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CHAPTER I 

INTRODUCTION 

Contractile vacuoles are organelles that collect fluid from the 

cytoplasm and expel it to the outside of the organism. Since the first 

description of the contractile vacuole, few structures have received 

such intensive investigation. They have been extensively studied in 

protozoa in which they occur in almost all free-living freshwater forms, 

and in some parasitic and sea water species. The presence of such vac

uoles is not, however, limited to protozoa, they have been described 

in freshwater algae, sponges, and in certain blood cells of the frog, 

guinea pig, and man, (Rudzinska, 1958). Their occurrence in such di

verse forms as protozoa, invertebrates and vertebrates suggests that 

similar vacuoles are probably present in many other groups, but so far 

have not been noticed. 

To identify the contractile vacuole with certainty it is necessary 

to see it in operation in the living cell. The rhythmic contraction of 

this organelle is the feature that distinguishes it from the other vac

uoles of the cytoplasm. As is well known, each contraction results in 

the discharge of the fluid contained within the vacuole and is followed 

by the reappearance of the structure and its expansion until it is ready 

for a repeated contraction. The growing phase (diastole) may last 

for several seconds to several minutes, while the emptying (systole) 

of the vacuole is usually very rapid and lasts only 2 to 3 seconds. 
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In spite of the extensive work on the contractile vacuole very 

little is known about the structural mechanisms involved in its systolic 

and diastolic movements. Its function is still debated. There is good 

evidence that it regulates osmotic pressure inside the cell, and there 

are also suggestions that it may function as an excretory organelle. 

Because of its accessibility, the protozoan contractile vacuole 

offers an elegant experimental material, still largely unexploited, to 

investigators concerned with intracellular water transport mechanisms, 

and a considerable amount of information already available on its fine 

structure provides an added attraction. 





CHAPTER II 

THE ORIGIN OF CONTRACTILE VACUOLES 

Metcalf (1910) noticed in Amoeba proteus that the vacuole is 

surrounded by a layer of granules. When the vacuole is of moderate 

size, these granules form a layer on its surface one granule thick; 

when the vacuole is fully distended, as just before systole, there are 

spaces between the granules;but when the vacuole is small the layer 

may be several granules thick. At systole the vacuole usually collapses 

completely, and the granules may be seen clumped together in the region 

of the cytoplasm previously occupied by the vacuole. The new vacuole 

arises in the midst of these granules, and is formed by the fusion of 

several small vacuoles. According to Metcalf, who reported observations 

which sometimes lasted for as long as several hours on a single organism, 

the vacuole never arises in any other part of the body under normal 

conditions, except among the granules which surrounded it before its 

last contraction. From these observations he concludes that the 

granules are associated in some way with the origin and the function 

of the vacuole, and for this reason calls them "excretory granules". 

However, he decides that the granules are not essential for life, since 

most of them, together with the vacuole, may be removed from an amoeba 

by operation without a fatal result. Under these conditions a new 

vacuole develops, although there are few if any granules to be surround

ing it where it first appears. Metcalf reaffirmed his statement 
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concerning these observations in 1926. 

Mast (19,26) also observed the frequent present of granules around 

the vacuole, but does not interpret this as indicating a physiological 

association between them. This opinion being based on his having ob

served vacuoles functioning perfectly normally without the presence of 

a single granule in the immediate vacinity of the vacuole. To these 

granules Mast applies the name "beta granules", to distinguish them 
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from others of a different nature which are also present in the cytoplasm. 

Mast and Doyle (1935) reinvestigated the relationship between granules 

and vacuoles. By centrifuging amoebae it is possible to cause strat

ification of various cytoplasmic constituents. Organisms treated in 

such a manner can be operated on so as to remove all or any desired 

portion of almost any one of the constituents, including these granules. 

Mast and Doyle found that removal of all or most of the granules resulted 

in the death of the organism. Removal of fewer granules caused a de

crease in pulsation frequency of the vacuole which was directly propor

tional to the relative number of granules removed, that is, pulsation 

frequency was found to be directly proportional to the number of gran

ules remaining. Removal of the contractile vacuole alone resulted in 

the prompt formation of another. 

Hall (1930a) studied the cytoplasmic inclusions in Trichamoeba 

after osmic and silver impregnation. In a few instances he observed 

the adherence of blackened globules to the outer surface of vacuoles. 

At first glance these appeared to be vacuoles with heavily walls, but 

close ob~ervation revealed the granular or globular nature of the black

ened material. 
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The cytoplasmic granules associated with the contractile vacuole 

are not confined to the immediate vicinity of the contractile vacuole, 

but usually are scattered through out the entire cytoplasm as well. If 

the origin of the vacuole is associated with and dependent on the pres

ence of these granules, then one would expect other parts of the organism 

to be at least potentially capable of giving rise to vacuoles, since 

some granules are present in other parts. This phenomenon has been ob

served in Amoeba by various authors, among whom are Day (1927), as well 

as Howland, Mast and Doyle. Dimitrowa (1928) was able to induce forma

tion of extra vacuoles in Paramecium caudatum by interfering mechanically 

with the normal function of those already present. These extra vacuoles 

usually appeared to be entirely normal although in a few instances there 

were no radial canals. The customary number of vacuoles was restored 

at fission by failure of the organism to form new ones if two extra 

ones had been induced, or by the formation of one new vacuole if only 

one had been induced artificially. 

Hall (1930b) found that in Menoidum, stained according to the Da 

Fano silver method, the contractile vacuole is formed by the fusion of 

several smaller vacuoles arising near the gullet. 

The mode of origin of contractile vacuoles has been studied in a 

greater variety of ciliates than in either rhizopods or flagellates. 

Taylor (1923) observed in Euplotes that the vacuole (V1), in its final 

fo~m immediately before contraction, is the result of the fusion of 

several smaller vacuoles, and that these smaller vacuoles (designated 

as group v2) in turn are formed by the fusion of still smaller vacuoles 

(group v3). The smallest vacuoles in the series are thought to arise 

as the result of the dissolving of granules, or to arise de novo. Thus 
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Taylor suggests granules as a possible source of vacuolar fluid, and 

he observed formation of the vacuole by the fusion of several small 

accessory vacuoles. King (1933), who studies Euplotes after impregnation 

with osmic acid, found that the smallest visible accessory vacuoles (V3) 

have their origin at the distal ends of a very large number of collecting 

canals, located just under the ectoplasm on the dorsal surface of the 

ciliate. These canals radiate like a sun-burst from the vicinity of the 

vacuoles, and seem to end blindly in the protoplasm of the organism. 

These canals have a. diameter of approximately 0.5 micron at their distal 

ends, and become relatively much narrower as they pass away from the 

region of the vacuoles. The canals are not visible in living organisms, 

but may be clearly demonstrated by proper impregnation with osmic acid. 

Of particular interest are the observations of MacLennan (1933) 

on the Ophryoscolecidae, ciliates from the stomachs of cattle. The· 

cycle of the contractile vacuole was studied in both living and fix~d 

material, including the following genera: Ophryoscolex, Epidinium, 

Ostracodinium, Polyplastron, Endiplodinium, and Metadinium. In all 

these genera the contractile vacuole is formed by the coalescence of 

small accessory vacuoles. These accessory vacuoles arise from the 

dissolving of granules which are found in sharply defined regions 

around the contractile vacuole in Endiplodinium and Metadinium, in a 

narrow dorsal strip of the ectoplasm in Ostracodinium, and in the whole 

ectoplasm in Ophryoscolex and Epidinium. 





CHAPTER III 

THE STRUCTURE OF CONTRACTILE VACUOLES 

In amebae, contractile vacuoles move about through the protoplasm 

and presumably have no morphologically determined discharge pore. Light 

microscopy indicates a rather thick vacuolar membrane and surrounding 

this a layer of gelated protoplasm and a cloud of beta granules. In the 

electron microscope the vacuole in Amoeba proteus, Pelomyxa carolinensis, 

and Hartmannella rhysodes (Greider, Koster, and Frajola, 1958; Pappas, 

1959; Mercer, 1959) is limited by a typical unit membrane. The proto

plasm surrounding it is filled with tubules and vesicles, 20 to 200 

millimicrons in diameter. This vesicular zone varies from 0.5 to 2 

microns in thickness, probably depending on the stage in the vacuolar 

cycle. Beyond it is a halo of mitochondria (the beta granules of the 

light microscopist), irregularly crowded while the growing vacuole is 

small but becoming aligned in a compact ring as the vacuole enlarges. 

Rather frequently, individual vesicles appear to open into the vacuole, 

and Mercer and Pappas agree in their interpretation of this picture as 

one suggesting segregation of fluid into membrane-bounded vesicles and 

tubules, and the emptying of this fluid into the main vacuole by coal

escence. The mitochondria presumably provide energy for the segregation, 

and may in addition be involved in the water transport itself (Pitelka 

1963). 
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In Tokophrya the vesicles do not appear to be particularly numer

ous; in the peritrichs and the astomes, the thick cortical zone is 

permeated by distinctly tubular elements that branch and anastomose 
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and occasionally dilate to form larger vesicles. In all cases, occa

sional images suggest the opening of tubules or vesicles into the main 

vacuole. Around the periphery of the spongy zone, membranes of the 

tubules occasionally appear to be continuous with membranes of the endo

plasmic reticulum. Mitochondria are variably abundant in the surround

ing cytoplasm (Pitelka 1963). 

Relatively long discharge canals lead from the vacuole to the ex

terior in the two peritrichs; these have thick, apparently homogeneous 

walls and appear during diastole to be closed at both proximal and dis

tal ends by membranes. In Tokophrya a permanently open external channel 

leads to the body surface from a small papilla projecting into the con

tractile vacuole; in the papilla the lumen of the canal narrows to a 

very fine tubule during diastole but is widely expanded during systole. 

Fine fibrils, about 18 millimicrons in diameter, radiate from the chan

nel to the adjacent vacuole membrane and might, if they are contractile, 

be responsible for changes in the diameter of the excurrent tubule. 

In the astome Metaradiophrys gigas the discharge canal consists of 

a distal invagination of the cell surface with annular fibers in one 

side of its wall and a proximal cone-shaped part ending in a papilla in 

in the main vacuole wall. This proximal end is closed off by a septum 

from the vacuole cavity. Radially arranged fibrils that look tubular 

in section pass from the canal wall to the vacuole's cortex. Some 

other astomes have a contractile vacuole apparatus that is a permanent 

long tube. This undergoes rhythmic waves of contraction, and discharges 





by a series of well-marked pores. The latter have longitudinal fibers 

in their walls, and again, radial fibers leading from their proximal 

parts toward the main vacuole wall. 
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Rudzinska (1958) found in Tokophrya several structures of possible 

importance for the mechanisms of systole. The permanent vacuolar outlet 

or canal has a complex structure which involves differentiation along 

its axis and the presence of numerous orderly disposed fibrils. The 

canal consist of a pore, a broad channel, and a narrow tubule located in 

a papilla that protrudes into the cavity of the contractile vacuole while 

the pore and channel have relatively stable dimensions and are permanent

ly widely open, the diameter of the tubule changes over a wide range. 

During diastole its diameter is so small that it might be regarded as 

being closed. At systole the tubule opens so widely that its identi

fication as a distinct segment of the channel becomes rather difficult. 

Rudzinska assumes that the broading and narrowing of the tubule is 

accomplished by the contraction and relaxation of the numerous fibrils 

located around the canal. If, in addition to the radial array, circu

lar fibrils are a regular feature of the outlet, then the presence of 

two sets of fibrils would suggest that they act like a combined dilator 

and constrictor in opening and closing the tubule. 

Noirot-Timothee (1960) observed contractile vacuoles of an unusual 

sort in several entodiniomorph ciliates. These intestinal symbiotes of 

ungulates have vacuoles that pulsate at rather infrequent intervals, 

with a prolonged resting stage interrupting diastole. Light microscopy 

shows a basophilic and osmiophilic cortex about the vacuoles. In 

electron micrographs this zone during the resting stage appears as a 

sparse halo of tiny, clear, spherical vesicles. 
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Paramecia possess the most complex contractile vacuole apparatus 

ever examined in protozoans. In most species of this genus the contrac

tile vacuole is a reservoir fed by pulsating radial canals. Schneider 

(1960a, 1960b), in a thorough electron-microscope study observed a 

network of fine canaliculi, 15 to 20 millimicrons in diameter, forms a 

cylindrical field around each radial canal. At the periphery of the 

field these nephridial tubules appear in places to be continuous with 

endoplasmic reticulum. The radial canal has a round cross-section in 

diastole and apparently collapses like a ballon at systole. At this 

time, a narrow layer of homogeneous substance is present between the 

walls of the deflated radial canal and the adjacent tubules, but during 

diastole this layer disappears and some of the tubules appear to open 

into the canal. Around the swollen medial ends,.or ampullae, of the 

radial canals, the surrounding sponge of nephridial tubules is less 

dense. A narrow injector canal leads from each ampulla obliquely into 

the main contractile vacuole, nephridial tubules are lacking around 

the injector canal and around the vacuole. Fine fibrils, about 20 

millimicrons in diameter and appearing tubular in cross-section, are 

seen singly on the outer surface of the membrane of the ampullae. 

They pass along the walls of the injector canals, joining to form in

creasingly wider ribbons, and continue, in tracts of ten to forty 

fibrils each, along the outer, or pellicle, side of the contractile 

vacuole. The vacuole itself has a membrane indestinguishable from 

that of the radial and injector canals. In diastole, the vacuole 

is round; in systole the inner wall of the vacuole is flattened but 

smooth while the outer wall is deeply folded in regular waves, with 

the bands of fibrils occurring on one slope of each wave. The fibril 
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bands continue and describe a spiral about the discharge canal, which 

is formed of invaginated cell membrane. It is open externally and, 

during diastole of the vacuole, closed at its inner end by a double. 

septum consisting of cell membrane on the outside and vacuole membrane 

on the inside. 

In the cytoplasm surrounding the zone of nephridial tubules are 

mitochondria in moderate numbers and clusters of tube-like elements of 

unknown significance. 

In most studies, the cytoplasmic zone in which segregation of water 

and resorption of solutes almost certainly takes place is seen to be 

occupied by tubules or vesicles providing a large, and in the more ex

treme cases enormous, membrane surface area. Linkage of these tubules 

with endoplasmic reticulum may be significant if the latter system can 

be demonstrated to function in water transport elsewhere in the cell; 

the contractile vacuole apparatus occupies, after all, only a relatively 

small part of the total cell volume (Pitelka 1963). 

Contractile vacuoles in flagellates have been seen occasionally in 

electron micrographs; in several instances, simple membranes with no 

apparent cortical differentiations have been described. 

The rate of pulsation of a contractile vacuole is dependent on such 

factors as temperature, age, physiological state, food, salt concentra

tion, etc. In some protozoa a volume of water equivalent to the volume 

of the entire cell may be voided in as short a time as two minutes; 

under other conditions and in other species an equivalent amount of 

water may be voided in 24 to 48 hours, (Pennak 1953). 
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CHAPTER IV 

TYPE AND NUMBER OF CONTRACTILE VACUOLES 

Roving vacuoles, which may discharge anywhere on the body surface, 

are found in Rhizopoda, which have a changeable body form, and station

ary vacuoles, with fixed outlet, are found in Flagellata and Ciliate, 

organisms with a more or less fixed body form which only changes within 

the limits set by the elasticity of the body surface. This correspond

ence between body form and type of vacuole is not surprising. Whereas 

roving vacuoles are formed by the fusion of contributory vacuoles, the 

origin of which in turn is obscure, fixed vacuoles either originate in 

contributory vacuoles, or are replenished by canals. In some cases 

small contributory vacuoles are formed in the surface membrane of the 

main vacuole. The distinction between the various types may be less 

clear than appears if contributory vacuoles are also fed by canals. 

In most protozoa with contractile vacuoles one or two of these 

occur in each individual; sometimes there are three or four; and more 

rarely there is a greater number; up to fifty or a hundred. There is 

no correlation between the possession of numerous contractile vacuoles 

and body size. A few of these protozoa with numerous contractile 

vacuoles are usually large; most are of normal size. Some of these 

protozoa live in fresh water, some.are marine, and a certain number 

are endoparasitic, However, size and body shape can be correlated with 

one particular type of contractile vacuole. Elongated ciliates of large 
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size are likely to have a canal-like contractile vacuole running the 

whole length of the body (Kitching 1938). 
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CHAPTER V 

THE FUNCTION OF CONTRACTILE VACUOLES 

Of the various functions assigned to the contractile vacuole those 

of excretion of metabolic waste products and regulation of hydrostatic 

pressure within the cell have received most frequent support. Some 

authors prefer to limit "metabolic waste products" to nitrogenous sub

stances, although others include carbon dioxide as well. 

Osmoregulation 

In the freshwater protozoa the body of which is hypertonic to 

surrounding water, the water diffuses through the body surface and so 

increases the water content of the body protoplasm and interfere with 

its normal function. The contractile vacuole, which is invariably pre

sent in all freshwater forms, is the means of getting rid of this excess 

water from the body. Most marine or parasitic protozoa live in nearly 

isotonic media and there is no excess of water entering the body, hence 

the contractile vacuoles are not usually found in them. Just exactly 

why all ciliates and suctorians possess the contractile vacuole regard

less of habitat, has not fully been explained. It is assumed that the 

pellicle of the ciliate is impermeable to salts and slowly permeable to 

water (Kitching, 1936). Tartar (1954) showed that in fragments of 

Paramecium lacking mouth and gullet, pulsation of the contractile 

vacuole continued, though it was slower than normal rate, which indicates 
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that some water passes through the pellicle. 

That the elimination of excess amount of water from the body is 

one of the functions of the contractile vacuole appears to be beyond 

doubt judging from the observations of Zuelzer (1907), and others, 

15 

on Amoeba verrucosa which lost gradually its contractile vacuole as 

sodium chloride was added to the water, losing the organelle completely 

in the sea water concentration. Furthermore, marine amoebae develop 

contractile vacuoles do novo when they are transplanted to freshwater 

as in the case of Vahlkampfa calkinsi (Hogue, 1923) and Amoeba biddulphiae 

(Zuelzer, 1927). After studying an x-ray induced mutant of Chlamydo

monas moewusii without contractile vacuoles, Guillard (1960) concluded 

that water elimination is the sole essential function of the contractile 

vacuole in this organism. 

The number of the contractile vacuoles present in a species is 

constant under normal conditions. The contraction period varies from 

a few seconds to several minutes in freshwater inhabitants, and is, as 

a rule, considerably longer in marine protozoa. Kitching (1938a) esti

mated that a quantity of water equivalent to the body volume is elimi

nated by freshwater protozoa in four to 45 minutes and by marine forms 

in about three to four hours. 

How much water enters through the body surface of protozoa is dif

ficult to determine. In Pelomyxa carolinensis, 2 to 4 per cent of the 

total volume per hour of water enters through the body surface (Lovtrup 

and Pigon, 1951). Water also enters the protozoan body in food vacuoles. 

In Vampyrella lateritia which feed on the cell contents of Spirogyra 

in a single feedin~ many contractile vacuoles appear within the cyto

plasm and evacuate the water that has come in·with the food (Lloyd, 
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1926) and the members of Ophryoscolecidae show an increased number and 

activity of contractile vacuoles while feeding (MacLennan, 1933). The 

amount of water contained in food vacuoles seems, however, to be far 

smaller than the amount evacuated by contractile vacuoles (Gelei, 1925). 

Other evidences such as the contractile vacuole continues to pulsate 

when cytostome-bearing protozoa are not feeding and its occurrence in 

astomatous ciliates, would indicate also that the water entering through 

this avenue is not of a large quantity. In Suctoria, the contractile 

vacuole pulsates faster at the time of ingesting the protoplasm of the 

prey and thus apparently aid in feeding by eliminating water from the 
;, 

body (Kitching, 1956). How much water is produced during the metabolic 

activity of the organisms is unknown, but it is considered to be very 

small amount (Kitching 1938). The mechanism by which the difference 

in osmotic pressure can be maintained at the body surface is unknown. 

It may be, as suggested by Kitching (1934), that the contractile vacuole 

extrudes water but retains the solutes or some osmotically active sub-

stances must be continuously produced within the body. 

Excretion 

Weatherby (1927) found that urea is excreted by Paramecium caudatum, 

but was unable to detect urea in the fluid of the contractile vacuole 

by means of the micro-injection of his own modification of the xanthy-

drol reagent of Fosse. This reagent yields positive results with di-

lutions of urea as great as one part in 12,000. Calculations based on 

the volume of fluid eliminated by vacuoles and the quantity of urea 

excreted by known numbers of organisms in mass cultures indicated that 

the concentration in fluid of the vacuole would be of the order of one 





17 

part in 2,000 or 3,000, if all the urea were excreted via this route. 

It therefore appears that at most only a small part of the total urea 

is excreted in this manner. After removal of the fluid from the con

tractile vacuole of Spirostomum by means of micro-manipulation apparatus, 

and subsequent hydrolysis with urease, Weatherby (1929) found urea to 

be present in the vacuolar fluid in a concentration of about one part 

in 100,000. Calculations of the rate of excretion of urea by known 

numbers of Spirostomum in mass cultures indicate that this amount of 

urea accounts for only about one percent of the total urea excreted. 

Parnas (1926) concludes from observed differences in pulsation 

frequency that the vacuole is mainly excretory in marine protozoa, and 

both excretory and osmotic-pressure-regulatory in freshwater forms. 

The excretory function is accepted apparently without reservations by 

van Gelei (1925), who homologizes the various parts of the vacuole 

system in Paramecium with the vertebrate kidney, ureter, bladder, and 

urethra, although he admits the possibility that this system may aid 

in removing excess water from within the organism. In Paramecium, van 

Gelei states that the vacuole removes approximately ten times as much 

water as is taken in with food, a fact which he fails to correlate with 

his claim of a predominantly excretory function. Day (1927) suggests 

that vacuoles in Amoeba originate in the fusion and coalescence of ultra

microscopic droplets of soluble katabolic waste which may include water 

of osmosis. He observed that conductivity water increases size, number, 

and pulsation frequency of vacuoles. Essentially the same observations 

and conclusions were extended by him to Paramecium and Spirostomum 

(1930). 
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If the contractile vacuole is active in excretion of nitrogenous 

wastes, as is frequently maintained, then one would expect it to be able 

to excrete certain dyes which had been injected into the cytoplasm. 

Many attempts doubtless have been made to demonstrate such a phenomenon, 

but few accounts of such experiments are to be found (Calkins 1941). 





CHAPTER VI 

CONCLUSIONS 

Although contractile vacuoles occur in various phyla of living 

organisms, almost all information on these organelles is derived from 

studies on protozoa, for the simple reason that the latter are the most 

convenient material for observations and experiments. The contractile 

vacuole does not seem to be an organelle of uniform structure, even 

among protozoa. There are great differences as to its shape, size, 

number, and presence or absence of a permanent canal. However, in spite 

of these variations all contractile vacuoles have some common features; 

they form by the fusion of smaller contributory vacuoles, and they have 

a remarkably fast contraction at systole. The contraction which results 

always in the emptying of the content lasts in almost all contractile 

vacuoles from 2 to 3 seconds. The usual speed of contraction and the 

fact that it occurs at regular intervals when the general conditions 

remain the same, suggest that a very precise mechanism might be in

volved. 

Contractile vacuoles originate as a result of the activity of 

certain cytoplasmic inclusions, which may be aggregated in the immediate 

vicinity of the vacuole in some species, or distributed more or less 

generally throughout the cytoplasm in others. Temporary contractile 

vacuoles are formed by the fusion of coalescence of small accessory 

vacuoles, which in turn originate by the fusion of still smaller 
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accessory vacuoles, the last and smallest vacuoles being formed in or 

associated with the cytoplasmic inclusions mentioned above. More or 

less permanent contractile vacuoles receive fluid as small droplets, 
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or accessory vacuoles which fuse with some portion of the filling canals; 

these droplets originate in or on cytoplasmic inclusions in the same 

manner as those mentioned above. 

There is a physiological membrane surrounding each contractile 

vacuole. In some organisms, particularly those possessing more or less 

permanent vacuole systems, these organelles appear to be surrounded by 

morphological membranes. 

Direct evidence concerning the function of contractile vacuoles is 

almost entirely lacking. Indirect evidence indicates that in freshwater 

forms the vacuole protects the organism against excessive dilution of 

its cytoplasm. In marine and parasitic forms such a function would 

seem to be largely superfluous, although even in these the elimination 

of at least a small quantity of water by some mechanism appears to be 

necessary. Direct evidence indicating the presence of waste products 

of metabolism in the vacuolar fluid is very scant, although, in those 

forms possessing relatively impermeable surface structures, the vacuole 

is the only visible means by which such wastes may be passed to the 

exterior. 

The outstanding features of contractile vacuoles, taken colle

tively do not lie in differences among them, but rather in similari

ties, both morphological and physiological. 
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