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CHAPTER I
INTRODUCTION

A relay or switching device is a mechanical system in which parts
of the system can exhibit resonant conditions. 1In particular, the con-
tacts of the relay or switching device often have a resonant condition
.at which their response amplitude can become. large when compared with
the amplitude of the enviromment, During this resonant condition the
contacts of the relay could have a type of failure commonly referred to
as contact chatter, lIn essence, contgct chatter is the separation of
the two contact surfaces which have been forced together to complete a
circuit,

One of the present methods of controlling contact chatter, when the
relay is to perform in a given frequency range, is to design the relay
so that its resonant conditions are not within this range., The shifting
of the resonant condition is most often accomplished by adding rigidity
to the-relay, which is done at. the cost of added weight., Not only is
the weight of the relay importént, but also of importance is its reli-
ability. There can be no assurance that the relay will not be exposed

to frequencies beyond those for which it was designed,
Definition of the Problem

One of the most important mechanical problems of relay design is

that of contact chatter., TFrom the testing of relays in a steady state



sinusoidal vibration environment, it has been learned that contact chatter
does not occur continuously in this environment but it occurs only at
certain amplitudes and in certain frequency ranges, Consequently, there
must be a response amplitude of the contacts below which contact chatter
does not occur and above which chatter does occur, The amplitude of the
response of the system at the point of initial contact chatter is

defined as the separation amplitude., The separation amplitude is the
finite value of the response amplitude of the contacts when the force
between the two contact surfaces becomes zero,

To control the response amplitude of a contact system during res-
onance, the excess energy must be dissipated. This energy dissipation
can be accomplished by adding damping to the system, Mechanical damping
is dependent upon either displacement or velocity; therefore, there must
be a response amplitude for damping to be effective,

The criteria for adding damping to a contact system is one of per-
mitting the system to have a response amplitude so that damping is effec-
tive, The response amplitude must be controlled so that it is less than
the separation amplitude. A condition in which the response amplitude
is less than the separation amplitude must exist for an unlimited fre-
quency range,

The problem then is twofold, First, the response of contact systems
with damping in a sinusoidal vibration environment must be established.
Second, the chatter characteristics of the damped contacts in this

environment must also be determined.



The Purpose and Scope of the Study

This study consists of a theoretical investigation of an idealized
preloaded contact system with lumped parameters, An experimental phase
is presented to substantiate the theoretical investigation,

The mathematical model used for the theoretical study is an ide-
alized preloaded contact system, which consists of two massless linear
restoring spring forces, two springless masses, and two linear viscous
dampers, The system is subjected to a steady state sinuseidal vibration
environment., The equation of motion:for the contact system and the equa-
tion for impending separation amplitude of the contacts are developed.
Equivalent linear viscous damping coefficients are introduced to obtain
approximate solutions of the equation of motion and of the equation for
impending separation for various types of damping,

The scope of the theoretical study includes the development of a
dimensionless number which can be used to establish the chatter charac-
teristics of a contact system, This development of the dimensionless
number, referred to as the "Baron Number,'" simultaneously relates the
response amplitude for the system to the separation amplitude. Through
the use of the Baron Number, the amplitudes of the exciting motion at
which contact chatter will not eccur can be determined for a given contact
system,

With the use of an arbitrary set of parameters such as spring con=~
stants, masses, and damping coefficients, the chatter characteristics
of the mathematical model are determined for various conditions., This
enhances the study by permitting a much broader scope of the possible

- physical applications of adding damping to a contact system. In a like



manner, the effects of varying certain parameters on the mathematical
model while maintaining the others at a constant level is presented,
The purpose of this study is to further the understanding of the
behavior of contact systems in a vibration environment, to establish
the effects damping has on the system, and to determine the chatter
characteristics of a damped contact system, An adequate understanding
of the chatter characteristics of a contact system in which damping is

a prevalent factor could facilitate an optimum contact system design,
Previous Work

Much work has been done in the field of contact chatter from the
standpoint of rebound chatter and collision chatter, Takamura (1)1
developed a general theory of the vibrations caused by collisions between
two contact masses, Transient response of the contacts during impact
closure and lift-off after opening was studied. Takei (2) analyzed the
transient response of contact impact, This study considered collision
of one flexible contact with rigid contact, an identical contact, and
a more flexible contact, Kubokoya's (3) analysis was for armature
rebound and impact on the armature back stop, It was shown that this
type of rebound chattering could be minimized.by increasing the oper-
ating ampere-turns and by selecting appropriate spring stiffness for the
system, Takei and Takashi (4) used the phase plane delta method to

analyze the transient response of contact chattering due to impact,

lNumbers in parentheses refer to references of the selected bibliog-
raphy.



They considered the higher modes of vibration and the energy dispersion
for one and two degrees of freedom systems,

Separation criteria for a linear undamped contact system in a steady
state sinusoidal environment was studied by Lowery, Riddle, and Stone (5).
They studied a contact system for both one and two degrees of freedom,
Also included in their study was the effect of adding viscous damping
to one contact on the response of the system and preload prior to separa-
tion, No attempt was made to establish the relative amplitude for
impending separation for either the undamped system or with one contact
damped,

Burkhart (6) investigated the effects on a contact system of having
one linear spring and one nonlinear spring., In his study he included
the case for two linear springs and a qualitative analysis of how damping
might affect the amplitude for impending separation, The equation of
impending separation developed by Burkhart is the same as the separation
equation presented in this study when it was reduced to the undamped
condition., Since Burkhart did not make a theoretical study of the effects
on the amplitude for impending separation with damping, nq direct com-
parison is possible,

No known previous work in the area of contact chatter has studied
the effects of damping on the amplitude for impending separation.while
simultaneously considering the effects of damping on the response and
separation. Only Lowery (5) did a theoretical study of the effects of
damping on the response, The effects of damping on the response of a
single degree-of freedom system, which a contact system is, has been

presented in many elementary vibration text books.



In an article by Jacobsen (7), the approximate solution for the
response of a single degree of freedom system influenced by damping
proportional to the nth power of velocity was considered by using equiva-
lent viscous damping. coefficients, The results reported in this article
showed that the approximation was close for a single degree of freedom
system, . No known. study using the theory of equivalent viscous damping
coefficients to obtain an approximate solution for the amplitude of
impending separation has been made; thus, there is no way to compare the

results of the theory in this study.



CHAPTER II
MATHEMATICAL DERIVATIONS

The mathematical model used for the theoretical study consists of
two massless linear restoring springs, two massless linear viscous dampers,’

and two springless masses as shown in Figure 1., The system in Figure 1

ky :é Ci

my
m \
2 y(t)
\\\»
C2hi k.g /
/
/
/
s(e) | 7
AWV

Figure 1, Idealized System with Motion Excitation,

is in the position of equilibrium seo that the springs have been changed
from their unstretched position., With positive displacement defined as
upward, spring 1 was displaced =-A;, by the weight of its contact and
spring 2 was displaced -0, by the weight of its contact from their

unstretched positions, 1In each case

k‘lAl = m18 ,



and

In the remainder of this study further displacement of the springs is
defined from the equilibrium position of each spring with its contact
attached, Through the use of this new equilibrium position for defining
displacements, the weight of the contacts need not be considered. When
the two contacts are forced together spring 1 is displaced + él and
spring 2 is displaced -~ 62 from their equiliBrium positions. The

dynamic forces generated by a sinusoidal excitation on the contact sys-

tem as shown in Figure 1 are as follows:
Fo(e) = -k [y(t) - s(t) +81,
ky 1
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The sum of all the forces acting on each contact mass must equal zero;

that is,
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where F(t) 1is the force between the masses which acts equally but in
opposite directions on each mass, For the static condition when
y(t) = s(t) = 0, Equations (1) and (2), upon substituting for the

dynamic forces, reduce to

- k8 + F(t) = 0, (5)
and

koo - F(t) = O, (&)

The sum of Equation (3) and Equation (4) shows that k;8; = Kkobo and
this force, kiéi’ is defined as the preload, F of the contact sys-
tem. The preload is the force between the contact masses in the static

condition, F(t) = L

The Equation of the Relative Motion

As long as the force between the masses, F(t), is greater than
zero, the system is a single degree of freedom system, If F(t) = 0O
the masses could separate and move independently of each other; the sys-
tem then would have two degrees of freedom., The interests of this study
are the points at which F(t) >0 and when F(t) initially becomes
zero, The equation of motion of the system under these conditions is
found by taking the sum of the dynamic forces acting on the system, which

must be zero:

2
}Z [Fmi(t) + F_ (t) + Eki(t)] = 0. (5)
i=1
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Equation (5) is in terms of the masses, spring constants, and damping
coefficients, Also included are the two motions y(t), the absolute
motion of the masses, and s(t), the excitation motion,

The motion of the contact masses relative to the system's boundary

is x(t), which is defined by the equation

x(t) = y(t) - s(t), (6)

“When the sinusoidal excitation motion is of the form s(t) = S sin wt,
with S as the amplitude of the motion and w as the circular forcing
frequency, a change from the trigonometric function to complex notation
. e , e ST
can be made, From the identity e = cos 6+ j sin 6§ where j = -1,
it follows that the sinusoidal function can be expressed by the imaginary

j0 jwt .
part of eJ . Thus, sin wt = Im(e ) and the sinusoidal excitation

motion is
jwt
s(t) = Im(Se ). (7)
From the Equations (5), (6), and (7) in addition to the fact that
ki18; = Kobo, and after substitution for the dynamic forces, the result-

ing equation for the relative motion of the system is

(my + mp) ®(t) + (eg + cz) x(t) + (kg + ko) x(t) =

jwt

1. (8)

Im{(m; + mg)wgs e

The solution of Equation (8) is found to be (see Appendix A) in

complex and trigonometric notation, respectively, as

j(wt - 6)]

x(t) = Im [X e’ , (9)
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and

x(t) = X sin (wt - §) , ' (10)

where the amplitude of the motion, X, and the phase angle between the

relative motion and exciting motion, &, are
2
ST
X ; (11)

i 2 b @M1+ C)® ® (%
{“'TZ] TATWF R }2

and

6 = arc tan

M %
27 (1+¢) gl':(1+M)(l+IU:'

1-1'2

These equations are written in terms of dimensionless ratios of the sys=~
tem parameters, The relative magnification factor is defined as the

relative amplitude over the- exciting amplitude

2
T

T 2 b M1+ c)® g5 3’
{[1 - 7] (1 + M)(1+ K) }

w |

(12)

The Equation of the Relative Amplitude
for Impending Separation
The relative amplitude for impending separation: is defined as the

finite value of the relative amplitude of the response of the system

when the force, F(t), between the contact masses initially becomes zero.
For dynamic equilibrium to be maintained as long as F(t) > 0, the sys-
tem.is a single degree of freedom system. Consideration. of the next
_increment of motion of the masses after F(t) has initially become zero

will indicate if the two masses separated. If the force is different
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from zero, the contacts will remain together., If the force is still
zero, separation of the contacts will occur if the response of each
contact is not identical, This would only occur if all the parameters
of each contact are identical., Whenever F(t) remains zero for any
. length of time, each contact is in dynamic equilibrium independent of
the other by a combination of its dynamic forces,

After substitution for the dynamic forces in Equations (1) and (2)
and division by m, the following two equations are obtained, provided

neither mass is zero:

» c k
- ¥(e) - == 05(e) - 3(e)] - == [y(t) - s(t) + 6] s EE) g

and
c k
S F(e) - 2 5(e) - 3(0)] - 2 Iy(e) - s(e) - 62l - EEL < o0 (1)
2 2 2

The difference of Equations (13) and (1k), after substituting
s(t) = y(t) - s(t) and F = ki6; = ko8, yields an equation for the
force between the contact masses, F(t),

P e L) - p (Lel)e(2.2 ;<<t>+<z_i-m2_2<x<t>.

(15)

o

The finite value of the response amplitude, X, at which time the force
between the contact masses, F(t), initially becomes zero is defined as
the relative amplitude for impending separation, X, The solution of
Equation (15) when F(t) initially becomés zero (see Appendix B) shows

that the relative amplitude for impending separation is
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Fo/kl (1 + M)

L 72 M(1 + K)(1
(1 + M)

]
(]

) (16)

{:(1 - kM)Z + - 07 & }%

and the phase angle between the relative response and the sinusoidal

variation of F(t) is

K
1+ M

B .= arc tan

- 2T (1 - cM) gl[ﬁl—I—lT
) . (17)

(1 -

If the separation factor is defined as the amplitude for impernding separa-

tion over the term Fo/kl, then the separation factor is

X - (1 +M)
Fo; ky 2 b M+ R)(1 - aM)F gla 3 (18)
{1 -xm®+ TR }

The sinusoidal variation of the force, F(t), between the contacts
has associated with it a phase angle B, shown in Equatien (17). B is
the phase angle between the sinusoidal variation of x(t), the relative
response, and the sinusoidal variation of F(t). The sign of B establishes
whether the variation of F(t) leads or lags the response., When F(t)
initially becomes zero, separatien of the centacts could eccur., TIf 8
is zero and F(t) becomes zero, then separation would occur at one of
the peaks of the relative response., For conditions when f is not zero,
separation would occur B degrees from one of the peaks of the relative
response,

Approximate Solutions Using Equivalent
Viscous Damping Coefficients

The introduction of equivalent viscous damping coefficients in both

the equation of motion and the equation for impending separation will
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permit approximate solutions for various types of damping, Since in the
general case no exact solution exists, the only possible solution would
be an approximate one, From the theoretical standpoint the idea of
equivalent viscous damping coefficients will lend itself to a qualitative
analysis of the.effect of various types of damping on the amplitude for
impending separation,

For this study-'"equivalent viscous damping coefficients'" are based
on the criterion of equivalent dissipative work per cycle, The work per
cycle of an arbitrary damper proportional to the nth power of the veloc-
ity.is equated to the work per cycle of a viscous damper and aﬁ'equivalent
viscous damping coefficient is obtained., It is assumed that the motion
of the arbitrgrily damped system does not vary_ appreciably from a sinusoidal
motion and that the damping force always opposes the motion, The deriva-
tion for the equivalent viscous damping coefficient is made in Appendix
C.

Equation. (C-13) in Appendix C gives the equivalent viscous damping

coefficient as
c, - ® c_ W X Yo (19)

The relative magnification factor for the contact system with various
types of damping can be found by replacing c¢; and cs in Equation (12)
with equivalent coefficients shown in Equation (19), After Equation (12)

has been factored and rearranged and two additioenal terms,
£ = S Yn?"’ (20)

and
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g = w ~ TS =2 s (21)

have been defined, the equation for the relative magnification factor for

various types of damping, depending on the values of ni and np, is

C
n n

2 0O_-0 XN T2
PR (E)
2n 1 Cn T S gC

X 1 2n, _ 2 1
< S > T i 1+ ka/k, +

1-7 < )2 0. (22)

~n_-1 n - -
n, <§> 1 ¢ l:l 42 'rnz n, <)£ >n2 n; : :l
S c c S c

® = arc tan —= (23)

In the general case where n, is greater than zero, Equation (22) must
be solved by trial, When n; = np = 1, Equation (22) reduces to Equation
(12).

For various types of damping, the equation; for the relative amplitude
for impending separation is found by replaéing c; and c¢o 1in Equation
(16) by equivalent coefficients as shown in Equation (19)., If Equations

(20) and (21) are used in Equation (16), the result is

F/k (1+ m/m)

™
1

-

k m__2

{(1 .2 _> 2n, < >2n -2 [1 ) ;n_z :_l T_ng..nl<§>n%-nlgc:|2}

iy

2
oy

(2k)



The phase angle for the force between the masses is

n <§>nl-l . l: n2 m_l n,-n, <
T S c c m T
2

B = arc tan

P

1
m
= 2
<"k m)
2
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CHAPTER III
THEORETICAL RESULTS

In the previous chapter the equations for the relative response and
amplitude for impending separation were developed, The solutions of
these two equations for Q set of system parameters, exciting motion ampli-
tude, and preload give the response and amplitude for impending separa-
tion, From the solutions of these equations, it can be established if
separation would occur, Although this type of analysis is effective,
the same procedure would have to be followed for each new set of param-
eters, exciting motion amplitude, and preload, 1In this chapter a novel
theoretical method of analysis is introduced.‘ It permits the determina-
tion of the maximum éxciting motion amplitude and frequency band for a
contact system where chatter will not occur. The effects of varying the
system parameters on this method of analysis and the separation factor

are studied.
Cause of Contact Chatter

In Appendix B it was shown that the force, F(t), between the con-
tacts is a sinusoidal varying force which oscillates about a reference
position, the preload. For convenience the equation for the force between

the contacts, Equation (B-5) from Appendix B, is presented now as

17
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{(r—t—l--;-z—>Q+w2 <%-;—Z—>2}%X sin (wt - 8 + B)
. 1
o5

where Fo is the preload and X 1s the amplitude of the response, x(t).

If a given contact system with a constant preload, constant parameters,
and oscillating at a specific frequency is considered, then the force

between the contacts can be written as

where

(o-=Fea(e-2)7
5+

Now from Equation (26) it can be seen that the amplitude of the sinusoidal
varying part of F(t) is AX and the oscillation.is .about Fo’ Since

A 1is a constant for the contact system under consideration, then X is
the only variable in the amplitude of the sinusoidal part of F(t). The
maximum and minimum values of F(t) occur when sin (wt -~ 8 + 8) = £ 1,
and these are F(t) = F + AX and F(t) = F - AX, respectively., The

response of the system, x(t), is given in Equation (10) as
x(t) = X sin (wt - 8) ;

thus, the phase angle B appearing in Equation (26) relates the vari-

ation of F(t) to the motion of,x(t).



19

F(t)
Fo - AX I NN

Axl B TR "

rj
b
[

). O I
X; |

we

-Xq N’/
NS

Figure 2, Motions of F(t) and x(t) Showing Phase
Relation Between the Two Motions,
Figuré 2 shows a sketch of a feasible variation of F(t) and its rela-
tion to x(t) for the contact system under consideration, With the use
of Figure 2 as a guide, further investigation is made of the contact sys-
tem, If the amplitude of the exciting motion, §, is increased from 8§

to 8§ then the response amplitude of the system 1s also increased

19
from X to X, [see Equation (11)]. Likewise, the amplitude of the
sinusoidal varying part of F(t) is increased from AX to AXl. Now the
minimum value of F(t) is decreased from F, - &X to F_ - AX. These
changes in the amplitudes of F(t) and =x(t) can be seen in Figure 2,

With an additional increase in the amplitude of the exciting motion, the

amplitude of the response is increased from Xl to X2. And again the
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amplitude of the sinusoidal part of F(t) 1is increased from AXl to
AX2. The minimum value of F(t) is decreased from Fo - AXl to

Fo - AX2 where Fo-~ AX2 = 0, [see Figure 2]. There is one point in
each cycle of F(t) where F(t) = O, Whenever F(t) = 0, contact
separation is possible, Therefore, there is oﬁe point in each cycle of
x(t) where contact separation is pessible, but in the system under
consideration this point of possible contact separation lags the peak
values of x(t) by B degrees as shown in Figure 2, It was previously
~stated that the amplitude of the response when F(t) initially becomes

zero would be the amplitude for impending separation, X, Thus, in this
example X, = X and the equation for X is Equation (16);

There are two important phenomena which occurred in the discussion
that should be fully understood, The first is that the phase angle B
has no explicit bearing on the amplitude for impending separation and
only indicates in each cycle of x(t) where separation is possible, The
second is that contact chatter characteristics cannot be determined by
merely investigating the amplitude for impending separation because of
the possible amplitudes of the response, Since the contact systeﬁ.just
considered was for one certain frequency, it is possible that at some
other frequency the amplitude of the exciting motion necessary for X = X
would be physically impossible to obtain., Furthermore, it is possiblé
that énly a minute exciting motion amplitude could cause X = X, There-
fore, to determiﬁe the chatter characteristics of a contact system, the
response amplitude and amplitude for impending separation must be consid-

ered simultaneously,
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Contact Separation Criteria

From Equation (16) it can be ascertained that the amplitude for
impending separation is a function of the system parameters and =, the
ratio of forcing frequency to the undamped natural frequency of the sys-
tem., Equation (11) indicates that the response amplitude is also a func-
tion of these same variables and the amplitude of the exciting motion,
Without knowledge of the exciting motion amplitude, it is impossible to
establish completely the chatter characteristics of a contact system,

With the recognition that Equation (12), the relative magnification
factor, and Equation (18), the separation factor, are functions of the
same variables, a new method to analyze contact systems is intreduced,

For chatter to occur, X = X, or this can be written as

The following identity

Ty Kf;%;)(%)] £,

is introduced., When the condition for contact chatter is applied, then

the result is

Rewin) lx - [(Fe) (sl (21)

The dimensionless term S/<Fo/k1)§¥X is arbitrarily defined as the
“"Baron Number,'" After substitution for the separation factor and the

magnification factor in Equation (27), the equation for the Baron Number

is
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[ 5.2 L T2 M (1+ 0)2 QlE 1k
(L -r) + (1+ M)(1L+K)
Baron Number (1 + Ml s 5 > .
2 L M(1L+K)(1l ~-cCM
T PICIN T M )( ) ¢,
1L (1 + M) |
(28)

The Baron Number is a function of the ratios of the system param-
eters, the damping factor of contact 1, and . The information. obtained
about the chatter characteristics of a contact system. by using the Baron
Number is as follows:

(a) the maximum input amplitude or exciting motion amplitude for

a given preload and spring constant 1 at which chatter will
occur,

(b) the preload and spring constant 1 necessary to obtain a certain
input amplitude without chatter,

(c) the effects on the input amplitude for chatter, for a given
preload and spring constant, by varying any of the ratios of
the parameters.

The equation used to determine the allowable input amplitude without

contact chatter is
s < (Fo/kl)(Baron Number) . (29)

The Baron Number should be made as large as possible in. order to permit
a large input amplitude before chatter occurs for a small preload, The
optimum Baron Number for a contact system is infinity. Since the Baron
Number is a function of 7, the frequency ratio, a useful equation for

the natural frequency of the system is
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1
. {M}E (30)
n 1 1+ M ?
where fl is the undamped natural frequency of contact 1, The distinec-
tion of using the Baron Number in contact system anélysis is that when
one contact, denoted as contact 1, is completely deécribed, the optimum
values of the mass, spring constant, and damping coefficient for the
other contact can then be predicted, This is done by optimizing the
Baron Number using arbitrary ratios of the masses, spring constants, and
damping coefficients. From the ratios which optimized the Baron Number,
the mass, spring constant, and damping coefficient of the other contact
can be determined,

It has been pointed out that the chatter characteristics of a con-
tact system cannot be determined by merely using the equation of the
amplitude for impending separation, but also the response of the system
must be established simultaneously. The Baron Number considers both the
separation amplitude and response amplitude for each value of . With
the use of the Baron Number, the input amplitude for contact chatter can
be determined. Once the natural frequency of the system has been found,
the input acceleration that a contacﬁ system can withstand without chatter
is determined, This is the dynamic information in which most contact

system. designers are interested.
General Discussion of the Baron Number

Since the optimum value of the Baron Number is infinity for all
values of r, it can be seen from Equation (28) this condition is

established if both KM = 1,0 and CM = 1.0, The term KM, which can
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be written as
k m m k £_.2
w - ()50 - (DD - (B
1 2 1 2 1

is the square of the ratio of the undamped natural frequency.of the two
contacts, When KM= 1,0, the two contacts have been tuned so that they
both have the same natural frequency. The term CM 1is the ratio of the
damping frequencies and compares the transient decay of the two contacts
of the system, For the condition KM= 1,0 and CM = 1,0 it is evident
the damping on the system is proportioned on each contact in the same
manner as the spring constants, From Equation (28) when KM # 1.0, the
Baron Number is infinite at 7t = 0,0 and then decreases.

From Equation. (27) it can been seen that the Baron Number is made
up of two factors. These factors are the separation factor, Equation
(18), and the magnification factor, Equation (12). Equation (27) is
actually a function of the reciprocal of the magnification factor, 1/(X/s).
The magnification factor, X/S, for a linear single degree of freedom
system is a well established factor and is found in many vibration text
books, Thus, it is possible to draw some general curves for the term
1/(X/s) appearing in Equation (27). Figure 3 shows the general shapes
for the curves of 1/(X/S) for various values of 7 and amounts of the
total damping, gT. From Figure 3 it can be seen that the minimum values
of 1/(X/S) are established by the undamped system, gT = 0.0. At
T = 0.0 the term 1/(X/S) 4is infinity; thus, the Baron Number is infin-
ity, As r increases from 0.0 to 0.5, the term 1/(X/S) decreases
which indicates that the Baron Number could also decrease, For large

values of r the term .1/(X/S) becomes asymptotic to unity; thus, the
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Figure 3. General Curves for the Term l/(X/S).

Baron Number approaches the value of the separation factor. The term

i

l/(X/S) for the undamped system is zero at T = 1,0, which indicates
the Baron Number is zero at T = 1.0 for an undamped system, It'ié
important to note that the term 1/(X/S) is not appreciably influenced

by the changes in the quantities K and M, but it is increased if C

and gl are unequal to zero,
General Discussion of the Separation Factor

The separation factor appearing. in Equation (27) is a newly devel-

oped factor and is defined in Equation (18) to be



X (1 + M)
FO:kl i 2 W2 M(1+R)(L - cM)® ¢.° L (51)
{(l - KT (1 + M) }

Since no general curves can be drawn for the separation factor, a study

is made to establish the effects on the separation factor of varying
different parameters. It was pointed out that the optimum value of the
Baron Number for a. contact system.is infinity, From Figure 3 it is
apparent that the term 1/(X/S) 1is infinity at 1 = 0.0 and then becomes
asymptotic to unity for large values of 1, Therefore, from Equation

(27) for the Baron Number to be infinity at T > O the value of the
separation factor must be infinity, Thus, the denominator of Equation
(31) must be zero for all values of r. The denominator of Equation (31)

contains two terms: the 1°T term (1 - KM)2 which is a constant for a
he® M (1 + K)(L - cM)® (.7
(1+ M)

given system and the 2nd term which is a
constant times the variable 72‘ If K and M are never zero, then

the 15% term is zero only when KM = 1. The 2nd term is zero when CM = 1
or when C and Cl are zero, If C and gl are both zero the system
is undamped. If C 1is zero the system has one contact damped.. In
general, the 1°% term.in the denominator, (1 - KM)2, and the numerator
establish the initial value of the separation factoer at Tt = 0.0. As T
increases the separation factor is decreased from its initial value if

CM # 1 and gl # 0. 1If the spring constant ratio, K, or the mass
ratio, M, is changed from the value where KM = 1, the initial value of

. . . st . .
the separation factor is decreased. The magnitude of the /1 term indi-

. . . nd : .
cates how the separation factor is decreased if the 2 term is not

2
zero, If (1 - KM) is large the separation factor has a low initial
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value but is decreased slowly as T increases. For small values of
2

(1 - KM) , the initial value of the separation factor is high but is

decreased as T 1increases, If the effects of the term -1/(X/S) and

the separation factor are combined, the Baron: Number, as written in

Equation (27), is infinity at T = 0,0, The Baron Number then decreases
as T 1increases and becomes asymptotic to the separation factor when

T 1is large.
Variations of thé Baron Number and Separation Factor

A sequence of plots of the Baron Number versus T and the separa-
tion factor versus T is presented to illustrate the effects of vary-
ing different parameters on the Baron Number and the separation factor,
The parameter under consideratieon, excluding Cl, is varied from its
value for an optimum Baron:Number, for all values of T, A parameter
is varied by a constant times the optimum value of that parameter. All
other parameters which are not varied, excluding gl, are unity. The
numerical values on each plot are not so important as the shape of the
curves and their relation to each other,

Three conditions of the contact system, the undamped, one contact
damped, and both contacts damped, are investigated, For the undamped
system C and Cl are set equal to zero. With one contact damped, C
is zero and various values of Gl are considered, When both contacts
are damped, neither C nor Gl can be zero, In every case T 1is

varied from 0,0 to %.0.
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Condition I, Undamped System

‘The effects of varying the spring constant ratio, K, £from the
optimum K to 0.,5K, 2K, 3K, and 100K on the undamped system are
shown in Figure 4 for the Baron Number and Figure 5 for the<sepafation
factor, 100K is approaching the condition of having one rigid contact
and one flexible contact, It should be pointed out that in order to
prevent the occurrence of the undefined number 0/0 when KM= 1,0 for
the undamped condition, the value of KM = 1,0001 1is used as an optimum,
Figure 4 indicates that changing the spring constant ratio from.the opti-
muﬁ K lowers the Baron Number, Also, Figure 5 shows the same effect
of lowering the separation factor as K 1s varied further from the opti-~
mum, Since the Baron Number in Figure 4 is the product of the separation
factor in Figure 5 and the term 1/(X/S) in Figure 3, the shapes of the
curves of the Baron Number are the same as the undamped curve in Figure
%, Theilr magnitudes are varied by the same amount as the separation
factor for different values of K, It is important to note that even for
the optimum K the.Baron Number always went to zero at 1 = 1,0, This
exemplifies the fact that a contact system without damping always has
contact separation at resonance, T = 1,0,

Figures 6 and 7 illustrate the effect of varying the mass ratio, M,
on the Baron Number and separation factor, respectively, Varying the
mass ratio haé the s;me results of decreasing the Baron Number and separa-
tion factor as did varying the spring constant ratio. Comparing Figures
L and 6 indicates .that increasing the mass ratio, M, has less affect
.on the Baron Number than did increasing the spring constant ratio,

Increasing the mass ratio, M, has less influence on the separation
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factor, as can be seen by comparing Figures 5 and 7. However, decreas-
ing the mass ratio, M, changed the separation factor more than decreas-
ing the spring constant ratio. The term 1/(X/S) does not change as
either K or M is varied, Thus, only the differences in the separation
factors of Figures 5 and 7 cause the Baron Number in Figures 4 and 6,
respectively, to be different, At 7 = 1,0 the Baron Number went to
zero indicating that an undamped system will have contact separation at

resonance,
Condition II. One Contact Damped

For the condition in which one contact is damped, CM = 0,0 and
g, # 0.0, gl is varied from 0.25 toe 1.0 in increments of 0.25, For the
purpose of discussion, a lightly damped contact is gl = 0,25 and a
heavily damped contact is Ql = 0,75. 1If the optimum.condition of KM = 1,0
for the spring constant ratio and mass ratio, M, is used, Figures 8 and
.9 show the effect of varying gl on the Baron Number and the separation
factor, 1In Figure 8 the Baron Number continually decreases from =+ = 0.0
to 1= 1,0 for all values of { ., As rt further increases from 1.0,

1

the Baron Number increases for small values of gl and then begins to
decrease. For large values of gl' the Béron Number always decreases
when 11 1s greater than zero., Figure 9 indicates that the separation
factor decreases for all values of +, The rate and amount that the
separation factor decreases is dependent on the value of gl; When one
contact is damped, the separation factor is dependent on the frequency

of the exciting motion, In:Figure § the curves for the decreasing separa-

tion factors are continuous for all values of ( . From Figure 3 it can
P71
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be seen that curves for the term 1/(X/S) are not smooth for a lightly
. damped system, But they dip at approximately + = 1,0, When. the system
is heavily damped, the curves for l/(X/S) are continuous., Since the
Baron Number is the product of the separation factor and the termjl/(X/S),
the different values of the term 1/(X/S) caused the Baron Number to
decrease and then increase for small values of gl as shown in Figure 8.
Even though the Baron Number decreases when one contact is damped, it never
is zero, Thus, there always exists an input amplitude at which separation
does not occur from 7= 0,0 to 1 = 3%3,0. This is not the case for the
undamped system,

‘ The effects on the Baron Number of varying the spring constant
ratio from the condition where KM:= 1.0, when one contact is lightly
damped, gl = 0.25, and then heavily damped €1‘= 0.75, are shown in
Figures 10 and ‘12, Changes in the separation factor for the two damped
conditions are shown in Figures 11 and 13 for the lightly damped and
heavily damped contact, respectively. As shown in Figures 1l and 13, at
T = 0.0 the results of changing the spring constant ratio lowers the
initial values of the separation factor,.this is shown in Figure 5 for
the undamped system, The added effect of damping one contact causes the
separation factor to further decrease as 1 1increases, Figures 1l and
13 indicate that a cedrease in. the valué of K frém KM = 1,0 causes
the separation factor to be larger than that for KM = 1,0 when 7
becomes large. A comparison of Figures 4, 10, and 12 for 100K shows
that damping one contact had no overall effect on the Baron Number,

although in Figure 4 the Baron Number did go to zero at 1 = 1.0,
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The results of changing the mass ratio on the Baron Number for one
contact lightly and heavily damped are shown in Figures 1k and 15, respec-
tively. Chénging the mass ratio had the same effect of reducing the
initial value of the separation factor at 1 = 0,0 as shown in Figures
16 and 17.

A general comparison of the curves of. the Baron Number for the
undamped system with those of the system with one contact damped indi-
cates the Baron Number is not zero at 1 = 1,0 when damping is applied.
This is not the case for the undamped system. Also, when =~ > 1,0, the
values of the Baron Number for the damped system are less than those for
the undamped system. The latter observation, not as important as it may

~seem, is discussed in the summary of this chapter,
Condition III, Both Contacts Damped

For the contact system with both contacts damped, two cases are
investigated. - The first is the case in which the two damping coefficients
are the same, thus producing equal damping forces, cii(t), on each
contact, In the second case the damping coefficient on contact 1 is
twice that on contact 2; thus, cli(t) = 2c2i(t) and cg/cl = 0.5, In
each case the damping factor on contact 1l.is either gl = 0,25 or gl.= 0.75.
The mass and spring constant ratios are varied as before,

Figures 18 and 19 show the effect on the Baron Number of varying
the spring constant. ratie from the value KM-=>1.0 when C = 1,0, M= 1,0,
and the damping factor is gl = (0,25 and gl = 0.75, respectively. The
separation factor is the same as that for the undamped system in Figure

5 because CM = 1,0, Since the separation factor is constant, the shape

CC
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of the curves of the Baron Number in Figures 18 and 19 are determined by
the term - 1/(X/S) as shown in Figure 3. When Figures 4, 18, and 19 are
compared, it can be seen that by damping both contacts the Baron Number
is increased above zero at 1 = 1,0. The amount of damping on the system
~determines how low the values of the Baron Number are at = 1,0, This
is shown by comparing Figures 18 and 19, 1In Figures 4, 18, and 19, the
Baron Number for the same values of K 1is the same when 1 = %,0, When
Figure$>18 and 19 are compared with Figures 10 and 12, respectively, it
is apparent that the Baron Number is larger for each value of T and K
when CM = 1,0. The Baron Number is larger because the separation factor
is constant when CM-= 1,0, When CM = 0,0, the separation factor
decreased as 1 increased. Also, when CM = 1,0 both contacts are
damped so that the total amount of damping on the system is increased,
Thus, the term 1/(X/S) shown in Figure 3 has higher values than when
CM = 0.0 and the total damping is less.,

Figures 20 and 22 show the effect of wvarying the mass ratio, M,
on the Baron Number when 'Cl = 0,25 and ;1 = 0,75, respectively, The

results of varying the mass ratio, M, on the separation factor is

b
shown in Figure 21 for gl = (0,25 and Figure 23 for 'Cl = 0.75. Even
though C= 1,0, when M 1is varied then CM # 1; thus, the separation
factor decreased as 1 1increased., With C = 1,0, varying M influenced
both terms in the denominator of Equation (28) more than when .C = 0.0,
Therefore, the separation factor has a greater change as M is varied.
This can be seen by comparing Figures 21 and 2% where C.= 1.0 with
Figures 16 and 17 where C:= 0.0, respectively. Since the separation

factor has a greater change as M 1is varied, likewise the Baron Number

has a greater change as shown in Figures 20 and 22,



"BARON  NUMBER

L9

10.0

THEORETICAL

9.0

8.0

7.0

6.0

-

Y
) N /=

1,0 L

0.0 _ . ,
0.0 0.5 1.0 L5 2.0 2.5 . . 3.0

T = f/fn

Figure 20, Baron Number for a System with Both Contacts
Damped, C = 1,0, K= 1,0, €, = 0.25.



SEPARATION FACTOR

10,0

9.0

8.0

7.0

e

5.0

3.0

2,0

1.0

0.0

50

THEORETICAL

. 5M

—

Pom——

oM

3M

—d

oﬂo

Figure 21,

0.5

1.0 1

T= £/E

1.5

2.5

3.0

Separation Factor for a System with Both Contacts

Damped,

c'= 1.0,

K= 1,0,

€,

= 0,25,



BARON NUMBER

51

10,0 -
. THEORETICAL ——n

9.0

7.0

N

ko \\
N

/
—

0,0 : e
0.0 0.5 - 1,0 1.5 2.0 2.5 3,0

T= £/

Figure 22, Baron'Ngmber for a System with Both Contacts
Damped, C = 1,0, K= 1,0, gl = 0,75,



SEPARATION FACTOR

10,0
THEORETICAL —
9.0
.8.0
7.0 ‘ ] ,
| |
i
6.0 e
5.0
4.0
3.0
AN ‘
.5M
- N 1 5
. \
\ / Jup
| < —
\ [ ———
0.0 | | | 1
0.0 5 Lo L5 2.0 2.5
T = f/fn

Figure 23, Separation Factor for a System with Both Contacts
Damped, C.= 1,0, kK = 1,0, glv= 0.775:



>3

The second case has both contacts damped and C = 0.5, When the
value of the spring constant ratio is varied, the initial value of the
separation factor at T = 0,0 1is changed, as shown in Figures 1l and 1%,
Since C= 0,5 and M= 1,0, then CM = 0,5; therefore, as 1 increases
the separation factor decreases, The amount of the decrease is less than
that shown in Figures 11 and 1% where CM = 0,0 Dbecause part of the

2
term which indicates the amount of decrease is (l - CM)'.

The results
of varying K on the Baron Number when C = 0.5 1is shown in Figure 24
for gl = 0,25 and Figure 25 for Cl = 0,75, If Figure 2L is compared
with Figure 10 and Figure 25 with Figure 12 at 1 = 3,0, it can be seen
that the Baron Number is greater when C = 0.5 for a given value of K,
The effects of varying the mass ratio, M, on the Baron Number and
the separation factor when C = Q.5 are similar to the case where C = 1,0,
Variation in M causes both of the terms in the denominator of Equation
(31) to change. The variation of M on the separation factor is shown
ip Figure 26 for ¢, = 0,25 and in Figure 27 for [, = 0.75. As seen
in both Figures 26 and 27, the separation factor is constant when the
mass ratio, M, increases to 2M and the term . {1 - CM)2.= 0., Figures
28 and 29 show the results of varying M  on the Baron Number when

= 0.25 and gl = 0.75, respectively. The Baron Number is seen to
1

be largest for T > 2.5 when the value of the mass ratio, M, is 2ZM
Summary

Three systems have been studied where damping is proportioned differ-
ently on each system. One system has only one contact damped, C = 0.0;

another has both contacts damped with the damping coefficient on one
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contact twice that on the other, C.= 0.5; and the third system has both
contacts damped with equal damping coefficients, C.= 1,0, Also; an
undamped system is considered, In each case the effects on the Baron
Number of varying the spring constant ratio, K, and the mass ratio,

M, are determined. With the use of these studies as references, general
statements can be made on the contact separation criteria of these types
of systems, Equation (30) should be considered for determining the
undamped natural frequency of the system to obtain a completé analysis

of the contact separation criteria, From the natural frequency and T,

the frequency of the exciting motion can be found from

where f 1s the frequency of the exciting motion.

If the parameters of contact 1 are held constant, then any varia-
tion of the spring constant ratio, K, mass ratio, M, and damping
coefficient ratie, C, are made by changing contact 2's parameters.
Therefore, £, 1in Equation (30) is constant, For the undamped system
Figures 4 and 6 indicate the Baron Number is always zero at + = 1,0,
independent of the values of K and M ‘From-Equation (29) at T.= 1,0,
it is apparent that there is no value for the input amplitude at which
separation would not occur. Changing K or M would only change tﬂe
exciting frequency at which separation would occur,

When contact 1 is damped, C = 0.0, Figures 10, 12, 1k, and 15 all
show that the Baron Number is never zero, Although varying the values

of K, M, and gl .did cause the Baron Number to either increase or

decrease, it was never zero. Thus, from Equation (29) there always
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exists an input amplitude without separation, When gl = 0.75 Figures
12 and 15 show that as T 1increases the Baron Number decreases; thus,
the input amplitude without separation is decreased., 1If consideration
.is given to the input acceleragiSH without separation, it can be shown
that the inﬁut anmplitude at 1 = 2.0 need only be 1/4 the input ampli-
tude at 'T = 1,0 to obtain the same acceleration level, Furthermeore,
the input amplitude at 1 = 3,0 mneed only be 1/9 the input amplitude at
7= 1,0 to obtain the same accelergtion level. And in no case was the
Baron Number at 1 = 3.0 less that l/9rits value at 7= 1,0 for any
dampgd condition,

For the two systems studied with both contacts damped, Figures 2L
and 25 where C-= 0{5 and Figures 18 and 19 where C = 1,0 indicate
that increasing the value of K decreased the Baron Number but not as
much as for the system with only one contact damped. When the mass ratio,
M, 1is varied for the system with C = 0.5 and when the mass ratio, M,
. is 2M, ' the Baron Number decreases, as indicated in Figures 28 and 29,
to the value of the separation factor as shown in Figures 26 and 27. Thus,
when damping is applied to both contacts, the>optiﬁum value of C occurs
‘where CM.= 1,0 for any value of M,

Contact chatter can be delayed by properly designing damping into
" one or both contacts and by proper proportioning of contact masses and
elasticity, The exciting motion amplitude necessary for chatter can be
determined for eith;r the damped or the undamped system by using the
Baron Number.

A theoretical study of the amplitude for impending separation using

equivalent viscous damping.coefficients is presented in Appendix D, This

*
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study is only approximate and was not tested experimentally; therefore,

it is not included in the main body of this study.



CHAPTER IV

EXPERIMENTAL MODEL AND INSTRUMENTATION

An experimental model was constructed so that the theoretical results
could be substantiated by comparing them to experimental results. The
design of the experimental model was predicated by many factors. The
;ize of the model was limited by the electro-mechanical shaker system
which produced the vibration environment., Yet, the model had to be large
enough to permit adequate instrumentation without appreciably affecting
its dynamic response.

Many different designs for a model were made and studied., The design
from which the model was constructed offered the flexibility of changing
the system parameters while limiting extraneous influences and effects.
Spurious resonant conditions in the model were beyond the frequencies of
interest, and side motien-of the contact masses was minimized, The
experimental model described in this chapter was the only model con-

structed.
Description of the Experimental Model

The model from which experimental results are:obtained consisted of
two helical springs, two vidcous dampers, and two contact masses with
guides, The contact guides supply additional mass to each contact,

;

Figure 30 is a pictorial drawing of the model in which significant parts
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Figure %0. A Pictorial Drawing of the Model.

have been numbered and are referred to in the following description of
the model.

The springs for the system, No, 1 for the upper contact and No, 2
for the lower contact, are both steél helical springs with linear restbym
ing forces or spring constants, Dampers used on the system, No, 3 for

the upper contact and No, 4 for the lower, are the type with a piston
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sliding in a glass cylinder ﬂith an oil film, The weight of the oil

used in the cylinders along with an adjustablé air leak. determined the
amount of damping., Friction in the dampers is negligible and the damping
is assumed proportional to the first power of the velocity as indicated
in the manufacturer's specifications for the dampers. The mass of each
contact is a combination of the steel plate holding the contact button
and the guide, A hemispherical steel button insulated from the steel
plate to which it is attached is the contact for the upper contact, No,
5. The lower contact has a flat steel contact, No, 6, which is also
insulated from the steel plate to which it is attached. Both contact
guides are pivoted on grease-coated alignment screws approximately five
inches from the contacts. Number 7 and No. 8 are the alignment screws
for the upper and lower contacts, respectively. Preload for the system

. is varied by changing the position of the steel upper support, No. 9. The

mass of the system is varied by simply adding mass to the contact guides,
Instrumentation

The instrumentation used on the experimental model is illustrated
in the photograph, Figure 31, of the contact section on the model, Two
accelerometers and a differential transformer are identified in Figure
31, Relative amplitude of the contacts is measured using the differ-
ential transformer which was calibrated for both static and dynamic
measurements, Both of the accelerometers were calibrated with the cali-
bration of the différential transformer for dynamic measurements. The
accelerometers on the model are used, in addition to measuring accelera-

tions, to. observe the wave shape of both the input motion and contact



Figure 31, Instrumentation on the Experimental Model, ‘
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motion by connecting their outputs to a.dual beam oscilloscope. Separa-
tion of the contacts is detected using a chatter tester set for its
designed ten micro-secon& opening duration, Separation is considered to
be occurring if the chatter tester indicated several consecutive ten
micro-second openings, This type of separation detection is repeatahle.
when successive tests on the experimental model are made,

QOverall instrumentation used onithe model and for collecting experi-
mentai results is shown in a block diagram of instrumentation, Figure 32,

Instruments and motion sensitive devices are labeled in the block diagram,
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CHAPTER V
. EXPERIMENTAL PROCEDURE AND RESULTS

The validity of the equations developed is established by comparing
experimental results with theoretical results. The equation for the
relative response of a damped or undamped single degree of freedom sys-
tem, published in. numerous books on vibrations, is so well known that it
has been deemed unnecessary to validate this equation. Also, the phase
relation between the exciting motion and the response motion is an
established relation and is not considered experimentally,

Parameters appearing in the theoretical equations are determined
from. the experimental model described in Chapter IV, Once the parameters
on the model are ascertained, they are substituted in the theoretical
equations. With the use of a.digital computer, theoretical values are
calculated for various value of 11, the ratio of the exciting frequency

to the undamped natural frequency of the system,
Measﬁrement of Model Parameters and Preload

The parameters associated with the experimental model, required for
the solution of the various theoretical equations, are k , kz/kl’
‘ 1
‘ml/mz, e cg/cl, and Fo. This list. of parameters, excluding Fo’
is merely the physical properties of one contact and its comparison with

the other,

69
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Spring constants ‘kl and k2 are found by measuring the deflec-
tion of the springs under various loads., The loads are applied by using
weights, and deflections are obtained using the differential transformer.
The ratio of the differential transformer outputs for equal loads on each
spring is used as the ratio of the spring constants,

Undamped natural frequencies of the two contacts, fl and fg, and -
that of the combined contacts, f12’ are the frequencies of the exciting
motion when maximum response is obtained with a minimum exciting motion.
The frequency f12 is also the undamped natural frequency ‘fn° The
natural frequencies, fl and f2, along with the spring constant ratio

are employed to find the mass ratio from the relation
e <fa>2 5
HE fl k2

Values of the mass ratio, m /m2, and of the spring constant ratio,
kg/k17 are-checked by comparing the values obtained as indicated with

the values found by the relations
2

M (f2/f12) -1

m 2’

2 - (fl/f12)
and

K (£ /£)2 -1

2 _ 12/ "1

k 2"’

ot 1“(fm/%)

Values of the mass and spring constant ratios from these two independent
methods of solution are-comparable in every case,
The force, Fm, required to separate the contacts in the static

condition, is measured in order to determine the preload, Fo’ of the
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system, The preload is then calculated from the relationship between the
measured force, Fm, and the spring constant ratio which is
F
F_ = =
o 1+ k27kl '
This equation for Fo is valid when Fm .is the force applied to
contact :2 until, separation occurs, If Fﬁ .is/ the’force applied to .con~:’

tact 1, 7then

When damping is applied to the system, the values of the damping
coefficients, c anﬁ c2, for each contact are détermined. The method
for determining the damping coefficient of a contact is to measure the
response amplitude and exciting motion amplitude of the damped contact
at the undamped natural frequency; the damping coefficient is then
calculated by the following equation:

T
(5) ¢
S i i

c; is the damping coefficient, ki the spring constant, w; " the

undamped circular natural frequency, and (X/S)i the ratio of the

¢4

response amplitude to the exciting motion amplitude for the contact,
Dynamic Response Measurements of the Model

The amplitude of the sinusoidal excitation or input motion is
measured by applying an accelerometer to the base of the model. Output

voltage from the accelerometer is read on a RMS voltmeter and converted
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to acceleration or displacement. An accelerometer is attached to the
upper contact [see Figure 31], so that its response could be measured
when the contacts are held apart, Output of this accelerometer i1s meas-
ured in the same manner as the output of the accelerometer on the base
of the model. The accelerometer on the upper contact is used to deter-
mine its undamped natural frequency and its damped or undamped response,
The differential transformer is attached to the lower contact [see Figure
31], Although the output of the differential transformer is a d.c.
voltage, when the lower contact vibrates sinusoidally, the output of the
differential transformer becomes a sinusoidal varying d.c, voltagef
Thus, in a sinusoidal environment the differential transformer output is
read on a RMS voltmeter and converted to displacement using its calibra-
tion factor. One use of the differential transformer is to determine
the undamped natural frequency of the lower contact and its damped or
undamped response when the contacts are held apart.

The differential transformef is also used to measure the relative
amplitude of impending contact separation, Again, the output of the
differential transformer is a varying d.c. voltage and is read on a RMS
voltmeter. The amplitude of impending separation is determined by excit-
ing the system at a certain frequency and increasing the exciting motion
amplitude until contact chatter is detected.

The phase relation between the location where F(t) = 0,0 and the
relative response amplitude is determined by visually observing the
response and chatter on a dual beam oscilloscqpe. The d.c, voltage
across the contacts and the output of the differential' transformer are

connected to the oscilloscope, Prior to chatter, one beam on the scope
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is a straight line for the d.c. voltage across the contacts, The other
beam is the sinusoidal wave for the relative response from the differ-
ential transformer at a certain frequency. When the exciting motion
~amplitude is increased to the point,éf impending separation, the scope
beam for the voltage across the contacts has intermittent changes. The
location of these intermittent voltage changes across the contact, fela-
tive to the peaks of the sinusoidal wave, indicates the phase difference

bétween the response amplitude and the location where F(t) = 0,0,
Experimental Results

Experimental tests are made on the model for essentially three
different conditions: wundamped, one contact damped, and both contacts
damped, In each case the experimental results are compared with those
predicted by the theoretical equatioens, No effort is made to explain
the scatter of data points for successive tests on the experimental model
for a given set of parameters. .When consideration is given to instrument
readability and the possible error associated with repeating the same
frequencies and vibration environment the scatter of data .is not exces-
sive, A general explanation for the deviation of the data points from
the theoretical values, when the system is damped, is that. the measured
damping coefficients or the type of damping substituted inte the theoret-
ical equation is in error, Nevertheless, the trend of the measured
values follows that of the theoretically. predicted values., It was found
that if the amount_of}damping»is increased by merely tightening the
adjustable air leak on the damper, instead of simultaneously changing

the weight of the oil used to- form the oil film, the damped natural
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frequency does not change from the undamped natural frequency., The condi-
tion, where the damped natural frequency does not change from the undamped
natural frequency, is not observed when the adjustable air leak 1s loose
or moderately tight., This indlicates that if the adjustable air leak 1s
tight the compressibility of the alr 1s adding elasticlty to the system,
Furthermore, forcing the alr through the small orifice could cause the
damping to be a combination of viscous damping and damping proportional

to the square of the velocity., In Appendix D the approximate solution

of the normalized separation amplitude indicates that forhdamping propor=
tional to the square of the velocity, n = 2, the normalized separation
emplitude at large values of r 18 1es; tﬁan that for the viscous damp-
ing, n =~ 1, These results suggest that if the data points are below

the predicted values at large valﬁes qf + then the damping 18 not
completely viscous as assumed, If the data points are consistently above
or below the predicted values, then not only is there possible error in
the measured value of the damping coefficients, but there may be

error in the measured values of other parameters associated with the

contact system,
Experimentai Variations of the Preload

For the undamped c&ndition the equation of the amplitude for impend-
ing separation indicates tﬁe separation amplitqde is independent of the
frequency and directly proportional to the preload_‘ Figures 33 and 3k
show the results of two of the tests made on the undamped model, In both

tests the spring constant ratio equaled 1.2 and the mass ratio, M,
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equaled 1.57. Only the prelead is changed, The natural frequency of
the system is 23 cps,

With ;ne contact damped the amplitude for impending separation is
a' linear function of the preload but is no longer independent of the
frequency, Also, the separation amplitude isia function of the amount
. of damping on the one contact and is decreaseﬁ as the value of 7
increases, The effects of damping one contact are.considereéd in more
detail later and only the influence of the preload and frequency on the
one damped contact are of interest here. Figures 35 and %6 show the
results of two tests- on the model when k2/kl = ,806 and ml/nb = 716,
The damping coefficient of the damper and preload are varied in each
test. At 71 = 0,0 the effects of different preloads are’ best illus-
trated,

When both contacts are damped, the separation amplitude is still a
.linear function of the preload but may or may not be a function of the
frequency depending on how the damping is proportioned on the system,
Effects of damping both contacts are considered in more detail later and
only the influence of the prelead is.of interest here., Figures 37 and
38 show the results of two test on the model when kz/kl = ,806 and
ml/m2 = ,716. The preload is varied in each case along with the amount
of damping on the system,

From. the results of Figures 33 through 38 it can be seen that
_increasing the preload increases the initial value of the separation
factor. The effect of adding damping to the system causes the separa-
tion factoer to change as 1 1increases if the damping is net propor-

tioned correctly on the system,
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Experimental Variations of the Damping

Tests were made on the model with various amounts of damping in
order to more clearly illustrate the effects of added damping to one
contact on the separation amplitude. Since preloads, mass ratios, M,
and spring constant ratios are not held constant for each test, the
results are normalized. Results of tests are normalized by dividing the
separation amplitude at each value of T by the value of the separation
amplitude at 7T = 0,0, This makes the normalized separation amplitude

start at unity for T = 0,0 and vary accordingly to i/iT Figure

= 0.0°
39 shows the plot of six normalized tests for which the amount of damp-
ing is different for each test, It can be seen that when one contact is
damped, the separation amplitude decreases as T increases, The greater
the amount of damping, the more the separation amplitude decreases,

When both contacts are damped, the amount of damping does not. affect
the separation amplitude so much as the way the damping is proportioned
on each contact, Again, the results to be compared have been normalized
as indicated before, The total amount of damping on the system is the
sum of c. and c . Figure 40 shows the results of two different tests
on the model where the damping is proportioned on each contact in differ-
ent amounts, The test with the largest amount of total damping has the

"highest normalized amplitude for separation compared with the test with
‘less total damping. Irn either case the normalized separation.ampiitude
is larger than that for a system with the same amount of damping on only
one contact, Figures 41 and L2 show the results of three tests where

damping is the only parameter changed. The preload for the results shown
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in Figure 41 is different from those shown in Figure 42, 1In both figures
the system is investigated with only one damper, s applied. Then the
damper, s is applied to the system, In each case it is seen that
adding the second damper increased the normalized separation amplitude
even though the total damping is greater, Next the amount of damping,
cl, is reduced for each experimental setup, In Figure 4l again. a small
Increase 1s seen in the normalized sepafation amplitude, In Figure 42

an optimum proportionment between the two damperé is found and the nor-
malized separation amplitude is independent of the frequency. The
optimum proportionment of damping in Figure 42 is found experimentally

but can be determined theoretically by making CM'= 1,0,
Experimental Phase Relations

The phase relation between the réSponse amplitude and the force
between the masses, indicated in Chapter II, is checked experimentally,
Even though only an approximate measurement of the phase angle is made
experimentally, its existence is clearly shown in Figures 43 and L4k,
Figure 43 shows results for the model with one damper applied; the upper
photograph is for r = 0,45 and the lower photograph is for r = 1,59,
The theoretically predicted phase angle for rt = 0,45 and r = 1,59 1is
B= -37° and B = - 68°, respectively, The experimentally measured
value at ~+ = 0,45 is B = - 4%°, The value at r = 1,59 is B = - 73°,
The negative sign indicates the separation lags the response amplitude,
which 1s the case in Figure 43, Figure 44 shows the results for the
system with two dampers, One damper is the same as in Figure 45, and an

additional damper is added to the system, It can be seen in Figure Lk
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Upper Photograph, rt = 0,45,

Lower Photograph, ¢ = 1,59,

Figure 43, Phase Relation for Contact Separation, One Contact Damped,
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Upper Photograph, T = Q,L5,

Lower Photograph, = 1,59,

Figure 44, Phase Relation for Contact Separation, Both Contacts Damped,



90

that the phase angles for 1 = 0,45 and r = 1,59 are less than those

for the same values of +t 1in Figure 43, The predicted values of the

phase angles with two dampers are $ = - 24° when 1 = 0,45 and
B=-56° when 1 = 1,59, The experimental meésured values are B = - 28°
when T = 0.45, and B = - 52° when 7 = 1,59, For the undamped case

shown in Figure L5, the phase angle for all the values of 1 should be
zero, In the upper photograph where ¢ = 0.45, the phase angle is close
to zero, 1In the lower photograph where 1 = 1.59, there exists a small

phase difference,
Experimental Baron Number

A new parameter, the Baron Number, was introduced in Chapter III
which relates the response amplitude and impending separation amplitude
in a dimensionless parameter for various values of 1. The validity of
the Baron Number is checked experimentally by comparing experimental
points from the model with the curve of the Baron Number versus 1 for
a given set of model parameters. Figures L6, 47, 48, and L9 show the
comparison of the Baron Number and experimental points for four differ-
ent tests on the model, The correspondence of the experimental points
with the curves of the Baron Nﬁmber is good, This indicates the contact
chatter characteristics can satisfactorily be determined by using the

Baron Number.



Upper Photograph, T = 0,45,

Lower Photograph, ¢ = 1,59,

Figure L5, Phase Relation for Contact Separatiom, Undamped,
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CHAPTER VI
CONCLUSIONS

The following conclusions about the contact chatter characteristics
of a linear viscous damped contact system subjected to a steady state
sinusoidal vibration environment are made on the basis of this study:

.1, Contact separation of a preloaded set of contacts will occur
when the force between the contacts is zero.

2, Initial contact separation will occur only once in each cycle
of the contacts sinusoidal oscillation, The location of the separation
within each cycle of oscillation depends on how the damping is propor-b
tioned between the two contacts,

%, The amplitude for impending contact separation 1s determiﬁed by
the parameters of the contact system and preload,

L, The amplitude for impending contact separation is independent
of damping 1if the damping coefficient ratio, ce/cl, 1s equal to the
mass ratio, m/m. .

5. The application of damping to a contact system with one rigid
and one flexible contact does not affect the amplitude for impending
separation, since the separation amplitude is zero for this type of
configuration,

6, The Baron Number can be used to establish the maximum amplitude

of the exciting motion without separation,

9%
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7. The Baron Number, along with the undamped natural frequency of
the system, can be used to establish the maximum exciting acceleration
for nonseparation of the contacts,

8. The Baron Number can be used to establish the preload necessary
for a contact system. to have no separation for a given amplitude of the
exciting motion.

9. The Baron Number, aleng with the undamped natural frequency of
the system, can be used to establish the preload necessary for a contact

system to have no separation for a given exciting acceleration.
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APPENDIX A
SOLUTION OF THE EQUATION OF RELATIVE MOTION

The equation of relative motion of the contact masses to the system
boundary is developed in Chapter II, Mathematical Derivation, Equation

(8). The equation is

s

(m, +m) x(t) + (e +c,) x(t) + (k +k,) x(t) =

2., Jwt
Im[(m1 + m2) wSs e

1. (A-1)

For the solution of this equation the following assumptions are made:
(a) Neither mass is equal to zero,
(b) The force between the masses, F(t), is greater than zero,
(c) The coefficients of functions of x(t) are constant,
The fact that the excitation is sinusoidal, s(t) = S sin wt, suggests
that the particular solution or steady state solution of the equation of
relative motion has a probable sinusoidal solution. Thus, the general
sinusoidal solution of x(t) = X sin (wt + o) 1is assumed where X is
the peak value of the response and ¢ 1s the phase angle between the

excitation and response, In complex notation the assumed solution and

its derivatives are:

j(UJt + (P)

x(t) = Im[X e 1,

100
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%(e) = Tm[jwx (¥t )

Q(t) = Im[=u€X ej(wt + @)] . (A-2)

Substitution of Equation (A-2) into Equation (A-1) results in the follow-

ing equation:
j(wt + QP) {_ 2 3 }] =
Im [X e | (ml + I_ng)w + (cl + CE)JLU + (kl + k2) e

jwty (a-3)

2
Im{(ml + Hb) w S e

When Equation (A-3) is divided by (m + m2) and the terms
k +k
1 2

) = ——
n ~m + m ’
-1 ‘2

and
T = w/wn ’
are introduced, Equation (A-3) reduces to

¢ + ¢
2 : 3
Im [w - o+ <:_i_——“é:> jw] X eJ(wt + @)
n ml + m2

5 :
(e s eI%%)
(A-k)
where W is the system circular natural frequency and r 1is the ratio
of the exciting frequency to the undamped natural frequency of the system.
When is factored out of Equation (A-L) and the equation is

rearranged, the equation has the following form:

. = J(wt)
mix ST R o m : SreJ(ch/c . (a5)
2

(1 - £ + j[@%(ﬁgﬁi)]
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Equation (A-5) can be put in a more convenient form by changing the right-

hand side to the modulus and an argument of the complex number as follows:

2 g ej(wt - 9)

mix JWET P o 1 (4-6)

1+c¢ /c

(- o o o (e ]

where ‘
wi<1+c2/cl>
kl 1+ k27kl
@ = arc tan - = .
l-n

By definition two coﬁplex numbers which are equal must have the same

modulus and argument, Therefore,

X = 1+ ¢ /C (A'?)

{0-A7+[ug (—mi-)] P

and

¢ = -0,

If the ratios of k,/k., c,/c., and m /m  are represented by dimen-
sionless ratios as K = ka/kl, C= °2/°1’ and M= m/m, andif the
damping factor of contact 1 is defined as |

c.
1l

Cl - 2 vk.m, ’

11
then the second term in the denominator of Equation (A-7) can be written

1+ c,/c, L e® M (1+c)® Clz

[ < +k7k )] (1+M(1+K)

With substitution of these relationé in Equation’ (A-7), the modulus of

the complex number, which is the amplitude of the response, is



2
S T

b7 M (1+ )% ¢

{(1 - ) (T+ M(L+K) - }

and. the argument of the complex number, which is the phase angle between

2 1

|

the response and the exciting motion, is

ol

21 (1+c) Cl[(1+@MQ+K)]

® = arc tan > . (A-9)
L -

The resulting solution of the equation for the relative motion of

the system in.complex and trigonometric notation is

x(t) = Im[X ej(wt —.9)]

b4

and (A-10)

x(t) = X sin (wt - 8) ,

where X 1is the amplitude of the motion and is always positive and 6
is the phase angle between the exciting motion and the relative response

of the system,



APPENDIX B

SOLUTION OF THE EQUATION FOR THE RELATIVE AMPLITUDE
FOR IMPENDING SEPARATION

The equation for the force, F(t), between the contact is shown

in Chapter II, Mathematical Derivations, in Equation (14) as

c. c, . kl k2
(2030 (B0 - n, (5o h) - w0 (5o 1)
oy e s ST >
(B-1)
The relative amplitude of the response of the system for F(t) > 0 1is
found in Appendix A, shown in Equation (A-10), to be

x(t) = X sin (wt - 8) , ‘ (B-2)

thus

x(t) = wX cos (wt -~ 9) , (B-3)

where X 1is the amplitude of the relative response and 6 1is the phase
angle between the exciting motion and the relative response,
Substitution of Equations (B-2) and (B-3) into Equation (B-1) yields

the following equation:

F<—+—> {(——-——)@(cos (ot - 8) (—-—)xSmwtme)}
(1 I—i—) | - (B-k)

10k



105

Since the coefficients of the sine and cosine terms in Equation (B-L) are
amplitudes of perpendicular vectors, the terms inside the brackets can

be written as

< c, . kl k2
—(—--—)chos(wt—e)-(—————-)Xsin(wt-e) =
ml II12 .ml m2

k., k.2 c. c 2%
l . N
[(—-—2->+w2<—-1--—2—>]xSin(wt-e+B),
m m m m
1 2 1 2
where <vcl c,
- W —— gy e
_ "ml m2
B = arc tamn m " .
_C_l___E
m My

The equation for the force, F(t), between the contacts is now written
in the following form:
k, k2 NN £
[(————)-Fw(——-—)JXsin(wt—e'f'B)
m - om, moom, /
F(t) = F_ -

o .

(i+i) | (B-5)

From Equation (B-5) it can be seen that B 1is the phase angle between

the force, F(t), and the relative response, x(t). For the contacts

to separate, the force, F(t), must be zero. The amplitude of the
response when the force, F(t), initially becomes zero is-defined as the
amplitude for impending séparation, X, Equation (B-5) indicates that
the minimum resbonse amplitude for F(t) to initially equal zero will
occur when sin (wt - & +.B) = 1. The solution of Equation (B~5) for the

amplitude for impending separation when F(t) 1is initially zero and

sin (wt - 8 + B) = 1 results in
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X = - (B-6)
k k 2 c c_ 2 -3
G-a) v (&2 ]
1 2 1 2

This equation can be factored and rearranged so that

ol
]

F/k, (1+ ml/mg)
k

1 e

> W 2 5 c, \$ ¢, m 2 -5

-2 ) +dE () -85
1 2 1 1 2

The substitutions K = kz/kl, C= cz/cl, M= ml/m2 and the change in

2 2

the product wz(cl/kl) to 4 1= M(1+ K) c, /(1 + M) are made. ¢,
is the damping factor for contact 1 and t 1is the ratio of the exciting
frequency undamped natural frequency, Thus, the final form of the equa-

tion for the amplitude for impending separation is

Fo/kl (1+ M)

ol

]
=
—~

o]

1
—J
N~

2 L ™ M(1 + K)(1 - CM)2 ng :J"g'

[(1 - KMy (T + M)

The phase angle B, when F(t) initially becomes zero, locates the

position of F(t) = O relative to the response amplitude and is

e (1 - o [B{LRL

B .= arc tan

N SRy . (B-8)



APPENDIX C
EQUIVALENT VISCOUS DAMPING COEFFICIENTS

Equivalent viscous damping coefficients are derived in this study
. by using the criterion of equivalent energy dissipation per cycle, The
energy used for this derivation is the work done by the damping force
in one cycle, The work done by a linear viscous damper proportional to
st . . . . .
the 1 power of the velocity in a steady state sinusoidal environment
. . th
is equated to the work. done by a damper proportional to the n power of
the velocity in the same environment,

The force of a linear viscous damper is

F(6) = ek(e) (c-1)

where x(t) = X sin (wt - ). The work of the damping force is

Work .= Fc(t) dx . (c-2)

The displacement, dx, is replaced by the following equation

dt

dx = dx 5° = x(t) dt . (c-3)

After substitution for the damping force, Fc(t), and the displacement,

dx, 1in Equation (C-2) and after integration over four times a quarter
of a cycle, beginning at t = e/w and ending at ¢t;= gaw+ % , the work

per cycle is

107
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T 6
20T W ‘
Work/cycle = L j cfw X cos (wt - 6)]2 dt . (c-k)
8
w

If the variable of integration is changed by letting u. = wt - © so that
dt = %E, then the limits of the definite integral are changed to u. = O
at t = G/w and u.= ﬂ/E at t = ﬂ/Ew + G/w. If the above substitutions

are made, Equation (C-4) becomes
I
2

Work/cycle = L cw X" j cos” u du (c-5)
0]

The solution of Equation (C-5) from the table of integrals is

Work/cycle = 1 cw le_, (c-6)

which is the work of a viscous damping force over one cycle,
The force of an arbitrary damper proportional to the nth power of

the velocity is
Fo(t) = o x(£)". (c=7)

Work per cycle for this damping force can be evaluated by using Equations

(C-7) and (C-3) in Equation (C-2). Thus, the work is

€lo

i
2w *
nt+1
Work/cycle = L j cn[w X cos (wt = 8)] dt . (c-8)
-8
W
If the same change of variables is made as before, the work of an arbi-

trary damper is found from the solution of the integral



109

I
n n+l n+l .
Work/cycle = L c w X f cos u du ., (c-9)
0]

From the table of integrals the solution of the integral in Equation

(C-9) for n > - 1 has the general form of

+ 2
f(“ )
n+1

cos u du =
()

where [ (n) 1is defined as the gamma function, Thus, the work of an

(c-10)

l\)ll—l

o %] =

arbitrary damper proportional to the nth power of the velocity is

r(ate + 2
Work/ cycle = 2 c. W X < > (c-11)
r <2_i..1>

After combination of Equations (C-6) and (C-11), the result is

. - <134'2 )

mew X°© = 2e_w X (c-12)
)
)
n

(52

lent viscous damping coefficient for the damping proportional to the n

and Equation (C-12) is rearranged, an equiva-

th

power of the velocity is

c = c_w X Yy * (c~13)



APPENDIX D

THEORETICAL RESULTS USING EQUIVALENT VISCOUS
DAMPING COEFFICIENTS

Jacobsen (7) established that the use of equivalent viscous damping
coefficients to determine the response of a single degree of freedom
system is in good agreement with experimental results, The theory of
equivalent viscous damping coefficients is applied to determine the ampli-
tude for impending separation. The idea is that, if the theory gives a
good approximation for the response of a system, the possibility exists
that it may give a good approximation for the amplitude for impending
separation,

To illustrate the influence of changing the exponent, n, of the
velocity-damping term on the magnification factor, three curves are
drawn in Figure 50. The curves are drawn to give:.the same magnification
factor at 1 = L,0. Figure 51 shows the normalized amplitudes for impend-
ing separation using the same values of the exponents as shown in Figure
50. When n = 1,0 the equations for these appro#imate solutions reduce
to the exact solution, so that in Figures 50 and 51 when n = 1,0, the
curve 1s exact.

Figure 51 indicates that for values of 1 < 1,0 the curves for
n= 15 and n = 2,0 are above the curve for n = 1,0 and differ in

shape, For 1 > 1,0 the curves follow the same shape but are lower for
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increasing values of n., Since there is no appreciable decrease of either

curve from the curve for n = 1,0 it may be that this type -of analysis

would give a reasonable approximation of the amplitude for impending

separation,



APPENDIX.E
LIST OF MAJOR SYMBOLS

Damping coefficient ratio c2/cl.

Linear damping coefficient for viscous damper 1,

Linear damping coefficient for viscous damper 2,

Force between the contact masses as a function of time,

Damping force exerted by viscous damper 1.
Damping force exerted by viscous damper 2.
Restoring force exerted by spring 1,
Restoring force exerted by spring 2,
Inertial force of mass 1,

Inertial force of mass 2,

Static force between the contact masses, the preload.
The frequency of the exciting motion,

The undamped natural frequency of contact 1.

The undamped natural frequency of contact 2,

The undamped natural frequency of the contact system,
Gravitational acceleration,

General subscript which is either 1 or 2.

Spring constant ratio kg/kl.
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Linear spring constant for spring 1,

Linear spring constant for spring 2,

Mass ratio ml/mE'

Mass of contact 1.

Mass of contact 2.

General exponent with values from 0.5 to 3.0,
Amplitude of the exciting motion.

Exciting motion of the system,

Amplitude of the relative response.

Relative amplitude for impending contact separation,
Relative response of the system.

Absolute response of the system,

Phase angle between the relative response and the sinusoidal
variation of the force between the contacts,

Static deflection of spring 1 from the weight of its contact,
Static deflection of spring 2 from the weight of its contact,
Static deflection of spring 1 from the preload,

Static deflection of spring 2 from the preload.

Damping factor for contact 1.

Damping factor for the contact system,

Phase angle between the exciting motion and the relative
response,

Ratio of the exciting frequency and the system's undamped
natural frequency, f/fn°

The circular frequency of the exciting motion,

The undamped circular natural frequency of the system,



"APPENDIX F
LIST OF MAJOR INSTRUMENTATION
Accelerometers~-~Model 5D41; Manufacturer, Clevita; Serial Nos, 7093 and

7060.

Air Damping Dashpots~--Model 30%; Manufacturer, Electric Regulator Corpora-
tion; Serial No., 85-11-1,

Audio Oscillator--Model 200 AB; Manufacturer, Hewlett-Packard; Serial No,

Chatter Tester=--Model D959501;,Manufacturer; Sandia Corporation; Serial
NO. 811'60.

DC Nullvoltmeter--Model 413A; Manufacturer, Hewlett-Packard; Serial No,
139-00188,

Dual Beam Oscilloscope-~Model 502; Manufacturer, Tektronix; Serial No.

006852,

!

Linear Differential Transformef--Model‘7DCDT-OSO; Manufacturer, Sanborn;
Serial No, FG,

True Root-Mean-Square Voltmeter--Model No, 320; Manufacturer, Ballantine
- Laboratories, Inc,; Serial No. 3900,

Vibration Test Equipment--Model T1120%1; Manufacturer, MB Electronics;
Serial No, 121,

Vibration Meter: Model N550; Manufacturér,'MB Electronics,

Sine Random Generator: Model N670; Manufacturer, MB
Electronics,

Control Equipment: Model T251; Manufacturer, MB
~ Electronics,

Shaker: Model C~10; Manufacturer, MB Electronics,
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