJ\f 

UBRARY . 

NO~ :~ l1'gil 



ACKNOWLEDGMENTS 

The author wishes to acknowledge his appreciation to the following 

individuals who made possible this study: 

--
To my thesis adviser, Dr. R. L. Lowery, and other committee members, 

Associate Professor R. E. Chapel, Associate Professor L. J. Fila, and 

Dr. J. L. Folks, for their guidance throughout my graduate program and 

their suggestions in the editing of this thesis. 

To Mr. R. T. Strong for his assistance in the design, construction, 

and instrumentation of the experimental model. 

To Mrs. Roberta Bose and Miss Linda Skidmore for their contributions 

in editing and proofreading this manuscript. 

To Mrs. Lynn Bowles for typing the final manuscript. 

And finally, to my wife, Nancy, for her assistance in the experi-

mental phase of the study and for her patience in typing the original 

drafts of the manuscript. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION ••• 

Definition of the Problem •••••• 
The Purpose and Scope of the Study 
Preyious Work • • • 

II. MATHEMATICAL DERIVATIONS . . . . . . . 
. . •· . 

Page 

1 

.1 

3 
4 

7 

The Equation of the Relative Motion. • • • • 9 
The Equation of the Relative Amplitude for Impending 

Separation • • • • • • • • • • • • • • • • • 11 
Approximate Solutions Using Equivalent Viscous Damping 

· Coefficients • • • • • • • • • • • • • • 13 

III. THEORETICAL RESULTS 

Cause of Contact Chatter •· . . . 
Contact Separation Criteria. 
General Discussion of the Baron Number . . . 
General Discussion of the Separation Fae.tor 
Variations of the Baron Number and Separation Factor 
Sununary • • • • • 

IV •. EXPERIMENTAL MODEL AND INSTRUMENTATION 

17 

17 
21 
23 
25 
27 
53 

63 

Description of the Experimental Model. • • • • • • • • • 63 
Instrtlillentation. • • • • • • • • • • • • • • • 65 

V. EXPERIMENTAL PROCEDURE AND RESULTS 

VI. 

Measurement of Model Parameters and Preload. 
Dynamic Response Measurements of the Model 
Experimental Resµlts ••••• 

CONCLUSIONS . . 
SELECTED BIBLIOGRAPHY 

iv 



Chapter 

APPENDICES • 

A. 
B. 

c. 
D. 

E. 
F. 

Solution of the Equation of Relative Response 
Solution of the Equation for the Relative Amplitude 

for Impending Separation .•••..•.••. 
Equivalent Viscous Damping Coefficients ••• 
Theoretical Results Using Equivalent Viscous 

Damping Coefficients 
List of Major Symbols • • • • 
List of Major Instrumentat.ion • 

v 

Page 

100 

100 

104 
107 

110 
113 
115 



Figure 

1. 

2. 

LIST OF FIGURES 

Idealized System with Motion Excitation •••••• 

Mo.tions of F( t) and 
the Two Motions 

x(t) Showing Phase Relation Between 

3. General Curyes for the Term 1/(x/s) 

4. Baron Number for an Undamped System, 
,. = o. 0 ~l ••••••••••• 

C = O.O, M = 1.0001, 
. . . . .. . . . . 

5. Separation Fae.tor for an Undamped System, G = 0.0, 

Page 

7 

19 

25 

29 

M = 1.0001, 'i = 0.0 • • • • • • • • • 30 

6. Baron Number f9r an Undamped System, C = O.O,. K = 1.0001, 
C,1·= o.o . . . . . . • . . . . . 31 

7. Separation Factor for an Undamped System, C = Q.O, 
K = 1.0001, .. ,l = 0.0 •••••••••••••••••••• 32 

8. Baron Number for a System with One Contact Damped, C = o. 0, 
K = l.O, M.= 1.0 . . . . . . . . . ... 34 

9. Separation Factor for a S>7stem with One Contact Damped, 
C = 0.0, K = l.O, M.= 1.0 • • • • ••• 35 

10. Baron Number for a System with One Contact Damped, .C = O.O, 

·M= 1.0, ,1 = 0.25 •••.•• • . •.. . •. •. 37 

11. Separation Fae.tor for a System with One Contact Pamped, 
C = 0. 0 , M = 1. 0, ' = 0. 2 5 • • • . . . • • • • . 38 

l 

12. Baron Number for a System with One Contact Damped, C = o. 0, 
M= 1.0, ,. = 0.75 • • • • • • • • ••• 

°"i· 39 

13. Separation Fae.tor for a System with One Contact Damped, 
C = 0. 0, · M; = 1. 0, Ci = 0. 75 • • • • • • • • • • • 40 

14. Baron Number for a System with One Contact Damped, C = o. 0, 
. K" = 1. 0, ' = O. 25 . . . . . . . .. . . . . . . . 

l 
42 

vi 



Figure Page. 

15. Baron Number for a System with One Contact Damped, C = O!O 
K = 1.0, 'i = 0.75. • • • • • • . . . . 43 

16. Separation Factor for a System with One Contact Damped, 
c = o.o, K = 1. 0' ' -0.25 . . . . . . . . . . . . . . 44 

i 

17. Separation Factor for a System with One Contact Damped, 
c .. o.o, K .. 1. o, ' .. 0.75 . . . . . . . . . . . 45 

i 

18. Baron Number for a System with Both Contacts Damped, c .. 1.0, 
M • 1.0, ' .. 0.25 . . . . . . . . . . . . . . . . . . . . . 46 

i 

19. Baron Number for a System with Both Contacts Damped, c • 1. o, 
M= 1. 0, 

' = 
o. 75 . . . . . . . . . . . . . . . . 47 

i 

20. Baron Number for a System with Both Contacts Damped, c = 1. 0' 
K = 1. 0, ,, . 

i 
0.25 . . . . . . . . . . . . . . . . . 49 

21. Separation Factor for a System with Both Contacts Damped, 
c • 1. o, K = 1. 0' ' . 0.25 . . . . . . . . . 50 

i 

22. Baron Number for a System with Both Contacts Damped, c - 1. 0, 
K • 1. 0, 'i = 0.75 . . . . . . . . . . . . . . . . . . 51 

23. Separation Factor for a System with Both Contacts Damped, 
c • 1.0, K .. 1. 0, ' .. o. 75 . . . . . . . . . 52 

i 

24. Baron Number for a System with Both Contacts Damped, c = o. 5, 
M= 1. 0, ' .. 0.25 . . . . . . . . . . . . . . . . 54 

i 

25. Baron Number for a System with Both Contacts Damped, c • o. 5, 
M= 1. 0' ' . i 

0.75 . . . . . . . . . . . . . . . . . . . 55 

26. Separation Factor for a System with Both Contacts Damped, 
c • o. 5, K • 1.0, ' . i 

0.25 . . . . . . . . . . . . . . . . 56 

27. Separation Factor for a System with Both Contacts Damped, 
c • o. 5, K • 1. 0, ' . i 

o. 75 . . . . . . . . . . . . . 57 

28. Baron Number for a System with Both Contacts Damped, c = 0.5, 
K• 1.0, ' .. 0.25 . . . . . . . . . . . . . . . . . . . . . 58 

i 

29. Baron Number for a System with Both Contacts Damped, C = 0.5, 
K = 1.0, ' • 0.75. • • • • • . • • . • 59 

i 

30. A Pictorial Drawing of the Model 64 

31. Instrumentation on the Experimental Model. 66 

32. Block Diagram of Instrumentation 68 

vii 



Figure 

33. Amplitude for Impending Separation, C • O. O, . K ;;. 1.2, 
M = 1. 57, ' = O. 0, F · = O. 23 lbs • • • • • • • • • 

· l O 

Page 

. . . . 75 

34. Amplitude for Impending Separation, C = O,O, K = 1.2, 

35. 

36. 

37. 

38. 

39. 

4o. 

41. 

42. 

43. 

44. 

45. 

46. 

48. 

M • l.57, ,l = 0.0, F0 ,= 0.34 lbs ••••••••••••• 76 

Amplitude for Impending Sep~ration, c = o! o, K= 0.806, 
M• o. 716, 

' = 
o.45, F ... o.46 lbs '• . 78 . . . . . . . . l 0 

Amplitude for Impending Separation, c = o.o, K= 0.806, 
M= o. 716, 

' = 
2. 12, F ·= 0.893 lbs 79 . . . . .l 0 

Amplitude for Impending Separation, c:• 2.85, .K = 0.806, 
M= o. 716, ,l.= 0.393, F = o.46 lbs . . . .80 

0 
. . . . 

Amplitude for Impending Separation, c = 0.358, K..• 0.806, 
.M = 0.716, ' = 0.31, F "' 0.893 lbs . . . 81 . . l 0 

Normalized Amplitudes for Impending Separation 83 

Normalized Amplitudes for Impending Separation . . • 84 

Normalized Amplitudes for Impending Separation . . . . . 85 

Normalized Amplitudes for Impendin~ Separation . . . . 86 

Phase Relation for Contact Separation,. One Contact. Damped . 88 

Phase Relation for Contact Separation, Both Contacts Damped 89 

Phase Relation for Contact Separation, Undamped . .. . . 91 

Experimental Baron Number for a System wiith One Contact Damped, 
C = O.O, K = 0.806, M = 0.716, ' =· 2.12 • • • • • • • • • 92 

.l 

Experimental Baron Number for a System with Both.Contacts 
Damped, C = 0.358, · K.:.= 0.806, M = 0 •. 716, , = 0.31 93 

. l 

Experimental Baron NumQer for a System with One Contact Damped, 
C = O.O, K= 1.0, M.= l.85, 'l = 0.375 •••••••• 94 

Experimental Baron Number for. a System with One Contact Damped, 
C = O. 0, K = O. 806, M = O. 716, ' "" O. 796 95 

l 

50. Magnification Factor for.Various Values of n. 111 

.51. Normalized Amplitudes for Impending Separation 111 

viii 



CHAPTER I 

INTRODUCTION 

A relay or switching device is a mec.hanical system in which parts 

of the system can exhibit resonant conditions. In particular, the con

tacts of the relay or switching device often have a resonant condition 

at which their response amplitude can become large when compared with 

the amplitude of the environment. During this resonant condition the 

contacts of the relay could have a type of failure commonly referred to 

as contact chatter. In essence, cont~ct chatter is the separation of 

the two contact surfaces which have been forced together to complete a 

circuit. 

One of the present methods of controlling contact chatter, when the 

relay is to perform in a given frequency range, is to design the relay 

so that its resonant conditions are not within this range. The shifting 

of the resonant condition is most often accomplished by adding rigidity 

to the relay, which is done at the cost of added weight. Not only is 

the weight of the relay important, but also of importance is its reli

ability. There can \)e no assurance that the· relay will not be exposed 

to frequencies beyond those for which it was designed. 

Definition of the Problem 

One of the most important mechanical problems of relay design is 

that of contact chatter. From the testing of relays in a steady state 

1 
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sinusoidal vibration environment, it has been learned that contact chatter 

does not occur continuously in this environment but it occurs only at 

certain amplitudes and in certain frequency ranges. Consequently, there 

must be a response amplitude of the contacts below which contact chatter 

does not occur and above which chatter does occur. The amplitude of the 

response of the system at the point of initial contact chatter is 

defined as the separation amplitude. The separation amplitude is the 

finite value of the response amplitude of the contacts when the force 

between the two contact surfaces becomes zero. 

To control the response amplitude of a contact system during res

onance, the excess energy must be dissipated. This energy dissipation 

can be accomplished by adding damping to the system, Mechanical damping 

is dependent upon either displacement or velocity; therefore, there must 

be a response amplitude for damping to be effective, 

The criteria for adding damping to a contact system is one of per

mitting the system to have a response amplitude so that damping is effec

tive, The response amplitude must be controlled so that it is less than 

the separation amplitude. A condition in which the response amplitude 

is less than the separation amplitude must exist for an unlimited fre

quency range. 

The problem then is twofold. First, the response of contact systems 

with damping in a sinusoidal vibration environment must be established. 

Second, the chatter characteristics of the damped contacts in this 

environment must also be determined. 
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The Purpose and Scope of the Study 

This study consists of a theoretical investigation of an idealized 

preloaded contact system with lumped parameters. A,n experimental phase 

is presented to substantia.te the theoretical investigation. 

The mathematical model used.for the theoretical study is an ide

alized preloaded contact system, which consists of two massless linear 

restoring spring forces, two springless masses, .and two linear viscous 

dampers. The system is subjected to a steady state sinusoidal vibration 

environment. The equation of motion for the contact system and the equa

tion for impending separation amplitude of the con tacts are developed. 

Equiv,alent linear viscous damping coefficients are introduced to obtain 

approximate solutions of the equation of motion and of the equation for 

impending separation for various types of damping. 

The scope of the theoretical study includes the development of a 

dimensionless number which can be used to establish the chatter charac

teristics of a contact system. This development of the dimensionless 

number, referred to ,as .the "Baron Number," simultaneously relates the 

response amplitude for the system to the separation amplitude. Through 

the use of the Baron Number, the amplitudes of the exciting motion at 

which contact chatter will not occur can be determined for a given contact 

system. 

With the use of an arbitrary set of parameters such .. as spring con

stants, masses, and damping coefficients, the chatter characteristics 

of the mathematical model are determined for V,\irious conditions. This 

enhances the study by permitting a much broader scope of the possible 

· physical applications of adding damping to a contact system. In a like 



manner, the effects of varying certain parameters on the mathematical 

model while maintaining the others at a constant level is presented. 

The purpose of this study is to further the understanding of the 

behavior of contact systems in a vibration environment, to establish 

the effects damping has on the system, and to determine the chatter 

characteristics of a damped contact system. An adequate understanding 

of the chatter characteristics of a contact system in which damping is 

a prevalent factor could facilitate an optimum contact system design. 

Previous Work 

Much work has been done in the field of contact chatter from the 

standpoint of rebound chatter and collision chatter. 1 Takamura ( 1) · 

4 

developed a general theory of the vibrations caused by collisions between 

two contact masses. Transient response of the contacts during impact 

closure and lift-off after opening was studied. Takei (2 ) analyzed the 

transient response of contact imp~ct. This study considered collision 

of one flexible contact with rigid contact, an identical contact, and 

a more flexible contact. Kubokoya's (3) analysis was for armature 

rebound and impact on the armature back stop. It was shown that this 

type of rebound chattering could be minimized by increasing the oper-

ating ampere-turns and by selecting appropriate spring stiffness for the 

system. Takei and Takashi (4) used the phase plane delta method to 

analyze the transient response of contact chattering due to impact. 

1 
Numbers in parentheses refer to references of the selected bibliog-

raphy. 
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They considered the higher modes of vibration and the energy dispersion 

for one and two degrees of freedom systems. 

Separation criteria for a linear undamped contact system in a steady 

state sinusoidal enyironment was studied by Lowery, Riddle, and Stone (5). 

They studied a contact system, for both one and two degrees of freedom. 

Also included in their study was the effect of adding viscous damping 

to one contact on the response of the system and preload prior to separa

tion. ~o attempt was made to establish the relative amplitude for 

impending separation for either the undamped system or with one contact 

damped. 

Burkhart (6) investigated the effects on a contact system of having 

one linear spring and one nonlinear spring. In his study he included 

the case for two linear springs and a qualitative analysis of how damping 

might affect the amplitude for impending separation. The equation of 

impending separation developed by Burkhart is the same as the separation 

equation presented in this study when it was reduced to the undamped 

condition. Since Burkhart did not make a theoretical study of the effects 

on the amplitude for impending separation with damping, nq direct com

parison is possible. 

No known previous work in the area of contact chatter has studied 

the effects of damping on the amplitude for impending separation while 

simultaneously considering the effects of damping on the response and 

separation. Only Lowery (5) did a theoretical study of the effects of 

damping on the response. The effects of damping on the response of a 

single degree of freedom system, which a contact system is, has been 

presented in many elementary vibration text books. 
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In an article by Jacobsen (7), the approximate solution for the 

response of a single degree of freedom system influenced by damping 

proportional to the nth power of velocity was considered by using equiva

lent viscous damping coefficients. The results reported in this article 

showed that the approximation was close for a single degree of freedom 

system. No known study using the theory of equivalent viscous damping 

coefficients to obtain an approximate solution for the amplitude of 

impending separation has been made; thus, there is no way to compare the 

results of the theory in this study. 



CHAPTER II 

MATHEMATICAL DERIVATIONS 

The mathematical model used for the theoretical study consists of 

two massless-linear restoring springs, two massless linear viscous dampers, 

and two springless masses as shown in Figure 1. The system in Figure 1 

y( t) 

s( t) 

Figure 1. Idealized System with Motion Excitation. 

is in the position of equilibrium so that the springs haye been changed 

from their unstretched position. With positive displacement defined as 

upward, spring 1 was displaced -A1 by the weight of its contact and 

spring 2 was displaced -A2 by the weight of its contact from their 

unstretched positions. In each case 

7 
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and 

= 

In the remainder of this study further displacement of the springs is 

defined from the equilibrium position of each spring with its contact 

attached. Through the use of this new equilibrium position for defining 

displacements, the weight of the contacts need not be considered. When 

the two contacts are forced together spring 1 is displaced + 6 
i 

spring 2 is displaced - 6 2 
from their equilibrium positions. 

and 

The 

dynamic forces generated by a sinusoidal excitation on the contact sys-

tern as shown in Figure 1 are as follows: 

Fk1(t) = - ki [y(t) - s(t) + o ] i ' 

Fk)t) = - k2 [y(t) - s(t) - 6 ] 2 ' 

F ( t) = - c [ y( t) - s(t)J 
·Ci i ' 

F (t) = - c2 [y(t) - s(t)J 
C2 ' 

F (t) = - .miY( t) 
J;Ili ' 

F ( t) = - m}i( t) 
m2 

The sum of all the forces acting on each contact mass must equal zero; 

that is, 

F. (t) + F (.t) + Fk· (t) + F(t) 
mi · Ci i = o, ( 1) 

and 

F (t) + F (t) + Fk (t) - F(t) 
ffi2 C2 2 

= o, (2) 
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where F(t) is the force between the masses which acts equally but in 

opposite directions on each mass. For the static condition when 

y(t) = s(t) = O, Equations (1) and (2), upon substituting for the 

dynamic forces, reduce to 

(3) 

and 

(4) 

The sum of Equation (3) and Equation (4) shows that k 1 o1 = k2 o2 and 

this force, k. 6., 
l l 

is defined as the preload, F ' 0 
of the contact sys-

tern. The preload is the force between the contact masses in the static 

condition, F( t) = F • 
0 

The Equation of the Relative Motion 

As long as the force between the masses, F(t), is greater than 

zero, the system is a single degree of freedom system. If F( t) = O 

the masses could separate and move independently of each other; the sys-

tern then would have two degrees of freedom. The interests of this study 

are the points at which F(t) > 0 and when F(t) initially becomes 

zero. The equation of motion of the system under these conditions is 

found by taking the sum of the dynamic forces acting on the system, which 

must be zero: 
2 

\ [F .(t) + F (t) + Fk.(t)] = O. L m1 ci i 
(5) 

i=l 
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Equation (5) is in terms of the masses, spring constants, and damping 

coefficients. Also included are the two motions y(t), the absolute 

motion of the masses, and s(t), the excitation motion. 

The motion of the contact masses relative to the system's boundary 

is x(t), which is defined by the equation 

x(t) = y(t) - s(t), (6) 

When the sinusoidal excitation motion is of the form s(t) = S sin wt, 

with S as the amplitude of the motion and w as the circµlar forcing 

frequency, a change from the trigonometric function to complex notation 

can be made. From the identity 
j0 

e ... cos e + j sin e where j .= r-r, 
it follows that the sinusoidal function can be expressed by the imaginary 

part of 
j9 

e Thus, 
jwt 

sin wt"' Im(e ) and the sinusoidal excitation 

motion is 

jwt) 
s(t) "' Im(S e • ( 7) 

From the Equations (5), (6), and (7) in addition to the fact that 

k1 51 = k2 52 , and after substitution for the dynamic forces, the result-

ing equation for the relative motion of the system is 

2 
Im[ (m1 + n1.2)w S 

jwt] 
e • 

The solution of Equation (8) is found to be (see Appendix A) in 

complex and trigonometric notation, respectively, as 

x(t) = Im [X ej(wt - e)] , 

(8) 

(9)) 
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and 

x(t) x sin ( wt - e) ' ( 10) 

where the amplitude of the motion, X, and the phase angle between the 

relative motion and exciting motion, 8, are 

x 
2 2 4 '1"2 M( 1 + c)2 

{[l -1"] + (l+M)(l+K) 

( 11) 

and 

e = arc tan 
2 1" (l + C) ,i[ (1 + M~(l + K) ]' 

1 - l 

These equations are written in terms of dimensionless ratios of the sys-

tem parameters. The relative magnification factor is defined as the 

relative amplitude over the exciting amplitude 

x 
s = 

2 
1" 

2 2 4 ~ M( 1 + c)2 Ci 2 

{ [ l - 1" ] + ( 1 + M) ( 1 + K) 

The Equation of the Relative Amplitude 
for Impending Separation 

( 12) 

The relative amplitude for impending separation is defined as the 

finite value of the relative amplitude of the response of the system 

when the force, F(t), between the contact masses initially becomes zero. 

For dynamic equilibrium to be maintained as long as F(t) > O, the sys-

tem is a single degree of freedom system. Consideration of the next 

increment of motion of the masses after F(t) has initially become zero 

will indicate if the two masses separated. If the force is different 



12 

from zero, the contacts will remain together. If the force is still 

zero, separation of the contacts will occur if the response of each 

contact is not identical. This would only occur if all the parameters 

of each contact are identical. Whenever F(t) remains zero for any 

. length of time, each contact is in dynamic equilibrium independent of 

the other by a combination of its dynamic forces. 

After substitution for the dynamic forces in Equations (1) and (2) 

and division by m. 
]. 

the following two equations are obtained, provided 

neither mass is zero; 

c kl ,;,(,-.\ 
- y(t) - l [y(t) - s(t)] - [y(t) - s(t) + Si]+~ 

ml ml ml 
o, ( 13) 

and 

- y(t) - o. (14) 

The difference of Equations (13) and (14), after substituting 

s(t) = y(t) - s(t) 

force between the contact masses, F(t), 

k2) - ·•. x( t). 
~ 

( 15) 

The finite value of the response amplitude, X, at which time the force 

between the contact masses, F(t), initially becomes zero is defined as 

the relative amplitude for impending separation, x. The solution of 

Equation (15) when F(t) initially becomes zero (see Appendix B) shows 

that the relative amplitude for impending separation is 



x = 
4 .,-2 M( 1 + K) ( 1 

{( 1 - KM/ + ( l + .M) 
- CM)2 ,12 ' 

and the phase angle between the relatiye response and the sinusoidal 

variation of F(t) is 

- 2'1" ( 1 Lr M( 1 + K) .Ji 
- CM) ,1 1 + M 

arc .tan ---~~~---,(-1~_~KM__,...)~~~~---

( 16) 

( 17) 

If the separation.factor is defined as the amplitude for imp~riding separa-

tion over the term F /k1 , then the separation factor is 
0 

= ( 1 + M) 

{ 
2 4 .,-2 M( 1 + K)( 1 - CM)2 , 1

2 
( 1. - KM) + · ( l + M) 

( 18) 

The sinusoidal variation of the force, F(t), between the contacts 

has associated with it a phase angle ~, shown in Equa~ion (17). 13 is 

the phase angle between the sinusoidal variation of x(t), the relative 

response, and the sinusoidal variation of F(t). The sign of ~ establishes 

whether the variation of F ( t) leads or lags the response. When F ( t) 

initially becomes zero, separation of the contacts could occur. If ~ 

is zero and F(t) becomes zero, then separation would occur at. one of 

the peaks of the relative response. For conditions when ~ is not zero, 

separation .would occur 13 degrees from 01:1.e of the peaks of the relative 

response. 

Approximate Solutions Using Equivalent 
Viscous Damping Coefficients 

The introduction of equivalent viscous damping coefficients in both 

the equation of motion and the·equation for impending separation will 
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permit approximate solutions for various types of damping. Since in the 

general case no exact solution.exists, the only possible solution would 

be an approximate one. From the theoretical standpoint the idea of 

equivalent viscous damping coefficients will lend itself to a.qualitative 

analys:i,s of the effect. of various types of damping on the amplitude for 

impending separation. 

For this study·"equivalent viscous damping coefficients" are based 

on the criterion of equivalent dissipative work per cycle. The work per 

cycle of an arbitrary. damper proportional to the 
th 

n power of the veloc-

ityis equated to the work per cycle of a yiscous damper and an' equivalent 

viscous damping coefficient is obtained. It. is assUI11ed that the mo.ti on 

of the arbitrarily damped system does not vary_ appreciaply from a sinusoidal 

motion and that the damping force always opposes the motion. T.he deriva-

tion for the equivalent viscous damping coefficient is made in Appendix 

c. 

Equation. ( C-13) in Appendix C ~ives the e_quivalent viscous damping 

coefficient as 

c .. = 
l. 

n.-1 
l. 

w 
n. -1 

x l. 
Yn. • 

. l. 

(19) 

The relative magnification factor for the contact system with various 

types of damping can be found by replacing c 1 and c2 in Equation ( 12) 
~ .. , .. 

with equivalent coefficients sbow~.in Equation (19). After Equation (12) 

has been factored and rearranged and two additional terms, 

and 

f 
c = 

.n n ... 1 
w 1 s 1 

n ' 
(20) 
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n -n n -n Yn 
2· l. 2 l. 2 

gc .. U.J s n Yn ' 
(21) 

l. 

have been defined, the equation for the relative magnification factor for 

various types of damping, depending on the values of n1 and n2 , is 

c 

[l+ n n -nl. ( X )n2-n1 

r 
2 

c ,. 2 - gc 2n s 

(~) 
l. 2n 2 n .. 

l. ,. l. f 
1 + k2/k1 

+ c 

(1 2/ (~ J - 4 
(22) - ,. ,. = o. 

Associated with this magnification factor is the phase aµgle 

9 = 

In the general case where n . 
. l. 

n -n 
,. 2 l. 

is greater than zero, 

(23) 

Equation (22) must 

be solyed by trial. When n1 = n2 = 1, Equation (22) reduces to Equation 

( 12). 

For various types of damping, the equationrfor the relative amplitude 

for impenqing separation is found by replacing c1 and c2 in Equation 

( 16) by equivalent coefficients as shown in Equation ( 19). If Equations 

(20) and (21) are used in Equation (16), tbe result is 

X= 

/ 2 -n1 ( ~ )n2 -n1 gcJ}i 

(24) 
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The phase angle for the force between the masses is 

( ~ )nl -1 fc 

c [/1 [1 
n m n -n 

( ~ )n2 -nl gJJ 2 l 2 l -- -- 'T c m n 2 

~ arc tan l ::: 
k 

(1 -
2 

:l) k (25) 
l 2 



CHAPTER III 

THEORETICAL RESULTS 

In the previous chapter the equations for the relative response and 

amplitude for impending separation were developed, The solutions of 

these two equations for a set of system parameters, exciting motion ampli

tude, and preload give the response and amplitude for impending separa

tion, From the solutions of tpese equations, it can be established if 

separation would occur, Although this type of analysis is effective, 

the same procedure would have to be followed for each new set of param

eters, exciting motion amplitude, and preload. In this chap~er a novel 

theoretical method of analysis is introduced, It permits the determina

tion of the maximum exciting motion amplitude and frequency band for a 

contact system w~ere chatter will not occur. The effects of varying the··· 

system parameters on this method of analysis and the separation factor 

are studied. 

Cause of Contact Chatter 

In Appendix B. it was shown that the force, F(t), between the con

tacts is a sinusoidal varying force which oscillates about a reference 

position, the preload. For convenience the equation for the force between 

the contacts, Equation (B-5) from Appendix B, is presented now as 

17 



F( t) • F 
0 

k . k 2 2 i 
{(~ -;! ) + ol ( ~ - ~)} X sin (wt - 9 + ~) 

C 1 + 1 ) 
m1 m2 
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, 

where F is the preload and X is the amplitude of the response, x(t). 
0 

If a given contact system with a constant preload, constant parameters, 

and oscillating at a specific frequency is considered, then the force 

between the contacts can be written as 

F(t) 

where 

A = 

= F - AX sin ( wt - 0 + ~) , 
0 

(! + ! ) 
l · 2 

(26) 

Now from Equation (26) it can be seen that the amplitude of the sinusoidal 

varying part of F(t) is AX and the oscillation:.is about F • 
0 

Since 

A is a constant for the contact system under consideration, then X is 

the only variable in the amplitude of the sinusoidal part of F(t). The 

maximum and minimum values of F(t) occur when sin (wt - 9 + ~) = ± 1, 

and F( t) • F - AX 0 ., respectively. and these are F(t) • F0 + AX 

response of the system, x(t), is given in Equation ( 10) as 

x(t) = X sin (wt - 9) 

The 

thus, the phase angle ~ appearing in Equation (26) relates the vari-

ation of F(t) to the motion of..x(t). 
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Figure 2. Motions of F( t). and ·x( t) Showing Ph.ase 
Relation Between the Two Motions. 

Wt 

Figure 2 shows a sketch of a feasible variation of F(t) and its rela

tion to x(.t) for the contact system under consideration, With the use 

of Figure 2 as a guide, further investigation is made of the contact sys

tem. If the amplitude of the exciting motion, s, is increased from S 

to S1 , then the response amplitude of the system,is also increased 

from X to X [ see Equation ( 11)]. L'ikewise, the amplitude of the 
1 

sinusoidal varying part of .F(t) is increased from AX to AX1 • Now the 

minimum value of F(t) is decreased from F0 - AX to F0 - ~ 1 • These 

changes in the amplitudes of F(t) and x(t) can be seen in Figure 2. 

With an additional increase in the amplitude of the exciting motion, the 

amplitude of the response is increased from X1 to X2 • And again the 
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amplitude of the sinusoidal part of F( t) is increased from AX to 
1 

AX2. The minimum value of F( t) is decreased from F - AX to 
0 1 

F AX where F - AX = 2 2 
o, [see Figure 2]. There is one point in 

0 0 

each cycle of F(t) where F( t) = o. Whenever F( t) = o, contact 

separation is possible~ Therefore, there is one point in. each cycle of 

x(.t) where contact separation is possible, but in the system under 

consideration this point of possible contact separation lags the peak 

values of x(t) by ~ degrees as shown.in Figure 2. It was previously 

stated that the amplitude of the response when F( t) initially becomes 

zero would be the amplitude for impending separation, X. Thus, in this 

example x = x 
2 

and the equation for x is Equation (16). 

There are two important pl1enomena which occurred in the discussion 

that should be fully understood. The first is that the phase angle ~ 

has no explicit bearing on the amplitude for impending separation and 

only indicates in each cycle of x( t) where separation is possible. The 

second is that contact chatter characteristics cannot be determined by 

merely investigating the amplitude for impending separation because of 

the possible amplitudes of the response. Since the contact syst·em just 

considered was for one certain frequency, it is possible that at some 

other frequency the amplitude of the exciting motion necessary for X = X 

would be physically impossible to obtain. Furthermore, it is possible 

that only a minute exciting motion amplitude could cause X = X. There-

for.e, to determine the chatter characteristics of a contact system, the 

response amplitude and amplitude for impending separation must be consid-

ered simultaneously. 
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Contact Separation Criteria 

From. Equation ( 16) it can be ascertained that the amplitude for 

impending separation is a function of the system parameters and ~, the 

ratio of forcing frequency to the undamped natural frequency of the sys-

tern. Equation (11) indicates that the response amplitude is also a func-

tion of these same variables and the amplitude of the exciting motion. 

Without knowledge of the exciting motion amplitude, it is impossible to 

establish completely the chatter characteristics of a contact system. 

With the recognition that Equation (12), the relative magnification 

factor, and Equation (18), the separation factor, are functions of the 

same variables, a new method to analyze contact systems is introduced. 

For chatter to occur, X = x, or this can be written as 

1 = 

The following identity 

s = 

x 
x 

x 
·x ' 

is introduced. When the condition for contact chatter is applied, then 

the result is 

(27) 

The dimensionless term s/(F0/k1 )X=X is arbitrarily defined as the 

"Baron Number.'·' After substitution for the separation factor and the 

magnification factor in Equation (27), the equation for the Baron Number 

is 
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Baron Number ( 1 + M) 

2 1' 

2 2 
(1-1') + 

2 2 2 
4 1' M (1 + C) 'l 

(l+M)(l+K) 

( 1 + M) 

1 
2 

(28) 

The Baron Number is a function of the ratios of the system param-

eters, the damping factor of contact 1, and 1'· The information obtained 

about the chatter characteristics of a contact system by using the Baron 

Number is as follows: 

(a) the maximum input amplitude or exciting motion amplitude for 

a given preload and spring constant 1 at which chatter will 

occur, 

(b) the preload and spring constant 1 necessary to obtain a certain 

input amplitude without chatter, 

(c) the effects on the input amplitude for chatter, for a given 

preload and spring constant, by varying any of the ratios of 

the parameters. 

The equation used to determine the allowable input amplitude without 

contact chatter is 

S < (F /k )(Baron Number) • 
O l 

(29) 

The Baron Number should be made as large as possible in order to permit 

a large input amplitude before chatter occurs for a small preload. The 

optimum Baron Number for a contact system is infinity. Since the Baron 

Number is a function of or, the frequency ratio, a useful equation for 

the natural frequency of the system is 
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f = { M( 1 + K) }! 
n fi 1 + M ' (30) 

where f is the undamped natural frequency of contact 1. The distinc
i 

tion of using the Baron Number in contact system analysis is that when 

one contact, denoted as contact 1, is completely described, the optimum 

values of the mass, spring constant, and damping coefficient for the 

other contact can then be predicted. This is done by optimizing the 

Baron Number using arbitrary ratios of the masses, spring constants, and 

damping coefficients. From the ratios which optimized the Baron Number, 

the mass, spring constant, and damping coefficient of the other contact 

can be determined. 

It has been pointed out that the chatter characteristics of a con-

tact system cannot be determined by merely using the equation of the 

amplitude for impending separation, but also the response of the system 

must be established simultaneously. The Baron Number considers both the 

separation amplitude and response amplitude for each value of r. With 

the use of the Baron Numbe~ the input amplitude for contact chatter can 

be determined. Once the natural frequency of the system has been found, 

the input acceleration that a contact system can withstand without chatter 

is determined. This is the dynamic information in which most contact 

system designers are interested. 

General Discussion of the Baron Number 

Since the optimum value of the Baron Number is infinity for all 

values of r, it can be seen from Equation (28) this condition is 

established if both KM= 1.0 and CM= 1.0. The term KM, which can 
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be written as 

KM = c ~ ) c:: ) • c:: ) (~ ) = c :: J ' 
is the square of the ratio of the undamped natural frequency of the two 

contacts. When KM= 1.0, the two contacts have been tuned so that they 

both have the same natural frequency. The term CM is the ratio of the 

damping frequencies and compares the transient decay of the two contacts 

of the sys tern. ;For the condition KM = 1. 0 and CM = 1. 0 it is evident 

the damping on the system is proportioned on each contact in the same 

manner as the spring constants. From Equation (28) when KM f 1.0, the 

Baron Number is infini.te at 'T = O. 0 and then decreases. 

From Equation (27) it can been seen that the Baron Number is made 

up of two factors. These factors are the separation factor, Equation 

( 18), and the magnification factor, Equation ( 14). Equation (27) is 

actually a function of the reciprocal of the magnification factor, 1/(x/s). 

The magnification factor, x/s, for a linear single degree of freedom 

system is a well established factor and is found in many vibration text 

books. Thus, it is possible to draw some general curves for the term 

. 1/ (x/s) appearing in Equation (27). Figure 3 shows the general shapes 

for the curves of 1/(x/s) for various values of 'T and amounts of the 

total damping, , • From Figure 3 it can be seen that the minimum values ,. 
of 1/(x/s) are established by the undamped system, ,,. = o.o. At 

,- = O.O the term 1/(x/s) is infinity; thus, the Baron Number is infin-

ity. As increases from 0.0 to 0.5, the .term .1/(x/s) decreases 

which indicates that the Baron Number could also decrease. For large 

values of 'T the term .. 1/(x/s) becomes asymptotic to unity; thus, the 
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Figure 3. General Curves for the Term 1/(x/s). 

Baron Number approaches the value of the separation factor. The term 

1/(x/s) for the undamped system is zero at ~ = 1.0, which indicates 

the Baron Number is zero at ~ = 1.0 for an undamped system. It is 

important to note that the term 1/(x/s) is not appreciably influenced 

by the changes in the quantities K and M, but it is increased if C 

and are unequal to zero. 

General Discussion of the Separation Factor 

The separation factor appearing in Equation (27) is a newly <level-

oped factor and is defined in Equation ( 18) to be 
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x ( 1 + M) 
2 2 .l.. " 

- CM) , 1 }~ 
(31) F /k 4 ,-2 M ( 1 + K)( 1 O l 

{ (1 - KM) 2 + ( 1 + M) 

Since no general curves can be·drawn.for the separation factor, a study 

is made to establish the effects on the separation factor of varying 

different parameters. It was pointed out that the optimum value of the 

Baron Number for a. contact system. is infinity. From Figure 3 it is 

apparent that the term 1/(x/s) is. infinity at ,- = 0.0 and then becomes 

asymptotic to unity for large values of ,-. Therefore, from Equation 

(27) for the Baron Number to be infinity at ,- > 0 the value of the 

separation factor must be infinity. Thus, the denominator of Equation 

(31) must be zero for all values of ,-. The denominator of Equation (31) 

st 2 
contains two terms: the 1 term (1 - KM) which is a constant for a 

d 4,-2 M~ ( i + K)( 1 - CM)2 ,/ 
given system and the 2n term - which is a 

( 1 + M) 

constant times the variable 
2 ,. . If K and M are neyer zero, then 

the 1st term is zero only when KM= 1. The 2nd term is zero when CM= l 

or when C and , 1 are zero. If C and , 1 are both. zero the system 

is undamped. If C is zero the system has one contact damped"" In 

general, the 1st term.in the denominator, 
2 

(1 - KM) , and the numerator 

establish the initial value of the separation factor at ,- = 0.0. As ,-

increases the separation factor is decreased from its initial value if 

CM/:- 1 and 
' "f o. 1 

If the spring constant ratio, K, or the mass 

ratio, M, is changed from the value where KM= 1, the initial value of 

the separation factor is decreased. 
st 

The magnitude of the ,1 term indi-

cates how the separation factor is decreased if the 2nd term is not 
2 

zero. If (1 - KM) is large the separation factor has a low initial 
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yalue but is decreased slowly as ,- increases. For small values of 

2 
(1 - KM) , the initial value of the separation factor is high but is 

decreased as ,- increases. If the effects of the term .. 1/(x/s) and 

the separation factor are combined, the Barons Number, as written in 

Equation (27), is infinity at ,- = O. O. The Baron Number then decreases 

as ,- increases and becomes asymptotic to the separation factor when 

,- is large. 

Variations o;f. t·he·Baron Number and Separation Factor 

A sequence of plots of the Baron Number versus ,- and the separa-

tion factor versus ,- is presented to i],lustrate the effects of vary-

ing different parameters on the Baron Number and the separation fac.tor. 

The parameter under consideration, excluding ,
1

, is varied from its 

value for an optimum Baron:Number, for all values of ,-. A parameter 

is varied by a constant tiIJles the optimum value of that parameter. All 

other parameters which are not varied, excluding , 1 , are unity. The 

numerical values on each plot are not so important as the shape of the 

curves and their relation to each other. 

Three conditions of the con tact system, the undamped, one contact 

damped, and both contacts damped, are investigated. For the undamped 

system C and are set equal to zero. With one contact damped, 

is zero and yarious val,ues of ,. are considered. When both contacts 
.~l 

are damped, neither C nor 

varied from o.o to 3.0. 

,. can be zero. 
~l 

In every case ,- is 

c 
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Condition I. Undamped System 

The effects of .varyi.ng .. t;he spr.in~ consta11t ratio, K, from the 

optimum K to 0.5K, 2K, 3K, and lOOK on the undamped system are 

shown in Figure 4 for the Baron Nu.mber and Figure 5 for the· separation 

factor. lOOK is approaching the condition of having one rigid contact 

and one flexible contact. It should be pointed out that in order .to 

prevent the occurrence of the undefined number .o/o when KM.• 1.0 for 

the undamped condition, the value of KM• 1.0001 is used as an optimum. 

Figure 4 indicates that changing the spring co~stant ratio from the opti

mum K lowers the Baron Number. Also, Figure 5 shows the same effect 

of lowering the separation factor as K is varied further from the opti

mum. Since the Baron Number in Figure 4 is the product of the separation 

factor in Figure 5 and the term 1/(x/s) in Figure 3, the shapes of the 

curves of the Baron Number are the same as the undamped curve in Figure 

3. Their magnitudes are varied by the same amount as the separation .· 

·factor for different values of K. It is important to note that even for 

the optimum K the Baron Number always went to zero at T = 1.0. This 

exemplifies the fact that a contact system without damping always has 

contact. separation at resonance, T • 1. o. 

Figures 6 and 7 illustrate the iffect of varying.the mass ratio, M, 

on the Baron Number and separation factor, respectively. Varying the 

mass ratio has the same results of decreasing the Baron Number and separa

tion factor as did varying the spring consta.nt. ratio. Comparing Figures 

4 and 6 indicates .that increasing the mass ratio, M, has 'less affect 

. on the Baron Number than did increasing the Sp.ring· constant ratio. 

Increasing the mass ratio, M, has less influence.on the separation 
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factor, as can be seen by comparing Figures 5 and 7. }lowever, decreas-

ing the mass ratio, M, changed the separation factor .more than decreas-

ing the spring constant ratio. The term ·.1/ (x/s) does not change as 

eit~er K or Mis varied. Thus, only the differences in the separation 

factors of Figures 5 and 7 cause the Baron Number in Figures 4 and 6, 

respectively, to be different. At T = 1.0 the Baron Number went to 

zero indicating that an undamped system will have contact separation at 

resonance. 

Condition II. One Contact Damped 

For the condition in which one contact is damped, CM= 0.0 and 

,1,,. o.o, ~ is varied from 0.25 to 1.0 in increments of 0.25. For the 
"'1 

purpose of discussion, a lightly damped contact is ' = 0.25 1 
and a 

heavily damped contact is , = 0.75. If the optimum condition of KM= 1.0 
1 

for the spring constant ratio and mass ratio, M, is used, Figures 8 and 

. 9 show the effect of varying . , 1 on the Baron Number and the separation 

factor. In Figure 8 the Baron Number continually decreases from T = 0.0 

.to T = 1.0 for all values of , • As T further increases from l.O, 
1 

the Baron Number increases for small values of ,
1 

and then begins .to 

decrease. For large values of ~ the Baron Number always decreases 
"'1 

when T is greater than zero. Figure 9 indicates that .the separation 

fac.tor decreases for all values of T· The rate and amount that the 

separation factor decreases is dependent on the value of , • When one 
1 

contact is damped, the separation factor is dependent. on the frequency 

of the exciting xnotion. In Figure 9 the curves for the decreasing separa-

tion factors are continuous for all values of , 1 • From Figure 3 it can 



10.0 

9.0 

8.0 

7,0 

6.0 

4,0 

3.0 

2.0 

1.0 

o.o 

34 

THEORETICAL 
C 1 .25 = 

C1 = .5 

C1 = ,75 

' C1 = 1.0 

--·· 

/' C1 = .25 
I 

\ Ir C1 = .50 
' 

~1 \ //;- C1 = . 75 

~ ,\ /!Ir C1 = 1.0 

\\ / II T ~ 

o. o 0. 5 

.... -... 
'~ -

1. 0 

T "" 

1. 5 

f/f 
n 

; I I 
# I , 

,2 . 0 2. 5 

Figure 8. Baron Number f or a System with One Contact 
Damped , C = 0 . 0, K • l.O, M = 1,0. 

3. 0 



pi:: 

f3 
u 
r:: 
z 
0 
H 
E-i 

~-
f!l· 
li/1 

10.0 

s.o 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

o.o 
o.o 

', 

35 

THEORETICAL 

I 

\ 
\ 

\ \ 
\. \ 

\ 
\ 

\ \ \ \ 
\\ \ \ r (1. ;:: .25 

\ \ ·~·· Ir 
. ·--·~ . 

C1. = .5o 

\' \ .""" I Ir -t:1. = .75 \ "-.. 

\ \ "" -~ Ill, ·C1..= 1.0 

I~~ ~ rlT{_ ......__ 

~ 
............. 

!'---__ 7TI -...;._ 

~ 
------=: t----Ll1-- ' 

t---;__ -.. 

. 0.5 1. 0 1.5 2.0 3.0 

'!"'"" f/f 
n 

Figure 9. Separation Fae.tor for· a System with One Contact 
l)amped, C. = 0.0, K"" 1.0, M:;:: 1.0. 



be seen that curves for the term .1/ (x/s) are not smooth for a lightly 

damped system, but they dip at approximately ,. = 1.0. When the system 

is heavily damped, the curves for 1/(x/s) are continuous. Since the 

Baron Number is the product. of the separation factor and the t.erm.1/(x/s), 

the different values of the term . 1/(x/s) caused the Baron Number to 

decrease and then increase for small values of , 1 as shown in Figure 8. 

Even though the Baron Number decreases when.one contact is damped, it never 

is zero. Thus, there always exists an.input amplitude at.which separation 

does not occur from.,-= 0.0 to 'T = 3.0. This is not the case for the 

undamped system. 

The effects on .the Baron·Number of varying the spring constant 

ratio from the condition where KM.= 1.0, when one contact is lightly 

damped, , 1 = O. 25, and then heavily damped , 1 = 0 • .75 i are shown in 

Figures 10 and 12. Changes in the separation factor for the two damped 

conditions are shown in Figures 11 and 13 for the lightly damped and 

heavily damped contact, respectiyely. As shown in Figures 11 and 13, at 

'T = O.O the results of changing the spring constant ratio lowers the 

initial values of the separation factor, this is shown in Figure5 for 

the undamped system. The added effect of damping one contact causes the 

separation factor to further decrease as 'T increases. Figures 11 and 

13 indicate that a cedrease in the value of K from KM.= 1. 0 causes 

the separation . factor to be larger t.ban .that for KM= 1. 0 when 'T 

becomes large. A comparison of Figures 4, 10, and 12 for lOOK shows 

that damping one contact had no o.verall effect on the Baron Number, 

although in Figure 4 the Baron Number did go to zero at 'T = 1. O. 
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The results of changing the mass ratio on the Baron Number for one 

contact lightly and heavily damped are shown in Figures 14 and 15, respec-

tively. Changing the mass ratio had the same effect of reducing the 

initial value of the separation factor at ,. = O.O as shown in Figures 

16 and 17. 

A genen:11 comparison of the curves of the Baron Number for the 

undamped system with those of the system.with one contact damped indi-

cates the Baron Number is not zero at ,. = 1.0 when damping is applied. 

This is not the case for the undamped system. Also, when ,. > 1.0, the 

values of the Baron Number for the damped system are less than those for 

the undamped system. The latter observation, not as important as it may 

seem, is discussed in the sununary of this chapter. 

Condition III. Both Contacts Damped 

For the contact system with both. contacts damped 1 two cases are 

in:vestigated. The first is the case in which the .two damping coefficients 

are the same, thus producing equal damping forces, c.i(t), 
l. 

on each 

contact. In the second case the damping coefficientoncontact 1 is 

twice that on contact 2; thus, c i(t) = 2c i(t) 
l. 2 

and c/c = 0.5. 
2 l 

In 

each case the damping factor on. contact Lis either , = O. 25 or , = O. 75. 
l l 

The mass and spring constant ratios are varied as before. 

Figures 18 and 19 show the effect on the Baron Number of varying 

the spring constant.. ratio from the value KM·= 1.0 when · C = 1.0, M = 1,0, 

and the damping.factor is ' = o. 25 l 
and , = 0.75, respectively. 

l 
The 

separation factor is the same as that for the 4ndamped system in Figure 

5 because CM = 1. O. Since the sepaJ;"ation factor is constant, the shape 
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of the curves of the Baron Number in Figures 18 and 19 are deter~ined by 

the term . 1/(x/s) as shown in Figure 3. When Figures 4, 18, and 19 are., 

compared, it can be seen that by, damping both contacts the Baron Number 

is increased abo,ve zero at T = 1. O. The amount of damping on the system 

. determines how low the values· of the Baron Number are at 'T = 1. o. This 

is shown by comparing Figures 18 and 19. In Figures 4, 18, and 19, the 

Baron Number for the same values of K is the sa~e when 'T = 3.0. When 

Figures 18 and 19 are compared with Figures 10 and 12, respectively, it 

is apparent that the Baron Number is larger for each value of 'T and K 

when CM = 1. O. The Baron Number is larger because the separation factor 

is constant.when CM== 1.0. When CM.= O.O, the separation fac.tor 

decreased as 'T increased. Also, when CM= 1.0 both contacts are 

damped so that the total c!,mount of damping on the system is increased. 

Thus, the term 1/(x/s) shown in Figure 3 has higher values than when 

CM = O. 0 and the total damping is less. 

Figures 20 and 22 show the effect of varying the ~ass ratio, M, 

on the Baron Number when , = O. 25 and , = O. 75, respectively. The 
J. ' J. 

results of yarying 'the mass ratio, M, on the separation factor is 

shown in Figure 21 for ,. · = O. 25 and Figure 23 for ,. · = o. 75. 
bl. bi 

Even 

though C = 1.0, when M is varied then CM -::j:. 1; thus, the separation 

fac.tor decreased as 'T increased. With C = 1. o, varying M influenced 

both terms in the den~inator of Equation (28) more than. when C = 0.0. 

Therefore, the separation factor nas a grea.ter change as M is varied. 

This can be seen by comparing Figures 21 and 23 where G .. = 1. 0 with 

Figures 16 and 17. where C:• O.O, respectively. Since the separation 

factor has a greater change as M _is varied, likewise the Baron· Number 

has a greater change as shown in Figures 20 and 22. 
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The second case has both contacts damped and C = 0.5. When the 

value of the spring constant ratio is varied, the initial value of the 

separation factor at T = O. 0 is changed, as shown in Figures 11 and 13. 

Since C = 0.5 and M = l.O, then CM= 0.5; therefore, as T increases 

the separation factor decreases. The amount of the decrease is. less than 

that shown in Figures 11 and 13 where CM.= o. O because part of tlie 

term which indicates the amount of decrease is ( 1 - CM)2 • The results 

of varying K on the Baron Number when C = 0.5 is shown in Figure 24 

for , = 0.25 
1 

and Figure 25 for ,. = 0.75. 'c,1 
If Figure 24 is compared 

with Figure 10 and Figure 25 with Figure 12 at T = 3.0, it can be seen 

that the Baron Number is greater when C = 0.5 for a given value of K. 

The effects of varying the mass ratio, M, on the Baron·Number and 

the separation factor when C = O. 5 are similar .to the case where C = 1. O. 

Variation in M causes ~oth of the terms in the denominator of Equation 

(31) to change. The variation of M on the separation factor i.s shown 

in F igµre 26 for , = 0.25 and in Figure 27 for 
:.i. ' = o. 75. 1 

As seen 

in both Figures 26 and 27, the separation factor is constant when the 

2 
mass ratio, M, increases to 2M and the term . ( 1 - CM) = O. Figures 

28 and 29 ~how the results of varying M on the Baron Number when 

, = 0.25 and , = 0.75, respectively. The Baron Number is seen to 
+ 1 

be largest for T > 2.5 when the value of .the mass ratio, M, is 2M. 

Summary 

Three systems have been studied where damping is proportioned differ-

en_tly on each system. One system has only one contact damped, C = O. Q; 

another has both contacts damped with the damping coefficient on one 
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contact .twice that on the other, G "' O. 5; and the third system has both 

contacts damped with equal damping coefficients, C.= l.O. Also; an 

undamped system is considered. In each case the effects on the Baron 

Number of varying the spring constant ratio, K, and the mass ratio, 

~, are determined. With the use of these studies as references, general 

statements can be made on the contact separation criteria of these types 

of systems. Equation (30) should be conside.red for determining the 

undamped natural frequency of the system to obtain a complete analysis 

of the contact separation criteria. From the natural frequency and T, 

the frequency of the exciting motion can be found from 

(32) 

where f is the frequency of the exciting motion. 

If the parameters of contact. 1 are held constant, then any varia

tion of the spring constant ratio, K, mass ratio, M, and damping 

coefficient ratio, c, are made by changing contact. 2 's parameters. 

Therefore, f 1 in Equation (30) is constant. For the undamped system 

Figures 4 and 6 indicate the Baron Number is always zero at T = l.O, 

independent. of the values of K . and M. From· Equation ( 29) at r = 1. 0, 

it is apparent that there is no :value for the input amplitude at which 

separation would not occur. Changing K or M would only change the 

exciting frequency at which separation would occur. 

When contact 1 is damped, C "" O. 0, Figures 10, 12, 14, and 15 a 11 

show that the Baron Number is neyer zero. Although varying the values 

of K, M, and , 1 . did cause the Baron· Number to either increase or 

decrease, it was 11eyer zero. Thus, from Equation (29) there always 
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exists an input amplitude without separation. When , 1 = 0.75 Figures 

12 and 15 show that as r increases the Baron Number decreases; thus, 

the input amplitude without separation is decreased. If consideration 
·, . 

•. is given· to tlle input accelerat1:ion without separation, it can be shown 

that the in~ut anplitude at T = 2.0 need only be 1/4 the input ampli-

tude at r = 1.0. to obtain the same acceleration level. Furthermore, 

the input amplitude at r = }. 0 need only be 1/ 9 the input ~mp_li tude at 

T == 1. 0 to obtain the same acceleration level. And in .no case was the 

Baron Number at r = 3.0 less that 1/9 its value at r = 1.0 for any 

damped condition. 

For the two systems studied with both contacts damped, Figures 24 

and 25 where c.-= O. 5 and Figures 18 and 19 where C = 1. 0 indi1cate 

that increasing the value of K decreased t,he Baron Number but not as 

much as for the system with only one contact damped. Wl:).en the mass ratio, 

M, is varied for the system with G = 0.5 and when the mass ratio, M, 

is 2M, the Baron Number decreases, as indicated in Figures 28 and 29, 

to the value of the separation factor as shown in Figures 26 and 27. Thus, 

when damping is applied to both contacts, the· optimum value of C occurs 

where CM .. "" 1. 0 for any value of M. 

Contact chatter can be delayed by properly designing damping into 

one or both contacts and by proper proportioning of contact masses and 

elasticity. The exciting motion amplitude necessary for chatter can be 

detenµined for either the damped or the undamped system by using the 

Baron Number. 

A theoretical study of the amplitude for impending separation using 

equivalent viscous damping coefficients is p;!:'esented in Appendix D. This 
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study is only approximate and was not tested experimentally; therefore, 

it is not included in the main body of this study. 



CHAPTER IV 

EXPERIMENTAL MODEL AND INSTRUMENTATION 

An experimental model was constructed so that the theoretical results 

could be supstantiated by comparing them .to experimental res1,1lts. ,The 

design of the experimental model was predicated by many factors. The 

size of the .model was limited by the electro-mechanical shaker system 

which produced the vibration environment. Yet, the .model had to be large 

enough to permit adequate instrumentation without appreciaply affecting 

its dynamic response. 

Many different designs for a model were made and studied. The design 

from.which the model was constructed offered the flexibility of changing 

the sys tern parameters while limiting extraneous influences and effects. 

Spurious resonant conditions in the model were beyond the frequencies of 

interest, and side motion· of the contact masses was 1JJ.inimized. The 

experimental model described in this chapter was the only model con

structed. 

Description of the Experimental Model 

The model from which experimental results are obtained consisted of 

,two helical springs, two viscot,is dampers, and two contact masses with 

gµides. The cont.act guides supply addition.;1.l mass to each contact. 

Figure 30 is a pictorial drawing of the .model in which significant parts 
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Figure 30. A Pictorial Drawing of the Model. 

have been numbered and are referred to in the following description of 

the model. 

The springs for .the system, No. 1 for the upper contact and No. 2 

for the lower conta~t, are both steel helical springs with linear resto,r

ing forces or spring constants. Dampers used.on the system, No. 3 for 

the upper contact and No. 4 for the lower, are the type with a piston 



sliding in a glass cylinder with an oil film. The weight of the oil 

used in the cylinders along with an adjustable air leak determined the 

amount of damping. Friction in the dampers is negligible and the damping 

is assumed proportional to the first power of the yelocity as indicated 

in the manufacturer's specifications for the dampers. The mass of each 

contact is a combination of the steel plate·holding the contact button 

and the guide. A hemispherical steel button insti.lated from the s.teel 

plate to which.it is attached is the contact for the upper contact,· No. 

5. The lower contact has a flat steel contact, No. 6, which is also 

insula.ted from the steel plate to which it is attached. Both contact 

guides are pivoted on grease-coated alignment screws approximately five 

inches from the contacts. Number 7. and No. 8 are the alignment screws 

for the upper and lower contacts, respectively. Preload for the system 

is varied by c.hanging the position of the steel upper support, No. 9. The 

mass of the system is varied by simply adding mass to the contact guides. 

Instrumentation 

The instrumentation used on the experimental model is Ulus.trated 

in the photograph, Figure 31, .of the contact section on the model. Two 

acc;:elerometers and a differential transformer are identified in Figure 

31. Relati.ve amplitude of the contacts is measured using the differ

ential transformer which was calibrated for both static and dynamic 

measurements. Both of the accelerometers were calibrated with the cali

bration of the differential transformer for dynamic measurements. The 

·. accelerometers on the model are used, in addition to measuring accelera

tions, to obserye .the wave shape of both the input motion and contact 
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motion by connecting their outputs to a. dual beam. o~cilloscope. Separa

tion of the contacts is detected using a chatter tester se~ for its 

designed ten micro-second opening duration. Separation is considered to 

be occurring if the chatter tester indicated seyeral consecutive ten 

micro-second openings. This type of separation detection.is repeatable 

when successive tests on the experimental model are made. 

Overall instru:qientation used on' the :qiodel. and. for collecting experi

mental. res.ults. is sh.own.in a block diagram.of instrumenta.tion, Figure 32. 

Instruments andmot:l..on sensitive devices are labeled in the block diagram. 
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CHAPTER V 

. EXPERIMENTAL PROCEDURE AND RESULTS 

The validity of the equations developed is established by comparing 

exp.eriI11ental results with theoretical results. The equation for the 

relative response of a damped or undamped single degree of freedom sys-

.tern, published in numerous books oµ vibrations, is so. well known that it 

has been deemed unnec~,~·sary .to validate this equation. Also, the phase 

relation be.tween the exciting I11otion and the response IllOtion is an 

established relation and is not considered experimentally. 

Paraineters appearing in the theoretical equations are de.termined 

from the experimental model described in Chapter IV. Once the parameters 

on the .model are ascertained, they are·substituted in the theoretical 

equations. With the use of a digital computer, theoretical vaiues are 

calculated for various value of T, the ratio of the exciting frequency 

to the undamped natural frequencyof the system. 

Measurement of Model Parameters and Preload 

The parameters associated with the experimental .model, required for 

.the solution of the various theoretical equations, are k ' J. l<-2/k ' . J. 

m /m , . J. . 2 .ci' c /c 
2 ' J.' 

and F • 
0 

This list,. of paraI11eters, excluding F ' 0 

is xp.erely the physical properties of one contact and its comparison with 

the other. 
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Spring.constants k 
l 

and k 
·2 

are found by measuring the deflec-

tion of tl::ie s_prings under various loads. The .loads are applied by. t,1sing 

weights, and deflections are obtained using the differential transformer. 

The ratio of the differential transformer outputs for equal loads on each 

spring is used as the ratio of the spring constants. 

Undamped natural frequencies of the two contacts, f and f 2., l 
and· 

that of the combined contacts, f ' l2 
are the frequencies of the exciting 

.motion when ma:is:imum response is obtained with a minimum exciting .motion. 

The frequency f 
12 

is also the undamped natural frequency. f. 
n 

The 

natural frequencies, f and f., 
l 2 

along with the spring constant ratio 

are employed to find the i;nass ratio from the relation 

ml c :2 )2 k 
= .-1,. 

m k 
2 l 2 

Values·of the mass ratio, m /m , 
. l ·2 

and of the spring constant ratio, 

k /k are checked by comparing the values ob.tained as indicated with 
2 · 1' 

the values found by the relations 

and 

m . l 
= 

m 
2 

k 
,;g_ = 
k 
'l 

(f /f )2 - 1 
2 12 

(f /f )2 - 1 
12 l 

1 - (f /f )2 . 
J.2 2 

Values of the mass and spring constant ratios from. these two independent 

methods of solution are comparaple in eyery case. 

Tl:le forc.e, F ' m 
required to separate the contacts in the static 

condition, is measured in.order to determine the preload, F ' _0 
of the 



system. The preload is then calculated from the relationship between the 

measured force, F , 
m 

and the spring constant ratio which is 

This equation for F 
0 

F 

F o ... 1 + ~ /k • 
2 l 

is valid wl\en Fm . is the force applied .to 

eimtact :2 u~t:tl. s:eparation. o~curs, If F: . , is::the.i'Jor.ce applied· to .con·~,· m ,.,. 

tact 1,· 0 then 

F • 
0 

F,. 
m 

1 + k /k • 
l 2 

When damping is applied to the system, the values of the damping 

coefficients, c and c, for each contact are determined. The method 
l 2 

for determining the damping coefficient of a contact is to measure the 

response amplitude and exciting motion all!,plitude of the damped contact 

at the undamped natural fr~quency.; the damping coefficient is then 

calculated by the following equation: 

c1 is the damping coefficien-t, k1 the spring constant, w1 the 

undamped circular natural frequency, and (X/S)1 the ratio of the 

response amplitude to the exciting motion amplitude for the contact. 

Dynamic Response Measurements of the Model 

The amplitude of the sinusoidal excitation or input motion is 

measured by applying an accelerometer to the base· of the model. Output 

voltage from the accelerometer is read on a RMS voltmeter and converted 
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to acceleration or displacetpent. An accelerometer is attached to the 

upper contact [see Figure 31], so that its response could be measured 

when the contacts are held apart. Output of this accelerometer is meas

ured in the same manner as the output of the accelerOIµeter on the base 

of the model. The accelerometer on the upper contact is used to deter

mine its undamped natural frequency and its damped or undamped response • 

. The differential transformer is attached .to the lower contact [see Figure 

31]. Although the output of the dif.ferential transformer is a d. c. 

voltage, when the lower contact .vibrates sinusoidally, the output of the 

differential transformer becomes a sinusoidal varying d.c. voltage. 

Thus, in a sinusoidal environment the differential .transformer output is 

read on a RMS voltmeter and converted to displacetpent using its calibra

tion fact'or. One use of the differential transformer is to determine 

the undamped natural frequency of the lower contact and its damped or 

undamped response when the contacts are held apart. 

The differential .transformer is also used .to measure the relative 

amplitude of impending con.tact separation. Again, .the output of the 

differential transformer is a varying d.c. voltage and is read on a RMS 

voltmeter. The amplitude of impending separation is determined by excit

ing the system at a certain frequency. and increasing the exciting motion 

amplitude until contact chatter is detected. 

The phase relation between the location where F( t) "' O.O and the 

relative response amplitude is determined by visually observing the 

response and chatter on a dual beam oscilloscope. The d.c. voltage 

across the contacts and the output of the differential' transformer are 

connected to the oscilloscope. Prior .to chatter, one beam _on the scope 
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is a straight line for the d.c. yoltage across the contacts. The other 

beam is the sinusoidal waye for the relative response from the differ-

ent1al transformer at a certain frequency. When the exciting motion 

amplitude is increased to the point. of impending separation, the scope 

beam.for the voltage across the contacts has intermittent changes. The 

location of these intermittent yoltage changes across the contac_t, rela-

tiye to the peaks of the sinusoidal wave, indicates the phase difference 

' b"etween the response amplitude and the location where F(t) = o.o. 

Experimental Results 

Experimental tests are made on .the model for essen.tially three 

different conditions: undamped,. one contact dampec;I, and both. contacts 

damped. In each case the experimental results are c0mpared with those 

predicted by the theoretical equations. No effort is made .to explain 

the scat.ter of data points for successive _tests on the experimental model 

for a given set of para.meters. When consideration is giyen .to instrument 

readability and the possible error associated with repeating the same 

frequencies and vibration enviromµent the scat.ter of da.ta .is not exces-

sive. A general explanation for .the deyiation of the da.ta points from 

. the theore.tical yalues, when the sys.tern, is damped, is .that the measured 

damping coefficients· or tlle type of damping subs_titu.ted into the theoret-

ical equation is in error •. Nevertheless, the trend of the .measured 

yalues Jollows that of the theoretically predicted values. It was found 

that if the amount of., damping is increased by merely· tightening the 

adjustable air leak on the damper, instead of simultaneously chanfi;ing 

the weight of the oil used to form the oil film, the damped natural 
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frequency does not change from the undamped natural frequency. The condi

tion, where the damped natural frequency does not change from the undamped 

natural frequency, is not observed wh.en the adjustable air leak is loose 

or moderately tight. This indicates that if the adjustable air leak is 

tight the compressibility of the air is adding elasticity to the system, 

Furthermore, forcing the air through the small orifice.could cause the 

damping to be a combination of viscous damping and damping proportional 

to the square of the velocity. In Appendix D the ,pproximate solution 

of the normdized separation amplitude indica.tes that for" damping propor

tional to the square of the velocity, n·• 2, the.no~alized separation 

amplitude at large values of T is lea• than that for the yiscous damp• 

ing, n • 1. These results suggeat tha~ if the data points are below 

the predic'ted values at large values of T then the damping is not 

completely viscous as assumed, If the data points are consistently above 

or below the predicted values, then. not only is the,re possible error in 

the measured value of the damping coefficients, but there<may be 

error in the measured values of other parameters associated with the 

con tact system, 

Experimental Variations of the Preload 

For the undamped condition the equation of the amplitude for impend

ing separation indicates the separation amplitude is independent of the 

frequency and directly proportional to the preload. Figures .3.3 and 34 

show the results of two of the tests made on the undamp~d model, In both 

tests the spring constant ratio equaled l.e and the mass ratio, M, 
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equaled 1.57. Only the pre+oad is changed. The natural frequency of 

the system is 23 cps. 

With one contact damped tl;ie amplitude for impending separation is 

a. linear function of the preload but is no longer independent of the 

frequency. Also, the separation amplitude is,,a function of the amount 
j i 

of damping on the one contact. and is decreastid as tlle yalue of T 

increases. Tlie effects of damping one contact.are.considered'in more 

detail later and only the influence of the preload and frequency on the 

one damped contact are of in.terest h~re. Figures 35 and 36 show the 

results of _two tests on the model when k /k .... 806 
2 ' J. 

and m /m = .716. 
J. . 2 

The damping coefficient of the damper and preload are varied in each 

test. At T = 0.0 the effects of different preloads ire1 best illus-

trated. 

When both contacts are damped, the separation amplitude is still a 

linear function of the preload but may or may not be a function of the 

frequency depending on how the damping is proportioned on the system. 

Effects of damping both contacts are considered in more.detail later and 

.only the influence of the preload isof interesthere. Figures 37 and 

38 show the results of two test .. on the .model when k2 /k1 = • 806 and 

m /m . = • 716. The preload is varied in each case along' with the amount 
. J. 2 . 

of damping on th,e sys.tern. 

From the results of Figures.33 .through 38 it can be seen that 

increasing the preload increases the initial value of the separation 

factor. The effect of adding damping to the sys.tern. causes the separa-

tion fac.tor to change as 'T increases if the damping is not propor-

tioned correctly on the system. 

./ 
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Experimental Variations of the Damping 

Tests were made on the model with various amounts of damping in 

order to more clearly illustrate the effects of added damping to one 

contact on the separation amplitude. Since preloads, mass ratios, M, 

and spring constant ratios are not held constant for each test, the 

results. are normalized. Results of tests are normalized by dividing the 

separation amplitude at each value of T by the value of the separation 

amplitude at T. = O.O. This makes the normalized separation amplitude 

start at unity for ,- = O.O and vary accordingly to X/x,. = o.o· Figure 

39 shows the plot of six norm1:1lized tests for which the amount of damp

ing is different for each test. It can be seen that when one contact is 

damped, the separation amplitude decreases as T increases. The greater 

the amount of damping, the more the separation amplitude decreases. 

When both contacts are damped, the amount of damping does not. affect 

the separation amplitude so much as the way the damping is prpportioned 

on each contact. Again, the results to be compared have been normalized 

as indicated before. The total amount of damping on the system is the 

sum of c and c2. Figure 40 shows the results of two different tests 
1 

on the model where the damping is proportioned on each contact in differ-

ent amounts. The test with the largest amount of total damping has the 

· highest normalized amplitude for separation compared with the test with 

.less total damping. Iri either case the normalized separation amplitude 

is larger than that for a system with the same amount of damping on only 

one contact. Figures 41 and 42 show the results of three tests where · 

damping is the only parameter changed. The preload for the results shown 
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in Figure 41 is different from those shown in Figure 42. In .both figures 

the system is investigated with only one damper, c , 
l 

applied. Then the 

damper, c2 , is applied to the system. In each. case it is seen that 

adding the second damper increased the normalized separation amplitude 

even though the total damping is greater. Next the amount of damping, 

c. , is reduced for each experimental setup. In Figure 41 again .. a small 
l 

increase is seen in the normalized separation amplitude. In Figure 42 

an optimum proportionment be.tween the two damper.s is found and the nor-

malized separation amplitude is independent of the frequency. The 

optimum proportionment. of damping in Figure· 42 is found experimentally_ 

but can be deter~ined theoretically by making CM·• 1.0. 

Experimental Phase Relations 

The phase relation between the response ampli;ude and the force 

be.tween the masses, indicated in Chapter II, is checked experimentally. 

Even though only an approxima~e measurement of the phase angle is made 

experimentally, its existence is clearly shown in Figures 43 and 44. 

Figure 43 shows results for the model with one damper applied; the upper 

photograph is for 'I' • O. 45 and the lower photograph is for .,. • 1. 59. 

The theore.tically predic~ed phase angle for "I' • o. 45 and '!' • l. 59 is 

~ • - 37° and ~ • - 68°, respec.ti,vely. The ex.perimentally measured 

value at '!'.• o.45 is ~ • - 43°. The value at '!'. • 1.59 is ~· = - 73°. 

The negative sign. indicates the separation lags the response amplitude, 

which is the case in Figure·43. Figure· 44 shows the results for the 

system with two dampers. One damper is the same as in Figure 43, and an 

addi.tional damper is added .to the system. It. can be seen in Figure .44 
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Upper Photograph, T = o.45. 

Lower Photograph, T 1. 59. 

Figure 43. Phase Relation for Contact Separation, One Contact Damped. 



Upper Photograph, T = o.45. 

Lower Photograph, T = l.59. 

Figure 44. Phase Relation for Contact Separation, Both Contacts Damped. 
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that the phase angles for r = o. 45 and ,. = 1. 59 are less than those 

for the same values of ,. in Figure 43. The predicted values of the 

phase angles with two dampers are ~ = - 24° when ,. . = o.45 and 

~ = - 56° when ,. = 1. 59. The experimental meqsured values are ~ = - 28° 

when r = o.45, and ~ = - 52° when r = 1.59. For the undamped case 

shown in Figure 45, the phase angle for all the values of ,. should be 

zero. In the upper photograph where r. = O. 45, the phase angle is close 

to zero. In the lower photograph where r = 1.59, there exists a small 

phase difference. 

Experimental Baron Number 

A new parameter, the Baron Number, was introduced in Chapter III 

which relates the response amplitude and impending separation amplitude 

in a dimensionless parameter for various values of r. The validity of 

the Baron Number is checked experimentally by comparing experimental 

points from- the model with the .curve of the Baro11 Number versus r for 

a given set of model parameters. Figures 46, 47, 48, and 49 show the 

comparison of the Baron Number and experimental points for four differ

ent tests on the model. The correspondence of the experimental points 

with the curyes of the Baron Number is good. This indicates the contact 

chatter characteristics can satisfactorily be determined by using the 

Baron Number. 



Upper Photograph, T = o.45. 

Lower Photograph, T 1. 59. 

Figure 45. Phase Relation for Contact Separation, Undamped. 
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CHAPTER VI 

CONCLUSIONS 

The following conclusions about the contact chatter characteristics 

of a linear viscous damped contact system subjected to a steady state 

sinusoidal vibration environment are made on the basis of this study: 

. 1. Contact separation of a preloaded set of contacts will occur 

when the force between the contacts is zero. 

2, Initial contact separation will occur only once in each cycle 

of the contacts sinusoidal oscillation. The location of the separation 

within each cycle of oscillation depends on how the damping is proper-

tioned between the two contacts, 

3. The amplitude for impending.contact separation is determined by 

the paraI)l.eters o·f the contact system and preload, 

4. The amplitude for impending contact separation is independent 

of damping if the damping coefficient ratio, c2 /c 1 , is equal to the 

mass ratio, ~/m1 • 

5. The application of damping to a contact system with. on• rigid 

and one flexible contact does not affect the amplitude for impending 

separation, since the separation amplitude is zero for this type of 

configuration. 

6. The Baron·Number can be used to establish the ma~imum amplitude 

of the exciting motion without separation, 



97 

7. The Baron Number, along with the unoamped natural frequency of 

the system, can be used to establish the maximum exciting acceleration 

for nonseparation of the contacts. 

8. The Baron Number can be used to establish the preload necessary 

for a contact system to have no separation for a given amplitude of the 

exciting motion. 

9. The Baron Number, along with the undamped natural frequency of 

the system, can be used to establish the preload necessary for a contact 

system to ha:ve no separation for a given exciting acceleration. 
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APPENDIX A 

SOLUTION OF THE EQUATION OF RELATIVE MOTION 

The equation of relative motion of the contact masses to the system 

boundary is developed in Chapter II, Mathematical Derivation, Equation 

(8). The equation is 

= 

(A-1) 

For the solution of this equation the following assumptions are made: 

(a) Neither mass is equal to zero. 

(b) The force between the masses, F(t), is greater than zero. 

( c) The coefficients of functions of x( t) are constant. 

The fact·that the excitation is sinusoidal, s(t) = S sin wt, suggests 

that the particular solution or steady state solution of the equation of 

relative motion has a probable sinusoidal solution. Thus, the general 

sinusoidal solution of x(t) = X sin (wt+ cp) is assumed where X is 

the peak value of the response and cp is .the phase angle between the 

excitation and response. In complex notation the assumed solution and 

its derivatives are: 

x( t) = 
j( wt + cp) 

Im[X e ] , 

100 



101 

. (wt + rn) . 
x( t) = Im[ jw x eJ . T ] ' 

(A-2) 

Substitution of Equation (A-2) in.to Equation (A-1) results in the follow-

ing.equation: 

Im[(m + m) u.i2s ejUJt] • 
1. 2 

(A-3) 

When Equation (A-3) is divided by (m + m ) 
. 1. 2 

and the terms 

and 

Ul 
n 

k + k 
2 1. 2 = 

T = 

m + rn ' . 1. . 2 

w/w , n 

are introduced,. Equation (A-3) reduces to 

= Im(w2 S ejwt), 

(A-4) 

where w is the system circular natural frequency and T is the ratio 
n ' 

of the exciting frequency to the undamped natural frequency of the system. 

When Ul n 
is factored out of Equation (A-4) and the equation is 

rearranged, the equation has the following form: 

= Im ·[ 
( 1 - -r2 ) + 

,2 s .J(wt) ] 
(A-5) 
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Equation (A-5) can be put in a more convenient form by changing the right-

hand side to the modulus and an argument of the complex number as follows: 

where 

• 

e • 

[ 
,.2 8 ej ( wt - e) ~ 

Im { . 2 [ cl ( 1 + c2/ cl )f .. }* , 
. ( l • T2 ) + wk 1 + k /k ~· 

l 2 l 

arc tan 2 
1 - 'I" 

(A-6) 

By definition two complex numbers which are equal must have the same 

modulus and argument. Therefore, 

x • (lt.·7) 

(1 - '1' ) + { 
2 2 

and 

cp • - e • 

If the ratios of k2/kl, c2/cl, and ml/m2 are represented by dimen

sionless ratios as K • k2 /kl, C. • c2 /ci, and M • ml/m2 , and if the 

damping factor of contact 1 is defined as 

' . l 

c.' 
l 

2 iklml' 

then the second term in the denominator of Equation (A-7) can be written 

as 

• 
4 ,.2 M ( 1 + C) 2 ,/ 

( 1 + M)( 1 + K) 

With substitution of these relation~ in Equa~ion'(A-~), t~e modulus of 

the complex number, which is the amplitude of the response, is 



x = 

{ 
2 2 

(1-T) + 
4 ""2 M ( 1 + C) 2 ,. 2 1.. ' 

_(_l_+_M..,...)_( _l _+-K)_..,...;;;cl_ r 
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(A-8) 

and the argument of the complex number, which is the phase angle between 

the response and the exciting motion, is 

e = arc tan 
[ M Ji 2 'i ( l + C) bi ( 1 + M)( 1 + K) 

1 - / 
(A-9) 

The resulting solution of the equation for the relative motion of 

the system in complex and trigonometric notation is 

x(t) = Im[X ej(wt - e)] , 

and (A-10) 

x( t) = x sin ( wt - e) ' 

where X is the amplitude of the motion and is always positive and e 

is the phase angle between the exciting .motion and the relative response 

of the sys tern. 



APPENDIX B 

SOLUTION OF THE EQUATION FOR THE RELATIVE AMPLITUDE 
FOR IMPENDING SEPARA.TION 

The equation for the force, F(t), between the contact is shown 

in Chapter II, Mathematical Derivations, in Equation (14) as 

F ( t) ( !1 + !2 ). 
(B-1) 

The relative amplitude of the response of the system for F(t) > 0 is 

found in Appendix A, shown in Equation (A-10), to be 

x(t) = x sin (wt - e) ' (B-2) 

thus 

ic(t) = w x cos (wt - e) ' (B-3) 

where X is the amplitude of the relative response and e is the phase 

angle between the exciting motion and the relative response. 

Substitution of Equations ( B-2) and (B-3) into Eqµation (B-1) yields 

the following equation: 

c c k k 
F ( .!._ + .!._) - {- (-2 - m2 ) u..iK cos (wt - .e) - ( m1 - ·m·2 ). X sin(wt - e)} = 

o .. m1 . m2 . m1 . 2 . l 2 . 

( 1 . 1 ) 
F(t) ;-+;-- . 

·1 2 
(B-4) 
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Since the coefficients of the sine·. and cosine terms in Equation (B-4) are 

amplitudes of perpendicular vectors, the terD;1.s inside the brackets can 

be written as 

-c·:il - c2 ) OJ X cos ( wt - 0) _: c :1 -k2 ) X sin ( wt - 9) = 
~ 1 ~ 

., 

[(:: - :: } + w2 C:: -:: } ]1 
X sin (wt - e + ~) , 

where 

13 · - arc tan k k • 
( . 1 '2) - - ., -

m m 
1 -2, , 

The eql.lation for the force, F(t), between the contacts is now written 

in the following form: 

F( t) = F 
0 

sin ( wt - e + 13) 

(~ + ! ) 
- 1 2 

- ( B-5) 

From Equation (B-5) it can be seen that 13 is the phase angle be.tween 

the force, F(t), and the relative response, x(t). For the contacts 

to separate, the force, F(t), must be zero. The amplitude of the 

response when the force, F(t), ini:tially becomes zero is-defined as the 

amplitude for impending separation, X. Equation (B-5) indicates that 

the minimum.response amplitude for F(t) to initially eql.lal zero will 

occur when sin (wt - e + 13) = 1. The solution of Equation (B-5) for t:he 

amplitude for impending separation when F( t) is initially zero and 

sin (wt - e + 13) = 1 results in 
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x = (B-6) 

This equation can be factored and rearranged so that 

x = 
F /k (1 + m /m) 

O l ·J_ 2 

2 i . _ :2 :i ) J 
J_ 2 

The substitutions K = k2 /k1 , C = c /c, M = m /m and the change in 
2 l l 2 

2 2 
the product w (c/k1 ) to. 4 ,/ M( 1 + .K) ,// ( 1 + M) are made. , 1 

is the damping factor for contact 1 and ,. is the ratio of the exciting 

frequency undamped natural frequency. Thus, the final form of the equa-

tion for the amplitude for impending separation is 

x = 
F /k ( 1 + M) 

O J_ . 

KM )2 + _4_,._2_M_( l__,+~K_)_( ..... 1...---_c_M_)2_, ...... 1_2 j1. • 
( :1 + M) 

(B-7) 

The phase angle ~,, when F( t) initially becomes zero, locates the 

position of F(t) = O relative to the response amplitude and is 

~ = arc tan 

l. 

- 2,. (1 - CM) [ M tl++MK) J2 
- ( 1 - KM) 

(B-8) 



APPENDIX C 

EQUIVALENT VISCOUS DAMPING COEFFICIENTS 

Equivalent viscous damping coefficients are derived in this study 

by using the criterion of equivalent energy dissipation per cycle. The 

energy used for this derivation is the work done by the damping force 

in one cycle. The work done by a linear viscous damper proportional to 

st 
the 1 p.ower of the velocity in a steady state sinusoidal environment 

. d h k d b d · 1 h th f 1.s equate tote war one ya amper proport1.ona tote n power o 

the velocity in the same environment. 

The force of a linear viscous damper is 

F (t) = c~(t) , 
c 

where x(t) = X sin (wt - e). The work of the damping force is 

Work . = F ( t) dx • 
c 

The displacement, dx, is replaced by the following equation 

dx = dx dt 
dt = ~(t) dt. 

( C-1) 

(C-2) 

( C-3) 

After substitution for the damping force, F ( t), 
c 

and the displacement, 

dx, in Equation (C-2) and after integration over four times a quarter 

of a cycle, beginning at t = e/w and ending at t; = .'.!:!..... + 2. 
2w w ' 

the work 

per cycle is 
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Work/cycle "" 

.!!.....+ i 
2w w 

4 J c[w X 

e 
w 
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2 
cos (wt - e)] dt. (c-4) 

If the variable of integration is changed by letting u .. = wt - 9 so that 

du 
dt = then the limits of the definite integral are changed to u. = O 

. w ' 

at t. = e/w and u. = TT/2 at t = TT/2w + e/w. If the above substitutions 

are made, Equation (c-4) becomes. 

.Work/ cycle = 2 
4 cwX 

2 
cos u du. 

Tl).e solution of Equation ( C-5) from the table of integrals is 

Work/ cycle = TT cw x2: , 

which is the work of a viscous damping force over one cycle. 

( C-5) 

(c-6) 

h f f b . d . 1 h th f T e orce o an ar J. trary amper proportiona .to t e n power o 

the yelocity h 

( c-7) 

Work per cycle for this damping force can be evaluated by using Equations 

(c-7) and (c-3) in Equation (C-2). Thus, the work is 

Work/cycle = 

TT 9 -+-
2w w 

4 .Je cn[w x 
w 

n+l 
cos (wt - .e)] dt • ( c-8) 

If the same change of variables is made as before, the work of an arbi-

trary damper is found from the solution of the integral 



Work/cycle • 

TT 

2 
4 n n+1 J n+l 

c w x cos u du • 
n 

0 
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'( c-9) 

From the table of integrals the solution of the integral in Equation 

(c-9) for n > - 1 has the general form of 

TT 

2 

I n+l 
cos u 

0 

du • .!. l"rr 
2 ' 

(C-10) 

where r (n) is defined as the gamma function. Thus, the work of an 

arbitrary damper proportional to the nth power of the velocity is 

Work/ eye le • 
n n+l r 

2 e w X v'1i 
n 

r(n;2) 
r(n;3) 

(C-11) 

Aftet combination of Equations (c-6) and (C-11), the result is 

.2 
TTCW X • (C-12) 

If -2 Y .. 
n /",.,: 

and Equation (C-12) is rearranged, an equiva-

th lent viscous damping coefficient for the damping proportional to then 

power of the yelocity is 

c • n-1 n-1 
en w . X Yn • 



APPENDIX D 

THEORETICAL RESULTS USING EQUIVALENT VISCOUS 
DAMPING COEFFICIENTS 

Jacobsen (7) established that the use of equivalent viscous damping 

coefficients to determine the response of a single degree of freedom 

system is in gooq agreement with experimental results. The theory of 

equivalent viscous damping coefficients is applied to determine the ampli-

tude for impending separation. The idea is tha~ if the theory gives a 

good approximation for the response of a system, the possibility exists 

that it may give a good approximation for the amplitude for impending 

separation. 

To illustrate the influence of changing the exponent, n, of the 

velocity-damping term on the magnification factor, three curves are 

drawn in Figure 50.. The curves are drawn to give: .the same magnification 

factor at. T • 1.0. Figure 51 shows the normalized amplitudes for impend-

ing separation using the same values of the exponents as shown in Figure 

50. When n • 1.0 the equations for these approximate solutions reduce 

.to the exact solution, so that in Figures 50 and 51 when n.= 1.0, the 

curve is exact. 

Figure 51 indicates that for values of T < 1.0 the curves for 

n = 1.5 and n = 2.0 are above the curve for n = 1.0 and differ in 

shape. For T > 1.0 the curves follow the same shape but are lower for 
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increasing values of n. Since there is no appreciable decrease of either 

curve from the curve for n = 1.0 it may be that this type of analysis 

would give a reasonable approximation of the amplitude for impending 

separation. 
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APPENDIXE 

LIST OF MAJOR SYMBOLS 

Damping coefficient ra.tio c /c. 
2· l 

Linear damping coefficient for viscous damper 1. 

Linear damping coefficient for viscous damper 2. 

Force between the contact masses as a function of time. 

Damping force exerted by viscous damper 1. 

Damping force exerted by viscous damper 2. 

Restoring force exerted by spring 1. 

Restoring force exerted by spring 2. 

Inertial force of mass 1. 

Inertial force of mass 2. 

Static force between the contact masses, the preload. 

The frequency of the exciting motion. 

The undamped natural frequency of contact 1. 

The undamped natural frequency of contact 2. 

The undamped natural frequency of the contact system. 

Gravitational acceleration. 

General subscript which is either 1 or 2. 

Spring constant ratio k /k . 
2· l 



k 
2 

M 

m 
2 

n 

s 

s(t) 

x 

x 

x(t) 

y(t) 

b 
l 

6 
l 

0 
2 

'T 

w 
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Linear spring constant for spring 1. 

Linear spring constant for spring 2. 

Mass ratio m/m2 • 

Mass of contact 1. 

Mass of contact 2. 

General exponent with values from O. 5 to 3.0. 

Amplitude of the exciting motion. 

Exciting motion of the system. 

Amplitude of the relative response. 

Relative amplitude for impending contact separation. 

Relative response of the system. 

Absolute response of the system. 

Phase angle between the relative response and the sinusoidal 
variation of the force between the con tac ts. 

Static deflection of spring 1 from the weight of its contact. 

Static deflection of spring 2 from the weight of its contact. 

Static deflection of spring 1 from the pre load. 

Static deflection of spring 2 from the pre load. 

Damping fac.tor for contact 1. 

Damping factor for the contact system. 

Phase angle between the exciting motion and the relative 
response. 

Ratio of the exciting frequency and the system's undamped 
natural frequency, f/f. 

n 

The circular frequency of the exciting motion. 

The undamped circular natural frequency of the system. 



APPENDIX F 

LIST OF MAJOR INSTRUMENTATION 

Accelerometers-~Model 5041; Manufacturer, Clevita; Serial Nos. 7093 and 
7060. 

Air Damping Dashpots--Model 303; Manufacture.r, Electric Regulator Corpora
tion; Serial No. 85-11-1. 

Audio Oscillator--Model 200 AB; Manufacturer, Hewlett-Packard; Serial No. 
130-13888. 

Chatter Tester--Model 0959501; Manufacturer, Sandia Corporation; Serial 
· No. 811-60. 

DC Nullvoltmeter--Model 413A; Manufacturer, Hewlett-Packard; Serial No. 
139-00188. 

Dual Beam Oscilloscope--Model 502; Manufacturer, Tektronix; Serial No. 
006852. 

Linear Differential Transformer--Model .7DCDT-050; Manufacturer, Sanborn; 
Serial No. FG. 

True Root-Mean-Square Voltmeter--Model No. 320; Manufacturer, Ballantine 
Laboratories, Inc.; Serial No. 3900. 

Vibration Test Equipment--Model Tll2031; Manufacturer, MB Electronics; 
Serial No. 121. 

Vibration Meter: Model N550; Manufacturer, MB Electronics. 

Sine Random Generator: Model N670; Manufacture.r, MB 
Electronics. 

Control Equipment: Model T251; Manufacturer, MB 
Electronics. 

Shaker: Model C-10; Manufacturer, MB Electronics. 
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