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CHAPI'ER I 

INTRODUCTION 

The developnent of digital computers during the last few years 

provides an improved capability for the analysis and the design of 

structural configurations required for the current generation of mili­

tary and commercial airplanes. The prediction of the stress and the 

deformation characteristics of actual $1.rframe configurations is one 

phase of structural analysis for which the elementary theories are 

often incapable ' of providing accurate results. Consequently, new 

analysis capabilities are being developed in terms of matrix opera­

tions of algebraic equations. These theories are generally referred to 

as matrix methods or finite element methods. The finite element 

methods are the topics of numerous current research efforts. 

The two most popular of these methods are called the force and 

the displacement or stiffness methods because of the assumption of the 

initial unlmown quantities. Both methods require the mathematical 

developnent or systems or finite elements, which are joined to form 

the idealized structure and to develop the necessary algebraic equa­

tions. These equations are generally solved by a completely automatic 

sequence of computer operations originating with the definition of the 

structural configuration and ending with the calculation of the struc­

tural response for the applied external load configurations. 

1 



The purpose of this research program is to develop a capability 

for the analysis of integrally reinforced structural skin panels and to 

demonstrate this capability by the comparison of experimental and 

analytical results. Chapters II and m illustrate the two finite 

element methods of structural analysis am demonstrate some of the dif­

ferent assumptions that are made in deriving the stiffness properties 

2 

of idealized structural elements. Chapter IV and Appendices A and B 

describe computer programs that are used in the analytical investigation 

described in Chapter V. The experimental investigation, which is 

described in Chapter VI, provides a basis for the comparison of the 

analytical results. The validity of the analytical results, using the 

new idealized element derived in Chapter III, is demonstrated in 

Chapter VII. 

The structure considered in this dissertation is limited to a rec­

tangular configuration. The structure is a sEIIJ.i-monocoque rectangular 

panel with thin webs and integral reinforcements. The structure is 

idealized as rib and stringer elements transmitting axial loads and thin 

web elements transmitting shear and axial loads. The web elements may be 

designated as plate or panel elements; however, in structural analysis 

the term, plate, is commonly applied to planar structural elements which 

carry loads applied normal to their plane. The rectangular panel is 

oriented to lie in the x:; plane, and the defiections are produced by 

loads in both x and y directions. A general arbitrary orientation 

of the panel in three dimensions is not necessary for this investiga­

tion; however, it could easily be analyzed with these finite element 

methods. The size of the planar structure that is analyzed is signifi­

cantly increased by limiting the configuration to two dimensions. 



One of the first approaches suitable for the computer-type analysis 

of panels was the solution of problems by a finite difference method (1). 

This technique involves defining a mesh or network system over the panel. 

The differential equations of equilibrium and compatibility a.re expressed 

in finite difference form based on the assumed stress-strain relations. 

The resulting large number of finite difference equations describes 

approxima tezy the beha. vior of the loaded panel. Boundary conditions cor­

responding to physical boUDiary restraints and applied loads are specified 

in the finite difference equations representing the points on the boundary. 

The finite difference method was subsequen~ replaced by the finite ele­

ment methods which are algebraic approaches that a.re eas~ formulated in 

terms of' matrix operations. The finite element method of analysis is not 

new to structural engineering. For ex.ample, in~ types of dynamic 

anazyses, structural segments with known properties are connected to form 

a continuous system of finite elements. The techniques used in these 

dynamic analyses are similar, but by no means equivalent to the finite 

element methods of stress analysis described in this investigation. 

Beginning in 19.54, Argyris (2) described in matrix form the schematic 

anazysis of structures composed of discrete structural elements. Argyris 

compiled a multitude of special analysis methods which were used for struc­

tural analysis. Argyris demonstrated the similarity among macy of the 

anazysis methods by using matrix notation to abbreviate the mathematics. 

Most of Argyris' work is based on the energy principles of structural 

anazysis. Energy methods are convenient in his developnents and are a con­

trast to a method of direct geometrical relationships used by Turner, et 

al. (3), to develop stiffness and stress matrices or displacement trans­

formation matrices. The methods using direct geometrical relationships 
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provide a clear, simplified developnent; however, these methods are 

limited in the degree of generality possible in the derivations. The 

energy principles provide an advantage in handling more complicated types 

of structural elements. 

Matrix m~thods of structural analysis were extended to plate-type 

structures by Turner, et al. (J). They describe the analysis of plane 

stress problems using finite elements. Their derivations allow the 

plane stress element to defo:nn in a combination of certain assumed 

patterns. This concept eliminates the necessity for knowing the behavior 

of an element before its stiffness can be developed. 

These developllents in the finite element approach to the approximate 

analysis of reinforced panels form the basis for this investigation. The 

structural behavior of a panel is determined by analyzing the group 

behavior of small elastic elements connected at common joints to form 

an idealized structure which approximates the actual panel. 

The structural behavior is determined by element idealizations 

using both the force and stiffness methods of analysis and assuming 

defo:nnation or stress modes of varying complexity. New stiffness and 

stress matrices are developed in Chapter III for the rectangular skin 

panels, representing the model used for the experimental phase of this 

investigation. The new stiffness and stress matrices, combined with the 

new digital computer program described in Chapter IV, provide an improved 

analysis capability for reinforced skin structures. 

The digital computing programs, which are described in Chapter IV 

and Appendices A and B, are being used in other current research programs 

utilizing matrix operations and experimental data analysis references. 

These digital computing capabilities include a compatible set of matrix 



operation programs used for the force method of analysis, an integrated 

system program based on the displacement method of analysis, and data 

reduction programs based on the least-squares criterion for the experi­

mental stress and deflection data analysis. 

The principal digital computing program developed during this 

research program is entitled the Stress Analysis System. This system 

5 

is based on the displacement method of finite element structural analysis. 

This system is developed in a manner that allows for simple and convenient 

additions of any type of planar structural elements that may be of inter­

est in future research programs. Since systems of this type which are 

currently in existence are considered "proprietary" by the originators 

or are developed with a specific objective or intention, no system is 

available for study or application of finite element methods that allows 

the researcher the opportunity to experiment with his mathematical deri­

vations. In addition, the Generalized Stress Calculations phase of the 

program is unique in that previous systems provide only a single state 

of stress for the entire finite element. This addition to the system 

provides for computing the state of stress at any number of interest 

points within the finite element. This feature is most essential in 

the direct application of the system to structural analyses. 



CHAPI'ER II 

FORCE METHOD OF ANALYSIS 

The force method and the stiffness method of structural analysis 

are similar in that a duality exists between the algebraic forms of the 
I 

equations. Argyris ( I ) discussed this duality. 

Identical results are obtained by both the force and stiffness 

methods if the same assumptions are made in the behavior of the idealized 

elements(§). The following discussion illustrates the application of 

force and stiffness methods to the analysis of structural panels. A com-

parison between the two methods illustrates that, while both methods are 

easily adapted to solutions with the digital computer, the stiffness 

method is easier to use in a general computer program because no require-

ment is necessary to determine redundant load paths. 

A discussion in the standard longhand notation of the main ideas and 

methods for the analysis of redundant structures, based on the assumption 

of forces as unknowns, is given by Argyris (4). The -author's work deals 

only with the matrix formulation of the analysis. The matrix approach 

clarifies some of the more salient features of the analysis. Although 

the matrix methods are certainly general and applicable to all classes of 

aerospace structures, the methods 'st'tldiied.'. in this dissertation apply 

to the integrally reinforced rectangular panels analyzed in the experi­

mental phase ofthfs program. 

6 
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An essential characteristic of the force analysis is the degree of 

redundancy which results from the idealization of the structure and the 

corresponding definition of the idealized elements and node points o~ the 

structure. The sys~em of node points along grid lines is arbitrary; but, 

in general, the system of node points is assumed to be the intersection 

of the grid lines formed by the ribs and spars connected to the skin 

cover. 

An assumption widely used in aircraft design idealizes the structure 

as webs which carry only shear forces and as stringer elements which carry 

the direct stresses. A fractiQn of the web area is added to the rein-

f orcements to form the equivalent or effective stringer element area (6). 

The 8'10unt of web area added to the stringer area depends on the 

stress level, type of 111aterial, and type of loading. For example, by 

neglecting the Poisson's effect and in assuming the same material for 

stringers and flat plates, one-sixth to one-half of the web cross­

sectional area should be added to the stringer area (4). The former 

value applies when the field is in pure bending within its own plane, 

and the latter value applies when it is under uniform axial stress. 

Degree of Redundancy of Reinforced Skin Structure 

The degree of redundancy is the number of unknown forces minus the 

n~ber of independent equilibrium equations that are obtained for the 

idealized structure. The idealization of the structure is completely 

independent of the actual locations of the ribs and stringers. The 

structure is divided into several equivalent stringers and shear-web 

elements. The number of redundancies is determined by assuming the flat 

structural panel to be fixed at the root section and free along the 
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other edges. · If ·no unstiffened cutouts exist, the number of redundancies 

N is , .. 

'.' ' 

where f equals the number of longitudinal effective stringer elements 

which are continuous across a rib junction (4). The number of bays is the 

number of transverse sections defined in the structural idealization. If 

any stringer element is not fixed at the root section, the number of 

redundancies reduces accordingly. If the web is omitted between two 

adjoining longitudinal stringers in a bay and if' the cutout is not rein-

forced, the number of' redundancies is reduced by the number of missing 

webs. 

The degree of redundancy is illustrated for the two-dimensional 

integrally reinforced skin panel. The unknown forces shown in Figure 1 

are 

6 Unknown forces in longitudinal stringers • • • • • • • • 12 

6 O Unknown forces in transverse ribs • • • • • • • • • • • 

D Unknown shear forces in the webs . , . • • . . . . . •• ..2 

Total ••••• • • • • • • • • • • • • • • • 

The equations of equilibrium are 

Equilibrium of adjacent stringers and webs. • • • • •• 12 

Equilibrium of' adjacent ribs and webs • • • • • • • •• ..2 

Total • • • • • • • • • • • • • • • • • • • • • • • 21 
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Figure 1. The Unknown Forces in the Integrally 
Reinforced Skin Panel 
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Figure 2. The Statically Determinate Ba.sic System 



Thus, tor a total of 21 independent equilibrium equations, the 

degree of redundancy is 27 - 21 = 6. 

Also, from the first equation 

10 

Therefore, six of the unknown internal forces are removed by the use of 

factieious cuts such that the structure is still stable and statically 

determinate. For this structural c9nfiguration and external load system, 

the rib forces are relaxed to obtain the statically determinate structure. 

The statically determinate structure is shown in Figure 2. 

Once the idealization is performed, the stresses and deflections are 

calculated using the force method with matrix algebra operations as shown 
_, -

in Table I. The formulation of the equations used in the digital computer 

program follows the method of Argyris (7). 

Formulation of the Algebraic Equations 

The essence of the force method is 

1. The redundant forces in the structures are the initially 
unknown quantities. 

2. The internal forces ar~ expressed in terms of both the 
redundant and external forces. 

3. The deformations are determined from assumed stress-strain 
relationship. 

4. The compatibility criterion provides a set of linear 
algebraic simultaneous equations which can be solved 
for the redundant forces. 



FORTRAN PROGRAM FOR FORCE METHOD OF ANALYSIS 

C FORCE METHOD OF ANALYSIS FOR RECTANGULAR PANELS 
C Mo Uo AYRES 
C MAXIMUM SIZE Bl= 57X6, BO= 51X6, F = 57X57 
C THIS ANALYSIS REQUIRES 5 LOAD CONDITIONS 

DIMENSION 81(3081, F1325ll, BFl308l, 0(381, Olt38J, 80(2871, 
1D2(32l, 03(321, 041287), 812871, Al287l, FLEXl27J, FORCE17l, 
2DELTA(7l, FIN1287l 

COMMON KIN, KOUT 
KIN = 5 
KOUT = 6 

1 CALL RMATNZ 1811 
2 CALL RMATNZ (Fl 
3 CALL MTXM (Bl, F, BF) 
4 CALL MXM IBF, Bl,Dl 
5 CALL INVERX ID, DI, DET, IEI 
6 CALL RMATNZ IBO) 
7 CALL ~XM (BF, BO, 021 
8 CALL MXM IOI, 02, 031 
9 CALL MXM 181, 03, 04) 

10 CALL MSM IBO, 04, Bl 
11 CALL WRTMAT 16) 
13 CALL MTXM 16, F, Al 
14 CALL MXM IA, B, FLEX> 
15 CALL WRTMAT IFLEXl 
16 LOAD= 0 
17 LOAD= LOAD+ l 
18 CALL RMAT (FORCE! 
19 CALL MXM (FLEX, FORCE, DELTA! 
20 CALL WRTMAT <DELTA! 
21 CALL MXM 18, FORCE, FINI 
22 CALL WRTMAT (FIN) 
23 IF (LOAD oLTo 5 ) GO TO 17 
24 GO TO l 

END 

11 



Assume that the structure is subjected to a total of m external 

forces given by the vector 

. f; J. 
The redundant forces, which are unknown, are denoted by the vector 

12 

The internal forces S acting within the actual structure are expressed 

as the total effects of the external forces F and the redundant forces X 

as 

where bo and b1 are rectangular matrices with m (number of forces) and 

n (number of redundants) columns, respectively, and the same number of 

rows ass. The stress matrix So= boF is statically equivalent to the 

applied loads F, and the stress matrix S1 = b1X is self-equilibrating. 

In the formation of the matrices bo and b1, only equilibrium conditions 

are considered. When the structure is statically determinate., bo is 

found from the equations of static equilibrium and b1 does not exist. 

When the structure is not statically determinate, the matrix b1 denotes 

any set of suitable self-equilibrating force systems corresponding to 

the unit values of the redundant forces. 

A suitable self-equil;-ibrating system for a rectangular stiffened 

panel is shown in Figure J (4,). The values of stringer loads and shear 

nows are given in Figure Jin terms of the forces P and Q. When solving 

for the b1 matrix, a unit load is normally applied at the cut; and the 

induced loads in the surrounding structure are then evaluated relative 
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Rectangular stiffened panel 

Self. equilibrating stress system X= 1 ( Flat panel) 

fl nge loads Longitudinal a Transverse flange loads 

Figure J. Self-Equilibrating Stress S;ystem for 
Integrally Reinforced Skin Panel 

the 
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to the unit load. In actuality, only the relative magnitude of the force 

at the c11t and or the induced loads is·required for a complete solution. 

Henc.e, the actual magnitude of the f'orce applied at the cut is c~­

pletei.y arbitrary. This is shown in page 16. 

Compatibility of Deformations 

The equation for the compatibility of defomations in the actual 

structure is 

{Vr} = 0 

where V~ is a column vector of relative displacements of the redundant 

forces at t,he cuts made in the redundant structure. 

The deformations V of an element are related to the generalized 

forces S by the fiexibility matrix :J- of the element. The coefficients 

of' the fiexibili ty ma1:,rix represent the defiections due to unit loads or 

{v} = [~] {S}. 

To express the compatibility conditions in tems of the applied 

forces F and the redundant forces X, the relative def'omations at the 

ends or boundaries of the elements are 

[v} = G1] {s} = [~] [bJ [r} + [.1] [b,]{x} 
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The compatibility conditions require that the relative displacements 

of the redundant forces at the cuts made in the redundant structure are 

zero (4), 

{Yr} = '[6~] { v] {o] 

Solving for the redundant forces within the structure, 

-1 

{x] = -[~1][JJ~,] [bJ~][l]{F]. 
The preceding expression is the general fonnulation in matrix algebra of 

the equations for the unknown forces within the structure. 

These matrix algebra equations are equivalent to the equations 

obtained from the application of the unit load method (8). The equations 

from the unit load methods are of the tonn 

la. IM - tck = +~kt +- Xbf~ + 

- IL '" XP- J'~ J. : -1- i1, !u f ic.!h, 

!c : dco 1- Xa J:. .,. .K1,fc1a +~kc 

where the flexibility coefficients 4 represent the deflections at 

point i due to forces at point j. 

Comparing this matrix fonnulation and the unit load method, it is 

possible to define the matrices D and D0 • 

The matrix D is the symmetrical square matrix of the J(j coeffi­

cients or the flexibility matrix for the directions of the unknown forces X 
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-
in the structure. The matrix D0 is the column matrix of the ho 

coefficients for the basic system. The matrix algebra relationships 

are 

[o J - [b;,] [ 3 J [ b J 

Hence, the expression for the redundant forces i ·s 

J{x} = -[dJ [DJ . 

Based on the expression for the redundant forces within the structure, 

the internal loads or stresses are obtained in tenns of the applied 

forces F 

where [ b J = ~b.] - [b,J[ [li,] [J ][bl[ [b;,][J ][b.J]] . 
A unit load is generally applied at the cut when detennining the 

distribution of redundant fcroes within the structure. However, the final 

solution of the problem requires only the relative magnitude of the ind.med 

loads within the structure and the load applied at the cut sections within 

the structure. This is demonstrated by considering that the matrix b1 is 

multiplied by some arbitrary constant C representing something other than 

a unit load at the cut. Consequently, the internal forces are 



1? 

Now assume that b1 is multiplied by some arbitrary constant C, corre-

spending to a set of redundant forces X 

LS} "" [bJ {F] + c [b] {i} 

[DJ = c [b'J [ :1 JC [b1 J = c2 [D] 

[o,J = c [81] [sr J [bo] = c [u] 
-i 

{xJ : -[DJ [DJ 

fx] = /1 [rf] c [Da] fF} .~ j {t} · 

{s] = [b.] tF} + \ [61] if{ t} 

{ s} = [ bo] {F J + [b1] { k} 

which is identical with the result obtained. for a unit load at the cut. 

In order to calculate the deflections of points on the structure, 

it is necessary to determine the flexibility matrix ff- which relates the 

applied f orees F a.nd their displacements f according to the equation 

which is equivalent to 
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The work done by the external forces F moving through the displace­

ments S is FrJ • The work done by the internal forces S moving through 

the deformations V is sT V. If F and S are statically equivalent and ~ 

and V are geometrically compatible, then 

since 

and 

but 

{F1{£} - {s1 [v] 

fs} = [b] {F} 

{s] = [F'i [~] 

{F'J[Sf : {FJ [~] {v] 

{v] = [1] [ s} = [.1] [b] {_F] 

{FJ {[} = {FJ[t;] [J-][h] {Fj 

[3] ~ [g][st][b]. 

Analysis of the Test Structure by the Foree Method 

The application of the force method for the analysis of the rec­

tangular integrally reinforced panel that is described in the experimental 

investigation, Chapter IV, is shown in Table I. · The digital computer 

program is based on the matrix algebra subroutines in Appendix A. The 

structure is idealized into the statically determinate basio systems that 

are described in Figures 4 and .5 ( 9 ) • The self-equilibrating system, 

Figure J, is used for each of the six redundant forces X as in Figure 4. 
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Unit Load Matrices 

The unit external load matrix bo and the unit redundant load matrix 

b1 are given in tabular fonn on Table II. In the force method, it is 

necessary to specify the forces on each side of a junction, although 

the forces are the same. Therefore, there are 51 rows in the bo and the 

b1 matrices. The 51 rows correspond to 24 rows for the stringer elements, 

51 through 512; 18 rows for the rib elements, R1 through R9; 9 rows for 

the web elements, W1 through W9. 

The element numbering system is shown in Figure 4. Also, the out­

board directions are defined in Figure 4. In Table II, the outboard 

and inboard ends of an element are designated O and I, respectively. 

The unit external load matrix bo is fonnulated by assuming that the 

external unit loads, F1 through F4,, are transmitted directly inboard 

through their respective stringers while the transverse load F5 is 

carried by elements 57 through 512, R9, WJ, w6, and W9 acting as a 

cantilever beam. The unit redundant load matrix b1 is fonnulated using 

six of the self-equilibrating systems shown in Figure .3 at the locations 

shown in Figure 4. 

Effective Flange Areas 

In accounting for the axial-load-carrying capability of the web 

elements of the structure, the area of the webs is generally lumped with 

the stringers and ribs as effective flange areas. The effective flange 

areas transmit all axial forces acting on the structure; and, consequentJ;y, 

represent the axial stresses in both the actual flanges and the webs. 
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TABLE II 

UNIT LOAD MATRICES 
Unit .External Load Matrix Unit Redundant Load Matrix 

b bl 0 

Row Point Fl F2 F. 
3 F4 F .5 xl x2 X3 X4 XS x6 

S l·I -0.20 
s 1-0 -0.20 

3 S2·I -0.20 
4 S2·0 ,0.20 

5 S3·I -0.20 
6 S3·0 

S4·I l 0.40 -0. 20 
S4-0 l 0.40 -0.20 

9 SS·I 0.40 -o. 20 
10 ss-o 0.40. -0. 20 

11 S6-I ·· ff.40 -0. 20 
12 S6-0 

13 S7-I 6 -0.20 0.40 
14 S7-0 4 -o. 20 0.40 

15 SB-I 4 -0.20 0.40 
16 SB-0 2 -0.20 0.40 

. 17 S9·I -0. 20 0.40 
18 S9-0 

19 SlO·I -6 -0.20 
20 Sl0-0 -4 -0.20 

21 Sll·I -4 -0.20 
22 Sll·O -2 -o. 20 

23 S.12·I -2 -0. 20 
24 Sl2-0 

25 Rl-I 
26 Rl-0 -0.10 0.20 -0.10 

27 R2·I -0.10 0.20 -0.10. 
28 R2·0 -o.1ci 0.20 -0.10 

29 R3aI -0.10 0.20 -0. lO 
30 R3·.0 

31 R4-I 
32 R4-0 -0.10 o. 20 

33 RS·I -0.10 0.20 
34 RS·O -0.10 0. 20 

35 R6-I -0.10 0.20 
36 R6·0 

37 R7·I 
38 R7-0 -0.10 

39 RB·I -0.10 
40 RB-0 -0.10 

41 R9·I -0.10 
42 R9-0 

43 Wl -0.20 0.20 
44 W2 0.02 -0.0.2 -0.02 0.02 

45 W3 0.20 0.02 ~0.02 
46 W4 -0.02 0 .• 02 

47 ws 0.02 -0.02 -0.02 0.02 
48 W6 0.20 

49 W7 -0.02 
50 W8 0.02 -0.02 

51 W9 0.20 0.02 



The effective areas for the outboard stringer area are 0.375 square inches; 

for the central _stringer area, 0.325 square inches; for the outboard rib 

area, 0.50 square inches; and.for the central rib area, 0.625 square inches. 

Element Flexibility Matrix 

The flexibility matrix is a partitioned diagonal matrix with JO sub-

matrices, one for each structural element. The 12.-stringer and the 9-rib 

flexibility matrices are 2 x 2 matrices of' the form 

g. = _I [?>~ 
£ l 

6A 

L ] 6,4 

3~ • 

The web flexibility matrices are one-element matrices of the form 

A 
Gt:. • 

The expanded flexibility matrix is, therefore, a 51 x 51 symmetric 

matrix with 93 nonzero elements. The flexibility subnatrices for the 

stringer elements are 

/07 

-7 
/0 

~

.36b 

4,./93 

h67fei 

.a38 

tJ.838 

9 .. ~70 
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The flexibility .submatrices for the rib elements are 

E51~ 

= ;r51 
258 

1.2581 
2.sd 

3.145 /.572 

= 10 
/.572.. 3./45 

The flexibility submatrioes for the web elements are 

= 

These submatrices are combined to form the flexibility matrix for 

the structure as shown in Table III. The stress and deflection results 

of the force method of analysis for the five load configurations studied 

in the experimental investigation are given in Chapter V. 
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TABLE III 

FIEXIBIUTY MATRIX FOR STRUCTURAL PANEL ELEMENTS 

101[J J 
Row Col. Coef. Row Col. Coef. Row Col. Coef. 

1 1 8.386 lT 17 9.676 32 31 1.258 
1 2 4. 193 17 18 4.838 32 32 2.516 
2 l 4.193 . 18 17 4.838 33 33 2.516 
2 2 8.386 18 18 9.676 33 34 1.258 
3 3 8.386 19 19 8.386 34 33 1. 258 
3 4 4.193 19 20 4.193 34 34 2.516 
4 · 3 4.193 20 19 4.193 35 35 2.516 
4 4 8.386 20 20 8.386 35 36 1. 258 
5 5 8.386 21 21 8.386 36 35 1. 258 
5 6 4.193 21 22 4.193 36 36 2.516 
6 5 4.193 22 21 4.193 37 37 3.145 
6 6 8.386 22 22 8.386 37 38 1.572 
7 7 9.676 23 23 8.386 38 37 1.572 
7 8 4.838 23 24 4.193 38 38 3.145 
8 7 4.838 24 23 4.193 39 39 3.145 
8 8 9.676 24 24 8.386 39 40 1. 572 
9 9 9.676 25 25 2.516 40 39 1. 572 
9 10 4.838 25 26 1.258 40 40 3.145 

10 9 3.838 26 . 25 1.258 41 41 3.145 
10 10 9.676 26 26 2.516 41 42 1.572 
11 11 9.676 27 27 2.516 42 41 1.572 
11 12 4.838 27 28 1. 258 42 42 3.145 
12 11 4.838 28 27 1.258 43 43 2.516 
12 12 9.676 28 28 2.516 44 44 2.516 
13 13 9.676 29 29 2.516 45 45 2.516 
13 14 4.838 20 30 1.258 46 46 2.516 
14 13 4.838 30 29 1.258 47 47 2.516 
14 14 9.676 30 30 2.516 48 48 2.516 
15 15 9.676 31 31 2.516 49 49 2.516 
15 16 4.838 31 32 1.258 50 50 2.516 
16 15 4.838 51 51 2.516 
16 16 9.676 



CHAPrER III 

STIFFNESS METHOD OF .ANALYSIS 

The direct stiffness method is a finite element method of structural 

analysis which considers a structure to be an assembly of idealized 

elastic elements which are assumed to be joined only at discrete points 

called nodes. The stiffness method is a contrast to the force method, 

which is described in Chapter II, in that displacements, not forces, are 

the initial unknown quantities. The concept of redundant load paths 

illustrated in Chapter II is not applicable in the stiffness method of 

analysis because of the treatments of the node displacements as unknown 

quantities. The relationship of forces and of displacements is defined 

for the node points on the structure by the stiffness matrix. The 

stiffness matrix for the complete structure is obtained by adding the 

stiffness coefficients for common degrees of freedom of adjacent elements 

at each node on the structure. The summed stiffness coefficients define 

the coefficients for the linear algebraic equations relating the nodal 

forces and the nodal displacements of the complete structure. The 

general stiffness coefficient Kjh is the force in the direction j due 

to the unit displacement in the direction h, while all other displace­

ments are zero. .As a result of equilibrium conditions, the stiffness 

matrix is a positive definite, symmetric matrix; and the sum of the 

coefficients along any row or column of the stiffness matrix is equal 

to zero. 

26 
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The forces and deflections in each element of the structure are 

related by an assumed stress-strain relationship for the idealized element. 

The displacements of the nodes in the structure are considered as the 

initial unknown quantities. An infinite number of mutually compatible 

deformations of the elements are possible; the correct pattern of displace­

ments of the elements is the one for which the equations of equilibrium 

are satisfied. 

If' the idealized structural elements for which the stiffness 

coefficients are known are combined for a continuous structure, the 

composite stiffness matrix for the total structure is assembled as 

K,, K,2 • K,1,. K,,,., 
1<2, l<2l • • • 

• • • • • 

l<j, • • Kjh /GM 

K,,u • l<Mh KMM 

where each Kjh is the stiffness coefficient representing the total 

force component produced at node j due to a corresponding unit displace­

ment component at node h. 

The stiffness matrix relates the external forces acting at the nodes 

on the structure to the displacements of the nodes through the expression 

{F}= [/<] {SJ. 
The expression for nodal displacements J as a function of the external 

forces or loads Fis obtained by inverting the stiffness matrix and is 

[Is= [~tJ {F}. 
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A matrix of stress coefficients is derived by using the same strain 

pattern far the elastic element that is assumed inderivingthe stiffness 

coefficients. 

The algebraic equations which express the stresses fT within the 

elements as a function of its nodal displacement & are given by the 
,.. 

stress coefficient matrix S 

The stresses within the elements are determined subsequent to the 

calculation of the node displacements. The forces at all nodes on the 

structure can also be determined from the stiffness matrix once the node 

displacements are available. Determining the forces at each node is 

desirable for establishing equilibrium conditions for the structure. 

The application of the stiffness method involves determining the 

stiffness coefficients of the idealized structural elements required to 

represent accurately a specific structure and using these coefficients to 

develop the simultaneous equations relating forces and displacements for 

the structure. Subsequent to the calculation of deflections, the stresses 

are calculated using stress coefficients based on the same assumptions 

that are made in deriving the stiffness coefficients. The stiffness and 

stress eoefficients for the integrally reinforced rectangular skin panel 

used in this research program are derived in the remainder of this chapter. 

The application of the stiffness method for the analysis of the test 

structure described in Chapter Vis made possible by the Stress .Analysis 

System digital computer program, which is described in Ch.apter IV. The 

Stress .Analysis System provides a complete analysis and requires only a 

geometric description of the structure. 
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The integral reinforcements within the structural skin panel 

described in Chapter V are represented by idealized a.xial force elements 

called stringer or rib elements. The web sections of the test panel are 

represented by idealized plane stress elements called panels or plates. 

The remainder of this chapter describes the derivations of the 

stiffness and stress matrices for each type of element that is used in 

the Stress Analysis System· digital computer program, which is described 

in Chapter IV. Additional elements required for different structural 

configurations are obtained in a similar manner. 

'f4e formulation of the stiffness and stress coefficient matrices 

for idealized structural elements is indicated by the application of 

the principles of virtual work to the stringer-type element. This 

method is a contrast to the method of dir.ect geometrical relationships 

for the same type of idealized element discussed by Turner, et al. (.3); 

However, the results for the first stringer_..type element are the same 

as those obtained by Turner, et al. (.3). The method of direct geomet­

rical relationships is very satisfactory for some types of idealized 

elements; however, the approach bec.omes less desirable as the aSsU111ed 
'. 

behavior of the elements becomes l!'lOre complex. The subsequent deriva­

tions of stiffness and stress coefficient matrices for idealized stringer 

and. plate-type elements are also based on energy methods of structural 

analysis. However, the basic approach is less difficult conceptually 

for the stringer-type element. 
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Stiffness Derivation for Stringer-:,Type Element 

d.. = cos e 
ft= cos ~ 

Figure 6. Stringer Element 

The assumed stress-strain relationship for the stringer element is 

The stringer is subjected to a set of external forces 

and the displacements along their lines of action are represented by 

The internal forces in the element are represented by 

The strain or deformation of the element is 
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The c0111patibility relation between the strains v and the displacements d 

is expressed by-

fv-J = [fl) id]. 

The coefficients ot the i th colmn ot the geometric matrix [a.] are 

the relation between v and di = 1. These- coefficients are interpreted as 

the values of strain due to a unit displacement cit when all other displace-

ments remain zero. 

The equilibrillm condition between the internal forces P and the 

external forces F are obtained by- the principle ot 'Virtual work. The 

statement ot the principle is: 

The work done by a set ot external forces, F, moving 
thraugh the associated displacements, d , is equal to the 
work done by a set of statically equivalent internal forces, 
P, moving through the associated deformation v (10) .• 

The work dQne by the external force F moving through the displace-

ment dis 

'T T 
work = [Ff {d} wr {d} {F}

0 

The work done by the internal forces P moving through the deformation v . . 

is 

The .forces F and Pare statically equivalent; d and v are geometrically 

compatible. 

From the compatibility condition 

{rj =[tA-J[ d J 
{dj'{F] = [d}r[aJ1{Pf 



J2 

For any set of displacements d the equilibrium between internal and 

external forces is 

Ass"Uming the material obeys Hooke's Ia.w, the stress-strain relationship 

for the stringer is 

{fj z [J.} {v-}. 

Since [Fj = (a]' /Pj 
: [ a] r [ Je, J [ 11 J 

!ri= [a.JT[~J[~J {d/. 

Since the stiffness matrix is defined by the equation as 

then the stiffness matrix for the element is 

[K] = [a_J[,!e] [a J. 

Assume that the displacement distribution for the stringer is represented 

by the linear relationship 

' where X. refers to the local coordinate system along the axis of the 

stringer element. 
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The constants C 1 and C 2 a.re detennined from the boundary conditions 

hence 

and 

Thus, the matrix of compatible strains for unit element displacements 

for a stringer element is given by 

and 

(tl.] = f (-1 I) 
[k] = ( [a.J[Je.J [a] )v 

JlloL 

[KJ =ff a.f [ J,,)["-) .,,;,..,,_. d~· 

J/E [ I [!(}= 7 -\ -: J . 
To transfonn into two dimensions, let c(..,~ be the direction cosines for 

the axis of the stringer and the two coordinate axes. as shown in Figure 6 0 

were 

/J=]= rl[FJ and. 

[f J = [,.1; J'[1<J[r1 J [sj 

{~] : ~ ! : ;J . 



The stiffness matrix relative to the two-dimensional coordinate 

system is obtained from the stiffness matrix for the local coordinate 

system by A , the transformation matrix of direction cosines. The 

stiffness matrix for the two-dimensional coordinate system is expressed 

by the force-deflection relationship 

Fx., o<.2 o<.f> -~2 -otl /)._ I 

Fy, o(/, fi"L -o<! -,Bi. 7li 
AE --

~1 L -c<l -~ 0(.2 o<.(3 U2. 

Fy2 -O(i _,'2. 
o<I J7.. ~ 

• 

The stress within the element is determined from the equation for 

strain transformed into the two-dimensional coordinate system by the 

coordinate transformation matrix A. The coordinate transformation 

results in the· following equation for the stress in the stringer element. 

u, 

~J 

Stringer Element With Linear Strain Variation 

If the stringer-type and rib-type element experiences a linear change 

in strain or stress variation due to the effect of shear transfer of load 

to the web, then the strain function is of the form 
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The corresponding displacement function is obtained from integration 

The constants are evaluated r~om the following conditions 

1. d= tt 1 ~ %1 =o 

2 (:' -:: . 'Jd = 0 @ ~I :C, 
• '=x <?K' 

from 1 (>.3' ;;. t(. I from 2 f 1 =o from 3 

hence 

cl.: u. + ( U.2- U.;) ..,/.2 
I _f '2. ;r... • 

The matrix of compatible strains for unit element displacements for the 

element is 

and 

Hence, for the local coordinate system along the axis or the element 

-4J ,4-
?> 

• 
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The stresses within the element are determined from the expression 

o= +- L(Fz -,c;) 
Aj. • 

The stress at the center of the element is 

v - t L-1 

The stiffness and stress matrices can be obtained relative to the two-

dimensional coordinate system using the coordinate transformation matrix 

A dispussed for the first stringer element. 

Stiffness Derivations for Panel Elements 

The rectangular web sections of the integrally reinforced rectangular 

skin panel are idealized as plate- or panel-type elements that resist 

both shear and axial loads. Different stiffness and stress matrices 

are obtained depending on the assumed mode of behavior of the element. 

The plate-type elements available in the Stress Analysis System 

program consist of state-of-the-art derivations based on an assumed 

displacement function, an assumed stress function with five coefficients, 

and a new rectangular plate stiffness matrix using an assumed stress 

function with linear variations in two directions. The three different 

techniques used for deriving these element stiffness matrices may be 

applied to the developnent of stiffness and stress coefficient matrices 

for arbitrary geometric configurations of idealized elements transmitting 

forces in the plane of the elements. 



Rectangular Plate With Assumed Displacements 

The origin of the local coordinate system is assumed to be at the 

lower left-hand corner of the rectangular plate as shown in Figure 7. 

Nond.imensional coordinates 

- K Jl ... -
~ 

are introduced to simplify the analysis. The lengths a and bare the 
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dimensions of the rectangular panel in the x and y directions, respecti.vel;y, 

The deflection of the element is represented by the displacements of 

the four corners. Consequently, there are eight displacements U1, V1, U2, 

V2, UJ, VJ, U4, V4; and they are measured positive along the positive x 

and y axes. 

ly 
'\1""3 

l'Vi 
Llz. t 

T 2 .3 
-u.~ 

, b 

1 '!/j 'If+ 
u..' 4- u. .. .... 'X --
~ -1 

~ 

a 

Figure 7. Plate Element With Assumed 
Displacement Function 

A more general derivation of th~ element stiffness properties for a non­

rectangular configuration based on the same element idealization is given 

by Cook ( 11). 
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A simple displacement function based on the assumption of linearly 

varying boundary displacements and in terms of the dimensionless coor-
I 

dinate is ( 12) 

()_ :z t, i + Ci "i Y + {3 Y + {4-

1F-= {15 K + C, K 9 + {17 Y + es , 

The eight arbitrary constants C 1 through ca are determined from the 

displacements in the x and y directions at the four corners of the model. 

The unknown constants C1 through Ca are evaluated from the boundary 

conditions 

IJ. = LL, r V-=- u- ~ { o; c;) 

(.) -= II. 2 I V--= v;_ @ ( °' I) I 

(.)_ z: IA.J t 1/: ~ (! (/.; I) 
I 

it= tJ., £ ~s ~ ~ (!JO)" 
I 

The displacement functions are 

ti.= ll, (1-x..)(1-y) + IJ..2 C9){1-i) + U3(R.9) ./- 1)_4 (!.)(t-1) 

v-;; v-;(!-x.i_1-9Jt- v-zCtX1-i) +-11.,{!tJ + 14{tj1-1J. 

The strain of the element is obtained by differentiation. By definition 
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The complete strain-displacement relationships are obtained tor the 

strains €)(" ~.,., ~ >'-';} in terms or the displacements {.';:-} 

~'1 -=- t [ u, (1-i)(-1) + tl..2( 1-i) + IJ..3 X. + l(.4- jZ(-1)_] + 

+-[v,-(1-r )(-t) + ?Jz.(Y )(-1) 1- 71J(-9) +74(1-y)] 

or in matrix notation 

where the coefficients c,f A contain the.dimensionless coordinates 

on the surface of the element. 
\ 

Lt, 

,()(.)(. .H 0 -.1. 0 :1. 0 )-y 0 1Jj 
a q ·~ a a (,(2 

x-1 1::.E.. x -.K flfz 
tyy 0 CJ 0 = b ~ 0 b I::, ul 

v; 
t, K-1 9-1 /-~ -9 il y -z 1-9 t4 - ~ h a a b T ~ er- v; 



When Hook's Law applies, the stresses are related to the strains by 

where the coefficients of B are 

I 

£ i) 
1-l)t. 

0 

I 

0 

0 

0 

1-iJ 
2 
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The stresses withil!, the idealized element can now be expressed in 

terms of the displacements of the corner nodes of the idealized element. 

3{J-b) -~y <A.-'i ~y x. 3(.b-y) - )(. U.1 
lfK )(-a.. 

Vi 
U.i 

:s(a..-x.) J .3 .IC b-y -~><.. 
~ 

~ Y-b 3(1l-~) -'a 
3€ U? ::--
Bab 

~ 

l1 'l-t>- ~-b tt-l' -1 x: ~ -1' b-'f U+ 

t 
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The stiffness matrix K is obtained from the unit displacement theorem. 

Since the matrix A is a function 0£ the position variables, the integra­

tion is performed with respect to I and Y between the limits I= Oto 1 

and Y = 0 to 1. The unit displacement theorem provides 

where A is the relationship between strain and node displacements and 

Bis the relationship between stress and strain. 

The stiffness ~atrix for the panel shown in Figure 7 for -rJ = 1/3 

is 

2a 2+6b2 

3ab 6a2 +2b2 

-2a2+3b2 0.0 2a 2+6b2 

0.0 .~6a2+b2 -3ab 6a2+zb2 
Et 

16ab 
2 -3b 2 -3ab a 2-6b2 0.0 2a2 +6b 2 -a 

-3ab -3a2-b2 0.0 3a2-2b2 3ab 6.2 +2b2 

.2-6b2 a.a -a2-3b 2 3ab C2a 2+Jb2 a.a 6b2+2a 2 

0.0 3a2-2b2 3ab 0 3a 2-b2 0.0 -6a 2+b 2 -3ab 2 2 
6a +2b 



Rectangular Plate With Assumed Stresses 

A limitation of the results of the previous type of derivation is 

that the equilibrium. conditions are satisfied within the element.only 

for a specific set of relative displacements of the corner nodes. 

A second stiffness and stress matrix is derived using an assumed 

42 

stress variation within the element that can be evaluated using only the 

boundary conditions expressed in terms of the corner displacements of 

the element. By using only five undetermined coefficients, the stiff-

ness and stress matrices can be obtained from the node displacements of 

the element shown in Figure 8. 

r 
Tt:u, tVJ __ u3 

3 

b / 

17/i 74 
'-.i--.·~-U_, ___________ 4..;...., __J:I+ __ __ 

~~~~~~a ~~~~~~~I 

Figure 8. Plate Element With Assumed 
Stress Function 

The stress distribution first used by Turner, et al. (3), is 

Ux. = Ot + 0 2 y 
oY = a~ t 04-X 

Tx.>- = O.s-
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This assumption satisfies exactly the stress equilibrium equations within 

the rectangle; however, the resulting displacement distribution violates 

the compatibility of boundary displacements on adjacent elements. Using 

Hooke's Law, the relationship between stresses and strains for the plane 

stress condition is 

Ox I ; 0 Ex 
(Ty E -,) I 0 ~'I ---I- 'J)Z 

,_'!) 7::y 0 0 - t~y 2 

€)( I _; 0 (Ti 

Gy I -'P I 0 Oy ==--
£ 

(y 0 0 ·.2U+"l/) 1;.y 
• 

Defining strain in terms of the displacement :functions U. and ?f . 

or in terms of the stresses 

d~ _j_ ( Ox -~tlj) -
~~ € 

;;)1r -= j(~ - Vh) 
';:>.j 

;).?; + ;)a, - .:J( I+ -z)) r 
~)(. ~1 G ~. 
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Based on the assumed stress distribution, the strains within the 

element in terms of the five undetermined coefficients are 

The displacement functions IJ. and V- are obtained from the integration of 

the strain functions 

where f (y) is some arbitrary function of y and '{ = G ><. , 

Likewise 

where g(x) is some arbitrary function of X and ~ C' € y • 

The constants of integration f(y) and g(x) are determined from the shear 

expression 



Solving for g(x) and f(y) 

/('f) + i1-('f) = -<(1-1-iJ) as -(d,>C + j 1(><-J) =- fl~ 

I {'1 J = a, y - a, yz "" a1 
2 

1 { x.) + i2. { X ) = o1 ( If-,)) f1s - at. 
j ( ;(.) ::: [ ;;_ (I+ ,) ) 11.s - a~1 K -
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where the new undetermined coefficients a7 and aa are rigid body transla­

tions and a6 is the rigid body rotation of the element. 

The assumed stress distribution results in displacement functions of' 

the form 

which can be arranged in the form 

ll x -= C, K. + G y - {' ~ ( !) x z + y z.) + e2 c i x. 'I + cs 

11y =- e, K -1- c7 y - ct/- c x. 2 + J YV + ~ c! x. Y + c8 
where c, = j (a,- -;Ja~) 

Q - (h. z - T 
C:1 '= ~ 

.J ~= 
C -:::: ~ 

4 ~=-

/} (17 
L5-=- T 

c~ ::. i(.i.( 1-1-i)lls -a,J 
C1 ~ t(a..~ -Ja,) 

Cs= .~. e 
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Based on the notation and boundary conditions shewn for the rectangular 

plate element shown in Figµre 6, the displacement functions tor the x 

and y directions are as foilows: 
! 

+[ \;IL, -i. ;i.~( ~-'14 f 1/;- Vi)] Y 

- [ ~k (1ra -Vq. + 1J; - v-.) } ( ~ X2 + yz) 

+ f _J_ ( IA~- U.ci- + U.,-vl-1..)} X y L 2a.b 

+ U..,. 

Vy z [ ~t + ;I, ( U.3 -/J..1- -,-/)., - tJ.,) } ,'. 

+ { 'Ir,~,;-, + £;_ ( 11-~ _ u. .. + lA, - u.,.) l 1 

{~ ( u.,.-IJ..4. + IA,- u., ) ~ ( r}+ v r) 

+ l * ( v; -1f4- +- '1I', -1fz.) } )(~ 

+ IIJj • 
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The strains in the element are then eval'llated from the following 

relationship. 

€'1. ~IA. U..1 
,v; _.)( 
IJ.2 

~7r [A] 'lrz e., - - - l,l) - ~~ Vi 
~u '"a: llt 

o~ ~ + o-><.. '1f+ 

where 

~{V-b) {e.-zx) _t,y -@-z.x.) ~j {fJ,- zx) - ,r Y-b) -(a.-z,j) 

.ab -3a 

The relationship for stresses in terms of node displacements is obtained 

from 

For -,) = 1/3, the multiplication yields 

a; 1-6 - '3 -Y 3 ~ 3 b-y -3 U., 
1!, 
l).z.. 

o; e. -~b x-°'-. -~\o a.-x.. 3/,;i x. 3b -)( Vi 
=:I foo.\. I)..~ 

11; 

1' -3a. -3b ~ -31c:. 3tL 3b -3tt ~b 14 
~ 1i+ 

• 

, 



The stiffness matrix K is obtained from the unit displacement theorem. 

Since the matrix A is a function of the position variables, the integration 

. is performed with respect to X and Y between the limits X = 0 to 1 and 

Y = 0 to 1. The unit displacement theorem provides 

where A is the relationship between strain and node displacements and 

.Bis the relationship between stress and strain. 

The stiffness matrix for the panel shown in Figure 8 for -P = 1/3 

is 

70b2+18a2 

36ab 70a2+18b2 

38b2-1Ba2 0,0 70b2+18a2 

0.0 -7oa2+18b2 -36ab 1oa2+1sb2 

Et 
l92ab 

-38b2-isa2 -36ab -70b2+18a2 o.o 70b2+18a2 

-36ab -38a2-1Sb2 o.o Jsa2-1sb2 36ab 70a2+18b2 

-70b2+18a2 o.o -38b2-isa2 36ab 3Sb2-isa2 o.o 1ob2+1sa2 

o.o 38a2-1Sb2 36ab . -38a2-lsb2 o.o -1oa2+1sb2 ·36ab 1oa2+1sb2 
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Rectangular Plate Element With Higher Stress Variation 

The two previous stiffness matrices were developed using assumed 

stress or displacement patterns which resulted in eight undetermined 

coefficients in the displacement functions. These eight undetermined 

coefficients are evaluated by boundary conditions expressed in terms of 

the eight degrees of freedom of the corner nodes of the elements. These 

previous assumptions yield stress variations that are constant or linearly 

varying in only one direction. In addition, for the case of the assumed 

displacement function, the equilibrium conditions for the element are only 

satisfied for a particular set of relative displacements of the corner 

nodes of the elements. 

In order to increase the accuracy of the stiffness matrix for a 

specific size of idealized structural element, the stress or deformation 

mode of the element is increased by assuming a higher order of variation 

of stresses within the element or by assuming a less restricted pattern 

of deformations within the element. Consequently, additional considera­

tions are required to eval1:1B-te the additional undetermined coefficients 

which result from increased variations of stress within the element. 

In a recent technical note, Plan ( 1J) has shown that the theorem of 

complementary energy can be used to obtain stiffness ma trices for elements 

using an unlimited number of undetermined coefficients for the assumed 

stress variation within the element. In addition, Melosh (14) has 

recently shown that similar variational methods can be used to develop stiff­

ness matrices for ass')lllled higher deformation modes within the element. 

Based on these developnents, new generations of stiffness matrices can be 

developed for the numerous types of elements required for structural 

analyses. 
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The subsequent developuent of a stiffness matrix required for the 

analysis of the integrally reinforced rectangular skin panel assumes a 

stress pattern that varies linearly in each direction within the idealized 

element. 

fY 
f l({-z. t Vi 

. tJ..i.. 

T z. -a.3 
3 

,ft b 

1 v; 'Cl~ 
I ti I 4 (,(ti----~- a. -1 

Figure 9. Plate Element With Linear Stress Variation 

The assumed stress variation within the element is 

u-; = 
fy = 
ff' -
f~ -

a.I f d2Y + tl6K.. 

tl.3 -1- a-,. x + d7 y 
Cls - tl"y - a.1JG 

The stress distribution 0- in terms of the undetermined coefficients 

is 

a, 
~ '} 0 0 0 a, 

tl.3 

Vy - 0 0 I 0 0 y a4-
r1.t; 

fx1 0 0 0 0 I -y -x ~ 
a1 

where the coefficients of S ·are the x and y coordinates of ·the surface of 

the element. 



The stress-strain relations for the plane stress conditions are 

f rr} - [a] {e} 

u; I ) 0 E)t. 

Gy E. iJ I 0 9 - ( I -v-z) 

1'xy 0 0 
1-rJ 't.y -z 

and [€] = [et] t ul 
€x. I -J 0 a-;: 

f'l 
I -i I 0 Vy -E 

(y 0 0 .:;{!+~ ~y 
0 

Using the stress distribution in terms of the undetermined coef­

ficients 

and the stress-strain relations 

the internal strain energy for an element can be expressed as (4) 

or 

U = ~fjfLar.J[sJ[li'J[s]{().J dV0 

r,L 
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Since the undetermined coef'f'icients {a.} are not f'unctions of' x and y, the 

internal strain energy f'or an isotropic plate element of constant thickness 

is 

or 

where 

For Poisson's Ratio of 1/J, the result is shown as f'o;µ.o~s: 

I 

lo bz 
-

2. 3 

- 1 - Jo I -:r ~ 
1:ab -a -ab a d-e 

7z -- "::> £ ~ 2 

() 0 0 0 
8 
r 

a ab -a -az -4h ·::i.l' + 8 bz 
2. 4- -g- -9- 3 9 

-b - /J b b -4a-- 7.ab 3b7+8a7. 
~ -y- /Z. (o 9 2 :} 



E 
.·~ 

The inverse of this matrix is 

-I 
[SES] = 

f(ll11rjl~9a29'+~2,i, 
-~ ~ 4& 

2b2 

f~3.~+:ib7JI) lef 
- 4 f(ll,~4+ai..+9b2,6) 

98 ... 3ak+24_,$ 3a~+24"'f --;;- • 4a 
2a2 

•j(3a1-a~) 2¥ • t(abo<+3abjl). ·. 9b ... 
T 

21 ... 0' 9ao< ---4 --;;- 2 

!!!A ,J. 27bS 
- 4 2 --;;- 0 

f~9~2,..9b2o<) 

27b ... 
·--;;-

¥ 

2·7 ... 
T 

271' 
T 
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7 x 7 

The forces acting on the boundaries of the .elements. are expressed in 
' ' ' 

terms or the undetermined coetticients {tt r by -their equilibrium relation'.. 

ship to the stress ,variations within the element. For the numbering system 

shown in Figure 9, the surface stresses are 

( ' if -. - o;_ - - a., .-a'l-'/ - a, X-F;) Ii?. 

(iy)12 -· '-1' 
Y-'J 

., -·as + tl(p !I + Cl.7 )( 

(r-;J23 = r~ ' .:a- as ~a,y _;._ d7 x:.. 
(!yJ25 ,_ OJ - d,3 + tl¢ J(- + d7y 

" 

(!::); 4-. = - ~'I :;::: -a~ + tl~Y ./-- a.7 ~ 
' (;:;; /(f. - -ay - -tl.3 -dax. - tl.7 y 
(fi')43 - /Jx.. = a, -1- a2 y + tl.1:, x::. 
(ryJ43. =· ·0,1 ::. as ·-a©y d.7K. 



The surface forces are written in terms of the undetermined coefficients 

in the form 

{t=j = [ c ] { a j 

where 
I y 0 t::> 0 x 0 

0 c::, I >< cO 0 I 

I y c 0 a x 0 

[c J 0 d) I )( .::) 0 I = 
c::> 0 t:) 0 I -Y -X:. 

c, 0 (;) I -Y _)( 
0 

0 c, 

" I - y -x.. 
0 

C) 
I - 'I - ><. 0 0 {;) 0 

The deformation of the element is described in terms of the boundary 

displacements which must be consistent with the assumed stress distribution 

in the element. 

The deformations·of the boundaries are described in terms of the node 

displacements by the equations 

[J1 = {Mj {tj 
where the terms of M represent the linear deformations of the edges in 

terms of the surface coordinates. The linear edge displacements in terms 

of the generalized displacements of the nodes are as follows for the 

edge 1-2: 

= - (1--f)t.t., + ([)t1.2. 

= 

The displacements of the other edges are obtained in a similar manner 0 
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In matrix notation 

t:.<~) /-.,% 0 Y;ib 0 0 0 0 0 lL, 
IZ. 

1-'//1:::, YI~ 0 

Jn 
0 0 0 0 0 

(If, 
I- o/4... x/a. 0 0 0 

J.;.-{~) 0 a (!) ll,z. 
23 ><./a. 0 0 v;_ J~(?r) 0 0 0 I- K/.:::t.. 0 

Z3 -
ii- /- K/a. 0 0 0 ~ 

>"/a.. 0 /).3 s. (a,) 
0 

IY. 
K/o... 

v; 
t/'Pj C!J /- k:/a.. 0 0 0 0 0 

N 
114-,,ti.) 

0 0 0 0 Y/b 0 /-Y/4:, a 

J:cv) 
9-3 0 0 0 0 0 Y/b 0 14 

• 

The strain energy in the element in terms of the generalized displace-

ments is 

u = ; !ff-}[):, J 1i1. 

The theorem of minimum. complementary energy states ( 15) 

where 

From the condition for minimum. complementary energy 

d 1Tc = e; J ( /. ~ .. • 7 ) 
;)a1.· 

[SES] fa}= (cM_] (:J. 



Consequently, the undetermined coefficients can be expressed in terms of 

the generalized displacements as 

The internal strain energy within the element in terms of the stiffness 

matrix for the element is 
. . 

& .r.J{:[[K}/:.j 
The internal strain energy for an iso~ropic plate element of constant 

thickness is 

Based on the solution for the undetermined coefficients, the strain energy 

can also be expressed as 

U = l £:{[ctn] [mj{(M_] /!Jf. 
Cn"n~q,~~nt.,J.y, the element stiffness matrix is _, 

[K] =- {cM} 7(scs] {cM J ~ 
The stiffness matrix for the rectangular plate element is evaluated for 

-,) = 1/3. The coefficients of the stiffnes, matrix a.re shown as partitioned 

matrices for convenience. 

rt..1] 
r . 

where 



35b2 a6+b4 6-6a2 b2 S+9a2 crS+9a4 S 

l8abctl .35a2 aS+a4 a-6a 2 b2 a+9b2 a6+9b4 a 

r l9b 2 a6-b4 S+6a2 b2 S-9a2 ctl-9a4 S 0.0 

0.0 -35a2 aS-a4 a+6a 2b2 a+9b 2 aS-9b4 a 

-19b2 o;l+b4 S-6a2 b2 S-9a2 crS+9a4 S. -lBabaS 

-18ab·a6 -19a2 oS+a4 a-6a 2 b2 a-9b 2 aS+9b4 a 

'l_= 
-35b2 a6-b46+6a2 b2 S+9a2 a6-9~~6 0.0 

0.0 19a2 aS-a4 a+6a 2 b2 a-9b 2 cr6-9b4 a 

35b2 crS+b4 S-6a2 b2 S+9a2 aS+9a4 S 

-lBabaS 35a2 .aS+a4 a-6a 2 b2 a+9b 2 a6+9b4 a 

-35b2 aS-b4 6+6a2 b2 S+9a2 aS-9a4 6 0.0 

0.0 19a2 aS-a4 a+6a2 b2 a-9b2 crS-9b4 a 

-19b2 aS+b4 6-6a2 b2 6-9a2 aS+9a4 6 18aba6 

18aba6 -19a 2 o;!+a4 a-6a 2 b2 a-9b2 cr6+9b4 a' 

• 

\A 
--..J 



. ·· CHAPl'ER IV 

STRESS ANALYSIS SYSTEM 

The Stress Analysis Sy-stem is a digital computer program using matrix 

methods based on discrete element idealization for two-dime~sional struc-

tures. The complete solution for deflections and stresses requires only 

that the structure be defined in terms of its geometrical characteristics 

and types of structural .. elements. The structure is first idealized as an 

assemblage of discrete structural elements. Each structural element has 

an assumed form of displacement or stress distribution. The complete 

solution is obtained by satisfying the force equilibrium and displacement 

compatibility a.t the junctions of the elements. Thus, the conditions of 

equilibri'lllll and compatibility are satisfied at only a finite number of 

points which do not necessarily imply any appreciable loss of accuracy. 

When the size of the element is su.f'ficiently small in relation to·the over-

all size of the structure and the variations of stresses within the 

structure do not exceed those allowed in the mathematical model, the 

discrete ·element methods give good approximations to the exact solutions. 

The displacement method is the basis for developing this digital 

computer program for a.nal.yzing two-dimensional rectangular panel configu­

rations for arbitrary load and support conditions;. The system provides 

solutions for displacements and internal.pr external forces at the struc-
: . . . 

tural node points arid stresses at any stress node points defined for the 

structural element. 
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The input da.ta. required for the Stress Analysis System consist of 

node l11ll1lbers, element numbers, and geometric descriptions of the 

idealized structure and locations of desired stress results on the ele­

ments. The program is divided into the following catagories: 

1. Geometric description of the structure 

2. Idealized description of the structure 

J. Generation of stiffness matrices 

4. Generation of stress matrices 

5. Deflection solution 

6. Reaction force solution 

7. Generalized stress calculations 

8. Printing of analysis results 

The data required under item number 1 are shown in Table IV. 

The data for item number 2 are described in Table v. The data 

required for item number 7 are shown in Table VI. 

The first step for preparing the.input da.ta. for the analysis is to 

simulate the actual structure as an assemblage of idealized elements, which 

is commonly ref erred to as the idealized structure shown in Figure 10 0 The 

structure is formed from available elements, i.e., stringers and rec­

tangular plates, so that it is capable of representing the deflection 

behavior of the actual structure. The idealized structure is described in 

terms of the node data and the structural da.ta. The node data, Table IV, 

consist of the number of the node point, the coordinates of the node 

point, the external forces acting on the node point, and the definition 

of the boundary condition at the node point. The structural da.ta. consist 

of the location of the idealized elements relative to the node points, the 

type of structural element, and the description of its material properties. 
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NOTATION 

O NODE 

<> . STRINGER 

D PLATE 

2 --x 

li'igure 10 11 Idea.litation for Stiffness Method of An~sis 



61 

TABLE rv 

NODE DATA FOR STRESS ANALYSIS SYSTEM 

"'~ LOADING CONDITIONS I!-< 
Q .... """' 00 COORDINATES ::, 0 
z"" Case T Case 2 Case 3 Case 4 j Case 5 "'"" 1 5 6 7 18 19 3[ 31 42 43 54 55 66 67 78 80 

1 x o.o ·1 
l!v o.o I 
2 x 5.0 1 
2 y 0.0 .L 
3 x 10.0 l 
3tv o.o 1 
4 x 15.0 --L 

· 4 tv o.o 1 
5 x 0.0 0 
5 y 2.0 ~:±&= 6 x 5.0 --61v 2.0 . IO 

7 x 10.0 0 
71v 2 0 0 
8 x 15.0 0 
Btv 2.0 0 

9 x o.o 0 

9tv 12.0 (I 

10 x 5 0 0 

10 Iv 12.0 In 

11 x 10.0 In 
11 Iv i J? .0 It\ 

1? (y I J'i fl In 

12 Iv 12.0· 0 
13 x o.o 0 
13 v 22.0 0 
14 x 5.0 0 
14 Iv 22.0 ,o 
15 x 10.0 n 
15 Iv 22.0 0 
16 x 15.0 0 

16 ly 22.0 0 
17 x o.o 0 
17 . v 32.0 2500 • 0 
18 x 5.0 0 
18 Iv 32.0 2500. 5000. 0 -
19 x 10.0 0 
19 Iv 32.0 2500. ~ooo. 0 
20 x 15.0 1000. 1n111 0 
20 v 32,0 2'i00, iooo. inf\(\ 0 
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TABLE V 

STRUCTURAL DlTA FOR STRESS ANALYSIS SYSTEM 

!.: "' ELEMENT LOCATION STU'FNESS DATA 
~ f<l (NODE ·POINTS) 

YOUNG'S ~~ TYPE POISSON'S AREA OR 
f<l z p Q R s MODULUS RATIO THICKNESS 

l 56 9 10 l' 14 1, 18 21 24 26 35 36 41 42 47 
1 1 s 6 2 7 10.6 +6 0.3333 0.5 
2 2 6 7 3 7 10.6 +6 0.3333 0.5 
3 3 7 ii 4 7 10 . 6 +6 0.3333 0.5 
~ s 9 10 6 7 10.6 +6 0. 1133 0.05 
s 6 10 11 7 , 10.6 ... 6 0.3333 0.05 
6 J 11 12 8 _7 10 6 i&. n. 1131 0.05 
7 q 11 11· 10 7 10.6 ... 6 0.1133 0.05 
~ 1r 14 1' 11 7 111,; .._,; 11 1111 In n, 
c 11 Vi lt l? 7 111 ,; ,.._,; 11 1111 0.05 

lf 11 17 p 1'· 7. 111 6 +6 11 1111 In OS 
1 14 lR JC 1 <; 7 111 ,; .._,; 11 1111 0.05 
1 l 'i Jg ?( 11. 7 10 6 +h 0 1111 O OS 
1 'i f, 1 111 f, .._,; 0.25 
1 l F 7 1 111 ,; 1 ... ,; lo ?, 
l' i R 1 111 ,; I ... ,; 0.25 
lf q 10 1 111,; lit. lo 1 ?, 
1 1( 11 1 111 I. 1.._,; lo 1 ?'i 
1, 1 12 1 10.f> 1 ... 1. Io 12, 
1 ( l " 14 l 10.f> 4 .f, 0 125 
2 ll 15 1 111. 6 , t. 11 1 ?<; 

2 l lf> 1 111 I, , t. 11 1 ?<; 

2 u lR 1 111 I, t. 11 ?<; 

2' 16 lQ 1 111 I, +h 11 ?<; 

24 19 20 l 10.6 +f, 0 25 
25 1 s 1 111 I. .Lh In ?, 

26 :; 9 1 10 f, +f, lo 2, 
27 9 13 1 111 I. .Lh In ?, 

28 13 17 1 111 I. ,t. In ?, 

29 2 f, 1 111 I. 1 ... 6 0. 125 
30 6 10 1 10.6 +6 0 . 125 
31 10 14 l 10 .6 +6 0. 125 
32 14 18 l 10. 6 +6 0.125 
33 3 7 1 10 . 6 +6 0 . 125 
34 7 11 1 10 6 1 ... 1. In p<; 

35 11 15 1 10.6 1 ... 6 In 17' 
36 15 19 l 10.,; i&. In p<; 

37 4 8 1 111 ,; i&. In ?<; 

38 8 12 l 10 6 lit. In ?, 

39 12 16 1 111 ,; Ii&. In ?~ 

40 16 20 1 111 ,; lie. In ?, 
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TABLE VI 

STRESS. NODE DATA FOR STRESS ANALYSIS SYSTEM 

ELEMENT 
NUMBER NCDE 1 NCDE 2 N:1DE 3 NODE 4 NODE 5 

1 5 6 7 18 19 10 31 42 41 'i4 <;<; ,;,; 

1 x 2.5 1. 25 1. 25 3.75 3. 75 
1 v 1.0 o. 5 1. 5 1.5 0.5 
2 x 2.5 1. 25 1.25 3.75 3.75 ·-2·v 1.0 0.5 1. 5 1. 5 0.5 
3 x 2.5 I 1. 25 1. 25 3,75 3.75 
3 y 1.0 0.5 1. 5 1. 5 0.5 
4 x 2.5 1. 25 1. 25 3.75 3.75 
4 y 5.0 2.5 7.5 7.5 2.5 
5 x 2.5 1. 25 1. 25 3.75 3.75 
5 v 5.0 2.5 7.5 7.5 2.5 
6 x 2.5 1. 25 1. 25 3. 75 1 7S --6 v 5.0 2.5 7.5 7.5 ? 'i .. 
7 x 2.5 1 ?'i 1 OS 

' 7S 
> 7S 

7 v 5.0 2.5 7,5 7.5 2.5 
8 x 2.5 1. 25 1. 25 3.75 3.75 
8 y 5.0 2.5 7.5 7.5 2.5 
9'x 2.5 1. 25 1. 25 3.75 3.75 
9 y 5.0 2.5 7.5 7.5 2.5 

10 x 2.5 1. 25 1. 25 3.75 3.75 
10 Iv 5.0 2.5 7.5 7.5 2. s -11 x 2.5 1. 25 1. 25 1,7S 1,75 
111 v 5.0 2,5 7.5 7 'i ? 'i 

,_ 12 x 2.5 1 ?'i 1 ?<; 1 7, 1 7<; 
l2!v 5.0 ? 5 7 ' 7 S ? s 

-
·---···· 

--

I 
I 
I I 



The location ot the node points is given relative to a two­

dimensio:nal rectangular coordinate system. The n node points are num­

bered conseeuti vely trom 1 to n in the direction ot the mininnmi. width. 
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The bou.ndar.r conditions are specitied by restricting the displace­

ment ot the supported node point in the c!lireotions ot the intended 

supports. This is achieved by placing a 1 in column 80 of each node 

data card for the degrees ot treedom which are to be restrained. It 

insutticient boundary conditions are detined, the stittness ot the 

general structure is zero in that direction. Consequently, the stitt­

ness matrix is singular; and the analysis cannot be completed. 

The loading conditions are given as part of the node data as shown 

in Table IV. Five loading conditions can be considered in each analysis. 

The loads are entered in Table IV by listing the x and y components of 

the applied load in the x and y rows of the node points on which the 

loads are acting. The actual external loads acting on the real structure 

are represented by concentrated loads acting at the node points of the 

idealized structure. 

The locations of the idealized elements are given relative to the 

node points in the structural data. The idealized elements are numbered 

consecutively. No specitic grouping is required between stringer or 

rectangular plate elements. If an integer is assigned to a stringer, 

the next integer can be assigned to a rectangular plate. For stringer 

elements, the connecting node point n1llllbers are given in·co1um.ns 6 

through 9 and 10 through 13 of the .structural data cards and are cal~ed 

nodes P and Q. For rec~ngular plates, the nodes are called P, Q, R, 

and Sand are listed in consecutive order clockwise around the rec­

tangu.lar plate. The implication in listing the corner node point 



numbers is that it automatically assigns a local xy coordinate system 

for the rectangle. The local x axis extends from node P to node S; the 

local y axis extends from node P to node Q. 

The stress components are calculated and printed out relative to 

the local coordinate system. For example, if the structure has grid 

lines parallel to the x and y axis of the general coordinate system, a 

PQRS sequence is chosen so that the coordinate axes for each rectangular 

plate have directions identical to those of the general coordinate axes. 

In this case, the stresses are then relative to the external coordinate 

axes and are the same for all rectangular plates. The stress results 

for the stringer elements are given relative to the axis of the stringers. 

As additional elehlents are added to this program, the common element 

coordinate system should be maintained. 

The type of idealized element is specified in the structural data 

by entering the type number in column 24. The type numbers for each 

element are given in Appendix B. 

The elastic properties of the material are defined in the structural 

data and consist of modulus of elasticity and Poiss.on' s ratio. They are 

entered in Table V for each element. 

Stresses are calculated for the stress node points defined for each 

element relative to the local coordinate aystem of the element. The 

characteristic dimensions of the idealized elements are defined by the 

coordinates of their end or corner node points. The coordinates of the 

stress node points are given in inches relative to the local coordinate 

system for the element. A maximum of five stress nodes can be used in 

each analysis. If no stress nodes are specified, stresses are auto­

matically computed for the coordinates of the centroid of the element. 
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Node numbers, element numbers, element-type numbers, and support 

conditions are always entered as integers. All other d_ata are entered. 

with a decimal point in the proper place. An e~ple of the input data 

for the test structure is given in TablesIV, V, and VI. 

Once the idealized structure and the loading conditions are defined, 

the computational sequence follows from the stiffness method. The stiff­

ness and stress matrices are generated for each element using the 

structural material properties and the dimensions obtained from the node 

data. The rows and columns of the stiffness matrix and stress and load 

matrices are in the order of x and y for each node point on the structure. 

In general, if Pis the number of the node point, the x and y degrees of 

freedom at Pare labeled 2P-1 and 2P, respectively. These numbers are 

then used as indices to denote a displacement or force component acting 

at node Pin either x or y direction. 

The matrix K (BARK) is the stiffness matrix of the idealized structure 

in lower symmetric form. It is obtained by simply summing up the contri­

butions of the various element stiffness coefficients in the direction of 

each displacement. To facilitate this summation, th& MPQRS numbering 

scheme is used to denote the x and y directions of each of the nodes (16). 

Once the element stiffness matrices have been computed based on the 

stiffness properties and the node locations of each element, the .coef­

ficients of the stiffness matrix are assigned indices according to the 

MPQRS scheme. The indices designate the position of the stiffness matrix 

for the individual composite stiffness matrix for the total structure. The 

total stiffness matrix K is obtained by summing the stiffness matrix ele­

ments with common indices obtained by the MPQRS scheme. As the stiffness 

matrix for each element is generated, it is added to the large K matrix. 
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The coefficients of Kare the f orees generated at the node points in 

the x and y directions, when one node is displaced a. unit distance in the 

x or y direction and all other displacements are restrained. The sum of 

the coefficients in every row and column is zero since the forces generated . 

at restrained node points and the force developed due to the unit displace. 

ment a.re in equilibrium. If the structure is restrained from rotation 

and translation degrees of freedom by removing the rows and columns of 

the Kmatrix that represent the displacement of boundary conditions, the 

matrix is subsequently nonsingular. Removing these rows and columns 

decreases the size of the matrix and consequently changes the indices of 

the coefficients of i. Consequently, one has the choice of using the 

reduced matrix and changing the indices of tle rows and column designa­

tions or removing the rows and columns except on the diagonal. The 

diagonal element is replaced by a. 1. The result is that the sti ffness 

matrix will contain a unit matrix which will not effect the solution of 

the simultaneous equations obtained by performing the inverse operation. 

This technique does save the numbering scheme but, of course, retains the 

size of the stiffness matrix. This method of modification rather than 

reduction of the stiffness matrix is utilized in this program because it 

simplifies the bookkeeping problems throughout the calculations; and, 

for these types of structures, the decrease in the size of the stiff­

ness matrix obtained by reducing the matrix for the boundary conditions 

is not a significant advantage. 

After the stiffness matrices for each element have been added to 1he 

total stiffness matrix K, the matrix K is modified, as mentioned in the 

previous paragraph, according to the defined boundary comitionso The 
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modified stiffness matrix is then inverted and the node point deflections 

are calculated from the equation 

The deflection matrix ~ is a complete listing of the node displacements, 

including the zero displacements at the boundaries. 

The stresses in each idealized element are calculated from the 

deflections $ for the element, which must be obtained from the total ~ 

matrix. The stresses are computed by generating the stress matrix for the 

coordinates of the stress node point and post.multiplying the element stress 

matrix by the element displacements. The stresses within the idealized 

element are based on the assumptions made for deriving the stiffness and 

stress matrices. Consequently, the stresses at any number of points in 

a single plate may be obtained through the stress coefficient matrix and 

the corner displacements of ~ plate or stringer elemento The components 

of the stress tensor at the stress node points defined in the stress node 

data are calculated relative to the local coordinate system of the plate 

element. 

The reaction forces at the boundary node points are computed from 

the equation 

[F]: [K] [J} 

by evaluating the right-hand side of the equation where K is the original 

stiffness matrix before boundary conditions are applied. The reaction 

forces are used for checking the original input data or the accumulation 

of numerical errors in the computing process and do provide a solution for 

the reactions in the directions of the specified boundary conditions. 
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The output data. a.re presented in two forms, an abbreviated form 

containing only the basic results of the analysis an4 an extended form 

including all of the individual plate and stringer stiffness and stress 

coefficient matrices an~ bookkeeping arrays in the analysis. The output 

is controlled by placing a numeral 1 in column .30 of the program control 

card. If no parameter is used in column .30, the abbreviated form of the 

analysis will be printed~ 



CHAPTER V 

ANALYTICAL INVESTIGATION 

The.structural panel used in this inwstigation was designed so 

that the idealization used in the stiffness analysis corresponded as 

accurately ,as po$sible to the actual test model. In the ease of com­

plex structural configurations, the analysis problem should be divided 

into t-,ro phases: the idealization or the complex structure; the-analysis 

of the idealized structure. 

In, the .first phase, large errors may occur d:u:tt to,·computer size 

limi~tions because it is necessary to approximate large structural 

configurations wit~ a relatively few number of structural elements. In 

addition, thick panels are idealized. as thin panels which carry no out­

of-plane loads; and tapered bar elements are idealized into constant.area 

sections that carry constant loads. These discrepancies occur in the 

idealization phase of the analysis. 

The second phase, the comparison_between the structural behav.1or 

of the panel and the matheniatical analysis oft.he idealized panel, is 

hopetul.ly limited to errors in the mathematical representation of the 

characteristics of.the sti,ictural elements. It is first necessary to 

prove that an idealized structural configuration behaws in a manner 

similar to an.actual structural configuration of _approximately the same 

geometric characteristics. Afterttus comparison is made, the errors 

resulting from idealization proced-ures can be more accurately investigated. 
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The design or the research model shown in Figure 11 is based on 

the idealization of actual structural configurations that are comm.only 

encountered in aerospace structural analysis. This structural configura­

tion results in a convenient idealization for both the force and the 

stiffness methods of analysis. 

The analysis of the panel by the force method described in 

Chapter II is based on the assumption that the shear forces are trans­

mitted only by the web elements and the axial,forces are transmitted 

only by the rib and stringer elements. The cross-sectional areas of 

the rib and stringer elements are increased to account for the axial 

forces that are also transmitted by the web elements. This procedure 

is desirable in the force analysis since the consideration of additi0nal 

axial forces in the web elements increases the degree or redundancy of 

the structure. 

The. force method was used for the analysis of the structure based 

on the nominal dimensions of the structure shown in Figure 11. The 

structure was analyzed tor the five load conditions used in the experi­

mental investigation. A complete description of these load configurations 

is given in Chapter VI. ! nllBlbering system of points and elements on the 

structural pan,el is shown in Figure 12. This sequenee of numbers is 

us.ed to identity the analytical results shown in Tables VII and VIII, 

for the force method of analysis described in Chapter II. 

A more extensive analysis of the structure was performed using the 

stiffness method of analysis described in Chapter III. A complete 

a:nal;ysis of the structure was performed using each of the idealized 

elements described in Ohapter III for each of the load configurations 

used in the experimental investigation. 
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Node 
.Nuuiberis 

Stringers 
5 
9 

13 
17 
6 

10 
14 
18 

7 
11 
15 

· 19 
8 

12 
16 
20 

Ribs 
5 

10 
11 
12 
13 

·.·. 14 
15 
16 
17. 
18 
19 
20. 

Webs 
1 

.2 
3 
4 
5 ',, 

' 6. 
7 ' 
8 
9 .·' 

Uniform 
Case 1 
10000 lb 

7120 
7120 
7040 
6~70 ,' 
. 71-?0 

. 7170 
7270 
7690 
7150 
7170 
7270 
7690 
7120 

·7120 
7040 
'6670 

0 
.-23 
-23 

0 
0 

-83 
.. -83 

0 
0 

.137 
137 · 

0 

ll 
0 

:..11 
68 

·o .. 
".''68 
'27 

0 
;,.27 ', 

TABLE VII 

STRESSES FROM FORCE ANALYSIS 

Center 
Case 2 

10000.lb 

7077 
6860 

·. 5500 
0 

7218 
7471 
9037 

15384 
7218 
7471 
9037 

·. 15384 
·7077 
6860. 
5500 

0 

0 
-341 
:..341 

0 
0 

-1243 
-1243., 

0 
0 

2064 
2064. 

0 

164 
0 

-164 
1018. 

0 
;,.1018 

4125.• 
o·. 

-4125 

Node 1 
Case 3 
1000 lb 

-497 
-479 
-370 

. ·o 
302 

,' 283 
181 

0 
1113 
1089 
919 

d 
1936 
1956 

··2083. 
· 2666 

0 
27 ,' 
32 

0 
0 

79 
137 

0 
0 

-138 
-218 

-o 

-14 
0 

15 
-80 
-15 
.95 

.. 277 
-160 

4.38 

·. Shear 
Cas~ 4 

1000 .lb 

4930 
3231 .. 
1559 

0 
1386 
1078 
596 

o· 
-.1374 
-1038 
-436 

0 
·. -4930 

-3266 
-1697 

0 

0 
7 

-30 
0 
0 

34 
'' 38 • 

0 
0 

584 
1.363 
2000 

1272 
,, 1473 
.· ... 1254·, 

1254 
1568 
117.7 
1169 
1557 

l.273 

Combined 
Case 5 

1000 lb 

4432 
2755 
1189 

0 
,, '1688 

1361 
777 

0 
-261 

·51 
483 

0 
-3002 
,.131i 

385 
2666 

0 
34 

2 
0 
0 

,113 
175 

0 
0 

466 
1144 
2000 

1259 
· 1472 
·'1269 

i174 
1553 
1272 
981 

1397 

'1711 

74 
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TABLE VIII 

DEFLECTIONS FROM FORCE ANALYSIS 

Load Conditions 
Uniform Center Node 1 Shear Combined 
Case 1 Case 2 Ca~e 3 Cs.se 4 Case 5 

Deflection 10000 lb 10000 lb 1000 lb 1000 lb 1000 lb 

V17 0.0199 0.01.50 -0.0010 0.0068 o.oo;a 

Via 0.0206 0.0262 0.0006 0.0023 0.002f3 

V19 0.0206 0.0262 0.0023 -0.,0021 0.,0004 

V20 0.0199 0.0150 0.00.59 -0.0070 -0.0010 

U20 0.0001 0.0010 -0.0070 0.0295 0.0225 
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The analyses based on the stitf'ness meth.od a.re easily performed 

using the Stress ~~lysis System deseribed i:n Chapter IV. .Since the 

concept of' redundant loa~ paths is :not a consideration in the stiffness 

method of analysis, few restrictions are placed on the idealized form 
' 

of.the structure. The web elements are assumed to transmit axial forces 

as well as shear forces. The rib and stringer elements transmit only 

axial forces. The amount of' the axial forces transmitted by each element 

depends on the relative stiffness of the elements. The sti:rtness 

properties are formulated 'Within the Stress Analysis System using a 

geometric description of' the structure as described in Chapter IV. 
' . 

The analytical results using the new stiffness matrix derived in 

Chapter III, based on an assumed linear stress variation in each direction, 

are shown in Tables IX, I, and XI. This analysis was performed using the 

nominal dimensions of the structure shown in Figure 11 and the structural 

idealization illustrated in Chapter IV. The data shown in Tables IX, X, 

and XI are relative to the numbering sy-stem of' points and elements on the 

structural panel shown in Figure 12. 

Each analysis yields different results for the same structural 

idealization because of the initial assumptions that are made f'or the 
I 

derivation of stiffness properties. The most obvious differences result 

from the assumed behavior of' the web elements. For example, the web 

element used in the force method of analysis transmits only shear forces. 

The three plate elements representing the webs for the stiffness method 

of' analysis transmit both axial and shear forces. However, tne three 

plate stiffness matrices provide different results because of the fol­

lowing limitations. The stress distribution within the first plate 

element described in Chapter III based on an ass'Wlted displacement function 
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TABLE II 

WEB STRESSES FROM.STIFFNESS ANALYSIS 

Web Load Conditions 

Element .Stress Case· 1 Case 2 Case 3 Case 4 Case 5 

U-x 1278 1238 -18 563 545 
l 0-y 6879 6873 -169 2823 2654 

'l"xy 299 332 20 1290 1310 

0-x 1291 1230 135 -18 117 
2 (Ty 6787 6792 678 ·O 676 

f"xy 0 Q 12· 1431 1443 

U-x 1278 1238 282 -550 -268 
3 0-y 6879 6873 1546 -2818 -1272 

'f'xy -300 -332 ".'33 1279 1246 

<rx 273 -291 34 37 72 
4 try 6708 6655 -161 1659 1497 

~xy -51 979 -104 1258 1154 

trx 357 -955 167 -61 106 
5 try 6878 7452 630 71 701 

1-'xy 0 0 -7 1668 1660 

U-x 274 -291 133 -216 -83 
6 /Ty 6708 6655 1513 -1692 -179 

rxy 51 -979 112 1074 1186 

ITx 817 995 -23 185 162 
7 0-y 6804 6782 -80 551 471 

'ixy -86 3857 -300 1113 813 

rrx 791 1911 -33 547 514 
8 (Ty 6811 11485 214 130 343 

',xy 0 0 -207 1581 1374 

V-x 817 995 151 883 1034 
9 O-y 6804 6782 1445 -374 1071 

7'xy 87 -3857 .506 1306 1813 
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TABLE x 

STRINGER AND RIB STRESSES FROM STIFFNESS ANALYSIS 

( 

Element Between .Load Conditions 

Number Nodes Case .. l Case 2 Case .3 Case 4 Case 5 

Stringers 
26' 5-9 6549 6539. ..;560 4094 3535 
27 9-.13 6473 5733 .. ;.504 2387 ..• 1884 

. 28 12-H. 6.517 2052 -210 .. 745, 535 

30· 6-10 6356. 6382·· .234· 1177 ', 1410 
31 10-14· ·.·· 6759 7771 ·t57' 

" 

906 1064 
32 .·. 14-18 6547 10849· 66 233 299 

34 7-11 -6356 6382 .\ 1032 .. •1168 ·136 
35 .11-15 _ · 6759 · 7771 992 ·723 268 
36 15-19 6547° 10848 ,', .· 383 .. 335· 45 

38 8-12 .6550 6540 1872 -4102 ·2230 
39 12-16 .·· 6473. · 5733. ··1946'· -2517 ·571 
40 16-20 ·65l7 2052 · 2406 -999 1406 

Ribs 
16 9-10 ·2029 -?106 759 -756 -679 
17 10'!'11 -1941 -2068 181 .. 35 ..;217 
18. 11-12 ~2029 •2106 •.466 · 

.. 778 . 1 312 

19 13·14. ·1894 ·2912 100 .. 275 -175 
20 14-15 -1929 ·4811 95 !"135 -39 
21 15·16 -1894 .. 2913 ;.276 -83 -358 

22 17-18 . -1009. 382 :,: -94 278 18-5 
23 18-19 . ~1028 977 .. 303 1142 839 
24 19-20 ... 1ooa ". 382· 

.. 
~386, 2090 .1713 
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TABLE XI 

· D!FIECTION$ FROM. ·aT.mNES.$:'illlL?SIS . 
.. . ·. ... ; ·, .. :-.~-·, ,/: '."/ :::. . ,.:..;'.;:,_. ·.l . :·· ... ·. ··:· : ... . . . . . . . . .. 

Load Conditions 
Uniform Center Node 1 Shear Combined 
Case 1 Case 2 Case :3 Case 4 Case .5 

J)eflection 10000' lb 10000 lb·. 1000 lb 1000 lb 1000 lb 

V17 0.0184 0.014 -0.0012 0.0068 0.00.56 

V1a 0.0185 0.024 0.0004 0.0022 0.0026 

V19 0.018.5 0.024 0.002:3 -0.0021 0.0002 

V20 o.01a9 0.014 0.00.59 .,.0.0072 .0.0013 

U20 -0.0007 0.000 -Q .• 0072 0.0292 0.0221 
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does not satisfy equilibrium conclitions except tor a specific· se:t of 

relative node displacements. The second plate element derived in 

Chapter III based on an assumed stress distribution does not provide 

compatible displacements between adjacent elements at .their boundaries. 

The new plate element derived in Chapter III does not violate either of 

these conditions. 

As a result of the manufacturing tolerances on the structure, the 

actual dimensions of the structure are slightly different than the 

nominal dimensions of the structure. The ac.tual thickness or the test 

structure is the o:nl;y significant variation trop1 the nominal dimensions. 

Consequentl;y, an additional anal;ysis using the new stiffness matrix is 

performed based on the same idealization described in Chapter IV and 

using the actual dimensions of the structure based on the measured 

thicknesses shown in Figure 1). 

The validity of the analysis is demonstrated by comparing the 

anal;ytical data using the actual structural dimensions with the test 

data obtained during the experimental imre~tigation. These comparisons 

are shown in Chapter VII. 
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CHAPTER VI 

EXPERIMENTAL INVESTIGATION 

Concurrent with the developnent of analytical methods is a 

requirement for the developnent of test techniques to provide experi­

mental verification of the theory. 
r· 

The purpose ot the experimental investigation is to provide data for 

direct comparison to the ana1ytical methods. Since the structural ideali-

zation techniques provide a unique and somewhat unrealistic structural 

configuration, prior experimental data are unavailable for comparison 

purposes. The experimental facility and the structural skin panel that 

were developed for this investigation are shown in Figure 14; a general 

floor plan of the facility is given in Figure 15. 

One objective of the experimental investigation is the determina-

tion of the complete state of strain at various points in the model for 

five conditions of external loading. The strain gages are positioned 

on the panel at points which correspond with node points easily selected 

£or the analytical solutions. These locations of the strain gages 

reduce any errors that might occur as a result of extrapolating either 

the analytical or the experimental data. 

The research model was fabricated from a plate of 2024-TS.51 aluminum 

. alloy by General Dynamics Corporation, Fort Worth, Ten.so This material 

was selected because of its high utilization in current aircraft programs. 

The panel was machined from one-half-inch-thick plates to eliminate joints. 
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Figure 14. Experimental Facility and Structural Skin Panel 
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Test Apparatus and Instrum.ent~tion 

A list of the major equipnent used in this test program is given in 

Appendix D. 

were 

The types of straim gages seleetedtor this experimental program 

Manufacturer 

Gage Factor 

. .Resistance 

hi.al 

The Budd Co. -

C12-121-A 

2.07 f 1/2'1i 

120 t o.20hms 

Rosette 

The Blldd Co .• 

C 12-121n.R:,Y 

a.o, .± 1/2'/, 

120,·:t 0.2 ohms 
.I 

Eastman 910 cement was used to bo:md. the strain gages to the surface 

ot the model after the surface of the model had been prepared using sand.­

paper,_ trichlorethylene, and an aeid :neutralizer. A three-wire sy-stem 

was used to connect the strain.gages to the read out instrumentation in 

order to cancel the- effect ot changes of·w:tre resistance encountered 

with changes of room temperature. 

The strain gage data recording instr'UDlentation consists_ of a l:)atran 

Digital Strain Indicator with a Victor Digit-Matio Printer shown in 

Figure 14. In addition, portable strainindicatorsand switch and 

ba.l.ance uni ts, shown in Figure 16, were used to · record a total of ,oo 

channels of strain·da.ta. 

Defieotions were measured with Starrett Dial Indicators. The 

indicators have a range of 0.,4 inches and a graduation of 0.,0001 inch.,· 
. . ,. ·. . ' .. 

The dial indicators were located at the boundai-y of the panel as shown 
. . 

in Figure 17. Data from these dial :lndioators~·11$Etd to determine 

the deflected shape of the panel. 
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Figure 16. Portable Strain Gage Instrumentation 
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The loads were applied using an Empco Vertical Motion. Jack,· Style 

JH-20, purchased from the Enterprise Machine Parts Corporation. Pre­

liminary tests indicated that these mechanical load devices were satis­

factory for this type of static testing. Budd SR-4 Load· Cells were 

used to monitor the external loads on the panel. The loading system is 

·shown in Figure 18. These load cells were calibrated by the manu­

facturer for an accuracy of ± 0.25 per cent of full scale. 

In order to read both load cells on the BLH SR-4 Indicator, the 

load cells were connected to the indicator through the BLH Switch and 

Balance Unit, and the system calibrated for a gage factor of 2.0. The 

SR-4 Load Cells were used to calibrate the BLH, Type N, Indicator 

against the Budd portable indicators using the calibration factors 

specified by The Budd Company. The system was also calibrated using 

test equipment at the Haliburton Oil Company, Duncan, Oklahoma. 

The-loading system is shown in Figure 18. Load-divider systems 

shown in Figure 14 were used to divide the load symmetrically to the 

various load points for load configuration numbers one and two. 

The basic loading fixture to be used for the experimental investi­

gation, Figure 14, was designed, fabricated, and used in previous 

experimental programs at Oklahoma State University (11). 

One of the most critical aspects of testing these small structural 

configurations for deflection and stress characteristics is the manner in 

which the model is supported in the loading fixture. The support system 

must not contribute effects at the supports which cannot be represented 

accurately as boundary conditions. The support system should be rigid 

enough to minimize the contributions to the panel deflections for maximum 

loads. Two types of support configurat,ions were considered: -A simple 



Figure 18. Mechanical Loading System 
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support configuration, and a fixed.-base configuration. Either of these 

support configurations could be handled accurately in the analysis; how­

ever, preliminary experimental test results indicate that the f'ixed SUP­

port system, Figure 19, performed more satisfactorily. This was a result 

ot friction in the sliding support which must be asS'll!l1ed friction free. 

Preliminary tests were conducted on the panel using twenty strain 

gages to determine the panel alignment characteristics and to verity the 

design and application ot the related test equipnent. The objectives of 

the preliminary tests were 

1. To ascertain the linearity of the load deflection 
relationships; 

2. To determine hysteresis effects; 

3. To determine the amount of preload required to remove 
the initial joint slippage in the model. 

The results of these preliminary tests indicated that hysteresis 

effects were negligible for the load conditions to be investigated. In 

addition, the model yielded linear results with strains of sufficient 

magnitude to be recorded easily from the available equipnent for the 

desired load levels. The expected stress concentration effects were 

observed from both the load divider system and the support system. 

These unavoidable effects were not excessive and hence did not prejlldice 

the experimental data. 

The preliminary tests did indicate that a small amount of'out-of-

plane deformation was present in the model as a result of the machining 

operation. This initial deformation had a significant effect on strain 

measured at the surface ot the stringers and ribs. The strain gages on 

the stringers and ribs were actually one-fourth inch from the center plane 

of the model. However, excellent results were obtained by using strain 
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Figure 19. Support System 
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gages located opposite each other on the ribs and stringers and by using 

the average of the two readings. 

The initial shape of the model also had a significant effect for the 

shear load configuration. The initial eccentricity resulted in less load 

capacity than would haw been present for a perfect model. This difficulty 

was overcome by using a 10,000..pound uniform preload to straighten the 

model for the shear load configuration. Since the combined load was still 

in the linear load-deformation range, the effect of the 10,000..pound 

uniform load was easily segregated from the shear load effects. 

Subsequent to the completion of the preliminary tests, an additional 

280 strain gages were applied to the model at the typical locations shown 

in Figures 20, 21, and 22. In many oases,. redundant gage locations were 

used to check the symmetry of load distrib~tion. The axial and rosette 

gages were numbered as shown in Figures 20, 21, and 22. The numbering 

system was designed to provide maximlllll flexibility in the adding or in 

the changing of gages. 

Deflections and internal load distributions were determined experi­

mentally for the fundamental types of applied loads that are found on 

actual aircraft structural skin panel configerations. The most common of 

these load configurations are the unif om tensile and the combined tensile 

and shear loads. The test configurations are divided into five load condi­

tions. These five load configurations are shown in Figure 23. Data for 

each test configuration were obtained after a check out of the test 

equipnent. 

The strain gages monito:red during each test are indicated in columns 

two and three of Table XII under the heading, Number of Gages o The rosette 

gages are divided into three classes. The first class consists of all of 
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TABLE XII 

'l'EST CONDITIONS 

Number 
Test · of Ga!1jes Number of Test Load Test 
No. Axial Rosette Observations Date Interval Description 

1 . 60 All 10 12-13 1000-10000 Uniform Load 

2 60 Ali· 4 12-14 500;.1500 Shear Load 

2A 0 All 9 12-14 2500-500-1500 Shear Load 

3 60 All 9· 12-14 100-5000 Center Load 

4 96 All 9 12-16 1000-5000 Single Load .. Node 2 

5 96 All 10 1-26 1000-10000 Uniform Load 

6 96 All 6 1..:27 1000;.6000. Uniform Load 

7 96 0 Use 9 2-2 1000-10000 Uniform Load 

8 96 . Class 2 4 2-4 500-1500 Combined for Shear 

9 96 .Class 2 ·9 2-7 0-250-1750 Combined for Shear 

10 96 0 6 2-8 0-1000-5000 ··center Load 

11 96 0 5 2-8 1000-5000 Single Load Node 1 

12 96 b 5 2-8 1000-5000 Single Load Node 1 

13 . 96.· 0 5 2-9 1000-5000 ·center Load 

14 96 0 10 2-9 0-3000-0 Transverse 

15 96 0 8 2-11 250-2000 · Transverse 

16 96 Class 2 8 2-14 250-2000 Transverse 

17 96 Class 2 & 3 8 2-16 250-2000 Transverse 

18 96 Class 2 8 2-28 250-2000 Transverse 

19 ioo Class 2 & 3 4 2-28 250'-2000 Transverse 

20 100 All 10 3-2 500-2750 Transverse 

21 100 0 . 10 3-3 0-5000 Single Load Node 1 

22 100 All 6 3-3 
lOJ)OO Horizon ta 1 Combined for Shear 
500-3000 Shear 
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the rosette gages. The class-two gages are the twelve rosettes located 

on the center web of the model. The class-three gages are the eighteen 

gages located at the center of each web of the model. 

The strain and deflection data were obtained tor the magnitudes ot 

external loads shown in Table m. Since hysteresis ef'~ects were demon­

strated to be small in the preliminary tests, data were recorded for 

increasing loads at equal int~rvals for the number of observations during 

each test condition as shown in Table XII. The experimental data were 

reduced to values per unit of load by'.the procedures and digital computer 

programs described in Appendix c. 



CHAP!'ER VII 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

The objective of' this research effort is to develop the capability 

for the analytical and experimental investigation of' integrally rein­

forced rectangular skin panels using finite element methods of'.,structural 

analysis. The analytical capabilities, which are developed, include both 

•the force and displacement methods of' structural analysis:. 

The force method of' analysis used in this investigation demonstrates 

the redundant load paths that are possible in the analysis of' complex skin 

structures. The accuracy of' the force analysis is influenced by the choice 

ot the idealized statically determinate system. The idealized systems used 

in this investigation satisfactorily represent the principal load paths 

throughout the structure. The idealization resulted in well-conditioned 

matrices preserving computational accuracy and stress variations that 

represent the actual structural behavior. Consequently, good results 

are obtained from the force method of' analysis as shown in Figure 26. 

The stiffness method of analysis was used for the most extensive 

investigations of' the structural skin panel, because there is no require­

ment for the choice of' statically determinate load paths within the 

structure. Consequently, the complete analysis can be perf'ormed using the . 

digital computer specifying only the geometric and structural configuration 

of the skin panel. The analysis capability is described in Chapters III, IV, 

and V. Numerous structural idealizations are used in the investigation; 
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however, only the results of the most obvious idealization using the 

best stiffness matrix are reported in this thesis. The analysis capability 

is available for further study of any class of two-dimensional structural 

configurations., and the scope of these problems is too broad to be 

mentioned here. 

The experimental capabilities developed during this and previous 

investigations have provided fundamental procedures and equipnent that 

are applicable for numerous future research programs. Some of these 

possibilities are suggested in Chapter VIII. 

A total of twenty-two tests were performed with the integrally 

reinforced rectangular panel, using five load conditions applicable for 

this type of structure. A total of approximately thirty thousand data, 

points were recorded during these twenty-two tests. Only the basic data 

required for _comparison to the analytical results are reported in this 

thesis. Additional data would only duplicate the basic information shown 

in this chapter for additional points on the structure. The basic data 

reported here are sufficient to indicate the excellent agreement between 

the analytical and experimental results. This agreement demonstrates 

the applicability of the finite elements methods of structural analysis 

for integrally reinforced structural skin panels. 

A qualitative description of the axial stress variations obtained 

from the Stress Analysis System are shown for the shear and the transverse 

load configurations in Figures 24 and 2.5. The axial stresses are in the 

direction of the longitudinal axis and were computed at specific points 

within the structure. A smooth surface is generated through these points. 

The value of the stress at each point is represented by the distance along 

the vertical axis. These surfaces demonstrate the large variations in 
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axial stresses that occurred within the panel for the shear and the 

transverse load conditions. The comparisons of the analytical and 

experimental stress results at typical points on the panel are shown in 

Figures 26 through 37. The comparisons of the analytical and experimental 

deflection results for points on_the edge of the panel are shown in 

Tables XIII, XIV, am. XV. 

The deflections representing the corner point where the shear load 

is applied are actually shown for two different points located as close 

as possible to each other. The analytical data are obtained. for the 

exact point where the shear load is applied. Due to the loading system, 

it was not possible to place a dial indicator at.the same point. There­

fore, the experimental data are obtained tor a point approximately two. 

inches from the point where the shear load is applie.d. 

The experimental defiection data shown in Tables XIII, XIV, and XV. 

are corrected based on the measured deflections of the supporting system. 

However, the data are still different by a constant value as shown in,. 

the sketches on Tables xm, XIV, and xv. This co~stant value is 

due to a slight displacement of the complete test panel relative to the 

suppert system and. occurs possibly in the bolts and self-aligning bearings 

connecting the·panel to the support system. 

In general, the accur.acy of these comparisons is within the varia­

tions resulting from the manufacturing tolerances for the structure. 

The actual dimensions of the panel are used for the analytical and the 

experimental compa.riso11S. The actual dimensions are shown in Figare 11 

and can be compared to the ~ominal dimensions shown in Figure 13. The 

nominal dimensions would normally be used for design calculations. 
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Figure 24. Qualitative Description of the A.x:i.al Stress Variation for 
the Shear Load Condition 



103 

): 
x y 

Figure 2)5. Qualitative Descriptfon of the Axial Stress Variation for 
the Transverse Load Condition 
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TABI.E XIII 

COMPARISON OF DEFLECTIONS FOR UNIFORM LOAD CONDITION 

10000 lb 

b fc tB l 

Experimental Theoretical 
Deflection Test 1 Test 2 A vex-age* Nominal Ax-eas Exact Ax-eas 

A 0.0222 0.0222 0.0188 0.0184 0.0174 

B 0.0212 0.0225 0.0184 o.01a5 0.0176 

c 0.0205 0.0214 0.0173 0.0185 0.0176 

D 0.0216 0.0249 0.0194 0.0184 0.0174 

*Average deflections are adjusted for measured base deflection. 



117 

TABLE llV 

COMPARISON OF DEFLECTIONS FOR SHEAR LOAD CONDITION 

·A 1000 lb - ...... ----.,...-------, - JO 
B 

---------.D 
0 Test 

11::. Theory. 

-,..~~J-..~-"----..J.~--;.-
0.01 0.02 o.oJ 

Deflection (inches) 

Experimental· · . Theoretical 
DE!f'lection · Test 1 Test 2 ·Average* Nominal Areas Exact Areas 

A 0.0355 0.0350 O.OJ05 0.0276 . 0.02.54 

B O.OJ56 0.0360 O.OJ12 0.0292 0.0271 

c 0.0232 o.o.244 0.0205 0.0159 0.0145 

D 0.0109 0.0115 0.009.5 o.oo62 0.005.5 

*Average deflections are .adjusted for measured base defiections 0 



TABLE XV 

COMPARISON OF DEFLECTIONS FOR TRANSVERSE LOAD CONDITION 

1000 lb 

t 1000 lb 
A--.----r----.,-..-~ ---

B -Ill 
1 

JO 

l----+------1----l-- C ~ 20 
Q) 
II.I 

~ 

Experimental 

0 Test 

A. Theory 

0.01 0.02 O.OJ 
Deflection (inches) 

Theoretical 
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Deflection Test 1 Test 2 Average* Nominal Areas Exact Areas 

A 0.0319 0.0302 0.02.56 0.0207 o.01aa 

B 0.0307 0.0313 0.02.56 0.0221 0.0200 

c 0.0212 0.0213 0.0176 0.0128 0.0115 

D 0.0103 0.0107 0.0087 0.0052 0.0046 

*Average deflections are adjusted for measured base deflections. 



CHAPl'ER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

The conclusl.ons drawn from the comparisons of the ana4'tical and 

experimental data are that a satisfactory capability has been developed 

for the analysis of integrally reinforced skin panels. · The least satis­

factory of these .compari sons is shown in Figure ;4 for the shear load 

condition. The shear stresses predicted from the analysis are in excess 

of the measured values. In addition, it is observed that the measured 

values are not in equilibrium with the appiied load. Consequently, the 

panel was repositioned in the load frame for the shear load configurati on; 

and strain rosettes were attached to both sides of the outside stringers 

at the center section of the panel as shown in Figure 38. 
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J r ~ 

[ J 
~ 

\ 
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Figure 38. Location of Rosette Gages on Stringer Elements 
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These gages were used to indicate the_port.ion of the shear force 

reacted by the stringer elements o The strains observed at these gage 

locations indicated that the stringers react the remaining portion ot 

the external load not indicated by the shear stresses in the. webs. By· 

including the shear forces across the stringers and webs, the total shear 

forces are in equilibrium.. The shear forces in the stringers indicate 

that th~ area of the stringers is approximately fifty per cent effective 

in resisting shearo The amollllt of' shear force reacted by the stringers 

depends on the shape of the stringer and the method by which it is 

fastened to the skin structure 0 A suitable topic for f~ture investiga­

tiop.s would be to develop a.routine procedure for accounting for the 

shear forces across the stringers. 

'.~ Addit;o:nal topics for ·future investigations consist of continuing 

the current investigation ~th a cutout section in the center panelo The 

capabilities developed in this program can be used for direct application 

to the problem of cutout sections., Extending the analysis capability for 

arbitrary cutout configurations would be valuable for practical aircraft 
-· ' ' 

struct"Ural design considerations. 

A second topic of special significance would be the developnent of 

stiffness matrices for arbitrary configurations using the variational 

approach described in Chapter III. Direct calculation of stiffness 

matrices could be made using the SES - 1 matrix and the digital computer 

matrix subroutines given in Appendix A. It is only necessar.r to establish 

the CM matrix of linear-edge displacements for the configurations of 

interest. The reduction of the stiffness matrices for practical con:flgure.-. 

tions to algebraic expressions would also be a valuable contribution for 

extending analysis capabilities. 



As a result of the broad class ot problems encountered. in this 

investigation, it is recommended. that :fut~e studies make till use of 
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the current coJ,iputing capabilities and limit the··experimental investigation 

whenever possible. The re.quirement of additional new stitf'ness matrices 

tor arbitrary- configurations and the developuent of-criterion for evalua­

tion ot these matrices is of primary.importance. 

In ad.di tion, a study' or idealization tecludques and. computational 

procedures would be a valuable e~ntribution, providing significant 

reductions in computerrwming time could be acoom.pli$h.ed. 
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.APPENDIX A 

MA.TRIX ALGEBRA SUBROUTINES 

The matrix algebra subroutines developed for this investigation are 

described below. The matrix operations are written in single subscript 

notation to conserve core space within the computere The Fortran listings 

describing the operations are a1so included for reference. 

Fortran listings for the various matrix algebra subroutines are 

Subroutine Name 

RMAT (A) 

RMATNZ (A) 

WRTMAT (.A) 

PUNCH (A) 

MAM (A, B, C) 

MSM (A, B, C) 

Description 

Read the matrix:from cards with Format 
7E1p.4. 

Read only the nonzero elements of the 
matrix from cards with Format 6X, I4, 
6X, I4, 6X, E14.8. 

Write matrix A. 

Punch the nonzero elements on cards 
with th:e format of RMATNZ A .. 

Add matrix A and B., The sum is 
matrix C. 

Subtract matrix B from matrix A .. 
The difference is matrix Co 

MSCA (Scalar A, C) Multiply a scalar times the matrix 
A. The product is matrix c. 

MXM (A, B, C) 

TRANSP (A, B) 

MTXM (A, B, C) 

INVERX (A, B) 

Postmultiply matrix A by matrix B. 
The product is matrix c .. 

Transpose matrix A and define At= B. 

Postmultiply the transpose of matrix A 
by matrix Bo The product is matrix 9. 

Invert the matrix A and define A-1 = B. 

124 

. 1.1. 



TABLE XVI 

FORTRAN SUBROUTINE RMAT 

SIBFTC RMAT 
SUBROUTINE RMATIAI 
DIMENSION Al ll 
COMMON KIN,KOUT 

1 FORMAT16X,I4,6X,141 
2 FORMAT15El5e81. 

READ <KIN,11 KA1,KA2 
IF<KAl.GToOI GO TO 6 
WRITEIKOUT,2001 

200 FORMATl35H WE UNLOADED TAPES FROM MATRIX READ) 
CALL EXIT 

6 CONTINUE 
KAl=All) 
KA2=Al21 
L = Alli 
Ll = Al2l 
J = L*Ll + 2 
READ(KIN,2)1Al.ll,1=3,Jl 
WRITEl«OUT,lOOIL,Ll 

100 FO~MAT115HlTHIS MATRIX IS,I4,3X,1HXtI4) 
L2 = 3 
DO 20 K = 1,L 
L3 = L2 + Ll - 1 
WRITEIKOUT,102lK 

102 FORMATl10X,5H ROW ,141 
WRITE(KOUT,lOll(A(Il,I=L2,L3l 

101 FORMATl25X,6El5o6l 
L2 = L3 + 1 

20 CONTINUE 
RETURN 
END 
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RMAT003 
RMAT004. 
RMAT005 
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RMAT019 
RMAT020 
RMAT021 
RMAT022 
RMAT023 
RMAT024 
RMAT025 
RMAT026 
RMAT027 
RMAT028 
RMAT029 
RMAT030 



TABI.E XVII 

FORTRAN SUBROUTINE RMATNZ 

51BFTC RM~TNZ · DECK ·-· 
SUBROUTINE RMATNZ IAI. 

:DIMENSION.Alli·. . 
COMMON KINt KOUT 

101. FORMAT· 16X,14,6X,14 l 
102 FORMAt 16X•l4,6X,14,6X, Els.a, 
103 FORMAT. 11.5HlTHlS MATRIX IS, 14.,3XtlHX,l41 · 
104 FORMAT ll-OX,5H ROW ,141 
105 FORMAT 12~X• 6El5~41 

READ (KIN, 101) lROW, jcoL 
All) •. IROW . 
Al2l • JCOL 
. JJMAX. = IROW. * JCOL + 2 
DO 1 l = 3 , I JMAX 

1 A(fl = O•O .. · 
.. 2 READ(KIN, 1021. M, N, DA.TA 

IF IN .LE~ 0 r GO TO 1000 
I = IM-il * JCOL + N +2 
Al I I • DATA . 

.· GO TO 2 ... 
C . PRINT INPUT MATRIX 

1000 WRITE (KOUT, 1031 fROW,. JCOL 
L2 = 3 
DO 3 K. = 1 • I ROW 
'L3 = L2 + JCOL ~l 
WRITE IKOUT, 1041 K 
\/RITE iKOUT, 10511AIII, I =L2, L3l 
L2 = L3 + l 

3 CONTINUE 
RETURN 
ENO .. · 
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SIBFTC WRTMAT DECK 
SUBROUTINE WRTMATIAI 
DIMENSION Alli 

TABLE MII 

FORTRAN SUBROUTINE WRTMAT 

100 FORMATll5HlTHIS MATRIX IS,14t3XtlHXtl4l 
101 FORMATl20X,1P6El6o71 
102 FORMATllOX,5H ROW ,141 

COMMON KIN,KOUT 
L = Alli 
Ll "' AC2.1 
L2 = 3 
J = L*Ll + 2 
WRITEIKOUT,lOOIL,Ll 
DO 20 K = 1,L 
L3 • L2 + Ll - l 
WRITEIKOUT,102lK 
WRITEIKOUT,1011 IA1Il,I=L2,L3l 
L2 = L3 + 1 

20 CONTINUE 
RETURN 
END 
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TABLE XIX 

FORTRAN SUBROUTINE PUNCH 

51BFTC PUNCH 
SUBROUTINE PUNCH IAI 
DIMENSION A.I 11 , 
COMMON KPUN 

100 FORMAT16X,I4,6X,141 
101, FORMAT 16X, I 4,6X, 14,6X ,El4o8 I 
102 FORMATl5H2 END) 

L"'Alll 
Ll1!'A(21 
WRITEIKPUN,lOOIL,Ll 
1=2 
DO tO M=l,L 
DO 10 N=l,Ll 
l=l+l 
.IFIAllloEQoOoOI GO TO 10 
WRITEIKPUN,1011M,N,Alll 

10 CONTINUE 
WRITE I KPUN o 1021 
RETURN 
END 
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TABLE XX 

FORTRAN SUBROUTINE MAM 

SJBFTC MAM 
SUBROUTINE MAM CA,B,CI 

. DIMENSION Allt,8111,Clll 
-· COMMON KIN,KOUT . . 

·~ FORMAT Cl HO ,3 lHTHE MATRIX ADD;,..-INCORRECT SIZE , 14,ZHX , 14 ,5HPLUS I I 
·,14,ZHX ,141. . 

I TEST•O .. ·.· 
l IROWA•Alll. 

ICOLA•Al21 .. 
I ROWB•B I l l. 
ICOLB=Bl21. 
IFCIROWAeEQelROWBI GO TO 3 
lF(IROWAeGTelROWBI GO TO 8 

• 1 C Cl I =A 11 I . 
ITEST=l 
GO TO 3 

8 C:111=811) 
ITEST=l 

.3 IF(iCOLA~EChlCOLBI GO TO 4 
JF(ICOLAeGT•lCOLBl GO TO lo 

·9 Cl2l=AC21 
lFC JTEST.NEeOI GO TO 2 

1.2 C 11 l =.A 11 l 
GO TO 2 

10 Cl21=Bl21 

2 ~::~~~:~~~~;~' [~~w!~c~LA,IROWB,ICOLB 
GO TO 13 

. 4 lFIITEST.EQeOI ,o TO 1, 
· 14. CIZl.o;A(.21 

GO TO 13 
1~ .· .. L=IROWA*ICOLA+2 

.•. DO. 6 1=3.,L 
6 CIIl=AIJl+BIII 

C 11 l=All I 
CIZl•ACZ 1 .. 

13 Rf:TURN 
END· .. 
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TABLE XXI 

FORTRAN SUBROUTINE MSM 

5IBFTC MSM 
SUBROUTINE MSM CA,B,Cl 
DIMENSION Alll,8111,Clll 
COMMON KIN,KOUT 
ITEST"O 

S FORMATl1H0,31HTHE MATRIX MSM--INCORRECT SIZE ,I4,2HX ,14,SHPLUS ,I 
14,2HX ,14) 

1 IROWA,.Alll 
ICOLA=Al21 
IROWB=Blll 
ICOLB=Bl21 
IFliROWAeEQ.IROWBl GO TO 3 
IFIIROWAeGTelROWBl GO TO 8 

7 CI ll =A( 11 
ITEST.,l 
GO TO 3 

8 Cl ll=BI ll 
ITEST•l 

3 lF(ICOLA.EQeICOLBl GO TO 4 
IF(ICOLAeGTelCOLBI GO TO 10 

9 Cl21=A12l 
IFtITESTeNEeOI GO TO 2 

12 Clll:Alll 
GO TO 2 

10 Cl2l=B(21 
IF(ITESTeNEeOl GO TO 2 

2 WRITEIKOUT,SI IROW,ICOLA,IROWB,ICOLB 
GO TO 13 

4 If( ITESTeEOeOl GO TO lS 
14 Cl21=Al21 

GO TO 13 
15 L=IROWA*ICOLA+2 

·oo 6 1 =3 ,L 
6 C II I =A ( 11-B ( 11 

C(ll=A(ll 
Cl2l=A(21 

13 RETURN 
END 

130 

- MSMOOl 
MSM002 
MSM003 
MSM004 . 
MSM005. 
MSM006 
MSM007 
MSM008 
MSM009 
MSMOlO 
MSMOll 
MSM012 
MSM013 
MSM014 
MSMOlS 
MSM016 
MSM017 
MSMOl8 
MSM019 
MSM020 
MSM021 
MSM022 
MSM023 

.MSM024 
MSM02S 
MSM026 
MSM027 
MSM028 
MSM029 
MSM030 
MSM031 
MSM032 
MSM033 
MSM034 
MSM035 
MSM036 
MSM037 



TABLE XXII 

FORTRAN SUBROUTINE MSCA 

s.J BFTC MSCA 
SUBROUTINE MSCA ISCALAR,A,Cl 
DIMENSION Alll,Clll · 

1 IROWA=Alll 
ICOLA=Al21 
L=IROWA*ICOLA+2 
DO 2 1=3,L 

2 . CI I I •SCALAR*A I I I 
C 11 lzAI 11 
Cl21•Al2l 
RETURN 
END 
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TABIE WII 

FORTRAN SUBROUTINE MXM 

tIBFTC MXM DECK 
. SUBROUTINE MXMIAtBtC I 
DIMENSION AClltBClltClll 

100 FORMATUH0,49HTHE MATRICES ARE NOT CONFORMAL FOR MULTIPLICAUON,21 
15Xt I4,2HX , 1411 

COMMON KIN,KOUT 
IROW~•Alll 
ICOLA•AC21 
IROWB•Blll 
ICOLB=Bl21 
IFCICOLA-IROWBeEQ.01 GO TO 4 
WRI TEIKOUT, 100 I IROWA, ICOLA, IROWB, lCOLB 
GO TO. 6 

4 N=IROWA*ICOLB+2 
DO 5 I =1,N 

5 CIIl=O.O 
IX•3 
1 .. 3 
J=3 
K.,3 
KX=3 
DO 10 M=l,IROWA 
DO 9 N=l,ICOLB 
DO 8 NX"l,ICOLA 
C1Jl•C1Jl+Alll*BIKI 
[ s [ +l 

8 K=K+ICOLB 
l=IX 
J=J+l 
KX=KX+l 

9 K=KX 
IX=IX+ICOLA 
I=IX 
K=3 

10 KX•3 
6 CCll=Alll 

Cl21=Bl21 
RETURN 
ENO 
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TABLE XXIV 

FORTRAN SUBROUTINE TRANSP 

51BFTC TRANSP 
SUBROUTINE TRANSPIA,Bl 
DIMENSION Alll,8111 
Bill • Al21 
6121 • Alli 
Ll .. Blll 
L2 • 8121 
JJ .. 3 
Jl '" 3 
J2 • L2 + 2 
DO 1 I • 1,Ll 
J = JJ 
DO 2 K = Jl,J2 
BIK.l = AIJI 

2 J = J + Ll 
JJ .. JJ + 1 
Jl = J2 + 1 

l J2 = J2 + L2 
RETURN 
END 
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TABLE XXV 

FORTRAN SUBROUTINE MTlM 

SIBFTC MTXM DECK 
SUBROUTINE MTXM IA,B,CI 
DI MENS I ON. A 111 , B 111 , C 111 
COMMON KIN,KOUT 

100 FORMATl1H0,49HTHE MATRICES ARE NOT CONFORMAL FOR MULTIPLICATION,21 
15X,I4,2HX 11411 

ICOLAaA(l) 
IROWA=AC21 
IROWB=Blll 
ICOLB=Bl21 
IFIICOLA-IROWB.EQ.01 GO TO 4 
WR I TE I KOUT, 100 I I ROWA, I COLA ii I ROWB, I<:OLB 
GO TO 6 

4 N=IROWA*ICOLB+2 
. DO 5 I =1,N 

5 CCil•OeO 
IX=3, 
I •3 
J=3 
K=3 
KX"3 
DO 10 M=l,IROWA 
DO 9 N=l,ICOLB 
DOB NX=l,ICOLA 
CIJl=CCJl+A~Il*BIKI 
I=I+IROWA 

8 .K=K+ICOLB .· 
I=IX 
J=J+l 
KX=KX+l 

9·K=KX 
IX=IX+l 
I=.IX . 
K=3 

10 KX=3 
6 Clll=AC21 

(121=8121 
RETURN . 

'ENO 
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TABLE XX:VI 

FORTRAN SUBROUTINE INVERX 

SlBFTC INVERX 
SUBROUTINE INVERX(A,Bl 
DIMENSION Alll,B1ll 
DET = leO 
N = Alll 
LlO = N**2 + 2 
DO 1 I = 1,LlO 
BI I l o. 
BI l l = N 
812 l = N 
L9 = N + 
DO 2 I = 3,L10,L9 

2 Bill = 1.0 
JK = N - l 
J = 3 

BOO 

·BOl 

802 

803 

80.4 

805 

8.06 
807 

900 

50 
700 

Nl = 3 
N2 = N + 2 
JO= N - 1 
J2 = N + 3 
J4 = 3 
DO 300 Ll = 1,JK 
NR = (J + N - 21/IN + ll 
NRl = NR 
NRI = N - NR 
JNl = J + N 
IFINRI.LTell GO TO 900 
IFINRl.eGT.ll GO TO 804 
AMAX=ABS IAIJ l l 
AMXA=ABSIA(JNll) 
IFIAMAX·GE.AMXAl GO TO 900 
N5 = J - NR + 1 
N6 = N5 + N - 1 
IAD = N 
DO 803 IT= N5,N6 
IT6 = l.T + !AD 
ATEM = Al Ill 
AIITl = Al!T6l 
A(IT6l = ATEM 
ATEM = Bl Ill 
Bl!Tl = BIIT6l 
BIIT6l = ATEM 
GO TO 900 
Jll .. = J + N + 1 
Jlci = J + N 
AMAX=ABS I A( J l l 
DO 807 IT• ·1,NRJ 
AMXA=ABSIAIJlOll 
IFIAMAXoGE.AMXAl GO TO 806 
AMAX= AMXA 
;ml = I J 11 + N - 2 l /IN + l I 
JlO = ,JlO + N 
Jll = Jll + N + 
N5 = J - NR·+ l 
N6 = N5 + N - 1 
ITEM= NRl - NR 
IAD: ITEM*N 
IF(IAD.GT~Ol GO TO 802 
CONTINUE 
DENOM =A(Jl 
lFIDfNOMoEOoOoOl GO TO 51 
tFIIAD.GToOl GO TO 701 
DET = DET*DENOM 

1).5 

INVRTOOl 
INVRT002 
INVRT003 
INVRT004 
INVRT005 
INVRT006 
INVRT007 
INVRTOOB 
INVRT009 
INVRTOlO 
INVRTOll 
INVRT012 
INVRT013 
INVRT014 
INVRT015 
INVRT016 
INVRT017 
INVRT018 
INVRT019 
INVRT020 
INVRT021 
INVRT022 
INVRT023 
INVRT024 
INVRT025 
INVRT026 
INVRT027 
INVRT0.28 
!NVRT029 
INVRT030 
INVRT031 
INVRT032 
INVRT033 
INVRT034 
INVRT035 
!NVRT036 
INVRT037 
INVRT03B 
INVRT039 
INVRT040 
INVRT041 
INVRT042 
INVRT043 
INVRT044 
INVRT045 
INVRT046 
INVRT047 
INVRT048 
INVRT049 
INVRT050 
INVRT05 l 
INVRT052 
lNVRT053 
INVRT054 
INVRT055 
INVRT056 
INVRT057 
INVRT05B 
lNVRT059 
lNVRT060 
INVRT061 



GO TO 702 
701 DET = DET*I-DENOMI 
702 DO 100 Jl = NleN2 

A(Jll = A(Jll/DENOM 
100 B(Jll = BIJll/DENOM 

J3 = J4 
N3 = N2 + 1 
N4 =NZ+ N 
DO 200 L = l,JO 
AMULT = A(J2) 
DO 101 Jl = N3,N4 

TABI.E XXVI (Continued) 

AIJll = A(Jl) - AMULT*A(J3) 
B(Jl> = B(Jll - AMULT*B(J3) 

101 J3 J3 + 1 
J2 = J2 + N 
J3 J4 
N3 N3 + N 

200 N4 N4 + N 
Nl = Nl + N 
NZ= NZ+ N 
JO JO - 1 
J = J + N +. 
J2 = J + N 

300 J4 = J4 + N 
DENOM = A(JI 
IFIDENOMoEQoOo01 GO TO 51 

60 AIJI • A(JI/DENOM 
DET "' DET•DENOM 
LT=J-N+l 
DO 400 Jl • LT,J 

400 BIJll = B(Jll/DENOM 
JO= JK 
JZ = J - N 
J4 = J - N + 1 
NZ" J2 - N 
DO 600 L1 l,JK 
J3 = J4 
N3 = .NZ + 1 
N4 =NZ+ N 
DO 500 L = l,JO 
AMULT = A(J21 
DO 401 Jl = N3,N4 
A(Jll = A(Jl) - AMULT*A(J3J 
B(Jll • B(Jl) - AMULT•B<J3l 

401 .J3 • J3 + 1 
J.3 J4 
J2 J2 - N 
N3 N3 - N 

500 N4 N4 - N 
N2 NZ - N 
JO JO - 1 
J = J ~ N - 1 
JZ = .J - N 

600 J4 = J4 - N 
IE= 1 

703 RETURN 
51 IE = O 

GO TO 703 
END 
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APPENDIX B 

STRESS ANALYSIS SYSTEM DIGITAL COMPUTER PROGRAM 

The Stress Analysis System described in Chapter IV is based on 
\ 

the stiffness method of structural analysis described in Chapter III. 

The digital computer requires only a geometric description of the 

struct"Ure to perform the stress and deflection analysis. The program 

is controlled by the first two data cards, which are called the program 

control cards, 

The first card contains the heading to be placed at the beginning 

of the program output data section. The second card defines the number 

of node points, the number of elements, the number of load cases, the 

number of stress nodes, and the print option. The correct placement of 

this information on the control cards is shown as follows: 

Title Card 
Card No. 1 

Control Card 
Card No. 2 

Number of Number of Number of Number of Col 30=1 or O 
Node Points Elements Load Cases Stress Nodes Pr.int .. Qption. 

1 6 7 . . 12 13 18 12 24 30 
·20 40 . 5 5 0 

If column 30 of card number 2 contains a nonzero number, the element stiff-

ness and stress matrices and the transformation arrays will be printed. A 

flow diagram for the program is shown in Figure 39:~ 
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GO TO (fflPE) 

1-4 STR:UJGER 
TYPE 
ELEMENTS 

S..9 PLATE TIPE 
. ·ELEMENTS· 

ADD '1_ TO 
.· KBAR BI 
MPQRS SCHEME 

APPLY 
BOUNDARY 

CONDITIONS TO i 

(fflPE) . 
(.1) (2) ·.· 

(S) 

(6) 

8x8 .· 
·Rl!X:TANGULAR 

PI.A.TB 
.ASSUMED «-

·(7) 

I 8x8 
Rl!X:TANGULAR 

PIATE 
LINEAR STRESS s 

()') (4) (8) (9) 

OPEN 
ADD NiW 

EIEMENTS HERE 

. . 

(fflPE) 
(11) (22) . 

STRESS 
MATRIX 

(SS)· 

(77) . 

STRESS 
MATRIX 

138 

())) (44) (88) (99) 
FOR NEW EIEMENTS 

ELEMENT DEFIECTIONS 
AND GENEBALIZID 

smss CAU:ULA.TIONS 

USING MPQM 
SELECT ELEMENT 
DISPLACEMENTS 

GO TO 
ffl'PE 

11 
22 
)) 
44 

•. ~gm-e )9. now Diagram tor stress Analysis Sy-st• 
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The idealized structural elements used for an analysis with the 

Stress Analysis System are selected depending on the number in column 24 

of the structural data card. Numbers 1 through 9 can be used and cor-

respond to the idealized elements shown in Table XXVII. 

TABLE XXVII 

IDEAUZED EIEMENTS IN STRESS ANALYSIS SYSTEM 

Element 
Number 
(NTYPE) Description of Idealized Element 

1 Stringer Element With Constant Stress 

2 Stringer Element With Linear Strain Variation 

3 Available for New Elements 

4 Available for New Elements 

5 Plate Element With Assumed Displacements 

6 Plate Element With Assumed Stresses 

7 Plate Element With Linear Stress Variation 

8 Available for New Elements 

9 Available for New Elements 

A Fortran IV listing of the digital cmnputer program for the Stress 

Analysis System is given in Table XXVIII. 



TABLE XXVIII 

FORTRAN PROGRAM FOR STRESS ANALYSIS SYSTEM 
C SAS PROGRAM BY MU AYRES 

DIMENSION. ALl21tAL212l,AL312l,IPQRSl4),MPQRSl81,DSKt8,81,STRl3,8l, 
1QORU18,51,STRESS13,5l,Rll21,BARKl1830l,NBCl60ltXl601,Yl601, 
2UBARl60,51,FORCE160,5l,OBARl60,5l ,XNl60,5l,YNl60,5) 

EQUIVALENCEIIPQRSl41,ISl,llPQRSl31,IRl,IIPQRSl2l,IQl.,1JPQRSl11,IPl 
101 FORMAT I 2X, 1P8El6e3l 
102 FOR4AT I 2X, 1P4El6e3) 
103 FORMAT (lHO, 7HK BAR I , lXl 
104 FORMAT 12X,151 
105 FORMAT I 6HO I , 15, 13H IPQRSI I l = , 151 
106 FORMAT I 6HO K = , 15, 13H MPQRSIKI = , 151 
107 FORMAT ( 6HOLA = , 15, 19H Kl = MPQRSILAl = , 151 
109 FORMAT ( 6HOKJ = , 15) 
110 FORMAT ( 6HOBARKI, 15, 9H ) = DSKI, 15, 2H , , 15, 2H 
111 FORMAT I 6HO I = , 151 
112 FORMAT I 6HOIJ = , 15, 12H NBCl(J) = , 15) 
113 FORMAT ( 7HO LA= , 15, 7H I = , 15, 17H BARKII) 1,0 
114 FORMAT I 41HO. NUMBER OF ROWS AND COLS TO BE ZEROED= , 151 
115 FORMAT I 6HO I = , 15, 15H BARK(Jl = OeO l 
116 FCRMAT (2X, 15,5X,3El4o8,5X, I:i,5X, 4El4e8, I 2X, 8110, 

1 I 2Xt 41101 
210. FORMAT ( 25HO ELEMENT STRESS MATRIX · l 
2Jl FORMAT(8HONODE ,218X,7HTY~E 0Fl,49X,8HSTRESSESI 

202 FOR.4ATC1X,6HNUM~ER,9X,7HELEMENT,8X,6HSTRESS,10Xt6HCASE 1,11X,6HCAS 
lE 2 ,11X,6HCASE 3,11X.,6HCASE 4,11X,6HCASE 51 

203 FORMAT l35Hl GENERALIZED STRESS CALCULATIONS l 
204 FORMAT (33Hl DEFLECTIO~S FOR ELEMENT NUMBER , 15 J 
205 FORMATl//43H STRESSES AT THE CENTROID OF THE ELEMENT//) 
206 FORMAT 130HO STRESSES FOR ELEMENT NUMBER 13, 6H TYPE ,131 
219 FORMAT(lHOtl4,9X,15,14X,2HXX,9X,5El7o8) 

221 FORMAT133X,2HXY, 9X,5(2X,El5o8ll 
222 FORMATl33X,2HYY, 9X,5l2X,El5o8ll 

251 FORMAT 115,1Xt5Fl2.4) 
252 FORMAT( 44Hl . STRESS NODE COORDINATES , I 

1 52H ELEMENT NODE 1 NODE 2 NODE 3 NODE 4 NODE. 5 
253 FORMAT< lX, 13, 2H X, 5Fl2o4, l 
254 FORMAT l15,1X,5Fl2.4l 
255 FORMAT(1X,13,2H Y,5Fl2o4) 
256 FORMAT11X,30HNO STRESS MATRIX FOR TYPE ,I3,2X,7HELi:MENT) 
257 FORMATl1X,30HNO STIFFNESS MATRIX FOR TYPE ,I3,2X,7HELEMENT) 
258 FORMAT t BH ELEMENT, 25X, 16HCOORDINATES FOR, I 

1 7H NUMBER, 4X,54HNODE 1 NODE 2 NODE 3 NODE 4 
2 NODE 5 l 

259 FORMAT(lH0,27HNORMALIZED COORDINATES X = ,Fl2o4,10X,4HY = ,Fl2o4l 
603 FORMAT(l016l 
612 FOR4AT(6El3o0l 
687 FORMAT11X,4HDET=,El4o2,lOX,2HL=,13l 

800 FORMAT( lHll 
801 FORMATllHO,lOHNODE POINT,5 X,11HCOORDINATES,47X, 

l25HDEFLECTION OF NODE POINTS) 
802 FORMATl1X,6HNUMBER,40X,6HCASE 1,llX , 

l6HCASE 2,11X,6HCASE 3,11X,6HCASE 4,11X,6HCASE 5 
804 FORMATClH0,2X,12,13X,lHX,24X,5El7e8) 
805 FORMAT(l8X,1HY,24X,5El7e8l 
809 FORMAT! llHlNODE POINT,3X,11HCOORDINATES,63X,6HFORCES 
992 FORMATC2014l 
993 FORMAT(6X,6Fl2e0,12l 

994 FORMATC15,414,13,lX,ElOo6,2F6.0l 
995 FCRMAT(1Hl,12A6l 
8629 FORMATC19HAMATRIX IS SINGULAR) 
8798 FORMAT l7Hl KEAR /lXl 
87J9 FORMAtC16Hl K BAR INVERSE/IX) 
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. SASOOl 
SAS002 
SAS003 
SAS004 
SAS005 
SAS006 
SAS007 
SAS008 
SAS009 
SASOlO 
SASOll 
SAS012 
SAS013 
SAS014 
SAS015 
SAS016 
SAS017 

. SAS018 
SAS019 
SAS020 
SAS021 
SAS022 
SAS023 
SAS024 
SAS025 
SAS026 
SAS027 
SAS028 
SAS029 
SAS030 
SAS03 l 
SAS032 
SAS033 
SAS034 
SA5035 
SAS036 
SA5037 
SAS038 
SAS039 
$AS040 
SAS041 
SAS042 
SAS043 
SAS044 
SAS045 
SAS046 
SAS047 
SAS048 

· SAS049 
SAS050 
SAS051 
SAS052 
SAS053 
SAS054 
SAS055 
SAS056 
SAS057 
SAS058 
SAS059 
SAS060 
SAS061 
SAS062 



TABIE XXVIII (Continued) 

9603 FORMAT( 7H NODES =,15,5X,9HELEMENTS=,I5,5X,6HCASES=,12,5X 
1,13HSTRESS NODES= ,12/ 
2 89H NODE COORDINATE LOAD 1 LOAD 2 LOAD 3 
3 LOAD 4 LOAD 5 SUPPORT/IX> 

9993 FORMAT(1X,13,2H X,Fl2o3,1X,5Fl2o3,6X,ll/lX,13,2H Y,Fl2o3,1X,5Fl2o 
13,6X,Ill 

9994 FORMATl1X,15,414,13,4X,Ello4,Fllo4,Fl3o4 
9995 FORMAT(ll4Hl ELEM P Q R S TYPE E PR TH 

llCKNESS-AREA I 
31009 FORMAT11X,3HROW,14,/1X,11Pl0El3o41 I 
99999 FORMATl1Hl,23HEXECUTION COMPLETED FOR) 

839 CONTINUE 
REWIND 3 
REWIND 4 

C READ IN TITLE 
READIS,995) IRIJl,J=l,121 
WRITE(6,9951 (RIJ),J=l,121 

C READ IN PARAMETERS 
REA)(5,6031 NNODES,NELEM,NC,NSN,IWRITE 
WRITE16,96031 NNODES,NELEM,NC,NSN 
N2=2 *NNODES 
NUM=IN2*1N2+111/2 

C READ IN NODE LOCATIONS, FORCE, AND BOUNDARY CONDITIONS 
DO 1171 I=l,NNODES 
12=2• 
READ(5,993) XIII, IFORCEII2-l,J), J=l,5 ltBARKII2-ll, 

1 Y(II, !FORCE (12,JI, J=l,51, BARKll21 
7777 WRITE 16,99931 !,XIII, IFORCEII2-1,J),J=l,51t BARKII2-llt 

1 I, YI I I, I FORCE I 12 , JI, J=l,51 ,BARK( 12) 
C THE NCROSS ROWS AND COLSo TO BE STRUCK FROM K-BAR ,AS DICTATED BY 
C B0UNDARY CONDITIONS, ARE STORED IN ARRAY NBCll)o 
C BARK IS USED TO READ THE INDEX OF FIXED BOUNDARY NODES 

IJ=O 
DO 7778 I=l,N2 
IFIBARKII) )7779,7778,7779 

7779 IJ=IJ+l 
NBC I I J) =I 
IFIIWRITEoEOoO) GO TO 7778 
WRITE (61111) I 
WRITE 16,112) IJ, 

7778 CONTINUE 
NCROSS=IJ 
DO 320 I=l,NUM 
BARK IIl=OoO 

320 CONTINUE 
C READ NODE NUMBER lYPE ELEMENT MODULUS PR AREA 

WRITE16,99951 
DO 236 NN=l,NELEM 
READIS,9941 IE,IP,JQ,IR,IS,NTYPE,E,PR,A 
IF(IWRITEoEOoOI GO TO 513 
WRITE 16,99951 

513 CONTINUE 
WRITEl6,99941 IE,IP,10,IR,IS,NTYPE,E,PR,A 
GO TO 11,2,3,4,5,6,7,8,91,NTYPE 
CONTINUE 

(***************•**STRINGER AND RIB CALCULATIONS************************ 
JLAM=4 
DO 10004 1=1,4 
DO 10004 J=l,4 

10004 DSKll,Jl=OoO 
CALCULATE THE PQ DIRECTION COSINES. 

XQP=XI IOI - XI !Pl 
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SAS063 
SAS064 
SAS065 
SAS066 
SAS067 
SAS068 
SAS069 
SAS070 
SAS071 
SAS072 
SAS073 
SAS074 
SAS075 
SAS076 
SAS077 
SAS078 
SAS079 
SAS080 
SAS081 
SAS082 
SAS083 
SAS084 
SAS085 
SAS086 
SAS087 
SAS088 
SAS089 
SAS090 
SAS091 
SAS092 
SAS093 
SAS094 
SAS095 
SAS096 
SAS097 
SAS098 
SAS099 
SASlOO 
SASlOl 
SAS102 
SAS103 
SAS104 
SAS105 
SAS106 
SAS107 
SAS108 
SAS109 
SASllO 
SASlll 
SAS112 
SAS113 
SAS114 
SAS115 
SAS116 
SASll 7 
SAS118 
SASll9 
SAS120 
SAS121 
SAS122 
SAS123 
SAS124 



239 

500 

TABLE XXVIII ( Continued) 

YQP=YI IQl-YI IP) 
Dl=SQRT IXOP**2+YQP**2) 
D2 = Dl 
ALI l l =XQP/Dl 
ALl2l=YQP/Dl 
AE=A*E 
D0239I=l,2 
D0239J=l,2 
DSK II,Jl 
DSKII+2,Jl 
DSK II,J+2) 
DSKII+2,J+2) 
CONTINUE 

ALlll*ALIJl*AE/Dl 
-DSKI I ,Jl 
-DSKII,Jl 
DSKII,J) 

IFIIWRITEoEQ.Ol GO TO 500 
WRITE 16,205) NTYPE 
WRITE 16,103) 
WRITE 16,102) I IDSKII,Jl,l=l,4l, J=l,4) 
CONTINUE 
GO TO 235 

2 CONTINUE 
C ****************STRINGER WITH LINEAR STRESS FUNCTION************* 

JLAM=4 
DO 10005 I=l ,4 
DO 10005 J=l,4 

10005 DSKII,Jl=o.o 
CALCULATE THE PQ DIRECTION COSINES. 

XQP=Xl!Ql-XIIPl 
YQP=YI IQ)-YI I Pl 
Dl=SQRT IXOP**2+YQP**2l 
D2 = Dl 
AL(.!) =XQP/Dl 
ALl2l=YQP/Dl 
AE=A*E 
DO 240 I=l,2 
DO 240 J=l,2 
DSKII,Jl=ALlll*ALIJl*IAE/Dll*4•0/ 3e0 
DSKII+2,Jl=-DSKII,Jl 
DSKII,J+21=-DSKll,Jl 
DSKII+2,J+2l = DSKll,J) 

240 CONTINUE 
IFIIWRITE~EOeOl GO TO 511 
WRITE 16,205) NTYPE 
WRITE 16,103) 
WRITE 16,102) IIDSKll,Jl,1=1,4), J=lt4l 

511 CONTINUE 
GO TO 235 

3 CONTINUE 
4 CONflNUE 

WRITE16,257l NTYPE 
GO TO 839 

5 CONTINUE 
C******************RECTANGULAR*P~ATE*CALCULATIONS*********************** 
C********************ASSUMED DISPLACEMENT FUNCTION********************** 

DO 10003 I = 1,8 
DO 10003 J=l,B 

10003 DSK 11,Jl = OoO 
JLAM=B 
XOP=XI !Ql-X I !Pl 
YQP=Y I IQ l-Y I IP l 
Dl=SQRT IXOP**2+YOP**2l 
AE=A•E 
X2=XI IRl-XI IQ) 
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SAS147 
SAS148 
SAS149 
SAS150 
SAS151 
SAS152 
SAS153 
SAS154 
SAS155 
SAS156 
SAS157 
SAS158 
SAS159 
SAS160 
SAS161 
SAS162 
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SAS165 
SAS166 
SAS167 
SAS168 
SAS169 
SAS170 
SAS171 
SAS172 
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SAS174 
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TABLE XXVIII. (Continued) 

YZ=Y( IRI-Y< IQ) 

DZ•SQRT. IXZ**Z+YZ**il 
AL<ll•XQP/Dl 
AL(ll•YQP/Dl 
ALZ ( l l =X2/D2 
AL212l=Y2/D2 
BETA=Dl/D2 
ETl=AE/llo-PR**2l 
ET2=AE/(2.+2o*PRl 
CALCULATE THE KD+KS MATRIX 
PR2=PR**2 
DSK 11,ll= ETl*BETA/3o+ET2/13o*BETAl 
DSK 12,ll=IETl*PR+ET2l/4o 
DSK 13,ll=Ell*BETA/6.-ET2/l3o*BETAI 
DSK 14,ll=I-ETl*PR+ET2)/4e 
DSK 15,ll=-ETl*BETA/6o-ET2/(6o*BETAl 
DS~ l7,ll=-ETl*BETA/3o+ET2/(6o*BETA) 
DSK 12,2l=ET1/l3o*BETAJ+ET2*BETA/3o 
DSK (4t2l=-ET1/l3o*BETA)+ET2*BETA/6o 
DSK (6•2l=-ET1/l6o*BETAJ-ET2*BETA/6. 
DSK (8,2l=ETl/l6o*BETAl-ET2*BETA/3o 
DSK C3,3l=ETl*BETA/3o+ET2/(3e*BETAl 
DSK 15,3l=-ETl*BETA/3o+ET2/16o*BETAl 
DSK (6,ll=-DSK (2,11 
DSK (8,ll=-DSK (4,1) 
DSK (3,21=-DSK (4,ll 
DSK <5,2)=-DSK (2,ll 
DSK (7,2)= DSK !4,ll 
DSK 14,31=-DSK (2,ll 
DSK 16,31= DSK (4,ll 
DSK <7,3)= DSK 15,ll 
DSK (8,3)= DSK (2,1) 
DSK 14,41= DSK <2,2) 
DSK 15,4)= DSK 13,Zl 
DSK 16,4)= DSK (8,2) 
DSK 17,41= DSK 12,ll 
DSK 18,4)= DSK 16.2) 
DSK (5,51= DSK (1,11 
DO 8620 I=2,4 
DSK II+4,5l=DSK 

8620 DSK 1!+4,6l=DSK 
DSK I 7, 7 l = DSK 
DSK I 8 • 7 l =-DSK 
DSK 18,8)= DSK 
DO 302 J=l,8 
DO 302 1=1,8 

I I ,l l 
( I , 2 l 

I l. l ) 
( 2, ll 
( 2 ,2 l 

302 DSKIJ,Il • DSKII,Jl 
IFIIWRITEoEOoOl GO TO 502 
WRITE 16,2051 NTYPE 
WRITE I 6, 10 3 l 
WRITE (6,101) ( (DSK(l,Jl,I=l,8l, J=l,81 

502 CONTINUE 
GO TO 235 

6 CONTINUE 
C**,.***************RECT ANGULAR*PLA TE*CALCULA TI ONS*******.**************** 
(******~*ASSUMED STRESS FUNCTION WITH FIVE COEFFICIENTS**************** 

DO 10002 I = 1,8 
DO 10002 J = 1,8 

100J2 DSK II,Jl = OeO 
JLAA=8 
XQP=Xl!Ql-XIIP) 
YQP=YI IQl-Y l l,P.J 
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SAS200 
SAS201 
SAS202 
SAS203 
SAS204 
SAS205 
SAS206 
SAS207 
SAS208 
SAS209 
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TABI.E XXVIII (Continued) 

Dl=SORT IXOP**2+YOP**21 
AE=A*E 
X2=Xt IRI-X( IOI 
Y2=Yt IRI-Y( IOI 
D2=SORT IX2**2+Y2**21 
AL(l)aXQP/Dl 
ALl21,.YQP/Dl 
AL2 I l I =X2/D2 
AL2 I 2 I =Y 2/02 
BETA=Dl/02 
ET1,.AE/llo-PR**21 
ET2,.AE/12o+2o*PRI 
PR2=PR**2 

C CALCULATE THE KD+KS MATRIX 
DSK 11,l)c 12o*l4o-PR2l*BETA/3o+llo-PRI/BETAl*ET1/8o 
DSK 12tll= llo+PRl*ETl/80 
OSK 13,11= 12o*l2o+PR2l*BETA/3o-llo-PRI/BETAl*ET1/8o 
DSK 14,11= llo-3o*PRl*ET1/8o 
OSK 15,11= l-2o*l2o+PR2l*BETA/3o-ll o-PRI/BETAl*ETl/8o 
OSK 17,11= l-2o*l4o-PR21*BETA/3o+llo-PRl/~ETAl*ET1/8 o 
DSK 12,21= 12o*l4o-PR21/13o*BETAl+llo-PR)*BETAl*ET1/8o 
OSK 14,21= l-2o*l4.-PR21/13o*BETAl+llo-PRl*BETAl*ET1/8o 
DSK 16,21= l-2.*l2o+PR21/13o*BETAl-llo-PRl*BETAl*ET1/8o 
OSK 18,21= 12o*l2o+PR2)/13 o*BETAl-llo-PRl*BETAl*ETl/8o 
OSK 13,3)= 12o*l4 o-PR2l*BETA/3o +llo-PRli~ETAl*ETl/80 
OSK 15,31= l-2.*14.-PR2l*BETA/3o+llo-PRl/BETAl*ETl/8o 
DSK 16,11=-DSK 12 ,1) 
DSK 18,ll=-DSK 14,ll 
DSK 13,2)=-DSK 14,ll 
OSK 15,2)=-DSK 12,ll 
OSK 17,21= OSK 14,11 
OSK I 4,31 =-D·SK I 2 ,1 l 
OSK 16,3)= OSK 14tll 
DSK I 7, 3 I= OSK I 5 tl l 
DSK 18,3)c OSK 12.ll 
DSK 14,41= OSK 12,21 
DSK 15,41= OSK 13t2l 
DSK 16,41= OSK 18,2) 
DSK 17,41= OSK 12,ll 
DSK 18,41= OSK 16,2) 
DSK 15,5)= OSK 11,11 
DO 8621 1,.2,4 
DSK 11+4,5l=DSK 11,11 

8621 OSK 11+4,6l=DSK 11,2) 
OSK 17,7) = OSK 11,ll 
OSK 18,71=-DSK 12,ll 
OSK 18,81= OSK 12,21 
DO 301 J =l ,8 
DO ~01 1=1,8 

301 DSKIJ,Il = DSKll,Jl 
IFIIWRITE.EOoOl GO TO 501 
WRITE 16,205) NTYPE 
WRITE 16,103) 
WRITE 16,1011 IIDSKII,J), I =l,81, J .. 1,81 

501 CONTINUE 
GO TO 235 

7 COI\ITINUE 
C******************RECTANGULAR*PLATE*CALCULATJONS*********************** 
(********ASSUMED STRESS FUNCTION WITH SEVEN COEFFICIENTS**************** 

DO 10006 I = 1,8 
DO 10006 J = 1,8 

10006 OSK 11,Jl = OoO 
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JLAMc8 
XCP=X( ra,-x ( IP) 
YQP=Y(IQI-Y(IP) 

TABLE XXVIII (Continued) 

BYcSQRT (XQP**2+YQP**21 
Dl = BY 
AE=.\*E 
ALI l I =XQP/Dl 
ALIZT=YQP/Dl 
1(2=XI IRi-XI !QI 
Y2=Y< !RI-YI !QI 
AX=SQRT IX2**2+Y2**Zl 

. 02 = AX 
ALP = 13oO*AX*AXI + (BY*BYI 
BET = (AX*AXI + 13.0 * BY*BYI 
DSKl1,11=+135o*BY*BY*ALP*BETl+(IBY**4l*BETl-16o*AX*AX*BY*BY*BET)+( 

l9o*AX*AX*ALP*BETl+l9o*(AX**4l*BET) 
DSK12,ll=l8o*AX*BY•ALP•BET 
DSK13,ll=+ll9,*BY*BY*ALP*BETl - (IBY**41*BETl+(6o*AX*AX*BY*BY*BETI-I 

l9o*AX*AX*ALP*BETl-(9o*(AX**41*BETI 
DSK(5,ll=-ll9o*BY*BY*ALP*BETl+I IBY**41*BETl-16o*AX*AX*BY*BY*BETI-I 

l9o*AX*AX*ALP*BETl+l9o*IAX**4l*BETI 
DSKl7tll=-135o*BY*BY*ALP*BETI - I IBY**4l*BETl+l6o*AX*AX*BY*BY*BETl+I 

l9o*AX*AX*ALP*BETl-19o*IAX**41*BETI 
DSKl2,21=+135o*AX*AX*ALP*BETl+IIAX**41*ALP)-16o*AX*AX*BY•BY*ALP)+( 

19o*BY*BY*ALP*BETl+l9o*(BY**4l*ALPI 
DSK14,21=-135o*AX*AX*ALP*BETI-IIAX**4l*ALPl+l6o*AX*AX*BY*BY*ALPl+I 

l9o*BY*BY*ALP*BETl-l9o*(BY**4l*ALP) 
DSKl6,21=-ll9o*AX*AX*ALP*BETl+IIAX**4l*ALPlrl6o*AX*AX*BY•BY*ALPl-< 

l9o*BY*BY*ALP*BET1+(9o*(BY**4l*ALPI 
DSK18,21=+(l9o*AX*AX*ALP*BETl-((AX**41*ALPl+(6o*AX*AX*BY*&Y*ALPI-( 

19o*BY*BY*ALP*BETl-l9o*IBY**41*ALPI 
DSK16,ll =-DSK12,ll 
DSK15,21 DSK16,ll 
DSKl3,31 DSKlltll 
DSK(4,31 DSK(6,ll 
DSKC5,31 DSKC7,ll 
DSKl7,31 DSK(5,ll 
DSKCB,31 DSK(2,ll 
DSK14,4) = DSK12,21 
DSK16,4l DSKIB,21 
DSK17,41 = DSK12,ll 
DSKCB,41 • DSK(6,21 
DSK15,51 DSK(l,11 
DSK(6,51 DSK(2,ll 
DSK17,51 = DSK(3,ll 
DSK16,6l = DSK12,2) 
DSKCB,61 = DSK(4,21 
DSK(7,71 DSK(l,11 
DSK(B,71 • DSK16,ll 
DSK(B,81 • DSK12,21 
DO 402 J=l,8 
DO 402 1=1,8 

402 DSKIJ,11 = OSK 11,Jl 
DO 403 1=1,8 
DO 403 J=l,B 

403 DSKll,Jl = DSK(l,Jl* ((E*Al/(96o*ALP*BET*AX*BYII 
IF(IWRITE.EQoOI GO TO 512 
WRITE 16,2051 NTYPE 
WRITE 16,1031 
WRITE 16,1011 ((DSKII,Jl,I•l,81, J=l,81 . 

512 CONTINUE 
GO TO 235 
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TABLE XXVIII (Continued) 

8 CON flNUE 
9 CONTINUE 

WRITE I 6 • 2 5 7 l 
GO TO 839 

C MPQRSlll CONTAINS THE SCHEME FOR PLACING THE ELEMENT MATRICES INTO 
C THERE LARGER COUNTERPARTSo 

235 CONTINUE 
K=O 
JROW • JLAM I 2 
DO 39 I•l,JROW 
DO 39 J=l,2 
K=K+l 
MPQRSIKl=2•IPQRSIIl-2+J 
IFIIWRITEoEOoOl GO TO 504 
WRITE 16,106) K, MPQRSIKl 

514 CONTINUE 
J9 CONTINUE 

C ADD KB.\R I INTO KBAR 
38 DO 37 LA=l,JLAM 

KI•MPQRSILAl 
DO 37 i=l,JLAM 
KL=MPQRSl!l 
IFIKI-KLl37 ,374,374 

374 KJ=(Kl•IKI-lll/2+KL 
BARK(KJl=BARKIKJl+DSK (LA,Il 
IF(IWRITE.EOoOl GO TO 505 
WRITE 16tl07l LA, Kl 
WRITE 16tll0l KJ, LA, 

505 CONTINUE 
37 CONTINUE 

C*****WRITE TAPE 4 FOR STRESS CALCULATIONS***************************** 
WRITE 141 NTYPE,E,PR,A,JLAM,Dl,D2,AL(ll,AL(2ltMPQRSt IPQRS 
IFIIWRITE.Ea.01 GO TO 506 
WRITEl6t8798l 
CALL WRT ( BARK, N2l 

506 CONTINUE 
236 CONTINUE 

C*******WRITE COMPLETE STIFFNESS MATRIX ON TAPE 3 FOR FORCE CALCULATION* 
WRITE( 3) (BARK( I ltl =l,NUMl 
WR! rEC6,8798l 
NF=O 
NS=O 
DO 31007 J=l,N2 
NS=NF+l 
NF=NF+J 

31007 WRITE 16,31009) J,IBARK(ll, 
C REMOVE SINGULARITIES FROM K-BAR 
C ELSEWHERE ON DUPLICATED ROWS AND 

WRITE 16,1141 NCROSS 
DO 316 LC=l,NCROSS 
LA=NBC(LC) 
DO 315 l = 1 • NZ 
.L=:-IAXO(LAtl) 
KA=ILA+l l+IL*IL-3l l/2 
IFIIWRITE.EQ.Ol GO TO 507 
WRITE 16,1151 KA 

507 CON r I NUE 
315 BARKIKAl =O 

KB•(LA*(LA+ll)/2 
IF(IWRITEoEO. 0) GO TO 508 
WRITE 16,113 l LA, KB 

508 CONTINUE 

I=NS,NFl 
BY PLACING 1 ON DIAGONAL AND ZERO 
COLUMNS• 
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TABIE XXVIII (Continued) 

BARKIKBl=l• 
316 CON'l)NUE 

IFIIWRITE.EQe Ol GO TO 509 
WRITE16,8798l 
CALL WRT I BARK, N2l 

509 CONTINUE 
CALCULATE K-BAR-INVERSEe IF ISING ISO ON RETURN THE MATRIX JS SINGULA 

CALL SYMINV IN2, BARK, ISINGI 
WRITE16,8799l 
NS"O 
NF=O 
DO 31008 J=l,N2 
NS:ff+l 
NF=NF+J 

31008 WRITE16,31009l J,IBARKlll,l=NS,NFI 
30001 IF(ISINGl317,8623,317 

8623 WRITE16,8629l 
GO TO 839 

317 CONTINUE 
C ZERO DIAGONAL ELEMENTS OF BARK INVERSE 

DO 319 LC=l,NCROSS 
LA=INBCILCl*INBCILCl+lll/2 

319 BARKILAl=O 
IFIIWRITE.EQ• Ol GO TO 510 
WRITEl6,8799l 
CALL WRT I BARK, N2l 

510 CONTINUE 
CALL SMMPYIBARK,FORCE,UBAR,N2,NCI 
WRITEl6,800l 
WRI rE16,801 l 

900 WRITEl6,802l 
K=O 
DO 638 l=l,N2,2 
K=K+l 
WRITE16,804l K,IUBARll,Jl,J=l,NCl 

638 WRITEl6,805l IUBARll+l,J),J=l,NCI 
637 CONTINUE 

C*********WRJTE FORCES ACTING ON THE STRUCTURE************************** 
WRITEl6,809l 
WRITEl6,802l 
K=O 
DO 70 l I= 1,N2, 2 
K=K+l 
WRITE16,804l K,IFORCEIJ,Jl,J=l ,NCl 

701 WRITE16,805llFORCEll+l,Jl,J=l,NCl 
C CALCULATE THE FORCE MATRIX= KBAR * UBAR 

REWIND 3 
READl3)(BARK(ll,l:l,NUMI 
CALL SMMPY (BARK,UBAR ,QBAR,N2,NCl 
DO 700 1=1,N2 
DO 700 J=l,NC 

700 QBA~ll,Jl "QBARll,Jl + FORCEll,Jl 
WRITEl6,809l 
WRITE16,802l 
K=O 
DO 640 1=1,N2,2 
K=K+l 
WRIT E 16,8041 K, (QBARll,Jl, J=l,NCI 

640 WRITE16,805)1QBARll+l,Jl,J=l,NCI 
(**************ELEMENT GENERALIZED STRESS CALCULATIONS****************** 

IFINSN.EQ.Ol GO TO 642 
WRITE 16,2031 
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642 CONTINUE 
REWIND 4 
DO 370 NNal,NELEM 

TABIE XXVIII (Continued) 

READ 141 NTYPE,E,PR,A,JLAM,Dl,D2,ALl11,ALl21,MPQRS ,IPQRS 
IFIIWRITE.EO.OI GO TO 641 
~RITE 16,1161 NTYPE,E,PR,A,JLAM,Dl,D2,ALl11,ALl21,MPQRS ,IPQRS 

641 CONTINUE 
(********************************************************************** 
C SELECT U-BAR-I FROM U-BAR AND STORE IT IN QORUII,J) 

DO 220 l=l,JLAM 
Kl:MPQRSIII 
DO 220 J=l,NC 

220 QORU(i,Jl=UBARIKl,JI 
WRITE 16,2041 NN 
WRITE 16,8011 
WRITE 16,8021 
KsO 
DO 223 I = l,JLAM, 2 
K=K+l 
WRITE 16,8041 IPQRSIKI, IQORUll,Jl,Jal,NCI 
WRITE16,8051 (QORUll+l, JJ,J=l,NCI 

223 CONTINUE 
(********************************************************************** 

IFINSN.EQ.01 GO TO 379 
WR! rE 16,2581 
IFINTYPE.GE. 51 GO TO 375 
READ15,251) 1,IXNINN,J),J=l,NSNl 
WRITEl6,253l 1,IXNINN,Jl,Jsl,NSN) 
GO TO 376 

375 CONTINUE 
READ 15,25111, IXNINN,Jl,J=l,NSN) 
READl5,254l 1,IYNINN,J),J=l,NSN) 
WRITEt6,253ll, IXNINN,Jl,J=l,NSN) 
WRITEl6,2551 1,IYNINN,J),J=l,NSN) 
GO TO 376 

379 CONTINUE 
IF(NSN.EQ.Ol NSNl=l 
IF(NSNoNE.Ol NSNlsNSN 
XNINN,1)=02/20 
YNINN,ll=Dl/2o 
WRITEl6,2051 

376 CONrINuE 
DO 237 NNSN=l,NSNl 
DO 377 1=1,3 
DO 377 J =l ,8 

377 STR 11,JI = o.o 
DO 378 1=1 ,3 
DO 378 J=l,5 

378 STRESS 11,JI • o.o 
GO TO lll,22,33,44,55,66,77,88,991,NTYPE 

11 CONTINUE 
C***************STRESS MATRIX ST~INGER ELEMENT************************** 

WRITE 16,200) 
STR 11,ll • -IALlll*El I 01 
STR 11,21 • -IALl2l*El I 01 
STR tl,31 = ALlll*E I Dl 
STR 11,41 = ALl 2 l*E I 01 
WRITE 16,1011 ISTR 11,J),J=l,4) 
CALL MXM ISTR,QORU,STRESS,NC) 
GO TO 30 

C***********STRINGER STRESS MATRIX ASSUMED STRESS FUNCTION************* 
22 CONTINUE 
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XX"' XNINN,NNSNI I 02 
WRITE16,1011 XX 

TABIE XXVIII (Continued) 

STR 11,11=-IAL(ll*El*ll,O-XXI I 01 
STR 11,21=-IALl21*El*ll.O-XXI I 01 
STR 11,31=AL1ll*E*XX I 01 
STR 11,41=AL121*E*XX I 01 
WRITE16,2001 
WRITE16,10111STR (l,Jl,J=l,41 
CALL MXM ISTR,OORU,STRESS,NCI 
GO TO 30 

33 CCNTINUE 
44 CONTINUE 

WRITE 16,2561 
GO TO 839 

55 CONf!NUE 
C******************STRESS MATRIX ASSUMED DISPLACEMENTS****************** 

XX= XNINN,NNSNI I 02 
YY = YNINN,NNSNI I 01 
WRITE16,2591 XX,YY 
XA = 02 
YB= 01 
EPRO=l,O-PR**2 
EPRl,.E/EPRO 
STRll,lls-EPRl*ll,0-YYI/XA 
STRll,21•~EPRl*PR*ll,O-XXI/YB 
STRll,31=-EPRl*XX/XA 
STRll,41= -ISTRll,211 
STRll,51= -ISTRll,311 
STRll,6l=EPRl*PR*XX/YB 
STRll,71= -lSTRll,111 
STRll,81= -lSTRll,61 I 
STR(2,ll=-EPRl*PR*ll ,O-YY l/XA 
STRl2,2)=-EPRl*ll.O-XXl/YB 
STRl2,31=-EPRl*PR*YY/XA 
STRl2,41= -ISTR12,21l 
STR12,5l= -lSTRl2,31l 
STR(2,6l=EPRl*XX/YB 
STRl2,71= -ISTRl2 ,ll I 
ST~(2,8l= -(STR12,61l 
STRl3,ll=-EPRl*(l,O-PRl*ll,O-XXl/12,0*YBl 
STR13,21=-EPRl*ll.O-PRl*ll,O-YYl/12 ,0*XAl 
STR13,31= -lSTRl3•lll 
STRl3,41=-EPRl*YY*ll,O-PRl/(2 ,0*XAI 
STR13,51=EPRl*XX*ll,0-PRl/12.0*YBI 
STR13,61= -ISTR13,4ll 
STRl3,71= -ISTR(3,511 
STRl3,8)= -ISTRl3,2)1 
WRITE 16,200) 
WRITE 16,10111 (STRll,JI, J=l,81, 1=1,31 
CALL MXM ISTR,OORU,STRESS ,NCI 
GO TO 30 

r,6 CONT I NUE 
(**~******STRESS MATRIX ASSUMED STRESS FUNCTION WITH 5 COEFFICIENTS***** 

XX ~ XNINN,NNSNI I 02 
YY = YNINN,NNSNI I 01 
WRITE16,2591 XX,YY 
XA "' 02 
YB = 01 
EPRO:ol,O-PR**2 
EPRl•E/EPRO 
EPR2•2,0*YY-l,O 
EPR3•1.0-2.0*YY 
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TA.BI.E XXVIll (Continued) 

EPR4•2eO*XX-leO 
EPR5•le0-2eO*XX 
STR11,ll•EPRl*IIEPRO*EPR2>-l.Ol/l2eO*XAI 
STR11,21•-EPRl*PR/l2eO*YBI 
STR11,3l•EPRl*IIEPRO*EPR3>-leOl/12eO*XAI 
STRll,4l=EPRl*PR/12.0*YBI 
STRll,51=EPRl*IIEPRO*EPR2l+leOl/12eO*XA) 
STR11,6l•STR11,4) 
STRll,7l•EPRl*IIEPRO*EPR3l+l.0)/12eO*XAI 
STRll,81=-STRll,41 
STR12,11=-EPRl*PR/12.0*XAl 
STR12,2l=EPRl*IIEPRO*EPR4l-leOl/12.0*YBI 
STR12,31=STR12,11 
STR12,4l=EPRl*IIEPRO*EPR5l+leOl/12•0*YBI 
STR12,51=-STRl2,ll 
STR12,61=EPRl*IIEPRO*EPR41+1.0)/l2eO*YBI 
STR12,7l=STR12,51 
STR12,81=EPRl*IIEPRO*EPR5l-le0)/12eO*YBI 
STR13,ll = -IEPRl*ll.O-PRl/14.0 * YB)) 
STR13,2) = -IEPRl*ll.O-PRl/14.0 * XA>I 
STR13,3)=-STRl3,l) 
STR13,4l=STR13,21 
STRl3,51=STR13,3) 
STR13,6)=-STR13,2l 
STR13,7)=STR13,1) 
STR13,81=STR13,61 
WRI fE16,2001 
WRITEl6,10llllSTRll,Jl,J=l,8l,1=1,3) 
CALL MXM ISTR,QORU,STRESS,NC> 
GO TO 30 

11 CONT I NUE 
C*****STRESS MATRIX - WITH SEVEN COEFFICIENTS*************************** 

BY= Dl 
AX= 02 
XX= XNINN,NNSNI 
YY= YNINN,NNSN) 
WRITE16,259) XX,YY 
ALP= 13.*D2*D2 + Dl*Dll 
BET=l3e*Dl*Dll+ID2*D2) 
DO 3 71 I= 1, 3 
DO 371 J=l,8 

371 STRII,JI = o.o 
STRll,11= -1102.*BY*ALP*BET>-I 6o*IBY**31*BETl+ll8.*AX*AX*BY*BETI 

l+YY*ll96•*ALP*BETl+ll2e*BY*BY*BET)-136.*AX*AX*BETI) 
STRl2,ll= -I 18.*BY*ALP*BETl-118.•IBY**31*BET)+l54.*AX*AX*BY*BETI 

l+YY*II 36.*BY*BY*BET> - 1108o*AX*AX•BET>I 
STR13,ll= -I 18o*AX*ALP*BET)-154o*IAX**3l*BET)+ll8o*AX*BY*BY*BETI 

1-XX*II 36.*BY*BY*BETl - 1108.•AX*AX•BETI) 
STRll,21= -I 18e*AX*ALP*BET>-ll8o*IAX**3l*ALP1+154.*AX*BY*BY*ALPI 

l+XX*II 36o*AX*AX*ALPI - 1108.•BY*BY*ALP)l 
STR12,2t= -1102o*AX*ALP*BET>-I 6o*IAX**31*ALPJ+ll8.•AX*BY*BY*ALPI 

l+XX*ll96e*ALP*BET> - 136.*BY*BY*ALPI + 112.*AX*AX*ALPll 
STRl3,2l= -I l8e*BY*ALP*BETl-154.*IBY**3l*ALP)+ll8e*AX*AX*BY*ALPl 

1-YY*II 36.*AX*AX*ALPI - 1108o*BY*BY*ALPII 
STRll,31= -I 6.*BY*ALP*BETl+I 6o*IBY**3l*BET)-118e*AX*AX*BY*BET) 

l+YY*I l-96.*ALP*BET)-112.*BY*BY*BET)+l36e*AX*AX*BETII 
STRl2,3l= -I l8o*BY*ALP*BETl+ll8.*IBY**3l*BETl-154.*AX*AX*BY*BETI 

l+YY*ll-36e*BY*BY*BET> + 1108.•AX•AX•BETI) 
STR13,3l= +I l8o*AX*ALP*BETl+l54o*IAX**3l*BET>-ll8e*AX*BY*BY*BETI 

l-XX*ll-36o*BY*BY*BETl + 1108o*AX*AX*BETll 
STRll,41= +I l8e*AX*ALP*BETl+ll8o*IAX**3l*ALPl-154.*AX*BY*BY*ALPI 

l+XX*ll-36.*AX*AX*ALPI + 1108.*BY*BY*ALPII 
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TABIE XXVIII (Continued) 

STR12,41= +(102o*AX*ALP*BETI+( 6o*IAX**31*ALP)-(l8o*AX*BY*BY*ALPI 
l+XX*(l-96o*ALP*BETl+l36o*BY*BY*ALPl-112~*AX*AX*ALP)I 
STR13,41= -( 18o*BY*ALP*BETl+(54o*<BY**31*ALPl-(18o*AX*AX*BY*ALPI 

l-YY*ll-36o*AX*AX*ALPI + (108o*BY*BY*ALPII 
STR(l,51= +( 6o*BY*ALP*BETI-( 6o*<BY**31*BETl+(l8o*AX*AX*BY*BETI 

l+YY*ll96o*ALP*BETl+(l2o*BY*BY*BETl-(36o*AX*AX*BETI) 
STR12,51= I 18o*BY*ALP*BETl-(l8.•CBY**31*BET1+(54o*AX*AX*BY*BETI 

l+YY*l! 36o*BY*BY*6..ETI - !108o*AX*AX*BETII 
~TR13,51= +( 18.*AX*ALP*BETl-!54o*CAX**31*BET1+(18o*AX*BY*BY*BETI 

1-XX*II 36o*BY*BY*BETI - 1108o*AX*AX•BETII 
STR!l,61= +( l8o*AX*ALP*BETI-Cl8o*CAX**31*ALPl+C54o*AX*BY*BY*ALPI 

-l+XX*II 36o*AX*AX*ALPI - 1108.*BY*BY*ALPII 
STRC2,61= +( 6o*AX*ALP*BETI-C 6.*CAX**31*ALP)+Cl8o*AX*BY*BY*ALPI 

l+XX*Cl96o*ALP*BETI - (36o*BY*BY*ALPI + Cl2o*AX*AX*ALPII 
STRC3,61= I 18o*BY*ALP*BETl-(54o*CBY**31*ALPl+(l8o*AX*AX*BY*ALPI 

l-YY*C(+36o*AX*AX*ALPI - (108o*BY*BY*ALPII 
STR<l,71= !102o*BY*ALP*BETl+C 6o • CBY**31*BETl-!18o*AX*AX*BY*BETI 

l+YY*((-96o*ALP•BETl-(l2o*BY*BY*BE Tl+l36o*AX*AX*BETII 
STRC2,71= C l8o*BY*ALP*BETl+Cl8.•CBY**31*BETl-(54o*AX*AX*BY*BETI 

l+YY*l!-36.*BY*BY*BETI + (108o*AX*AX*BETII 
STRl3,71= -< 18o*AX*ALP*BETl+C54o*CAX**31*BET)-(l8o*AX*BY*BY*BETI 

1-xx•cC-36.•BY*BY*BETI + (108.•AX•AX•BET)I 
STR<l,81= -! l8o*AX*ALP*BETl+(l8o*CAX**31*ALP)-(54o*AX*BY*BY*ALPI 

l+XX*ll-36o*AX*AX*ALPI + (108o*BY*BY*ALPI) 
ST~<2,81= -I 6o*AX*ALP*BETl+I 6o*<AX**31*ALPl-ll8o*AX*BY*BY*ALPI 

l+XX*((-96o*ALP*BET)+(36o*BY*BY*ALPl-(12o*AX*AX*ALP) I 
STR(3,81= ( 18.*BY*ALP*BET1+154o*<BY**31*ALPl-(18o*AX*AX*BY*ALPI 

l-YY*((-36o*AX*AX*ALPI + (108o*BY*BY*ALPII 
DO 404 1=1,3 
DO 404 J=l,8 

404 STR( !,JI= STR<I ,Jl*(E/(96o*ALP*BET *AX*BYII 
WRITE(6,2001 
WRITE<6,10l)((STR<l,Jl,J=l,81,1=1,31 
CALL MXM (STR,QORU,STRESS,NC) 
GC TO 30 

88 CONTINUE 
<'19 CONTINUE 

WRITE (6,2561 
Go ro 839 

30 CONTINUE 
WRITE(6,2061 NN,NTYPE 
WR I TE ( 6, 2 0 l I 
WRITE (6,2021 
WRITE (6,2191 NNSN, NTYPE, <STRESS<l,11, 1=1,NCI 
IF(NTYPEoLEo41 GO TO 237 
WRITE (6,2221 ISTRESS<2,11, l=l,NCI 
WRITE (6,2211 (STRESSl3,llt !=1,NCI 

237 CONTINUE 
370 CONTINUE 

REWIND 3 ' 
REWIND 4 

WRITE16,999991 
WRITE16,9951(R(Jl,J=l,121 

19999 GO TO 839 
11999 CALL EXIT 

END 
SIBFTC SYMINV 

SUBROUTINE SYMINV I IO, A, IS!NGI 
DIMENSION All8301,COL(601 
IFII0-11800,810,97 

C ----INVERSE OF 2X2----
97 C=Alll*A(31-Al21*Al21 
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SAS683 
SAS684 
SAS685 

-SAS686 
SAS687 
SAS688 
SAS689 
SAS690 
SAS691 
SAS692 
SAS693 
SAS694 
SAS695 
SAS696 
SAS697 
SAS698 
SAS699 
SAS700 
SAS701 
SAS702 
SAS703 
SAS704 
SAS705 
SAS706 
SAS707 
SAS708 
SAS709 
SAS710 
SAS71 l 
SAS712 
SAS713 
SAS714 
SAS715 
SAS716 
SAS 717 
SAS718 
SAS719 
SAS72Q 
SAS721 
SAS722 
SAS723 
SAS724 
SAS725 
SAS726 
SAS727 
SAS728 
SAS729 
SAS730 
SAS 731 
SAS732 
SAS733 
SAS734 
SAS735 
SAS736 
SAS737 
SAS738 

SMINVOOl 
SMINV002 
SMINV003 
SMINV004 
SMINV005 



IFIC198,900,98 · 
98 Al21=-Al21/C 

COLlll=Alll/C 
Alll=Al31/C 
A 13 I =COLI 11 
IFII0-21800,720,99 

99 K=l 
M=I0-1 
D0700I011=2,M 
K=IC,+1011 

TABLE IXVIII (Continued) 

C ~-~-LoLoHeOFSYMMETRICMATRIX*COLUMN-·--
N=C 
DOlOOI =1, I 011 

100 COLIIl=O 
D0300I=l,1011 
IA=K+I 

.D0300J=l,I 
N=N+l . 
COLIJl=CO((Jl+A(Nl*AIIAI 
IFIJ-11200,300,800 

200 IB=K+J 
COLIIl=COLIIl+AINl*AIIBI 

300 CONTINUE 
C ----COMPUTEB22--~-

C=O 
D0400I=l,I011 
IA=K+I 

400 C=C+AIIAl*COL(II 
I A= IA+i 
C=AI IAI-C 
(F1Cl410,900,410 

410 C=loO/C 
Al IAl=C 

C ----COMPUTEB21----
D05001=1,I011 
I A=K+I 

500 AIIAl~-C*COLIII 
C ----COMPUTEBll----

N=O 
D0600I=l, 1011 
D0600J=l,I 
N=N+l 
IA=K+J 

600 AINl=AINI-AIIAl*COLIII 
700 CONTINUE 
720 ISING=l 

·710 RETURN 
900 ISING=O 

GOT0710 
Blv Alll=loO/A(l) 

Go ro 120 
800 ISING = 2 

RETURN 
END 

$IBFTC SMMPY 
SUBROUTINE SMMPYIA,B,C,N3,NCI 

C IKINVERSEl*IFORCEl***DEFLECTIONS****NO OF ROWS****NO OF FORCES 
DIMENSION All8301,Bl60,5ltCl60,51 
DO l00.1=1,N3 
DO 100 J=l,NC 
CIItJl=O 
DO 100 Kl= l ,N3 
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SMINV006 
SMINV007 
SMINVOOB 
SMINV009 
SMINVOlO 
SMINVOll 
SMINV012 
SMINV013 
SMINV014 
SMINV015 
SMINV016 
SMINV017 
SMINV018 
SMINV019 
SMINV020 
SM!NV021 
SMINV022 
SMINV023 
SMINV024 
SMINV025 
SMINV026 
SMINV027 
SMINV028 
SMINV029 
SMINV030 
SM lNil03 l 
SMIN'/032 
SMINV033 
SMINV034 
SMINV035 
SMINV036 
SMINV037 
SMINV038 
SMINV039 
SMINV040 
SMINV041 
SMINV042 
SMINV043 
SMINV044 
.SMINV045 
SMINV046 
SMINV047 
SMINV048 
SMINV049 
SMINV050 
SMINV051 
SMINV052 
SMINV053. 
SM.INV054 
SMINV055 
SMINV056 
SMINV057 
SMINV058 
SMINV059 

SMMPYOOl 
SMMPY002 
SMMPY003 
SMMPY004 
SMMPY005 
SMMPY006 
SMMPY007 



L=MAXOII,Kll 
K=IL*(L-31l/2+(1+Kll 

TABLE XXVIII (Continued) 

100 C(I,Jl=AIKl*B(Kl,Jl+CCI,JI 
RETURN 
END 

$JBfTC WRT 
SUB10UTINE WRTIA, N31 
DIMENSION A Cl l 

31009 FORMAT(lX,3HROW,14,/lX,11PlOE13o411 
NF=O 
NS=O 
DO 31010 J=l,N3 
NS=NF+l 
NF=NF+J 

31010 WRITE 16,310091 J,(A(llt l=NS,NFI 
RETURN 
END 

$IBFTC MXM 
SUBROUTINE MXM ( A, B, C, NCI 
Dl~ENSION A(3,81,Bl8,51,C(3,51 
DO 20 I= 1, 3 
DO 20 J=l,NC 

..!O C(J,JI = O.O 
DO 10 !=1,3 
DO 10 J=l,NC 
DO 10 N=l,8 

10 CCI,JI = CCI,JI + ACI,NI * BCN,JI 
RETURN 
END 
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SMMPY008 
SMMPY009 
SMMPYOlO 
SMMPYOll 
SMMPY012 

WRTOOl 
WRT002 
WRT003 
IIIRT004 
WRT005 
WRT006 
WRT007 
WRT008 
WRT009 
WRTOlO 
WRTOll 

MXMOOl 
MXM002 
MXM003 
MXM004 
MXM005 
MXM006 
MXM007 
MXM008 
MXM009 
MXMOlO 
MXMOll 



APPENDIX C 

TREATMENT OF EXPERIMENTAL DlTA 

The experimental stress and deflection data were processed by the 

~ ?OltO Digital Computero The basic data obtained from the strain gages 

and dial indicators are r educed to values per unit lqadsforeach of the 

load configurations, and these values are used for comparisons with the 

analytical predictions. 

The unit stress and unit deflection values are obtained by fiixling 

the most reliable linear relationship using the least-squares criteriono 

The method of least squares provides that the most probable function for 

a quantity obtained from a set of measurements is the function which 

minimizes the sum of the squares of the deviations of these measurements. 

The deviation di. is defined as the difference between any measurement Yi 
I\ 

and the predicted value Yi (17). 

A 

~· = x: -x· 
The least-squares criterion produces a system of equations for 

finding a functional relationship for the experimental data. Since this 

experimental investigation is restricted to the linear load-deflection 

range, . the data can be expressed by the relation 
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It is necessary to find C1 and C2 in order to minimize 

The minimum of S, considered as a function of C1, is obtained from the 

partial derivative of S with respect to C1 equal to zero. The result is 

,.J 

= -zE ( y,:. -c, -ez. :JC~): o 
;, "C' 

since 

rearranging 

"' w 

I: y~ 
( :.1 

A!C I +(E 1-,)C2 
,~ I 

Similarly, for the minimum of s, considered as a function of C2 

rearranging 

The two simultaneous equations in two unknowns are called normal 

equations ( 18). 

To find the best linear function for the given data, it is necessary 

to perform the summations and solve the system of two equations for C1 and 

C2. The constant C1 is the intercept of the straight line; the constant 

C2 is the slope of the straight line. The slope is the "'unit stress of the 

influence coefficient value. The intercept is merely a function of the 

value at which the indicators are initially balanced or zeroed. 



The solution for the constants C1 and C2 assuming the linear 

variation of strain or deflection versus load is 

N 
where ~ is ..E • 

{:I 

('2:. Yc.)(Ixl) -( Z. yL· kt )(I.Xi) 
N ( ~ X. L 2 ) - ( L . )(i ) 2 

A/ ( L. '/t:Xt ) 

Correlation of Experimental Data 

The least-squares criterion is used to obtain a linear equation 

relating the two variables, load and stress, or deflection by using 

pairs of observations (xi, Yi) of these variables. It is assumed in 

1.56 

advance that such a linear relationship exists. In the event of a spread 

in the experimental data, there would be a question if a linear correla-

tion exists between the load and the stress or deflection data. If a 

linear correlation does exist, the values for C1 and C2 are obtained 

as described previously. 

A graphical interpretation of the procedure is described by using 

Figure 40. The data points in Figure 40 are determined experimentally, 

and it is necessary to represent the best straight line through the 

points. The slope of the lines is C2, and its intercept on the y axis 

is 01. 



I 
I 
)(,: 

Lo.11.,1> J L8. 

- AY, (\. - AR. 

Figure 40. Typical Experimental Data 

The deviations used in the method of least squares are 
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where~ represents the vertical distance between the point (xi, Yi) and 

the straight line described by the constants C1 and C2. The method of 

least squares minimizes the sum of the squares of the vertical distances 

between the point and the straight line. Thelin~ determined by this 

procedure is sometimes called the line of regression of yon x (17). 

An estimate of how well the linear function represents the experi-

mental data is given by the correlation coefficient R (18). 

R 

Thus, R = 1 means perfect correlation, and R = 0 means no correlation. 

Consequently, for imperfect correlation, o ~ j.RI< 1. 

The interpretation of the correlation coefficient R is based on expe-

rience. The question is how large a value of R indicates a significant 
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correlation between the variables x and y. Because of random fluctuations 

in the experimental data, R would not be exactly equal to zero, even if 

the data were completely erroneous. And, in addition, due to experimental 

flu.etuations, R would not be exactly equal to one. However, since the 

nature of the problem dictates that a linear relationship exists and the 

experimental errors are hopefully minimized, then one shauld expect to get 

values in the neighborhood of R = 1. The criterion used to determine if 

the linear correlation is substantial is to consider the probability of 

obtaining a value of Ras large as possible purely by chance from the 

observations of two variables which are not related. Table XIIII has been 

calculated to give the probability of obtaining a given value of R for 

various numbers of pairs of observations (18). 

From Table XIIII for ten observations, N equals ten. The probability 

Pis 0.10 of finding a correlation coefficient of 0 • .549 or larger and a 

probability of 0.01 of finding R greater than or equal to 0.765 if the 

variables are nat related. If, for ten observations, the correlation 

coefficient R = 0.9, there is reasonable assurance that this indicates a 

true correlation and not an accident. Conversely, if R = 0.5, this would 

mean that the data were questionali:>le since there is more than a ten per 

cent chance that this value would occur for random data. A commonly used 

rule of thumb for interpreting values of the correlation coefficient is 

to regard the correlation as significant if there is less than one chance 

in twenty, P = 0.05, that the value will occur by chance (18). For any 

value of the correlation coefficient greater than the value given in the 

Table XIIII for P = 0.0.5, the experimental data should be regarded as 

showing a significant correlation. 



TABIE XXIX 

CORRELATION COEFFICIENTS* 

Probability 

N 0.10 0.05 0.02 0.01 0.001 

3 0.988 0,997 0.999 1.000 1.000 

4 0.900 0.950 0.980 0.990 0.999 

5 0.805 o. 878:i 0,934 0~959 0,992 

6 0,729 0.811 0,882 0.917 0.974 

7 0.669 0.754 0.833 o.874 0,951 

8 0.621 0,70"/ 0,789 0,834 0,925 

10 0,549 0.632 0.716 0.765 o.872 

12 o.497 0.576 o.658 0.708 0.823 

15 0,441 0.514 0.592 o.641 0.760 

20 0.378 0.444 0.516 0 . .561 0,679 
' 

*Thi-:s -table ±~ mia1)t~d,trom 1.'able:V of l!. Young, 
Statistical Treatment of ExperimentalData published by 
McGraw~Hill Book Company, Inc~ .fe:New'.';(6rk •. ' - · · 
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The linear correlation coefficient is only a measure of the best fit 

ot a linear relationship to the experimental data and is in noiftY ... ~ 

indication that the experimental data accurately represent the::pllysical 

phenomena. It is tnerel.y il.n iridicatioli that a linear correlation exists 

between the variables x ~ Yo 

Data Reduction Digital Computer Programs 

Separate digital computer progr.ams are used for the deflection 

indicator data, the axial strain gage data, and the rosette strain gage 

data. The programs are used to calculate the best linear relationship 

based on the least-squares criterion; however, each program is different 

in the manner in which the data are finally presented. The data analysis 

is controlled by the parameters specified on the control cards. 

The experimental data for the axial gage are keypunched directly from 

the Victor printer tape or from the data to:rms shown in Table XU. The 

experimental data for the rosette gages are punched from the data forms in 

Table XXX o The punched data are arranged in ascending gage numbers tor 

the gage numbering system shown in Figures 20, 21, and 22 by use of the 

IBM card sorter. Data must be given for each gage number since in the 

current configuration the program. expects the data to be in sets of two 

for axial gages and set of three for rosette gages. If no data are avail-

able for one axial gage or one leg of a rosette, a card containing only the 

gage number should be used. Each two sets of axial gage data is averaged 

to give the back-to-back readings for the stringers and ribs. Each three 

sets or rosette gage data is used for the calculation of axia:J. and principal 

stresses from the following equations. 
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Stress-Strain Relations for Equiangular Rosette Gages 

For the general case of plane stress, strains must be measured in at 

least three directions to find the principal strains and their directions. 

The strain along an axis at an angle tj, with the x axis is (19) 

For the equiipigul.ar, or delta, rosette, the angles are 

{,.1 = /20 •• 

Solving for the strains €1'., £~ , Ix.., from the equations above 

€)(.:-G, 
<:'y .. -€, + ..2.€i + ."t!J 

..:, 

t~ : .2(€1.-6.) • 
~7 ~ 

Consequently, the stresses are. 

~ = /~Z. ( G" ,( + ; €y ) 

Or = f;-i ( cy + ) €~ J 
r ~ =- ~c~~i)J ((~ ) ) , 

The principal stresses are given by 

0,. 
NIA'<. -

J -I 
2{) ::: ~ 
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The axial and rosette strain gage data reduction programs require 

control cards containing the following information: 

CARD 1 

Column J The number of different sets of data to be 
analyzed. 

Coltnnn 11 The parameter !write= 1 if only a summary of 
the data consisting of gage number, correlation 
coefficient, and stress is to be printed. If 
Iwrite = O, the complete data reductions are 
printed. 

CARD 2 

Column 

Columns 
2-JO 

CARD J 

1 The numeral 1. 

Contain alphabetic ·or numeric description 
for the test identification. 

Cof~n J Contains the number of observations for each 
gage. 

Column 1) Contains the number of active gages. 

Columns 
21-JO 

Column 32 

CARD 4 

CARDS 5 to N 

Contain the cross-sectional area of the 
stringer or rib element if forces are desired. 

Contains a numeral 1 if the data are keypunched 
from the Victor printer tape, and is blank if 
the data are punched from the data forms in 
Table XXX. 

Contains the load data in FORMAT (7x, 10F7.0). 

Contain the gage number and strain data in 
FORMAT (I7, 10F7.0). 

The program prints the test data in tabular form tor each indicator. 

The correlation coefficient and stress data are summarized at the end of 

the analysis to provide a more rapid analysis of the experimental results. 

The validity of the data is indicated by the correlation coefficient. 
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The flow diagram tor the axial strain gage da~ program is shown in 

Figure 41. A Fortran listing of the. program is given in 'l'ableXXXI. The 

flow diagram tor the rosette strain gage data program is shown in Figure 42 

A Fortran listing of the program is given in Table IXXII. 

The d.efiElction data reduction program requires the same control ~a~s 

as th.a stress data programs., except tor card :, which requires only the . 

information in columns 1 through 1.3. The fiow diagram for the detlection 

data reduction program is shown in Figure 43. A Fortran listing of the 

program is given in Table UXIII. 



DO 15 
M SETS OF DlTA 

SUBROUTINE UST (TESTID, N) 

RF.AD TAPE ) ,, · 
IGA.GE(I) ,R(I) ,B(I)'I=1,H 

STRESS= E STRAIN 

DO 10 
I=1, BUMBER OF GAGES 

SS ION 
ANALYSIS 

WRITE 
IGA.GE ,R(I) ,B (I), STRESS 

AVERAGE OF 
BlCK TO BACK STRESSES 

CHECK FOR MINDfCtl 
CORREIATION COEFFICIENT 

RMIN (I) · 

WRITE . 
IGA.GE (ODD) 

RMIN (I) 
VER.AGE STRESS 

Figure 41 • Flow Diagr8Jll tor ~al Gage Program 
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TABLE UXI 

AXIAL STRAIN GAGE DATA REDUCTION PROGRAM 

C AXIAL TEST DATA REDUCTION PROGRAM M.U.AYRES********************AXIALOOl 
DIMENSION X(lOOJ,Y(lOOl,RUN!D(~),PRO!D(3l,SUM(ll),~TRSC100) AXIAL002 

1 SAVE(lOO) AXlAL003 
COMMON TITLE!121, MOPC18l, NCHi40l, TABl, TA82, ND, NP, NM, NB AXIAL004 

1 , TA83 AXIAL005 
EQUIVALENCE (AiSUM(l)l,<B,SUM(2l l,(R,SUM(5) l,tSTD,SUM(6)l, AXIAL006 

1 (US,SUM( 3 l l, (UF,SUM( 4) l, ( SX,SUM( 7) l, ( SY,SUM( 8l l, ( SXY,SUM(9) l, AXIAL007 
2(SXS,SUM( 10) l, (SYS,SUM( lll l AXIAL008 

FORMAT(l2A6) AXIAL009 
2 FORMATC58Al,3A6,4Al) AXIALOlO 

100 FORMAT(5A6/!3,7X,I3,7X,Fl0o31!2) AXIALOll 
101 FO~MAT(l2,4X,F4o0,F10.0) AXIAL012 
102 FORMAT(l3,7X,lll AXIAL013 
200 FORMAT(lHll AXIAL014 
201 FORMAT(26X,29H****STRESS DATA REDUCTION***~ol9X,5HPAGE ,13// AXIAL015 

~20X,10HTEST ID···•5A6/20X,10HGAGE ID ••• ,1211.2ox, AXIAL016 
324HNUMBER OF OBSERVATIONS =,!3//,10X,4HLOAD,9X,10H STRAlN ,lOX, AXIAL017 
410H STRESS ,/15X,Fl0.0,5X,FlO.O,lOX,FlO.Q)l AXIAL018 

202 FORMAT(//20X,12HINTERCEPT = ,Fl3o4,/18X, AX!AL019 
114HUNIT STRAIN= ,F17.B/,18Xt.14HUNIT STRESS= ,Fl3.4/, AXIAL020 
219X,13HUNI~ FORCE= ,Fl3o4/,6X,26HCORRFLATION COEFFICIENT= t AXIAL021 
3Fl3o4/,11X,21HSTANDARD DEVIATION= ,Ff3o41 AXIAL022 

203 FORMAT(J3,7X,Fl!.4,10X,Fl7o8) AXIAL023 
204 FORMAJ!1Hl,5A6///!3,7X,I3,7X,Fl0o3,7X,I217X,!3) AXIAL024 

1001 FORMAT( !7,lOF7.0) AXIAL025 
1002 FORMAT(I7,10F7o0/(7X,10F7.0)) AXIAL026 

1101 FORMAT(7X,10F7.0t AXIAL027 
C ***************** READ CONTROL DATA ******************************AXIAL028 

READ(5,102l M,IWRITE AXIAL029 
DO 15 IT=l,M AXIAL030 

C*****READ PLOTTER TITLES***********************************************AXIAL031 
READ!5,ll(TITLE< I hl=l,12) AXIAL032 

READC5,2lCMOP(l),1=1,18l,!NCH(Il,I=l,40),TABl,TAB2,TABAXIAL033 
13,ND,NP,NM,NB AXIAL034 

IPG=O AXIAL035 
REWIND. 3 AXIAL036 
READ(5,100)RUNID,N,NG,AREA,IDATA AXIAL037 
WRITEC6,104)RUNID,N,NG,AREA,!DATA,M AXIAL018 

C ***************** READ EXPERIMENTAL DATA *************************AXIAL039 
IF( IDATA.EQ.20) GO TO 12 AXIAL040 
READ <5, 1101)(X(J), I=l,Nl AXIAL041 
DO 10 II~ loNG AXIAL042 
IF (N .LE. 10) GO TO 1003 AXIAL043 
READ (5, 1002) !GAGE, IYCllt = 1,Nl AXI.AL044 
GO TO 1004 AXIAL045 

1003 READ (5, 1001) !GAGE., (Y(I) , I loN) AXIAL046 
1004 IF (!GAGE .EQ. Ol GO TO 15 AX.IAL047 

GO TO 14 AXIAL048 
12 DO 10 IK= 1,NG AXIAL049 

READ (5,101) (!GAGE, Y(J)., X(J), l=l,N) AXIAL050 
IF ( Y(ll •LT• OoO) Y(Il = 10000 + Y(ll AXIAL051 
!GAGE= !GAGE+ l AXIAL052 

C ********* .. ******* REGRESS.ION ANALYSIS ****************************AXIAL053 
. 14 DO 9 !=loll AXIAL054 
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TABLE XXXI (Continued) 

9 SUM(Jl = O.Q AXIAL055 
DO 3 I = l•N AXIAL056 
STRS (!) = Ylll*l0.6 AXIAL057 
SX = SX + XII) AXIAL058 
SY= SY+ YI! l AXIAL059 
SXY=SXY+Xll)*YII) AXIAL060 
SXS=SXS+X(ll*Xlll AXIAL061 

3 SYS=SYS+Y(I l*Y({) AXIAL062 
AN=N AX I AL063 
B=(AN*SXY-SX*SY)/(AN*SXS-SX*SX) AXIAL064 
CALLDVCHK I Kl AX I AL065 
GO TO 16,4) ,K AXIAL066 

6 8=000.QOO AXIAL067 
4 A=fSY-B*SX)/AN AXIAL068 

R=IAN*SXY~SX*SY)/SQ~T( IAN*SXS-SX*SXl*IAN*SYS-SY*SYll AXIAL069 
CALLDVCHK(Kl AXIAL070 
GO TO (7,5),K AXIAL07l 

7 R=O.O AXIAL072 
5 STD= SQRTl(SYS-A*SY-B*SXYl/ANI AXIAL073 

!PG= !PG+ 1 AXIAL074 
US= B*l0.6 AXIAL075 
UF = US*AREA AXIAL076 
R = ABS (R) AXIAL077 
WRITE (3,203) !GAG.Et R, B AXIAL078 

C IF COLUMN 11 = 1 SKIP TO THE SUMMARY OF tHE RESULTS***************AXIAL079 
IFIIWRITE.EQ.l) GO TO 10 . · · AXIALOBO 

C PRINT RESULTS OF THE REGRESSION ANALYSIS ***************~*********AXIAL081 
WR!TE16,200) AX!AL082 
WRITE ( 6, 2 0 l l I PG, RUN ID, !GAGE, N • ( X ( I l , Y ( I ) , S TR S ( I l , I= l, N) AX I ALO 8 3 
WRITE (6,202)1SUM(!),!=l,6) AXIAL084 

C PLOT THE EXPERIMENTAL DATA ***************************************AXIAL085 
DO ~02 I = l,N AXIAL086 

302 SAVE(!)= X(l) AXIAL087 
DO 300 I = 2,N AXIAL088 

300 Ylll=ABSIY.(!)-Y(ll) AXIAL089 
YIU = O.O AX!AL090 
X(N+l) = X(N) + 500.0 AXIAL091 
CALL PLOT lx,o.O,X(N+l),O,Y,O.o,Y(Nl,O,O.o,n.o.o.o,o,N,l,1,0,2) AXIAL092 
DO 301 I = 1,N AXIAL093 

301 X(!) = SAVE (l) AXIAL094 
10 CONTINUE AXIAL095 

END FILE 3 AXIAL096 
REWIND 3 AXIAL097 
CALL LIST (RUNID ; NG) AXIAL098 

15 CONTINUE AXIAL099 
CALL EXIT AXIAUOO 
END AXIALlOI 

.$JBFTC LIST AXIAL102 
SUBROUTJNF LIST (TFSTID, N) AXIAL103 
DIMENSION lGAGE<lOOl, R(lOO), 81100), CllOOl, BAVG(10ciJ, CAVG(100)AXIAL104 

2, RMIN(lOO), TEST!D (5) AXIAL105 
9~ FORMAT. (5A6) AXIAL106 

100 FORMAT(I3,7X,Fl3.4,10X,Fl7.8) AXIAL107 
200 FORMAT(lH1•25X,5A6////,21X•llHCORRELATJON/i5X,llHGAGE NUMBER,5X, AXIAL108 



TABIE XXXI (Continued) 

211HCOEFFICIENT,5X,6HSTRAIN,12X,6HSTRESSl AXIAL109 
201 FORMAT(8X,I3,10X,F8,4,7X,Fll.8,6X,Fll.el AXIALllO 
202 FORMAT ( 65HOSTRAIN DATA IS LISTED AS MICROINCHES PER POUND OF EAXIALlll 

2XTERNAL LOAD /,5X~ 57H STRESS DATA IS LISTED AS PSI PER POUND AXIAL112 
30F EXTERNAL LOAD l AXIAL113 

C N = NUMBER OF GAGES TO BE USED **********~*******************~****AXIAL114 
E=l0.6 . AXIAL115 
READ <3,100) ( !GAGE( I), R<I l, .B( I l, I=l,Nl AXIAL116 
WRITE (6,200) TESTID AXIAL117 
WRITE (6,202) AXIAL118 
LIN.ES = 0 AXIAL119 
DO 10 I = 1,N AXIAL120 
LINES= LINES+ 1 AXIAL121 
IF <LINES ·LT• 40 l GO TO 30 AXIAL122 
WRITE (6,200) TESTID AXIAL123 
WRITE (6,202) AXIAL124 
LINES = 0 AXIAL125 

30 ((!) = B(I) * E AXIAL126 
10 WRITE·<6,20i) IGAGE(I l,R(ll,B(ll,C(J l AXIAL127 

C WRITE OUT THE AVERAGE OF THF RACK TO BACK GAr,E READINGS **********AXIAL128 
WRlTE (6,200) TESTID AXIAL129 
WRITE (6,202) AXIAL130 
LINES = 0 AXIAL131 
DO 20 I=l,N,2 AXIAL132 
BAVG(I) = (B(l)+B<I+l))/2.0 AXIAL133 
CAVG(Il = BAVG(l) * E AXIAL134 
RMIN(Il = AM!Nl<R(Il,R(I+l)) AXIAL135 
LINES= LINES+ 1 AXIAL136 
IF (LINES .LT. 40 l GO TO 50 AXIAL137 
WRITE (6,200) TEST!D AXIAL138 
WRITE (6,202). AXIAL139 
LINES = 0 AXIAL140 

50 WRITE (6,201) iGAGE<I), RMIN<Ilt BAVG<llt CAVG(.!) AXIAL141 
20 CONTINUE AXIAL142 

RETURN AXIAL143 
END AXIAL144 
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DO 15 
I=1 K ' . 

11---~ CALCUIATE 
PLANE STRESSES 

READ TAPE 4 
. IGAGE, 
_ R(I),B(I) 

C(I)=B(I)•E 

READ 3 
IGAGE Si(I) 

SY(I), SXY(I) 

WRITE 6 
IGAGE, SX(I) 

(I),_ SXY(I) 

Figure 42. · · Flow Diagram for Rosette Gage Program 
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TABIE XXXll 

ROSETTE STRAIN GAGE DATA REDUCTION PROGRAM 

C ROSETTE TEST DATA REDUtTION PROGRAM AY MoUoAYRF.S . 
DI MENS I ON X ( l 00 l , Y ( l 00 l , RUN ID ( 5 l , PRO ID ( 3 l , SUM ( 11 > , S TRS ( 5 00) , E ( 3) 

l , SAVE(lOO) 
EQUIVALENCE IA,SUM( l)), <B,SUM( 2 l l ,< R,SUM <5) l, ( STD,SUM(6) .) , 

l(US,SUM( 3)), (UF,SUM( 41), ( SX ,SUM( 71), ( SY,SUM( 8 l l • (SXY,SUM(9)), 
2(SXS,SUM( 10)), (SYS,SUM(ll l) 

COMMON TITLE<12), MOP(18), NCH(40l, TAPl, TAB?, ND, NP, NM, NB 
1 , TAB3 

1 FORMAT(l2A6J 
2 FORMAT(58Al,3A6,4All 

100 FORMAT(5A6/13,7X,I3,7X,Fl0o3,12l 
101 FORMAT(I2,4X,F4.0,F10.0) 
102 FORMAT<I3,7X,Ill 
103 FORMAT (lHl, 38X, lBHPRINCIPAL STRESSES/// 2ox, BHGAGE NO. 

13XtllHMAXo STRESS, 4X, llHMIN. STRESS, 7X, .. lOHMAX. SHEAR, 
26X, 5HANGLE) 

111 FORMAT (lHl, 40X, 14HAXIAL STRESSES/// ?OX, BHGAGE NO. 
13X, llHX-DJRECTION, 4X, llHY-DIRECTION, BX, 5HSHEARl 

200 FORMATllHll 
201 FORMATl26X,29H****STRESS DATA RFDUCTION****,19X,5HPAGF ,13// 

220X,10HTEST ID ••• ,5A6/20X,10HGAGF. ID ••• ,I3//,20X, 
324HNUMBER OF OBSERVATIONS =,13//,10X,4HLOAD,9X,10H STRAIN ,lOX, 
410H STRESS ,/15X,Fl0.0,5X,FlO.O,lOX,FlO.O)l 

202 FORMATl//20X,12HINTERCEPT = ,Fl3o4,/1BX, 
114HUNIT STRAIN= ,Fl7.B/,18X,14HUNIT STRESS= ,Fl3.4/, 
219X,13HUNIT FORCE= ,Fl3e4/,6X,26HCORRELATION COEFFICIENT 
3Fl3e4/,11X,21HSTANDARD DEVIATION= ,Fl3e4) 

203 FORMATII3,7X,Fl3.4,10X,Fl7o8) 
204 FORMAT(1Hl,5A6///13,7X,!3,7X,Fl0.3,7X,12,7X,I31 

1001 FORMAT(!7,10F7.0) 
1002 FORMAT(l7,10F7.0/(7X,10F7.0ll 
1101 FORMAT(7X,10F7o0l 

105 FORMAT ( 15X, 110, 3Fl5.5) 
106 FORMAT(. 15X, 110, 4Fl5e5l 
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ROSETOOl 
ROSET002 
ROSET003 
ROSET004 
ROSFT005 
ROSl"T006 
ROSET007 
ROSET008 
ROSFT009 
ROSETOlO 
ROSETOll 
ROSET012 
ROSET013 
ROSET014 
ROSFT015 
ROSET016 
ROSFT017 
ROSET018 
ROSET019 
ROSET020 
ROSET021 
ROSET022 
ROSET023 
ROSET024 
ROSET025 
ROSET026 
ROSET027 
ROSET028 
ROSET029 
ROSET030 
ROSET031 
ROStT0'32 
ROSET033 
ROSET034 

C READ CONTROL DATA **********************************~*************ROSET035 
READ<5,102) M,IWRITE ROSET036 
DO 15 IT=l,M ROSET037 

C READ PLOTTER TITLES**************lf********************************ROSET038 
READ<5,ll<TITLE<I),I=l,12l ROSET039 

READ( 5 ,2 l ( MOP (I), I =1, 18 l, (NCH( I l, 1=1,40 l ,TABl ,TAB2, TABROSET040 
13,ND,NP,NM,NB ROSET041 

REWIND 2 ROSET042 
REWIND 3 ROSET043 
REWIND 4 ROSF.T044 
!PG=O ROSET045 

C READ EXPERIMENTAL DATA **********lf********************************ROSET046 
READ<5,100)RUNID,N,NG,AREA,IDATA ROSET047 
WR!TE<6,204)RUNID,N,NG,AREA,IDATA,M ROSET048 
READ 15, llOl)(X(!), 1=1,Nl ROSET049 
DO 9999 IA= 1,NG ,3 ROSET050 
DO 10 II = 1,3 ROSET051 
IF <N .LE. 101 GO TO 1003 ROSET052 
READ <5, 1002) IGAGF., (Y(ll, 1,Nl ROSET053 
GO. TO 1004 ROSFT054 
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TABIE XXXII (Continued) 

1003 READ (5, 1001) !GAGE, (Y(I) , I = 1,Nl ROSET055 
1U04 CONTINUE ROSET056 

C REGRESSION ANALYSIS ***************~*****•*********************'**ROSET057 
14 DO 9 1=1,11 ROSET058 

9 SUM(!) = o.o ROSET059 
DO 3 I = l•N ~0SET060 

C Y(I) = SCAFAC * Y< !) IF GAGE FACTORS NOT EQUAL FOR ALL GAGES *****ROSET061 
SX = SX + X(I) ROSET062 
SY= SY+ Y(!) ROSET063 
SXY•SXY+X(I)*Y(!) ROSET064 
SXS=SXS+X ( I l*X (I) ROSET065 

3 SYS=SYS+Y<I )*Y(I) ROSET066 
AN=N ROSET067 
B=(AN*SXY-SX*SY)/(AN•sxs~sx•SX) ROSET068 
CALLDVCHK (Kl ROSET069 
GO TO (6,4),K ROSET070 

6 B=loOOOOOOOOO ROSET071 
4 A=(SY-B*SX)/AN ROSET072 

R=<AN*SXY-SX*SY)/SQRT( (AN*SXS-SX*SX)*(AN*SYS~SY*SY)) ROSET073 
CALLDVCHK(K) ROSET074 
GO TO (7~5),K ROSET075 

7 R=OoOOOOOOOOOOO . ROSET076 
5 STD= SQRT< (SYS-A*SY-B*SXYl/AN) ROSET077 

!PG= !PG+ 1 ROSET078 
US= B*l0o6 ROSET079 
UF • US*AREA ROSETOBO 
R = ABS ( R) ROSETOBl 

C IF COLUMN 11 = 1 PRINT ONLY THE SUMMARY OF THE RESULTS *******ROSET082 
!F(IWRITE.EQoll GO TO 8 ROSET083 

C PRINT EXPERIMENTAL DATA ******************************************ROSET084 
WRITE<6,200) ROSET085 
WRITE ( 6, 201 ) I PG, RUN ID, I GAGE, N, ( X ( I I , Y ( I ) , S TR S ( I ) , I,;, l , N) ROSE TO 86 
WRITE (6,2021 (SUM( I) ,1•1,6) ROSET087 

C PLOT EXPERIMENTAL DATA ******************************************ROSET088 
DO 302 I = l,N ROSET089 

302 SAVE<Il • X(!.) ROSET090 
DO 300" I = 2,N ROSET091 

300 Y(l)=ABS(Y( 1)-Y(lll ROSET092 
Y< 1) = O.O ROSET093 
X(N+ll = X(N) + 500.0 ROSET094 
CALL PLOT (X,O.O,X(N+l),O,Y,O.o,Y<NJ,O~u.o,o.o,o.o,o,N,1,1,0,21 ROSET095 
DO 301. I = 1,N ROSET096 

301 X(I) = SAVE (l) ROSET097 
8 CONTINUE ·ROSET098 

WRITE (4,203) !GAGE, R, B ROSET099 
10.E(Il) = B ROSETlOO 

C USE El, E2• AND E3, FROM THE REGRESSlON ANALYSIS FOR PLANE STRESS ROSETlOl 
EE 10.6 ROSET102 
PR 0.333333 ROSET103 
El E(l). ROSET104 
E2 E<2) ROSET105 
E3 E(3J ROSET106 
EX = El ROSET107 
EY =(-(EU+<2.0*E;2> +<2oO*E3> > I 3o0 ROSETlOB 
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TABLE XXXII ( Continued) 

E)(Y = 12.0*CE2 - E31 I/ 1.73214 ROSET109 
SX=ICEE/tle-tPR**2lll*(EX+(PR*EYJll ROSETllO 
SY•((EE/(le-CPR**2lll*(EY+CPR*EXlll ROSETlll 
SXY=CEE/.(2e*ll.+PR).) l*EXY ROSET112 
A= SQRT I !(El-(!El+E2+E31/3.0ll*!El-(!El+E?+E31/3e0l}) + ROSET113 

l((CE2-E3lll.73214l*IIE2-E31/l.73.214)J) ROSET114 
SXYMAX = (EE/11.0 + PRll* A ROSET115 
B = IEE*!El+E2+E31 )/(3.0 *ll.O - PRl I ROSET116 
SMAX = B+SXYMAX ROSET117 
SMIN = B-SXYMAX ROSET118 
TAN20 (CE2 - E3l * 1.732141 I ((2.0*Ell+E2+E31 ROSET119 
ANGLE= 0.5 * ATAN CJAN20) ROSET120 
WRITE (2,105) !GAGE, SX, SY, SXY ROSET121 
WRITE 13,106)IGAGE,SMAX,SMIN,SXYMAX, ANGLE ROSET122 

9999 CONTINUE ROSET 123 
END FILE 2 ROSET124 
REWIND 2 ROSET125 
END FILE 3 ROSET126 
REWIND 3 ROSET127 
END FILE 4 ROSET128 
REWIND 4 ROSET129 
CALL LIST (NG,RUN!Dl ROSET130 

15 CONTINUE ROSET131 
CALL EXIT ROSET132 
END ROSET133 

$IBFTC LIST ROSET134 
SUBROUTINE LIST (NG,RUNIDI ROSET135 
DIMENSION IGAGEC500), SMAX(500), SMIN1500), SXYMAX(500), ROSET136 

!ANGLE C5001,SX(500),SY(500l,SXY(500),R(500l~B(500),C(500li ROSET137 
2BAVGC500l,CAVGC500),RUN!D(5) ROSET138 

99 FORMAT (5A6) ROSET139 
100 FORMAT(!3~7X,Fl3.4,10X,Fl7.8) ROSET140 
200 FORMAT(1Hl,25X,5A6////,21X,11HCORRELATION/,5X,11HGAGE NUMBER,5X, ROSET141 

211HCOEFFICIENT,5X,6HSTRAIN,12X,6HSTRESS) ROSET142 
201 FORMAT(8X,13,10X,F8.4,7X,Fll.8,6X,Flle8l ROSET143 
202 FORMAT C 65HOSTRA!N DATA IS LISTED AS MICROINCHES PER POUND OF EROSET144 

2XTERNAL LOAD /,5X, 57H STRESS DATA IS LISTED AS PSI ~ER POUND ROSET145 
30F EXTERNAL LOAD l ROSET146 

111 FORMAT ClHl, 40X, 14HAXIAL STRESSES/// ?OX, 8HGAGE NO. ROSET147 
13X, llHX-DlRECTION, 4X, llHY-DIRECTION, BX, 5HSHEARl ROSET148 

102 FORMAT ( 15X, !10, 3Fl5o5l ROSET149 
103 FORMAT (lHl, 38X, 18HPR!NC!PAL STRESSES/// 20X, BHGAGE NO. ROSET150 

13X,11HMAX. STRESS, 4X, llHM!N. STRESS, 7X,' 10HMAX. SHEAR, ROSET151 
26X, 5HANGLE) ROSET152 

104 FORMAT( 15X, llO, 4Fl5e5) ROSET153 
C NG= NUMBER OF GAGES **********************************************ROSET154 

E=l0.6 ROSET155 
READ (4,100> C!GAGECI), R(ll, B(l),.!=l•NGI ROSET156 
WRITE 16,200) RUNID ROSET157 
WRITE 16,202) ROSET158 
LINES O ROSET159 
DO 40 I = 1,NG ROSET160 
LINES= .LINES+ ROSET161 
IF !LINES .LT. 40 GO TO 30 ROSET162 



WRITE (6,200) RUNID 
WRITE 16,202) 
LINES = O 

30 C(I) = B(ll * E 

TABLE XXXII (C0ntinued) 

40 WRITE (6,201) !GAGE( I), R(l), Bill, Cl!) 
NG= NG/3 
READ12,102l41GAGEl!l, SX(Il,SY(ll,SXY(J) ,I=l,NG) 
READ( 3,104) I !GAGEi I l tSMAX( I> ,SMINI I> ,SXYMAX( I) ,ANGLE( I l ,I=l,NG) 
WRITE (6,111) 
WRITE (6,20;>) 
LINES=O 
DO 10 I = l • NG 
LINES= LINES+ 1 
IF (LINES oLTo 40) GO TO 10 
WRITE (6,llll 
LINES = 0 

10 WRITE (6, 1021 !GAGE(!), SX(I), SY( I), SXY(I) 
WRITE (6,103) 
WRITE (6,202) 
LINES=O 
DO 20 I = 1, NG 
LINES= LINES+ 1 
IF (LINES oLT. 40) GO TO 20 
WRITE (6,1031 
LINES = 0 

20 WRITE (6,1041 !GAGE(!), SMAX(ll, SM!N(I), SXYMAX(I),ANGLE(I) 
RETURN 
END 
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ROSET163 
ROSET164 
ROSET165 
ROSET166 
ROSET167 
ROSET168 
ROSET169 
ROSETl 70 
ROSET171 
ROSET172 
ROS ET 173 
ROSET174 
ROSETl 75 
ROSETl 76 
ROSET177 
ROSETl 78 
ROS ET 179 
ROSET180 
ROSET181 
ROSET182 
ROSET183 
ROS ET 184 
ROSET185 
ROSET186 
ROSET187 
ROSET188 
ROSET189 
ROSET190 



READ 
X(I) 

READ 
IGAGE,Y(I) 

DO 10 
, I;::1,N 

REGRESSION 
ANALYSIS 

PLOT DATA 

Figure 43. Flow Diagram for 
Deflection Data 
Program 
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TABIE XXXIII 

DEFLECTION DATA REDUCTION PROGRAM 

c DEFLECTION DATA REDUCTION PROGRAM MU AYRES DELTAOOl 
DIMENSION XClOOJ, YClOO), RUNID{5J, PROIDC3J, SUMC9J DELTA002 

1 , SAVE 1100) DELTA003 
COMMON TITLEC12), MOPllB), NCHC40), TABl, TAB2, ND, NP, NM, NB DELTA004 

1, TAB3 D~LTA005 
EQUIVALENCE CA,SUMC1)),CB,SUMC2J),CR,SUMl3Jl,CSTD,SUMC4JJ DELTA006 

1 
2 , C SX,SUMl.5) l, C SY ,SUMI 6 l l • C SXY ,SUMC 7) l, I SXS,SUM{B l), C SYS,SUMI 9 l l DEL T.t1007 

FORMATC1~A6l . . DELTAOOB 
2 FORMATC58Al,3A6,4A1l DELTA009 

100 FORMAT C5A6l DELTAOlO 
101 FORMATCI3l DELTAOll 
200 FORMAT I lHll DELTA012 
201 FORMAT( 25X,29H**DEFLECTlbN DATA REDUCTION**•lgX,5HPAGE ,19/ DELTA013 

220X,10HTEST Io ••• ,5A6/20X,10HGAGE lD••••l3 11· . DELTA014 
3. llX,lOHINPUT DATA ,30X,4HLOAD,9X,10HDEFLECTION I DELTA015 
4 15X,24HNUMBER OF OBSERVATIONS·=. t!3,4X,.Fl0o0t5X, DELTA016 
5Fl0o4/ C46X,F10.0,5X,F1-0.4ll DELTA017 

202 FORMAT C//20X, 12HINTERCEPT = ,F10o4/ DELTAOlB 
2BX, 24HINFLUENCE COEFFICIENT= ,F14.B// . DELTA019 
3 6X, 26HCORRELATION COEFFICIENT = ,Fl0o4/ DELTA020 
4 11X,21HSTANDARD DFVIATION = , Fl0o4 l DELTA021 

1001 FORMAT C 17, 1on.o, DELTA022 
1002 FORMAT (17, 10F7.0 I C7X, 10F7.0ll DELTA023 
1101 FORMAT C7X, 10F7.0) DELTA024 

9 CONTINUE DELTA025 
c READ PLOTTER TITLES **********************************************DELTA026 

READC5,llCTtTLECI),I=l,12l DELTA027 
READ15,2)1MOPlll1l=l,lB>,CN(HCI>,I=l,4Dl•TABl,TAB2,TABDELTA028 

13,ND,NP,NM,NB DELTA029 
!PG = 0 DEL TA030 
READ C5,100)RUNID DELTA031 
READ 15,101) NGAGES DF.LTA032 
READ 15, 101) N DELTA033 
READ. C5,110U CXC!lt I=l,Nl DELTA034 

10 CONTINUE DELTA035 
IF C NGAGES .EQ. U ) GO TO 9 DELTA036 
NGAGES = NGAGES - 1 DELTA037 
WRITE C6,200J DELTA038 
IF IN •LE. lOJ GO TO 1003 DELTA039 
READ 15, 1002) !GAGE, CYCI>, .1,Nl DELTA040 
GO TO 1004 DEL TA041 

1003 
c 

1004 
11 

READ 15, lObl> lGAGE, CYCIJ , = 1,Nl DfLTA042 
REGRESSION ANALYSIS **********************************************DELTA043 
DO il 1=1,9 DELTA044 
SUMII)=O.O DELTA.045 
DO 3 I = l•N DELTA046 
SX = SX + XII) DELTA047 
SY= SY+ YCI > DELTA048 
SXY=SXY+XII l*Ylll DELTA049 
SXS=SXS+XII l*Xlll DELTA050 

3 SYS=SYS+YCI J*Y(IJ DELTA051 
AN=N . DELTA052 
B=CAN*SXY-S~*SYI/CAN*SXS-SX*SX) DELTA053 
CALLDVCHKCK) DELTA054 
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TABIE ImII (Continued) 

GO TO 16,4), K DELTA055 
4 A=(SY-B*SX)/AN DELTA056 

R= ( AN*SXY-SX*SY) /SORT ( ( AN*SXS-SX*SX) * ( AN*SY S-SY*SY)) DEL TA057 
CALLDVCHK(K) DELTA058 
GO TO 17, 5) , K DELTA059 

5 ST~= SORT( (SY S-A* SY -B*SXY)/AN ) DELTA060 
!PG= !PG+ 1 DELTA061 

C PRINT EXPERIMENTAL DATA ******************************************DELT A06 2 
WRITE(6,2 0l )IPG,RUNID,IGAGE,N,(X(J>,Y(l),l=l,N) DELTA063 
WRITE (6, 202> <SUM (!),l=l,4) DELTA064 

C PLOT EXPERIMENTAL DATA *******************************************DELTA065 
DO 302 I = l,N DELTA066 

302 SAVE< I> = X {! > DEL TA067 
DO 300 I = 2,N DELTA068 

300 Y(l>=ARS(Y(!)-Y(l)) DELTA069 
Y(l) = O. O DELTA070 
X(N+ll = X(Nl + 500 . 0 DELTA071 
CALL PLOT <x, o . O,X (N+ l) , O, Y, O. O, Y(N), O, O. o , o.o,o. o , o ,N, l,l , 0 , 2) DELTA072 
DO 301 I = 1,N DELTA073 

301 X(!) = SAVE (I) DELTA074 
GO TO 10 DELTA075 

6 B=l .000000000 DELTA076 
GO TO 4 DELTA077 

1 R=o.oooonooo DELTA07B 
GO . TO 5 DELTA079 
END DELTA080 



APPENDIX D 

UST OF MAJOR INSTRUMENTATION 

Victor DigitMatio Printing Unit 

Datra.n Switch & Ba.lance Unit 

Da.tra.n Printer Control Unit 

Digital Strain Indicator 

Datra.n Switch & Ba.la.nee Unit 

Strain Indicator (4) 

Switch & Ba.la.nee Unit (25) 

Switch & Ba.lance Unit 

Switch & Ba.la.nee Unit 

SR-4 Strain Indicator 

10,000-lb. Load Cell 

.5,000-lb. Load Cell 

Dial Indicators ('10) 

Calibration Unit 
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Budd Model C10LCT 

Bu.dd Model E140 

Budd Model A110 

Budd Model C10T 

Budd Model P3.50 

Budd Model SB-1 

BLB Type PSBA.20 Model J 

BLR .Type 22.5 

BUI Type N 

BLH Type UJG1 

BLH Type U,G1 

· Starrett No. 656-617 

BLH Model 62.5 



APPENDIX E 

CALIBRATION OF STRAIN GA.GE SYSTEMS 

Once the strain gages are attached to the panel, it is not possible 

to attain a calibration by the use of a known strain situation. The 

strain gages are manufactured under carefully controlled conditions, and 

the gage factor for each lot of gages is within about .:t 0.27 per cent. 

The gage factor and the gage resistance make possible a simple method 

for calibrating the resistance strain gage system. This method consists 

of determining the system's response to the introduction of a specific 

small resistance change at the gage and of calculating the resulting 

equivalent strain. The resistance change is introduced by shunting a 

relatively high value precision resistor across the gage as shown in 

the following figure. 

Figure ,44. Strain Gage Bridge 
With Calibration 
Resistor 
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The equivalent strain for the shunt resistor in parallel with the 

active gage is 

E = 

where GF = Gage factor 
rg = Gage resistance, ohms 
rs= Shunt resistance, ohms. 

(_Yi--) 
1 + Is 

The Budd Model A-110 Digital Strain Indicator has a push button 

labeled Calibration Check for the purpose of shunting a 60K ohm ± 0.1 per 

cent .resistor across one arm of the input bridge." For a gage factor of 

2.00, multiplier at 1,coarsebalance switch toExt.,the 60K calibration 

resistor should provide e:xa.ctly 1001 counts for a 120 ohm gage. If the 

indicator calibration is found to be in error, readjustment of the 

internal calibration potentiometer is required. 

The Budd portable strain indicator systems were calibrated using the 

same 60K-ohm resistor that was used in calibrating the strain gages for 

the ModelA-110Digital Strainindicator. The resistor was shunted across 

each active gage. 

Direct calibration of an external bridge input by using a known 

resistance assures maximum accuracy if the gage resistances are known 

accurately and load resistances are insignificant. The shunt calibra-

tion circuit is also helpful to ascertain the error caused by load 

resistance when long input leads are used. 

The maximtnn variation for any single gage was less than three per 

cent, and the majority of gages were within one per cent of the calibra-

tion value. Typical results from the calibration tests are shown in 

the following table. 



Gage 
Number 

121 

122 

12J 

124 

12.5 

126 

127 

128 

129 

JOJ 

TABIE XXXIV 

TYPICAL INDICATOR RF.ADINGS DURING 

CALIBRATION TESTS 

Indicator Reading Indicator Reading 
Zero Isvel with Shunt Resistor 

1JJ7 :no 
1366 J60 

1271 262 

120.5 198 

1210 204 

1208 202 

1222 214 

1215 207 

121.5 207 

1229 222 

Calibration of Load Recording F,quipnent 

Net 
Change 

1007 

1006 

1009. 

1007 

1006 

1006 

1008 

1008 

1008 

1007 

A calibration of the load recording equipnent was performed to 
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determine the accuracy of the load application system. The BLH U-JG1 type 

load cells have strain gages with a gage factor of 2.0 and a resistance of 

J.50 ohms. Using a 60K calibration resistor, the computed strain should be 

2900. 

The calibration was performed from the zero reading from t.he ,X,0-pourd 

load cell ot 110.50. The 601: resistor was shunted across each leg of the 

strain gage bridge, and the following records were obtained: 



181 

Shunt Dial Reading Net Change 

P1 to S1 13915 2865 

P1 to S2 8240 2810 

P2 to S1 8180 2870 

P2 to S2 13860 2810 

The same procedure was used in calibrating the system for the 10,000-

pound load cell. Again, the gage factor of 2.0 and a gage resistance of 

350 ohms provide a strain input of 2900. The 60K resistor was shunted 

across the four arms of the bridge, one arm at a time. The following 

records were obtained: 

Shunt Dial Reading Net Change 

P1 to S1 13770 2870 

P2 to S2 8100 2800 

P2 to 81 8030 2870 

P2 to S2 13715 2815 

In general, a value of approximately 2800 to 2870 was obtained for 

each leg of the strain gage bridge. This is a variation of approximately 

three per cent or corresponds to a gage factor change of from 4.00 to 2.07, 

which might actually be the gage factor for the strain gages used in the 

load cell. 

The load indicator system was subsequently calibrated with a BLH 

Model 62.5 voltage divider unit. A linear change in indicator reading was 

obtained for a linear change in MV/V input. The load cells have a 3 MV/V 

full scale output which corresponds to 6000 units on the BLH SR-4 indicator. 

The various calibration techniques are redundant and are only a sub­

stitute for a dead weight test of the complete system. However, based on 

the calibration infonnation, the ' load cells"al'"Ei sufficiently accurate. 
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/ ..... / / .... 

39.9 912 196 164 277 187 

409 486 1089 

684 635 574 566 738 768 

1520 1102 845 514 326 54 
1150 589 115 

1658 1375 959 519 28 -336 
1498 681 -18 

1960 1456 897 481 -122 -661 
1711 712 · -424 

2590 · 1928 lHO 451 -418 ~1300 

2676 790 · -1194 

3019 2062 731 336 -509 -1829 

'" ~ '" ~ '- ,) 

(). 

Figure 45. o; Stress for Transverse 
Load Condition, Test 20 
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r ...... / .., / 

802 950 526 43 272 585 

166 438 228 

63 175 166 183 76 . 17 

-18 21 30 -97 14 27 
37 70 29 

15 -3 -13 -19 62 -14 
59 -10 '-37 

40 101 -5 57 ~228 -33 
40 19 -242 

8 72 15 -27 -174 -74 

206 -70 -167 · 

234 285 50 -62 -400 -284 

'- ~ '" ~ '- ~ 

0 

Figure 46. Ox Stress for Transverse 
Load Condition, Test 20 
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r .... / r .... 

1145 1601 1525 295 568 827 

582 1078 1194 

577 837 1108 1167 1140 793 

797 1037 1399 1271 1223 807 
835 1213 892 

774 1029 1377 1324 1139 839 
921 1268 1047 

747 1055 1340 1265. 1118 838 
880 1275 984 

614 982 1259 1368 1160 849 

752 1188 1056 

792 988 1085 1104 1075 1150 

"' , \. , \. .). 

Figure 47. Shear Stress for Transverse 
Load Condition, Test 20 
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r ..... / / ..... 

t399 542 137 234 314 218 

488 339 -178 

832 612 405 125 -275 ;.930 

( 
-785 -14731 1541 1051 472 -157 

1121 65 -1119 

1844 1234 505 -275 -1141 -180~ 
1518 112 -1464 

2132 1282 449 -297 -1221 -207L 
1741 75 -1635 

2797 1676 470 -551 ~1554 -257: 

2430 -80 -2425 

3265 1633 249 -781 -1613 -29H 

'-. ) \. ) \. 

0 

Figure 48 • Uy Stress for Shear Load 
Condition, Test 22 
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r " /' r "I 

828 755 30 60 318 609 

108 286 -70 

29 81 38 11 -94 -94 

-19 38 -10 -122 -29 -68 
52 5 0 

25 -5 32 -54 -2 -80 
65 -6 -119 

54 107 49 32 -215 -97 
84 . 52 -513 

59 164 100 51 -159 -113 

243 138 -204 

432 531 294 -35 -445 -550 

'- ~ '- ~ \.. ~ 

Figure 49. <Tx Stresses !or Shear Load 
Condition, Test 22 
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; . ,,. / ~ ..... 

1187 127 539 494 742 1012. 

751 1065 599 

699 935 1080 994 741 394 

1778 1010 1256 1095 920 631 
816 1047 587 

1753 967 1239 1125 865 622 
871 1070 726 

723 994 1170 1083 919 710 
818 1101 791 

677 1029 1143 1132 893 616 

915 981 751 

1078 1118 928 789 709 916 

\. ,) \. ., \. ,) 

0 

Figure 50. Shear Stress for Shear 
Load Condition, Test 22 
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