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CHAPTER I

INTRODUCTION

The development of digital computers during the last few years
provides an improved capability for the analysis and the design of
structural configurations required for the current generation of mili-
tary and commercial airplanes, The prediction of the stress and the
deformation characteristics of actual airframe configurations is one
phase of structural analysis for which the elementary theories are
often incapable of providing accurate results, Consequently, new
analysis capabilities are being developed in terms of matrix opera-
tions of algebraic equations, These theories are generally referred to
as matrix methods or finite element methods, The finite element
methods are the topies of numerous current research efforts,

The two most popular of these methods are called the force and
the displacement or stiffness methods because of the assumption of the
initial unknown quantities, Both methods require the mathematical
development of systems of finite elements, which are Jjoined to form
the idealized structure and to develop the necessary algebraic equa-
tions., These equations are generally solved by a completely automatic
sequence of computer operations originating with the definition of the
structural configuration and ending with the calculation of the struc-
tural response for the applied external load configurations,



The purpose of this research program is to develop a capability
for the analysis of integrally reinforced structural skin panels and to
demonstrate this capability by the comparison of experimental and
analytical results, Chapters II and III illustrate the two finite
element methods of structural analysis and demonstrate some of the dif-
ferent assumptions that are made in deriving the stiffness properties
of idealized structural elements, Chapter IV and Appendices A and B
describe computer programs that are used in the analytical investigation
described in Chapter V, The experimental investigation, whichis
described in Chapter VI, provides a basis for the comparison of the
analytical results, The validity of the analytical results, using the
new idealized element derived in Chapter III, is demonstrated in
Chapter VII.

The structure considered in this dissertation is limited to a rec-
tangular configuration, The structure is a semi-monocoque rectangular
panel with thin webs and integral reinforcements, The structure is
idealized as rib and stringer elements transmittingaxial loads and thin
web elements transmitting shear and axial loads. The web elementsmay be
designated as plate or panel elements; however, in structural analysis
the term, plate, is commonly applied to planar structural elementswhich
carry loads applied normal to their plane, The rectangular panel is
oriented to lie in the xy plane, and the deflections are produced by
loads in both x and y directions, A general arbitrary orientation
of the panel in three dimensions is not necessary for this investiga-
tion; however, it could easily be analyzed with these finite element
methods, The size of the planar structure that is analyzed is signifi-
cantly increased by limiting the configuration to two dimensions,



One of the first approaches suitable for the computer-type analysis
of panels was the solution of problems by a finite difference method (1),
This technique involves defining a mesh or network system over the panel,
The differential equations of equilibrium and compatibility are expressed
in finite difference form based on the assumed stress-strain relations,
The resulting large number of finite difference equations describes
approximately the behavior of the loaded panel., Boundary conditions cor-
responding to physical boundary restraints and applied loads are specified
in the finite difference equations representing the points on the boundary,
The finite difference method was subsequently replaced by the finite ele-
ment methods which are algebraic approaches that are easily formulated in
terms of matrix operations, The finite element method of analysisisnot
new to structural engineering., For example, in many types of dynamic
analyses, structural segments with known properties are connected to form
a continmuous system of finite elements, The techniques used in these
dynamic analyses are similar, but by no means equivalent to the finite
element methods of stress analysis described in this investigation,

Beginning in 1954, Argyris (2) described inmatrix form the schematic
analysis of structures composed of discrete structural elements, Argyris
compiled amultitude of special analysis methods which were used for struc-
tural analysis, Argyris demonstrated the similarity among many of the
analysis methods by using matrix notation to abbreviate the mathematics,

Most of Argyris' work is based on the energy principles of structural
analysis, Energymethods are convenient in his developments and are a con-
trast to a method of direct geometrical relationships used by Turner, et
al, (3), to dewelop stiffness and stress matrices or displacement trans-

formation matrices., The methods using direct geometrical relationships



provide a clear, simplified development; however, these methods are
limited in the degree of generality possible in the derivations, The
energy principles provide an advantage in handling more complicated types
of structural elements,

Matrix methods of structural analysis were extended to plate-type
structures by Turner, et al, (3). They describe the analysis of plane
stress problems using finite elements, Their derivations allow the
plane stress element to deform in a combination of certain assumed
patterns. This concept eliminates the necessity for knowing the behavior
of an element before its stiffness can be developed.

These developments in the finite element approach to the approximate
analysis of reinforced panels form the basis for this investigation, The
structural behavior of a panel is determined by analyzing the group
behavior of small elastic elements connected at cormon joints to form
an idealized structure which approximates the actual panel,

The structural behavior is determined by element idealizations
using both the force and stiffness methods of analysis and assuming
deformation or stress modes of varying complexity. New stiffness and
stress matrices are developed in Chapter III for the rectangular skin
panels, representing the model used for the experimental phase of this
investigation, The new stiffness and stress matrices, combined with the
new digital computer program described in Chapter IV, provide an improved
analysis capability for reinforced skin structures,

The digital computing programs, which are described in Chapter IV
and Appendices A and B, are being used in other current research programs
utilizing matrix operations and experimental data analysis references.
These digital computing capabilities include a compatible set of matrix



operation programs used for the force method of analysis, an integrated
system program based on the displacement method of analysis, and data
reduction programs based on the least-squares criterion for the experi-
mental stress and deflection data analysis,

The prineipal digital computing program developed during this
research program is entitled the Stress Analysis System, This system
is based on the displacement method of finite element structural analysis,
This system is developed in a manner that allows for simple and convenient
additions of any type of planar structural elements that may be of inter-
est in future research programs, Since systems of this type which are
currently in existence are considered "proprietary" by the originators
or are developed with a specific objective or intention, no system is
available for study or application of finite element methods that allows
the researcher the opportunity to experiment with his mathematical deri-
vations, In addition, the Generalized Stress Calculations phase of the
program is unique in that previous systems provide only a single state
of stress for the entire finite element, This addition to the system
provides for computing the state of stress at any number of interest
points within the finite element. This feature is most essential in

the direct application of the system to structural analyses,



CHAPTER II
FORCE METHOD OF ANALYSIS

The force method and the stiffness method of structural analysis
are similar in that a duality exists between the algebraic forms of the
equations, Argyris (4 ) discussed this duality,

Identical results are obtained by both the force and stiffness
methods if the same assumptions are made in the behavior of the idealized
elements (5), The following discussion illustrates the application of
force and stiffness methods to the analysis of structural panels, A com-
parison between the two methods illustrates that, while both methods are
easily adapted to solutions with the digital computer, the stiffness
method is easier to use in a general computer program because no require-
ment is necessary to determine redundant load paths,

A discussion in the standard longhand notation of the main ideas and
methods for the analysis of redundant structures, based on the assumption
of forces as unknowns, is given by Argyris (4). The author's work deals
only with the matrix formulation of the analysis, The matrix approach
clarifies some of the more salient features of the analysis, Although
the matrix methods are certainly general and applicable to all classes of
aerospace structures, the methods studied in this dissertation apply
to the integrally reinforced rectangular panels analyzed in the experi.
mental phase of this program,



An essential characteristic of the force analysis is the degree of
redundancy which results from the idealization of the structure and the
corresponding definition of the idealized elements and node points on the
structure, The system of node points along grid lines is arbitrary; but,
in general, the system of node points is assumed to be the intersection
of the grid lines formed by the ribs and spars connected to the skin
cover,

An assumption widely used in aircraft design idealizes the structure
as webs which carry only shear forces and as stringer elements which carry
the direct stresses, A fraction of the web area is added to the rein-
forcements to form the equivalent or effective stringer element area (6),

The amount of web area added to the stringer area depends on the
stress level, type of material, and type of loading., For example, by
neglecting the Poisson's effect and in assuming the same material for
stringers and flat plates, one-sixth to one-half of the web cross-
sectional area should be added to the stringer area (4), The former
value applies when the field is in pure bending within its own plane,
and the latter value applies when it is under uniform axial stress,

Degree of Redundancy of Reinforced Skin Structure

The degree of redundancy is the number of unknown forces minus the
number of independent equilibrium equations that are obtained for the
idealized structure, The idealization of the structure is completely
independent of the actual locations of the ribs and stringers, The
structure is divided into several equivalent stringers and shear-web
elements, The number of redundancies is determined by assuming the flat
structural panel to be fixed at the root section and free along the



other edges., If no unstiffened cutouts exist, the number of redundancies
N is

e T (4)

Bays

where/§ equals the number of longitudinal effective stringer elements
which are continuous across a rib junction (4). The number of bays is the
number of transverse sections defined in the structural idealization, If
any stringer element is not fixed at the root section, the number of
redundancies reduces accordingly. If the web is omitted between two
adjoining longitudinal stringers in a bay and if the cutout is not rein-
forced, the number of redundancies is reduced by the number of missing
webs,

The degree of redundancy is illustrated for the two-dimensional
integrally reinforced skin panel, The unknown forces shown in Figure 1
are

A Unknown forces in longitudinal stringers . . « o « « o » 12

O Unknown forces in transverse ribs . + « « ¢ o o « o & » 0

O Unknown shear forces in the webs . , + « « ¢« ¢ ¢ o o « « _9

3

PolAL s s s s s v n s 6.0 ¢ i % oo S et & + 994

The equations of equilibrium are
Equilibrium of adjacent stringers and webs . . . . . . . 12
Equilibrium of adjacent ribs and webs . + ¢ ¢« « &« &« « « _9

Total.....................-.21
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Thus, for a total of 21 independent equilibrium equations, the
degree of redundancy is 27 - 21 = 6,
Also, from the first equation

N=3 (f-2)

Bays

- 3 (4-2) = G,

Therefore, six of the unknown internal forces are removed by the use of
factiecious cuts such that the structure is still stable and statically
determinate, For this structural c?nfiguration and external load system,
the rib forces are relaxed to obtain the statically determinate structure,
The statically determinate structure is shown in Figure 2.

Once the idealization is performed, the stresses and defleections are
calculated using thq fo;ce method with matrix algebra operations as shown
in Table I, The formulation of the equations uséd in the digital computer

program follows the method of Argyris (7).
Formulation of the Algebraic Equations

The essence of the force method is

1, The redundant forces in the structures are the initially
unknown quantities,

2, The internal forces are expressed in terms of both the
redundant and external forces,

3. The deformations are determined from assumed stresswsirain
relationship,

L4, The compatibility criterion provides a set of linear
algebraic simultaneous equations which can be solved
for the redundant forces.
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TABIE I
FORTRAN PROGRAM FCR FORCE METHOD OF ANALYSIS

FORCE METHOD OF ANALYSIS FOR RECTANGULAR PANELS

Ms Us AYRES

MAXIMUM SIZE Bl = 57x6s BO = 51X6s F = 57Xx57

THIS ANALYSIS REQUIRES 5 LOAD CONDITIONS

DIMENSION B1(308)s F(3251), BF(308)s D(38)s DI(3B)s BO(287),
1D2(32), D3(32)y D4(287)y B(287)s A(287)s FLEX(27)s FORCE(T)»
2DELTA(T)y FIN(287)
* COMMON KINs KOUT

KIN =5

KOUT = 6

1 CALL RMATNZ (B1l)

2 CALL RMATNZ (F)

"3 CALL MTXM {Bls Fo» BF)

4 CALL MXM (BFy B14+D)

5 CALL INVERX (Ds DIs DETs IE)

6 CALL RMATNZ (BO)

7 CALL MXM (BFy BOs D2) )
8 CALL MXM (DIs D2y D3)

9 CALL MXM {Bly D3,y D4}

10 CALL MSM (BOs D4y B)

11 CALL WRTMAT (B)

13 CALL MTXM (Bs Fs A)

14 CALL MXM (Ay Bs FLEX)
15 CALL WRTMAT (FLEX)

16 LOAD = 0O

17 LOAD = LOAD + 1

18 CALL RMAT (FORCE)

19 CALL MXM . (FLEXs FORCEs DELTA}
20 CALL WRTMAT (DELTA}

21 CALL MXM (Bs FORCEs FIN)

22 CALL WRTMAT (FIN)

23 IF (LOAD «LTe 5 ) GO TO 17

24 GO TO 1

END

11
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Assume that the structure is subjected to a total of m external

forces given by the vector
{A={F & . R}

The redundant forces, which are unknown, are denoted by the vector

[X]-_- { X, YZ . e Mh}.
The internal forces S acting within the actual structure are expressed

as the total effects of the external forces F and the redundant forces X

as

{s}= [bJF + b

where by and by are rectangular matrices with m (number of forces) and
n (number of redundants) columns, respectively, and the same number of
rows as S, The stress matrix Sg = boF is statically equivalent to the
applied loads F, and the stress matrix S{ = biX is self-equilibrating,
In the formation of the matrices by and by, only equilibrium conditions
are considered, When the structure is statically determinate, bg is
found from the equations of static equilibrium and b does not exist,
When the structure is not statically determinate, the matrix bji denotes
any set of suitable self-equilibrating force systems corresponding to
the unit values of the redundant forces,

A suitable self-equilibrating system for a rectangular stiffened
panel is shown in Figure 3 (4). The values of stringer loads and shear
flows are given in Figure 3 in terms of the forces P and Q, When solving
for the by matrix, a unit load is normally applied at the cut; and the

induced loads in the surrounding structure are then evaluated relative



Longitudinal flange loads: Transverse flange loads

Figure 3, Self-Equilibrating Stress System for the
Integrally Reinforced Skin Panel

13
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to the unit load, In actuality, only the relative magnitude of the force
at the cut and of the induced loads is required for 2 complete solution,
Hence, thé actual magnitude of the force applied at the cut is com-

pletely arbitrary, This is shown in page 16,
Compatibility of Deformations

The equation for the compatibility of deformations in the actual

structure is

where Vf is a column vector of relative displacements of the redundant
forces at the cuts made in the redundant structure,

The deformations V of an element are related to the generalized
forces S by the flexibility‘matrix F of the element, The coefficients

of the flexibility matrix represent the deflections due to unit loads or

{vi=-[#]{s}.
To expreés the compatibility conditions in terms of the applied

forces F and the redundant forces X, the relative deformations at the

ends or boundaries of the elements are

(0} - [0} - @I+ 06
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The compatibility conditions require that the relative displacements

%) = [Bl{vf = {o)
BIEEIG +BIEREF - o),

Solving for the redundant forces within the structure,
=

i - - BIEb] [BIEIR

The preceding expression is the general formulation in matrix algebra of

zero (4),

the equations for the unknown forces within the structure,
These matrix algebra equations are equivalent to the equations
obtained from the application of the unit load method (8). The equations

from the unit load methods are of the form

d e Yo A Wik v Wodto
B ok wlade s ¢ Lo
do 2\ d ¥ Kedl' ¥l s Bl

where the flexibility coefficients J_; represent the deflections at
point i due to forces at point j,

Comparing this matrix formulation and the unit load method, it is
possible to define the matrices D and Do,

The matrix D is the symmetrical square matrix of the Jﬂi} coeffi-
cients or the flexibility matrix for the directions of the unknown forces X
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in the structure, The matrix D, is the column matrix of the Sio

coefficients for the basic system, The matrix algebra relationships

RIEY
D] - 5] [5][Ld{F}

Hence, the expression for the redundant forces is

{} = -[5] [0

Based on the expression for the redundant forces within the structure,

are

1
7,
| T
1}

the internal loads or stresses are obtained in terms of the applied

forces F

(s} = [eJ{] + [e] [-[Dj1 [D,]]
54 (=] ¥}

wwre 6] - [ - LI [EER]]

A unit load is generally applied at the cut when determining the
distribution of redundant farces within the structure., However, the final
solution of the problem requires only the relative magnitude of the induced
loads within the structure and the load applied at the cut sections within
the structure., This is demonstrated by considering that the matrix b4 is
multiplied by some arbitrary constant C representing something other than

a unit load at the cut, Consequently, the internal forces are
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(s - [6]0F]+ [0,

Now assume that by is multiplied by some arbitrary constant C, corre-

s - &J&}%C&Mﬂ

5] = c5]fe]e[s] = ¢ [D]

0] - eB]#]E] = ¢ [0
oiE
ATRDIN - 46
s} = [l
(s} - [l - ]

< =
il it

which is identical with the result obtained for a unmit load at the ecut.
In order to calculate the deflections of points on the structure,
it is necessary to determine the flexibility'matrix\? which relates the

applied forces F and their displacements § according to the eguation

which is equivalent to

VS - {F}Eﬂ {F}
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The work done by the external forces F moving through the displace-
ments § is A'S , The work done by the internal forces S moving through
the deformations V is ST V. If F and S are statically equivalent and 5

and V are geometrically compatible, then

(3§} = 5F{F
(s} = [b) {7}
5= {F7 [E]

and {Fi3{st - (6] W3

since

bt v} = [F]{s} = [F][E] ¥}
{F{s} = (PP ) [F[b] £}
(5] = B

Analysis of the Test Structure by the Force Method

The application of the force method for the analysis of the rec-
tangular integrally reinforced panel that is described in the experimental
investigation, Chapter IV, is shown in Table I. The digital computer
program is based on the matrix algebra subroutines in Appendix A, The
structure is idealized into the statically determinate basic systems that
are described in Figures 4 and 5 (9 ). The self-equilibrating system,

Figure 3, is used for each of the six redundant forces X as in Figure 4,
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Unit Load Matrices

The unit external load matrix bp and the unit redundant load matrix
by are given in tabular form on Table II, In the force method, it is
necessary to specify the forces on each side of a junction, although
the forces are the same, Therefore, there are 51 rows in the bgp and the
by matrices, The 51 rows correspond to 24 rows for the stringer elements,
S1 through S12; 18 rows for the rib elements, R1 through R9; 9 rows for
the web elements, W1 through W9,

The element numbering system is shown in Figure 4, Also, the out-
board directions are defined in Figure 4, In Table II, the outboard
and inboard ends of an element are designated 0 and I, respectively,

The unit external load matrix bp is formulated by assuming that the
external unit loads, Fi through Fj, are transmitted directly inboard
through their respective stringers while the transverse load Fj is
carried by elements S7 through S12, R9, W3, W6, and W9 acting as a
cantilever beam, The unit redundant load matrix bj is formulated using
six of the self-equilibrating systems shown in Figure 3 at the locations

shown in Figure 4,
Effective Flange Areas

In accounting for the axial-load-carrying capability of the web
elements of the structure, the area of the webs is generally lumped with
the stringers and ribs as effective flange areas, The effective flange
areas transmit all axial forces acting on the structure; and, consequently,

represent the axial stresses in both the actual flanges and the webs,



TABLE II

UNIT LOAD MATRICES

Unit External Load Matrix

Unit Redundant Load Matrix
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b b
i [
Row Point Fl F2 F] FA F5 , Xl X2 }(3 XZ' XS X6

1 Sl-1 1 -0.20

2 S$1-0 1 -0.20

3 S2-1 1 -0.20

4 $2-0 1 -0.20

5 S3-1 1 -0.20

6 53-0 1

7 S4-1 1 0.40 -0.20

8 $4-0 1 0.40 -0.20

9 §5-1 1 0.40 -0.20 ;

10 $5-0 1 0.40 -0.20
11 $6-1 1 0.40 -0.20
12 $6~-0 1

13 s7-1 1 6 -0.20 0.40

14 57-0 1 4 -0.20 0.40

15 S8-1 1 4 -0.20 0.40

16 58-0 1 2 -0.20 0.40
17 59-1 1 2 -0.20 0.40
18 $9-0 1

19 S10-1 1 -6 -0.20
20 510-0 1 -4 -0.20
21 S1Ll-1 1 -4 -0.20
22 S11-0 1 -2 -0.20
23 Sl2-1 1 -2 -0.20
24 $12-0 1
25 RL-I
26 R1-0 -0.10 0.20 -0.10
27 R2-1 -0.10 ) 0.20 -0.10
28 R2-0 -0.10 . 0.20 -0.10
29 R3-1 -0.10 0.20 -0.10
30 R3-0
31 R4-1
32 R4-0 -0.10 0.20
33 R5-1 -0.10 0.20
34 R5-0 -0.10 0.20
35 R6-1 -0.10 0.20
36 R6~0
37 R7-1
38 R7-0 -0.10
39 R8-1 -0.10
40 R8-0 -0.10
41 R9-1 ~0.10
42 R9~0 1
43 Wi -0.20 0.20
44 w2 0.02 -0.02 -0.02 0.02
45 w3 0.20 0.02 -0.02
46 W4 -0.02 0.02
47 W5 0.02 -0.02 ~0.02 0.02
48 w6 0.20
49 w7 -0.02
50 W8 0.02 -0.02
51 w9 . 0.20 0.02
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The effective areas for the outboard stringer area are 0,375 square inches;
for the central stringer area, 0,325 square inches; for the outboard rib

area, 0,50 square inches; and for the central rib area, 0,625 square inches,
Element Flexibility Matrix

The flexibility matrix is a partitioned diagonal matrix with 30 sub-
matrices, one for each structural element, The 12-stringer and the 9-rib

flexibility matrices are 2 x 2 matrices of the form

_{"_ ke

Bl 3A GA
o & L L
6A 3A

The web flexibility matrices are one-element matrices of the form

0.
!] G é e
The expanded flexibility matrix is, therefore, a 51 x 51 symmetric
matrix with 93 nonzero elements, The flexibility submatrices for the

stringer elements are

8386 ¢4.193
E=F=Fs =&, 2%y “Fsa = ¥ 4193  838¢
: 967 ¢.836

&ﬁa
I
&R
R
I
&

~J

1
R
»

1]
R
D

]
3,

4838 9,76



The flexibility submatrices for the rib elements are

1.258 2516

3145 1572
\-77&7 =~31es =-.;":e9 = )
1.572 3,145

The flexibility submatrices for the web elements are

2516 1.258
\;ﬁl = 3&2’ Frz = Fee = Fes = Fre = )57

A . 25/¢ xi07,

Gy =+ Fus g4

N

These submatrices are combined to form the flexibility matrix for
the structure as shown in Table III., The stress and deflection results
of the force method of analysis for the five load configurations studied

in the experimental investigation are given in Chapter V,



TABLE III
FIEXIBILITY MATRIX FOR STRUCTURAL PANEL ELEMENTS

/o’l__é‘]

Row Col. Coef. Row Col. Coef. Row Col. Coef.
1 1 8.386 17 17 9.676 32 31 V258
1 2 4,193 17 18 4.838 32 32 2.516
2 1 4,193 18 17 4,838 33 33 2.516
2 2 8.386 18 18 9.676 33 34 1.258
3 3 8.386 19 19 8.386 34 33 1.258
3 4 4,193 19 20 4,193 34 34 2.516
4 3 4,193 20 19 4,193 35 35 2.516
4 4 8.386 20 20 8.386 35 36 1.258
5 5 8.386 21 21 8.386 36 35 1.258
5 6 4.193 21 22 4,193 36 36 2.516
6 5 4.193 22 21 4,193 37 37 3.145
6 6 8.386 22 22 8.386 37 38 1.572
7 7 9.676 23 23 8.386 38 37 1:572
7 8 4.838 23 24 4.193 38 38 3.145
8 7 4,838 24 23 4.193 39 39 3. 145
8 8 9.676 24 24 8.386 39 40 1.572
9 9 9.676 25 25 2,516 40 39 1,572
9 10 4,838 25 26 1.258 40 40 3.145

10 9 3.838 26 25 1.258 41 41 3.145

10 10 9.676 26 26 2.516 41 42 1.872

11 11 9.676 27 27 2.516 42 41 1.572

11 12 4.838 27 28 1.258 42 42 3.145

12 11 4.838 28 27 1.258 43 43 2.516

12 12 9.676 28 28 2.516 44 44 2.516

13 13 9.676 29 29 2.516 45 45 2.516

13 14 4.838 20 30 1.258 46 46 2.516

14 13 4,838 30 29 1,258 47 47 2,516

14 14 9.676 30 30 2.516 ! 48 48 2.516

15 15 9.676 31 31 2.516 49 49 2.516

15 16 4,838 31 32 1.258 50 50 2.516

16 15 4,838 ol a8 51 2.516

16 16 9.676




CHAPTER III
STIFFNESS METHOD OF ANALYSIS

The direct stiffness method is a finite element method of structural
analysis which considers a structure to be an assembly of idealized
elastic elements which are assumed to be joined only at discrete points
called nodes, The stiffness method is a contrast to the force method,
which is described in Chapter II, in that displacements, not forces, are
the initial unknown quantities, The concept of redundant load paths
illustrated in Chapter II is not applicable in the stiffness method of
analysis because of the treatments of the node displacements as unknown
quantities, The relationship of forces and of displacements is defined
for the node points on the structure by the stiffness matrix, The
stiffness matrix for the complete structure is obtained by adding the
stiffness coefficients for common degrees of freedom of adjacent elements
at each node on the structure, The summed stiffness coefficients define
the coefficients for the linear algebraic equations relating the nodal
forces and the nodal displacements of the complete structure. The
general stiffness coefficient Kj, is the force in the direction j due
to the unit displacement in the direction h, while all other displace-
ments are zero, As a result of equilibrium conditions, the stiffness
matrix is a positive definite, symmetric matrix; and the sum of the
coefficients along any row or column of the stiffness matrix is equal

to zero,
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The forces and deflections in each element of the structure are
related by an assumed stress-strain relationship for the idealized element,
The displacements of the nodes in the structure are considered as the
initial unknown quantities. An infinite number of mutually compatible
deformations of the elements are possible; the correct pattern of displace-
ments of the elements is the one for which the equations of equilibrium
are satisfied,

If the idealized structural elements for which the stiffness
coefficients are known are combined for a continuous structure, the

composite stiffness matrix for the total structure is assembled as

Ko Ka « Ki Kim
k:f K?l . . .

o= 2 Kk K
K - . Kmh KME_J

where each Kj, is the stiffness coefficient representing the total

force component produced at node j due to a corresponding unit displace-

ment component at node h,

The stiffness matrix relates the external forces acting at the nodes

on the structure to the displacements of the nodes through the expression

{F}= [k]1{5}.

The expression for nodal displacements 45 as a function of the external

forces or loads F is obtained by inverting the stiffness matrix and is

[§1=[¥] 1.
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A matrix of stress coefficients is derived by using the same strain
pattern for the elastic element that is assumed inderiving the stiffness
coefficients,

The algebraic equations which express the stresses U within the
elements as a function of its nodal displacement § are given by the

stress coefficient matrix S

o} = (8] {s}.

The stresses within the elements are determined subsequent to the
calculation of the node displacements, The forces at all nodes on the
structure can also be determined from the stiffnessmatrix once the node
displacements are available, Determining the forces at each node is
desirable for establishing equilibrium conditions for the structure.

The application of the stiffness method involves determining the
stiffness coefficients of the idealized structural elements required to
represent accurately a specific structure and using these coefficients to
develop the simultaneous equations relating forces and displacements for
the structure, Subsequent to the calculation of deflections, the stresses
are calculated using stress coefficients based on the same assumptions
that are made in deriving the stiffness coefficients, The stiffness and
stress coefficients for the integrally reinforced rectangular skin panel
used in this research program are derived in the remainder of this chapter,
The application of the stiffness method for the analysis of the test
structure described in Chapter Vis made possible by the Stress Analysis
System digital computer program, which is deseribed in Chapter IV, The
Stress Analysis System provides a complete analysis and requires only a
geometric deseription of the structure,
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The integral reinforcements within the structural skin panel
described in Chapter V are represented by idealized axial force elements
called stringer or rib elements, The web sections of the test panel are
represented by idealized plane stress elements called panels or plates,

The remainder of this chapter describes the derivations of the
stiffness and stress matrices for each type of element that is used in
the Stress Analysis System digital computer program, which is dgscribed
in Chapter IV, Additional elementé required for different strucfural
configurations are obtained in a similar manner,

The formulation of the stiffness and stress coefficient matrices
for idealized strugtural elements is indicated by the application of
the principles of virtual work to the stringer-type element, This
method is a contrast to the method of direct geometrical relationships
for the same type of idealized element discussed by Turner, et al. (3).
However, the resulis for the first stringer-type element are the same
as those obtained by Turner, et al. (3). The method of direct geomet-
rical relationships is very satisfactory for some types of idealized
elements; however, the approach becomes less desirable as the assumed
behavior of the elements becomes more complex. The subsequent deriva-
tions of stiffness and stress coefficient matrices for idealized siringer
and plate-type elements are also based on energy methods of structural
analysis, Hoﬁéver, the basic approach is less difficult conceptually

for the stringer-type element,
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Stiffness Derivation for Stringer-Type Element

Ay, v

Figure 6, Stringer Element

The assumed stress-strain relationship for the stringer element is
P1= (] {v],
The stringer is subjected to a set of external forces
F'%
{Ft= {Fl
and the displacements along their lines of action are represented by

ar- {3},

The internal forces in the element are represented by

sy

The strain or deformation of the element is

Wi,



/ ”
The compatibility relation between the strains v and the displacements d

is expressed by
frf=[2]{4].

The coefficients of the il column of the geometric matrix [a] are

the relation between v and dj = 1, These coefficients are interpreted as
the values of strain due to a unit displacement dj when all other displace~
ments remain zero,

The equilibrium condition between the internal forces P and the
external forces F are obtained by the prineiple of virtual work, The
statement of the principle is:

The work done by a set of external foreces, F, moving

through the associated displacements, d , is equal to the

work done by a set of statically equivalent internal forces,

P, moving through the assoclated deformation v (10),

The work done by the external force F moving through the displace-

ment d is
work = !fifT{}{F i zra5772CF]Z°

The work done by the internal forces P moving through the deformation v

wow = {Afr] = {7{{7.

The forces F and P are statically equivalent; 4 and v are geometrically
compatible,

From the compatibility condition

frp=(ajidp - ]
7 - {7,
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For any set of displacements d the equilibrium between internal and

external forces is
H= (2] {7

Assuming the material obeys Hooke's law, the stress-strain relationship

for the stringer is

[Pf= L& {74,

Since Z{/__j - [d]rfpj
= [a]'[4£]{vf
(= [a][&][2] {4}

Since the stiffness matrix is defined by the equation as

[Fp= (K] /4]

then the stiffness matrix for the element is
T
[K]=[2][#][«],

Assume that the displacement distribution for the stringer is represented

by the linear relationship

CZ = <2/ * szpél

where }5 refers to the local coordinate system along the axis of the

stringer element,
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The constants C1 and Cp are determined from the boundary conditions

Z/—:OJ dza/
?Led 4= U,

hence

o (- 55 - 7 ) [

Thus, the matrix of compatible strains for unit element displacements

for a stringer element is given by

(aj = £+ 1)
and [KT = ‘/‘: L[a]’Z'kj[d.j A

[k]= / ?«.]’[A J[2] Sex- e

| -1

el 7.

®

To transform into two dimensions, letei,ﬂ be the direction‘cosines for

the axis of the stringer and the two coordinate axes. as shown in Figure 6,

JE7e AfF] ad 5 A
(77 - CAT0IA7 {s)

where [:4:] = [ij fi = ’\;;] v‘



The stiffness matrix relative to the two-dimensional coordinate
system is obtained from the stiffness matrix for the local coordinate
system by A , the transformation matrix of direction cosines, The

stiffness matrix for the two-dimensional coordinate system is expressed

by the force-deflection relationship

{_Fx.-t\ r_()(,z °<'8 —¢<2 "‘Xﬁ—— “J‘
%7 AE “Ig /5’- -xlg —/SL 1Jw
Eex T -4 x* KB Uz

- z
/) o a7 L

The stress within the element is determined from the equation for

strain transformed into the two-dimensional coordinate system by the

coordinate transformation matrix A , The coordinate transformation

results in the following equation for the stress in the stringer element,

U

e L

Stringer Element With Linear Strain Variation

If the stringer-type and rib-type element experiences a linear change

in strain or stress variation due to the effect of shear transfer of load

to the web, then the strain function is of the form

€y’ = C,+ G X
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The corresponding displacement function is obtained from integration
/ 2
a/ = e/ Z * % y’ 74' (_?5’ .

The constants are evaluated from the following conditions

1, d=U, @ =0

o - 29 _ =
2, C:( -T2 o € xX-=
3. 4= U, € x'=XL
from 1 03= U, from2 (C, =0 from 3 Cy= (iﬁl:—z@

hence

o = d/*(t{z )%

The matrix of compatible strains for unit element displacements for the

element is

- B {w]) =[] {E
and y )
(1= [ [T (A1[2] e

Hence, for the local coordinate system along the axis of the element

wpe
)

[K:} A€

ol whes

Gl



The stresses within the element are determined from the expression

J = {i— 4—%}(/‘;-5),

The stress at the center of the element is
U
= e
0_=7—L—/ /_J /
/7%

The stiffness and stress matrices can be obtained relative to the two-
dimensional coordinate system using the coordinate transformation matrix

A discussed for the first stringer element.
Stiffness Derivations for Panel Elements

The rectangular web sections of the integrally reinforced rectangular
skin panel are idealized as plate- or panel-type elements that resist
both shear and axial loads, Different stiffness and stress matrices
are obtained depending on the assumed mode of behavior of the element,

The plate-type elements available in the Stress Analysis System
program consist of state-of-the-art derivations based on an assumed
displacement function, an assumed stress function with five coefficients,
and a new rectangular plate stiffness matrix using an assumed stress
function with linear variations in two directions. The three different
techniques used for deriving these element stiffness matrices may be
applied to the development of stiffness and stress coefficient matrices
for arbitrary geometric configurations of idealized elements transmitting

forces in the plane of the elements,
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Rectangular Plate With Assumed Displacements

The origin of the local coordinate system is assumed to be at the
lower left-hand corner of the rectangular plate as shown in Figure 7,

Nondimensional coordinates
- Yy
L=z 7

are introduced to simplify the analysis., The lengths a and b are the
dimensions of the rectangular panel in the x and y directions, respectively,
The deflection of the element is represented by the displacements of
the four corners. Consequently, there are eight displacements Ui, Vi, Uz,
V2, U3, V3, Uy, V4; and they are measured positive along the positive x

and y axes,

Vz
"Vz )
Uz g
1 g 3 3
/
b /
U] |V
| Uy 4 Ue %«
ad ————=t

Figure 7. Plate Element With Assumed
Displacement Function

A more general derivation of the element stiffness properties for a non-
rectangular configuration based on the same element idealization is given

by Cook (11),
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A simple displacement function based on the assumption of linearly

varying boundary displacements and in terms of the dimensionless coor-

dinate is (12)
d:’f,f +(;2}7+(3y+(4-

r=0_Cs& +CO Y +0Cr 7+ Cs.

The eight arbitrary constants C; through Cg are determined from the
displacements in the x and y directions at the four corners of the model,
The unknown constants C1 through Cg are evaluated from the boundary

conditions
Ui, & U=2 (e 2)

@
Us Uy § v-u € (al)
U=Us ¢ U= U € (1)
U-te ¢ V-7 @ (19,

The displacement functions are
U= U, (1-R)(-9)+ Uz (T)-R) + U3 (RF) + Ua D(-5)

= (-2 )1-9) + Gz YIk) + (7)) + % N1-3).

The strain of the element is obtained by differentiation, By definition

J‘ty DU a'&”'

. 24 -2 - o, 2t
€en ™ 5= Gy 3y 39 " 3K
el K =LV -l P& LV

LA % bay baf xR e
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The complete strain-displacement relationships are obtained for the

strains €, é.ﬂ Z"“é- in terms of the displacements {4“}.—}

b = L [ W (1=9)(-1) #Uz (FIC1)+ Us T+ le (7)]

ok
<
il

L [7},‘(/-)'2)(_/) + ’ﬂ;(/-fc’) + s Z+%Z(—’)]

ey = SLU R + Ua(r-R) +Us K+ e RED)]+
L[V 0-7)C0) + 22 (7D + BED+2%(r7) ]

or in matrix notation
(€f =[A1{z)

where the coefficients of A contain the .dimensionless coordinates

on the surfape of the element,

~ — , ()
Y- -y -V /- (A

€xx —-é;- o ] o - 0 El_éf_ o Ulz
(- Y4 X -z ||%
ldelo & o = o 5 o £ |l
| Us

X-1 y-! /=X -y Z v - g iy

ki b 3 2 a = b 1 I
LJ L 1Y
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When Hook's Law applies, the stresses are related to the strains by

i = [B] {e]

where the coefficients of B are

2 / — [
o ' J o | el
=757 e 4677;
0 -7
/x o o -7 ])“

7J - R I ).

The stresses within the idealized element can now be expressed in

terms of the displacements of the corner nodes of the idealized element,

. - ] ) o — f
[q,g 3§-b) X-a- BV A% 3y x  sly) -% / ,Ul_‘
—_ u.z
i o sy T ew) T sk k¥ T Jap
Y\ .36 < U
, =2 3
o Uz
| (l\xﬂ f-o. G-k a-x -y x 9 X o7 e
B &
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The stiffness matrix K is obtained from the unit displacement theorem,
Since the matrix A is a function of the position variables, the integra-
tion is performed with respect to X and Y between the limits X = 0 to 1
and Y = 0 to 1, The unit displacement theorem provides

where A is the relationship between strain and node‘displacements and
B is the relationship between stress and strain.

The stiffness matrix for the panel shown in Figure 7 for ? = 1/3

is
:2+6b2
3ab saZe26?
-2a%43b? 0.0 2a246b%
o 0.0 ..-’6a2+b2 “3ab 6al+20?
Té—él_b .
-.—,2_-‘3132 -_3ab' . a%-eb? 0.0 - ga2+6b2
~3ab 3202 g0 3aoa? 3ab sale2v?
a2 0.0 : ER: 3ab ' -2aé+3b2 0.0 6b242a°
0.0 3;2-21)2_ 3ab : “3al.p? 0.0 -6a24b? ~3ab © eaeab?
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Rectangular Plate With Assumed Stresses

A limitetion of the results of the previous type of derivation is
that the equilibrium conditions are satisfied within the element only
for a specific set of relative displacements of the corner nodes,

A second stiffness and stress matrix is derived using an assumed
stress variation within the element that can be evaluated using only the
boundary conditions expressed in terms of the corner displacements of
the element, By using only five undetermined coefficients, the stiff-
ness and stress matrices can be obtained from the node displacements of

the element shown in Figure 8.

94
2&(1 ‘ fié

—_ S u

[ |2 | 3
#

b %
14 Ly
M, u 417" u. ,
e q >

Figure 8, Plate Element With Assumed
Stress Function

The stress distribution first used by Turner, et 2l, (3), is

0x = ds + a,y

0Oy = ds + dseX
Ty = Qs
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This assumption satisfies exactly the stress equilibrium equations within

the rectangles however,'the resulting displacement distribution violates

the compatibility of boundary displacements on adjacent elements,

‘Using

Hooke's Law, the relationship between stresses and strains for the plane

stress condition is

Ox / 7 o
Dy ¢y = /52 J 7 o
7;)/ o () L_Z—Z _J
& /) o |
& ) =~ |- / 0
a;y o 0 f'.z(/+z/)_

Defining strain in terms of the displacement functions U and ¥

= U . oV = o4
€K ;‘;(" 6}/ ;y 217 ;y
or in terms of the stresses

U . L/ -2y
% (o -7%)
U~ / -
57 = E—(@_ 7 I )
v, ou = 2(*7)
Sx T ay 5 7.

U

+ 2=

2



Based on the assumed stress distribution, the strains within the
element in terms of the five undetermined coefficients are

U é—(ﬁ, f Aoy - Dhs- P4 %)

oK
U . L(fy + dek- Ja, -94.))
5’9 E
2(1+7)
QU Y = FH ().

The displacement functions A and 7" are obtained from the integration of

the strain functions
=L d?_}( _Z)d X_fﬁ¢5(z' =
Ux E(d,x+ Y-743 S f(y)) ?/—-/(7)

where f(y) is some arbitrary function of y and ?Z = €x,
Likewise

Uy« L(2sY + deX)- Iy - 24’y gex) ) = p+ 904

where g(x) is some arbitrary function of X and ¢ = Ey.

The constants of integration f(y) and g(x) are determined from the shear

expression
%;é = Lt +Fly) . L(ass +g'x)
2% 3L - L(x £ ) e F(20455)

= -?_L_H__""/ (ds).
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Solving for g(x) and f(y)

f9) + &a(y) = 2(142) ds - (dext + 5'0%) ) = ds

J/(‘/) = ﬂé/-éé_)_”,c@

j(" )+ dy(x )= 2(149)ds - Ae
gee) = [20149)ds- a,_,]z 45, ag

where the new undetermined coefficients a7 and ag are rigid body transla-

tions and ag is the rigid body rotation of the element,
The assumed stress distribution results in displacement funetions of

the form

_i(g,;( + Ao kY - DAzX - ﬁdz¢,(2+ Aoy - %f)’z-/-ﬂ;)

L () +dexy 92,5 - PL)” 4 9(’*9)4%—44,)4—42251@

which ecan be arranged in the form
U= (% +GY - Cs(xF+Y?) + 20 XY+ Cs
Uy = Cox +GY -G (x2+7V) 420 xy + s

where a
¢, = F(4-?2z) (5= =7
C, = _?_6 C ;Eﬁ(g(uz))ds—d’e)
Cs= A c7=J—(43—Jd,)
= A
C4 ey (g= -—45—5 .
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Based on the notation and boundary conditlions shcwn for the rectangular
plate element shown in Figure 8, the displacement functions for the x

and y directions are as fo}lows:
’ = u4-a:+_7_)_(y_z—+.y‘-y‘)' X
x "\ 7z 26 (TR

p{ oty £ (BTt - %)} Y

b

~{2—b(7fa-m +U.-U‘z>} ( ﬁx2+y3)
*{zﬁ (u,,-uuu.-m)} 0y

+ LL| o

| 24 VT ; - }JC
7}9 {‘ + o (&(3 Ue + U, (lz)

V-V, Q_(Mg_MJ,u‘-ul) g y
ko 2a '

4
—

_ {EL’T,(“"-M £ UG- Uy 3% (x24DY*)
+ {;‘; (V-0 + 0 V) } x4
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The strains in the element are then evaluated from the following

relationship,
¢ [ u (&
% Sx lz“)?
€, - =Ly = A Us
Y = < Y [_ 1 < ZL};
QU !
By 29 2K &
where

L-b) G-z -4 -6-2) & G-2.) -4(y-b) 62|

| \ boz2y) Gk —b2y -6x
[A]:é_a’z b-2y) 6(x-8) -'(é-l/) -4(x-8) (b-2y)

25 -3b 33 —zb 33 3L -32 3b

e

— O

The relationship for stresses in terms of node displacements is obtained

(r}={e1{} - eI (~]{4.

For 7= 1/3, the multiplication yields

z [yb 3 oy s ¥ = by -3 1;}:‘
. - ox 3k X e

O'a ':|ZEZE -3 XA 3k e . us?
| T

M - - -3 - by
T 30 -3b 24 L 3¢ 3L -34 52 o +/
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The stiffness matrix K is obtained from the unit displacement theorem,

Since the matrix A is a function of the position variables, the integration

is performed with respect to X and Y between the limits X = 0 to 1 and

Y =0 to 1. The unit displacement theorem provides

€] = [WlEA S

where A is the relationship between strain and node displacements and

B i1s the relationship between stress and strain,

The stiffness matrix for the panel shown in Figure 8 for 7 = 1/3

is

70b2+18a2

36ab

38b2-18a2

0.0
Et
192ab 2
-38b

f18a2
=-36ab
-70b24+18a>

0.0

-

70a2+18b%

0.0
-70a2+18b°
-~36ab
-38a2-18b2
0.0

38a2-18b2

70b2+1832

=36ab
-70b2+18a2
0.0

-38b2-18a>

36ab

70a2+18b2

0.0 70b%+18a

38a2-18b°  36ab

36ab 38b%-18a

-38a2-18b% 0.0

2

2

70a2+18b%

0.0

-70a+18b

2

- 70b°+18a

2 2

-36ab 70a2+18b%
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Rectangular Flate Element With Higher Stress Variation

The two previous stiffness matrices were developed using assumed
stress or displacement patterns which resulted in eight undetermined
coefficients in the displacement functions, These eight undetermined
coefficients are evaluated by boundary conditions expressed in terms of
the eight degrees of freedom of the corner nodes of the elements, These
previous assumptions yield stress variations that are constant or linearly
varying in only one direction, In addition, for the case of the assumed
displacement function, the equilibrium conditions for the element are only
satisfied for a particular set of relative displacements of the corner
nodes of the elements,

In order to increase the accuracy of the stiffness matrix for a
specific size of idealized structural element, the stress or deformation
mode of the element is increased by assuminga higher order of variation
of stresses within the element or by assuming a less restricted pattern
of deformations within the element, Consequently, additional considera-
tions are required to evaluate the additional undetermined coefficients
which result from imrefased variations of stress within the element,

In a recent technical note, Pian (13) has shown that the theorem of
complementary energy can be used to obtain stiffness matrices for elements
using an unlimited number of undetermined coefficients for the assumed
stress variation within the element, In addition, Melosh (14) has
recently shown that similar variational methods can be used to develop stiff-
ness matrices for assumed higher deformation modes within the element,
Based on these developments, new generations of stiffnessmatrices canbe

developed for the numerous types of elements required for structural
analyses,
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The subsequent development of a stiffness matrix required for the

analysis of the integrally reinforced rectangular skin panel assumes a

stress pattern that varies linearly in each direction within the idealized

element,

by
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Figure 9, Plate Element With Linear Stress Variation

The assumed stress variation within the element is

DAY

= a, 1"42)/'/" déx.
= £3 + 44!?( + d7}/
s ~dey — Azk

The stress distribution (¢~ in terms of the undetermined coefficients

{r}=[s1{a}

is
Oy l y
0; = o o
’r’“( o o

Q
<
£

g

where the coefficients of S are the x and y coordinates of the surface of

the element,



The stress-strain relations for the plane stress conditions are

{07} =[8] {¢}

0« F—} J o [éj

0y = (\_E_:;z—) J 1 o |{g7

K o e Z] %
and {5} = (8] {0—}

é,: —/ -/ o [g:\

=7 1 2R

b/%y ) _0 ¢ '?(/Mi LT(YJ .

Using the stress distribution in terms of the undetermined coef.

ficients
67 =[] 4ot
and the stress-strain relations

(ef=(="] {ot

the internal strain energy for an element can be expressed as (4)

U =g-//4 rral s Y

or

U= [ [rev SIS o] V.

Yol
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Since the undetermined coefficients {%} are not functions of x and y, the

internal strain energy for an isotropic plate element of constant thickness

is U = 4] [f[‘Zb[ST][e'J[s] «/MzJ {a]
or U= 4 Lal[ses] [4f

2, b
where [Ses] = ¢ /[ [ [sTI[E][S] dy I .

For Poisson's Ratio of 1/3, the result is shown as follows:

/
b yx
2 3
-1 - b .
3 G
8Ll -a -ab 4 a’
= G /2 2 B
| 8
O (@) 0 o - - F
a abL -a -a% -¢4p 33+8F
2 4 6 9 3 9
-bL - b b -4a-.73b  3L%8a"
A 9 2 4 3 /2 9
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The inverse of this matrix is

[SES:]_l=

%(m@*aaz-«bzpr

_ 20084357 v r260f
75

s .
Jedrakain?) - 354 . %(114“%“%2,4)
E 9as 0 ' 3ab sof
oy - - 582 aberzent
2a )
- 2(3abwrabp) 2af 3 (atet3abf) * - gbe 3 20 0.2
] % - T : vl FeBr9a Br9b'w)
- 2l e . Bax 9o 27be 27et
¢ 4 z ks S
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1x7

The forces acting on the boundgrie's of_.the elements are expressed in
terms of the undetermined coefficients {(L} by -their equilibrium relation-
ship tob the stress variations within ‘Fhe elemeht. v_Forv the numbering system
shown in Figure 9, the surface stresses are | |

(5D, = -0 = —4 -ay-det

(52 = “‘734‘7 = -*45 +duY +d7 K
(/:f)zs = Ty = As -dey "7‘17/(
(5’325 = 0y = Az +dex+ Az Y

Eie = —Tey = -ds +4duy +45K
e = =05 = -43 -dax —a7y

- (F% ez = sz = d) +dyy + dex
(5343‘ = ey = ds - Aoy — A7
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The surface forces are written in terms of the undetermined coefficients

in the form

(F=[e]{f

where ' . ,
/ y o o ) X =
fon) <] / X .S o /
/ Yy o =] o x o
I:c]: ° o / X ) o /
) ) o o / -y -X
o o o o /=Y - X
[~} [ o / "y - X
o
=4 o o - / -y =X .

The deformation of the element is described in terms of the boundary

| displacements which must be consistent with the assumed stressdistribution

in the element,

The deformations of the boundaries are described in terms of the node

displacements by the equations

» 4
Ui=(] tz
- where the terms of M represent the linear deformations of the edges in
lterms of the surface coordinates, The linear edge displacements in terms

of the generalized displacements of the nodes are as follows for the

edge 1-2:

Jra@) = U, +L(ta-,) = (1-4), + &) U

o) = U+ R GY) = (-4) U + (L)%,

The displacements of the other edges are obtained in\a similar manner,
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In matrix notation
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The strain energy in the element in terms of the generalized displace-

ments is

-
U= 4 T+77
The theorem of minimum complementary energy states (15)
M = 4 (a7 [SesTfaf - (2 [emT Jy

where

remi= [ [e7m] H.

Aree.

From the condition for minimum complementary energy

_;__7_75-= 4"’/‘1‘.7
2 -0 ( )

[ses]fap = [em] {75,
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Consequently, the undetermined coefficients can be expressed in terms of

the generalized displacements as
[af = (525 [em]

The internal strain energy within the element in terms of the stiffness

matrix for the element is

- ${4 (k1%

The internal strain energy for an isolropic plate element of constant

thickness is

[ = 4127 [ses] {%f

Based on the solution for the undetermined coefficients, the strain energy

can also be expressed as
=/
-~
_ 1L fu “f
U= &b (em]lses] [en] 12,
Consaquently, the element stiffness matrix is

k] = [en][ses] [em],

The stiffness matrix for the rectangular plate element is evaluated for
V= 1/3. The coefficients of the stiffness matrix are shown as partitioned

matrices for convenience,

£
K]-Ge))

; A
where o = 3a%4+ . B = 8%+ 3b" and
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“CHAPTER IV
STRESS ANALYSIS SYSTEM

The Stress Analysis System is a digital computer program using matrix
methods based on discrete element idgalization for two-dimensional struc-
tures, The complete solution for deflections and stresses requires only
that the structure be defined in terms of its geometrical characﬁeristics
and types of structural elements, The structure is first idealized as an
assemblage of discretelstructufal elements, Fach structural element has
an assﬁmed form of displacement or stress distribution, The complete
solution is obtained by satisfying the force equilibrium and displacement
cdmpétibility aﬁ the junctions of the elements, Thus, the conditions of
equilibrium and compatibility are satisfied at only a finite number of
points.which db'not necessarily.imply any appreciable losé of accuracy,
‘When the size of the element is sufficiently small in relation to:'the over-
all size of the structure and the variations of stresses within the
structure do not exceed those allowed in the mathematical model, the
discrete element methods give good approximations to the exact solutions,

The displacement method is the basis fér devéloping this digital
computer program for analyzing two-dimensional rectangular panel configu-
rations for arbitrary load and'support éonditions;l The system provides -
solutions for displacements and internalipr external forces at the strue-
tural node ﬁoints and strésses‘#t any stréss node points defined for the

structural element,
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The input data required for the Stress Analysis System consist of
node numbers, element numbers, and geometric descriptions of the
idealized structure and locations of desired stress results on the ele-
ments, The prograin is divided into the following catagories:

1, Geometric description of the structure
2, Idealized description of the structure
3. Generation of stiffness matrices

4, Generation of stress matrices

5. Deflection solution

6. Reaction force solution

7. Generalized stress calculations

8. Printing of analysis results

The data required under item number 1 are shown in Table IV,

The data for item number 2 are described in Table V, The data
required for item number 7 are showmn in Table VI.

The first step for preparing the input data for the analysis is to
simulate the actual structure as anassemblage of idealized elements, which
is commonly referred to as the idealized structure shown in Figure 10, The
structure is formed from aveilable elements, i.e., stringers and rec-
tangular plates, so that it is capable of representing the deflection
behavior of the actual structure. The idealized structure is described in
terms of the node data and the structural data, The node data, Table IV,
consist of the number of the node point, the coordinates of the node
point, the external forces acting on the node point, and the definit.ion
of the boundary condition at the node point, The structural data consist
of the location of the idealized elements relative to the node points, the

type of structural element, and the description of its material properties,
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TABLE 1V

NODE DATA FOR STRESS ANALYSIS SYSTEM
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TABLE V

STRUCTURAL DATA FOR STRESS ANALYSIS SYSTEM

g ELEMENT LOCATION STIFFNESS DATA
(NODE -POINTS)
§ = TYPE | YOUNG'S | POISSON'S | AREA OR
mz| P | Q| R |S MODULUS RATIO | THICKNESS
56 910 1314 178 21| 24 | 26 3536 41) 42 47
1 e 6 1 i 10.6 |+6 ] 0.3333 0.5
2 2 % 7 3l 7 10.6 |46 ] 0.3333 0.5
3 7 8l 4 5 10.6 |46 | 0.3333 0.5
5 a| 10, 6l 17 10.6 |46 | 0.3333 0.05
5 6] 10 11 7] ) 10.6 [+6 | 0.3333 0.05
6 7l 11 7 10,6 |46 0.3333 0.05
7 of 13l 14l 10| 7 10.6 [+6 ] 0.3333 0.05
g 10 14l 1s] 1] 7 10.6 146 10,3333 0,05
o i 15t 1 32y 10.6 |46 | 0.3333 0,05
0 1 THLY 1l 7 10,6 |46 ] 0,3333 0,05
1] 14 1% 19] 15| 7 10,6 |46 | 0,3333 0,05
1 15| 19| 20 1e| 7 10,6 |46 | 0.3333 0,05
13 5 1 10,6 |46 0.25
____lg___J1 7 1 10.6 |46 0.25
15 7 1 10,6 |46 0,25
1 10 1 10.6 |46 0,125
17 1 11 1 10.6 |46 0,125
18 1 12 1 10.6 | +6 0.125
19 13 14 1 10.6 |46 0,125
2014 15 1 10.6 |46 0,125
R Y 1 10.6 |46 0.125
2 17 1 1 10.6 |46 0.25
23 1q 19 1 10.6 +6 0.25
24 19| 20 1 10.6 |+6 0,25
25 1 5 3 10,6 |+6 0.25
26 apr g 1 10,6 |46 0.25
27 9 13 1 10.6 |46 0,25
28 13| Juf L 10.6 +6 0.25
. 6 1 10.6 |46 0.125
30 6 10 1 10.6 |46 0.125
3 1 5 P Y 1 10.6 |+ 0.125
32 14 18 1 10,6 |46 0.125
33 3 7 1 10.6 |46 0,125
34 B 1 10.6 |46 0.125
35] 11 15 1 10.6 |46 0.125
36 15| 19 1 10.6 |46 0,125
37l 4 8 1 10.6 |46 0.25
38 q 12 1 10,6 |+6 0.25
39 12| 16 1 10.6__|+6 0.25
40 1@1 20 1 10,6 |46 0.25
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TABLE VI

STRESS NODE DATA FOR STRESS ANALYSIS SYSTEM
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The location of the node points is given relative to a two-
dimensional rectangular coordinate system. The n node points are num
bered consecutively from 1 to n in the direction of the minimum width,

Tﬁe boundary conditions are specified by restricting the displace-
ment of the supported node point in the directions of the intended
supports, This is achieved by placing é 1 in column 80 of each node
data card for the degrees of freedom which are to be restrained, If
insufficient boundary conditions are defined, the stiffness of the
general structure is zero in that direction, Consequently, the stiff-
ness matrix is singular; and the analysis cannot be completéd.

The loading conditions are given as part of the node data as shown
in Table IV. Five loading conditions can be considered in each analysis,
The loads are entered in Table IV by listing the x and y components of
the‘applied load in the x and y rows of the node points on whieh the
loads are acting. The actual external loads acting on the real structure
are represented by concentrated loads acting at the nede points of the
idéalized structure.

The locations of the idealized elements are given relative to the
node points in the structural data, The idealized elements are numbered
consecutively, No specific groupihg is required between stringer or
rectangular plate elements, If an integer is assigned to a stringer,
the next integer can be assigned to a rectangular plate, For stringer
elements, the commecting node point numbers are given in columns 6
through 9 and 10 through 13 Qf thé_structural data cards and are called
nodes P and Q, For rectangular plates, the nodes are called P, Q, R,:
and S and are listed in consecutive order clockwise around the rec- |

tangular plate, The implication in listing the corner node point
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numbers is that it automatically assigns a local xy coordinate system
for the rectangle, The local x axis extends from node P to node S; the
local y axis extends from node P to node Q,

The stress components are calculated and printed out relative to
the local coordinate system, For example, if the structure has grid
lines parallel to the x and y axis of the general coordinate system, a
PQRS sequence is chosen so that the coordinate axes for each rectangular
plate have directions identical to those of the general coordinate axes,
In this case, the stresses are then relative to the external coordinate
axes and are the same for all rectangular plates, The stress results
for the stringer elements are given relative to the axis of the stringers,
As additional elements are added to this program, the common element
coordinate system should be maintained,

The type of idealized element is specified in the structural data
by entering the type number in column 24, The type numbers for each
element are given in Appendix B,

The elastic properties of the material are defined in the structural
data and consist of modulus of elasticity and Poisson's ratio, They are
entered in Table V for each element,

Stresses are cglculated for the stress node points defined for each
element relative to the local coordinate systqm of the element, The
characteristic dimensions of the idealized elements are defined by the
coordinates of their end or corner node points, The coordinates of the
stress node points are given in inches relative to the local coordinate
system for the element, A maximum of five stress nodes can be used in
each analysis, If no stress nodes are specified, stresses are auto-

matically computed for the coordinates of the centroid of the element,
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Node numbers, element numbers, element-type numbers, and support
conditions are always entered as integers. All other data are entered
with a decimal point in the proper place. An example of the input data
for the test structure is given in TablesIV, V, and VI,

Once the idealized structure and the loading conditions are defined,
the computational sequence follows from the stiffness method, The stiff-
ness and stress matrices are generated for each element using the
structural material properties and the dimensions obtained from the node
data, The rows and columns of the stiffness matrix and stress and load
matrices are in the order of x and y for each node point on the structure,
In general, if P is the number of the node point, the x and y degrees of
freedom at P are labeled 2P-1 and 2P, respectively. These numbers are
then used as indices to denote a displacamant.or force component acting
at node P in either x or y direction,

The matrix X (BARK) is the stiffness matrix of the idealized structure
in lower symmetric form, It is obtained by simply summing up the contri-
butions of the various element stiffness coefficients in the direction of
each displacement, To facilitate this summation, the MPQRS numbering
scheme is used to denote the x and y directions of each of the nodes (16),

Once the element stiffness matrices have been computed based on the
stiffness properties and the node locations of each element, the coef-
ficients of the stiffness matrix are assigned indices according to the
MPQRS scheme, The indices designate the position of the stiffness matrix
for the individual composite stiffness matrix for the total structure, The
total stiffness matrix K is obtained by summing the stiffness matrix ele-
ments with common indices obtained by the MPQRS scheme, As the stiffness
matrix for each element is generated, it is added to the large K matrix,
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The coefficients of K are the forces generated at the node points in
the x and y directions, whenone node is displaced a unit distance in the
X or y direction and all other displacements are restrained, The sum of
the coefficients in every row and column is zero since the forces generated
at restrained node points and the force developed due to the unit displace-
ment are in equilibrium, If the structure is restrained from rotation
and translation degrees of freedom by removing the rows and columns of
the Kmatrix that represent the displacement of boundary conditions, the
matrix is subsequently nonsingular, Removing these rows and columns
decreases the size of thematrix and consequently changes the indices of
the coefficients of K, Consequently, one has the choice of using the
reduced matrix and changing the indices of tle rows and column designa-
tions or removing the rows and columns except on the diagonal, The
diagonal element is replaced by a 1, The result is that the stiffness
matrix will contain a unit matrix which will not effect the solution of
the simultaneous equations obtained by performing the inverse operation,
This technique does save the numbering scheme but, of course, retains the
size of the stiffness matrix, This method of modification rather than
reduction of the stiffness matrix is utilized in this program because it
simplifies the bookkeeping problems throughout the calculations; and,
for these types of structures, the decrease in the size of the stiff-
ness matrix obtained by reducing the matrix for the boundary conditions
is not a significant advantage,

After the stiffness matrices for each element have been added to the
total stiffness matrix _K-, the matrix K is modified, as mentioned in the

previous paragraph, according to the defined boundary conditions. The
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modified stiffness matrix is then inverted and the node point deflections

are calculated from the equation

(s} [K{F T

The deflection matrix § is a complete listing of the node displacements,
including the zero displacements at the boundaries,

The stresses in each idealized element are calculated from the
deflections & for the element, which must be obtained from the total 5
matrix, The stresses are computed by generating the stress matrix for the
coordinates of the stress node point and postmultiplying the element stress
matrix by the element displacements, The stresses within the idealized
element are based on the assumptions made for deriving the stiffness and
stress matrices, Consequently, the stresses at any number of points in
a single plate may be obtained through the stress coefficient matrix and
the corner displacements of the plate or stringer element, The components
of the stress tensor at the stress node points defined in the stress node
data are calculated relative to the local coordinate system of the plate
element,

The reaction forces at the boundary node points are computed from

{F- [K] 5}

by evaluating the right-hand side of the equation where K is the original
stiffness matrix before boundary conditions are applied, The reaction
forces are used for checking the original input data or the accumulation
of numerical errors in the computing process and do provide a solution for
the reactions in the directions of the specified boundary conditions,
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The output data are presented in two forms, an abbreviated form
containing only the basic results of the analysis and an extended form
including all of the individual plate and stringer stiffness and stress
coefficient matrices and bookkeeping arrays in the analysis, The output
is controlled by placing a numeral 1 in column 30 of the.program control
card, If no parameter is used in column 30, the abbreviated form of the

analysis will be printed,



CHAPTER V
ANALYTICAL INVESTIGATION

The structural panel used in this investigation was designed so
that the idealization used in the stiffness analysis corresponded as
accurately as p0551ble to the actual test model, In the case of com-
plex structural configurations, the analysis problem should be divided
into ﬁno phases: the idealization of the complex structure; the analysis
of»the\idealized structure.

In1tho first phase, large errors may occur due to' computer size
limitations because it is necessary to approximate large structural
configurations with a relatively few number of structural elements, In
addition, thick panels are idealized as thin panels which carry no out-
of-plane loads; and tapered bar elements are idealized into constant area
sections that carry constant loads, These discrepancies occur in the
idealization phase of the analysis, ‘

The second phase, the comparison between the structural behavior
of the panel and the mathematical analysis of the idealized panel, is |
hopefully limited to errors in the mathematical representation of the
characteristics of the structural elements, It is first necessary to
prove that an idealized structural configuration behaves in a manner
similar to an actual structural configuration of approximately the same
goometrie characteristies, Afterthis comparison is made, the errors

resulting from idealization procedures can be more accurately investigated.
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The design of the research model shown in Figure 11 is based on
the idealization of actual structural configurations that are commonly
encountered in aerospace structural analysis, This structural configura-‘
tion results in a convenient idealization for both the force and the
stiffness methods of analysis,

The analysis of the panel by the force method described in
Chapter II is based on the assumption that the shear forces are trans-
mitted only by the web elements and the axial forces are transmitted
only by the rib and stringer elements. The cross-sectional areas of
the rib and stringer elements are increased to aceount for the axial
forces that are also transmitted by the web elements.’ This procedure
is desirable in the force analysis since the consideration of additional
axial forces in the web elements increases the degree of redundancy of
the structure,

The force method was used for the analysis of the structure based
on the nominal dimensions of the structure shown in Figure 11, The
structure was analyzed for the five load conditions used in the experi-
mental investigation. A complete description‘of these load configurations
is given in Chapter VI. A numbering system of points and elements on the
structural panel is shown in Figure 12, This sequence of numbers is
used to identify the analytical results shown in Tables VII and VIII.
for the force method of analysis described in Chapter II,

A more extensive analysis of the structure was performed using the
stiffness method of analysis described in Chapter III. A complete
analysis of the structure was performed using each of the idealized
elements described in Chapter III for each of the load configurations

used in the experimental investigation.
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TABLE VII

STRESSES FROM FORCE ANALYSIS

h

Combined

Uniform . Center ‘Node 1 Shear
Node Case 1 Case 2 Case 3 Case & Case 5
‘Numbers 10000 1b 10000 1b 1000. 1b 1000 1b 1000 1b
Stringers , o v _
5 7120 7077 =497 4930 4432
9 7120 6860 -479 3231 2755
13 7040 ~ 5500 =370 1559 1189
17 6670 0 0 0 0
6 7150 7218 302 1386 '1688
10 7170 7471 . 283 1078 1361
14 ... 7270 9037 - 181 596 777
18 - 7690 15384 0 0 0
7 7150 7218 1113 -1374 -261
11 7170 7471 1089 -1038 51
15 . 7270 9037 919 © =436 483
c19 7690 - 15384 0 .0 0
8 7120 7077 1936 . =4930 -3002
12 7120 6860 1956 -3266 -1311
16 7040 5500 .2083 -1697 385
20 6670 0 2666 0 2666
Ribs
5 0 "0 0 0 0 -
10 -23 ~341 27 7 34
11 -23 -341 32 -30 2
12 0 0 0 0 0
13 0 0 0 0 0
14 . -83 -1243 .79 34 113
15 - -83 -1243 137 - 38 175
16 0 0’ 0 0 0
17 .0 0 0 0 0
18 137 2064 -138 584 466
19 137 2064 =218 1363 1144
20. 0 0 C-0 2000 2000
Webs - _ : v
S | 11 164 -14 1272 1259
2 0" 0 0 1473 1472
3 =11 -164 15 1254 . 1269
4 58 1018 -80 .- S.1254 . 1174
5 0. 0 -15 1568 - 1553
"6 -68 . =-1018 95 - 1177 1272
7. 27 4125 ~277 1169 981
x: 0 L0 ~160 1557 - 1397
9 w27 =4125 438 11273 11711




DEFLECTIONS FROM FORCE ANALYSIS

TABLE VIII

load Conditions

75

Uniform Center Node 1 Shear Combined

Case 1 Case 2 Case 3 Case 4 Case 5

Deflection 10000 1b 10000 1b 1000 1b 1000 1b 1000 1b
Vio 0.0199 0.0150 -0.0010 0.0068 0.0058
Vig 0,0206 0,0262 0,0006 0,0023 0,0028

Vig 0,0206 0,0262 0,0023 -0,0021 0,0004

V20 0,0199 0,0150 0,0059 ~-0,0070 -0,0010

Uop 0,0010 -0,0070 0.,0295 0,0225

0.0001
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The analyses based on the stiffness method are easily performed
using the Stress Analysis Systém described in Chapter IV, Since the
concept of redundant load paths is not a consideration in the stiffness
method of analysis, few restrietions are placed on the idealized form
of the structure, The web elements are dssumed to transmit axial forces
as well as shear forces, The rib and stringer elements transmit only
axial forces, The amount of the axial forces transmitted by each element
depends on the relative stiffness of thé elements, The stiffness
properties are formulated within the Stress Analysis System using a
geometric description of the structure as described in Chapter IV,

The analytical results using the new stiffness matrix derived in
Chapter III, based on an assumed linear stress variation in each direction,
are shown in Tablés IX, X, and XI, This analysis was performed using the
nominal dimensions of the structure shown in Figure 11 and the structural
idealization illustrated in Chapter IV, The data shown in Tables IX, X, |
and XI are relative to the numbering system of points and elements on the
structural ﬁanel shown in Figure 12,

Each analysis yields different résults for the same structural
idealization because of the initial asspmptions that are made for the
derivation of stiffness properties, Tﬁ; most obvious differences result
from the assumed behavior of the web elements, For example, the web
element used in the force method of analysis traﬁsmits only shear foreces,
The three plate elements representing the webs for the stiffness method
of analysis transmit both axial and shear forces, However, the three
plate stiffness matrices provide different.results because of the fol-
lowing limitations, The stress distribution within the first plate

element deseribed in Chapter III based on an assumed displacement function



TABLE IX
WEB STRESSES FROM STIFFNESS ANALYSIS

Web ' a Load Conditions

Element .Stress Case 1 ‘Case 2 Case 3 Case 4 Case 5
, 0x 1278 1238 .18 - 563 545
1 Ty . 6879 6873  -169 2823 2654
T xy : 299 332 20 1290 1310

| rx 1201 1230 . 135 -18 117

2 oy 6787 6792 678 0 676
T'xy o 0 127 - 1431 1443

0 1278 1238 282 -550 =268

3 oy 6879 6873 1546 -2818  -1272
Pxy =300 -332 . -33 1279 1246

| I 2713 =201 34 37 72

A Ty 6708 6655 -161 1659 1497 -
 xy -51 979 -104 1258 1154

% 357 -955 . 167 -61 106

5. oy 6878 7452 630 71 701
Txy 0 0 -7 1668 1660

% 274 =291 133 -216 -83

6 Iy 6708 6655 1513 -1692 -179
rxy sl -979 112 1074 1186

rx . 817 995 . - -23 185 162

7 oy 6804 6782 -80 551 471
R -86 3857 - -300 1113 813

I x | 791 1911 -33 547 514

8 oy 6811 11485 214 130 343
7%y 0 0 -207 1581 1374

o U x i 817 1995 151 883 1034

9 oy 6804 6782 1445 -374 1071

T xy ' 87 -3857 506 1306 - 1813




TABLE X
STRINGER AND RIB STRESSES FROM STIFFNESS ANALYSIS

<

_Load Conditions

Element . Between o
Number ) Nodes -Case 1 Case 2 Case 3 Case 4 Case 5
Stringers SRR '
26 5.9 6549 - 6539 -560 4094 3535
27 . 9-13 . 6473 5733 =504 . 2387 1884
.28 12-17. 6517 2052 -210 745 535
30 6-10 6356, . 6382 . 234 1177 . 1410
31 10-14" 6759 . 7771 ° . 157 906 1064
32 14-18 . 6547 . 10849 66 - 233 299
% 7-11 6356 6382 ' 1032 ~1168 =136
35 11-15 - 6759 7771 992 =723 . 268
36 15-19 . 6547 10848 383 =338 . .45
38 8-12 6550 6540 . 1872 -4102  =2230
39 12-16 6473 5733 1946 =2517 =571
40 16-20 6517 2052 2406 - ~999 1406
Ribs o ‘ | e
16 9-10 -2029 . -2106 759 -756 -679
17 10-11 -1941 ~ -2068 .~ 181 =35 = 217
18 o 11-12 -2029 2106 -466 778 ' 312
19 13-14  -1894 2912 100 -275 -175
20 14-15 -1929 -4811 - 95 -135 -39
21 15-16 ©-1894  ~2913  -276 -83 358
22 17-18 21009 382 . -9 278 185
23 18-19 . -1028 977 - =303 - 1142 839

26 19-20 -1008 382 . .38 . 20%0 - 1713




TABLE XI

DEFLECTIONS FROM STIFFNESS ABALYSIS

ILoad Conditions
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-0,0007

0.600

Tniform Cénter Node 1 Shear Combined
Case 1 Case 2 Case 3 Case 4 Case 5
Defle¢tion 10000 1b 10000 1b 1000 1b 1000ﬁ}b 1000 1b
V17 0,0184 0,014 -0,0012 0.0068 0.0056
V18 0,0185 0,024 0,0004 0.0022 0.0026
V19 0.,0185 0,024 0.,0023 -0,0021 0,0002
Va0 0,0189 0,014 0,0059 -0,0072 ~0,0013
U20 -0.0072 0,0292 0,0221
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does not satisfy equilibrium conditions except for a specific set of
relative node displacements., The second plate element derived in
Chapter III based on an assumed stress distribution does not provide
compatible displacements between adjacent elements at their boundaries.
The new plate element derivedAin Chapter III does not violate either of
these conditions,

As a result of the manufacturing tolerances on the structure, the
actual dimensions of the structure are slightly different than the
nominal dimensions of the structure. The actual thickness of the test
structure is the only significant variation from the nominal dimensions,
Consequently, an additional analysis using the new stiffness matrix is
performed based on the same idealization described in Chapter IV and
using the actual dimensions of the structure based on the measured
thicknesses shown in Figure 13,

The validity of the analysis is demonstrated by comparing the
analyticalbdata using the actual structural dimensions with the test
data obtained during the experimental investigation, These comparisons

are shown in Chapter VII,
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CHAPTER VI
EXPERIMENTAL INVESTIGATION

Concurrent with the develomment of analytical methods is a
requirement for the development of test techniques to provide experi-
mental verification of the theory,

The purpose éf the experimental investigation is to provide data for
direct comparison to the analytical methods. Since the structural ideali-
zation techniques provide a unique ahd soméwhat unrealistie structural
configuration, prior experimental data are unaveilable for comparison
purposes, The experimental facility and the structural skin panel that
were developed for this investigation are shown in Figure 14; a general
floor plan of the facility is given in Figure 15,

One objective of the experimental investigation is the determina-
tion of the complete state of strain at various points in the model for
five conditions of external loading, The strain gages are positioned
on the panel at points which correspond with node points easily selected
for the analytical solutions, These locations of the strain gages
reduce any errors that might occur as a result of extrapclating either
the analytical or the experimental data,

The research model was fabricated from a plate of 2024-T851 aluminum
alloy by General Dynamics Corporation, Fort WOrth, Texas, This material
was selected because of its high utilization in current aircraft programs.

The panel was machined from one-half-inch~thick plates to eliminate joints.

82



Figure 14,

Experimental Facility and Structural Skin Panel
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Test Apparatus and Instrumentation

A list of the major equipment used in this test program is given in
Appendix D, | '

The types of strain gages selected for this experimental program

were
g;igl Rosette
Manufacturer The Budd Co, The Budd Co.
Type | C12-121-A . 012-121D-R3Y
Gage Factor 2,07 ¥ 1/26 2,03 % 1/2%
Resistance 120 2 ,0.2 ohms | 120-% 0,2 ohms

Eastman 910 cement was used to bond thé'Strainfgaées to the surface
of the model after the surface of the model had beeh prepared using sand-
paper, trichlorethylene, and an acid neutralizer, A three-wire system
was used to connect the strain gages £6 the read out instrumentation in
order to cancel the effect of changes of wire resistance encountered
with changes of room temperature.

The strain gage data reéording instrumentation consists of a Datran
Digital Strain Indicator with a Victor Digit-Matic Printer shown in
Figure 14, In addition, poftable strain indicators and switch and
balance units, shown in Figure 16, were used to record a total of 300
chamnels of strain data, ‘_

Deflections were measured with Starrett Dial Indicators. The
indicators have a range of 0.4 inches and a»grﬁduatiqn of 0,0001 inch,
The dial indicators were locAted at the'béuﬁdafy of the panel as shown
in Figure 17. Data from these dial indicators:ﬁé:éiﬁ‘séd to determine

the deflected shape of the panel,



Figure 16, Portable Strain Gage Instrumentation



Figure 17, Experimental Reinforced Skin Panel
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The 1oads were applied using an Empco Veftical,Motion:Jack,~Style
JH-20, purchased from the Enterprise Machine Parts Corporation. Pre-
-liminary tests indicated that these wmechanical load devices were Satis-
factory for this type of static testing. Budd SR-4 Load Cells were
used to monitor the external loads on the panel. The loading system is
-shown in Figure 18. These load cells were calibrated by the manu-
facturer for an accuracy of + 0.25 per cent of full scale.

In order to read both load cells on the BLH SR-4 -Indicator, the
load cells were connected to the indicator through the BLH Switch and
Balance Unit, and the system calibrated for a gage factor of 2.0. The
SR-4 Load Cells were used to calibrate the BLH, Type N, Indicator
against the Budd portable indicators using the calibration factors
‘specified by The Budd’Co@bany. The system was also calibrated using
‘test equipment at the Haliburton 0il Company, Duncan, Oklahoma.

The loading ‘system is shown in Figure 18. Load-divider systems
shown. in Figuie 14 wéfe used to divide the load symmetricélly to the
varidhé‘loédrpoints for 1oéd configuration numbers one and two.

The basic loading fixture to be used for the experimental inﬁesti-
‘gation, Figure-l&,bwasbdesigned, fabricated, and used in previous
experimental programs at Oklahoma-State University (11).

One of the most critical aspects of testing these small structural
configurations for deflection and stress characteristics is the manner in
which the model is supported im the loading fixture. .The-support system
must not contribute effects at the supports which cannot be represented
accurately as boundary conditions. The support system should be rigid
enough to minimize the contributions to the panel deflections for maximum

‘loads. -Two types of support configuragibns were considered: ‘A simple



Figure 18,

Mechanical Loading System
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support configuration, and a fixed-base configuration, Either of these
support configurations could be handled accurately in the analysis; how-
ever, preliminary experimental test results indicate that the fixed sup-
port system, Fiéure 19, performed more satisfactorily, This was a result
of frietion in the sliding support which must be assumed friction free.
Preliminary tests were conducted on the panel using twenty strain

gages to determine the panel aligrment characteristics and to verify the
design and application of the related test equipment, The objectives of
the preliminary tests were

1, To ascertain the linearity of the load deflection
relationshipss

2, To determine hysteresis effects;

3. To determine the amount of preload required to remove
~the initial joint slippage in the model,

The results of these preliminary tests indicated that hysteresis
effects were negligible for the '_.':I.oad conditions to be investigated., In
addition, the model yielded linear results with strains of sufficient
magnitude to be recorded easily from the avﬁilable equipment for the
desired load levels, The expected stress concentration effects were
observed froﬁx both the load divider system and the support system, |
These unavoidable effects were not excessive and hence did not prejudice
the experimental data,

The preliminary tests did indicate that a small amount of out-of-
plane deformation was present in the model as a result of the machining
operation, This initial deformation had a significant effect on strain
measured at the surface of the stringers and ribs, The strain gages on
the stringers and ribs were actually one-fourth inch from the centerplane

of the model, However, excellent results were obtained by using strain
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gages located opposite each other on the ribs and stringers and by using
the average of the two readings,

The initial shape of the model also had a significant effect for the
shear load configuration, The initial eccentricityresulted in less load
capacity than would have been present for a perfect model, Thisdifficulty
was overcome by using a 10,000-pound uniform preload to straighten the
model for the shear load configuration. Since the combined load was still
in the linear load-deformation range, the effect of the 10,000.pound
uniform load was easily segregated from the shear load effects,

| Subsequent to the completion of the preliminary tests, anadditional
280 strain gages were appliéd to the model at the typical locations shown
in Figures 20, 21, and 22, In many cases, redundant gage locations were
used to check the symmetry of load distribution, The axial and rosette
gages were numbered as shown in Figures 20, 21, and 22, The numbering
system was designed to provide maximum flexibility in the adding or in
the changing of gages.

Deflections and internal load distributions were determined experi-
mentally for the fundamental types of applied loads that are found on
actual airecraft structural skin panel configerations, The most common of
these load configurations are the uniform tensile and the combined tensile
and shear loads, The test configurations are divided into five load condi-
tions, These five load coni‘iguratibns are shown in Figure 23, Data for
each test configuration were obtained after a check out of the test
equipment,

The strain gages monitored during each test are indicated incolumns
two and three of Table XII under the heading, Number of Gages, The rosette

gages are divided into three classes., The first class consists of all of
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TABLE XIT
TEST CONDITIONS

97

Number
Test -of Gages Number of Test Load Test
No. Axial Rosette Observations Date Interval Description
1 60 All 10 12-13 1000~10000 Uniform Load
2 60 All - 4 12-14°  500-1500 Shear Load
24 0 All 12-14  2500-500-1500 = Shear Load
3 60 All 9 12-14  100-5000 Center Load
4 96 All - 9 12-16 1000-5000 Single Load Node 2
5 96 All 10 1-26 1000-10000 Uniform Load
6 96 _All 6 1-27 1000-6000 Uniform Load
7 9% 0 Use 2-2 1000-10000 * Uniform Load
8 96 o Class 2 4 2-4 500-1500 Combined for Shear
9 96  Class 2 9 2-7 0-250-1750 Combined for Shear
- 10 96 0 6 2;8 0-1000-5000 Center Load
11 96 0 5 2-8 100G6~5000 Single Load Node 1
12 96 0 5 2=8 1000-5000 Single Load Node 1
13 96 0 5 2-9 1000-5000 Center Load
14 96 0 10 2-9 0-3000-0 Transverse
15 96 0 8 2-11 250-2000 Transverse
16 96  Class2 o8 2-14  250-2000 Transverse
17 96 Class 2 & 3 8 2-16 - 250~2000 Transverse
18 96 Class 2 ' 8 2-28 250-2000 Transverse
19 100 Class 2 & 3 4 2-28 250-2000 Transverse
20 100 All 10 3-2 500-2750 Traﬁsverse
21 100 0 10 3-3 0-5000 Single Load Node 1
22 100 All 6 3-3 10000 Horizontal o hinag for Shear

500-3000 Shear
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the rosette gages, The class-two gages are the twelve rosettes located
on the center web of the model, The class~three gages are the eighteen
gages located at the center of each web of the model,

The strain and deflection data were obtained for the magnitudes of
external loads shown in Table XII. Since hysteresis effects were demon-
strated to be small in the preliminary tests, data were reéorded for
increasing loads at equal intervals for the number of observations during
each test condition as shown in Table XII. The experimental data were
reduced io values per unit of load by the procedures and digital computer

programs described in Appendix C,



CHAPIER VII
COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The objective of this research effort is to develop the capability
for the analytical and experimental investigation of integrally rein-
forced rectangular skin panels using finite element methods of:structural
analysis, The analytical capabilities, which are developed, include both
-the force and displacement methods of structural analysis,

The force method of analysis used in this investigation demonstrates
the redundant load paths that are possible in the analysis of complex skin
structures, The accuracy of the force analysis is influenced by the choice
of the idealized statically determinate system. The idealized systems used
in this investigation satisfactorily represent the prineipal load paths
throughout the structure, The idealization resulted inwell-conditioned
matrices preserving computational aceuracy and stress variations that
represent the actual structural behavior, Consequently, good results
are obtained from the force method of analysis as shown in Figure 26,

The stiffness method of analysis was used for the most extensive
investigations of the structural skin panel, because there is no require~
ment for the choice of statieally determinate» load paths within the
structure. Consequently, the complete analysis can be performedusing the -
digital computer specifying only the geometrie and structural configuration
of the skin panel, The analysis capability is described inChapters III, IV,

and V, DNumerous structural idealizations are used in the investigation;
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however, only the results of the most obvious idealization using the
best stiffness matrix are reported in this thesis. The analysis capability
is available for further study of any class of two-dimensional structural
configurations, and the scope of these problems is too broad to be
mentioned here,

The experimental capabilities developed during this and previous
investigations have provided fundamental procedures and equipment that
are applicable for numerous future research programs, Some of these
possibilities are suggested in Chapter VIII,

A total of twenty-two tests were performed with the integrally
reinforced rectangular panel, using five load conditions applicable for
this type of structure, A total of approximately thirty thousand data
points were recorded during these twenty-two tests. Only the basic data
required for comparison to the analytical results are reported in this
thesis, Additional data would only duplicate the basic information shown
in this chapter for additional points on the structure, The basic data
reported here are sufficient to indicate the excellent agreement between
the analytical and experimental results, This agreement demonstrates
the applicability of the finite elements methods of structural analysis
for integrally reinforced structural skin panels,

A qualitative description of the axial stress variations obtained
from the Stress Analysis System are shown for the shear and the transverse
load configurations in Figures 24 and 25, The axial stresses are in the
direction of the longitudinal axis and were computed at specifiec points
within the structure, A smooth surface is generated through these points,
The value of the stress at each point is represented by the distance along

the vertical axis, These surfaces demonstrate the large variations in
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axial stresses that occurred within the panel for the shear and the
transverse load conditions, The comparisons of the analytical and
experimental stress results at typical points on the panel are showm in
Figures 26 through 37, The comparisons of the analytical and experimental
deflection results for points on the edge of the panel are shown in
Tables XITI, XIV, and XV,

The deflections representing the corner point where the shear load
is applied are actually shown for two different points located as close
as possible to each other, The analytical data are obtained for the
exact point where the shear load is applied, Due to the loading system,
it was notvaSsible to place a dial indieator at the same point, There-
fore, the experimental data are obtained for a point approximately two
inches from the point where the shear load is applied,

The experimental deflection data shown in Tables XIII, XIV, and XV;
are corrected based on the measured deflections of the supporting system.
However, the data are still different by a constant value as shown in.
the sketches on Tables XIII, XIV, and XV, This constant value is
due to a slight displacemeht 6f the complete tést paﬁel relative to the
support system and occurs possibly in the bolts and self-aligning bearings
connecting the panel to the support system,

In general, the accuraéy of these comparisons is within the varia-
tions resulting from the manufacturing tolerances for the structure,

The actual dimensions of the panel are used for the analytical and the |
experimental comparisons, The actual dimensions are shown in Figure 11
and can be compared to the nominal dimensions shown in Figure 13, The

nominal dimensions would normally be used for design calculations,
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Figure 24, Qualitative Description of the Axial Stress Variation for
the Shear Load Condition
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Figure 25, Qualitative Descriptib_n of the Axial Stress Variation for
) the Transverse Load Condition
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TABIE XIII

COMPARISON OF DEFLECTIONS FOR UNIFORM LOAD CONDITiON »

1000C 1b

T777777 777777 77777/77

Experimental Theoretical
Deflection Test 1 Test 2 Average* Nominal Areas  Exact Areas
A 0,0222 0.0222 0.0188 0.0184 0,0174
B 0.0212  0.0225 0,084 0.0185 © 0.017
c 0,0205 0.0214 0.0173 0.0185 0,0176
D

0.0216 0,0249 0.0194 0,0184 0,0174

*Averége deflections are adjusted for measured base deflection,
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TABLE XIV

'COMPARISON OF DEFLECTIONS FOR SHEAR LQAD CONDITION

1000 1b 30
—— B
) ~
0
(]
G
=
’ [0}
]
)
m
§4
5~
4
—D o 10
8
3
0
A

A Theory

L |

JI7T777 77777 /S 7S

Experimental

[ 1
0,01 0,02 0,03
Deflection (inches)

Theoretical

Deflection  Test 1  Test 2  Average*  Nominal Areas Exact Areas
A ~0,0355 0,0350 0.0305 6.02?6v 0.0254
‘B 0,035 0,0360 ‘0.0312 0.0292 YO.OZ?l
C 0.0232 0,024 0.0205 0.0159 0,0145
D 0.0109 0.0095 0,0062 0,0055

0.0115

*Average deflections are adjusted for measured base deflections,
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COMPARISON OF DEFLECTIONS FOR TRANSVERSE LOAD CONDITION

1000 1b
]
1000 1b
A—-

e B
)
[]
)
o

—=C Z 20
[0
5]
&
:
3]
8
3]
I
o
[a]

TTITTTTITTT 7777777777

Po

© Test

£\ Theory

[ 1 ! ! .
0.01 0,02 0,03
Deflection (inches)

' : Experimental Theoretical
Deflection Test 1 Test 2 Average* Nominal Areas  Exact Areas
A o 0.0319 0.0362 0,025 0,0207 0.0188
B - 0.0307 0,0313 0,0256 0.,0221 0,0200
c - 0,0212 0.0213 0.0176 0.0128 0,0115
D 0.0103  0.,0107  0,0087 0.0052 0.0046

*Average deflections are adjusted for measured base deflections,



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn from the comparisons of the analytical and
experimental data are that a satisfactory capability has been developed
for the analysis of integrally reinforced skin panels, The least satis-
factory of these comparisons is shown in Figure 34 for the shear load
condition, The shear stresses predicted from the analysis are in excess
of the measured values, In addition, it is observed that the measured
values are not in equilibrium with the applied load, Consequently, the
panel was repositioned in the load frame for the shear load configuration;
and strain rosettes were attached to both sides of the outside stringers

at the center section of the panel as shown in Figure 38.

Eﬁ —— e 2 |

L, )L A )
[%if;___*_.45._____H__‘.J L

Figure 38, Location of Rosette Gages on Stringer Elements
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These gages were used to indicate the portion of the shear force
reacted by the stringer elements, The strains observed at these gage
locations»indieated that the stringers react the remaining portion of
the external load not indicated by the shear stresses in the webs, By
including the shear forces across the stringers and webs; the total shear
forces are in equilibrium, The shear forces in the Stringers indicate
that the area of the stringers is approximately fifty per éent«effective
in resisting shear., The amount of shear force reacted by the stringers
depends on the shape of the stringer and the method by which it is
fastened to the skin structure, A suitable topic for future investiga-
tions would be to develop a routine procedure for accounting for the
shear forces across the stringers.

© T Additional toplcs for future investigations consist of econtinuing
the current investigation with a cutout section in the center paﬁelo The
capabilities developed in £his program can be used for direct application
to the problem of cutout sections, Extending the analysis capability for
arbitrary cutout configurations would be valuable for practieal aircraft
structural design conéiderationsn | /

A second topic of special significance would be the development of
stiffness matrices for arbitrary»eonfiguiations using the variational
approach described in Chapter III._ Direct calculation of stiffness
matrices could be made using the SES -1 matrix and the digital computer
matrix subroutines given in Appendix A, It is only necessary to establish
the CM matrix of linear-edge displacements for the configurations of
interest. The reduction of the stiffness matrices for practical configura-
tions to algebraic expressions would also be a valuable'contribufion for

extending analysis capabilities,



121

As a result of the broad class of problems encountered in this
investigation, it is recommended that future studies make full use of
the current computing capabilities and limit the experimental investigation
whenever possible, The requirement of additional new stiffness matricés
for arbitrary configurations and the development of .eriterion for evalua-
tion of these matrices is of primary importance,

In addition, a study of idealiéation techniques and computational
procedures would be a valuable cgntribﬁtion, providing significant

reductions in computer running time could be acecomplished,
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APFENDIX A
MATRIX ALGEBRA SUBROUTINES

The matrix algebra subroutines developed for this investigation are
described below, The matrix operations\ are written in single subscript
notation to conserve core space within f,he computer, The Fortran listings
describlng the operations are dlso included for reference.

Fortran listings for the various matrix algebra subroutines are

Subroutine Name Description

RMAT (A) Read the matrix: from cards with Format
7E10.4,

EMATNZ (&) Read only the nongero elements of the

matrix from cards with Format 6X, I4,

WRTMAT (A) Write matrix A,

PUNCH (A) Punch the nonzero elements on cards
with the format of RMATNZ A.

MaM (A, B, C) Add matrix A and B, The sum is
matrix C,

MSM (a, B, C) Subtract matrix B from matrix A,

The difference is matrix C,

MSCA (Scalar A, C) Multiply e scalar times the matrix . _
A, The product is matrix C,

MM (A, B, C) Postmultiply matrix A by matrix B,

The product is matrix C,
TRANSP (4, B) Transpose matrix A and define A =
MTXM (4, B, C) Postmultiply the transpose of matr:.x A

by ma*trlx B, The product is matrix C,

INVERX (A, B) Invert the matrix A and define A-! = B,

124



125

TABLE XVI

FORTRAN SUBROUTINE RMAT

$IBFTC RMAT

SUBROUTINE RMAT(A) RMATOO1
DIMENSION A(1l) ‘ g RMATO002 -
COMMON KIN.KOUT o RMAT003
1 FORMAT(6Xs1496Xs14) RMATO0O04
2 FORMAT(SE1548) . ' - RMATO05
READ (KINsl) KAlsKA2 : _ RMAT006
IF(KA14GT«0) GO TO 6 ' : _ RMAT007
WRITE(KOUT »200) o RMATO008
200 FORMAT(35H WE UNLOADED TAPES FROM MATRIX READ) ‘ RMATO009
CALL. EXIT RMATOl10
6 CONTINUE Coe - RMATO11"
KAl=A(1) RMATO12
KA2=A{2) . , , . RMATO013
L = A(l} : . - RMATO14
Ll = A(2) . ' RMATO15
J o= LwLl + 2 , RMATO16
READ(KIN»2) (A(T)s1=34+J) : ' : ' RMATO17
WRITE(KOUT+1001L,yL1 ' RMATOl8
100'FORMAT(15H1THIS MATRIX ISsI4s3Xs1HXs14) RMATO19
L2 = 3 , » Co RMATO020
DO 20 K = 1,L : : RMATO021
L3 = L2 + L1 -1 _ " RMATO022
WRITE(KOUT,102)K RMAT023
102 FORMAT(1OXs5H ROW »14) : RMATO024
WRITE(KQUT 1011 (A(L)»I=L2+L3) ~ RMATO025
101 FORMAT(25X+6E1546) RMATO026
L2 = L3 + 1 RMAT027
20 CONTINUE RMATO028
RETURN RMAT029

END : B . RMATO030



TABIE XVII

FORTRAN SUBROUTINE RMATNZ

SIBFTC RMATNZ - DECK
SUBROUTINE RMATNZ "(A)

101
102
103

104

105

—

1000

‘DIMENSION. A(1)

COMMON KINs KOUT -

FORMAT .

FORMAT
FORMAT
FORMAT

(6Xs14s6Xs14 )

(6X91446X91496Xs E15.8)

(15H1ITHIS MATRIX 1S» I4s3Xs1HXs14)
(10Xs5H ROW s14) '

FORMAT  {25Xs 6E15¢4)
READ (KINs '101) IROWs JCOL
‘A1) = IROW '

Al2) = JCoL :

‘IJMAX. = TROW * JCOL + .2

DO 1. 1 = 3, IJUMAX

A(»l) = 00 . ’

READ(KINs 102) My Ns DATA
IF (N «LEs 0.} GO TO 1000

I = (M-1) % JCOL + N +2
A(I) = DATA -

GO TO .2

. PRINT INPUT MATRIX .
WRITE (KOUT»s 103) IROW» JCOL
L2 = 3 _
DO 3 K =1,IROW

L3 = L2 + JCOL -1

WRITE (KOUT» 104) K .

URITE (KOUTs 1051 (A(T)y I =L2, L3}
L2 = L3 + 1

CONTINUE

RETURN
END -
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RMNZ0O1
RMNZ002
RMNZ003
RMN2004
RMNZ005
RMNZ006
RMNZ 007
RMN2008
RMNZ009
RMNZO1l0
RMNZO11
RMN2012
RMNZ013
RMNZOl4
RMNZO15
RMNZO16
RMNZ017-
RMNZO18
RMNZ0O19
RMN2020
RMNZ021
RMNZ022
RMNZ023
RMNZ024
RMNZ025
RMNZ026
RMNZ027

RMNZO028

RMNZO0O29
RMNZ030



$IBFTC WRTMAT DECK

100
101
102

20

SUBROUTINE WRTMAT(A)
DIMENSION A(D)

TABLE XVIII

FORTRAN SUBROUTINE WRTMAT

FORMAT(15H1THIS MATRIX 1S»14+3Xs1HXs14)

FORMAT(20X+s1P6EL16.7)

FORMAT{(10X95H ROW +14)

COMMON KIN,KOUT
L = Afl) ‘
Ll = A(2)

L2 = 3

J =Ll + 2
WRITE(KOUT,100)LsL1
DO 20 K = 1,L

L3 = L2 + L1 -1
WRITE(KOUT+102)K

WRITE(KOUT»101) (A(I)sl=L2,L3)

L2 = 13 +1
CONTINUE
RETURN

END
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WRMTOO1
WRMT 002
WRMT003
WRMTO004
WRMT005
WRMTO006
WRMT007
WRMT008
WRMT009
WRMTO10
WRMTO11
WRMT012
WRMTO13
WRMTO14
WRMTO15
WRMTO16
WRMT017
WRMTO18
WRMTO019
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TABLE XIX

FORTRAN SUBROUTINE PUNCH

SIBFTC PUNCH

SUBROUTINE PUNCH (A) PUNCHOO1
DIMENSION A(1). . i PUNCHOQO02 -
COMMON. KPUN ) PUNCH003

100 FORMAT(6Xs»1436Xs14) PUNCHOO4
101, FORMAT(6Xs1496Xe1496XsEL144B) PUNCHO005
102 FORMAT(5H2 END) : PUNCHOO06
L=A(1) . PUNCHOO7
L1=A(2) : PUNCHO008
WRITE(KPUN»100)L L1 ’ . PUNCHO09

I=2 . . PUNCHO10

DO 10 M=1,L - i : ‘ PUNCHO11

DO 10 N=1l,L1 . ' PUNCHO12
I=1+1 ] ‘ PUNCHO13
IF(A(I)«EQe0¢0) GO TO 10 : PUNCHO14
WRITE(KPUNs101)MsNsA(T) ’ . PUNCHO15

10 CONTINUE ) PUNCHOl6
WRITE(KPUN,102) PUNCHO17
RETURN . PUNCHOl8

END v ‘ PUNCHO19



TABLE XX

- FORTRAN SUBROUTINE MAM

SIBFTC MAM : ,
. SUBROUTINE MAM (A,8,C)
'DIMENSION A(1)48(1)+C(1)
“ COMMON KIN,KOUT
5 FORMAT(1HOs31HTHE MATRIX
14 92HX 9 14)
ITEST=0
1 " IROWA=A(1) :
ICOLA=A(2)
IROWB=8(1)
1COLB=B(2) ,
IF(IROWACEQ+«IROWB) GO TO
IF(IROWAGT«IROWB) GO TO
7 Ctl)=A(1)
ITEST=1
GO TO 3
8 C(l)=B(l)
. ITEST=1 : , :
3 IF(ICOLACEQ+ICOLB) GO TO

IF(ICOLA.GT.ICOLB) GO T

9 C(2)=A(2) '
, IF(ITESTeNE«O) GO TO 2
12 C(1)=A(1) .
GO TO 2
10 C(2)=B(2)
IF(ITESTeNESO) GO TO 2

ADD—--INCORRECT SIZE s14s2HX s1495HPLUS 1

2 WRITE(KOUT+5) IROWsICOLAsIROWSsI1COLB

GO TO 13
"4 IF(ITEST.EQ+0} GO TO 15
T 14 C(2)=A(2)
GO TO 13
15 . L=1ROWA¥ICOLA+2"
. /DO 6 1=3,L
6 C(I)=A(II+B(])
C(ly=A(l)
Cl2)=A(2)
13 RETURN
END
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MAMOO1
MAM0O02
MAMO0O03
MAMOO4
MAMOO5
MAMOO6
MAMOO7
MAMOOSB
MAMO09
MAMO10
MAMO11
MAMO12
MAMO13
MAMO14
MAMO15
MAMO16
MAMO17
MAMO18
MAMO19
MAMO020
MAMO21 .
MAMO22
MAMO23
MAMO24

. MAMOQ25

MAMO26
MAMO027
MAMO28
MAM029"
MAMO30
MAMO31
MAMO032
MAMO33
MAMO34
MAMO35
MAMO36
MAMO3 7



TABLE XXI

FORTRAN SUBROUTINE MSM

SIBFTC MSM

5

12-

10

15

2
4
14
6
13

SUBROUTINE MSM (AsB,sC)
DIMENSION A(1)3»B{1)sCt1)
COMMON KINsKOUT

ITEST=0

FORMAT (LHO+31HTHE MATRIX

1492HX +14) )

IROWA=A (1)
ICOLASA(2)

IROWB=B(1)

1COLB=B{2)

IF (IROWAEQ+TROWB) GO TO
IF{ IROWA+GT«IROWB) GO TO
C(l)=A(1)

ITEST=1

GO TO 3

C(1y=B(1)

ITEST=1 ‘
IFCICOLACEQ.TCOLB) GO TO

IF{ICOLAGT«ICOLB)Y GO TO

C(2)=A(2)
IF({ITEST.NE«O) GO TO 2
Clly=A(1). : ’
GO TO 2 _
Cl2)=B(2) ;
IF(ITESTeNEO) GO TO 2

" WRITE(KOUT+5) IROW»ICOLAS

GO TO 13
IF(ITEST.EQ.0) GO TO 15
Cl21=A(2)

GO TO 13
L=IROWA*ICOLA+2

DO 6 TI=3yL
Q=AY -B(I)

Cl{l)=A{1)

"CL2)=A(2)

RETURN
END

MSM~~INCORRECT SIZE »I4s2HX »14»5HPLUS o]

IROWB » I COLB
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- MSM001
MSM002
MSM003
MSM004
MSM005
MSM006
MSMO007
MSMO08
MSM009
MSMO10
MSMO11
MSMO12
MSMO13
MSMO14
MSMO15
MSMO16
MSMO17
MSMO18
MSMO19
MSM020
MSMO21
MSMO22
MSM023
.MSMO24
MSM025
MSM026
MSM027
MSM028
MSM029
MSM030
MSMO31
MSM032
MSM033 -
MSMO034
MSM035
MSM036
MSM037
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.. TABLE XXII

FORTRAN SUBROUTINE MSCA

LIBFTC MSCA f v . ‘ e -
SUBROUTINE MSCA (SCALAR»AsC) S : © MSCA001

DIMENSION A(1),C(1) - . _ _ . : MSCA002

1 . ‘IROWA=A(l) : S S B 'MSCA003
 1COLA=A(2) N S » S MSCA004
L=IROWA*ICOLA+2 : . S MSCA005

: " DO 2 I=3sL . e : : : MSCA006
2 "C{1)YeSCALAR¥A(I) ' ‘ MSCA007
Cllr=A(l) o R o Cl MSCA008
Cl2y=A(2) . L S MSCAQ09
_RETURN - v ‘ e R : MSCA010

- END R . : S . MSCAD11



SIBFTC MXM - DECK

10

SUBROUTINE. MXM(AsB»sC)

TABIE XXIII

FORTRAN SUBROUTINE MXM

DIMENSTION A{1)4B(1),sCl1}

15Xe14s2HX 414))
COMMON KINsKOUT
IROWA=A(1)
1COLA=A(2)
IROWB=B (1)
1COLB=B(2)

100 FORMAT{1HO+49HTHE MATRICES ARE NOT CONFORMAL FOR MULTIPLICATION.Z(

IF (1COLA-IROWB4EQ.0) GO TO 4 »
WRITE(KOUT+100) IROWA+ICOLAsIROWB,ICOLB "

50 T0 6
N=I1ROWA#*1COLB+2
DO 5 I=1sN
C(I)=0.0

IX=3

=3

J=3

S K=3
© KX=3

DO 10 M=1.IRONA
DO 9 N=1,ICOLB
DO 8 NX=1»ICOLA

CL{IY=C(J)+A(T)*B(K)

I=]+]
K=K+]ICOLB
I=1X
J=J+1
KX=KX+1"

- K=KX

I1X=IX+1COLA
I=1x v
K=3-

KX=3
C{l)=A(l)
Ci2)=B(2)
RETURN

END

132

MXMOO1
MXM002
MXM003
MXMOO4 -
MXM005
MXMOO6

. MXM0OT

MXMO08
MXM009
MXMOLl0

" MXMO11

MXMO12
MXMO13

. MXMO1l4

MXMO15
MXMO16
MXMO17
MXMO18
MXMO19
MXM020
MXMO21
MXMO022
MXM023
MXMO24
MXM025
MXM026
MXM027
MXM028
MXM029
MXM030
MXM031
MXM032
MXM033
MXMO34
MXMO035
MXMO036"
MXMO37
MXMO38



SIBFTC

TRANSP

TABLE XXIV
FORTRAN SUBROUTINE TRANSP

SUBROUTINE TRANSP(A,B8)

DIMENSION A(1),8(1)

B(l) = A(2)
“8t2) = A(1)
Ll = B8(1)

L2 = B(2Y)

JJ = 3

Jl = 3

J2 = L2 + 2
DO 1 I = 1,L1
J = JJ :

DO 2 K-= JlsJ2
B(KY = A(J)

J =)+ Ll

JJd = JJ o+ 1

Jl = J2 + 1

J2 = J2 + L2
RETURN

END
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TRSPOO1
TRSP0O2 -
TRSP003
TRSPOO4
TRSP005
TRSPO06
TRSPOO7
TRSPOOB
TRSPOO9
TRSPO10
TRSPO11
TRSPO12
TRSPO13
TRSPO14
TRSPO15
TRSPO16
TRSPO17
TRSPO18
TRSPO19



SIBFTC MTXM DECK
SUBROUTINE MTXM (AsBsC)
DIMENSION -A(1)sB(1})sC(1)

100 FORMAT(1HOs49HTHE MATRICES ARE NOT CONFORMAL FOR MULTIPLICATION-Z(

COMMON KINsKOUT

- 15X e 1492HX 414))

ICOLA=A(1)
IROWA=A(2)
IROWB=B(1)
I1CoLB=B(2)
IF(ICOLA- lRONBoEQ.O)

TABLE XXV

FORTRAN SUBROUTINE MTXM

GO TO 4

WRITE(KOUT+100) IROWA,ICOLAsIROWB,ICOLB

GO TO 6
N=IROWA®ICOLB+2
DO 5 I=1N
C(1)=0.0

1X=3.

1=3
J=3
K=3
Kx=3
DO 10 M=1,IROWA
DO 9 N=1,I1COLB
DO 8 NX=1,1COLA
ClUI=CIII+ALT ) #B(K)
I=1+IROWA
K=K+1COLB

1=1x
JeJ+l
KX=KX+1
K=KX

IX=1X+1

1=xx,

K=3
Kx=3
Cl11=A(2)
Cl2)=B(2)
RETURN

"END
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MTXMO0O1
MTXMOO2 -
MTXM003
MTXMO04
MTXMO005
MTXMO006
MTXMOO7
MTXMO008
MTXMO0OS9
MTXMO10
MTXMO11
MTXMO12
MTXMO13
MTXMO1l4
MTXMO15
MTXMO16
MTXMO17
MTXMO18
MTXMO19
MTXMO020
MTXMo021
MTXM022
MTXM023
MTXMO24
MTXMO25
MTXM026
MTXM027
MTXM028
MTXM029
MTXMO030
MTXMO031
MTXM032
MTXM033
MTXM034
MTXM035
MTXMO36
MTXM0O37
MTXMO38



FORTRAN SUBROUTINE INVERX

$1BFTC INVERX : o

SUBROUTINE INVERX({A,B)
DIMENSION A(1),Bt1)
DET = 140

. N = AL}

DO 2

800.

"801

802

'+ 803

804

805
806
807

900

50
700

Jb

L10 = N¥%2 + 2
DO 1 I = 1,L10
B(I}) = Qe .
B(l) =
B(2) =
L9 = N
I 2L 10sL9
B(I) = )
JK =N
J =3
N1
N2
JO
J2

| = +2Z2Z

.
= O W

+ 1+
w =N

DO Ll = 1sJK
NR J+ N = 21/(IN+ 1)
NR1 = NR - g

0

~OWZZZW

[ ST I BT I

. NRI = N = NR

Nl = J + N
IFINRILLTe1l) GO TO 900
IF(NRI+GT.1) GO TO 804
AMAX=ABS (A(J))
AMXA=ABS(A{JIN1))

LF (AMAX<GE +AMXA) GO TO 900

N5 = J - NR + 1
N6 = NS + N = 1
IAD = N -

DO 803 IT = N5,N6

- 17T6 = 1T + TAD

ATEM = A(IT)
ACIT) = A(IT6)
A(IT6}) = ATEM
ATEM = B(IT)
BUITY = B(IT6)
B(IT6) = ATEM.
GO T0.900 .
Jll.= I+ N + 1
J10 a g + N
AMAX=ABS (A1J))

‘DO 807 IT = 1sNRI

AMXA=ABS(A(J10)) .
IF (AMAX +GE +AMXA) GO TO 806
AMAX = AMXA' ,

WRLI = (J11 + N - 2)/(N + 1)
J10.= JI10 + N . . :
J11-= J11 ¢ N + 1

N5 = J = NR-+ 1.

N6 =N5 + N -1

ITEM = NR1 - NR

IAD = [TEM®N

IF(IAD+GT+0). GO -TO 802
CONTINUE :

DENOM = A(J) . . )
IF (DENOMeEQe0.0) .GO TO 51
IF(1IAD«GT+0) GO TO 701
DET = DET#DENOM

TABLE XXVI
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INVRTOO1
INVRTO002

- INVRTO003

INVRT004
INVRT005
INVRT006
INVRT007
INVRTO008
INVRT009
INVRTO10
INVRTO11
INVRTO12
INVRTO13
INVRTO14 -
INVRTO15
INVRTO16
INVRTO17
INVRTO18
INVRTO19
INVRT020

" INVRTO21

INVRTO22
INVRTO23
INVRTO24
INVRTO025
INVRTO26
INVRTOQ27
INVRTO28
INVRTO029
INVRTO030
INVRTO31
INVRTO032

INVRTO33

INVRTO34
INVRTO035
INVRTO36
INVRTO37
INVRTO38
INVRTO39
INVRTO40
INVRTO41
INVRTO42
INVRTO043
INVRTO44
INVRTO4S
INVRTO46
INVRTO47

INVRTO48

INVRTO049
INVRTO050
INVRTO51
INVRTO0S2
INVRTO53
INVRTO54
INVRTO55
INVRTOS56
INVRTOS7
INVRTOS8
INVRTOS9
INVRTO60
INVRTO61



701
702

100

101

200

300

60

400

401

500

600

703
51

TABLE XXVI (Continued)

GO TO 702

DET = DET#({-DENOM)
DO 100 J1 = N1sN2
A(J1l) = A(J1)/DENOM
B(J1l) = B(J1)/DENOM

J3 =.J4
N3 = N2 + 1
N4 = N2 + N

DO 200 L = 1s+JO
AMULT = A(J2)
DO 101 J1 = N3,N4

A(J1l) = A(J]l) - AMULT*A(J3)
B(Jl) = B(J1l) - AMULT*B(J3)
J3 = J3 + 1

J2 = J2 + N

J3 = U4

N3 = N3 + N

N4 = N4 + N

N1l. = N1 + N

N2 = N2 + N

JOo = JO - 1

J=J+N+.1

J2 =.J + N

Ja = J4 + N

DENOM = A(J)

IF (DENOM«EQeOe0) GO TO 51
AtJ) = A{J)/DENOM

DET = DET*DENOM

LT = J - N+ 1

DO 400 J1l = LTsJ

B(J1)Y = B(J1)/DENOM .

Jo = UK .

J2 = J-N

Jo = 4 - N+ 1
N2 = J2 - N

DO 600 L1 = 1,JK
J3 = Js :

N3 = N2 + 1

N4 = N2 + N

DO 500 L = 1sJO

AMULT = A(J2)

DO 401 J1 = N3sN4

A(Jl)y = A(J1) - AMULT*A(J3)
B(J1) = B(J1) - AMULT*B(J3)

J3 = U3 + 1
J3 = Ja

J2 = J2 - N
N3 = N3 = N
NG = N& — N
N2 = N2 - N
Jo = Jo - 1
J=J=N-1
J2 = J - N
J4 = U4 - N
1IE = 1
RETURN

IE = 0

GO TO 703
END
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INVRTO62
INVRTO63
INVRTO64
INVRT065
INVRTO066
INVRTO067
INVRTO68
INVRTO069
INVRTO70
INVRTO71
INVRTO72
INVRTO73
INVRTO74
INVRTO75
INVRTOQ76
INVRTO77

" INVRTO78

INVRTO79
INVRTOB0
INVRTOB1
INVRTO082
INVRTOB83
INVRTOB4
INVRTO85
INVRTO86
INVRTO87
INVRT088
INVRTO089
INVRT090
INVRT091
INVRTO092
INVRT093
INVRTO094
INVRT095
INVRTO096
INVRT097
INVRT098
INVRT099
INVRT100
INVRT101
INVRT102
INVRT103
INVRT104
INVRT105
INVRT106
INVRT107

- INVRT108

INVRT109
INVRT110
INVRT111
INVRT112
INVRT113
INVRT114
INVRT115
INVRT116
INVRT117
INVRT118

- INVRT119

INVRT120



APPENDIX B
STRESS ANALYSIS SYSTEM DIGITAL COMPUTIER PROGRAM

The ﬁtress Analysis System described in Chapter IV is based on
the stiffness method of structural analysis described in Chapter III,
The digital computer requires only a geometric description of the
structure to perform the stress and deflection analysis. The program
is controlled by the first two data cards, which are called the program
control cards,

The first card contains the heading to be placed at the beginning
of the program output data section, The second card defines the number
of node points, the number of elements, the number of load cases, the
number of stress nodes, and the print option. The correct placement of
this information on the control cards is shown as follows:

Title Card
Card No, 1

1 2 *%™%ny svailable character can go in these spaces ***

1 Analysis of Rectangular PanelSeew=m=w-M, U, Ayreseewe--1/1

Control Card
Card No, 2

Number of Number of Number of Number of Col 30=lor 0
Node Points Elements load Cases Stress Nodes Print Option.
1 ‘ 6 7 .12 13 18 19 o 30

20 b 5 5 0

If column 30 of card number 2 contains a nonzero numbér, the element stiff-
ness and stress matrices and the transformation arrays will be printed, A

flow diagram for the program is shown in Figure 39; - ¥ " iisiw
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(NTYPE)
(1) (2)

| Eua

(5)

X
RECTARGULAR
PLATE
ASSMED 5

5.9 PLATE TYFE
' ELEMENTS

(6)
K g8x8
'RECTANGULAR

()

K gx8
RECTANGULAR
PLATE
LINEAR STRESS

RIB & STRINGER|
ELEMENTS .

8D
ASSUMED T
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Ueh
" | STRESS
MATRIX
(55)

[stRESS
MATRIX

(66)

STRESS
MATRIX

- ()
~ |STRESS
MATRIX

- :
(33) (u4) (88) (99)
[FOR NEW ELEMENTS |

ELEMENT DEFLECTIONS
AND GENERALIZED
STRESS CALCULATIONS

o &

(3) (%) (8) (9)

OPEN P
ADD NEW Go TO
ELEMENTS HERE (N'IEPE)
- 22
—— ‘ 33
APPLY CALL INVERS CALL MULT, USING MPQRS by
BOUNDARY SUBROUTINE SUBROUTINE - SELECT ELEMENT ™~ -
| CONDITIONS TO K ¥ -1 -l p=§ DISPLACEMENTS | - :_
Eigure 39, Flow Diagram for Stress Analysis System
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The idealized structural elements used for an analysis with the
Stress Analysis System are selected depending on the number in column 24
of the _structural data card, Numbers 1 through 9 can be used and cor-

respond to the idealized elements shown in Table XXVII,

TABLE XXVII
IDEALIZED ELEMENTS IN STRESS ANALYSIS SYSTEM

Element
Number
(NTYPE) Description of Idealized Element
1 Stringer Element With Constant Stress
2 Stringer Element With Linear Strain Variation
3 Available for New Elements
L Available for New Elements
5 Plate Element With Assumed Displacements
6 Plate Element With Assumed Stresses
7 Plate Element With Linear Stress Variation
8 Available for New Elements
9 Available for New Elements

A Fortran IV listing of the digital computer program for the Stress
Analysis System is given in Table XXVIII,



C

101
102
103
104
105
- 106
107
109
110
111
112
113
114
115
116

TABLE XXVIII

FORTRAN PROGRAM FOR STRESS ANALISIS SYSTEM

SAS PROGRAM BY. M U AYRES ) ' i
DIMENSION AL(2)9yAL2(2)+AL3(2)sIPQRS{4) sMPQRS(8)+DSK(898)9STR(3+8)
1QORU(8»5) 9STRESS(395)9R(12)sBARK(1830) sNBC(60) 9X(60)sY (60}
2UBAR(60+5) sFORCE(6055)9sQBAR{60+5) s XN(6095) s YN(6095)
EQUIVALENCE(IPQRS(Q)oIS)o(IPQRS(B)oIR)’(IPQRS(Z)oIQ)'(IPQRS(l)oIP)
FORMAT ( 2Xs 1P8BEL1643)

FORAAT ( 2Xs - 1P4E1643)

FORMAT (1HOs 7HK BAR I o 1X)

FORMAT (2Xs15)

FORMAT { 6HO I = s 154 13H IPQRS(I) = 4 159

FORMAT ( - 6HO K = » [5y 13H MPQRSIK) = » I5)

FORMAT (. 6HOLA = 4 I5, 19H KI = MPQRS(LA) = , I5)

FORMAT ( 6HOKJ = .15} _ ' C o

FORMAT ( 6HOBARK{»s I5s 9H J = DSK{s I5¢ 2H s sy 159 2H.) )
FORMAT ( 6HO I = 4 15) . v '

FORMAT ( 6HOIJ = s 154 12H NBC{IJ) = 4 15) : :
FORMAT ( 7HO LA = s 154 TH 1 .= .5 154 17H BARK(I} = 140 )
FORMAT ( 41HO. NUMBER OF ROWS AND COLS TO BE ZEROED = 5 15)
FORMAT ( 6HO I = , I5s 15H BARK(I) = 040 )

FCRMAT (2Xs I5+5X93E144845Xs 1595Xs 4E14e8y ./ 2Xs 8110,

“1 /7 2X» 4110)

2170

2vl
202

203
204

205

206
219
221
222
251
252

253
254
255
256
257
258

259

802

804
805
809
992
993

994
995

8629
8778
8729

FORMAT -( 25H0 ELEMENT STRESS MATRIX )

FORMAT (8HONODE - »2(8XsTHTYPE OF ) 49X s BHSTRESSES) '
FORAAT(1X9s 6HNUMBER y9X » THELEMENT 98X s6HSTRESS s 10Xs6HCASE 111X e6HCAS
1E 2 911Xs6HCASE 3911X+6HCASE 4511X96HCASE 5)

FORMAT (35H1 GENERALIZED STRESS CALCULATIONS )

FORMAT  (33H]1 DEFLECTIONS FOR ELEMENT NUMBER s 15 } :
FORMAT(//43H " STRESSES AT THE CENTROID OF THE ELEMENT//)
FORMAT (30HO STRESSES FOR-ELEMENT NUMBER ., - I3, 6&H TYPE +13)
FORMAT{1HOs1459X915914Xs2HXX99X95E1748)

FORMAT (33X 92HXYs 9X95(2XsE1548))

FORMAT(33Xs2HYYs 9Xs5(2XsE1548))

FORMAT (1541Xs5F1244) » ;
FORMAT( 44H1 - : ‘STRESS NODE 'COORDINATES ~ » /

1 52H ELEMENT NODE 1 NODE 2 NODE 3 NODE 4 NODE. 5 )
FORMAT( 1Xs I3y 2H X» S5F12s4s ). B '

FORMAT (I5¢1Xs5F1244) - =~ :

FORMAT(1X+I392H Ys5F1244) .

FORMAT(1Xs30HNO STRESS MATRIX FOR TYPE 91392X s THELEMENT)

FORMAT{1X»30HNO STIFFNESS MATRIX FOR TYPE 9 13+2X s THELEMENT)
FORMAT ( 8H ELEMENTs 25Xs 16HCOORDINATES FOR» / :

1 7H NUMBERs 4Xs»54HNODE 1 NODE 2 NODE 3 NODE ¢4
2 NODE 5 )

FORMAT(1H0v27HNORMALIZED COORDINATES X = 9F12e4910X94HY = sF1244)

FORMAT(1016)

FORAAT (6E1340)
FORMAT(1Xs4HDET=9E14e2510X22HL=913)

FORMAT(1H1) o
FORMAT { 1HO» IOHNODE POINT»S X»11HCOORDINATES » 47X
125HDEFLECTION OF NODE POINTS)

FORMAT (1X»6HNUMBER 940X s 6HCASE 1s11X »

16HCASE 24911X96HCASE 3911X96HCASE 4911Xs6HCASE 5 )
FORMAT (1HD #2X912513Xs1HX 924X +5E1748)
FORMAT(18Xs1HY+24Xs5E1748)

FORMAT{  11HINODE POINTs3X+11HCOORDINATESs63Xs6HFORCES )
FORMAT(2014)

FORMAT(6Xs6F1240412)
FORMAT(15541451351XsE10e612F640)

FCRMAT{1H1,12A6)

FORMAT (19HAMATRIX 1S SINGULAR)

FORMAT (7H1 K BAR  /1X)

FORMAT(16H1 K BAR INVERSE/1X)
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“SAS5001

SAS002
SAS003
SAS004
SAS005
SAS006
SAS007
SAS008
SAS009
SAS010
SASO11
SAS012
SAS013
SASOLl4
SAS015
SAS016
SAS017

- SAS018

SAS019
SAS020
SAS021
SAS022
SAS023

. SA5024

SAS025
SAS5026

" SAS027
SAS028

SAS029
SAS030
SAS031
SAS032

SAS033

SAS034
SAS035°
SAS036
SAS037
SAS038
SAS039
SAS040
SAS041
SAS042
SAS043
SASO44
SAS045
SAS046
SAS047
SAS048

" 8AS049

SAS050
SAS051
SAS052
SAS053
SAS054
SAS055
SAS056
SAS057
SAS058
SAS059
SAS060
SAS061
SAS062



TABLE XXVIII (Continued)

9603 FORMAT( TH NODES=3s1535XsIHELEMENTS=91545Xs6HCASES=41245X
1»13HSTRESS NODES= .12/

TH

2 89H NODE COORDINATE LOAD 1 LOAD 2 LOAD 3
3 LOAD 4 LOAD 5 SUPPORT/1X)

9993 FORMATI(1Xs1392H XoF12e3s1Xs5F124346Xs11/1Xe1392H YsF124341Xs5F12e
1346Xs11)

9994 FORMATI(1Xs15941491394XsELlLlebsFlleésFl3a4 )

9995 FORMATI(114H1 ELEM P Q R S TYPE E PR
1ICKNESS—-AREA )

31009 FORMAT(1X»3HROWsI4s/1Xs (1P10E13e4))
99999 FORMAT(1H1423HEXECUTION COMPLETED FOR)
839 CONTINUE
REWIND 3
~ REWIND 4
C READ IN TITLE
READ(55995) (R(J)sJ=1,12)
WRITE(635995) (R(J)sJ=1412)
C READ IN PARAMETERS
READ(5+603) NNODESsNELEMsNCsNSN» IWRITE
WRITE(6+9603) NNODESsNELEMyNCyNSN
N2=2 *NNODES
NUM=(N2%(N2+1))/2
C READ IN NODE LOCATIONSs FORCEs AND BOUNDARY CONDITIONS
P9.2777 1=1sNNODES

READ(5+993) X(I)s (FORCE(I12-1sJ)s J=1s5 )sBARK(I2-1)»
1 Y(I)y (FORCE (I2sJ)s J=1,45)y BARKI(I2)
T777 WRITE (699993) 1sX(I)s (FORCE(I2=-14J)sJ=195)y BARKI(IZ2~11)»
1 Is Y(I)s (FORCE (12 » J)» J=145)»BARKI(12)
C THE NCROSS ROWS AND COLS. TO BE STRUCK FROM K-BAR sAS DICTATED BY
C BOUNDARY CONDITIONSs ARE STORED IN ARRAY NBCI(I)e
C BARK IS USED TO READ THE INDEX OF FIXED BOUNDARY NODES
[J=0
DO 7778 I=1sN2
IF(BARK(I))TT779+7778»7779
7779 1Jd=1J+1
NBC(IJ)=1
IF(IWRITE«EQ«O0) GO TO 7778
WRITE (6+111) 1
WRITE (6+112) 1Jy I
7778 CONTINUE
NCROSS=1J
DO 320 I=1sNUM
BARK (11=040
320 CONTINUE
C READ NODE NUMBER 1YPE ELEMENT MODULUS PR AREA
WRITE(6+9995)
DO 236 NN=1sNELEM
READ(5+4994) IEsIP+IQsIRsISsNTYPESE+PRsA
IF(IWRITE«EQsO0) GO TO 513
WRITE (6+9995)
513 CONTINUE
WRITE(6+9994) IE+IP»IQyIRyISeNTYPESE+PRyA
GO TO (1924349445469 79839)sNTYPE
1 CONTINUE

CHRUNRBERHERERRRERURESTRINGER AND RIB CALCULAT [ ONSHE 25633059 30 53 3538 330 35 35 35090 30 %

JLAM=4
DO 10004 [=1s4
DO 10004 J=1s4
10004 DSK(1sJ)=040
CALCULATE THE PQ DIRECTION COSINESs
XQP=X(1Q)=X(1P}
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SAS063
S5A5064
SAS065
SAS066
SAS067
SAS058
SAS069
SAS070
SAS071
SAS072
SAS073
SAS074
SAS075
SAS076
SAS077
SAS078
SAS079
SAS080
SAS081
SA5082
SAS083
SAS084
SAS085
3A388%
SASO88
SAS089
SAS090
SA5091
SAS092
SA5093
SAS094
SAS095
SAS096
SAS097
SAS098
SAS099
SAS100
SASlol
SAS102
SAS103
SAS104
SAS105
SAS106
SAS107
SAS108
SAS109
SAS110
SAS111
SASl12
SAS113
SAS114
SAS115
SAS116
SAS117
SAS1l8
SAS119
SAS120
SAS121
SASl122
SAS123
SAS124



239

500

10005

TABLE XXVIII (Continued)

YQP=Y(1Q)~-Y(IP)

D1=SQRT (XQP##¥2+YQP*#2)
D2 = p1

AL({1)=XQP/Dl
AL(2)=YQP/Dl

AE=AXE

D02391=1,2

D0239J=142

DSK (IsJ) = AL(IV*AL(J)*AE/D1
DSK(1+24+J) = =DSK{IlsJ)

DSK (I54+2) = -DSK{IsJ)
DSK(I+2+J+2) = DSK(I4J)

CONTINUE )

IF(IWRITE4EQe0) GO TO 500

WRITE (65205) NTYPE

WRITE (64103) ,

WRITE (65102) ((DSK(IsJ)sl=1s4)s J=144)
CONTINUE

GO TO 235

CONTINUE

HHXRAIRHAXNH X XHSTRINGER WITH LINEAR STRESS FUNCTION *3H¥k3 ¥k k3%
JLAM=4

DO 10005 1=1s4

DO 10005 J=1s4

DSK(1sJ)=040

CALCULATE THE PQ DIRECTION COSINES.

240

511

5

XQP=X(1Q)-X(1P)

YQP=Y(IQ)-Y(IP)

D1=SQRT (XQP**2+YQP##2)

D2 = pl

AL(1)=XQP/D1

AL(2)=YQP/D1

AE=A%E

DO 240 I=1,2

DO 240 J=1,2 ,
DSK(IeJ)=AL(I)¥AL(J)*(AE/D1) %40/ 340
DSK(1+24J)=-DSK(15J)
DSK(19¢J+23==DSK(IsJ)

DSK(I+25J+2) = DSK(IsJ)

CONTINUE

IF(IWRITESEQs0) GO TO 511

WRITE (65205) NTYPE

WRITE (65103)

WRITE (65102) ({DSK(IsJ)sI=loti)s J=1s4)
CONTINUE

GO TO. 235

CONTINUE

CONTINUE

WRITE(6+257) NTYPE

GO TO 839

CONTINUE :

CH¥RERREA BB AR AN HHXRECTANGULAR*PLATERCALCULAT I ONS 3338556 3 3 3¢ 4636 3 3 96 36 3 3 3 336 36 6 3 %
CRERXRRRABUAERHARRRHASSUMED DISPLACEMENT FUNCT T ON #3333 36 2638 56 5 3 36 5389 369 36 3% %

10003

DO 10003 I = 1.8

DO 10003 J=1,8

DSK (IsJ) = 060

JLAM=8

XQP=X(IQ)-X (1P}
YQP=Y{IQ)-Y(IP)

D1=SQRT (XQP*¥#2+YQP#*#2)
AE=AX*E )
X2=X{IR)=X(1Q)

42

SAS125

" SAS126

SAS127
SAS128
SAS129
SAS130
SAS131
SAS132
SAS133
SAS134
SAS135
SAS136
SAS137
SAS138
SAS139
SASl4Q
SASl4l
SAS142
SAS143
SASlay
SAS145
SAS146
SAS147
SAS148
SAS149
SAS150
SAS151
SAS152
S5A5153
SAS154
SAS155
SAS156
SAS157
SAS158

- SAS159

SAS160
SASlel
SAS162
SAS163
SASleé4a
SAS165
SAS166
SASle7
SAS1é68
SAS169
SAS170
SAS171
SAS172

. SAS173

SAS174
SAS175
SAS176
SAS1717
SAS178
SAS179
SAS180
SASlsl
SAs5182
SAS183
SASl184
SAS185
SAS186



Y2=Y{(

TABLE XXVIII (Continued)

IR)-Y(1Q)

D2=SQRT (X2*%2+Y2%%7)
AL(1)=XxQP/D1
AL(2)=YQP/D1

AL2(1
AL2(2

1=X2/D2
1=Y2/D2

BETA=D1/D2
ET1=AE/{1le—-PR#%2)
ET2=AE/(2e+2e*PR)
CALCULATE THE KD+KS MATRIX

PRZ2=PR*¥%2

DSK  (1lel)= ET1*BETA/34+ET2/(34%BETA)
- DSK  (2s1)=(ET1*PR+ET2) /4,

DSK  (3s1)=ET1*BETA/6,-ET2/(3,.,*BETA)

DSK  (4s1)=(-ET1%#PR+ET2} /4.

DSK  (591)=-ET1*BETA/6e~ET2/(6+*BETA)

DEX (791)=~ET1*BETA/3a+ET2/(6+*BETA)

DSK  (2921=ET1/(3.*BETA)+ET2#BETA/ 3.

DSK  (4+2)=-ET1/(3e*BETA)+ET2%*BETA/6.

DSK  (6+2)=-ET1/(6%BETA)-ET2*BETA/6.

DSK  (B92)=ET1/(6«*BETAI-ET2%BETA/ 3,

DSK  (393)=ET1*#BETA/3.+ET2/(3.*BETA)

DSK  (5+3)=—ET1*BETA/3e+ET2/(6e*BETA}

DSK  (691)==DSK (241}

DSK . (8s1)==DSK (4s1)

DSK  (3+2)=-DSK (4s1)

DSK  (542)==-DSK {241)

DSK  (742)= DSK (4s1)

DSK  (443)==~DSK (2+1)

DSK (6s3)= DSK (4s1)

DSK ~ (79+3)= DSK (551)

DSK (8s3)= DSK (2,1)

DSK  (44+4)= DSK (2+2)

DSK  (5+4)= DSK {342)

DSK =~ (6s4)= DSK ({81+2)

DSK  (7s4)= DSK (2s1)

DSK {B8s4)= DSK (6:2)

DSK  ({5s5)= DSK (1s1)

8620

DO 8620 I=2+4

DSK
DsSK
DSK
DSK
DSK

({I+495)=DSK (141}
(I4+446)=DSK (1,42)
(797)= DSK (1s1)
(8s7)=~DSK (2s1)
(8+8)= DSK (242)

DO 302 J=1,8
DO 302 I=1,8

302 DSK{JsIl) = DSK(IsJ)
IF(IWRITE.EQeO) GO TO 502
WRITE (6»205) NTYPE
WRITE (6+103)
WRITE (6+101) ((DSK(IsJ)sI=198)0 J=1+8)

502 CONTINUE
GO TO 235

6 CONTINUE :

CH¥CHERHRSHHAEH X HARECTANGULARKPLATERCALCULAT T ON S 338365 3 5798 356 6 36 338 336 3 3436 3¢ 34 %
CHatxxxutit xASSUMED STRESS FUNCTION WITH FIVE
DO 10002 I = 1,8

10002

DO 10062 J

DSK ¢

1.8

1eJ) 0.0

JLAA=8

XQP=X
YQP=Y

(1Q) =X (IP)
(1Q)-Y ¢ LR}

COEFF 1 CTENTSH 35 % 3¢ 33533 35 33 3¢ % %
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SAS187
SAS188
SAS189
SAS190
SAS191
SAS192
SAS193
SAS194
SAS195
SAS196
SAS197
SAS198
SAS199
SAS200
SAS201
SAS202
SAS203
SAS204
SAS205
SAS206
SAS207
SAS208
SAS209
SAS210-
SAS211

' SAS212

SAS213
SAS214
SAS215
SAS216
SAS217
SAS218
SAS219
SAS220
SAS221
SAS222
SAS223
SAS224

- SAS225

SAS226
SAS227
SAS228
SAS229
SAS230
SAS231
SAS232
SAS233
SAS234
SAS235
SAS236
SAS237
SAS238
SAS239
SAS240
SAS241
SAS242
SAS243
SAS244
S5AS245
SAS246
SAS247
SAS248



TABLE XXVIII (Continued)

D1=SQRT (XQP*#2+YQP#*%2)
AE=A®E

X2=X(IR)=X(1Q)
Y2=Y(IR)=Y(1Q)

D2=5QRT (X2#*2+Y2%%2)
AL(1)=XQP/D1
AL(2)=YQP/D1
AL2(1)=x2/D2
AL2(2)=Y2/D2

BETA=D1/D2
ET1=AE/(1s=PR*%2)
ET2=AE/(24+24%PR)
PR2=PR*#2
C CALCULATE THE KD+KS MATRIX

DSK  (1lsl)= (2e%(4+-PR2)*BETA/3e+(1+4=PR)/BETA)*ET1/8,4
DSK  (2s1)= (1l.+PR)*ET1/8.
DSK  (3391)= (24%(2e+PR2)*BETA/34~(1+-PR)/BETA)*ET1/8,
DSK  (431)= (le—3+*%PR)*ET1/84
DSK  (5sl)= (=24%(24+PR2I*BETA/3e-(1e~PR)/BETA)*ET1/8¢
DSK  (7sl)= (-2e%(4e=PRZ2)*BETA/3e+(1e-PR)/BETA)*ET1/8
DSK  (292)= (24%(44=PR2)/(34%BETA)+(1+=PR)*BETA)*ET1/8B.
DSK  (4492)= (-2e%(4+-PR2)/(34*BETA)+(1+-PR)I*BETA)*ET1/84
DSK  (6492)= (~2¢%(2+4+PR2)/(34%*BETA)=-(14-PR)I*BETAI*ET1/84
DSK  (8+2)= (2+%(2++PR2)/(34%BETA)=(1s-PR)*BETA)*ET1/8,
DSK  (343)= (2%(44~PR2)*BETA/3e +(1e=PR)/BETA)*ET1/8s
DSK  (593)= (-24%(4+-PR2)*BETA/3++(1-PR)/BETAI*ET1/8,
DSK  (631)=-DSK (241)
DSK (8»1)==DSK (4s1)
DEX  (3492)==DSK (41}
DSK  (542)==DSK (241}
DSK  (792)= DSK (441)
DSK  (493)==DSK (241)
DSK  (693)= DSK (4s1)
DSK  (7+3)= DSK (5s1)
DSK (84+3)= DSK (241}
DSK  (4s4)= DSK (2s2)
DSK  (54+4)= DSK (3,2)
DSK (694)= DSK (8,2)
DSK  (7+4)= DSK (241)
DSK  (Bs4)= DSK (6+2)
DSK (545)= DSK (1,s1)
DO 8621 [=2+4
DSK  (I+445)=DSK (1s1)

8621 DSK (I+4+6)=DSK (1s2)
DSK  (7»7)= DSK (1s1)
DSK (8s7)=-DSK (2s1)
DSK (848)= DSK (242)

DO 301 J=1.8
DO 301 I=1,8
301 DSK(Jsl) = DSK(IsJ)
IF(IWRITE«.EQs0) GO TO 501
WRITE (6+205) NTYPE
WRITE (6+103)
WRITE (6+101) ((DSK(IsJ)sl=1+B)s J=148)
501 CONTINUE
GO TO 235
T CONTINUE

CHRBERRBEERHA BN R RERECTANGULARNPLATERCALCULAT TONS #5981 3 363 30 3896 3 6 4 36563530630 36 30 30 4
Cruneunu® ASSUMED STRESS FUNCTION WITH SEVEN COEFFICTIENTSH 8 ¥ 0584 %% %544 N

DO 10006 I = 1.8
DO 10006 J = 1,8

10006 DSK

(Is¢J) = 0.0
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SAS249
SAS250
SAS251
SAS252
SAS5253
SAS254
SAS5255
SAS256
SAS257
SA5258
SA5259
SAS5260
SAS261
SAS5262
S5AS263
SAS264
SAS265
SAS266
SAS267
SAS268
SAS269
SAS270
SAS271
SAS272
SAS273
SAS274
SAS275
SAS276
SAS277
SAS278
SAS279
SAS280
SAS281
SAS282
5AS283
SAS284
SAS285
SAS286
SAS287
SAS288
SAS289
SAS5290
SAS291
SAS292
SAS293
SAS294
SAS295
SA5296
SAS297
SA5298
SAS5299
SAS300
SAS301
SAS302
SAS303
SAS304
SAS305
SAS306
SAS307
SAS308
SAS309
SAS310



402

403

512

TABLE XXVIII (Continued)

JLAM=8

XCP=X(IQ)=x(IP)

YQP=Y(IQ)=Y(IP)

BY=SQRT (XQP*¥2+YQP*#2)

D1l = BY

AE=A*E

AL(1)=XQP/D1

AL(21=YQP/D1

X2=X(IR)=X(1Q)

Y2=Y(IR)=Y(IQ)

AX=SQRT (X2#%2+Y2%%2)

-D2 = AX

ALP = (3.0%AX*AX) + (BY*BY)

BET = (AX¥AX) + (3.0 * BY*BY)
DSK(1s1)=+(35+*BY*BY*ALP*BET )+ ( (BY*%4 ) *BET )= (6« #AXXAX*BY*BY*BET ) +(
19« *AX*AXRALP*BET )+ (9o % (AX%%4 ) #BET)

DSK(2+1)=18#AXHBY®ALP#*BET

DSK(3s1)=+(19. %BY*BY*ALP*BET )~ ((BY¥%4 ) ¥BET )+ (6« #AX®AXXBY #BY®BET )=
19 ¥AX*AX®ALP*BET )= (9o * (AX¥%4 ) %BET)
DSK(581)==(19*BYXBY®ALP*BET )+ ( (BY*%4 ) *BET )~ (6« ¥AX*AX*BY*BY*BET ) —(
19« #AX*AX¥ALP*BET )+ (9o % (AX%¥4 ) *BET)
DSK(T7s1)==(354%BY*BY*ALP*BET )= ( (BY**4)*BET )+ (6 #AXXAX*BY *¥BY*BET )+ (
19 *AXRAXRALP*BET )~ (9% (AX*%4 ) *BET)

DSK(292)=+(35¢ ¥AX*AXHALP*BET )+ ( (AX*%4 ) ®ALP ) = (6« #AXXAX*BY ¥BY*ALP ) +(
19+ *BY*®BYXALP*BET )+ (9% (BY*%4)*ALP)

DSK(442)==(35s %AX®AXKALP*BET )= ( (AX®¥4 ) #ALP)+ (6o *AXKAXKBY #BYHALP ) +(
19« %*BY®BY*ALP®BET )= (94 % (BY®¥4)%ALP)

DSK(642)==(19« *AX®AX*®ALP®BET )+ ( (AX*%4 ) %ALP) = (6o *AXKAXKBY*BY*ALP) - (
19 *BY*BYRALP*BET )+ (9% (BY*¥*4 ) %ALP)

DSK(B#2)=+ (19 *AX®AX*ALP*BET )= ( (AX*¥*4 ) *ALP )+ (6o #AXXAX*BY #BY*ALP )=
19.¥BYRBY®ALP*BET )~ (9% (BY**4 ) *ALP)

DSK(6s1) ==DSK(2s1)

DSK(542) = DSK(6s1)

DSK(343) = DSK(1lsl)
DSK(4s3) = DSK(6s1)
DSK(5+3) = DSK(Ts1)
DSK(7+3) = DSK(541)
DSK(8+3) = DSK(2s1)
DSK(494) = DSK(242)
DSK(6s4) = DSK(8s2)
DEK(T7s4) = DSK(2s1)
DSK(Bs4) = DSK(692)
DSK(545) = DSK(1sl)
DSK(6+5) = DSK(2s1)
DSK(T7+5) = DSK(3s1)
DSK(6s6) = DSK(2+2)
DSK(8+6) = DSK(4s2)
DSK(T7s7) = DSK(lsl)
DSK(Bs7) = DSK(6sl)

DSK(8+8) = DSK(2+2)

DO 402 J=1,8

DO 402 I=1,8

DSK(Jsl) = DSK (1sJ)

DO 403 1=1+8

DO 403 J=148

DSK(I9J) = DSK(IsJ)* ((E*A)/(96+*%ALP*BET*AX*BY) )
IF(IWRITE«EQ«Q) GO TO 512

WRITE (6+205) NTYPE

WRITE (6+103)

WRITE (6+101) ((DSK(IsJ)el=148)s J=1,8)
CONTINUE

GO TO 235

145

SAS311
SAS312
SAS5313
SAS314
SAS315
SAS316
SAS317
SAS318
SAS319
SAS320
SA5321
SAS322
SAS323
SAS324
SAS325
SAS326
SAS327
SAS328
SAS329
SAS5330
SA5331
SAS332
SAS333
SAS334
SAS335
SAS336
SAS5337
SAS338
SA5339
S5AS5340.
SAS341
SAS342
S5AS5343
SAS344
SAS345
SAS5346
SAS347
SAS348
SAS349
SAS350
SAS5351
SAS5352
SAS353
SAS354
SAS5355
SAS356
SAS357
SAS358
SAS359
S5AS5360
SAS361l
SAS362
SAS363
SAS364
SAS365
SAS366
SAS367
SA5368
SAS369
SAS370
SAS371
SAS372



TABLE XXVIII (Continued)

8 CONTINUE
9 CONTINUE
WRITE (642571}
GO TO 839
C MPQRS(I) CONTAINS THE SCHEME FOR PLACING THE ELEMENT MATRICES INTO
C THERE LARGER COUNTERPARTSs
235 CONTINUE
K=0
JROW = JLAM / 2
DO 39 I=1,JROW
DO 39 J=1,2
K=K+1
MPQRS(K)=2%]PQRS(I)-2+J
IF(IWRITE.EQs0) GO TO 504
WRITE (64106) Ks» MPQRS(K)
574 CONTINUE
39 CONTINUE
C ADD KBAR I INTO KBAR
38 DO 37 LA=1lsJLAM
KI=MPQRS(LA)
DO 37 I=1sJLAM
KL=MPQRS5(1)
IFIKI=KL)37 43744374
374 KJ=(KI*(KI-1))/2+KL
BARK (KJ)=BARK(KJ)+DSK (LAsI)
IF(IWRITE.EQs0) GO TO 505
WRITE (6»107) LAy KI
WRITE (6+110) KJ» LAy 1
505 CONTINUE
at CONTINUE
Cxue*%WRITE TAPE 4 FOR STRESS CALCULATIONS #%s%samussadiisstnsaiennstsiss
WRITE (4) NTYPE+EsPRsAsJLAM»D1+D2sAL(1)+AL(2)+sMPQRSs IPQRS
IF(IWRITE.EQWO0) GO TO 506
WRITE(6+8798)
CALL WRT ( BARKs N2)
506 CONTINUE
236 CONTINUE
CHuuxux*yRITE COMPLETE STIFFNESS MATRIX ON TAPE 3 FOR FORCE CALCULATION®*
WRITE( 3) (BARK(I1)sI=1sNUM)
WRITE(6+8798)
NF=0
NS=0
DO 31007 J=1sN2
NS=NF+1
NF=NF+J
31007 WRITE (6+31009) Js (BARK(I)s I=NSaNF)
C REMOVE SINGULARITIES FROM K-BAR BY PLACING 1 ON DIAGONAL AND ZERO
C ELSEWHERE ON DUPLICATED ROWS AND COLUMNS.
WRITE (6s114) NCROSS
DO 316 LC=1»NCROSS
LA=NBC(LC)
DO 315 I=1sN2
L=MAXO(LAyI)
KA=(LA+1)+(L*(L-3))/2
IF{IWRITE«EQs0) GO TO 507
WRITE (6»115) KA
507 CONTINUE
315 BARK(KA)=0
KB=(LA®(LA+1))/2
IF(IWRITE«EQes 0) GO TO 508
WRITE (65113 ) LAy KB
508 CONTINUE
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SAS373
SAS374
SAS375
SAS5376
SAS377
SAS378
SAS5379
SAS380
SAS381
SA5382
S5A5383
SAS384
SAS385
SAS386
SAS387
SA5388
SAS5389
SAS390
SAS5391
SAS5392
SAS393
SA5394
SAS5395
SAS396
SAS5397
SA5398
SA5399
SAS400
SAS5401
SAS402
SAS403
SAS404
SAS405
SAS406
SAS407
SAS408
SAS409
SAS410
SAS411
SAS412
SAS413
SAS414
SAS415
SAS416
SAS417
SAS418
SA5419
SAS420
SAS5421
SAS422
SAS5423
SAS424
SAS425
SAS426
SAS427
SAS5428
SAS429
SAS430
SAS431
SAS432
SAS433
SAS434



316

509

TABLE XXVIII (Continued)

BARK(KB)=1.

CONTINUE

IF(IWRITE«EQe 0) GO TO 509
WRITE(6+8798)

CALL WRT ( BARKs N2)
CONTINUE

CALCULATE K-BAR-INVERSEs IF ISING IS O ON RETURN THE MATRIX IS SINGULA

319

510

900

638
637

CALL SYMINV (N2s BARKs ISING)
WRITE(6+8799)

NS=0

NF=0

DO 31008 J=1sN2

NS={F+1

NF =NF+J

WRITE(6431009) Js (BARK(I)sI1=NSsNF)
IF(ISING)317+86234317
WRITE(6+8629)

GO TO 839

CONT INUE

ZERO DIAGONAL ELEMENTS OF BARK INVERSE
DO 319 LC=14NCROSS
LA=(NBCILC)*(NBC(LC)+1))/2
BARK(LA)=0

IFIIWRITE«.EQe 0) GO TO 510
WRITE(6+8799)

CALL WRT ( BARKs N2)

CONTINUE

CALL SMMPY (BARK sFORCEsUBARsN2sNC)
WRITE(6+800)

WRITE(6+801)

WRITE(6+802)
K=C

DO 638 I=1sN2s2
K=K+1

WRITE(6+804) Ks (UBAR(1sJ)sJ=1sNC)
WRITE(6+805) (UBAR(I+1sJ)sJ=1sNC)
CONTINUE

CHUNAUUXREWRITE FORCES ACTING ON THE STRUCTURE 5 335 3 365 3 909598 3 396 3 0636 30 90 30 36 3

701

700

640

WRITE(6+809)

WRITE(6+802)

K=0

DO 701 I=1sN2s2

K=K+1

WRITE(6»804) Ky (FORCE(IsJ)sJ=14NC)
WRITE(6+805) (FORCE(I+15J)sJ=1,NC)
CALCULATE THE FORCE MATRIX = KBAR * UBAR
REWIND 3

READ(3) (BARK(I)sI=1sNUM)

CALL SMMPY (BARK»UBAR »QBARsN2sNC)
DO 700 I=1sN2

DO 700 J=14NC

QBAR(IsJ) = QBAR(I+J) + FORCE(IsJ)
WRITE(6+809)

WRITE(6+802)

K=0

DO 640 I=14N2+2

K=K+1

WRITE (6+804) Ks (QBAR(IsJ) s J=1sNC)
WRITE(6+805) (QBAR(I+1sJ)sJ=1sNC)

CHREXRRUREARKUHELEMENT GENERALIZED STRESS CALCULAT IONSS M5 3105150010510 00 % 4

IF(NSN+EQ.0) GO TO 642
WRITE (6,203)
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SAS435
SAS436
SAS437
SAS438
SAS439
SAS440
SAS441
SAS442
SAS443
SAS444
SAS445
SAS446
SAS447
SAS448
SAS44Y
SAS450
SAS451
SAS452
SAS453
SAS454
SAS455
SAS456
SAS457
SAS458
SAS459
SAS460
SAS461
SAS462
SAS463
SAS464
SAS465
SAS466
SAS467
SAS468
SAS469
SAS470
SAS4T1
SAS4T2
SAS473
SAS4T4
SAS475
SAS4T6
SAS4TT
SAS478
SAS479
SAS480
SAS481
SAS482
SAS483
SAS484
SAS485
SAS486
SAS487
SAS488
SAS489
SAS490
SAS491
SAS492
SAS493
SAS494
SAS495
SAS496



642

641

TABLE XXVIIT (Continued)

CONTINUE

REWIND 4

DO 370 NN=1,NELEM

READ (4) NTYPEsEsPRsAs JLAMsD1sD2sAL(1)sAL(2)9sMPQRS »IPQRS
IF(IWRITE+EQsQ0) GO TO 641

WRITE (6+116) NTYPEsEsPRsAsJLAMsD1sD24AL(1)9AL(2)sMPQRS »IPQRS
CONTINUE

s T s T e TR s T ey
C SELECT U-BAR-I FROM U-BAR AND STORE IT IN QORU(IsJ)

220

223

DO 220 I=1sJLAM
KI=MPQRS(1)

DO 220 J=14NC
QORU(I»J)=UBAR(KI+J)
WRITE (6+204) NN
WRITE (6+801)

WRITE (6+802)

K=0

DO 223 [ = lsJLAMy 2
K=K+1

WRITE (6+804) IPGRS(K)s (QORU(IsJ)sJd=14sNC)
WRITE(6+805) (QORU(I+1ls J)sJ=1sNC)
CONTINUE

CHEERRRBRRRRREER RN R RN ERR RN ERRN R RER TR R R RN RNR

375

379

376

377

378

11

IFINSN.EQs0Q) GO TO 379

WRITE (65258)

IF(NTYPE-GEs 5) GO TO 375
READ(5+251) Is(XN(NNyJ)sJ=1sN5SN)
WRITE(6+253) T4 (XN(NNsJ)sJ=1sNSN)
GO TO 376

CONTINUE

READ (5+251)1s (XN(NNsJ)sJ=1sNSN)
READ(5+254) Is(YN(NNsJ)sJ=1sNSN)

WRITE(6+253)1s (XNINNyJ)sJ=1sNSN)
WRITE(69255) T o(YNINNsJ) sJ=1sNSN)
GO TO 376

CONTINUE

IF({NSN+EQs0Q) NSN1=1
IF(NSNeNE<O) NSN1=NSN
XN(NNs1)=D2/2e
YN(NNs1)=D1/2s
WRITE(6+205)

CONTINUE

DO 237 NNSN=1sNSN1

DO 377 1=1,3

DO 377 J=1,8

STR (IsJ) = 0.0

DO 378 1=1,3

DO 378 J=1,5

STRESS (IsJ) = 0.0

GO TO (11922+33+44455+669T77988+99)sNTYPE
CONTINUE

CHARERRERREXXRERSTRESS MATRIX STRINGER ELEMENT 5855355065 50 3 935 330 90 00 500 3 96 300 50 0 0

WRITE (6,200)

STR (1s1) = -(AL(1)*E) / D1
STR (1+2) = =(AL(2)%E) / D1
STR (1s3) = AL(1)*E / D1

STR (le4) = AL(2)%E / D1
WRITE (6+101) (STR (led)ad=1s4)
CALL MXM (STR»QORUsSTRESSsNC)

GO TO 30

CH¥nxu#¥%%%¥XSTRINGER STRESS MATRIX ASSUMED STRESS FUNCT TONS % %% ¥ %% %%k

22

CONTINUE
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SA5497
SAS5498
SAS499
SAS500
SAS501
SAS502
SAS503
S5AS504
SAS505
SAS506
SAS507
SAS508
SAS509
SAS510
SAS511
SAS512
SAS513
SAS514
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SAS516
SAS517
SAS518
S5AS5519
SAS520
SAS521
SAS5522
SAS523
SAS524
SAS5525
SAS526
SAS527
SAS528
SAS529
SAS530
S5AS5531
SAS532
SAS533
SAS534
SAS535
SAS536
SAS537
SAS538
SAS539
SAS540
SAS541
SAS542
SAS5543
SAS544
SAS545
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SAS5547
SAS548
SAS5549
SAS5550
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SAS552
SAS553
S5AS5554
SAS555
SAS5556
SAS557
SAS558



XX = XN(NNsNNSN) / D2
WRITE(64+101) XX

TABLE XXVIII (Continued)

STR (lel)==(AL(1)I*E)*(1s0-XX) / D1
STR (192)==(AL(2)*E)*(140-XX) / D1
STR (193)=AL(1)%E*XX / D1
STR (lod)=AL(2)*E*XX / D1

WRITE(6+200)
WRITE(6+101) (STR (1

sJ)ed=1s4)

CALL MXM (STRsQORUsSTRESSsNC)

GO TO 30

33 CCNTINUE

44 CONTINUE
WRITE (6+256)
GO TO B39

55 CONTINUE

CHERERREARRRRRRRERRSTRESS MATRIX ASSUMED DISPLACEMENTS %553 3 9 5 5 3 96 3 36 5 4 30

XX = XN(NNsNNSN) / D2
YY = YN(NNsNNSN) / D1
WRITE(6+259) XXs»YY

XA = D2

Y8 = D1
EPRO=1+0-PR¥**2
EPR1=E/EPRO

STR{1s1)==EPR1*#(140-YY)/XA
STR{1+2)==EPR1*PR*(140-XX)/YB

STRI(1+3)==EPR1¥XX/XA

STRIls4)= =(S5TR(1s2))
STR(1s5)= =(STR(14+3))
STR(1s6)=EPRL*PR*XX/YB

STR{1+7)= =(STR(1lsl)
STR(1+8)= =(STR(1+6)

STR(2»1)=-EPR1*PR¥(1l.0-YY) /XA
STR(2»2)=-EPR1*(140-XX}/YB
STR(2+3)=-EPRL*PR*YY /XA
STR(2s4)= =(S5TRI(2+2))
STR(245)= =(STR(2+3))

STR(2+6)=EPR1%*XX/YB
STR(2+7)= =(5TR(24+1)

STR(2+8)= =(STR(2+6))
STR(3s1)=~EPR1*(1+0-PR)*¥(140-XX)/(2.0%YB)
STR(392)=-EPR1*¥(140-PR)*(140-YY)/(2.0%XA)

STR(393)= =(STR(341)

STR(3+4)=—EPR1*#YY*(1.0-PR)/(2.0%XA)
STRI3+5)=EPR1I*XX*(140-PR)/(2.0%YB)

STRI(346)= =(STRI(344)
STR(3s7)= =(STRI(345)
STR(3+8)= =(STR(3,2)
WRITE (6+200)

WRITE (691010 ((STR(IsJ)s J=1981s [=1+3)
CALL MXM (STR»QORUsSTRESS4NC)

GO TO 30
n6 CONTINUE

CHuanunRu®STRESS MATRIX ASSUMED STRESS FUNCTION WITH 5 COEFFICIENTS*%%%x

XX = XN(NNsNNSN) / D2
YY = YN(NNsNNSN) 7/ D1
WRITE(6+259) XXaYY

XA = D2

YB = D1
EPRO=140-PR#*%2
EPR1=E/EPRO
EPR2=2.0%YY~-140
EPR3=140-2.0%YY
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5A5559
SAS5560
SAS561
SAS562
SAS563
SAS564
SAS565
SAS566
SAS567
SAS5568
SAS5569
SAS570
SAS571
SAS572
SAS573
SAS574
SAS575
SAS576
SAS5T7
SAS578
SAS579
SAS580
SAS581
SAS582
SAS5583
SAS584
SAS5585
SAS586
SAS587
SAs588
SAS589
SAS5590
SAS591
SA5592
SAS593
SAS5594
SAS5595
SA5596
SAS597
SAS598
SAS599
SAS600
SAS601
SAS602
SAS603
SAS604
SAS605
SAS606
S5A5607
SAS608
SAS609
SAS610
SAS611
SAS612
SAS5613
SAS614
SAS615
SAS616
SAS617
SAS618
SAS619
SAS620
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TABLE XXVIII (Continued)

EPR4=2,0%XX~1.0

EPR5=140-2.0%XX
STRU1s1)=EPR1*((EPRO*EPR2)=1s0)/(2+0%XA)
STR(1#92)==EPRL#PR/(2,0%YB)
STR(1+3)=EPR1*((EPRO*EPR3)=140)/(2+0%XA)
STRU1+4)=EPR1*PR/(2.0%YB)
STR(1+5)=EPR1*( (EPRO¥EPR2)+1+0)/(2.,0%XA)
STRI1+6)=5TRI(144)

STRI1+7)=EPR1%*( (EPRO*EPR3)+1+0)/(2+0%XA)
STR(1+8)==STR(1s4)
STR(24+1)=-EPR1#PR/(2.0%XA)
STR(2+2)=EPR1*((EPRO*EPR4)~140)/(2.0%YB)
STR(2+3)=5TR(2+1)
STR(2+4)=EPR1* ([ (EPRO*EPRS5)+140)/(20%YB)
STR(2+5)==5TR(2+1)

STR(2+6)=EPR1*( (EPRO*EPR4)+1+0)/(2+0%YB)
STR(2+7)=STR(245)

STR({2+8)=EPR1*( (EPRO*EPRS5)~1+0)/(2+0%YB)
STR(3s1) = —(EPR1*(1.0-PR)/ (4.0 * YB))
STR(3+2) = —(EPR1*(1.0-PR) /(4.0 % XA))
STR(343)==5TR(3+1)

STR(344)=5TR(3,2)

STR(345)=5TR(3,3)

STR(346)=-5TR(3,2)

STR(3+7)=5TR(3,1)

STR(3+8)=5TR(346)

WRITE(6+200)
WRITE(6+101)((STRIIsJ)sJ=14B)s1=143)
CALL MXM (STR+QORUsSTRESSsNC)

GO TO 30

CONTINUE

By = D1

AX = D2

XX= XN(NNsNNSN)

YY= YN(NNsNNSN)

WRITE(69259) XXaYY

ALP = (3.%D2%D2 + D1%D1)

BET=(3.%D1%D1)+(D2%#D2)

DO 371 I=1,3

DO 371 J=1,8

STR{IsJ) = 0e0

STR(191)= (102, %BYXALP*BET )= 6% (BY®*3)*BET)+(18.*AX®AXXBY*BET)
1+YY#( (96 #ALP*BET )+ (12 *BY*BY*BET )= (364 *AX*AX*BET) )

STR(291)= =( 18«%BYXALP*BET)~(18+%(BY*%3)*¥BET)+(54,%AX®AX®*BY*®BET)
1+YY*(( 36.%BY®BYH*BET) ~ (10B.*%AX*¥AX¥BET))

STR(391)= = 1B+ *AX*ALP®*BET )=(54¢% (AX*#%#3)#BET)+(1B+*AX*BY*BY*BET)
1-XX*(( 364*BY®*BY*BET) - (108.%AX¥AX*BET))

STR(192)= —( 1B.¥AX®ALP®BET)—~(18+* (AX®%#3)%ALP)+(54,%AX*BY*BY*ALP)
1+XX*(( 36« *¥AX*AX*ALP) - (10B+*BY*BY®ALP))

STR(292)= =(102+*AX*ALP*BET)~( 6+% (AX%¥%3)*ALP)+(18*AX*BY*BY *ALP)
14XX%( (96« ¥ALP¥BET) = (36.%BY®BY*ALP) + (12.*%AX®AX*ALP))

STR(342)= =( 1B.*BYXALP¥BET)—(54.%(BY®%3)%ALP)+ (18 *AX*AX®BY *ALP)
1=YY#®(( 364 %AX*AX®ALP) = (1GB.#BY®BY*ALP))

STRI193)= =( 6+%¥BY¥ALP*BET)+( 6% (BY*%3)*BET)~(18.*AX*AX*BY *BET)
1+YY*( (~96+ *ALP*BET )~ (12. *BY*BY*BET )+ (36, *AX*AX*BET) )

STR(2#3)= =( 1B+*BYXALP¥BET)+(18.%(BY*%3)*BET)=(54,*AX*AX*BY*BET)
1+YY*((-364%BY*BY*BET) + (108.*%AX®AX*BET))

STR(343)= +( 1B+ *AX*¥ALP*BET )+ (54«% (AX*#3)*BET)~(184*AX*BY#*BY#*BET)
1-XX*( (-36.*BY*BY*BET) + (108.*%AX*AX*BET))

STR(194)= +( 1B4*AX®ALP*BET)+(1B8¢% (AX¥%3)%ALP)~(544*%AX®BY*BY *#ALP)
1+4XX*¥( (=36« ¥AX*AX*ALP) + (1l08.*BY*BY®ALP))
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TABLE XXVIII (Continued)

STRI294)= +(102+ ¥AX¥ALP*BET )+( Go* (AX*%3)¥ALP)—(18,*AX®BY*BY*ALP)
L+XX*( (~964 *ALP*BET )+ (364 #BY*BY*ALP )= (125 *AX*AX*ALP) )

STR(394)= —( 1B+*BY*ALP*BET)+(54+% (BY*%3) #ALP)=(18+*AX*AX*BY *ALP)
1=YY¥*([ (=364 %AXXAX*ALP) + (108.*BY*BY*ALP))

STRU1395)= +( 6+*BYXALP®BET)~( 6+ *%(BY*%#3)*BET)+ (18, *AX*AX*BY#*BET)
1+YY®( (96« *ALP®BET)+(12.*BY*BY¥BET)=(36+*AX*AX*BET))

STRU2s5)= | 184*BY*ALP*BET)=(1Bs% (BY*%3)*BET )+ (54 *AX*AX®BY*BET)
1+YY*T( 364 *BY*BY*BET) ~ (108+%AX*AX*BET))

STRI395)= +| 18 *AXXALP*BET )=(54 4% (AX*%3)%BET)+(1B+*AX*BY*BY*BET)
1-XX*¥(( 36, %BY*BY*®BET) = (108.*AX*AX#BET))

STRI1s6)= +( 1B+ *AX®ALP*BET)—(18+% (AX**#3)*ALP )+ (54 *AX*BY*BY *ALP)

A4XXE(( 36 ¥AX®AX®ALP) - (l0B.*BY®*BY®ALP))

404

88
n9

30

237
370

19999
11999

STRI296)= +( GHe*¥AXKALP*BET)=( 64% (AX%¥%3)*¥ALP)+(1B+*AX*BY*BY®ALP)
1+XX%( (96 *ALP*BET) — (36+%*BY*BY*ALP) + (12.*%AX¥AX®ALP))

STR(346)= ( 1Be*BYXALP*BET)=(54e% (BY*%3)#ALP )+ (18 *AX®AX*¥BY®ALP)
1=YY* ([ (+36 ¥AX*AX¥ALP) - (10B+*BY*BY*ALP))

STRU197)= (102+%BY*ALP*BET)+( 64 (BY#%3)%BET)=(1B+*AX*AX*BY*BET)
1+YY*( (=96 ¥ALP*BET )~ (124 *BY*BY*BE T )+ (364 *AX*AX*BET) )

STRI297)= ( 18«*BY®ALP*BET)+(18+% (BY*#3)%¥BET )~ (54, %AXXAX*BY*BET)
1+YY®( (-36*BY*BY*BET) + (108.*%AXXAX*¥BET))

STR(397)= =( 18«*AX®ALP*BET )+ (54+% (AX%¥%3)%¥BET)~(18+*AX*BY*BY*BET)
1-XX#( (=26 *BY*BY*BET) + (10B«*AX®*AX®*BET))

STR(138)= —( 1B+ *AX¥ALP®BET)+(18e* (AX*%*3)*ALP)=(54*AX*BY*BY *ALP)
1+XX*®( (=36« ¥AX*AX*ALP) + (10B.*BY*BY*ALP))

STR(298)= =( Ga*AX®ALP¥*BET)+( 6o% (AXRX3)¥ALP )~ (18, *AX*BY*BY*ALP)
L+XX¥( (=964 ¥ALP*BET )+ (36 *BY*BY*ALP )= (12 *AX*AX*ALP) )

STR(3+98)= (| 18%BY*ALPH*BET )+ (54+% (BY*%3)*ALP )= (18 *AX*AX*BY*ALP)
1=YY¥ ([ (=36, %AXXAX*¥ALP) + (10B+*BY*BY*ALP))

DO 404 1=143

DO 404 J=1,8

STR{IsJ)= STRIIsJI*(E/(96.*ALP*BET *AX*BY))

WRITE(6+200)

WRITE(E9101)1(STRIIsJ)sJ=148)s1=1,43)

CALL MXM (STRsQORUsSTRESSsNC)

GC TO 30

CONTINUE

CONTINUE

WRITE (6+256)

GO ro 839

CONTINUE

WRITE(6+206) NNsNTYPE

WRITE (64+201)

WRITE (64+202)

WRITE (6+219) NNSNs NTYPEs (STRESS(1sl1)s I=1sNC)

IF(NTYPE«LEs4) GO TO 237

WRITE (6+222) (STRESS(2+1)s I=1sNC)

WRITE (6s221) (STRESS(3s1)s [=14NC)

CONTINUE

CONTINUE

REWIND 3~

REWIND 4

WRITE(6499999)
WRITE(619995) (R{J)eJ=1912)

GO TO 839
CALL EXIT
END

SIBFTC SYMINV

27

SUBROUTINE SYMINV ( I0s As ISING)
DIMENSION A(1830)+COL(60)
IF(10-11800+810,97

====]INVERSE OF 2X2=---
C=A(11*A(3)=-Al2)%A(2)
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5A5683
SAS684
SAS685
-5A5686
SAS687
SAS688
SAS689
SAS690
S5A5691
SAS692
SAS5693
SAS694
SAS5695
SAS696
SAS697
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SAS699
SAS700
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SAS703
SAST04
SAST05
SAS706
SAS707
SAS708
SAS709
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SAST713
SAST14
SAST715
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SAST17
SAST18
SAST719
SAS720
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SAST22
SAST723
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SAS727
SAS728
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98

99

100

200

300

400

410

500

600
700
720

- 7110

900

8lv

800"

TABIE XXVIII (Continued)

IF(C)98,900,98
Al(2)==A(2)/C
coL(1)=A(1)/C
A(l)=A(3)/C

Al3)=COL(1)

IF(10-2)800+720499
K=1

M=10-1
DOT00I011=24M
K=K+1011

w===LoloeHoOF SYMMETRICMATR I X #COLUMN—=—~

N=C
DOl0o0oI=1s1011
coL(1i=o
D0300I=1s1011
IA=K+]
D0O300J4=1s1
N=N+1

COL(J)=COL(J)+A(N)*A(IA)A

IF{J-1)200+300+800
1B8=K+J

COL(II=COLL{II+AINI*ALIB)

CONTINUE
—~--COMPUTEB22-~--
c=0

DO400I=1,1011"
TA=K+1
C=C+A(IA)*COLI(I)
IA=TA+1

C=A(IA)-C
IF{C)410+900+410
C=1e60/C

AllA)=C
~=~-COMPUTEB21~-—-
DO5001=1+1011
IA=K+1
AtTA)==C*COL(I)
~=~~~COMPUTEB11--~-
N=0

DO600I=141011
DO600J=11

N=N+1

TA=K+J
AINI=A(N)=A(TA)*COL(I])
CONTINUE

ISING=1

RETURN

ISING=0

GOTO710
A{l1=1s0/A(1)

GO TO 720

ISING = 2

RETURN

END

$IBFTC SMMPY

C

SUBROUTINE SMMPY (AsBsCysN3sNC)
(KINVERSE) *(FORCE ) ¥*#%DEFLECTIONS#**¥%NO OF ROWS**¥%¥NO OF FORCES
DIMENSION A{(1830)sB({6095)9C{60+5)

DO 100. I=14N3
DO 100 J=1sNC
ClI»J)=0

DO 100 Kl=1sN3
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© SMINVOO06

SMINVOO7
SMINVOO8
SMINVOOS
SMINVO10
SMINVO1l1l
SMINVO12
SMINVO13
SMINVOl4
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SMINVOl6

. SMINVO17

SMINVO18
SMINVO19
SMINVO020
SMINVO21
SMINvV022
SMINVO023
SMINVO24
SMINVO25
SMINVO026
SMINVO27
SMINVO28
SMINVO029
SMINVO30
SMINVO31
SMINvVO032
SMINVO033
SMINVO34
SMINVO035
SMINVO036
SMINVO037
SMINVO038
SMINVO039
SMINVO40
SMINVO41
SMINVO42
SMINVO43
SMINVO44
SMINVO45
SMINVO46
SMINVO4T
SMINVO048
SMINV049
SMINVO50
SMINVOS51
SMINVO052
SMINVO53
SMINVO54
SMINVO055
SMINVO56
SMINVO57
SMINVO58
SMINVO59

SMMPYO0O01
SMMPY 002
SMMPYO003
SMMPYO0O04
SMMP Y005
SMMPYO006
SMMPYO0O07



TABLE XXVIII (Continued)

L=MAXO(IsK1) ‘
K=(L®(L=3))/2+(1+K1)

100 C(IsJ)=A(K)*B(K1oJ)+C(IosJ)

RETURN
END

$IBFTC WRT
SUBROUTINE WRT(As N3)
DIMENSION A(1) -

31009 FORMAT(1X»3HROW»sI4»/1Xs{1P10EL1364))
NF =0 ‘ ,
NS=0
DO 31010 J=1sN3
NS=NF+1
NF=NF+J

31010 WRITE (6+31009) Js(AlL)s 1=NSsNF)
RETURN :
END

$IBFTC MXM : :
SUBROUTINE MXM ( Ay By C» NC)
DIMENSION A(358)+B(8+5)35C(3,5)
DO 20 I=1,3 ;
DO 20 J=1sNC S

20 C(1sJ) = 040 f
DO 10 I=1,3
DO 10 J=1,NC
DO 10 N=1,8
110 CUIsJd) = ClIsd) + ACIsN) * B(NsJ)

RETURN '
END
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SMMPY008
SMMPY009
SMMPYO010
SMMPYO11
SMMPYO12

WRTOO1
WRTO002
WRTO003
WRTO004
WRTO005
WRTO06
WRTO007
WRT008
WRT009
WRTO10
WRTO11

MXM001
MXM002
MXM003
- MXMOO4
MXM0O05
MXMOO06
MXMOO7
MXM008
MXMO09%
MXMO010
MXMO11



APPENDIX C
TREATMENT OF EXPERIMENTAL DATA

The experimental stress and deflection data were processed by the
IBM 7040 Digital Computer, The -basic data obtained from the strain gages
and dial indicators are reduced to values per unit locads for each of the
load configurations, and these wvalues are used for comparisons with the
analytical predictions,

The unit stress and unit deflection values are obtained by finding
the most reliable linear relationship using the least-squares criterion,
The method of least squares provides that the most probable function for
a quantity obtained from a set of measurements is the function which
minimizes the' sum of the squares of the deviations of these measurements,
The deviation dj is defined as the difference between any measurement y;

and the predicted value 7; (17).
A
di = Y =
The least-squares criterion produces a system of equations for
finding a functional relationship for the experimental data, Since this
experimental investigation is restricted to the linear load-deflection

range, the data can be expressed by the relation

A

X:=C;+612,X(:
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It is necessary to find Cq and C2 in order to minimize

S=§(y; T N S

cw/ e
The minimum of S, considered as a function of Cy, is obtained from the

partial derivative of S with respect to Cq equal to zero. The result is

N
Q__S_ = "ZZ(.V*: ~C)=-CL ¥ ) = o

TR~
since
53 Ha) = § 5 R
rearranging
{; yois' M€, +C‘Zf;{6-)cz_

Similarly, for the minimum of S, considered as a function of C2
Q—S’ =-22L'x;C_}’g-C',—sz.¢')- (@)
;(2 L=

rearranging

ZZ”'(W)@J - (‘g'z;) g ¥ (gf z;‘)(',_ )

The two simultaneous equations in two unknowns are called normal
equations (18).

To find the best linear function for the given data, it is necessary
to perform the summations and solve the system of two equations for Cq{ and
C2. The constant Cq is the intercept of the straight line; the constant
C2 is the slope of the straight line, The slope is the unit stress of the
influence coefficient value, The intercept is merely a 'funetion of the

value at which the indicators are initially balanced or zeroced,
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The solution for the constants C1 and C» assuming the linear
variation of strain or deflection versus load is

B i (= ye)(sx&) -(ZYexe )( E %)
/V(ZK(’.Z) e (Z}({:)z

0 = M Yeke) - (Zye)(S xe)
: MEZRP) - (Tw)*

where ) is jﬁ A

£=/

Correlation of Experimental Data

The least-squares criterion is used to obtain a linear equation
relating the two variables, load and stress, or deflection by using
pairs of observations (xj, yi) of these variables, It is assumed in
advance that such a linear relationship exists. In the event of a spread
in the experimental data, there would be a question if a linear correla-
tion exists between the load and the stress or deflection data, If a
linear correlation does exist, the values for Cq and C2 are obtained
as described previously,

A graphical interpretation of the procedure is described by using
Figure 40, The data points in Figure 40 are determined experimentally,
and it is necessary to represent the best straight line through the
points, The slope of the lines is Cp, and its intercept on the y axis
is C1.
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)
J STRAIN, NAN

Loap, 8.

Figure 40, Typical Experimental Data
The deviations used in the method of least squares are

q/" = }/,_'-C/—C)z){é

where d; represents the vertical distance between the point (xj, yi) and

the straight line described by the constants C1 and C2., The method of

least squares minimizes the sum of the squares of the vertical distances

between the point and the straight line, The line determined by this
procedure is sometimes called the line of regression of y on x (17).

An estimate of how well the linear function represents the experi-

mental data is given by the correlation coefficient R (18),

/Q ks NZX(..){' “Z‘Z"ZYJ
[(NE %) -(5 %} (e -y

-

Thus, R = 1 means perfect correlation, and R = 0 means no correlation,
Consequently, for imperfect correlation, o?_|R|4 i,

The interpretation of the correlation coefficient R is based on expe-

rience, The question is how large a value of R indicates a significant
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correlation between the variables x and y, Because of random fluctuations
in the experimental data, R would not be exactly equal to zero, even if
the data were completely erroneous, And, in addition, due to experimental
fluctuations, R would not be exactly equal to one, However, since the
nature of the problem dictates that a linear relationship exists and the
experimental errors are hopefully minimized, then one should expect to get
values in the neighborhood of R = 1, The criterion used to determine if
the linear correlation is substantial is to consider the probability of
obtaining a value of R as large as possible purely by chance from the
observations of two variables which are not related, Table XXIII has been
calculated to give the probability of obtaining a given value of R for
various numbers of pairs of observations (18).

From Table XXIII for ten observations, N equals ten, The probability
P is 0,10 of finding a correlation coefficient of 0,549 or larger and a
probability of 0,01 of finding R greater than or equal to 0,765 if the
variables are not related, If, for ten observations, the correlation
coefficient R = 0,9, there is reasonable assurance that this indicates a
true correlation and not an accident, Conversely, if R = 0,5, this would
mean that the data were questionable since there is more than a ten per
cent chance that this wvalue would occur for random data, A commonly used
rule of thumb for interpreting values of the correlation coefficient is
to regard the correlation as significant if there is less than one chance
in twenty, P = 0,05, that the value will occur by chance (18), For any
value of the correlation coefficient greater than the value given in the
Table XXIII for P = 0,05, the experimental data should be regarded as

showing a significant correlation.
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TABLE XXIX

CORRELATION COEFFICIENTS*

Probability
N 0.10 0.05 0,02 . 0,01 0,001
3 0988  0.9%  0.99  1.000 1,000
4 0.900  0.950 0.980 0,990 0.999
5 0.805 0.878+ - 6.934-,;" 0.959 0.992
6 0.729 0.811  0.882 0917 0,974
7 0.669 075+  0.833 0.7  0.91
8 0.621 0.707 '0.789;: 0,834 0.925
10 0,549 0.632 0,716 0.765 0,872
12 0.497 0,576 .‘6.658 . "0‘708_ 0.823
15 0.441 0.514  0.592  0.641 0.760

20 0.378 044 0,516 0, 561 0,679

*This table: is adapted: from Table ¥ of: H Young,
Statistical Treatment of Experimental Dat,a published by
McGraw-H:Lll Book Company, Inc. ,""?New “York:;: -

A sl




TABLE XXX
SAMPLE DATA SHEET

LOAD INTERVAL

160

Load
Load
mw
Load
Load
Recorded by Date AEROSPACE LABORATORY
:;hncheg EDaB: SCHOOL OF MECHANICAL ENGINEERING
ECTANGULAR PANEL DATA
TEST CONFIGURATION NO.___ | OKLAHOMA STATE UNIVERSITY e
M.U Ayres Ex. 7223 OF
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The linear correlation coefficient is only a measure of the best fit
of a linear relationship to the experimental data and is in no:way. an
indication that the experimental data accurately represent the?physical
phenomena, It is merely dn indication that a linear correlation exists

between the variables X and y,
Data Reduction Digital Computer Programs

Separate digital computer proénams are used for the deflection
indicator data, the axial strain gage data, and the rosette strain gage
data, The programs are used to calculate the best linear relationship
based on the least-squares criterion; however, each program is different
in the manner in which the data are finally presented, The data analysis
is controlled by the parameters specified on the control cards,

The experimental daia for the axial gage are keypunched difectly from
the Victor printer tape or from the data forms shown in Table XXX . The
experimental data for the rosette g#ges are punched from the data forms in
Table XXX . The punched data are arranged in ascending gage numbers for
the gage numbering system shown in Figures 20, 21, and 22 by use of the
IBM card sorter, Data must be given for each gage number since im the
current configuration the program expects the data to be in sets bf two

for axial‘gages anﬁ set of three for rosette gages. If no data are avail-
able for one axial gage or one leg of a rosette, a card containing only the
gage number should be used, Each two sets of axial gage data is averaged
to glve the back-to-back readings for the stringers andvribs. Each three
sets of rosette gage data is used for the calculation of axial and principal

stresses from the following equations,
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Stress-Strain Relations for Equiangular Rosette Gages

For the general case of plane stress, strains must be measured in at
least three directions to find the principal strains and their directions,

The strain along an axis at an angle ¢ with the x axis is (19)
- Ex+éy , €x-€ J,
€p= KLY + L Lo 2f » T S 2F.

For the equiangular, or delta, rosette, the angles are

¢ =o° P2 = 60° #3 = /207,
Solving for the strains €., €y, 3',.7 from the equations above

€)< =é{
(y = "€ +RE&; + A€
3

¥ €2-€1)
Yoy = —2L&

Consequently, the stresses are

I = 5-:({,‘%1)6){)

&
e E 1
Tey = sy (Pr) .
The principal stresses are given by

= Gt 4 4 _r@ €,+€ 2 o
G "¢ {558+ i S5y (58]

R = - gy (5 T |

'é.n:’ fj({i ‘é: )

CE + €, +4&;

i

26
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The axial and rosette strain gage data reduction programs require

control cards containing the following information:

CARD 1
Column 3
Column 11
CARD 2
Column 1
Columns
2-30
CARD 3
Column 3
Column 13
Columns
21-30
Column 32
CARD 4
CARDS 5 to N

The number of different sets of data to be
analyzed,

The parameter Iwrite = 1 if only a summary of
the data consisting of gage number, correlation
coefficient, and stress is to be printed., If
Iwrite = 0, the complete data reductions are
printed,

The numeral 1,

. Contain alphabetic or numeric description

for the test identification.

Contains the number of observations for each
gage.

Contains the number of active gages.

Contain the cross-sectional area of the
stringer or rib element if forces are desired,

Contains a numeral 1 if the data are keypunched
from the Victor printer tape , and is blank if
the data are punched from the data forms in
Table XXX,

Contains the load data in FORMAT (7x, 10F7.0).

Contain the gage number and strain data in
FORMAT (I7, 10F7.0).

The program prints the test data in tabular form for each indicator.

The correlation coefficient and stress data are summarized at the end of

the analysis to provide a more rapid analysis of the experimental results,

The wvalidity of the data is indicated by the correlation coefficient.
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The flow diagram for the axial strain gage data program is shown in
Figure 41, A Fortran listing of the program 1s given in TableXXXI . The
flow diagram for the rosette strain gage data program is shown in Figure 42
A Fortran listing of the program is given in Table XXXTI, '

The deflection data reduction program requires the same control car@s
as the stress data programs, except for card 3 which requires only the
information in columns 1 through 13, The flow dlagram for the deflection
data reduction program is shown in Figure 43. A Fortran listing of the
program is given in Table XXXITI,
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¥(1), X(I)

@f 95 s

READ
IGAGE, Y(I

Qmmm LIST (TESTID, u>'

READ TAFE 3
IGAGE(I),R(I),B(I) 1=1,D

-
WRITE

CALL
LIST(RUNID,NG)

WRITE
( IGAGE,R(I),B(1), smss)
]

AVERAGE OF
BACK TO BACK STRESSES

i

CHECK FOR MINIMUM
CORRELATION COEFFICIENT
RMIN (I)

STRESS = E STRAIN

Figure 41,

Flow Diagram for Axigl Gage Program
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TABLE XXXT
AXIAL STRAIN GAGE DATA REDUCTION PROGRAM

C. AXIAL TEST DATA REDUCTION PROGRAM MelU e AYRESHH#H#HMHMH RN U A RUXXXAXTALOOL
DIMENSION X(IOO)’Y(IOO)9RUNID(5),PROID(3)’SUM(11)’STRS(100) AXTALOO2

1 » SAVE(100) AXTALOO3
COMMON TITLE(12)» MOP(18)» NCH(QO)’ TABls TAB2s ND» NPs NMy NB AXIALOO4

1 » TAB3 AXTALOOS
EQUIVALENCE (A;SUM(I)):(B,SUM(Z)),(R’SUM(B)),(STDsSUM(é))o AXTALOO6
l(US’SUM(3)),(UF’SUM(4))q(SX’SUM(7))9(SY9$UM(B))’(SXY,SUM(9))9 i AXTALOO7
2(5X595UM(10))’(SYS’SUM(II)) . ) _ AXTALOOS

1 FORMAT(12A6) o . AXIALOOS
2 FORMAT(58A1,3A654A1) : o C AXTALO10

100 FORMAT{5A6/1397Xs1357XsF10e3412) ) ) . AXIALO1Lll
101 FORMAT(I2+4XsF4e0,F1040) ] ) C AXTALO12
102 FORMAT(I3s7X»I1) ' -'- PR : AXTALO13
200 FORMATI(1H1) ' ‘ AXTALO14
201 FORMAT(26Xs29H*#*#STRESS DATA REDUCTION****’19X!5HPAGE y13/7 AXITALO15
220X 9 10HTEST IDeees5A6/20X» 10HGAGE IDseas12//520Xs - AXIALO16
324HNUMBER OF OBSERVATIONS =»13//5s10Xs4HLOAD»9X»10H STRAIN 910Xs AXIALO17

410H STRESS 9/ (5X+sF10e0s5XsF10.0510X»F10.0)) S AXIALO18

202 FORMAT( /720X 12HINTERCEPT = sF13e4s/18Xs ) AXTALO19
114HUNIT STRAIN = 9F1748/918Xs14HUNIT STRESS = 'F13e4/ N AXIALOZ20
219X913HUNIT FORCE = sF1344/96X»26HCORRELATION - COEFFICIENT = o AXIALO21
3F134/911X»21HSTANDARD DEVIATION = »F13.4) ) AXTALO22

203 FORMAT(I3s7XsF13e4510XsF1748) : AXIALO23
204 FORMAT(lHl!5A6///I397X’I397X0F10.3,7X’1207X 13) ) AXTALO24
1001 FORMAT(I7s10F740) - o AXTALO25
1002 FORMAT(I7510F7+0/{7Xs10F7.0)) . s ' ’ AXTALO26
1101 FORMAT(7Xs10F740) ) AXIALO27
C RHRHARHRRUAHHHRHA READ CONTROL DATA ******************************AXIAL028
’ READ(5+102) MsIWRITE o . . ) : : AXTIALO29
DO 15 IT=1M ’ ' ’ AXIALO30
CH###%READ PLOTTER TITLES***********************************************AXIAL031
READ{(S5s1)(TITLE(I)sI=1,12) - ) AXTALO3Z
READ(S;Z)(MOP(I);I—lnlB)o(NCH(I)yI ly40)9TABloTABZ’TABAXIALO33

13sNDsNPsNMsoNB : AXTALO34
IPG=0 ' - L - AXTALO35
REWIND 3 o - . - : © AXIALO36
READ(5+100)RUNIDsNyNGsAREASIDATA AXIALO37

. WRITE(65204)RUNIDsNyNGsAREAs IDATAM : AXIALO38
C R FFRERIAR® READ EXPERIMENTAL DATA *************************AXIAL039
IF{IDATALEQ.20) GO TO 12 ) AXTALO4Q

READ (5s 1I01)(X(I})s I=1sN) P AXTALO41

DO 10 .11 = 14NG : o : . AXTALO42

IF (N «LEe 10) GO TO 1003 ’ N S AXTALO43

READ (5% 1002) IGAGEs (Y(I)s I = 1eN) - AXTIALO44

GO TO 1004 : . AXTALO4S

1003 READ (5, 1001) IGAGEs (Y(I) s 1 = 15N} - L AXTALO46
1004 IF {IGAGE «EQe O) GO .TO 15 IR - ) AXIALO4T
GO TO 14 . ) . . S AXTALO48

12 DO 10 IK= 14NG : : . . AXTALO49
READ (551Q1) (IGAGEs YA(I)s X(I)s I=1sN) AXTALOS0

IF ¢ Y(I) «LTe 0e0) Y(I) = lOO + Y(I)- ’ ) ) AXIALOS51

IGAGE = IGAGE + 1 ' AXIALOS?2

C HEXRREHHRH AR AR ¥XE REGRESSION ANALYSIS ****************************AXIAL053

2

14 DO 9 I=1,11 ) : . » } ‘ AXTALOS4
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TABLE XXXI (Continued)

9 SUM(I) = 0,0 o "~ AXIALOS5
DO 3 I = 1N ) B . AXIALO56
STRS (I) = Y{I)*10.6 . S : AXTALOS7
SX = SX + X(I} : o - AXIALO58
SY = SY + Y(I) . : ) AXTALO59
SXYSSXY+X(I)#*Y (1) : . AXTALO60
SXS=SXS+X (1) *X (1) . S AXTALOG61

3 Sys= SYS+Y(I)*Y(I) ' . L ' "AXTALO062
AN=N : : - S AXTALO63
B=( AN#SXY~- SX*SY)/(AN*SXS ~SX#SX ) ’ . AXIALOG4
CALLDVCHK (K) . . AXIALO65
GO TO (6s4)4K RS AXTALO66

6 B=000.000 . v . : , AXTALO67

4 A=(SY-B*SX) /AN i AXTALOG68

R=(AN¥SXY=SX*SY) /SQRT( (AN¥SXS—SX¥SX ) * (AN#SYS= GY*SY)) AXIALO69
- CALLDVCHK (K} . . : : AXIALOT70
GO TO (7s5)sK : ‘ AXIALOT1

7 R=040 . AXIALOT2

5 STD = SQRT((SYS-A¥SY-B#SXY)/AN) ’ AXTALOT73
IPG = IPG + 1 : . : AXTALOT74
US = B¥10.6 AXIALOT75
UF = US*AREA - S AXIALOT76
R = ABS (R) o . AXIALOT7
WRITE (3,203) IGAGE; Ry B AXTALO78

C IF COLUMN 11 = 1 SKIP TO THE SUMMARY OF THE RESULTS* ¥ %% %% x%#% %5 AXIALOTO
IF(IWRITE«EQs1) -GO. TO 10 AXTALOS8O

C PRINT RESULTS OF THE REGRECSION ANALYSIS *********%***************AXIAL081
WRITE(65200) AXIALOS82
WRITE(6,201)IPG:RUNIDvIGAGE:N,(X(I)pY(I),STRQ(I);I'lvN) AXTALOS83

. WRITE (65202)(SUM(T)sI=1s6) AXIALOB4

C PLOT THE E)(PERIMENTAL DATA ***********-)(--)G********************-}(-*****A)(IAL085
DO 302 I = 1N AXIALOB6

302 SAVE(I) = X{I) o ’ ] AXIALOSB7
DO 300 I =. 2N ‘ . AXIALOBS

300 Y(I)=ABS(Y(I)-Y(1)) SR o B AXIALOB9
Y{1) = 0,0 . . ) : . ) AXTALO90
XIN+1) = X{N) + 500.0 AXTALO91

CALL PLOT (Xs0e 09X(N+1)’0’Y’0.09Y(N)’0 0s090, 0,0 OyO;Nalvl!O,Z), AXTALO92

DO 301 I = 1N ‘ _ AXTALO93

301 XtI) = SAVE (1) : ‘ AXTALO94
10 CONTINUE : o AXTALO95
END FILE 3 B o o ‘ . : ) AXTALO96
REWIND 3 . . AXTALO97

CALL LIST (RUNID s NG) AXTALO98

15 CONTINUE ) ‘ . AXIALO099:
CALL EXIT ; : - : . AXTAL100

END i o : . T AXTAL101
SIBFTC LIST . o . ' L 5 AXTIAL102
SUBROUTINF ‘LIST (TFSTIDs ‘N) L : _ ‘ . AXTAL103
DIMENSION IGAGE(100)s R(100)s B(100)s C(100),y BAVG(100)y CAVG(100)AXIAL104

2y RMIN(100}, TESTID (5) ) - . _ AXTAL105

99 FORMAT. (5A6) . R : AXTAL106
100 FORMAT(I357XsF13e4y10XsF178) AXTAL107

200 FORMAT(1H1925X95A6////7921Xs11HCORRELATION/ ¥5X»11HGAGE NUMBER»5X» AXIAL108
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202

30

50
20

TABLE XXXI (Continued)

211HCOEFFICIENT 95X96HSTRAINS12X36HSTRESS)
FORMAT(BXsI13910XsFBelsTXsF11eB896XsF1168)
FORMAT " (
2XTERNAL LOAD

/35Xy 57H STRESS DATA

65HOSTRAIN DATA IS LISTED AS MICROINCHES'
IS LISTED AS

AXTAL109
AXTAL110
PER POUND OF EAXTAL111
PS1.PER. POUND AXIAL112
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30F EXTERNAL LOAD ) AXTAL113
N = NUMBER OF GAGES TO BE USFD ***********************************AXIAL114
E=1066 . AXTAL115
READ (3’]00) (IGAGE(I)s R(I)y B(I)s I—l,N)" AXTALL11l6
WRITE (65200) TESTID : : Lo AXTAL117
WRITE (65202} ! AXTAL118
LINES = 0 AXTAL119
DO 10 I = 14N . AXTAL120
LINES = LINES + 1 ) AXTAL121
IF (LINES «LTe 40 ) GO TO 30 AXTAL122
WRITE (6+200) TESTID : AXTAL123
WRITE (64+202) ‘ AXTAL124
LINES = 0 AXTAL125
Ctl) = BiI) # E AXTAL126
WRITE(65201) [GAGE(T)sRITYsB(T)sC(I) AXTAL127
WRITE OUT THE AVERAGE OF THF RBACK TO BACK GAGRE READINGS **********AXTALIZB
WRITE (6+200) TESTID AXTAL129
WRITE (64+202) AXTAL130
~LINES =0 AXIAL131
DO 20 I~19N,2 AXTAL132
BAVG(T) = (B(I)+B(I+1))/2 0] AXTAL133
CAVG(I) = BAVG(I) + E AXTAL134
RMIN(IY = AMINL(R(I)SsR(I+1)) AXTAL135
LINES= LINES + 1 . AXTAL136
IF (LINES «LTe 40 ) GO TO 50 AXTAL137
WRITE (65200) TESTID AXTAL138
WRITE (64+202) AXTAL139
LINES = 0 S ) : AXTAL140
WRITE (6+201) IGAGE(I)s RMIN(I)y BAVG(I)y CAVGI(I) AXTAL141
CONTINUE : : AXTAL142
RETURN AXTAL143
END AXTAL144
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(::)—““-"" CALCUIATE
o - PLANE STRESSES

READ TAFE &
. IGAGE,
R(I),B(I)

C(I)=B(I)*E

READ TAFE 3
IGAGE, SMAX(I)
SMIN(I), SXIMAX(I)
ANGLE(I)

READ 3
IGAGE SX(I)
SY(I), SXY(I)

WRITE 6
IGAGE, SMAX(I)
BMIN(I),SXYMAX(I

ANGLE(I)

WRITE 6
IGAGE, SX(I)
SY(1), SX¥(I1)

Figure 42, Flow Disgram for Rosette Gage Program




TABIE XXXII
ROSETTE STRAIN GAGE DATA REDUCTION PROGRAM

ROSETTE TEST DATA REDUCTION PROGRAM BY MsUsAYRES |

D'IMENSION X(lOO).Y(lOO)oRUNID(S);PROID(3).SUM(11),STRS(SOO),E(3)
1 s SAVE(100}

EQUIVALENCE (AsSUM{1))s{BsSUM{2))s(RsSUM(5) )5 (STDsSUMI6)) »
14US»SUMI3) ) s (UFsSUMI4) ) s {SXsSUMIT)I ) 5 (SYsSUM{B) ) s (SXYsSUMIS) )
2(SXSsSUMI10))»(5YS,S5UMI11))

COMMON TITLE{12)s MOP{18)s NCH(40)s TAR1» TAB?»s NDs NPs NM, NB
1 » TAB3 ‘ :

FORMAT({12A6)

2 FORMAT(58A143A654A1)

100 FORMAT(5A6/13s7Xs13»7XsF10s3512)

101 FORMATI(I2s4XsF4e0sF1040)

102 FORMAT(I1397Xs11) . ' .

103 FORMAT (1H1, 38Xs 18HPRINCIPAL STRESSES/// 20Xs BHGAGE NO.
13Xs 11HMAXe STRESS 4Xy 11HMIN. STRESSs 7Xs., 10HMAX s SHEAR,
26Xs SHANGLE) o ‘

111 FORMAT (1H1, 40Xs 14HAXIAL STRESSES/// 20Xs BHGAGE NO.
13Xy 11HX-DIRECTION, 4Xs 11HY~-DIRECTION, 8Xs SHSHEAR}

200 FORMAT(1H1) .

201 FORMATI(26Xs20H*#¥%STRESS DATA REDUCTION###%,19X»BHPAGE 137/
220X310HTEST IDeees5A6/20Xs LIOHGAGE IDeses137//520Xs .
324HNUMBER OF OBSERVATIONS =513//910Xs4HLOADs9Xs10H. STRAIN +10X
410H STRESS s /(5XsF10s035XsF1040+10X5F1040))

202 FORMAT(//20Xs12HINTERCEPT = »F13e4s/18X»
114HUNIT STRAIN = sF17¢8/518Xs14HUNIT STRESS = sF1344/»
219Xs13HUNIT FORCE = sF1344/96Xs26HCORRELATION COEFFICIENT =
3F1344/911X»21HSTANDARD DEVIATION = sF1344) ’

203 FORMAT(I3»7XsF1344s10XsF17e8)

204 FORMAT(1HL1s5A6///1357Xs13»TXsF10e3>7Xs12,7Xs13)

1001 FORMAT(I7510F7.0) :

1002 FORMAT(I7310F740/(7X310F740))

1101 FORMAT(7X»10F740) :
105 FORMAT ( 15Xs 1104 3F1545)
106 FORMAT(. 15Xy [10s 4F1545)

170

ROSETO001
ROSETO002
ROSET003
ROSET004
ROSET00%
ROSETO06
ROSETO07
ROSETO008
ROSFETO09
ROSETO010
ROSETO11
ROSETO12
ROSETO013
ROSETO1l4
ROSETO15
ROSETO016
ROSFTO17
ROSETO18
ROSETO19
ROSETO020
ROSET021
ROSET022
ROSET023
ROSET024
ROSET025
ROSET026
ROSET027
ROSET028
ROSETO029
ROSETO030
ROSET031
ROSETO032
ROSET033
ROSETO034

READ CONTROL DATA **f*********************************************ROSET035

READ(5+102) MsIWRITE
DO 15 IT=1sM

ROSET036
ROSETO037

READ PLOTTER T ITLESHM%M#%4% 33635 430 H 33 3H 10t H R HHHUR KN MK AR X KA R RXROSETORB

READ(Ss 1) (TITLE(I)»I=1512)

ROSET039

READ(542) (MOP{I)s1=1518)s (NCH{I)s1=1540)5TABLlsTAB2> TABROSETO040

13aND¢NP¢NMvNB
REWIND 2
REWIND 3
REWIND 4
I1PG=0

ROSETO41
ROSET042
ROSETO043
ROSFTO44

"ROSET045

READ EXPERIMENTAL DATA #3538 5% 508X 1R XM HHHH A XX KR H KX XAROSETO46

READ{53100)RUNIDsNsNGsAREASIDATA
WRITE(69204)RUNIDsNsNG>AREAs IDATA M
READ {59 1101){XA{I)s "1=1aN)

DO ‘9999 1A = 1sNG »3

DO 10 Il-= 1+3

IF (N «LFe 10) GO TO 1003

READ (5, 1002) IGAGFs (Y{I)s I = 1sN)
GO. TO 1004

ROSETO047
ROSETO48
ROSET049
ROSETNS50
ROSETO051
ROSET052
ROSETO053
ROSFTO54
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TABLE XXXIT (Contimued)

1003 READ (5, 1001) IGAGESs (Y(I)Y » T = 14N) ' ROSETO055

1004 CONTINUE ' ROSET056
REGRESSTON ANALYSIS ******%*****%*********************************R0551057
14 DO 9 I=1,11" . : . ROSETO058
9 SUM(I) = 040 ) i T : . ROSETO059
DO 3 I = 1sN . ' : ROSET060
Y(I)-= SCAFAC #* Y(I1) IF GAGE FACTORS NOT ‘EQUAL FOR ALL GAGES ***%#ROSET061
SX = SX + X(I) ‘ ROSET062
SY = SY + Y(I) : - ROSET063
SXY=SXY+X{I)#Y(I) C : ROSETO64
SXS=SXS+X (1 )%X (1) ‘ : ‘ » - ROSET065
3 SYS=SYS+Y(I)#Y(]) . : : ROSET066
AN=N : , . ’ .- ROSFTO067
B=(AN*SXY- SX*SY)/(AN*SXS =SX®SX) ] } . ROSETO068
CALLDVCHK(K) - ‘ o : L - o ROSET069
.GO TO (6s4)sK - o . ROSETO70
6 B=14000000000 . ' , S o ROSETO71
. 4 A=(SY-B*SX) /AN : T e "ROSETO72
R=(AN*¥SXY- SX*SY)/SORT((AN*SXS SX*SX)*(AN*SYS-SY*SY)) ROSETO73
CALLDVCHK (K) ROSETO074
GO TO (745)sK . S o ROSETO75
7 R=0.00000000000 ‘ ' ' T S . " ROSETO76
5 STD = SQRT{(SYS—A#*SY~ B*SXY)/AN) o ROSETO77
IPG = IPG + 1 . v R - ROSETO78
US = B#1046 : L S o , ROSETO79
UF = US*AREA _ v o ROSETO80
R = ABS (R) _ ROSETO81
IF COLUMN 11 = 1 PRINT ONLY  THE SUMMARY OF THE RESULTS #XEA#FXROSETOB2
IF(IWRITELEQs1) GO TO 8 . ROSET083
PRINT EXPERIMENTAL DATA ******************************************ROSET084
" WRITE(6,200) . ROSETO85
WRITE(65201) IPGIRUNID» IGAGE sN» (X (I)sY{T1)sSTRS{I)sI=1sN}) ROSET086
WRITE (65202)(SUM(T)sI=146) v ROSETO087
PLOT EXPERIMENTAL DATA ******************************************ROSETOBB
DO 302 I = 1N . v . L o hy ROSET089
302 SAVE(I) = X{(I) | ‘ LT ROSET090
" DO 30071 = 24N ‘ _ : v ROSET091
300 Y(I)=ABS(Y(I)=Y(1)) ‘ . i _ ROSET092
Y(1) = 040 o A I © ROSET093
XIN+1) = X{(N) + 500 0 o ’ ROSETO094
- CALL PLOT (X»0e 0’X(N+1):0yYy0 O;Y(N)sO’O 0.0, 0+0. 0’09N’1,1v0’2) ROSETO095 |,
DO 301 I-= 1sN . L ROSET096
301 X(I) = SAVE (1) o ‘ i : ROSET097.
8 CONTINUE , ' o . "ROSETO098
WRITE (45203) IGAGEs Ry B : : ROSET099
10 E(11) =B - S _ . . L : ROSET100
USE Els E2s AND E3s FROM THE. REGRESSION ANALYSIS FQR PLANE STRESS ROSET101
EE = 1046 : ol . s s L : ROSET102
PR = . 04333333 - S S e e ROSET103
El1 = E(1) .~ S T : ‘ o ROSET104
E2 = E(2) - . S ) ' ROSET105
£3 = E(3) . ) - o R B . ROSET106
EX = E1 - ° ) R T iy | : ROSET107

EY =(=(E1)+1(24 0*Ez»,+(2.o¥53)) /3.0 ROSET108
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TABIE XXXII (Continued)

EXY = (2.,0%¥(E2 - E3))/ 1.73214 ‘ ROSET109

SX={(EE/(Lle~(PR¥%2)) )% (EX+{PR*EY)}) g : ROSET110
SY={(EE/(Le~(PR#¥#2)) ) ¥ (EY+(PR*EX)}) o ROSET111
SXY=(EE/(2e%(1e+PR)))*¥EXY . . ROSET112
A = SQRT (((El—((E1+E2+F3)/3.0))*(El—((El+F?+E3)/3.0))) 0 ROSET113
L(((E2-E3)/1473214)%((E2-E3) /1, 73214))) S ‘ : ROSET114
SXYMAX = (EE/(140 + PR))* A o : ROSET115
B = (EE*(E1+E2+E3))/(3.0 %(1.0 = PR)) - ROSET116
SMAX = B+SXYMAX _ : ROSET117
SMIN = B-SXYMAX' S e v ROSET118
TAN20 = ({E2 - E3) % 1473214) / ((2,0%E1)+E2+E3) ROSET119 .
ANGLE = 045 # ATAN (TAN20) . _ ROSET120
WRITE (2,105) IGAGEs  SX» SYs SXY C ROSET121
WRITE (35106)1GAGE»SMAX>SMINsSXYMAXs + ANGLE o ' ROSET122
5999 CONTINUE . el o ROSET123
END FILE 2 . S ' ' Lo L ' ROSET124
REWIND. 2 : o : S ' ROSET125
END FILE 3 ' - ROSET126
REWIND 3 B o : - ROSET127
END FILE 4 : v ROSET128
REWIND &4 : o _ S : ROSET129
CALL LIST (NGsRUNID) ‘ . : - ROSET130
15 CONTINUE : o ‘ o : - ROSET131
CALL EXIT ‘ : v A L ROSET132
END : v ' : S v " ROSET133
$IBFTC LIST S ROSET134
SUBROUTINE LIST (NGsRUNID) _ , ROSETI35
DIMENSION IGAGE(500)s SMAX{500)s SMIN(500)s SXYMAX{500)9 ROSET136
1ANGLE (500)+SX(500)sSY(500)sSXY(500)3sR(500),8(500)sC(500)y ROSET137
2BAVG(500) »CAVG(500) sRUNID(5) ' . ROSET138
99 FORMAT (5A6) - . , ROSET139
100 FORMAT(I3s7XsF13e4510XsF1748) : ROSET140
200 FORMAT(1H1,25X;5A6////v21Xo11HCORRELATION/,Sx’llHGAGE NUMBERs5Xs ROSET141
211HCOEFFICIENT 95X96HSTRAINS 12X » 6HSTRESS) ROSFT142
201 FORMAT(8X»I3510XsFBe4sTXsF1l1laBr6XsF1lle8) ‘ ROSET143
202 FORMAT ( 65HOSTRAIN DATA IS LISTED AS MICROINCHES PER.POUND OF EROSET144
2XTERNAL LOAD  /s5Xs 57H STRESS DATA ‘IS LISTED AS PSI PER POUND ROSET145
30F EXTERNAL LOAD ) : : . - ROSET146
111 FORMAT (1H1l, 40X»s 14HAXIAL STRESSES/// 20Xs ' 8HGAGE NOW ROSFT147
13Xs 11HX-DIRECTION, 4Xs 11HY=-DIRECTIONs = 8Xs SHSHEAR) ROSET148
102 FORMAT ( 15Xs 110, 3F1545) : ROSET149
103 FORMAT (1H1, 38Xs 18HPRINCIPAL STRESSES/// zox, 8HGAGFE NO ROSET150
13Xs 11HMAXe STRESS, 4Xs 11HMIN. STRESS» 7X's" 10HMAX s SHEAR ROSET151
26Xs SHANGLE) ROSET152
104 FORMAT( "15X, I10s 4F1545) ROSET153
C NG= NUMBER OF GAGES ******%***************************%***********ROSET154
E=10.6 _ _ ROSET155
READ (451003 (IGAGE(I)s RI(I), B(INs I=1sNG) : . ROSET156
WRITE (65200} RUNID Co Ce S ROSET157
WRITE (652027, . A . - X e ROSET158
LINES = 0 .o . B R ‘ ROSET159
DO 40 1 = 1,NG ’ i S SRR TR ROSET 160
LINES = LINES + 1 ‘ S , v ROSET161

IF (LINES +LTs 40 ) GO TO 30 - » ' ~ ROSET162
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TABLE XXXIT (Contimued)

WRITE (65200) RUNID

WRITE (65202)

LINES = O

ClI) = B(I) * E L

WRITE (65201) IGAGE(I)s R(I}s B(I)y C(I)

NG = NG/3 - . :
READ(25s102){IGAGE(T)s SX(I)»SY(I)sSXY(I)sI=14NG)

READ(B;IO#)(IGAGE(I)5SMAX(I)-SMIN(I);SXYMAX(I),ANGLE(I)oI=loNG{

WRITE (6+111) :
WRITE (65202) = =

LINES=0 ..

DO 10 1 = 1sNG

LINES = LINES + 1

IF (LINES +LTe 40) GO TO 10

. WRITE (65111)

10

20

LINES = 0 - ‘ :
WRITE (65 102) IGAGE(I)s SX({I)s SY(I)s SXY(I)

WRITE (65103) :

WRITE (65202)

LINES=0 :

DO 20 I = 15NG

LINES = LINES + 1

IF (LINES «LTe 40) GO TO 20

WRITE (65103)

LINES = 0 :
WRITE (65104) TGAGE(I)s SMAX(I)}»s SMIN(I)s SXYMAX(I)sANGLE(I)
RETURN T . o

" END
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IGAGE,Y(I)

Do 10

1

REGRESSION|
ANALYSIS

i

PLOT DATA

Figure 43, Flow Diagram for
-Deflection Data
Program
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TABLE XXXTIII
DEFLECTION DATA REDUCTION PROGRAM

DEFLECTION DATA REDUCTION PROGRAM M U AYRES . - DELTAO001

DIMENSION X(100)s Y{100)s RUNID(5)s PROID(3)s SUM(9) . , DELTA00?2
1 » SAVE (100) : : - ‘ “DELTAQ03
COMMON TITLE{12)» MOP(18}s NCH(40}s TABls TAB2s ND» NPs NMs NB  DELTAOO4
1 » TAB3 S ' i C : " DELTAO005
EQUIVALENCE {(AsSUM(1))s(BsSUMI21)s(RsSUMI3)1)y(STD»SUM(4)) " DELTA006
2 o(SX,SUM(S)),(SY’SUM(6))’(SXY,SUM(7)),(SXS,SUM(B))y(SYSoSUM(9)) DELTA007
FORMAT({12A6) - DELTADO8
-2 FORMAT(58A153A654A1) . ) ’ ' o DELTAO009
100 FORMAT (5A6) ‘ Do S , , S DELTAO10
101 FORMAT(13) ‘ ' , ’ B i DELTAO11
200 FORMAT ( 1H1) ' ' DELTAO12
201 FORMAT( 25X,29H**DEFLECTION DATA REDUCTION**,19Xs5HPAGE 213/ DELTAO13
220X s10HTEST IDeess5A6/20Xs 10HGAGE IDeses I3 // , DELTAO14
3 11Xs10HINPUT DATA »30Xs4HLOAD»9Xs 10HDEFLECTION / ' : DELTAO15
4 15X »24HNUMBER OF OBSERVATIONS = sI1334XsF10e055Xs . DELTAO16
5F10e4/ (46XsF104095X9F10e4)) . P ’ DELTAO17
202 FORMAT (//20Xs 12HINTERCEPT = sF10e4/ o = . DELTAO18
28Xs 24HINFLUENCE COEFFICIENT = oFl4e8// - - DELTAO19
3 6X»s 26HCORRELATION COEFFICIENT = 4F10s4/ DELTA020
4 11Xs21HSTANDARD DEVIATION = 4 F10a4 ) _ DELTAO021
"1001 FORMAT ( 17, 10F7.,0) v , e - DELTA022
1002 FORMAT (I7s 10F740 / {7X» 10F740)) . DELTA023
1101 FORMAT (7Xs 10F7.0) R _ . 'DELTA024
9 CONTINUE : s DELTAO25
READ PLOTTER TI.LFS ********—}*************************************DELTAO26
READ(S5s 1) (TLTLE{(I}s1=1512) DELTA027
READ(5,2) (MOP(1)s1=1 18),(NCH(I),I-1’40),TABIoTABZnTABDELTAOZB
13sNDsNPsNMsNB - _ o . ‘ . DELTA029
IPG = 0 ‘ o - o - . _DELTAO030
READ (5s100)RUNID - : : : DELTAO31
READ (5,101) NGAGES : : : o _ ’ ~ DFELTAO032
READ (5s 101) N » ’ ‘ : DELTA033
READ (551101) (X({I)y I=1sN) ' ' _ DELTAO34
10 CONTINUE .. o . o o .. _DELTA035%
IF | NGAGES «FQe 0 ) 60O 'TO 9 = - v L . DELTAO036
NGAGES = NGAGES - 1 o : ‘ . DELTA037
WRITE (6+200) o . ‘ DELTA038
IF (N ¢LEes 10) GO TO 1003 - _ ' ' DELTA039
READ (5 1002) IGAGEs (Y(I)y I = 1,N) ' : DELTA040
GO TO. 1004 - o : DELTAO4]
1003 READ (5, 1001) IGAGEs (Y(I) s T = 1sN) - ' ‘ ‘ DELTAO4?
REGRESSION ANALYSIS **********************************************DELTA043
1004 NO 11 I=1» . . : DELTAO44
11 SUM(T1)=0. o . , ' v DFELTAOD45
DO 3 I = 1sN . T T : - DELTAQ46
SX .= SX + X{(I) Ce B .. DELTA047
SY = SY + Y(I) S R o . DELTAO048
SXY=SXY+X (1) *Y (1) ' Do _ DELTAQ49
SXS=SXS+X (T V%X (1) ‘ _ ) . DELTA050
3 SYS=SYS+Y(I)#Y(1) g S DELTAO51
AN=N ' oo , _ DELTAOS52
B=(AN*#SXY - SX*SY)/(AN¥SXS= SX*SX) . - ' DELTA053
CALLD

VCHK (K) : o Lo ) ) DELTAOS4
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301

TABLE XXXIIT (Continued)

GO TO (644) K DELTADSS
A=(SY-B#*SX) /AN DELTAQSK6
R=(AN®SXY=SX#*SY)/SQRT( (AN#SXS=S5X#SX)# (AN¥SYS=S5Y#5Y)) DELTAOS7
CALLDVCHK (LK) DELTAD58
GO TO (751K DELTAO59
STD = SQRT((SYS-A#SY-B#SXY)/AN) DELTAD60
IPG = IPG + 1 DELTAO061
PRINT EXPER[MENTAL DATA #%*#HAXFHFHAARARREF X AR HRAFRRARR AR BRI R U XHDELTAQSL2
WRITE(6+201)IPGsRUNIDs IGAGE sNs (X(T)aY(I)al=1sN) DELTAO63
WRITE (6+202) (SUM(T)sl=1s4) DELTAQG4
PLOT EXPERIMENTAL DATA FRUERRARHBAE R R FERAF A AR AR B X R R R AR RS2 %DELTAQSLS
DO 302 I = 1N DELTAOGE
SAVELT) = X (1) DELTADGT
DO 300 I = 2sN DELTAO68
Y(II)=ARSIY(TI)=Y(1)) DELTANAS
Y{1) = 0,0 DELTAO70
X(N+1) = X(N) + 500,0 DELTADT71
CALL PLOT (Xs0aO0sX(N+1)1903Y2s040sY(N)s0s04090,0904090sN2151s0+2) DELTAOT72
DO 301 1 = 1sN DELTAD73
X{(I) = SAVE (1) DELTAOT74
GO TO 10 o DELTAOQ7S
B=1.000000000 DELTAOT76
GO TO 4 DELTAOQT77
R=0400000000 DELTADT7S8
GO TO 5 DELTAO79

END DELTAOBO
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APFENDIX D

' LIST OF MAJOR INSTRUMENTATION»

Victor DigitMatic Printing Unit
Datran Switch & Balance Unit
Datran Prinﬁer Control Uﬁit
Digital Strgin Indicator
Datran Switech é Balance Unit
Strain Indicator (4)

Switch & Balaﬁge Unit (25)
Switch & Bélance Unit |
Switeh & Balance Unit

SR-4 Strain Indicator
10,000-1b, Load Cell
5,000-1b, Load Cell -

Dial Indicators (10)
Calibration Unit

177

Budd Model C10ICT
Budd Model E140
Budd Model A110
Budd Model C10T
Budd Model P350
Budd Model SB-1

BLH Type PSBA20 Model 3

"erype 225

BLH Type N

‘BLH Type U3G1

BLH Type U3G1

' Starrett No. 656-617

BLH Model 625



APFENDIX E
CALIBRATION OF STRAIN GAGE SYSTEMS

Once the strain gages are attached to the panel, it is not possible
to attain a calibration by the use of a known strain situation, The
strain gages are manufactured under carefully controlled conditions, and
the gage factor for each lot of gages is within about # 0,27 per cent,
The gage factor and the gage resistance make possible a simple method
fér calibrating the resistance strain gage system, This method consists
of determining the system's response to the introduction of a specific.
small resistance change at the gage and of calculating the resulting
equivalent strain, The resistance change is introduced by shunting a
relatively high value precision resiétor across the gage as shown in

the following figure,

Figure #4, Strain Gage Bridge
- With Calibration
Resistor -
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The equivalent strain for the shunt resistor in parallel with the

c e ()
GF K. % 8
where GF = Gage factor

rg = Gage resistance, ohms
rs = Shunt resistance, ohms,

active gage is

The Budd Model A-110 Digital Strain Indicator has a push button
labeled Calibration Check for the purpose of shuntinga 60Kohm * 0,1 per
cent resistor across one arm of the input bridge., For a gage factor of
2,00, mui'biplier at 1, coarse balance switch to Ext,., the 60K calibration
resistor should provide exactly 1001 counts for a 120 ohm gage., If the
indicator calibration is found to be in error, readjustment of the
internal calibration potentiometer is required.

The Budd portable strain indicator systems were calibrated using the
same 60K-ohm resistor that was used in calibrating the strain gages for
the Model A-110Digital Strain Indicator. The resistor was shunted across
each active gage.

Direct calibration of an external bridge input by using a known
resistance assures maximum accuracy if the gage resistances are known
accurately and load resistances are insignificant. The shunt calibra-
tion circuit is also helpful to ascertain the error caused by load
resistance when long input leads are used,

The maximum variation for any single gage was less than three per
cent, and the maj.ority of gages were within one per cent of the calibra-
tion value, Typical results from the calibration tests are shown in

the following table,
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TABLE XXXIV

TYPICAL INDICATOR READINGS DURING
CALIBRATION TESTS

Gage Indicator Reading Indicator Reading Net
Number Zero level with Shunt Resistor Change
121 1337 330 1007
122 1366 360 1006
123 1271 262 1009
124 1205 198 1007
125 1210 204 1006
126 1208 202 1006
127 1222 214 1008
128 1215 207 1008
129 1215 207 1008

303 1229 222 1007

Calibration of Load Recording Equipment

A calibration of the load recording equipment was performed to
determine the accuracy of the load application system., The BLH U-3G1 type
load cells have strain gages with a gage factor of 2.0 and a resistance of
350 ohms, Using a 60K calibration resistor, the computed strain should be
2900,

The calibration was performed from the zero reading from the 5000-pound
load cell of 11050, The 60K resistor was shunted across each leg of the
strain gage bridge, and the following records were obtained:
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Shunt Dial Reading  Net Change
P; to S4 13915 2865
Py to S2 8240 2810
P2 to Sy 8180 2870
P2 to S2 13860 2810

The same procedure was used in calibrating the system for the 10,000-
pound load cell, Again, the gage factor of 2,0 and a gage resistance of
350 ohms provide a strain input of 2900, The 60K resistor was shunted
across the four arms of the bridge, one arm at a time, The following

records were obtained:

Shunt Dial Reading  Net Change
P1 to St 13770 2870
P2 to S2 8100 2800
Py to Sy 8030 2870
P; to S 13715 2815

In general, a value of approximately 2800 to 2870 was obtained for
each leg of the strain gage bridge. This is a variation of approximately
three per cent or corresponds to a gage factor change of from 2,00 to 2,07,
which might actually be the gage factor for the strain gages used in the
load cell,

The load indicator system was subsequently calibrated with a BLH
Model 625 voltage divider unit, A linear change in indicator reading was
obtained for a linear change in MV/V input, The load cells have a 3 MV/V
full scale output which corresponds to 6000 units on the BLH SR-4 indicator,

The various calibration techniques are redundant and are only a sub-
stitute for a dead weight test of the complete system, However, based on

the calibration information, the load cells'are sufficiently accurate,



APFENDIX F

ADDITIONAL EXPERIMENTAL DATA
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Figure 45, (y Stress for Transverse
Load Condition, Test 20
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Ioad Condition, Test 20
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