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PREFACE 

Part of the study of Organizational Theory is overlapped with Be­

havioral Science which is the science of man's interaction with his en­

vironment. One of the end results from the study, in my opinion, is to 

develop processes that will allow man or more specifically the adminis­

trator to dwell on conceptual problems rather then problems which might 

be best done automatically. 

One area that research is progressing in for this end result is 

pattern recognition. While the immediate applications of pattern recog­

nition seem far removed from management, yet so was the work being done 

with electricity in the 18th Century which has progressed to the modern 

day computers. 

I wish to express my appreciation to Dr. W. Meinhart for his en­

couragement preparatory to and during the course of study. I also wish 

to thank my wife, Sharon, for her patience and perseverance in preparing 

this report. 
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CHAPTER I 

INTRODUCTION 

Definition of Pattern Recognition 

A pattern for pattern recognition purposes is a set of nonrandomly 

arranged, intersecting lines. Usually these lines form the outline of 

a recognizable object. 

Recognition concerns the ability of a system to acknowledge the pre­

sentation of a pattern to its input and the ability to provide a particu­

lar output for a given pattern. The recognition system is analogous to 

a black box with an input terminal and a single or multiple output termi­

nals. Each output terminal can give a binary answer, i.e., one or zero, 

yes or no. 

The pattern recognition system operates by presenting a series of 

patterns called the pattern set to the input terminals, one pattern at 

a time. The pattern recognition system in the case of the single out­

put gives a yes answer only if the pattern presented to the system satis­

fies the requirements of the system, otherwise, it gives a no answer. 

For the multiple outputs, the system gives a yes answer only on the out­

put which corresponds to the pattern presented to it. If the pattern 

does not satisfy the requirements for any of the outputs, all the output 

terminals give a no answer. 

1 
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Current Areas of Application 

Neurological researchers use pattern recognition methods to investi­

gate theories about the internal operation of the human brain. The 

scientists in this area are concerned with the development of basic ele­

ments and their interconnection to duplicate on an element by element 

level the response of the brain to stimulation by aural, visual. internal 

and other patterns. 

Uses in the data processing field have thus far provided the great­

est practical application of the techniques of pattern recognition. 

Magnetic Ink Character Recognition (MICR) and optical character recogni­

tion equipment have become common items for use by banks and other com­

panies for input to computers. While the techniques in use are rather 

crude in comparison with theoretical techniques currently being worked 

on, they provide a standard by which experimental methods can be measured 

against. 

Most of the theoretical work in pattern recognition being done today 

can be cla~sed, for lack of a be~ter title, as the simulation of the hu­

man brain. The work in this area views the human pattern recognition 

system as a black·box and the researchers are interested in obtaining the 

same responses as those -obtained from the brain without regard to how the 

brain accomplishes thi& task. The pattern recognition theories in this 

area can be divided into two approaches: those that are derived from the 

Perceptron theory originated by Rosenblatt (1) and other methods, One of 

the other basic approaches is in the n-truple scheme developed by Bledsoe 

and Browning (2), 
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The Bledsoe-Browning Method 

The Bledsoe-Browning Method basically is a technique that uses sub-

matrices to scan an input matrix. The input matrix is an N x N grid 

which has on it a pattern comprised of 1 's on the outline of the 

pattern and zeros elsewhere. (See Figure 1) 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

6: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

7' 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
X-Axis 

8 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 

9 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

12 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

13 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

14 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 
0 1 2 3 4 5 

Y-Axis 

Figure 1. Input Matrix 

A set of submatrices each containing a particular feature is pro-

vided. An example set is shown in Figure 2. 



0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

Type-A Type-B Type-C Type-D 

Figure 2. Set of Submatrices 

Each submatrix is to be moved one position at a time over the input 

matrix until all possible positions have been covered. When the subma­

trix matches cell by cell with the corresponding squares in the input 

matrix the X and Y position and the type of submatrix is stored. For 

the example shown, the list in Table I would be developed. 

Type 

A 

B 

C 

D 

D 

TABLE I 

TABLE OF MATCHES 

X-Pos. 

7 

1-

7 

12 

12 

Y-Pos. 

4 

4 

8 

3 

8 

4 

When all of the submatrices have been used, the list of positions and 

types is compared with a master list, containing a list of factors for 

each of the patterns in the set of patterns that the system has been 

given. When the list developed by the scanning process matches a particu­

lar list of factors in the master list the pattern is said to be recog­

nized. 



Limitations of the Bledsoe-Browning Method 

There are two limitations to the Bledsoe-Browning Method which re­

stricts its use to adjusted patterns. This is not a criticism of their 

method but is an emphasis of the points where further development is 

needed. 

5 

For the Bledsoe-Browning Method and for most all other methods as 

well, the size of the pattern has to be fixed from one trial to the next. 

Also the position of each pattern in the input matrix is fixed for all 

trials. Once the system has been given the factors to recognize a 

pattern~ that pattern must remain in the same grid positions as originally 

set up. 

The purpose of this paper is to propose a technique by which these 

limitations can be removed. The standard by which the results of this 

technique will be measured will be the ability of the pattern recogni­

tion system to give the correct response to a pattern out of a set of 

similar patterns without regard to the size, position, and rotation of 

the pattern. 



CHAPTER II 

THEORETICAL DESIGN OF THE PATTERN RECOGNITION PROCEDURE 

General Approach 

The Size and Position Independent Pattern Recognition (SPIPR) System 

is composed of four phases. Upon presentation of the pattern to the in-

put matrix, the phases are taken sequentially until the pattern is recog-

nized. The system is assumed to have previously been given the param-

eters of the patterns for which the system is to recognize. 

Phase One 

The first phase is a semi-mechanical process of scanning the input 

matrix with the submatrices and determining the points at which they co-

incide. 

If the subset of features particular to a pattern P is denoted S 
n n 

where n is the pattern number, then the set of features necessary to 

recognize patterns P1 .... Pm will be the sum of the subsets s1 . . s ' m 

i.e., S == 
sum 

m 
I: s .. 

1. 
However, it can be shown that Swill be consider-

i==l 
ably smaller than the Ssum indicated above. 

If the elements in the input matrix are either l's or O's and the 

size of the input matrix is k x k then the number of possible patterns is 

2 k X k + 1 l h b h X h . . 2h X h + 1 - . Te su matrix is g1.v1.ng 1 possible 

submatrices or features. Since his considerably less thank then 

2h X h + 1 - 1 < < 2k X k + 1 - 1. . h b ff .bl In practice t e num er o eas1. e 

6 



submatrices will be a fraction of those theoretically possible because 

some of them can be derived from rotating others. 

The scanning process involves taking each submatrix in turn, 

7 

putting it over each possible location on the input matrix and comparing 

the corresponding elements, If all elements match, then the x and y posi­

tion of the submatrix on the input matrix is recorded along with the sub­

matrix type or number and its rotation. The submatrix is then rotated 

an increment and again passed over the input matrix as above. When the 

submatrix has been completely rotated, the next is used in the same 

fashion. The table developed in the above procedure contains, for each 

match, the submatrix type, the rotation, the x position and they posi­

tion. This table is then used as input to the next phase, 

Phase Two 

The information in the table generated in the scanning phase is tab­

ulated on the basis of feature type. The generated table then shows the 

number of features found of each type which can then be compared with 

the stored tables, When a table in the library of stored pattern param­

eters matches the generated table, this set of parameters for the corres­

ponding pattern are extracted, When the entire library has been compared, 

the result is a new library containing just the patterns that have the 

same submatrix type distribution as the pattern that had been scanned in 

the input matrix. 

Phase Three 

The third phase is similar to the second except that the generated 

table is tabulated on the basis of rotation index within feature type. 
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This is then compared with the library resulting from the previous phase 

with the matching patterns again being extracted, 

Phase Four 

The x and y position of each submatrix is used to prepare an array 

showing the distance from every feature on the input matrix to every 

other feature, i.e., the distanced from the i-th feature to the i-th 

feature is d = /(x. - x.)~ + (y. - y.)2, After the distance matrix has 
· ~ J 1 J 1 

been calculated it is standardized with the largest value being set equal 

to a constant and the others adjusted proportionately. This is done to 

convert all patterns to a standard size so that regardless of the size 

of pattern presented, it can be recognized, 

The determinate of the standardized distance matrix is then calcu-

lated to provide a distance matrix index. While the determinate of the 

distance matrix is not necessarily unique for each such matrix, the 

probability of two different distance matrices from two different pat-

terns being the same, particularly after the above selection phases, is 

so low that difficulties with the use of it are not foreseen, 

The determinate is then compared with the determinates in the list 

that resulted from the previous phase, When a determinate in the list 

is found that is equal to the calculated determinate, the corresponding 

pattern is the pattern that matches the input given to the system. 

General Flow 

It has been assumed in the above discussion that the number of 

possible matching patterns is sufficiently large so that it was necessary 

to carry the process through to the last phase to obtain an unambiguous 



response. As an examination of the Generalized Flow Model Figure 3 will 

Phase 1 

Phase 2 

Phase 3 

Phase 4 

Scanning of 
input matrix 

' 
Selection on 

basis of feature 
type of distribution 

' 
Selection on 

basis of rotation 
index frequency 
distribution 

' 
Selection on basis 

of determinate 

Figure 3. Generalized Flow Model 

Matching 
Pattern 

show, this assumption is not necessary in a normal situation. Whenever 

the number of possibilities left at the end of a phase is equal to one, 

it .is unnecessary to continue the process. 

While Figure 3 shows the flow to go step by step with each phase 

completed before the next one starts, the optimum flow would actually be 

in a concentric form. Using this form, a set of parameters for a pat-

tern would be taken out of the library and compared on the basis of the 

feature type distribution. If it matched it would then be compared on 

9 

the basis of the feature type rotation distribution rather then extracted 
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as it would be in the case of the sequential flow, This process of 

comparisons is continued until a mismatch occ.urs at which point the 

pattern is discarded and another one is pulled from the library. 

Rotation Index 

The rotation index referred to in the previous discussion is a 

dimensionless integer indicating the number of increments a submatrix 

has been revolved about its midpoint. Because of the necessity for 

keeping the sides of the submatrix parallel to the axis of the input 

matrix, the rotation is not a true .rotation. The same effect is arrived 

at by shifting the contents of each cell across and down keeping within 

the original layer as counted from the midpoint. This is illustrated in 

Figure 4. 

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

1 2 3 4 5 

Rotation Index 

Figure 4. Submatrix Rotation 

Up to a certain transition point the maximum number of increments 

that can be taken is limited to 8, The use of a matrix with an odd 

number of elements on a side allows the use of the center cell to ro-

tate around, simplifying the calculation of the next position for each 

cell,. For a matrix of size k x k with k being odd the number of posi-

tions a cell will. move for each increment is determined by the distance 

. . f h cell ck + l it is rom t e center 2 k; 1); i.e., a cell one cell away 
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from the center would move one position each increment, a cell two cells 

away would move two positions, etc. 

Recognition Time 

If this system were to be implemented, it would seem logical to 

eliminate the second phase and to go directly to the third and fourth 

phases. While this would give the same results, it can be shown that 

this is not the quickest method. Using the number of compares necessary 

to respond with the correct pattern as the criteria, the number needed 

for the four-phase alternative is: 

and for the three-phase alternative 

(N•F•R +N)/2 

where N Number of patterns in library 

F = Number of features used 

R = Maximum number of rotation increments 

C. %/100 extracted as a result of the previous i-th phase. 
1 

Therefore, if the four-phase alternative to use less time then the three-

phase, the following must be true 

c2 = .1 (10%) and R = 8, then: 

N•F + .8°N°F + .005·N < (StN•F + N)/2 

N(l.8•F + .005) < N(8°F + 1)/2 

1.8,F + .005 < 4·F + .5 

Since 1.8·F is alwayi less than 4•F the four-phase alternative will 

respond in less time then the three-phase. At small values of N and/or 
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large values of c1 and c2 it is possible for the inequality sign to 

reverse; however, this is not usually the case. The equation for the 

four-phase alternative assumes a sequential flow; however, if a concen-

tric form were used as discussed previously, the left-hand side of the 

inequality would be divided by two. This would allow a much greater re-

duction in response time for the four-phase alternative over the three 

phase. 

An Example of the Basic Process 

Referring to Figure 2 in Chapter I, it will be noted that submatrix 

Type-Dis a rotation of Type-B. Therefore, by the use of rotation only 

three different types of features are needed for this example. 

Scanning the submatrices A, B, and C shown in Figure 2 across the 

input matrix shown in Figure 1 gives the set of matches shown in Table 

II. 

TABLE II 

TABLE OF MATCHES 

Match 
No. Type X-Pos. Y-Pos. Rotation 

1 A 7 4 1 

2 B 1 4 1 

3 B 12 3 3 

4 B 12 8 3 

5 C 7 8 1 

From this the distance matrix shown in Table III would be calculated, 

(Decimals are omitted) 



TABLE III 

DISTANCE MATRIX 

1 2 3 4 5 

1 0 6 4 5 4 

2 6 0 9 13 5 

3 4 9 0 5 5 

4 5 13 5 0 5 

5 4 5 5 5 0 

The frequency distribution of feature types would be: A-1, B-3, 

C-1. If a set of recognizable patterns have previously been given 

such as in Table IV the subset based on matches of the feature type 

frequency distribution (column I) can easily be selected, 

13 

From Table IV column I only pattern numbers 4, 5, and 7 meet the 

criteria, To decide among them it is necessary to look at the frequency 

distribution of rotations within types. From Table II this would be A,l 

-1; B,1 -1; B,3 -2; and C,l -1. Comparing this with Table IV column II 

shows that pattern numbers 4 and 7 match this breakdown. 

The next step is to calculate the determinate of the distance ma­

trix. For the values in the distance matrix shown in Table III the 

determinate is 27,400. Comparing this with the determinate values for 

Pattern Nos. 4 and 7 in Table IV (column III) only Pattern No. 4 matches 

and therefore is the correct response of the system to the original pat­

tern presented to the input matrix. 
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TABLE IV 

PARAMETERS OF RECOGNIZABLE PATTERNS 

I II III 

Feature 
Pattern Type Feature 

No. A B C Type Rotation Frequency Determinate 

A 1 1 
1 1 1 1 B 1 1 9,470 

C 1 1 

A 1 1 
2 1 2 1 B 1 1 

10,100 C 1 1 

A 1 1 

3 1 2 1 B 1 1 
33,200 

B 4 1 
C 1 1 

A 1 1 

4 1 3 1 
B 1 1 

27,400 
B 3 2 
C 1 1 

A 1 1 
5 1 3 1 B 1 3 19,430 

C 1 1 

A 2 1 
B 1 1 

6 1 3 2 B 3 2 42,650 
C 1 1 
C 2 1 

A 1 1 

1 3 1 
B 1 1 

33,200 7 B 3 2 
C 1 1 



CHAPTER III 

COMPUTER IMPLEMENTATION 

General Approach 

A computer program was written to investigate the characteristics 

and problems resulting from implementing the Size and Position Independ-

ent Pattern Recognition System. For ease in programming and debugging 

the program was written in two parts. The first part corresponds to the 

phase one description in Chapter II and the second follows the concentric 

alternative for phases, two, three and four. The two parts were written 

in FORTRAN IV for the IBM 7040. 

The size of the input matrix was set at 35 x 50 and the size of the 

submatrices at 3 x 3. The 3 x 3 submatrix gives the possibility of 1023 

3 °3 + 1 (2 - 1) features. To reduce this number of possibilities to a 

manageable size it is necessary to define a feature for this application. 

A feature for this use is defined as a unique (i.e., cannot be ob-

tained by rotating or shifting another feature) irregular structure of 

l's and O's. The use of the word 'irregular' means that the feature is 

not a reflection about both its axis and 'structure' means that all cells 

containing a 1 are adjacent to at least one other cell containing a 1. 

Using this definition the number of features that will be used is 

four. These are shown in Figure 5. 

15 



0 1 0 0 1 0 0 1 0 0 1 0 

0 1 0 0 1 1 0 1 1 1 1 1 

0 0 0 0 0 0 0 1 0 0 1 0 

1 2 3 4 

Feature Number 

Figure 5. Features 

Scanning Program 

The scanning program listed in Appendix A was written closely 

following the theoretical description in Chapter II. Assuming a know-

ledge of FORTRAN IV a brief description is as follows: 

Lines 12-15. Read in the four submatrices use.d in scanning. 

Lines 16-23. Read in only the lines of the input matrix that 

contain the pattern. This is done rather than reading in the 

entire matrix to conserve time. 

Lines 24-35. These steps set up the indexing required for 

scanning. 

Lines 36-41. At this point the submatrix T(JMS, IMS) is 

compared with the input matrix ZMAT(L,K). If all the ele­

ments match the program continued to Line 42. 

Lines 42-49. If the submatrix matched, the parameters are 

stored in the table TAB. 

Lines 50-58. The submatrix is rotated'one position each 

time. 

Lines 64-68. The table generated by scanning is tabulated 

into the frequency type distribution table and the feature 

type rotation distribution table. 

16 



Lines 69-78. The x and y position is used to calculate 

the distance matrix from which the function (listed in 

Appendix B) in Line 78 calculates the determinate. 

Lines 79-83. The various tables developed in this program 

are punched out for use by the selection program. 

Selection Program 

The selection program using the concentric form of search hunts 

through the library stored on magnetic tape until it finds the match­

ing pattern. The listing is in Appendix C. 

Lines 12-19. To eliminate the need for maintaining a magnetic 

tape the library was stored on cards and put on tape each 

time the system was used. 

Lines 20-29. The parameters for the pattern to be recog­

nized are read in. 

Line 33. The pattern parameters to be compared are read in 

from the library on tape unit 0. 

Lines 38-400 The feature type distribution is compared and 

if it matches the program continues to the next step. 

Lines 41-56. The feature type rotation distribution is com­

pared. 

Lines 57-59. The determinate is compared, 

Lines 60-63. The results of the search along with various 

statistics are printed out. 

17 



CHAPTER IV 

EXPERIMENTAL RESULTS 

Operation 

The pattern parameter library consisted of different patterns rang­

ing from simple patterns with eight or less features to the more com­

plex with 15 or more. Using the four submatrices the scanning program 

took an average of .02 hour or lo2 minutes for each pattern. A slight 

variation in run time was due to the calculation of the determinate which 

due to the algorithm used varied proportionatety with F(F-1) where Fis 

the number of features found. 

Although a limited pattern set was used, the time for each pattern 

searched was estimated to be less than 0002 hour (about one sec.) for 

each pattern in the library. 

Ambiguities in Selection 

A problem that occurred in the Selection Program was in the compari­

son of the determinates. In the process of calculating the determinate, 

(i 0eo, distance calculation, standardization, determinate calculation) 

the large number of multiplications using finite arithmetic causes a 

round off error in the value of the determinate. The solution to this, 

although not implemented, could have been to use an interval of± 1% 

around the value. 

18 



CHAPTER V 

CONCLUSION 

The system developed above was viewed as a theoretical way of re­

moving the limitations inherent in most pattern recognition systems de­

veloped to the present time; and as a theory, the application of it would 

require further refinement. Some of the refinements necessary to apply 

the theory are discussed below. 

Increment Size Reduction 

The system up to this point has been discussed from an entirely 

deterministic viewpoint, i.e., all of the results of the different dis­

tributions and comparisons have been assumed to have exact values. This 

deterministic method holds true up to a certain transition pointo The 

change in the size of a pattern has been taken as a multiple of a dis­

tance between adjacent cells in the input matrix. At the transition 

point the value of the increment of change in size of the pattern ap­

proaches zeroo In like fashion, the possible rotations of a pattern 

go from 8 to infinity. 

An example of the complexities that arise from the reduction in in­

crement size can be ascertained from a comparison of Figure 4,in Chapter 

II where the rotation increment as 1 with Figure 6 below with an increment 

of aS a 

19 



0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 

0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 2 or 2 3 

Rotation Index 

Figure 6 • . 5 Increment Rotation 

As can be seen, this leads to an ambiguity as exemplified by the middle 

two features, 

The solution to this problem is to increase the number of elements 

20 

in the input matrix while keeping the overall size in the same propor­

tion to the average size of the patterns so that the lines in the pattern 

overlap several cells. This means that when the submatrices are scanned 

across the input matrix, the occurrence of a feature cannot be determined 

exactly as it was in the deterministic method, but must be determined on 

the basis of the percentage of matching cells. This percentage is then 

examined by a probabilistic analysis. If the percentage of matching cells 

is high; then there is a high probability that the area of the input ma­

trix, being compared to the submatrix, contains the same feature as is in 

the submatrix. The implementation of this would require a confidence 

level below which the result of the comparison is no and above which the 

result is yes, 

The comparison of the derived feature type distributions and the 

feature type rotation distributions with the corresponding distributions 

in the library would also have to be based on probabilities, possible us­

ing a correlation approach. 
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The determinate of the distance matrix would have to be compared to 

the determinates in the library on a probabilistic method also. 

Resolution 

The resolution of a pattern recognition system can be defined as 

the ability of the system to respond with the correct result to a small 

increment of change in the size or rotation of a pattern. As an example 

if the input area were 10 units of measure by 10 units and this area con­

tained a 10 x 10 matrix then the smallest increment of change in size 

would be one unit, If, however, the input area contained a 1000 x 1000 

matrix, then the increment would be .01 units. Therefore the resolution 

of the 1000 x 1000 matrix is said to be one hundred times greater than 

the 10 x 10 matrix of the same area. 

The resolving ability of this system is important when the system 

is used in a practical situation because the smallest incremental change 

recognizable by the system must be less than or equal to the smallest in­

cremental change expected in the size of the patterns to be used. 

Practical Applications 

While the Size and Position Independent Pattern Recognition System 

is unsuitable for immediate real time operations such as character 

recognition equipment due to its multiple steps, it does have a wide 

range of feasible applications. Some of the possible applications are 

as follows: 

Weather Forecasting. Using a weather map as the input pattern, 

the system could provide weather forecasts automatically. 



Location Finding. With the ship or plane mounted radar set as 

the input, the system could provide a continuous indication of 

the location of the vehicle, 

In general, any time the situation can be displayed in two dimen­

sions and consists of irregular repeated parts, the Size and Position 

Independent Pattern Recognition System can be used to analyze and reach 

conclusions about the data. 

22 
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APPENDIX A 

SCANNING PROGRAM 

DIMENSION ZMAT(35,50),S(35),SUB(4,3,3),T(3,3),TAB(25,4) 
DIMENSION FD(4),FDR(4,8) 
COMMON ZMAT 

500 FORMAT(911) 
501 FORMAT(l3,3511) 
505 FORMAT(A6) 
700 FORMAT(A6,F5.0) 
701 FORMAT(A6,8F5.0) 
702 FORMAT(A6,El6.8) 

READ IN FEATURES 
DO 5 K=l,4 

5 READ(5,500)((SUB(K,I,J),I=l,3),J=l,3) 

READ IN PATTERN 
READ(5,505)IDEN 

10 READ(5,50l)J,(S(I),I=l,35) 
IF(J.EQ.99) GO TO 20 
DO 15 I=l,35 

15 ZMAT(I,J)=S(I) 
GO TO 10 

PHASE 1 SCANNING 
20 NOF=l 

DO 36 NF=l ,4 
DO 22 I=l,3 
DO 22 J=l ,3 

22 T(I,J)=SUB(NF,I,J) 
DO 35 NR=l,8 
DO 30 I=l,50 
DO 30 J=l,35 
IM=I+2 
JM=J+2 
DO 25 K=I,IM 
IMS=K-I+l 
DO 25 L=J,JM 
JMS=L-J+l 
IF(ZMAT(L,K).NE.T(JMS,IMS)) GO TO 30 

25 CONTINUE 
TO HERE IF FEATURE MATCHES 
TAB (NOF , 1) =NF 
TAB (NOF , 2) =NR 
TAB (NOF ,3)=J+l 
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TAB(NOF,4)==1+1 
NOF=NOF+l 

APPENDIX A (CONTINUED) 

IF(NOF.GT.25) CALL EXIT 
30 CONTINUE 

SAV==T (1, 1) 
T(l,l)=T(2,1) 
T(2,l)=T(3,l) 
T(3,l)=T(3,2) 
T(3,2)=T(3,3) 
T(3 ,3)=T(2 ,3) 
T(2 ,3)=T(l ,3) 
T(l,3)=T(l,2) 
T(l ,2)=SAV 

35 CONTINUE 
36 CONTINUE 

NOF=NOF-1 

BUILD FEATURE DISTRIBUTION TABLES 
DO 60 I=l,NOF 
J==TAB(I,1) 
FD (J) =FD (J) +1. 
K==TAB(I,2) 

60 FDR(J,K)=FDR(J,K)+l. 
DO 70 I=l,NOF 
DO 70 J=I ,NOF 
ZMAT(I,J)=O. 
ZMAT(J,I)=O. 
IF(I.EQ.J) GO TO 70 
D=SQRT(((TAB(J,3)-TAB(I,3))**2)+((TAB(J,4)-TAB(I,4))**2)) 
ZMAT(I,J)=D 
ZMAT(J,I)=D 

70 CONTINUE 
DET=DETER(NOF) 
DO 75 I=l,4 

75 WRITE(7,700)IDEN,FD(I) 
DO 77 I=l ,4 

77 WRITE(7,701)IDEN,(FDR(I,J),J=l,8) 
WRITE(7,702)IDEN,DET 
CALL EXIT 
END 
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APPENDIX B 

FUNCTION DETER(NOF) 
COMMON ZM(35,50) 

STANDARDIZE THE MATRIX 
ZMAX=O.O 
DO 5 I=l,NOF 
DO 5 J=I,NOF 

5 IF(ZM(I,J).GT.ZMAX)ZMAX=ZM(I,J) 
DO 8 I=l,NOF 
DO 8 J=l,NOF 

8 ZM(I,J)=(25./ZMAX)*ZM(I,J) 
SUM=O. 
DO 15 1=2 ,NOF 
LIM=NOF + I-1 
PROD=l. 
DO 10 J=I,LIM 
K=J-I+l 
L=J 
IF(J.GT.NOF)L=J-NOF 
PROD=PROD*ZM(L,K) 

10 CONTINUE 
SUM=SUM+PROD 

15 CONTINUE 
DETER=SUM 
RETURN 
END 
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APPENDIX C 

SELECTION PROGRAM 

DIMENSION FD(4),FDR(4,8),FDA(4),FDRA(4,8) 
500 FORMAT(A6,F5.0) 
501 FORMAT(A6,8F5.0) 
502 FORMAT(A6,E16.8) 
600 FORMAT(lHl) . 
601 FORMAT(1X,14HINPUT PATTERN ,A6,4H IS ,A6,4X,3I6) 
602 FORMAT(1X,14HINPUT PATTERN ,A6,10H NOT FOUND,4X,3I6) 

DATA EN/3HEND/ 
DATA IEN/3HEND/ 
WRITE (6,600) 
REWIND 0 

1 DO 5 I=l,4 
READ(5,500)IDEN,FD(I) 

5 IF(IDEN.EQ.IEN) GO TO 10 
DO 6 I=l,4 

6 READ(5,501)IDEN,(FDR(I,J),J=l,8) 
READ(5,502)IDEN,DET 
WRITE(O)IDEN,FD,FDR,DET 
GO TO 1 

READ IN PATTERN TO BE RECOGNIZED 
10 WRITE(O)EN,FD,FDR,DET 

ENDFILE 0 
12 REWIND 0 

DO 14 I=l ,4 
14 READ(5,500)IDENA,FDA(I) 

DO 15 I=l ,4 
15 READ(5,501)INDEA,(FDRA(I,J),J=l,8) 

READ(5,502)IDENA,DETA 
IFR==O 
IF=O 
N=O 

20 READ(O)IDEN,FD,FDR,DET 
IF(IDEN.EQ.IEN) GO TO 50 
N=N+l 

COMPARE FEATURE TYPE DISTRIBUTION 
DO 25 I=l ,4 
IF=IF+l 

25 IF(FD(I).NE.FDA(X)) GO TO 20 

COMPARE FEATURE TYPE ROTATION DISTRIBUTION 
DO 40 I=l,8 
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APPENDIX C (CONTINUED) 

K=-I-1 
DO 35 M=l ,4 
DO 30 J=l,8 
L=J-tK 
IF(L.GT.8)L=L-8 
IFR=IFR+l 
IF(FDR(M,J).NE.FDRA(M,L)) GO TO 40 

30 CONTINUE 
35 CONTINUE 

HERE IF MATCH 4 X 8 
GO TO 45 

40 CONTINUE 
GO TO 20 

COMPARE ON DETERMINATE 
45 IF(DET.NE.DETA) GO TO 20 

PATTERN FOUND 
WRITE(6,601)IDENA,IDEN,N,IF,IFR 
GO TO 12 

50 WRITE(6,602)IDENA,N,~F,IFR 
GO TO 12 
END 
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