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CEAPTER I 

INTRODUCTION 

Earth pressure problems encountered in engineering practice 

are concerned with the determination of internal stresses acting on the 

soil masses or the stresses between the soils and the contiguous 

structures. 

The major purpose of this thesis is to deal with a direct solu-

tion of the lateral earth pressure on retaining walls holding either 

cohesionless or cohesive soils. The work will be limited to the case 

of a rigid wall that will undergo only rotation about its toe. 

A historical review of the concepts of earth pressure theory 

will be helpful in bringing up a wider and clearer picture of its present 

state of development; also analyses and comparisons of the advantages 

and disadvantages of the various methods will be facilitated. 

The first classical method in earth pressure theory was pre:

sented by ·Coulomb( 1 )' 1776, who assumed that the lines of rupture 

are straight, and that the shearing resistance: 'T = c + µ u, where µ 

equals the tangent of the apparent angle of friction. 

In 1857, Rankine <2 ) investigated the conditions of equilibrium 

by considering an element from a semi-infinite soil mass which is 

Subjected to uniform deformation in a direction parallel to the surface 

of the mass. Assuming a straight strength line, he was able to form-

ulate the state of failure (plastic equilibrium) for active and passive 

pressures. 

1 

/ 
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Kotter(3 >, in 1892, derived a differential equation expressing 

the stresses along a curved surface of sliding in cohesionless masses. 

But the difficulties encountered in solving this equation under specific 

boundary conditions made its application rather impractical. 

Jaky( 4 ) ( 1936) showed that Kotter 's equation is also valid for 

cohesive soil, whereas Ohde( 5 ) (1938) and Hansen< 6 ) (1953) used 

the equation to determine the distribution of horizontal soil pressure 

on a yielding vertical wall. 

The theory of plasticity was first applied to soil by Prandtl ( 7 ) 

(1920); using Kotter's equation and assuming the soil to be weightless, 

he found the rupture-figure consists of a system of straight lines 

through the apex and a system of logarithmic spirals with the apex 

as their pole. Recently, with the progress accomplished in the field 

of plasticity, many investigators, including Sokolovski( 8 ) (1960), 

Freudenthal( 9 ) (1950), Nadai(lO) (1950), Drucker and Prager(ll) 

(1950-51), have applied the theory of plasticity to earth pressure and 

foundation problems. 

The work mentioned in the preceeding paragraphs was theoretical. 

For experimental studies much credit should be accorded the remark

able work done by Terzaghi <12> (1934, 1936), Tschebotariofi13) 

(1948-51) and Rowe(l4) (1952). 

In the literature of earth pressure theory, the names of many 

other contributors appear, but much of the work was inspired by the 

efforts of those mentioned above, who made important contributions 

in the area of study embraced by this thesis. 



CHAPTER II 

METHODS OF CALCULATING EARTH PRESSURES 

ON RETAINING WALLS 

The different methods used in earth pressure calculations can 

be classified into three major groups: 

1. Extreme method 

2. Theories of plasticity 

3. Empirical. methods 

2-1. Extreme Method 

The extreme method is based on the conditions of static equi

librium of a sliding wedge, with the assumption that the inclined 

boundary of the sliding wedge is straight, or a circular or spiral 

curve. 

In the extreme method, the active pressure is the maximum 

lateral pressure obtained from the many trials investigated for failing 

wedges involving different assumed failure surfaces as the wall yield!=!; 

while the passive pressure is the minimum lateral pressure obtained 

similarly as the wall rotates toward the soil, attempting to displace it. 

It is essential to note that the unknown stresses along the 

failure line do not enter into the mqment equilibrium equation when 

assuming a spiral failure lin.e because the lines of action of these 

stresses pass through the pole of the spiral and thus the number of 

unknowns is reduced to make the determination of lateral pressure 

3 



possible, Rendulic (l5). 

In the case of an infinitely distant pole, the spiral will tend 

to become a straight line; this condition is essentially that considered 

by Coulomb( 1>. 

4 

If the angle of apparent friction, cp, is equal to zero, Fellenius(lB) 

postulated that the failure line will be a circular arc for which the 

instanteneous center is the center of that circle. 

In the case where cp ;;,! 0, Krey{!?) postulated that the failure 

line will be partly a circle and the lines of action of the resultant 

stresses arising from the normal and frictional components and 

acting on this circular failure line, will be tangent to a circle, called 

the friction circle, that has a common center with the circular line 

of failure., and a radius of R sin cp, 

2. 2. Theories of Plasticity 

The principle is based on setting a criterion of failure in 

addition to the two equilibrium equations of a stressed earth element. 

Rankine's (l2) criterion of failure is based on a straight line 

of failure, Prandtl ( 7 ) assumed spiral and straight failure lines. 

Kotter was able to derive from the two equilibrium equations 

and from Coulomb's ( 1) criterion of failure, a general equation 

expressing the variation of the stress at any given point on the failure 

line. The possibility of making use of this equation depends mainly 

on the boundary conditions at the ends of the failure line. 

Jaky( 4 ), Ohde ( 5 ) and Frontard(lB) made use of Kotter 's equation 

in solving some particular problems. 



Drucker and Prager(ll) proposed a special theory of plasticity 

where the actual stresses should fall within a certain interval, the 

limits of which can be determined by means of a stress field called 

a statically admissible stress field and a velocity field (strain rate 

field) called a kinematically admissible velocity field, 

2. 3. Empirical Methods 

These are based on model testing, where the pressure on the 

wall could be measured and the shape of the rupture line could be 

observed under actual loading conditions. Also some charts for the 

calculation of earth pressure were suggested by Peck(20) having a 

partly theoretical, partly empirical basis. 

2. 4. Limitations of Known Methods 

2. 4, 1. Extreme Method 

5 

The error introduced by using Coulomb's method, which 

assumes a straight line of failure, is small when calculating the active 

pressure; but the error becomes large and on the critical side when 

dealing with the passive pressure.* Moreover, Coulomb's method 

does not allow the location of the pressure center nor that of the 

instantaneous center to be determined. 

The method proposed by Fellenius(lB) is based on the assump

tion that the angle of apparent friction is zero and that the line of 

failure is a circle. The instantaneous center of the earth wedge is 

~~K. Terzaghi. Theoretical Soil Mechanics. (New York, 1956) 
p. 107. 
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the center of the circle whereas the center of rotation of the wall is 

assumed to be the projection of the instantaneous center on the plane 

of the wall. This method will allow the location of the pressure center 

but it is limited by the major assumption that cp = 0, and by the fact 

that the pressure distribution cannot be determined. 

Rendulic 's method differs from that of Fellenius in that 

Rendulic considered the case of cp ~ 0 and used a spiral curve for 

the line of failure. Thus, he was able to eliminate the moment of the 

resultant normal stress and frictional component; and the moment 

due to the cohesion along the spiral curve was determined to be: 

M c 
c 2 2 

= 2 tan cp ( r 1 - r O) 

where r 1 and r O are the radial distances from the pole to the two 

extreme points on the spiral. 

The disadvantage of this method is that it does not establish 

any definite relation between the spiral failure line and the center of 

rotation of the wall. Also the pressure distribution on the wall is 

not well determined. 

The three methods described above are trial methods in which 

the active pressure is determined from the maximum point of a curve 

formed by plotting.the. results of all trials, while the passive pressure 

is similarly determined .from the minimum point of the curve derived 

from passive pressure trials. These pr'cicedures are reliable, but·they 

are lengthy and time consuming. 
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2. 4. 2. Theories of Plasticity 

The drawback in the theory of limit analysis presented by 

Drucker, Hodge and Prager(l9) is that the result obtained do~s not agree 

at all vyith the actual pressure. This discrepancy is due to the fact 

that small movement of the earth wedge will cause the shear strains

along the rupture line to be so large that the kinematically admissible 

velocity field condition cannot possibly be satisfied. 

However, the solutions by means of Kotter's equation as 

treated by Prandtl, Jaky( 4 ) and Ohde( 5 ) are exact and valuable for 

certain problems under specific boundary conditions. But in general 

this method is so cumbersome that it is frequently impractical. 

2, 4. 3. Empirical Methods 

These methods are limited. They can be helpful in research, 

but the fact that a labor_atory model should be built for every specific 

case, makes their use costly and impracticable. 

It may be concluded that none of the present methods for the 

determination of earth pressure is perfectly satisfactory. Each has 

its advantages and disadvantages. In practice an engineer will generally 

prefer to use the Coulomb's method, the friction circle method or the 

logarithmic spiral method due to their simplicity. 



CHAPTER III 

NEW METHOD FOR A DIRECT SOLUTION FOR LOCATION 

OF CRITICAL SLIP SURFACES IN IDEAL SAND 

3. 1. General 

In the calculation of active and passive earth pressures, the 

soils engineer has, in the past, adopted a trial and error procedure. 

This has been necessitated by the fact that the location of the critical 

surface of potential failure is not known. Thus, the procedure con

sists of determining the earth pressure associated with various 

assumed failure surfaces and determining from the value so obtained 

the maximum value indicated for the active pressure and the mini

mum value indicated for the passive pressure . 

.. The purpose of this study is to provide simple procedures 

for establishing the most critical surface without resorting to trial 

and error procedures. The methods to be used in accomplishing 

this are theoretical in nature and based on certain simplifying 

assumptions; but the derivations are, in some instances, tempered 

by practical considerations. Once the configuration of the most 

critical surface has been established, the friction circle method 

may be applied in the customary manner to determine the magnitude 

of the active or passive earth pressure. 

8 



3. 2. Basic Assumptions 

The backfill is assumed to be homogeneous and isotropic, 

and the horizontal strain, e:, is assumed to be constant and indepen-

dent of depth in a wedge of soil adjacent to the wall. This will be 

the case when a lateral support yields by tilting about its lower 

edge, allowing the sand to fail in every point of the sliding wedge. 

3. 3. Slip Line for Active Pressure Due to Backfill with Horizontal 

Surface 

In the following investigations the case of a cohesionless. 

backfill with a horizontal surface will be studied .first. An element 

at the bottom of the wall will be considered, and the orientation 

of the failure plane will be determined at that point. From Rankine's 

theory it is known that the slip line makes an angle with the horizontal 

surface of the backfill equal to 45° + ~ in the case of active 

pressure. The stresses acting on a soil element adjacent to the 
a 

bottom of the wall will be as shown in Fig. 3. 1 b, where p A is 

the active stress on that element, 6 is the angle of friction between 

the wall and the soil, and Y is the unit weight of the soil. 

If these stresses are plotted on a Mohr's.circle, the orien-

tation of the angle of failure at the bottom of the wall may be 

readily determined. 

The equation of the line of rupture OM is given by: 

T = er tan c:p ( 3. 1 ) 

9 
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(a) 

Sliding 
Wedge 

45 + cp 
2 

D 

(b) 

Fig. 3. 1 - (a) Slip Line in Cohesionless Backfill Due to Active Case 
of Failure 

(b) Stresses Acting on an Element of Soil at Point B 

The following relations can be easily noted, Fig. 3. 2 : 

while 

OD= PA cos 6 

BD = PA sin 6 

AD = OD tan cp = p A cos 6 tan cp 

OA = ~D = pA cos 6 sec cp smcp 

AB = AD - BD = p A (cos 6 tan cp - sin 6) 

(3. 2) 

(3. 3) 

(3. 4) 

10 
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FIG. 3. 2 

COHESIONLESS SOIL: MOHR'S CIRCL.E SOLUTION FOR ACTJVE 
RESISTANCE AT THE BOTTOM OF THE WALL. 

er 

'PA sin 8 
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since a tangent AG and a secant AC are drawn to the Mohr's circle 

from the same point A, it is known that the tangent is the mean pro-

portional between the whole secant and its external segment. Thus: 

2 
AG = AB x AC 

AC = AD + DC = AD + B D 

= p A (cos o tan cp + sin o) 

Therefore, 

Now, 

and the radius of the circle, O'G, becomes after simplification: 

O'G = OG tan cp 

= PA tan cp sec cp (cos o +Vcos 2 o - cos 2 cp) (3. 6) 

Since point B is the active pole the direction of the slip line at the 

bottom of the wall is given by the slope of line BG. 

Considering triangle O'BE, it can be said that ~ Al' the angle 

of inclination of the failure plane at the bottom of the wall, is equal to: 

~ A 1 = (3 - al (3 0 7) 

12 



But 

and 

a2 
{3 = 90 - -

2 

_ BD 
sin a 1 - O'B = 

(3. 8) 

1/ ~ 2 2 
p A tan cp sec cp (cos 6. + vcos 6 - cos ep) 

Therefore, 

. -1 sin 6 cos cp 
al = sm I/ 2 2 

tan cp (cos 6 +vcos 6 - cos cp) 
(3. 9) 

But 

then 

. -1 sin 6 cos ep 
a 2 = 90 - cp - sm (3. 10) 

tan cp (cos 6 + Vcos ~ 6 - cos icp) 

Substituting a2 from (3. 10) in Eq. (3. 8) and substituting the 

value obtained for {3 into Eq. (3. 7) and solving for W Al: 

,Ir (45. + Cf)/) 1 · -1 Sin O COS Cf) 
'I' A 1 - · · /2 - 2 sm 

tancp(cos 6 +Vcos 2o - cos 2 cp) 
(3. 7a) 

Let: 

1 . -1 sin 6 cos cp 
w = 2 sin ------:.==;;::===~= 

tan .Cf) (cos 6 + Vcos 2 6 - cos 2 cp) 
(3. 11) 

13 
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then 

~Al= (45+~)-w (3. 7b) 

A few important conclusions can be drawn from Eq. (3. 7a): 

1. If the angle of wall friction, 6, is equal to zero, the angle 

~ Al is equal to 45 + :% which means that the slip line is a straight 

line and the Rankine value of the earth pressure becomes identical 

with the Coulomb value. 

2. If 6 j1I 0, then ~Al is less than 45 + ~2 and the slip 

line can no longer be a straight line. It is actually composed of a 

straight portion CD, and a circular portion BC as shown in Fig. 3. la 

3. Referring to the graphs in Fig. It it can be observed that 

the relation between w and 6 is approximately linear for values of 

6 ::;; ~. Beyond that, the relation becomes nonlinear, indicating that 

the rate of change of w increases when 6 increases. Therefore, 

when 6 exceeds about }P , ~ Al begins to decrease rapidly. Terzaghi~Hr 

has called attention to the fact that when 6 gets large the failure sur-

face cannot be approximated by a straight line. If Coulomb's method 

is used to determine the active earth pressure when 6 is large, the 

results will be inaccurate. According to Terzaghi, the results will 

be on the unsafe side and the error may exceed five per

cent. 

4. It can be observed for cohesionless soil that the slope of 

the slip line at the bottom of the wall is independent of the depth of 

~1-
All figures with Roman numerals ~re presented at the end of 

of the thesis. 
~1- ~rK. Terzaghi., Theoretical Soil Mechanics. (New York, 1956) 

p. 107 



the wall. This invariant property will allow the pressure distribution 

on the wall to be accurately determined. 

Method for Constructing the Slip Line 

Referring to Fig. 3. 3, the known properties of the slip line 

are as follows: 

1. The angle that the slip line DC makes with the horizontal 

is equal to 45 + ~, and the conjugate of the slip line, AC, makes 

the same angle with the horizontal. 

2. The portion of the slip line above AC is always straight 

15 

since the zone of plastic equilibrium includes an active Rankine Zone 

whose inclined boundaries rise at an angle of 45° + ~ to the horizontal. 

3. The angle ljrAl' that the slip line makes with the horizontal 

at the bottom of the wall is known irrespective of the height of the wall. 

A 

45 + ~ 

/ 

/ 
/ 

D 

/ 
/ 

--
w -----
45~~ 

M -

Fig. 3. 3 - Method of Constructing the Slip Line for the Case of 

Active Pressure on a Retaining Wall with Cohesionless 

Backfill 



Thus, the problem is to find a slip line that fulfills these 

specific requirements: 

1. The straight portion DC should be tangent to the curve 

BC at point C. 

2. Point C should be on the conjugate of the slip line, where 

AC is a unique line of a constant slope because A is a fixed point. 

3, The curved portion of the slip line will have BM for a 

tangent at point B, where the inclination ljf Al of BM is already 

determined. 

For the curved portion of the slip surface, there will be only 

one circle that satisfies the above conditions. Even though an infinite 

number of circles may be passed through two points, there will be 

only one for which the tangents at B and C, · respectively, have the 

slope angles ljl Al and 45° + ~· 

The location of point C can be determined quite easily from 

the geometry of the problem. 

LDEM = 45 + ~ - ljl Al 

substituting for ljl Al from (3. 7b): 

LDEM = 45 + :e-2 - 45 - ,2 + w - w 

Since EC and EB are tangents to the circle they are equal in length; 

thus, triangle EBC is isosceles and the two angles EBC and ECB 

are equal. 

Then, since 

LCBE = LBCE = ~ ' (3. 12) 

16 
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point C can be located on AC by drawing line BC that makes an 

w angle 2 with the tangent BM. 

The center of the unique circle can be located by finding graph-

ica:lly the point of intersection of the bisector of chord BC and the 

perpendicular to the tangent at point B. 

Mathematically, the value of the radius of the circle can be 

determined from triangle OBC, Fig. 3. 3: 

R = BC 

2 sin; 
(3. 13a) 

But it can be proved that 

BC 
sin {45 - :% ) 

= h------w 
cos (cp - 2> 

Therefore: 

R = 
h sin ( 4 5 - :% ) 
2 I W) . W cos \cp - 2 sm 2 

(3. 13b) 

3. 4. Slip Line for Passive Pressure Due to Backfill with Horizontal 

Surface 

The case of a cohesionless backfill with a horizontal surface 

will be first investigated. From Rankine's theory it is known that 

the slip line makes an angle with the horizontal equal to 45 - :% 
in the case of passive pressure. 

If a soil element adjacent to the bottom of the wall (Fig. 3. 4a) 

is taken, the stresses acting on it are as shown in (Fig. 3, 4b), where 



p is the passive stress and 6 is the positive angle of friction bet
p 

ween the wall and the soil. 

A 

Slip line 

H YH 
p 

Sliding we d.ge 

18 

_L~ pp sin 6 

p cos 6 --- lf! _____ . p cos 6 p . p 

p sino~ 
--''---·- - ___ n..__---·· 

B (a) 
p . LH (b) 

Fig. 3. 4 -- (a.) Slip Line in Cohesfonless Backfill Due to Passive Case 
of Failure 

(b) Stresses Acting on an Element of Soil at Point B 

If the stresses are plotted on a Mohr's circle, as shown in 

(Fig. 3. 5), the orientation of the angle of failure at the bottom of the 

wali may be determined. 

From Equations (3. 9) and (3. 10), it can be noted that a 1 and 

a 2 are independent of the depth z, and they are only dependent on 

c:p and 6. 

Point P is the pole of the circle and thus P F is the tangent 
p p 

to the slip curve at the bottom of the wall, and, indeed, at every point 

along the wall for which z > O. From the geometry of the Mohr's 

circle, it can be stated that: 

Cl.'2 
LCPF=

p 2 

whereas L.c P D = o. 
p 



T 

YH 
p cos 6 

·---······-··------"-p ___________ _ 

Fig. 3. 5 - Cohesionless Soil: Mohr's Circle Solution for Passive 

Resistance at the Bottom of the Wall 

Therefore, 
a,2 

1V = - - 6 p 2 

Substituting for a 2 from Equation (3. 10), it follows that 

19 

p sin 6 
p 

(3. 14) 

where 1V is the inclination of the tangent to the slip line at the 
p 

bottom of the wall for the state of passive pressure, and w is the 

angle obtained from Eq. (3. 11). From Eq. (3. 14), it may be observed 



that 1jl can have either a positive value (i.e. the slip line is above 
p 

the horizontal) when 45 - ' > 6 + w·, or a negative value (i.e .• the 

slip line at the bottom of the wall swings below the horizontal) when 

45 - , 2 < 6 + W, 

When 45 - ~ = 6 + w, 1jlp = 0, and the slip line has a zero 

slope at the bottom of the wall. If 1jlp' equation (3. 14), is plotted 

versus 6. for every cp, as in .Fig. III,. it may be seen that the curve 

·is a straight line when 6 is less than about % and then the curve 

· becomes nonlinear. This may explain why Coulomb's method in the 

case of passive pressure yields result having increasingly excessive 

error on the critical side, when 6 is larger than \. According to 

Terzaghi, the percentage of error may become as great as thirty 

percent. 

Method for Constructing the Slip Line 

The general procedure used in Article 3. 3. 1 for the state of 

active pressure will be followed, except that 1jl replaces 1j,A , 
p 1 

and the inclination of the slip line with the horizontal surface is 

45° - ~- Figures 3. 6, 3, 7 and 3. 8 illustrate the procedure. 

Case 1 · 1jlp Positive 

L MED = 45 - ~ - "'p = 6 + w 

Therefore: 

L EBC = ~ (6 + ·w) 

Angle 1jl can be obtained from Fig. III and point C can be located on 
p 

AN by measuring from BM an angle equal to { (6 + w ). 

20 
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0 

Fig. 3. 6 - Method of Constructing the Slip Line for the Case of Passive 

Pressure on a Retaining Wall with Cohesionless Horizontal 

Backfill, Where 1jT Is Positive 
p 

The radius of the circular curve is 

R = BC 
2 . (c5 + w) sm·~ 

(3.15) 



22 

0 

--M 

1.(45 - ~) 2 2 

Fig. 3. 7 - Method of Constructing the Slip Line for the Case of Passive 

Pressure on a Retaining Wall with Cohesionless Horizontal 

Backfill, Where $. = 0 
p 

Case 2: \\! Equal to Zero 
p 

R = BC 
2 sin ~ (45 - '2) (3. 16) 



~' 

'(45 -~ + ,i,p 

--M 

45-~ 

~ ----N 

23 

D 

Fig. 3. 8 - Method of Constructing the Slip Line for the Case of Passive 

Pressure on a Retaining Wall with Cohesionless Horizontal 

Backfill, Where ~ Is Negative 
p 

Case 3: ~ Negative 
p 

L CEN = 45 - '% + ~p 

= c 9 o - cp) - (o + w) 

Therefore: 

L 1L .rn 1 CBE = 2 CEN = (45 - ~) - 2 (o + w) 

The radius of the circular curve is 

BC R = ----=--__;;.;._;;. _____ ~ 

[(45 - ~) - ~ (o +w)] 2 sin 

(See Fig. 3. 8) 

(3. 17 



3. 5. Slip Lines in Semi-Infinite Inclined Cohesionless Masses 

To investigate the Rankine states in an inclined semi-infinite 

cohesionless mass where f3 < cp, the conditions for equilibrium of 

the prismatic element shown in Fig. 3. 9a should be examined. 

The total vertical force acting on the base of the element is 

equal to Yz cos f3 and its normal and tangential stress components 

are respectively equal to Yz cos 2 f3 and yz sin f3 cos {3. 

24 

In Mohr's diagram (Fig. 3. 9b), the lines OM and OM' repre-

sent the lines of rupture, The state of stress on the base of the element 

at a depth z below the surface is represented by the point C where 

OB = yz cos 2 {3 and CB = yz sin {3 cos {3, then line OC will make 

with the horizontal axis an angle equal to {3. 

There are only two circles that can pass through C and be 

tangent to the rupture lines. 

The circle with center o 1 will represent the state of stress 

at the instant of active failure, while the circle with center o2 will 

represent the state of stress at the instant of passive failure. 

Point PA will be the active pole, while Pp will be the passive 

one. 

For the active case the surfaces of shear will be parallel to 

PAE and PA G, while for the passive case they will be parallel to 

P F and PH. 
p p 

The analytical solutions which follow yield expressions for 

A A P P the angles a, 1• a, 2, a, 1 and a, 2• between the slope surface and the 

slip surfaces, independently of z. 



rz. sin /3cosf3 (j 

0 Oz 

Yi cos2 f3 

{ b) 

FIG. 3. 9 
SEMI-IN Fl NITE COHESIONLESS MASS WITH INCLINED SURFACE. (a) STRESSES AT 
BOUNDARIES OF PRISMATIC ELEMENT. (b) GRAPHIC REPRESENTATION OF STATE OF 
STRESS AT FAILURE. . tv 

C)l 



The lines AE and AF are tangent, respectively, to circle 

o1 and o2, and they are equal, since each is equal to VAc x AD. 

AC = yz cos f3 (cos f3 tan cp - sin /3) 

AD = yz cos f3 (cos f3 tan cp + sin /3) 

. Therefore, 

AE = AF = ~yz cos {3)2 (cos 2 f3 tan2 cp - sirt2 {3) 

26 

= Yz cos 2 f3 Vtart2 cp - tan2 f3 (3. 18) 

But: 

2 
OA = Yz cos f3 

cos cp 

Then, OE = OA - AE 

and 

= yz cos 2 f3 - yz cos 2 f3 Vtan2cp - tan2 f3 
cos cp 

= yz cos 2 f3 [sec cp - Vtan2 cp - tan2 f3 ] (3. 19) 

o 1 E = OE tan cp = yz cos 2 f3 tan cp [ sec cp - Vtart2 cp - tart2 f3] 



27 

LetLBo1 C = v, it follows from triangles o 1CB and OE01 that: 

\! = sin-1 Yz sin f3 cos f3 
yz cos 2 {3 tan cr[sec cp - Vtan2 cp - tan2 {3 J 

. -1 tan~ = Sln -

tan cp [ sec cp - Vtan2cp--tan2 {3 J (3. 20) 

andLEol B = 90 + cp 

Therefore: 

a1 = ~ (90 + cp - sin- l tanj3 
tan cp [sec cp - v'tan2 cp - tan2 f3] 

"A = ( 45 + cpl - .! sin-1 [ tan ~ 
1 2 2 tan cp sec cp - Vtan2 cp - tan2 {3] (3.21a) 

But: 

Therefore: 

a2-45+2+2sm 2 2 
A _ cp 1 . - 1 tan V 

tan er[ sec cp - ~an cp - tari ;} 
(3. 22a) 

since both a1 and a1 are independent of z, it is obvious that CF 

makes with OP p an angle equal to a1. Therefore, it is easy to pro

ceed to consideration of the passive case. 

L p 
OFC = )... = a 1 
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because in the same circle, if inscribed angles have the same arc, 

they are equal. Also, 

A 11.=a +{3-cp 
1 

Therefore: 

ap = ( 45 - cp) + f3 - l sin- 1 tan (3 
1 2 2 tan cp[sec cp - Vtan2 cp - tan2 f3] 

(3.23a) 

and 

a~ = (45 - !) - (3 1 . - 1 tan f3 
+ 2 sm [ ii 2 2 J tan cp sec cp - vtan cp - tan (3 

(3. 24a) 

Referring to Fig. 3. 9b it may be seen that the angle iv 1 

that PAE makes with the horizontal is constant, being independent 

of the location of PA on line OC. By reasoning identical to that 

which led to the expression in Eq. (3. 7b)}, except that f3 replaces 6, 

it is found that 

,lrl = (45 + cp) - l . -1 sin {3 cos cp 
'!' 2 2 sm ,/ 2 2 

tan cp (cos f3 + vcos f3 - cos cp) 
(3. 25) 

Referring to triangle OP AK, iv 1 is an external angle, and 

thus it is equal to the sum of non-adjacent internal angles 

A 
a =iv -{3 

1 1 (3.21b) 

(3. 22b) 
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Equation (3. 23a) may be written in the following form: 

P + cp _ (45 + cp) 1 . -1 tan f3 (3 cp 
Q! 1 2 - 2 - 2 sm [ 11 "2 2 J + - 2 

tan cp sec cp- vtan cp - tan (3 

in which the first three terms on the right side represent the expression 

for ~ as shown in expression (3. 2la). 

Therefore: 

A and substituting for a 1 from (3. 2 lb) 

Q'pl = \JI - (3 + (3 - cp = \JI - cp 
1 1 (3. 23b) 

Also, from Fig. 3. 9b 

p p 
a 2 = 90 - cp - a 1 , 

from which (using Eq. 3. 23b) 

a~ = 90 - cp - \JI 1 + cp = 90 - \JI 1 (3. 24b) 

Studying Fig. N to .VII, one can observe that the angles of 

failure are linearly related to (3 up to about (3 = ~, whereas beyond 

that limit the relation becomes nonlinear. 

3. 5. 1. Application to the Slip Lines for.~Ba.ckfills Behind Retainin,g_Walls 

in the Active Case 



The procedure used previously will be followed, with only two 

modifications: 

(1) The angle that the slip line makes with the sloping surface 

of the backfill should be equal to a~ which can be obtained from 

Fig. IV. 

(2) The angle that the conjugate of the slip line makes with 

the sloping surface should be equal to a1 which can be obtained from 

Fig. V. 

The procedure used to plot the slip line is illustrated in 

Fig. 3.10. 

0 
\' 
\ 
\ 
I 
\ 
I 

S' I 
/}~~ I . 

/ M ·------
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Fig. 3. 10 - Meth~d of Constructing the -Slip Line for the Case of Active 

Pressure on a Retaining Wall with Cohesionless Sloping 

Backfill 
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LF'E'M = ClA + (3 - w 1 Al 

Through point E' draw the bisector E'S', and then through B draw 

BS parallel to E'S'. The point of intersection of BS with AN is 

C which is located at the juncture of the straight portion of the slip 

line with the circular curved portion. 

R = BC 

2 sin ~ [ a~ + (3 - W Al] 
(3. 26) 

3. 5. 2. Application to the Slip Lines For BackfilLBehind :Retaiging .Walls 

in the Passive Case 

In Article 3, 5, expressions for a~ (3. 24a, b) and its conjugate 

a~ (3.23a, b) were developed. These above angles can be obtained 

respectively from Fig. VI*and VIV~ 

The procedure for drawing the slip line is similar to that dis-

cussed for the case of a horizontal backfill surface. Since Wp may 

be either positive, zero, or negative, the expression for R varies 

accordingly as follows: 

R = BC 

2 sin ~ (a~ + (3 - Wp) 
when Wp > 0 (3. 27a) 

R = BC 
2 sin ~ (a!+ {3) 

when Wp = 0 (3. 27b) 

R = 1 [ p . 
2 sin 2 a 2 + f3 + 

BC 
when Wp < 0 (3. 27c) 

-t~ All figures in Roman numerals· are presented at the end of 
the thesis. 
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0 

F' 

Fig. 3. 11 - Method of Constructing the Slip Line for the Case of Passive 

Pressure on a Retaining ·Wall with Cohesionless Sloping 

Backfill 



CHAPTER IV 

NEW METHOD FOR A DIRECT SOLUTION FOR LOCATION OF 

CRITICAL SLIP SURFACES IN COHESIVE SOILS 

4. 1. Basic Assumptions 

The cohesive backfill is assumed to be homogeneous and iso-

tropic, and the horizontal strain, €, is assumed to be constant and 

independent of depth in a wedge of soil adjacent to the wall. This will 

be the case when a lateral support y,ields by tilting about its lower 

edge, allowing the clay to fail in every point of the sliding wedge. 

Also, it is assumed that the adhesion between the back of the wall and 

the soil is equal to the cohesion of clay. In case the cohesion is 

larger than 1000 psf, it would be reasonable to limit the adhesion to 

1000 psf, as suggested by the British Civil Engineering Code of 

Practice No. 2; this could be explained as a result of less intimate 

adhesion between the wall and the clay as the clay gets stiffer. Also, 
,j~ 

according to Terzaghi , in the case of active pressure, the maximum 

stable height of an unsupported vertical bank which has been weakened 

by tension cracks is 2. 67 ~ tan (45 + ~ ). 

4. 2. Slip Line for Active Pressure Due to Backfill with Horizontal 

Surface 

A soil element taken at the bottom of the wall is considered to 

,j~ 

K. Terzaghi. Theoretical Soil Mechanics. (New York, 1956), 
p. 154. 
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be in equilibrium, see Fig. 4, la, b, and the stresses are plotted on 

a Mohr's circle diagram as shown in Fig. 4. 2. The orientation of the 

failure surface at the bottom of the wall will be determined mathe-

matically, but in practical problems a graphical solution is recom-

mended for reasons that will be mentioned later. 

c is the adhesion between the clay and the back of the wall a 

and it is equal to c, PA is the active stress, and 6 is the angle of 

friction between the wall and the soil. 

B 

The equation of the line of rupture MN is given by: 

'T = c + <J tan c:p 

The following relations can be easily noted: 

ED= PA sin 6 

crack 

(a) 

Yh 

Yh 

(b) 

( 4. 1) 

Fig. 4. 1 - (a) Slip Line in Cohesive Backfill Due to Active Case of 
Failure 

(b) Stresses Acting on an Element of Soil at Point B 
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:,/. 

c/tan c:p 

Yh 

Fig. 4. 2 - Cohesiv.e Soil: Mohr's Circle Solution for Active Resistance 

at the Bottom of the Wall 

EB= c 

Therefore: 

BD = c + PA sin o 

AD = (ta~ c:p t p A cos o} tan c:p 
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whereas: 

AB= AD - BD 

= PA (cos 6 tan cp - sin 6) 

and 

If a tangent and a secant are drawn to a circle from the same point, 

the tangent is the mean proportional between the whole secant and its 

external segment. Thus: 

2 AG = AB x AC 

where 

AC = c + p A cos 6 tan cp + c + p A sin .6 

= 2 c + p A (cos 6 tan cp + sin 6) 

Then 

AG = 2 p A c(cos 6 tan cp - sin 6) + p·l (cos 2 6 tan2 cp - sin2 6) 

After simplifying: 

2 . 2 2 2 
AG = sec cp pA c(sin 2cp cos 6 - 2 cos cp sm 6) + pA (cos 6 - cos cp) 

(4. 2) 



MG= MA +AG 

_ c cos 6 
- sm cp + PA cos cp 
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1 ,; 2 . 2 2 2 
+ cos cp PA c' (sin 2cp cos 6 - 2 cos cp sm 6) + PA (cos 6 - cos cp) 

(4. 3) 

Let 

B= 
2 2 2 2 PA c(sin 2cp cos 6 - 2 cos cp sin 6)+ PA, (cos 6 - cos cp) 

. Then: 

O'G = MG tan cp 

= c + ,.. cos 6 sin cp + sin cp B 
cos cp PA 2 2 . 

BD 
sin a 1 - O'B 

cos cp cos cp 

(c + ~13\. sin 6) cos 2 cp 
=-,,,,. ......... ~---,....,,..,,....._....,,..,___,,,.._-,----...,......,...-...-~ 

1c' cos cp + PA cos 6 sin cp + B sin cp 

Therefore: 

. _ 1 (1c' + ~PA sin 6) cos 2 cp 
a = Sln _,,........,,..,....,,..,~,..........,......~---,.....--..--~~..-......---=-

l c cos cp + PA cos 6 sm cp + B sin cp · 

From Fig. 4. 2 it is observed that: 

90+cp=2\jrA+a1 

(4. 4a) 

(4. 5) 

(4. 6a) 



Therefore: 

~ = 45 + ~ - 21 P'l A . 2 ( 4. 7) 

But 

O 'M = _c 1 ( i:: + h) MG tan cp + 2 PA cos u y = cos cp 

Substituting for MG from Equation(4. ~: 

c 1 .. c + cos o 
tancp + 2 ( PA cos O + yh) = sincp cos cp 2 PA 

cos cp 

1 
+--2-

cos cp 
pA c (sin 2cp cos o - 2 cos 2 cp sin 6) + pi(cos 2 o - cos 2 cp) 

Rearrange terms, and write the above equation in the following form: 

2 
2 [cos o . 2 . 2 2 J PA 4 (3 + sm cp)(l - sm cp) - cos cp 

38 

+ pA c [sin (2cp - o) - sin o - cos~ sin 2cp (1 +sin2 cp) +;~cos o(l - sin4 cr>] 

- [~h cos 2 cp - ~ sin 2cp ]
2 = 0 (4. 8a) 

Denoting: 

a = co42 0 (3 + sin2 cp)(l - siJ cp) - cos2 cp 

( 4. 9a) 

d = ( Y2h cos 2 cp - ~ sin 2cp>2 
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Equation(4. 8a)may be presented in the following form: 

2 
a PA + cb pA - d = 0 

Solving for PA: 

-cb + ~(cb)2 + 4ad 
PA = 2a (4. lOa) 

For physical reasons the positive root should be used. Therefore: 

-cb + Vi(cb)2 + 4 ad 
PA = ia (4. lOb) 

pA calculated from (4. lOb) may be substituted in Equation 4. 6a 

to determine a 1 . Then the problem of getting ~ A can be easily 

handled by Equation (4. 7). 

Equations (4. 9a) may be expanded in series form; neglecting 

terms of the third power and above since in cohesive soils, the angles 

0 
cp and 6 are small, usually less than 30 • Thus: 

1 2 2 
a = 4 (2cp - 36 - 1) 

b = cp - 26 + Yh 
2c 

Also, Equation (4. 4a)may be expanded in series form: 

( 4. 9b) 

(4. 4b) 
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Then, from (4. 6a). a1 can be written in the following form: 

al 

2 
. _ l ( c + PA 6 )( 1 - cp ) 

= sin 2 

c ( 1 - ;-) + ( PA + B )cp 

( 4. 6b) 

Note that cp and 6 should be expressed in radians. 

It is apparent that the numerical calculation for $ A are tedious 

and cumbersome, but with the use of the computer a solution may be 

obtained quite easily. Another mathematical solution for VA is pre

sented in the Appendix. 

A graphical solution for $ A will be discussed, as a background 

for the method followed to tabulate values of $ A" The problem encoun

tered is that, starting from the stresses acting on the particle shown 

in Fig. 4. lb, the equivalent Mohr's circle cannot be drawn directly 

to satisfy the failure conditions. This is due to the fact that pA is 

unknown. The stress Yh is known, and it can be located on the hori-

zontal axis, while c + pA sin 6 .is unknown but mwst correspond to 

the ordinate at the intersection of Mohr's circle and line QS which 

makes an angle 6 with the horizontal, see Fig. 4. 2. Point L, which 

represents the state of stress on the horizontal faces of the particle, 

Fig. 4. lb, is antisymmetrical to point C, which represents the state 

of stress on the vertical faces of the particle. Point B, which is the 

image of points L and C, is the active pole and has to be simultaneously 

on the Mohr's circle and on line QS. 

There will be an infinite number of Mohr's circles that satisfy 

the following conditions: 

(a) Their centers are located on the horizontal er-axis. 



(b) They are all tangent to the rupture lines. 

(c) Point J falls within the circles. 

From all of these circles there is one and only one Mohr's 

circle satisfying the above conditions which also fulfills the condition 

that point B is the image of point L. Point B, as previously stated, 

has to lie on the line QS. 

However, in spite of the fact that there exists a unique Mohr's 

circle that represents the state of failure for the known stress Y h, 

this circle cannot be readily drawn. 

A general method will be presented to illustrate the construc

tion of the circle for any value of Y h. 

Through point M, Fig. 4. 3, draw the two .rupture lines MN 

and MN' making angle cp with the horizontal, and draw three circles 

far apart and tangent to the rupture lines. The center of the smallest 

of the three circles should be chosen such that this circle does not 

..intersect the T-axis. The reason of this condition will be clarified in 

the Appendix,. Through point A (where OA = c.) draw line AD such 

that it makes angle 6 with the horizontal; this line cuts the three 

circles respectively at B, C and D. The respective images of these 

three points on the circles will be point E, F and G. 
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The line joining E, F and G is extremely close to a straight 

line. An analytical proof with a numerical illustration a,re presented in 

the Appendix. This locus of the images of the points of intersection 

of the 6-line with the Mohr's circles revia.tes negligibly from a straight 

line when it gets very close to the T-axis. 
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If, for given soil properties, the rupture lines MN and MN', 

and the line AS, are drawn as shown in Fig. 4. 4, it will be enough 

to draw two circles far apart, tangent to the rupture lines. On these 

two cir_cles locate the images of B and C, which are points D and 

E. The line connecting D to E is the locus of all the images of Yz 

on the corresponding circles. 

Let a certain stress Yz be given, locate that value on the 

horizontal axis, e. g. , point F. Then the vertical projection of F on 

line DE will be point F' and the horizontal projection of F' on line 

AS is point G. 

Now, the unique Mohr's circle that passes through G and F' 

and is tangent to the rupture line may be drawn. This circle is con-

structed by extending the bisector of line GF' until it intersects the 
~ 

horizontal axis at point 0'. Point 0' will be the center of the 

required circle whose radius is O'G. The angle 1jr A that the tangent 

to the slip line makes at the bottom of the wall in the active case can 

be measured directly from the sketch, as shown. 

Referring to Fig. VIII to XII, it may be observed that 1jr A is 

affected directly by the height of the wall and the adhesion of clay. 

The effect of these two variables becomes negligible if the height of 

the wall exceeds about twenty-five feet. Also, in the case of large 6 

the 1jr A -curve becomes quite flat and the rate of change of 1jr A with 

respect to the height becomes almost zero. 

Once 1jr A is obtained from the graph, the method of plotting 

the slip line is as explained previously in section 3. 3, except that the 

slip line should start from the bottom of the tension crack, see 

Section 5. 4. 2. 
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4. 3. Slip Line for Passive Pressure Due to Backfill with Horizontal 

Surface 

A mathematical derivation for iJ!p, where iJ!p is the inclina

tion of the failure surfaces adjacent to the wall for the passive condi-

tion, can be accomplished in a manner similar to that used for the 

active case. However, the resulting expression is so complex that 

it is of no practical use; and a graphical solution for the problem may 

be made as simply as for the active case. 
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To get the angle of failure at the bottom of a retaining wall sub-

jected to passive pressure, an element of soil adjacent to point B can 

be isolated. The stresses acting on the element are shown in Fig. 4.5b. 

A Mohr's circle representing the state of stress cannot be 

drawn directlybecause p is unknown. 
p 

p 
h p 

Sliding wedge 

B 
(a} 

However, the problem may 

Yh 

(b) 

Fig. 4. 5 - (a} Slip Line in Cohesive Backfill Due to Passive Case 
of Failure; 

(b} Stresses Acting on an Element of Soil at Point B. 
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Fig. 4. 6 - . Cohesive Soil: Mohr's Circle Solution for Passive 

Resistance at the Bottom of the Wall 

be solved in a manner similar to that used for the active pressure. 

Let MN and MN' be the rupture lines and let AS. be the 

line on which the shearing stress c + p sin 6 falls, see Fig. 4. 6. a p 

The line AS has an inclination 6 with the horizontal. The point on 

the horizontal axis representing Yh has to fall within the respective 

Mohr's circle. There exists an infinite number of Mohr's circles. 

that satisfy the following conditions: 

(a) Their centers are located on the horizontal cr-axis. 

(b) . They are all tangent to the rupture lines. 

(c) Point D falls within these circles. 

CJ 
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But there will be one and only one Mohr's circle that satisfies, in 

addition to the above conditions, the property that the projection 

of D on the Mohr's circle, that is D', is the image of B' with res-

pect to a vertical passing through the center of the circle. Point B ', 

the reflection of point B, is located on line A'S'. This additional 

requirement is necessitated by the fact that equal shearing stresses 

must act on the vertical and horizontal planes, corresponding to D' 

and B. 

Though the Mohr's circle for a specific state of stress is unique, 

its analytical ,construction is difficult. Therefore, a graphical method 
,. 

similar to the one described for the active case will be developed. 

Through point M, Fig. 4. 7, the two rupture lines MN and 

MN' are drawn making angle cp with the horizontal. Then two widely 

spaced arbitrary circles (i.e. circles o 2 and 0 3) are drawn tangent 

to MN and MN'. The smallest of the two, circle 0 3, should be 

drawn such that it does not intersect the 7-axis. It can be found, as 

shown in the Appendix, that if, through the points of intersection of 

the 6-line and the right side of the Mohr's circles, horizontal lines 

are drawn to intersect the left side of these circles, the line joining 

these left points is very closely a straight line. In the. Appendix, an 

illustration for: the _deviation of the locus from a straight line is shown 

near the T-.axis. Since in the passive case, any Mohr's circle repre-

senting the state of stresses at ·the toe of a ·medium wall, does 

not intersect the 7-axis,. the assumption of a straight line locus, as 

explained above, will hold then without any noticeable error. Thus, 

line ED, Fig. 4. 7, is the locus of points representing the state of 
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stress on the horizontal faces of particles at every depth. 

If a wall having a heigl].t h is subjected to the passive pressure 

of the earth, the Mohr's circle representing the failure condition can 

be drawn in the following manner: Point F lies at a distance Y h 
' 

from the origin 0. Through F a perpendicular is drawn to ,intersect 

ED at F';. then, a horizontal through F' is drawn to meet A I S' at 

Pp which is the passive pole of the Mohr's circle. The bisector of 

F'Pp intersects the a-axis at o 1 which is the center of the required 

Mohr's circle. 

The angle that the tangent to the slip line makes with the hori

zontal at the base of the wall is equal to Wp• shown in Fig. 4. 7. 

The dependency of 1jl P upon certain variables is shown in 

Fig~. XIII to XVII. It may be seen that 1jl p decreases when 6 

.increases. Also Wp increases with increasing height of the wall; 

but the rate of increase becomes negligible when the depth exceeds 

about 20 ft. It is also worthy of note that 1jl p decreases when the 

cohesion of the. soil increases. 

4. 4. Slip Lines in Semi-Infinite Inclined Cohesive Masses 

Fig. 4. 8 illustrates the graphical method of determining the 

state of stress in a cohesive inclined mass on the verge of active 

failure. Let f3 be the inclination of the surface of the cohesive mass 

with respect to the horizontal. As a practical measure, this study 

will be limited to the case of f3 s: c:p. 

An element of depth z is isolated as shown in Fig. 4. 8a. All 

the points on the Mohr's circles which represent the states of stress 

on sections parallel to the surface at ev~ry depth z are located on 
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line OS which rises at an angle f3 to the horizontal axis. 

There exists a case for which the active pressure is zero, 

corresponding to z 0 = ~C tan (45 + ~). (for explanation refer to 
i} 

Terzaghi ). For depths less than z0 , the active Rankine state 

requires the existence of tensile stresses on the vertical plane, 

whereas for depths greater than z 0 , the principal stresses are com

pressive. 

The active pole PA is located along OS, and the lines of 

failure PA B and PAD make, 

with the surface of the slope. 

A A respectively, the angles a 1 and a 2 
A A 

The angles a 1 and a 2 vary with 

respect to z, as illustrated in Fig. 4. 9. 

However, in the Rankine zone the curvature of the slip lines, 

as well as their conjugates, is slight; and there appears to be little 

practical value in obtaining their exact configuration, in so far as 

applications to retaining wall problems are concerned. The negligible 

effect of the curvature is illustrated in Fig. 4. 1 O. To facilitate solu-

tion, the slip lines in the active Rankine zone, OAGED, are approxi-

mated by a set of chords. 

It was found that the change in slope of the slip line becomes 

especially slight when z exceeds about 20 feet. Hence, it can be 

assumed that since the total change in slope is small, no significant 

error is introduced by replacing the curved line by an equivalent 

straight line to facilitate the handling of the problem. 

i~ 
Karl Terzaghi. Theoretical Soil Mechanics. (New York, 

1956), p. 38. 
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(a) yz cos {3 sin {3 

(b) 

Fig. 4. 8 - (a) Stresses at Boundaries of Prismatic Element 
(b) Graphic Representation of Active State of Stress 

at Failure 

------
Fig. 4, 9 - Shear Pattern for Active State in a Sloping 

Semi-Infinite Cohesive Mass 
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The remaining part of the technique for drawing the final slip 

line follows the procedure explained previously for retaining walls 

with horizontal backfill. 

To illustrate the reasonableness of using a: linear approximation 

for a portion of the curved slip surface, a retaining wall 20 feet in 

height is considered, having a backfill of clay that has the following 

properties: cp = 15°, 6 = 10°, f3 = 10°, c = 300 lb/ft2 and Y = 110 lb/ft3. 

* The depth of the crack, as suggested by Terzaghi , is taken as 

H ~ = 2 . 6 7 x ~ tan ( 4 5 + ~) . 

Thus, 

H~ = 2. 67 x i~~ x tan (45 + 7. 5) = 9. 5' 

The inclination of the slip line and its conjugate will be determined 

graphically at z = 9. 5 ft. and z = 15 ft., as shown in Fig. 4. 10. 

2 2 
a = Yz cos f3 = 110 x 9. 5 x (0. 985) n 

= 1010 lb/ft2 

a = Yz cos 2 f3 = 110 x 15 x (0. 985? n 

= 1596 lb/ft2 

at z = 9. 5' 

at z = 15' 

From Fig. X, it is found that the slope of the slip line at the toe of the 

0 . 
wall is w A = 31. 2 • whereas the slope of the line at depths of 9. 5' 

~~ 

K. Terzaghi. Theoretical Soil Mechanics. (New York, 1956). 
p. 97 and 154. 



THE FOLLOWING VALUES OF THE SLOPES OF THE SLI.P LINE ANO ITS CON-. 
JUGATE AT DEPTHS 9.5' AND 15' ARE MEASURED OFF FIG. 4.IOa.. 

A' 
41° 

A' 
64° tJc, = IX2 = 

A" 
38.5° 

A" 
66.5° a, = a2 = 

---
---·· 

( b) 
DIRECTION OF THE AVERAGE SLOPE 

FIG. 4.10 

(a.) GRAPHICAL DETERMINATION OF THE SLOPE OF THE SLIP LI NE AT 
POINTS D AND E; (b) METHOD OF CONSTRUCTING THE SLIP LINE FOR 
THE CASE OF ACTIVE PRESSURE ON A RETAINING WALL WITH COHESIVE. 
SLOPING BACKFILL. 
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and 15' may be obtained graphically. as is illustrated in Fig. 4. lOa. 

Fig. 4. 1 Ob illustrates that the real curved slip line may be 

rather closely approximated in the Rankine zone by means of a straight 

line. Line OS' is parallel to AS which has the mean slope of OA 

and AB. Also. line S 'D is parallel to E 'M', where the latter has 

the mean slope of E 'D' and E 'F'. 

For the state of passive pressure, an approach similar to that 

used for the active case will be followed, with required differences 

being noted. 

The Mohr's circle for the state of passive stress at depth z 

is shown in Fig. 4. 1 lb. It is apparent that all the points which repre-

sent stresses on sections parallel to the surface are located on line 

OS which rises at an angle f3 to the horizontal axis. The stresses 

acting on the vertical faces must be larger than those acting on the 

inclined faces of the element. 

The passive pole, P , is located on OS. and the lines of 
p 

p p 
failure P PD and PPB make. respectively, the angles a 1 and a 2 

with OS. These two angles vary with respect to z as shown in 

Fig. 4. 12. 

From the preceding discussion. it may be concluded that in 

the case of a retaining wall problem that portio:tr of the slip:Jine and 

its conjugate which defines the passive Rankine zone will be slightly 

curved, as is indicated in Fig. 4. 12. An approximation similar to the 

one used in the active case will be presented in order to simplify the 

calculation of the passive pressure acting on a retaining wall with a 

sloping cohesive backfill. 
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Yz cos /3 

(a) 
T 

(b) 

Fig. 4. 11 - Semi-Infinite Cohesive Mass with .Inclined Surface 

(a) Stresses at Boundaries of Prismatic Element 
(b) Graphic Representation of Passive State of Stress 

at Failure 

Fig. 4. 12 - Shear Pattern for Passive State in a Sloping Semi

Infinite Cohesive Mass 
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Because of the complexity of the mathematical solutions of the 

equations of these curves. the rise of the curve with respect to the 

' inclined surface will be determined graphically at different depths. 

then the curved slip line will be replaced by broken segments as 

shown in Fig. 4. 13b. This procedure illustrates that the curvature in 

the Rankine zone is very small. Therefore, the curve represented 

by the broken segments may be replaced by a straight line without 

introducing too much error. 

The technique for drawing the curved portion of the slip line 

is the same as that explained previously for retaining walls subjected 

to the passive pressure of backfill having a horizontal surface. 

To illustrate the method a retaining wall 2 0 feet high is con

sidered, with a backfill of clay that has the following properties: 

0 0 0 2 3 
cp = 25 • 6 = 10 • f3 = 10 ,c '.:"= 300lb/ft • y = 110 lb/ft . 

The inclination of the slip line and its conjugate will be deter-

mined graphically at: 

in Fig. 4. 13. 

2 
crnO = Yz 0 cos f3 = O 

z = 0 • 
0 

z 1 = 10' • and z 2 = 15' •. as shown 

W = 12. 4° from Fig. XVII 
p 

O"nl = Yz 1 cos 2 f3 = 110 x 10 x cos 2 10 = 1065 lb/ft2 . 

2 2 
crn2 = Yz 2 cos f3 = 110 x 15 x cos 15 = 1600 lb/ft2 

It can be seen in Fig. 4. 13b that the approximate slip line is 

very close to the real one; and because of the advantage of the simple 
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calculations involved in working with straight surfaces, the approximate 

representation is recommended. 
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THE FOLLOWING VALUES OF THE SLOPES OF THE SLIP LINE ANO ITS 
CONJUGATE AT DEPTHS 01

, 10 1 AND 15' ARE MEASURED OFF FIG. 4.130. 

@) i! = Q o,f = 32.5° OLr = 32.5° 
I P' P' 

@ l = 10 °'1 = 37.0° (X.2 = 28.2° 

@ Z "151 P" °', = 37. 75° 

FIG. 4. I 3b 

P'' 
°'2 = 27.75° 

/ _,k-APPROXIMATE 
/ . SLIP LINE PARA-

.' LLEL TO A'C' 

'./" -------,_. 

METHOD OF CONSTRUCTING THE SLIP LINE FOR THE CASE OF 
PASSIVE PRESSURE ON A RETAINING WALL WITH COHESIVE SLOPING 
BACKFILL. 
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CHAPTER V 

NUMERICAL EXAMPLES 

5. 1. Problem No. 1 - Calculation of Active Earth Pressure 

Exerted b;y a Cohesionless Levelled Backfill on Retaining Walls 

Given: wall height = 16' 

horizontal backfill surface 

soil properties: 

y = 110 lb/ft3 

cp = 35 
0 

angle of wall friction 

6 = 26° 

5. 1. 1. Coulomb's Method 

where a is the angle that the wall makes with the horizontal (in 

this problem a= 90°) and K1 is a coefficient obtained from graphs, 

and H is the height of the wall. 

"~ Karl Ter.zaghi. Theoretical Soil Mechanics. (New York, 
1956), p. 80, formula (la) and (lb). 
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Thus: 

1 2 o. 2 2 
PA = 2 x O. 11 x (16) x O. 899 = 3. 45 k/ 1. ft. 

5. 1. 2. Slip Line Method 

To be able to draw the slip line, it will be necessary to obtain 

w ,Ir o o and "'Al for cp = 35 and 6 = 26 • 

From Fig. I and Fig. II it was found that: 

* Al = 50. 57° and w = 11. 92° 

The slip line was drawn according to the steps explained in Article 3. 3. 

The friction circle method will be used to determine the active earth 

pressure as shown in Fig. 5, 1. 

The effect of the portion def may be represented by Rankine's 

active pressure: 

EA = ~ Y (ed)2 tan2 t(45 - \) 

The problem thus resolves itself into a study of the equilibrium of 

the portion of the wedge acde. 

At the point of failure the full frictional resistance of the sand 

has been mobilized, and the resisting force at any point on cdf must 

act at cp to the normal. On the cd portion of the slip line the resist-

ing forces must thus all be tangent to the friction circle whose radius 

is R sin cp 

It will be assumed that the resultant of all the resisting forces 

is also tangent to the cp-circle. This is not strictly true but is 
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sufficiently close to the truth to justify its acceptance. 

To be able to determine the active earth force, PA• on the 

retaining wall it will be necessary first to find the magnitude of EA 

and the weight of the area acde. 

EA=~ x 0.11 x (9)2 x (0.52)2 = 1.21k/l. ft. 

W 1 = weight of area abde 

= o. 11 x .4. 65 x 9 = 4. 5· k/1. ft. 

W 2 = weight of area bed 

1 = 2 x O. 11 x 4. 6 5 x 7 = 1. 7 9- k/ 1. ft. 

W 3• the weight of segment cd, can be neglected in this problem. 

The locations of the following forces are known: EA is at ~ of ed 

from e. The resultant I: W of force W 1 and W 2 is located at 

X from the face of the wall where: 

1. ·: ',. 

X = (4.6 x 2.32 + 1.79x 4·365 ) + 6.39 = 2.11 ft. 

The resultant, S, of I: W an.d EA can be obtained graphically and 

its line of action can be drawn through the point of intersection of 

force EA and I:W. 

Since the direction and location of PA is known, let g be 

the point of intersection of the line of action of PA with that of S. 

Thus the direction of the resultant resisting force, F 1, will be along 

the line passing through g and tangent to the friction circle. As the 
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direction of F 1 is established,: it becomes very simple to draw to 

scale the polygon of forces as shown and scale the force PA. 

In this problem PA was found equal to 3. 5K. It can be 

observed that this answer is very close to that obtained by Coulomb's 

method, and the error is less than l59b. Terzaghi* stated that the 

difference between the exact value of the earth pressure on a retain-

ing wall, in the active case, and Coulomb's value is smaller than 5<lt; 

and in connection with practical problems this error is insignificant, 

and with decreasing values of 6 the error decreases further. 

5. 2. Problem No. 2 - Calculation of Active Earth Pressure 

Exerted by a Cohesionless Sloping Backfill on Retaining Walls 

Given: wall height = 15' 

sloping backfill surface 

soil properties: 

y = 110 lb/ft3 

cp = 30° 

Angle of wall friction 

6 = 16° 

5. 2. 1. Coulomb's Method 

1 2 KA 
PA = 2 Y H sin a cos 6 

sin2 (a+ cp) cos 6 
KA = ~-----~:--";:::;:=======........,,-2 

·. . ( _ 6) [1 .. + vsin (cp + 6) sin (cp - /3) J 
s1n Q' Sln a . ( 6) · ( + R) sin a - sin a J.J 
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*·i.K.' Terza,ghi. Theoretical Soil Mechanics. (New York, 1956), 
p. 80. 



Calculating KA, it is found that: 

KA= 0.329 

Therefore, 

1 2 0.329 PA= 2 x 0.11 x (15) x 0_961 - 4.23 k/1. ft. 

5. 2. 2. Slip Line Method 

To be able to draw the slip line, the angles W Al, 

and af should be obtained from Fig. I, II, IV, and V. 

It was found that: 

w = 8. 72° 

af = 44. 83° 
A o 

a 2 = 75. 17 

The method followed in determining the slip line is as was explained 

in Article 3. 5. 1. It was found in this specific problem that de is 

almost collinear with be, see Fig. 5. 2; therefore, the slip line was 

considered to be bd. By following the same reasoning as in Problem 

No. 1, the force PA can be calculated very easily from the equili

brium force polygon. Since in this problem the slip line came out 

to be a straight line, the resultant of all resisting forces will make 

an angle cp with the normal to line bd. 

The weight W of the wedge abd is: 

1 
W = 2 x o. 11 x 12 x 15 = 9. 9 k/ 1. ft. 
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Drawing the equilibrium force polygon, the force PA can be 

scaled. 

It was found that PA = 4. 25 k/1. ft. agrees very closely with 

that found by Coulomb's formula. 

5. 3. Problem No. 3 - Calculation of Passive Earth Pressure 

Exerted by a Cohesionless Levelled Backfill on Retaining Walls 

Given: wall height = 20' 

horizontal backfill surface 

soil properties: 

y = 112 lb/ft3 

cp = 36° 

Angle of wall friction 

6 = 20° 

5. 3. 1. Friction Circle Method 

Since 6 > ·:% Coulomb's assumption that the slip surface 

under passive resistance is a plane introduces excessive error. The 

lower portion of the slip surface is definitely curved and it can be 

approximated by an arc of a circle. 

The upper part of the wedge is assumed to fail as indicated by 

Rankine's theory, at an angle of 45° - ~ with the direction of maxi

mum principal stress, which is horizontal. If a .line AC is drawn 

at 45° - '2 to the horizontal, and a vertical CD drawn from C, 

the effect of the portion CDE may be represented by Rankine's 

passi~e pressure: 
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Then the problem is to consider the equilibrium of the portion ABCD 

where CE must be tangent to the circular arc BC. 

At the point of failure, the resisting force at any point on the 

assumed slip line must act at cp to the normal. · Along the curved 

portion the normals pass through the center of the circle, and the 

resisting forces must thus all be tangent to the friction circle whose 

radius is R sin cp. 

The procedure to. determine the passive pressure is as 

follows (Fig. 5.3): 

E 
p 

(a) Measure the height of CD and calculate the force 

1 ,2 2 cp 
from Ep = 2 y (CD) tan: (45 + ~). This force is located at 

one-third of CD from C. 

(b) Determine the weight of the sections AGCD • GCB and 

BJC and call them, respectively, w 1 •. w2 and w3. 

(c) Locate the mass center of the weight ABJCD and 

represent all the weight by one vector, "£W, at the mass center. 

(d) Combine graphically "£ W and E to give the resultant S. 
p 

(e) Draw the passive thrust, P , at one-third of the height 
p 

of the wall from point B at an angle +6 with the horizontal. The 

intersection of the line of action of Pp with that of S determines 

the point Q through which the resisting force F must pass. 

(f) Draw through Q a line tangent to the cp-circle. This is 

the direction of the resultant F. 

(g) Draw P and F on the force diagram and scale off 
p 

their magnitudes. 
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Trial No. 1 - AD = 29 ft. 

From Fig. 5. 3 the following dimensions can be scaled off: 

CD= 14. 8 1 

R = OC = 50. 8 1 

CB :.:: 48. 7 1 LcoB = 34° 

W l - 0. 112 x 2 9 x 14. 8 = 4 8 k/ 1. ft . 

. w2 = ~ x 0.112 x 29 x 5.2 = s.45 k/1., ft. 

w3 = ~ x o. 112 [(50. 8)2 x 3/~~ - 29. 3 x 48. 7 J = 5. 6 k/1. ft. 

Therefore, 

'iW = 4 8 + 8. 45 + 5. 6 = 6 2. 05 k/ L ft. 

The location of the mass center of ABCD can be obtained by sum-

ming moments around point B. Thus: 

'iw. a. 
X = 1 1 

'iW. 
1 

48 x 14. 5 + 8. 45 x 9. 67 + 5. 6 x 14. 6 13 85 ft 
= 62 0 05 - 0 

• 

The radius of the friction circle is: 

r = R sin cp = 50. 8 x O. 588 = 2 9. 9 ft. 

and 

1 2 2 
E p - 2 x O. 112 ( 14. 8) (1. 9 6 2 6} = 4 7. 3 k/ L ft. 
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For trial No. 1 the magnitude of Pp is found from the force diagram 

to be: 

P = 1 7 0. 5 k/ 1. ft. 
p 

Trial No. 2 - AD = 24 ft. 

From Fig. 5. 4 the following dimensions can be scaled off: 

CD = 12. 2 ft. 

R = OC = 81. 5 ft. 

CB = 25. 2 ft. LcoB = 18° 

W l = 0. 112 x 2 4 x 12 • 2 = 3 2. 8 k/ 1. ft. 

1 W 2 = 2 x O. 112 x 2 4 x 7. 8 = 1 O. 5 k/ 1. ft . 

. 1 [ 2 18TI J w3 = 2 x 0.112 (81.5) x 180 - 80.5x 25.2 = 3.36 k/1. ft. 

Therefore, 

and 

"iW = 32. 8 + 10. 5 + 3. 36 = 46. 66 k/1. ft. 

x = 32 0 8 X 12 + 10, 5 X 8 + 3, 36 X 12, 2 : l 1. l5 I 
46.66 

r = 81. 5 x O. 588 = 48 ft. 

1 2 2 
E p = 2 x O. 112 x ( 12. 2) ( 1. 9 6 2 6) = 3 2 • 1 k/ 1. ft. 

From trial No. 2 the magnitude of Pp is found from the force dia

gram to be: 
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P = 184 k/1. ft. 
p 

Trial No. 3 - AD = 27 ft. 

From Fig. 5. 5, the following dimensions can be scaled off: 

CD= 14 ft. 

R = 60 ft. 

CB = 27. 6 ft. LcoB = 26. 26° 

W l = 0. 112 x 2 7 x 14 = 4 2. 2 k/ 1. ft. 

1 . W 2 = 2 x O. 112 x 2 7 x 6 = 9. O 6 k/ 1. ft. 

1 [ 2 26. 26 TT J W 3 = 2 x O. 112 ( 6 0) x 18 O - 2 7 • 6 x 5 8. 3 = 2 • 2 4 k/ 1. ft. 

Therefore, 

r,w = 42.2 +9.06 +2.24 = 53.5k/l. ft. 

x = 42. 2 x 13. 5 + 9. 06 x 9 + 2. 24 x 13. 8 = 
53.5 

r = 60 x 0. 588 = 35. 3 ft. 

12. 75 ft. 

Ep = ~ x O. 112 x (14)2 x (1. 9626>2 = 42. 4 k/1. ft. 

From trial No. 3 the magnitude of P is found from the force dia
P 

gram to be: 

P = 165 k/1. ft. 
p 

Plotting the vaJues of P above the corresponding positions of C, 
p 

the least value of Pp which can be determined from the graph shown 
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in Fig. 5. 3 is found to be: 

P ( . . ) = 16 5 k/ 1. ft. p m1n1mum 

5. 3. 2. Calculation of Passive Earth Pressure by the Use of the 

Slip Line Method. 

From Fig. I and III, the angles w and W are found to be: 
p 

w= 7.75° and * = -0. 75° p 

Following the procedure for drawing the slip line as explained in 

Article 3. 4, the shape of the line is that shown in Fig. 5. 5. 

It was found that AD is equal to 27 ft. which happens to 

coincide with trial No. 3 of the preceding section. Having located 

the critical slip line, the method followed in calculating Pp is the 

friction circle method previously explained. It follows that the value 

of Pp obtained by this method is the same as that of trial No. 3 

which represented the minimum value of P . 
p 

The advantage of the use of the slip line method is quite 

obvious. The method is direct. accurate and fast. 
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5. 4. Problem No. 4 - Calculation of Active Earth Pressure 

Exerted by a Cohesive Levelled Backfill on Retaining Walls 

Given: wall height = 20' 

horizontal backfill surface 

soil properties: 

y = 110 lb/ft3 

loo cp = 

c = o. 3 1S-ft2 

angle of wall friction 

.6 = 7° 

5. 4. 1. Wedge Method 

In the case of cohesive backfill, the effect of cohesion must 

be taken into account. It is assumed that there is a neutral or 

ineffective zone of depth H~ = 2. 67 ~ tan (45 + ;), as suggested by 

Terzaghi~~ within which there is no adhesion or friction along the 

back of the wall or along the slip surface. 

There are five forces acting on the wedge ABDE, Fig. 5. 6a: 

(1) The weight of the whole wedge ABDE (I: W 5). 

(2) The reaction F 5 on the plane of rupture. 

(3) The resultant of the normal and frictional forces (P A 5). 

( 4) The cohesion along the length BD (C85 ) • 

(5) The adhesion along the height of wall BG (C ) . a 

~~ 

.K. Terzaghi. Theoretical Soil Mechanics. (New York, 
1956), p. 154. 
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There are only two unknown forces, F 5 and P A 5 whose 

directions are known, their magnitudes can be determined from the 

force polygon. The selection of a few trial planes of failure permits 

a curve to be drawn describing the variation of the magnitude of PA" 

From this curve the maximum possible value for PA may be deter

mined. PA is assumed, as is usual,. to act at a height of one-third 
i~ 

of the height of the wall. 

Trial No. 1: 

300 
H~ = AB = 2. 67 x llO tan (45 + 5) = 8. 7 ft. 

24 r:w 1 = 0.11(24 x 8. 7 + 2 x 11. 3) = 37. 92 k/1. ft. 

Ca = 0. 3 x .11. 3 = 3. 3 9 k/ 1. ft. 

cs l = o. 3 x 26. 6 = 8 k/1. ft. 

From the force polygon diagram Fig. 5. 6b, P Al is found to be: 

p A l = 1. 5 k/ 1. ft. 

Trial No. 2: 

r:w2 = o.11[19.3x 8.7 + 1923 x 11.3] = 30.45k/1. ft. 

i~ 
P. L. Capper. and W. F. Cassie. The Mechanics of 

Engineering Soils. (London, 1963). p. <Ill. 
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C = 3. 39 k/1. ft. a (it is constant) 

Cs 2 = 0. 3 x 2 2. 4 = 6. 7 3 k/ 1. ft. 

PA2 = 3 k/ 1. ft. Scaled from the force polygon. 

Trial No. 3: 

I: W 3 = o. 11 [ 16 x 8. 7 + 1: x 11. 3 J = 2 5. 2 5 k/ 1. ft. 

C = 3. 3 9 k/ 1. ft. a 

Cs 3 = 0. 3 x 1 9. 6 5 = 5. 9 k/ 1. ft. 

P A 3 = 3. 75 k/1. ft. 

Trial No. 4: 

r:w4 = o. 11[12. 2 x 8. 7 + 1~· 2 x 11. 3 J = 19. 3 k/1. ft. 

C = 3. 39 k/1. ft. a 

Cs 4 = 0. 3 x 16. 5 = 4. 9 5 k/ 1. ft. 

P A 4 = 4. 1 k/ 1. ft. 

Trial No. 5: 

r:w5=0.11[9x8.7+~xl1.3] =14.22 k/1. ft. 
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c = 3. 39 k/1. ft. 
a 

c = o. 3 x 14. 4 = 4. 33 k/1. ft. s5 

PA5 = 3. 5 k/1. ft. 

Plotting the values of PA for the above trials as shown in Fig. 5. 6a, 

it is found that the maximum value for PA is 4. 1 k/1. ft. 

5. 4. 2. Slip Line Method 

c 
From Fig. IX, for K = ! (Note K = co = !~~), ljt A is found 

to be 25°. Once the slip line is drawn according to the method 

described in Article 4. 2, the friction circle method can be applied 

to find the active earth pressure. 

It is convenient to consider the active resistance of cohesive 

soils in two parts, Fig. (5. 7a): 

(1) The frictional resistance developed along the slip line 

and the back of the wall when the backfill is mobilized; 

(2) . The cohesive resistance along the slip line combined with. 

the adhesion resistance along the back of the wall. 

The evaluation of part (1) is similar to the application of the 

friction circle method to cohesionless backfill except that the weight 

of area ABJL is considered as surcharge. The steps of the friction 

circle method were already outlined in Article 5. 1. 2. The effect of 

the portion JGH may be represented by Rankine's active pressure: 

EA=~ Y (JG)2 tan2 (45 -,) (5. 1) 
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The force PA is taken at one-third of the height BD from point D. 

The force polygon is drawn as shown in Fig. 5. 7b and as explained 

in Article 5. L 2. 

When cohesion alone is considered, the effect of the cohesive 

forces on GH can be replaced by the active resistance EA where: 

E {~ = [- 2 C tan (45 - <:%) + q tan2 (45 - ~) J (JG) (5. 2) 

where q is the surcharge stress due to the fissured portion above 

line BH. The force EA acts at half the height JG. Similarly, 

PA, the active resistance on the wall due to cohesion alone acts at 

half the height BD. Cw, the cohesion on the wall, acts along the 

line of the back of the wall. The resultant of the cohesive forces on 

the curve DG is parallel to the chord DG, and the value C repres 

sents the sum of the components of the cohesion parallel to DG. 

C = c x chord DG • 
s 

81 

The line of action of C is found by taking the moment of the cohesive_ s 

force on curve DG around the center of the friction circle, and then 

equating this moment to that of force Cs acting at a distance L 1 

from the center of the friction circle. Actually, C is the equis 

poilent force for the cohesion force acting along the curve DG. Thus: 

Cs L 1 -· c x curve DG x R 

"~K. Terzaghi. Theoretical Soil Mechanics. (New York, 
1 9 5 6 ) , p, 3 8, formula ( 4). 

(5. 3) 



80 
2 

P,. :7.6-3.5 = 4.1 KfL. fl . L . 
. I Aj ·.I iv~ t 

. a:) 

I 
I 
I 
I 
I 
I 
IJ 

8.7' 

H -~, r~ 
/_ I . . . . 

/ EA. t. ,/ E~ 
~. 

E ~· 

· FIG.5.7 

201 

t:50 SCALE 

·I 
I 

I EW 
I 

l . / .. · 
E; 

ACTIVE EARTH PRESSURE ON RETA·INING WALL BACKFILLED WITH COHESIVE·. 
SOIL, BY THE USE OF SLIP LINE METHOD. al PROPER S.LIP LINE, b,c)FORCE 
POLYGONS. . 

c) 

.. b) 

00 
r,.:> 



where R is the radius of, the curve DG, 

The steps to be taken to determine the active resistance due 

to cohesion are as follows: 

p) Obtain the values of C , C and EA' by calculation, w s 

(2) Draw the triangle of forces for Cw and Cs and mark the 

re_sultant Cr in its position on the wedge diagram, 

(3) Determine the point M where EA meets the line of 

action of C and then draw through M the resultant S (see r c 

Fig, 5,7aandc), 

(4) Sc meets PA at point R. Through R draw a line 

tangent to the friction circle, This is the line of action of force F', 

(5) Complete the force polygon and so determine PA, The 

total active force acting on the wall is the algebraic summation of 

PA and PA, 

Numerical Calculations 

The radius R of the curved portion DG was scaled off and 

found to be 1 7, 1 ft,, and the angle subtending are DG, equal to 25°, 

Thus: 

arc DG 
Ll == chord DG x R "' 

2 25 TI 1 
(17,1) x 180 x 7,3 = 17. 5 ft. 

The radius r of the friction circle is: 

r = R sin cp = 1 7 . 1 x O. 1 7 3 6 = 2 , 9 7 ft, 

Let W 1 be the weight of area AB 'GL, W 2 the weight of 

area DB'G, and W 3 the weight of segment DG. Thus: 
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W 1 :::: O. 11 x 5. 8 5 x 15 o 5 = 1 O k/ L ft. 

w2 = o. 11 x 5·/5 x 4. 5 ::.: 1. 45 k/1. ft. 

W = O. l1 [117 1)2 25 TT 7 3 16 7] 0 3 k/1 f 3 2 ' 0 180 - 0 x O = 0 0 t. 

Cs= c x chord DG = O. 3 x 7. 3 = 2. 19 k/1. ft. 

C = c x BD = O. 3 x 11. 3 = 3. 39 k/1. ft. w 

From Eq. (5. l)and ~· 2), EA and E _X follow 

EA = [- 2 x Oo 3 x tan 40° + o. 11 x 8. 7 x tan2 40 J 6. 85 

= 1. 22 k/1. ft. 

1 2 2 cp 1 2 2 0 
E_;{ = 2 Y (JG) tan (45 - ~) = 2 x 0.11 x (6.85) tan 40 

From the force polygons (Fig. 5. 7b and c) the values of PA 
and PA are 

PA = 3. 5 k/1. ft. 

PA= 7. 6 k/1. ft. 

Their vectorial summation gives 

p A = PA~ PA = - 3. 5 + 7 0 6 = 4. 1 k/L ft, 
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This answer agrees exactly with that obtained by the wedge method. 

5. 5. Problem No. 5 - Calculation of Passive Earth Pressure 

Exerted by a Cohesive Levelled Backfill on Retaining Walls 

Given: wall height = 20' 

horizontal backfill surface 

soil properties: 

y = 110 lb/ft3 

15 0 cp = 

c = 0. 3 k/ft2 

angle of wall friction 

- 6 = 10° 

5. 5. 1. Friction Circle Method 

The passive resistance of cohesive soils can be considered 

in two parts: 

(1) The frictional resistance developed along the slip line 

and the back of the wall. 

(2) The cohesive resistance a.long the slip line combined with 

the adhesive resistance along the back of the wall. 

The main difference between the active and passive cases 

when the friction circle method is applied is that in the passive case, 

since the soil is in compression. no tension cracks appear at the 

surface. and the cohesive forces are assumed to be distributed 

uniformly over the entire back of the wall and the curved surface DG. 
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The corresponding total pressures on the section JG, Fig. 5. 8 

are 

E~ = 2 c (JG) tan (45 + ~2 ) (5. 4) 

and 

(5. 5) 

Once the passive resistances are calculated for each of the assumed 

slip surfaces and plotted to scale, the minimum value which can be 
VI 

found for the term P' + P is used :i.n the design. 
p p 

Trial No, 1: AJ:::: 16' 

The following dimensions are scaled off Fig. 5. 8: 

R == 42. 6 ft .. JG :::: 12. 3 ft. 

DG = 1 7. 7 ft. L DOG= 24° 

The radius of the friction circle is 

r = R sin cp = 42. 6 x O. 2 588 -· 11' 

From Eq. (5. 3), solve for L 1: 

2 24 TI 1 
Ll = (42. 6) x 180 x 17. 7 = 43v 

VI 

From Eq 's (5. 4)and (5. 5). solve for E~ and Ep: 

E' = 2 x 0, 3 x 12. 3 x tan 52. 5 = 9. 6 k/ 1. ft. 
p 
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and 

IV 1 2 2 0 Ep =2 x O.llx (12o3) xtan 52.5 = 14.15k/l. ft. 

Cw= c x (AD) = Oo 3 x 20 = 6 k/L ft. 

Cs =cxchordDG= 0.3x 1707 = 5.32 k/1. ft. 

W 1 = weight of area ABGJ 

= O. 11 x 16 x 12. 3 = 21. 6 k/L ft. 

W 2 = weight of area BDG 

1 = 2 x O. 11 x 16 x 7. 7 = 6. 7 6 k/ L . ft. 

1 [ 2 24 TT J w3 =20.11 (42.6) 180 -17.7x41.7 - 1. 1 k/1. fto 

The location of the equipollent force 'f, W can be obtained by taking 

summation of moments of W 1• W 2 and W 3 with respect to D. 

Thus: 

21. 6 x 8 + 6. 76 x 5. 35 + L 1 x 8. 05 
x ::: 2 9' 4 6 = 7. 4 ft' 

The resultant passive pressure on the back of the wall is 

equal to the vectorial summation of P' and P' '. 
p p 

p = pi +> p Ii = 2 5. 2 + 4 6 = 71. 2 k/ 1. ft O p p p 
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Trial No. 2: AJ = 18' 

The following values are scaled off from Fig. 5. 9: 

R = 27. 7 ft. JG = 14 ft. 

DG = 19. 1 ft. LDOG:: 40. 5° 

The radius of the friction circle is: 

r = 2 7. 7 x O. 2 5 8 8 = 7 • 16 ft. 

2 40. 5 TT 1 
L 1 = (27. 7) x 180 x 19.1 = 28. 4 ft. 

E' = 2 x O. 3 x 14 x tan 52. 5 = 10. 94 k/1. ft. p 

1 2 2 
E~' = 2 x O. 11 x (14) tan 52, 5 = 18. 3 k/1. ft. 

C = 0. 3 x 2 0 = 6 k/ l. ft. w 

C = 0.3x 19.1 = 5.74 k/1. ft. s 

W l = 0. 11 x 18 x 14 = 2 7. 7 k/ 1. ft. 

1 W 2 = 2 x o. 11 x 18 x 6 = 5. 95 k/1. ft. 

w3 ::: ~ x 0.11[(27. 7)2 (4 ~·8~TT) - 19.1 x 26 J = 2, 53 k/1. ft. 

X = 2 7 . 7 x 9 + 5 .3 ~ ~ ; 6 + 2. 5 3 x 9. 2 = 8 . 6 ft. 

p = p I + p II ::: 2 3, 5 + 4 6 • 7 ::: 7 0, 2 k/ l, ft, 
p p p 
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Trial Noo 3: AJ = 17 ft, 

The following values are scaled off from Fig. 5. 10: 

R == 35. 2 ft. JG = 13. 2 ft. 

DG = 18. 4 ft. LDOG = 30° 

The radius of the friction circle is: 

r = 3 5. 2 x O. 2 5 8 8 = 9, 12 ft. 

Ev = 2 x 0. 3 x 13. 2 x tan 520 5° - 10, 3 k/L ft. 
p 

1 . 2 2 
E ~v = 2 x O. 11 x ( 13 . 2 ) x tan 5 2 . 5 = 16 . 3 k/ 1. ft. 

C = 0.3x20=6 k/L ft, w 

c = 0. 3 x 18. 4 = 5 0 5 3 k/ l, ft. s 

w 1 = 0' 11 x 1 7 x 13' 2 ::: 2 4. 7 k/ 10 ft O 

1 
W 2 :::; 2 X 0, 11 X 17 X 6 o 8 ::; 6 0 36 k/ lo ft, 

W 3 = { x O. 11 [ p 5, 2) 2 x ~ ~; - 18. 4 x 3 4] = L 2 1 k/ L ft. 

X = 24. 7 x 8. 5 + 6. 36 x 5, 6 5 + 1. 21 x 8. 7 = 7 95 f 
32.27 . t. 

p = pi .,...pvv = 24 + 45. 5 = 69.5 k/L ft. 
p p p 
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From these three trials a graph representing the variation of P 
p 

can be plotted and the minimum value is found to be 69. 5 k/1. ft. 

5. 5. 2. Slip Line Method 

co _ 100 _ 1 
From Fig. XV, for K = C - 300 - 3 , the value of ~ p 

is found to be 6. 6°. Knowing ~ , the slip line can be drawn, 
p 

Fig. 5. 1 O_, according to the steps explained in Article 4. 3. Then, 

by the use of the friction circle method, the passive earth pressure 

can be obtained. In this problem it was found that the calculated 

slip line agrees with that assumed in Trial No. 3, Therefore, 

the passive pressure acting on the wall is equal to 69. 5 k/L fL 

as was obtained from Trial No. 3, which proved to be the minimum 

value. Thus, the efficiency and convenience of the slip line method 

is well demonstrated. 
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CHAPTER VI 

CONCLUSIONS 

The new method developed in this study for finding the earth 

pressure on a retaining wall, by determining the critical slip surface, 

has proved to be simple, accurate and fast. It provides a direct 

solution for earth pressure without resorting to trial and error 

procedures. The method is particularly advantageous when applied 

to the calculation of passive earth pressure on retaining walls with 

either cohesive or cohesionless backfills. 

Also, mathematical relations for the slope of the slip surfaces 

are provided which permit an evaluation of the effect of soil pro

perties on the shape of the failure surfaces. 

For retaining walls with cohesionless backfill, it was proved 

that (a) the shape of the slip surface is independent of the height 

of the wall, in both the active and passive cases and (b) the slope of 

the slip surface at the toe of the wall is linearly related to o for 

o :5: ~, beyond which a nonlinear relation is found. The error 

involved in assuming the slip surface to be a plane becomes intolerably 

large when o > ~. It has been found that active earth pressures 

calculated by means of Coulomb's method, while on the unsafe side, 

are only a few percent smaller than the correct values; whereas 

in the passive case, the results obtained by Coulomb's method are on 

the unsafe side, and if o > \, they may exceed by 30 percent the 

correct values. 
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For retaining walls with cohesive backfill, a graphical solu-

tion to determine the slope of the failure surface at the toe of the wall 

was developed. The method proved to be quite simple and accurate. 

For the active case it is concluded that * A' the slope of the slip line 

at the toe of the wall, (a) increases when the height of the wall increases 

or when cohesion decreases; but the effebts of these two vari~ 

bles become negligible when the height of the wall ~xbeeds 25', 

. (b) decreases when o increases. 

For the passive case it is concluded that * , the slope of. 
p 

the slip line at the toe of the wall, (a) decreases when o increases, 

(b) increases when the height of the wall increases, but the rate of 

increase becomes negligible when the depth exceeds about 20 feet, 

and (c) decreases when the cohesion of the soil increases. 

In summary, it can be said that the slip line approach pre-

·Sented in this thesis provides a direct solution for the earth pressure 

exerted on retaining walls without resorting to trial and error pro-

cedures. The charts which have been prepared to facilitate the solu-

tion of the problem clearly illustrate the manner in which the shape 

of the surface of failure is influenced by the various soil properties. 
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APPENDIX 

DETERMINATION OF THE LOCUS Of THE SHEARING STRESSES 

ON VERTICAL AND HORIZONTAL PLANES OF COHESIVE ELEMENTS 

TAKEN AT THE TOE OF RETAINING WALLS OF DIFFERENT HEIGHTS 

Case 1: Active Case of Failure 

Referring to Fig. 4. lb and 4. 2, the problem encountered in 

drawing the equivalent Mohr's circle for the state of stresses acting 

on the element is that the undetermined shearing stress, c + PA sin 6, 

cannot be located directly to establish the circle. In Article 4. 2; it 

was assumed that the locus of the shearing stresses on elements taken 

at the toe of retaining walls with cohesive backfill and of different 

heights, when plotted on Mohr's circles, is approximated by a 

straight line. The reliability of t]1is assumption will pe demonstrated 

analytically. 

Let· MM' be the rupture line, making angle cp with the hori

zontal, and cutting the T-axis at A where OA = c. Through point A 

draw the line AS that makes an angle 6 with the horizontal. This 

line cuts the various arbitrary Mohr's circles at A, F, O, .H and K, 

Fig. A. 1. The horizontal projections of these points on their respec-

tive circles are A', F', .G', H' and K'. The problem then, is to 

.investigate the linearity of these latter points~ To .do this, the 

coordinates of points A', F', G', H' and K' will be determined 

analytically, and the slope of the segments A'.F', F'G', G'H' and 

H'K' will be compared. 
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The equation of line MM' is 

'T = mu + c 

where m = tan cp • 

The radius of any circle tangent to MM' and having its 

center at (u , o) is, .. (Fig. A. 2): 
0 

r = 
@(u ,o) 
. 0 

= 

. The general equation of any Mohr's circle becomes: 

2 2 2 (u - u) + 'T = r 
0 

substituting for r from (A. 2): 

2 2 
(u - CJ ) + 'T = 

0 

2 (mu0 +c) 

1 + m 2 

The equation of line AS is: 

100 

(A. 1) 

(A. 2) 

(A. 3) 

T = nu + c (A. 4) 

where n = tan 6 • 

The points of intersection of line AS with the arbitrary 

Mohr's circle. can be obtained by substituting for T in Eq. (A. 3) the 

value obtained from (A. 4). Thus: 

2 2 
(u - u ) + (nu + c) 

0 
= 

2 (mu0 +c) 

1 + m 2 
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Expanding the previous equation and collecting terms, it follows that: 

2 
2 2 2 2 (ma o + c) 

a(l+n)-2a(a -nc)+a +c - 2 =O 
o o 1 + m 

Let: 

and 

2 
1 + n = A 

a - nc = B 
0 

a 2 + c2 
0 

2 
(ma +c) 

0 

1 + m 2 
= D 

Then (A. 5a) can be written in the following form: 

2 
Aa - 2Ba + D = 0 

Solve for a: 

a = 

For the active case, the abscissa of point N is: 

a = N 

Substitute for a in (A. 4) the value obtained in (A. 6b), thus: 

(A. 5a) 

(A. 5b) 

(A. 6a) 

(A. 6b) 

(A. 7) 



The coordinates of point N' can be determined by finding the 

intersection of line NN' with the circle 0. Since line NN' is parallel 

to the a-axis, its equation is as expressed in (A. 7). 

Substitute for T in Eq. (A. 3) the value obtained from (A. 7): 

Let: 

and 

2 [ (B - V:AB2 - AD) + c]2 (mao + c)2 
(a - o-0 ) + n = -----

1 + m 2 

n(B - VB2 - AD ) + c = E 
A 

2 
(mCJ + c) 

0 

1 + m 2 
=F 

Then (A. Sa) can be written in the following form: 

2 2 
(a - CJ ) + E - F = 0 

0 

Expand this equation and collect the: terms: 

o-2 - 2a a + CJ 2 + E 2 - F = 0 
0 0 

The roots of (A. Sb) are: 

(A. 8a) 

(A. Sb) 
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The abscissa of point N' is: 

(A. 9) 

Since in any practical problem the value of crN' is given as yh 

(see Fig. 4. lb), it becomes possible, by the use of (A. 9),. to solve 

for cr. and thus the center of the required Mohr's circle can be 0 . 

obtained. The value E in Eq. A. 9 can be written in the following 

form, if one makes use of (A. 6b): 

E=ncr +c=T N N 

But it is known from the properties of the Mohr's circle that: 
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= a 
0 

(A. 10) 

Therefore, 

Thus: 

a = 2cr - Yh N o 

E = n(2cr - Yh) + c 
0 

Substitute (A. 11) for E in Eq. A. 9 to obtain: 

2 
(mcr + c) [ 2 

Yh = a + 0 2 - n(2cr - Yh) + c J 
o 1 +m o 

(A. 11) 

After simplification, the above equation can be written .in the following 



form: 

Let 

and 

a 2( 1 + 4ri2 ) - 2a0 [Yh(l + 2n2 ) + me - 2nc] 
O l+m2 l+m2 

2 2 c 2 
+ (nYh - c) + (Yh) - 1 + m 2 

G = l + 4n2 
1 + m 2 

[ 2 me J f3 = Yh(l + 2n ) + 2 - 2nc 
1 +m 

2 
A = (nYh - c >2 + (Yh)2 - c 

1 + m 2 

then Eq. (A. 12) can be presented as: 
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(A. 12) 

aa 2 - 2{3a +A= 0 (A.13) 
0 0 

Solving for a and using the smallest root since a has to be 
0 0 

smaller than Yh 

(J = 
0 

Eq. (A. 14) is an accurate solution for the position of the 

(A. 14) 

center of the Mohr's circle that satisfies the stresses on the element 

shown in Fig. 4. lb. 
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Using expressions (A. 6b). (A. 7) and (A. 9), the coordinates of 

points N and N' can be determined. Since circle O is an arbitrary 

circle, the expression above can be used with respect to any specific 

circle if u0 is replaced by the abscissa of the center of the proposed circle. 

The angle 1jlA which is represented approximately by Eq. (4. 7) can now 

be derived accurately, see Fig. A. 2. It is observed that 

...,--.... 

BN' 1 L WA = -2- = 2 ( BOD - Tl) (A. 15) 

LBOD = 90 + cp 

and (A. 16) 

Solve for CJ in terms of Yh, as shown in Eq. (A. 14)and determine 
0 

Tl. Substitute for Tl in (A. 15) and solve for WA. 

Referring back to Fig. A. 1 , it is now necessary to find the 

coordinates of points A_', F', G', H' and K', in order to check the slopes 

of the lines A'F', F'G', G'H' and H'K' for a given numerical problem. 

If these slopes are found to be equal, then points A', F 1, G', H' and 

K' are collinear. 

0 0 
Given 6 = 10 , cp = 20 and c = 165 psf. Then, m = tancp = O. 364, 

n = tan 6 = O. 1763 and A = 1 + n 2 = 1. 031 

Circle 01: 

The coordinates of center o1 are (60, O); the coordinates 

of point A are (0, 165). From Eq. (A.9), CJ A' can be determined 

(JA' = 0"01 +VFA -E! 0"01 = 60 

(muOl + c)2 
F = 

A 1 +m2 

= 30800 

= (0. 364 x 60 + 165)2 

1 + (0. 364)2 



2 2 2 
EA= (naA + c) = (165) = 27, 300 

Therefore: 

CJ A' = 60 + v;OBOO - 27, 300 = 119. 2 psf 

The coordinates of A' are then (119. 2, 165) 

Circle o2 

The coordinates of center o2 are (236, O); the coordinates 

of point F can be calculated from (A. 6b) and (A. 7). 

CJ = F 

BF= CJ 02 - nc = 236 - 0.1763 x 165 = 206. 9 

A·= 1 + n 2 = 1 + (0. 1763)2 = 1. 031 

2 
2 2 (ma02+c) 

DF = a 02 + c - 1 + m 2 

2 
= '236)2 + (165)2 _ (0. 364 x 236 + 165) = 27300 

' 1. 132 

Therefore, 

= 206. 9 - Vc206. 9)2 - 1. 031 x 27300 
CJ F 1. o 31 = 8 3 • 2 ps f. 
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T F = no-F + c = 0. 1 7 6 3 x 8 3 . 2 + 16 5 

= 1 79. 65 psf 

The coordinates of point F are (83. 2, 179. 65) 

Then 

2 
, F = (ma 02 + c) 

F 1 +m2 
= 55600 

2 2 
EF = (T F) = 32200 

aF' = 236 + v55600 - 32200 = 389 psf. 

The coordinates of point F' are (389, 179. 65). 

Circle o3 : 

The coordinates of center o3 are (500, 0). 

BG = 500 - 29. 1 = 470. 9 

2 2 (0. 364 x 500 + 165)2 
DG = (500) + (165) - 1. 132 

= 170800 
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Then 

a = 470. 9 - K470. 9)2 - 1. 031 x 170800 249 f 
G 1. 031 = ps · 

T G = naG + c = 0. 1763 x 249 + 165 = 208. 8 psf. 

2 
(ma03 + c) 

F = = 106400 
G 1 +m2 

2 2 2 
EG = TG = (208. 8) = 43600 

aG, = 500 + V106400 - 43600 = 751 psf. 

The coordinates of G' are (751, 208. 8). 

Circle 0 4 : 

The coordinates of center o4 are (1000, 0) 

BH = 1000 - 29.1 = 970. 9 

DH = (1000)2 + (165)2 - (0. 364 x 1000 + 165)2 = 780200 
1. 132 
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- 970, 9 - 097 o. 9)2 - 1. 031 x 780200 
o-H- 1.031 

= 580 psf. 

TH= no-H + c = 0.1763 x 580 + 165 = 267 psf. 

F H = 247000 

aH, = 1000 + V247000 - 71300 = 1419 psf. 

The coordinates of H' are (1419, 267). 

The coordinates of center o5 are (2000, 0), 

O" = K 

BK= o- 05 - nc = 2000 - 29, 1 = 1970, 9 

2 
D = (2000)2 + (l 65 )2 _ (0, 364 x 2000 + 165) 

K 1. 132 = 3, 323, 200 

O" = K 
1970.9- Vc1970.9)2 - 1.031 x 3,323.,200 = 

1. 031 1260 psf. 
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TK = O. 1763 x 1260 + 165 = 387 psf. 

FK = 704, 000 

2 2 
EK = TK = 150, 000 

crK, = 2000 + V704000 - 150000 = 2745 psf. 

The coordinates of K' are (2745, 387). 

Checking the slopes of lines A'F', F'G', G'H' and H'K', 

it is found that: 

t 179. 69 - 165 = o. 0543 
an a A ' = 3 8 9 - 119. 2 

-1 0 
aA 1 =tan 0.0543~3-10' 

208. 8 - 179. 65 = tan a F , = 7 51 _ 3 8 9 0. 0 8 0 5 

-1 0 
aF' = tan O. 0805 ~ 4 -35' 

t 267 - 208. 8 = o. 08712 
an aG, = 1419 - 751 

a G, = tan- 1 0. 0 8 712 ~ 5 ° -0' 

387 - 267 tan a H , = 2 7 4 5 _ 141 9 = 0. 0 9 04 9 



-1 0 
a H , = tan O. 0 9 04 9 R:J 5 - 1 O' 

This result reveals that line A 'K' can be approximated by a 

straight line between F' and K'. Apparently, a significant devia-

tion occurs only in circles very near the origin. Therefore, the 

straight line assumption for the locus of the shearing stresses for 

cohesive elements taken at the toe of retaining walls of different 

heights when plotted on Mohr's circles is found to be reasonable, 

justifying the graphical procedure described in Article 4. 2. 

Case 2: Passive Case of Failure 

Due to the similarity in the nature of this problem and that 

for the active case, no analytical investigation is presented. A 

graphical solution is shown in Fig. A. 3, in which it is seen that the 

locus of the shearing stresses deviates significantly from a straight 

line only at points A' .and F'. Since these two points have very 

small abscissa, they represent the vertical stresses of very low 
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retaining walls. Soils engineers are usually interested in intermediate 

and high retaining walls. For the correspondingly large normal 

stresses the associated shearing stresses can be considered to be 

located on the nearly straight portion of the locus, G'K'. 
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